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family, for the moral and financial support, that allowed me to choose my internship (and then thesis
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thesis committee.

Alfonso Maria Caldiero
Brussels, October 2019

1Seinfeld (I would rather not have my TurnitIn score ruined by pop-culture references)
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Abstract
The Rotation and Interior Structure Experiment (RISE) on the InSight lander and the LaRa experiment
on the ExoMars platform will provide precise measurements (accuracies of a few mas) of the rotation
of Mars, in terms of the Mars rotation and orientation parameters (MOP). These parameters include
the rate of precession and the amplitudes of the nutations, of the length-of-day (LOD) variations, and
of the polar motion components. The MOP are sensitive to the interior properties of Mars, particularly
to the presence and size of a liquid core. However, uncertainties of current interior models in other
physical parameters describing the internal structure of Mars, such as the temperature distribution, the
composition, and the elasticity, limit the information on the interior obtainable from the MOP. Current
estimates of the core radius have uncertainties of about 100 km, and suggest a fully liquid core.

The improvement of the accuracy of the MOP solution from the landers coming from the inclusion of
radio-tracking data from Trace Gas Orbiter (TGO) was studied in this project. Both numerical (through
the orbit determination software GINS and Tudat) and analytical (through the ORB software developed
at the Royal Observatory of Belgium) methods were employed to asses the sensitivity of the TGO orbit
and radio-tracking data to the MOP of interest. In particular, an analytical method based on Kaula’s
equations was developed to predict the effect of the MOP on a wide range of orbits. The satellites most
affected by CW were found to be those in near-circular orbits at about 40∘ of inclination. The orbiters
most sensitive to LOD variations were those in near-equatorial, highly-eccentric orbits.

As for the improvements on the MOP estimation due to TGO data, a covariance analysis was per-
formed with different assumptions on the dynamical and observation models, and on the estimated
parameters. The improvement with respect to a lander-only solution is of up to 6 % for the CW com-
ponents, up to 8 % in the LOD variations components, and up to 20% and 12% on the nutations
amplification factor and the FCN frequency (the latter two judged excessively optimistic). However, no
definite inference on the resulting core radius accuracy improvement could be made.

xvii





1
Introduction

1.1. Motivation
In November 2018, the NASA InSight lander touched down on the surface of Mars, effectively marking
a new phase in the rich history of the robotic exploration of the Red Planet. Within 3 years from that
date, probes from 4 new missions are expected to reach Mars. These probes will either land on the
surface of the planet, as in the case of InSight, or perform science while in orbit around the planets.
Belonging to the former category is the probe sent as part of the ExoMars 2020 mission, a joint effort
by the European Space Agency (ESA) and Roscosmos. On-board the surface platform of the ExoMars
lander is an instrument ideated and developed by the Royal Observatory of Belgium, called LaRa (for
Lander Radio Science, Dehant et al., 2009). A similar instrument is also present onboard the InSight
lander, as part of the Rotation and Interior Structure Experiment (RISE, Folkner et al., 2018). Both
instruments are coherent transponder, which will receive a radio signal coming from Earth and transmit
it back. Through shifts in the frequency of this signal due to the relative motion of the instrument and
the tracking station on Earth, LaRa and RISE will yield accurate measurements of the Mars rotation
and orientation parameters (MOP).

The rotation of a planet and its orientation provide information on the internal state of the body. This
is instrumental in the case of Mars, since there are few other options to probe its interior. This is why,
although the planet has been the target of several missions in the past years, the internal structure of
Mars is as of now still not known precisely. In turn, knowing the present state of the interior of Mars
could provide important insight into its formation and evolution, especially since it has not experienced
the modifications from plate tectonics as in the case of the Earth (Banerdt et al., 2013).

The mission which will bring LaRa on the surface of Mars is part of the larger ExoMars programme,
whose primary objective is to study the present or past habitability of Mars. To do so, another probe
was launched as part of the ExoMars programme, and it is orbiting Mars since 2017. This spacecraft,
known as Trace Gas Orbiter (TGO), is one of the many currently orbiting the planet, although it has a
lower inclination than most of the other probes. Radio-tracking data from TGO is also available. Clearly,
an orbiter will not be as sensitive to changes in the rotation of the main body as a lander, which is tied
to the planet and follows its motion in space. On the other hand, an orbiter covers a larger area of
the main body with its motion, while a lander is only sensitive to variations affecting its landing site. In
addition, the peculiar orbital characteristics of TGO may make it more or less sensitive to these effects.

1.2. Research question and goals
In view of this, the main objective of the present study is to propose a way to further improve these
estimates by predicting the effect of using tracking data from TGO under different orbital configurations,
or from another real or hypothetical orbiting spacecraft. From this main goal, in the literature study
phase of this project different sub-goals were deduced:

• Testing the sensitivity of TGO to the MOP, by simulating realistic trajectories and radio science
observations;
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• Selecting an optimal data combination strategy allowing to maximize the impact of TGOmeasure-
ments on the combined solution from the landers and the orbiter, by probing different weighting
strategies;

• Deducing the effect on the inference of Mars physical characteristic of the inclusion of TGO data
in the MOP estimation;

• Proposing a Martian spacecraft orbit which may maximize the accuracy of the MOP estimation
from the landers, by evaluating the signature on theMOP onKeplerian orbits obtained by selecting
subsets of values from the six orbital elements.

Based on these research goals, the main research question and its sub-questions can be explicited
as follows:

• What is the achievable improvement in the accuracy of the MOP solutions obtained from InSight
and LaRa when TGO tracking data is included?

– What is the signature of the different MOP on the trajectory of TGO and the different radio
tracking observables?

– Is there an optimal method of combining data from InSight, LaRa, and TGO for the estimation
of MOP?

– What is the expected improvement in the accuracy of the physical parameters of Mars com-
ing from this improved accuracy on the MOP?

– What is the set of orbital elements which maximizes the impact of the orbiter tracking data
on the combined solution for the MOP?

1.3. Thesis outline
The report starts, in Chapter 2, with a more in-depth explanation of the rotational state of Mars and how
it is modelled, as well as a discussion on how geophysical properties of the planet are related to the
MOP. Next, Chapter 3 presents the type of measurements which are of interest in this application of
radio science, as well as the methods which allow to estimate the parameters and their uncertainties
from these observations. Chapter 4, in its first part, outlines the models and assumptions useful to
simulate a radio science experiment, and in its second part it describes the implementation of these
theoretical expressions into the software employed throughout the project. Verification and validation
of the software are presented in Chapter 5, while Chapter 6 lists the principal outcomes of the study.
A discussion of the results thus presented is made in Chapter 7, from which the main conclusions are
drawn in Chapter 8.



2
The rotation of Mars

This chapter constitutes the main theoretical frame of the report, yielding information about the science
related to the research goals of Chapter 1. Section 2.1 presents the main reference frames useful for
the description of the rotation and orientation of Mars. Section 2.2 discusses the main Mars rotation
and orientation parameters (MOP), which express the relative orientation of these frames, and thus
of the planet itself. Then, Section 2.3 outlines the ways by which the geophysical properties of Mars,
such as its interior or the atmosphere dynamics, affect the MOP, and consequently how these same
geophysical properties could be estimated from the MOP.

2.1. Reference frames
The International Celestial Reference Frame (ICRF), realization of the International Celestial Reference
System, is a frame defined from Very Long Baseline Interferometry (VLBI) observation of extra-galactic
sources like quasars, its axes being fixed with respect to these distant objects (Wakker, 2015). Its
origin is in the barycenter of the Solar System, although in this discussion it will be assumed to be
Mars-centered, along with all the other reference frames defined hereafter. The orientation of the
ICRF is close to that of the Earth Mean Equator of J2000 (EME2000). The latter frame represents the
orientation of the Earth at the epoch J2000 (1 January 2000, 12:00:00), not accounting for nutations.
The x-axis of the EME2000 reference frame points to the vernal equinox at the reference date (here
called 𝛾ፄፀፑፓፇ), while the z-axis is aligned to the Earth mean pole of J2000, and the y-axis completes
the right-handed frame. The difference between the x-axes of the ICRF and the EME2000 reference
frames was estimated to be 78±10 mas (milliarcseconds) in the y-direction and 19±2 mas in the z-
direction (Folkner et al., 1994). Therefore, in the following, the terms ICRF and EME2000 (or simply
J2000) will be used interchangeably. A representation of the various reference frames relevant to this
study is given by Figure 2.1.

The Mars Mean Orbit of the year 2000 (MMO2000) is an inertial reference frame corresponding
to the orientation of the mean orbit of Mars (that is, not accounting for the nutations of the orbital
angular momentum) at J2000. The z-axis is normal to the Mars mean orbital plane of J2000, while
the x-axis points to the ascending node of the orbit of Mars with respect to the xy plane of the ICRF.
Such a reference frame can be defined for epochs different from J2000. For example, Konopliv et al.
(2006) developed the rotation model of Mars using 1980 as a reference epoch of the MMO frame.
The orientation of the MMO frame for the specific epoch is obtained from the ICRF with two rotations,
around the z and the x-axes, of angles 𝑁 and 𝐽, respectively. 𝑁 is the angle between the x-axis of the
ICRF and the ascending node of the mean orbit of Mars with respect to the ICRF xy plane. 𝐽 is the
inclination of the mean orbit of Mars with respect to the ICRF xy plane. This means that a vector 𝒓ፈፂፑፅ
in the ICRF is represented in the MMO frame as:

𝒓ፌፌፎ = 𝑅፱(𝐽)𝑅፳(𝑁)𝒓ፈፂፑፅ (2.1)
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Figure 2.1: Relations between the reference frames used in this study, taken from Le Maistre (2013). The obliquity Ꭸ is here
indicated as ፈ. Similarly, the points ᎐ፄፀፑፓፇ and ᎐ፌፀፑፒ are here displayed as ᎐፭ኺፄፀፑፓፇ and ᎐፭ፌፀፑፒ, respectively.

Here 𝑅፱ and 𝑅፳ are elementary rotation matrices, which for the three axes are defined as:

𝑅፱(𝜃) = (
1 0 0
0 cos𝜃 sin𝜃
0 − sin𝜃 cos𝜃

) 𝑅፲(𝜃) = (
cos𝜃 0 sin𝜃
0 1 0

− sin𝜃 0 cos𝜃
) 𝑅፳(𝜃) = (

cos𝜃 sin𝜃 0
− sin𝜃 cos𝜃 0
0 0 1

)

(2.2)
Due to the orthogonality of the rotation matrices, the inverse transformation is:

𝒓ፈፂፑፅ = 𝑅፳(−𝑁)𝑅፱(−𝐽)𝒓ፌፌፎ (2.3)

From the MMO2000 frame (or that relative to any other epoch), another inertial reference frame can be
defined. This is the Mars True Equator (MTE) of date, describing the orientation of Mars at an epoch
of interest. The node of the Mars true equator with respect to the mean orbit of reference is in the
following referred to as 𝛾ፌፀፑፒ. The x-axis of the MTE frame is oriented towards the point 𝛾ፌፀፑፒ, while
the z-axis is parallel to the instantaneous rotation vector. The obliquity of the equatorial plane of Mars
with respect to the mean orbit of J2000 is indicated as 𝜖, while the angle between the x-axis of the
MMO2000 frame and the direction of 𝛾ፌፀፑፒ is 𝜓. The transformation between MMO2000 and MTE
coordinates is then:

𝒓ፌፓፄ = 𝑅፱(𝜖)𝑅፳(𝜓)𝒓ፌፌፎ (2.4)

The Mars body-fixed frame has its x-axis pointing towards the intersection between the Mars prime
meridian and the Mars equatorial plane, while the z-axis points towards the North pole of Mars. The
spin angle 𝜙 is the angle formed by the Mars prime meridian and the direction of 𝛾ፌፀፑፒ. The body-fixed
frame will differ from the MTE frame because of the rotation of the planet, as expressed by the spin
angle, but also because the actual pole is not on the rotation axis, due to polar motion. Hence, a vector
𝒓ፌፓፄ in the inertial MTE frame will be expressed in the Mars body-fixed frame as:

𝒓ፁፅ = 𝑅፱(−𝑌ፏ)𝑅፲(−𝑋ፏ)𝑅፳(𝜙)𝒓ፌፓፄ (2.5)

In this expression, the rotation matrix 𝑅፳(𝜙) rotates the x-axis of MTE to the prime meridian of Mars,
while the other two rotations bring the z-axis to the instantaneous position of the pole of Mars. Here 𝑋ፏ
and 𝑌ፏ are the polar motion parameters: to the first order, 𝑋ፏ and −𝑌ፏ represent the coordinates of the
rotation pole in the body-fixed frame, since the amplitude of the polar motion terms is small and allows
to approximate the areocentric angles with the corresponding arcs.

By combining these transformations, it is possible to relate the coordinates in the Mars body-fixed
frame to those in the MMO2000 frame:

𝒓ፁፅ = 𝑅፱(−𝑌ፏ)𝑅፲(−𝑋ፏ)𝑅፳(𝜙)𝑅፱(𝜖)𝑅፳(𝜓)𝒓ፌፌፎ (2.6)
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Some of the terms in this expression are often grouped together, so that:

𝒓ፁፅ = Π𝑅 𝑃𝑁 𝒓ፌፌፎ (2.7)

Here, Π = 𝑅፲(−𝑋ፏ)𝑅፱(−𝑌ፏ) is the polar motion matrix, 𝑅 = 𝑅፳(𝜙) is the sidereal angle matrix, and
𝑃𝑁 = 𝑅፱(𝜖)𝑅፳(𝜓) is the precession and nutation matrix. From the previous formulas, the relation
between a vector in the Mars body-fixed frame and the same vector in the ICRF is given by (Folkner
et al., 1997a):

𝒓ፈፂፑፅ = 𝑅፳(−𝑁)𝑅፱(−𝐽)𝑅፳(−𝜓)𝑅፱(−𝜖)𝑅፳(−𝜙)𝑅፲(𝑋ፏ)𝑅፱(𝑌ፏ)𝒓ፁፅ (2.8)

Alternatively, the position of the Martian pole in the ICRF can be expressed in terms of its right
ascension (𝛼) and declination (𝛿). Moreover, 𝑊 is the angular distance, in the equatorial plane of
Mars, between the Mars prime meridian and the intersection between the Mars True Equator of date
and the xy plane of the ICRF. Using these spherical coordinates, the transformation between a vector
in the ICRF and one in the body-fixed frame can be expressed as (Le Maistre, 2013):

𝒓ፁፅ = 𝑅፱(−𝑌ፏ)𝑅፲(−𝑋ፏ)𝑅፳(𝑊)𝑅፱ (
𝜋
2 − 𝛿)𝑅፳ (

𝜋
2 + 𝛼) 𝒓ፈፂፑፅ (2.9)

The angles 𝑊 and 𝜙 both describe the rotation of Mars around its spin axis, and are both measured
along the Mars true equator of date, in the prograde direction. However, they have a different reference:
𝜙 is measured starting from the node of the Martian true equator with the mean orbit of the reference
epoch, while 𝑊 is measured starting from its node with the ICRF xy plane. Hence, the difference
between these two angles is equal to the angle between the two reference nodes, here indicated as
Δ∗:

𝑊 = 𝜙 + Δ∗, (2.10)

The angle Δ∗ varies due to precession and nutations, and using spherical trigonometry it can be shown
that (Le Maistre, 2013):

𝑑Δ∗ = 𝑑𝜓 cos 𝜖 − 𝑑𝛼 sin 𝛿 (2.11)

The relation between variation of the Mars orientation in obliquity and longitude (𝑑𝜖 and 𝑑𝜓) and those
in right ascension and declination (𝑑𝛼 and 𝑑𝛿):

𝑑𝛼 = −sin𝜓 sin 𝐽
cosኼ 𝛿 𝑑𝜖 + cos 𝐽 − sin 𝛿 cos 𝜖

cosኼ 𝛿 𝑑𝜓 (2.12)

𝑑𝛿 =cos 𝜖 sin 𝐽 cos𝜓 − sin 𝜖 cos 𝐽
cos 𝛿 𝑑𝜖 − sin 𝜖 sin 𝐽 sin𝜓

cos 𝛿 𝑑𝜓 (2.13)

In GINS, the inertial reference frame is usually not the Earth Mean Equator of J2000, but the Mars
Mean Equator of J2000 (MME2000). This frame is defined by the angles 𝛼ኺ and 𝛿ኺ, which are the
values of the angles 𝛼 and 𝛿 at the epoch J2000. Consequently, a rotation of a vector from the Mars
body-fixed frame to the MME2000 frame is expressed as:

𝒓ፁፅ = 𝑅፱(−𝑌ፏ)𝑅፲(−𝑋ፏ)𝑅፳(𝑊)𝑅፱ (
𝜋
2 − 𝛿)𝑅፳ (

𝜋
2 + 𝛼)𝑅፳ (−

𝜋
2 − 𝛼ኺ)𝑅፱ (−

𝜋
2 + 𝛿ኺ) 𝒓ፌፌፄኼኺኺኺ (2.14)

2.2. Modelling the rotation parameters
Common models for the Mars orientation and rotation parameters are presented in this section. Each
parameter is generally described by a constant term, which depends on the reference chosen, a lin-
ear term, and periodic terms, represented by finite trigonometric series. Following the partition of the
rotation matrix from the inertial to the body-fixed frame (Eq. 2.7), the parameters are separated into
precession and nutation parameters (corresponding to the matrix 𝑃𝑁), length-of-day variations param-
eters (corresponding to the matrix 𝑅), and polar motion parameters (corresponding to the matrix Π).
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2.2.1. Precession and nutations
As the radius of Mars is larger at the equator than at the poles, and since its rotation axis is inclined with
respect to the normal to the orbital plane, the gravitational attraction from the other bodies of the Solar
System will be uneven over the surface of Mars. This produces a torque which tends to tilt the rotation
axis towards the direction normal to the orbital plane. The spinning planet responds with a motion
of the rotation axis along a cone centred on the normal to the orbital plane, accompanied by several
oscillations of smaller amplitude around this cone, due to the variations in the relative positions of the
bodies. The former motion is the precession, while the small oscillations around the precession cone
are the nutations. For Mars, precession and nutations are mainly caused by the attraction of the Sun.
In the formalization introduced in Section 2.1, the precession and the nutations generate variations in
the angles 𝜓 and 𝜖. These quantities can then be expressed as a function of time as:

𝜓(𝑡) = 𝜓ኺ + 𝜓̇𝑡 + Δ𝜓 (2.15)

𝜖(𝑡) = 𝜖ኺ + ̇𝜖𝑡 + Δ𝜖 (2.16)

In these equations, 𝜓ኺ and 𝜖ኺ are the values of the angles at the reference epoch (𝑡 = 0), here taken
to be J2000. The precession term is 𝜓̇𝑡, while Δ𝜓 and Δ𝜖 are the terms relative to the nutations in
longitude and in obliquity, respectively. The secular variation of the obliquity of Mars, represented by
the term ̇𝜖𝑡, is small, with ̇𝜖 estimated to be in the order of some mas per terrestrial year (Konopliv
et al., 2016). As they depend on the relative positions of the bodies, the main terms in the nutations in
longitude and obliquity have frequencies which are multiples of the orbital frequency of Mars. The six
prevalent frequencies 𝑓፦, for 𝑚 going from 1 to 6 and representing the number of cycles per Martian
year, are (in cycles per Earth solar day) 1/687, 1/343.5, 1/229, 1/171.7, 1/137.4, and 1/114.5. The
complete expression of the nutation terms can be approximated by the sum of the terms relative to
these 6 frequencies (Le Maistre et al., 2012):

Δ𝜓 =
ዀ

∑
፦዆ኻ

𝜓፜፦ cos (2𝜋𝑓፦𝑡) + 𝜓፬፦ sin (2𝜋𝑓፦𝑡) (2.17)

Δ𝜖 =
ዀ

∑
፦዆ኻ

𝜖፜፦ cos (2𝜋𝑓፦𝑡) + 𝜖፬፦ sin (2𝜋𝑓፦𝑡) (2.18)

The elliptical motions described by these two series can be each decomposed into two counter-rotating
circular motions. These will have the form:

𝑝፦𝑒ኼ።᎝ ፦፟፭ and 𝑟፦𝑒ዅኼ።᎝ ፦፟፭ (2.19)

Here 𝑖ኼ = −1, and the complex coefficients 𝑝፦ = 𝑝ፑ፦ + 𝑖𝑝ፈ፦ and 𝑟፦ = 𝑟ፑ፦ + 𝑖𝑟ፈ፦ are relative to the
prograde and the retrograde motion, respectively (with 𝑓፦ > 0). Indicating with 𝛿𝜓፦ each term of the
sum in Equation 2.17, and with 𝛿𝜖፦ the corresponding terms in Equation 2.18, the following relation
holds (Dehant and Mathews, 2015a):

𝑝፦𝑒ኼ።᎝ ፦፟፭ + 𝑟፦𝑒ዅኼ።᎝ ፦፟፭ = 𝛿𝜖፦ + 𝑖 sin 𝜖ኺ𝛿𝜓፦ (2.20)

From this relation, the coefficients of the circular motions can be found from those of the elliptical motion
as:

𝑝ፑ፦ =
𝜖፜፦ + sin 𝜖ኺ𝜓፬፦

2 (2.21)

𝑝ፈ፦ =
−𝜖፬፦ + sin 𝜖ኺ𝜓፜፦

2 (2.22)

𝑟ፑ፦ =
𝜖፜፦ − sin 𝜖ኺ𝜓፬፦

2 (2.23)

𝑟ፈ፦ =
𝜖፬፦ + sin 𝜖ኺ𝜓፜፦

2 (2.24)
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The variation of the angles 𝛼 and 𝛿 with time can be written, similarly to that of 𝜖 and 𝜓, as (Le Maistre,
2013):

𝛼 = 𝛼ኺ + 𝛼̇𝑡 + Δ𝛼, (2.25)
𝛿 = 𝛿ኺ + 𝛿̇𝑡 + Δ𝛿, (2.26)

where again 𝛼ኺ and 𝛿ኺ are the values of the angle at the reference epoch, at which 𝑡 = 0. Expressed
as a truncated trigonometric series, which considers only the principal frequencies (namely the first 6
integer multiples of the orbital frequency of Mars), the nutation terms are:

Δ𝛼 =
ዀ

∑
፦዆ኻ

𝛼፜፦ cos (2𝜋𝑓፦𝑡) + 𝛼፬፦ sin (2𝜋𝑓፦𝑡) (2.27)

Δ𝛿 =
ዀ

∑
፦዆ኻ

𝛿፜፦ cos (2𝜋𝑓፦𝑡) + 𝛿፬፦ sin (2𝜋𝑓፦𝑡) (2.28)

The amplitudes of the cosine and sine terms are related to the corresponding amplitudes in the series
expansion of Δ𝜖 and Δ𝜓 by the same linear expressions (with the same coefficients) relating 𝑑𝛼 and
𝑑𝛿 to 𝑑𝜖 and 𝑑𝜓 (Eqs. 2.12 and 2.13).

2.2.2. Length-of-day (LOD) variations
The length-of-day (LOD) of Mars is defined as (Le Maistre, 2013):

𝐿𝑂𝐷(𝑡) = 2𝜋
Ω(𝑡) (2.29)

where Ω(𝑡) is the instantaneous angular velocity of rotation of Mars, which in turn is the time derivative
of the spin angle 𝜙, according to:

Ω(𝑡) = 𝑑𝜙
𝑑𝑡 (2.30)

The sidereal angle 𝜙 is the angle between the Mars vernal equinox and its prime meridian. Hence,
its variation is due to the motion in space of these two references. The value of the spin angle at
the reference epoch (𝑡 = 0) is denoted with 𝜙ኺ. The prime meridian of Mars was initially defined
as the centre of the Airy-0 crater, while it is currently defined as the meridian 47.95137∘ east of the
one containing the Viking 1 lander (Archinal et al., 2018). The new definition leaves the position of
the meridian unchanged, but improves its accuracy, because of the higher precision in the estimated
position of a lander compared to that in the position of the centre of a wide crater (Kuchynka et al.,
2014). The motion of the prime meridian is related to the rotation of Mars, which consists of a linear
term, translating into a variation of the sidereal angle equal to 𝜙̇𝑡, and a periodic term, leading to
a term Δ𝜙 in the expression of 𝜙. The periodic perturbations to the constant rotation of the planet
arise mainly from the mass exchange between the atmosphere and the polar caps (matter term of the
angular momentum) and from the zonal winds (wind term of the angular momentum) (Defraigne et al.,
2000). Therefore, the expression of the sidereal angle at time 𝑡, accounting for the motion of the prime
meridian, is (Le Maistre et al., 2012):

𝜙(𝑡) = 𝜙ኺ + 𝜙̇𝑡 + Δ𝜙 (2.31)

The quantity 𝜙ፀ = 𝜙ኺ + 𝜙̇𝑡 is known as the regular term. The seasonal variations of the spin angle are
expressed as a finite series (Le Maistre et al., 2012):

Δ𝜙 =
ኾ

∑
፦዆ኻ

𝜙፜፦ cos (2𝜋𝑓፦𝑡) + 𝜙፬፦ sin (2𝜋𝑓፦𝑡) (2.32)

The coefficients 𝜙፜፦ and 𝜙፬፦ are the amplitudes of the cosine and the sine terms of the series, while 𝑓፦ is
the value of the frequency corresponding to the index𝑚. The frequencies characteristic of the seasonal
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spin variations and considered in the series are, in earth solar days, the annual (𝑓ኻ=1/687 days), the
semiannual (𝑓ኼ=1/343.5 days), the terannual (𝑓ኽ=1/229 days), and the quaterannual (𝑓ኾ=1/171.7 days).
The motion of the vernal equinox over the mean orbit of J2000 is due to precession and nutations of
Mars. Using spherical trigonometry and the considering that ̇𝜖 ≈ 0, the resulting contribution can be
approximated by (Le Maistre, 2013):

Δ𝜙Ꭵ = (𝜓̇𝑡 − Δ𝜓) cos 𝜖ኺ (2.33)

The linear term in this expression, which comes from the precession of the rotation axis, may be im-
plicitly included in the linear term of Equation 2.31, so that:

𝜙(𝑡) = 𝜙ኺ + 𝜙̇𝑡 + Δ𝜙 − Δ𝜓 cos 𝜖ኺ (2.34)

The LOD variations are related to the spin angle variations Δ𝜙 (assumed to include also the term
Δ𝜓 cos 𝜖ኺ due to nutations), to the first order in

ኻ
Ꭻ̇
፝ጂᎫ
፝፭ , by (Le Maistre, 2013):

Δ𝐿𝑂𝐷 = −2𝜋𝜙̇ኼ
𝑑Δ𝜙
𝑑𝑡 (2.35)

The spin angle variations are also described by the variations of the angle𝑊. The seasonal effect due
to the matter and wind terms of the angular momentum is the same for𝑊 and𝜓 (that is, Δ𝑊 = Δ𝜓), for it
affects the motion of the prime meridian, independently from the reference taken for the rotation angles.
The terms due to the nutations, instead, are different for the two angles, because of the variation (𝑑Δ∗)
of the angle between the corresponding reference nodes. The angle 𝑊 is thus written as (Le Maistre,
2013):

𝑊 = 𝑊ኺ + 𝑊̇𝑡 + Δ𝑊 − Δ𝛼 sin 𝛿ፀ, (2.36)
where 𝛿ፀ = 𝛿ኺ + 𝛿̇𝑡, and

Δ𝑊 =
ኾ

∑
፦዆ኻ

𝑊፜
፦ cos (2𝜋𝑓፦𝑡) +𝑊፬

፦ sin (2𝜋𝑓፦𝑡). (2.37)

2.2.3. Polar motion
The polar motion is the movement of the rotation axis in the body-fixed frame. It is present whenever
the rotation axis does not coincide with the axis of maximum angular momentum (Lowrie, 2011). In the
case of Mars, this displacement of the axis is due to the atmospheric phenomena and the seasonal
mass exchanges between the atmosphere and the polar caps. The position of the rotation pole in
the body-fixed frame is described by the two parameters 𝑋ፏ and 𝑌ፏ, so that its first two coordinates are
given by 𝑋ፏ and−𝑌ፏ. Because of its source, this motion will be mostly characterised by frequencies that
are multiples of the Martian orbital frequency. In addition, there is a free mode of Mars, the Chandler
wobble (CW), which when excited produces a new periodic component of the polar motion. The rotation
axis undergoing polar motion is usually represented in the body-fixed frame as (Dehant and Mathews,
2015a):

𝜴(𝑡) = Ωኺ (𝑚፱ , 𝑚፲ , 1 + 𝑚፳) (2.38)
where Ωኺ is the angular velocity of the rotation around the axis of maximum angular momentum. The
relation between the parameters 𝑚፱ and 𝑚፲ and the pole coordinates is clearly:

𝑚፱ = 𝑋ፏ 𝑚፲ = −𝑌ፏ (2.39)

The polar motion parameters 𝑋ፏ and 𝑌ፏ are represented as a finite series in their most prominent
frequencies, like the other MOPs. In particular (Le Maistre et al., 2012):

𝑋ፏ =
ኽ

∑
፦዆ኻ

𝑋፜፦ cos (2𝜋𝑓፦𝑡) + 𝑋፬፦ sin (2𝜋𝑓፦𝑡) (2.40)

𝑌ፏ =
ኽ

∑
፦዆ኻ

𝑌፜፦ cos (2𝜋𝑓፦𝑡) + 𝑌፬፦ sin (2𝜋𝑓፦𝑡) (2.41)

The frequencies involved in this case are the annual (m=1), the semiannual (m=2), and the Chandler
wobble frequency (m=3), with values of 1/687, 1/343.5 and around 1/200 days, respectively.
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2.2.4. Current estimates
The latest models of the rotation of Mars were provided by Kuchynka et al. (2014) and Konopliv
et al. (2016). Both were derived by adjusting tracking data from the landers Viking 1 and 2 and Mars
Pathfinder, the Mars Exploration Rover (MER) Opportunity in the 5 months of its radio science cam-
paign, and the orbiters Mars Global Surveyor (MGS), Mars Odyssey, and Mars Reconnaissance Orbiter
(MRO). The results from (Konopliv et al., 2016) relied on a larger dataset, due to additional years of
observations from Odyssey and MRO. The difference between the two models is roughly 13 m at the
surface of Mars (Archinal et al., 2018). Kuchynka et al. (2014) provide a series expansion for the ro-
tation model in the angles 𝛼, 𝛿,𝑊. A series expansion in these angles for the model by Konopliv et al.
(2016), which is expressed in terms of the angles 𝜓, 𝜖, 𝜙, was given by (Jacobson et al., 2018).

The two rotation models are based on the same set of conventions, formulated by Konopliv et al.
(2006) in the definition of the Pathfinder model of the rotation of Mars (of which the 2016 model is
an update). The expressions of the MOP in the Pathfinder model draw their general form from the
analytical models of the precession and nutations of Mars developed by Reasenberg and King (1979).
In addition, the model includes terms representing the seasonal variations in spin rate due to the COኼ
mass exchanges between the polar caps and the atmosphere, as given by Folkner et al. (1997b), the
polar motion, and the nutations amplification due to the free core nutation (FCN), both found in Folkner
et al. (1997a). The obliquity, longitude of the node, and sidereal angle are thus modelled as (Konopliv
et al., 2006):

𝜖 = 𝜖ኺ + ̇𝜖ኺ𝑡 +
ዃ

∑
፦዆ኺ

𝜖፦ cos (𝛼፦𝑡 + 𝜃፦), (2.42)

𝜓 = 𝜓ኺ + 𝜓̇ኺ𝑡 +
ዃ

∑
፦዆ኺ

𝜓፦ sin (𝛼፦𝑡 + 𝜃፦), (2.43)

𝜙 = 𝜙ኺ + 𝜙̇ኺ𝑡 − Δ𝜓 cos 𝜖 +
ኾ

∑
፣዆ኻ
(𝜙፜፣ cos 𝑗𝑙ᖣ + 𝜙፬፣ sin 𝑗𝑙ᖣ) +

ኽ

∑
፣዆ኻ
𝜙፫፣ sin 𝑗𝑙ᖣ, (2.44)

where Δ𝜖 and Δ𝜓, the nutations in obliquity and longitude, are represented by the trigonometric series
in Eqs. 2.42 and 2.43. The angular velocities 𝛼፦ are equal to 𝑚𝑛ᖣ for 𝑚 ≤ 3 and to (𝑚 − 3)𝑛ᖣ for
3 < 𝑚 ≤ 9, 𝑛ᖣ being the mean motion of Mars. The phase terms of the nutations series are given
by 𝜃፦ = 𝑚𝑙ᖣኺ for 𝑚 ≤ 3, and 𝜃፦ = (𝑚 − 3)𝑙ᖣኺ + 𝑞 for 3 < 𝑚 ≤ 9, where 𝑙ᖣ is the mean anomaly of
Mars, and the angle 𝑞 is twice the argument of perihelion of the planet relative to the node of the Mars
equator and the Mars mean orbit. The value of 𝑞 was 142.00∘ at J2000, and varies by 1.3∘ per century
(Konopliv et al., 2006). The terms with 𝑚 = 0 correspond to a small and constant correction for the
obliquity amplitude (indicated as 𝜖፦዆ኺ to differentiate it from the initial value of the angle, 𝜖ኺ), equal to
-1.4 mas, while 𝜓፦዆ኺ = 0. (Reasenberg and King, 1979). The equation for 𝜙 includes the periodic spin
variations, of amplitudes 𝜙፜፣ and 𝜙፬፣, and the relativistic corrections, of amplitude 𝜙፫፣, which model the
slowing of clocks on Mars due to general and special (related to the planetary motion) relativity (Yoder
and Standish, 1997).

The trigonometric series of the nutations in longitude and obliquity of the Pathfinder model can be
related to those given by Eqs. 2.17 and 2.18 by substituting, for 𝑚 ≤ 3 (Le Maistre, 2013):

𝜖፜፦ = 𝜖፦ cos𝜃፦ + 𝜖፦ዄኽ cos𝜃፦ዄኽ, (2.45)
𝜖፬፦ = −𝜖፦ sin𝜃፦ − 𝜖፦ዄኽ sin𝜃፦ዄኽ, (2.46)
𝜓፜፦ = 𝜓፦ sin𝜃፦ + 𝜓፦ዄኽ sin𝜃፦ዄኽ, (2.47)
𝜓፬፦ = 𝜓፦ cos𝜃፦ + 𝜓፦ዄኽ cos𝜃፦ዄኽ, (2.48)

and for 𝑚 ≥ 7:
𝜖፜፦ = 𝜖፦ cos𝜃፦ , (2.49)
𝜖፬፦ = −𝜖፦ sin𝜃፦ , (2.50)
𝜓፜፦ = 𝜓፦ sin𝜃፦ , (2.51)
𝜓፬፦ = 𝜓፦ cos𝜃፦ (2.52)
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The same can be done for the two trigonometric series in the equation of the spin angle in the
Pathfinder model, which become those in Eq. 2.32 if the following substitutions are made (Le Maistre,
2013):

𝜙፜፣ = 𝜙፜፣ cos 𝑗𝑙ᖣኺ + (𝜙፬፣ + 𝜙፫፣) sin 𝑗𝑙ᖣኺ, (2.53)
𝜙፬፣ = (𝜙፬፣ + 𝜙፫፣) cos 𝑗𝑙ᖣኺ − 𝜙፜፣ sin 𝑗𝑙ᖣኺ (2.54)

The numerical values of the parameters estimated in the aforementioned Mars rotation models are
listed in Table 2.1. Of the trigonometric series in the expressions of 𝜖, 𝜓, and 𝜙, only the amplitudes of
those pertaining to the seasonal variations of the spin angle were estimated. The nutations amplitudes
for the rigid Mars were fixed to the values derived by Reasenberg and King (1979). Similarly, the
relativistic corrections to the spin angle variation were set to the values found in Yoder and Standish
(1997). The values of these non-estimated parameters can be found in Table 2.2.

Parameter Kuchynka et al. (2014) Konopliv et al. (2016)

Value Error Value Error

𝜓ኺ (deg) 81.968379 0.000009 81.9683988 0.0000043
𝜓̇ኺ (mas/yr) -7606.1 3.5 −7608.3 2.1
𝜖ኺ (deg) 25.189383 0.000005 25.1893823 0.0000026
̇𝜖ኺ (mas/yr) −1 2 −2.0 1.1
𝜙ኺ (deg) 133.386209 0.000043 133.386277 0.000019
𝜙̇ኺ (deg/day) 350.891985294 0.000000006 350.891985307 0.000000003
𝜙፜ኻ (mas) 494 13 481 10
𝜙፬ኻ (mas) -195 16 -155 12
𝜙፜ኼ (mas) -114 11 -103 9
𝜙፬ኼ (mas) -105 10 -93 8
𝜙፜ኽ (mas) -34 9 -35 8
𝜙፬ኽ (mas) -1 8 -3 7
𝜙፜ኾ (mas) -4 6 -10 6
𝜙፬ኾ (mas) -22 7 -8 6

Table 2.1: Latest Mars orientation parameters solutions. All values are taken from Konopliv et al. (2016).

As for polar motion, for both models the amplitudes of the 𝑋ፏ and 𝑌ፏ are set to zero. An estimate of
the polar motion amplitudes is found in Konopliv et al. (2006). There, the polar motion parameters are
expressed in the form:

𝑚፱ =
኿

∑
፣዆ኻ
𝑚፱፣ sin (𝛼፱፣𝑡 + 𝜃፱፣), 𝑚፲ =

኿

∑
፣዆ኻ
𝑚፲፣ sin (𝛼፲፣𝑡 + 𝜃፲፣), (2.55)

The first 4 terms of the two series are relative to the seasonal effect, so that 𝛼፱፣ = 𝛼፲፣ = 𝑗𝑛ᖣ for
𝑗 < 5. The last term, for 𝑗 = 5, is the Chandler wobble (see Section 2.3.2), of angular frequency
𝛼፱኿ = 𝛼፲኿ = 𝜎ፂፖ, corresponding to an assumed period of 205 days. The amplitudes and phase terms
of the two series, estimated from the observed values of the gravity field coefficients 𝐶ኼኻ and 𝑆ኼኻ (see
Eq. 4.1), are listed in Table 2.3.

2.3. MOP and Mars geophysical properties
2.3.1. Interior models of Mars
Notwithstanding the numerous missions to Mars, the knowledge about its interior is far from being as
complete as that of the Earth. Actually, very little is known about the internal structure of Mars. The
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𝑚 𝜖፦ (mas) 𝜓፦ (mas)

0 -1.4 0
1 -0.4 -632.6
2 0 -44.2
3 0 -4.0
4 -49.1 -104.5
5 515.7 1097.0
6 112.8 240.1
7 19.2 40.9
8 3.0 6.5
9 0.4 1.0

𝑗 𝜙፫፣ (mas)
1 -176
2 -8
3 -1

Table 2.2: Rigid nutations amplitudes (Reasenberg and King, 1979) and sidereal-angle relativistic corrections (Yoder and Stan-
dish, 1997) in mas, as used for the latest Mars rotation models. The values are taken from Konopliv et al. (2006), and are relative
to a polar moment of inertia of ፂ ዆ ኺ.ኽዀ኿. For a different moment of inertia, these values scale with ፂ/ኺ.ኽዀ኿.

𝑗 𝑚፱፣ (mas) 𝜃፱፣ (deg) 𝑚፲፣ (mas) 𝜃፲፣ (deg)

1 -12.8 -42 4.5 -92
2 7.8 8 -8.0 0
3 0 0 0 0
4 2.4 -131 2.2 87
5 5 ±3 0 5 ±3 -11

Table 2.3: Amplitudes and phase terms of the Mars polar motion parameters, as estimated by Konopliv et al. (2006).
In this section, the distinction was made between the LOD variations amplitudes of the Pathfinder
model, indicated as 𝜙፜፣, 𝜙፬፣, and 𝜙፫፣, and those appearing in Eq. 2.32, indicated with 𝜙፜፣ and 𝜙፬፣ .

However, in all the applications presented in this report, the expression from Eq. 2.44 is used for the
LOD variations, both because it is the notation implemented in Tudat (Section 4.2.2) and because

they allow a faster comparison with values from the literature. For polar motion, instead, the
formalism from Eqs. 2.40 and 2.41 will be employed, where the amplitudes are 𝑋፜፦ and 𝑋፬፦. Thus, in
order to have an agreement between the notations used for the polar motion and the LOD variations
amplitudes, the latter will also be expressed as 𝜙፜፣ and 𝜙፬፣ , while still referring to the parameters of the

Pathfinder model. In particular, this notation will imply 𝜙፜፣ = 𝜙፜፣, and 𝜙፬፣ = 𝜙፬፣ + 𝜙፫፣.
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reason is mainly the absence of precise seismic measurements, which have been the major input for
the study of the interior of our planet. This could change once data from the Seismic Experiment for
Interior Structure (SEIS) on InSight will be available (Lognonné et al., 2019). In the meantime, only
hypotheses could be made from the current geodesy measurements.

Mars interior models are usually spherically symmetric, with the parameters only varying as a func-
tion of the distance from the centre (Rivoldini et al., 2011). The general structure of the planet consists
of three main layers: a crust, a mantle and a core. The cores of terrestrial planets are usually thought
evolve with the cooling of the planet, going from an entirely liquid core to a partially solid inner core,
and to a fully solid core (Dehant et al., 2003). Several studies favour the hypothesis of Martian core
that is at least partially liquid (Yoder et al., 2003). Moreover, recent studies present arguments against
the presence of a solid inner core, which may also be confirmed by the absence of a global magnetic
field (Rivoldini et al., 2011).

The observations which can give the most information about the state of the planetary interior are
those that provide estimates of the radius, the mass, the mean moment of inertia, and the second
degree tidal Love number 𝑘ኼ (Van Hoolst and Rivoldini, 2014). The shape of Mars, and therefore its
mean radius, was measured by the Mars Orbiter Laser Altimeter (MOLA) on MGS, while the mass is
estimated through the gravity field. The (normalized) mean moment of inertia is (Konopliv et al., 2011):

𝑀𝑂𝐼 = 𝐼ፚ
𝑀𝑅ኼፚ

= 𝐴 + 𝐵 + 𝐶
3𝑀ፚ𝑅ኼፚ

= ( 𝐶
3𝑀ፚ𝑅ኼ፞

− 23𝐽ኼ)(
𝑅፞
𝑅ፚ
)
ኼ

(2.56)

In this expression, 𝑀ፚ, 𝑅ፚ, and 𝑅፞ are in the order the mass, the volumetric mean radius, and the
equatorial radius, while 𝐴 < 𝐵 < 𝐶 are the principal moments of inertia, C being the polar moment of
inertia and the other two the equatorial moments of inertia. The polar moment of inertia is determined
from the estimate of the precession rate. The value of the zonal harmonic coefficient 𝐽ኼ is known to
high accuracy, thus the precision of current mean moment of inertia values is limited by the accuracy
of the precession estimate. The most recent estimate gives a value of MOI equal to 0.3639 ± 0.0001
(Konopliv et al., 2016). The mean moment of inertia gives information about the internal distribution of
the mass. In particular, the current estimate is indicative of a density increasing with depth and a dense
core (Rivoldini et al., 2011). However, since it is an integrated quantity, it is not able to constrain local
properties like the size of the core.

A better constraint on the interior properties is given by 𝑘ኼ. A planet with a partially liquid interior
has a larger response to the tidal forcing than a fully solid one, and in particular, the threshold of 0.08
on the value of 𝑘ኼ can be used to distinguish between a liquid and a solid core (Rivoldini et al., 2011).
Values larger than this threshold could indicate that a portion of the core is liquid. With a Love number
of 0.145±0.017, Yoder et al. (2003) inferred a core radius between 1520 and 1840 km, and concluded
that at least the outer part of the core should be liquid. Recent estimates of the solar and Phobos tide
yield 𝑘ኼ = 0.1697 ± 0.0009 (Genova et al., 2016). This result is still in agreement with a liquid outer
core.

Among the other geophysical parameters that can help constrain the interior of Mars figure the
crustal density and thickness. These quantities are estimated from the inversion of topography and
gravity field. Wieczorek (2004) computed a crustal thickness of 57 ± 24 km, and a crustal density in
the range of [2700, 3100] kg/mኽ.

A further constraint is given by the SNCmeteorites (shergottites, nakhlites, and chassignites), which
are thought to be of Martian origin, and therefore can give information on the composition of the mantle
of Mars. In particular, the composition of these meteorites has been employed to infer the bulk compo-
sition of the planet, either by assuming abundances equal to those of CI chondrites, or by estimating
the isotopic composition of the meteorites (Taylor, 2013). Geochemical models agree on an iron-rich
core alloyed with lighter elements, which may be predominantly sulfur (Khan et al., 2018).

Rivoldini et al. (2011) formulated a set of possible interior models for Mars by inferring 8 parameters
of the interior structure (core size, crust density and thickness, and 5 parameters characterizing the
mantle mineralogy) from the estimates of MOI and 𝑘ኼ through a Bayesian inversion, since the problem
is underdetermined. Knowledge on the parameters, which may come from geochemical models or
measured values, is taken into account by the definition of an a priori probability distribution for the
parameters. The knowledge about the temperature distribution inside the planet is very limited, which
is why the various temperature models were represented by two extremes, a cold and a hot one. This
resulted in values for the core radius in the range of [1729, 1859] km, and a sulfur concentration inside
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the core in the range of [14, 18] wt%, under the assumption that the core is exclusively composed of
Fe and S.

A similar analysis was performed by Khan et al. (2018), leading to core radii between 1730 and 1840
km, as well as a composition of the core of 15 to 18.5 wt% in sulfur. For both studies, the resulting
concentration of sulfur in the Fe-S core is close to the eutectic concentration, meaning that the melting
point of the core is at a lower temperature than that of an iron-only core. This, compared to the lower
limits of the modelled temperatures at the core-mantle boundary, has led in both studies to the conclu-
sion that a solid inner core is absent for Mars. Such a result may not hold if the actual temperatures in
the core were lower than the lower bounds of the models used, or for different concentrations of S and
other elements within the core.

2.3.2. Signature of the interior on the MOP
As mentioned in the previous section, the internal mass distribution of Mars directly affects the pre-
cession rate of the planet. As a matter of fact, in first approximation, the precession rate is given by
(Folkner et al., 1997b):

𝜓̇ኺ = −
3
2

𝑛ᖣኼ

Ω (1 − 𝑒ᖣኼ)ኽ/ኼ
𝐽ኼ
𝑀𝑅ኼፚ
𝐶 𝑐𝑜𝑠𝜖 (2.57)

Here 𝑛ᖣ is the Mars mean orbital motion, Ω is the spin rate of Mars, 𝑅ፚ is the mean volumetric radius and
𝑒ᖣ the orbital eccentricity. This secular rate is the one caused by the solar torque. In the formulation
of the secular precession adopted by Konopliv et al. (2011), two additional terms are present: the
geodetic precession (Reasenberg and King, 1979), which follows from general relativity and has a
value of 𝜓̇፠ = 6.7 mas/year, and 𝜓̇፩, which is due to the torque from the other planets (mainly Jupiter),
and has a value of−0.2mas/year. RISE is expected to estimate the precession rate with an accuracy of
2 mas/year, thus bringing a slight improvement to the current uncertainty of 2.1 mas/year which should
not improve considerably the information on the interior (Folkner et al., 2018).

The characteristics of the interior of Mars may also affect the nutations and polar motion of the
planet, apart from the effect produced by a different polar moment of inertia like for the precession
rate. The nutations of a non-rigid planet may present higher amplitudes compared to those of same
frequency for a rigid planet. For this reason, it is customary to separate the problem of the determination
of the rigid-body nutations, which is purely in the domain of celestial mechanics, from the geophysical
problem of the determination of the amplification of these nutations due to the non-rigidity of the planet
(Van Hoolst, 2015).

Normal modes of Mars
The conservation of angular momentum states that in an inertial reference frame:

𝑑𝑯
𝑑𝑡 = 𝜞 (2.58)

Where 𝑯 is the angular momentum of the whole planet, and 𝜞 is the external torque acting on the
body. This equation is independent of the interior structure of the planet. For a rigid planet, the external
torque due to the other bodies can be expressed as a function of the positions of these perturbing
bodies relative to the planet, and the resulting equations for the nutations in longitude and obliquity
can be solved analytically or numerically. Thus, rigid nutations of Mars are known with high accuracy.
Roosbeek (1999) computed analytically the rigid nutations of Mars with a truncation level of 0.1 mas.
The main nutations of Mars are due to the torque generated by the Sun, hence their frequencies are
multiples of the orbital frequency. The contributions from Phobos and Deimos have longer periods (2.26
and 54.75 Earth years, respectively) and much smaller amplitudes due to their size. As a comparison,
the long-period (18.6 years) Earth nutation due to the Moon has an amplitude much larger than those
due to the Sun (Roosbeek, 1999).

From Eq. 2.58 it is possible to see that even without any external forcing (𝜞 = 0) there may be polar
motion, that is, a relative motion of the rotation axis with respect to the figure axis (the axis of maximum
angular momentum). In the rotating body-fixed frame, the conservation of angular momentum in the
absence of external forcing can be expressed as:

𝑑𝑯
𝑑𝑡 + 𝜴 ×𝑯 = 0 (2.59)
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Given that the axes of the chosen body-fixed frame are principal axes, the angular momentum of the
rigid Mars can be written as 𝑯 = (𝐴Ω፱ , 𝐵Ω፲ , 𝐶Ω፳), hence the Euler equations are obtained:

𝐴Ω̇፱ + (𝐶 − 𝐵)Ω፲Ω፳ = 0
𝐵Ω̇፲ + (𝐴 − 𝐶)Ω፳Ω፱ = 0
𝐶Ω̇፳ + (𝐵 − 𝐴)Ω፱Ω፲ = 0

(2.60)

Assuming the body to be an axially symmetric ellipsoidal, so that 𝐵 = 𝐴, if the rotation axis is close
to the z-axis the angular velocity can be written as 𝜴 = Ωኺ (𝑚፱ , 𝑚፲ , 𝑚፳). Here Ωኺ is the mean spin
rate, 𝑚፱ and 𝑚፲ are the wobble variables, and 𝑚፳ is the spin rate variation. Assuming 𝐵 − 𝐴 = 0, the
component of the rotation vector along the polar axis remains constant. The first two equations in 2.60
become (Dehant and Mathews, 2015a):

𝐴Ωኺ
𝑑𝑚፱
𝑑𝑡 + Ωኼኺ (𝐶 − 𝐴)𝑚፲ = 0

𝐵Ωኺ
𝑑𝑚፱
𝑑𝑡 + Ωኼኺ (𝐴 − 𝐶)𝑚፲ = 0

(2.61)

The complex combination of these two equations yields a single equation in the complex variable 𝑚̃ =
𝑚፱ + 𝑖𝑚፲:

𝑑𝑚̃
𝑑𝑡 = 𝑖𝑒Ωኺ𝑚̃ (2.62)

where 𝑒 is the dynamical ellipticity, with 𝑒 = ፂዅፀ
ፀ . The solution is:

𝑚̃(𝑡) = 𝑚̃(0)𝑒።፞጖ኺ፭ (2.63)

which is a wobble of amplitude 𝑚̃(0), corresponding to the initial displacement of the rotation axis with
respect to the figure axis, and frequency 𝑒Ωኺ, or 𝑒 cycles per (Mars) solar day (cpsd, since the value of
Ωኺ is by definition 1 cpsd). This free wobble (free because it takes place without any external forcing)
is known as Eulerian wobble, and is the only normal mode of the rigid Mars. For a non-rigid planet, the
normal modes may be more than one.

Sasao et al. (1980) studied the effect of a stratified fluid core on the nutations of the Earth, although
the same results can be applied to models of Mars involving a mantle and a fluid outer core (FOC). In
such models, the rotation axis is taken to be that of the most external solid layer, which in this case
is the mantle. The main assumptions in this derivation are the axial symmetry of the body, and the
hydrostatic equilibrium at the basic state, which corresponds to a state in which the mantle rotates
around its maximum angular momentum axis. Hence:

𝜵𝑃𝒱 = 𝜌𝒱𝜵𝜁 (2.64)

where 𝑃𝒱 is the pressure, 𝜌𝒱 the density, and 𝜁 the gravitational and centrifugal potential. They hy-
potesis of hydrostatic equilibrium implies that the core-mantle boundary (CMB) is non-spherical, with
the ellipticity varying as a function of radius as expressed by the Clairaut’s equation (Le Maistre et al.,
2012). The conservation of angular momentum is written for both the whole planet and the core:

𝑑𝑯
𝑑𝑡 + 𝜴 ×𝑯 = 𝜞

𝑑𝑯𝒇
𝑑𝑡 − 𝝎𝒇 ×𝑯𝒇 = 𝜞𝒃

(2.65)

In the equation relative to the sole fluid core, 𝝎𝒇 is the difference between the angular velocity of
the core (𝜴𝒇 = Ωኺ (𝑚፟፱ , 𝑚፟፲ , 𝑚፟፳)) and that of the mantle (𝜴), so that 𝝎𝒇 = 𝜴𝒇 − 𝜴. The principal
moments of inertia of the core are 𝐴፟ = 𝐵፟ and 𝐶፟. The equatorial moments of inertia of the mantle are
𝐴፦ = 𝐵፦, with 𝐴፦ = 𝐴 − 𝐴፟. The forcing 𝜞𝒃 is that due to interactions at the CMB, and is null for the
equation relative to the whole planet, since the equal contributions from the core and from the mantle
have opposite signs. This coupling torques may come from electromagnetic interactions between the
two layers, or from other boundary effects. A detailed explanation of the solution of these equations
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can be found in Dehant and Mathews (2015a). When the 𝜞𝒃 term is neglected, the solutions of the two
equations in the frequency domain (hence as a function of the frequency, 𝜎), are (Dehant and Mathews,
2015b):

[𝜎 − 𝑒 + (𝜎 + 1)𝜅]𝑚̃(𝜎) + (𝜎 + 1) (𝐴፟/𝐴 + 𝜉) 𝑚̃፟(𝜎) = − [𝑒 − (𝜎 + 1) 𝑘] ̃𝜁(𝜎)
𝜎(1 + 𝛾)𝑚̃(𝜎) + (𝜎 + 1 + 𝛽𝜎 + 𝑒፟)𝑚̃፟(𝜎) = 𝜎𝛾 ̃𝜁(𝜎)

(2.66)

The factors 𝜅, 𝜉, 𝛾, and 𝛽 are the compliances, expressing the deformability of the whole planet and of
the core under different wobbles. In particular, the value of 𝛽 is expected to be between 0.00015 and
0.00045 (Folkner et al., 2018). The term 𝑒፟ is the dynamical ellipticity (or flattening) of the core, equal
to (𝐶፟ − 𝐴፟)/𝐴፟. The unknowns are the wobble amplitudes at the frequency 𝜎 for the mantle (𝑚̃(𝜎))
and for the core (𝑚̃፟(𝜎)).

The normal modes can be obtained from the eigenvalues of the associated homogeneous system
of equations, namely the one resulting from imposing ̃𝜁 = 0. To the first order in the ellipticities and the
compliance parameters, the eigenfrequencies are, in cpsd, (Dehant and Mathews, 2015b):

𝜎ኻ = 𝜎ፂፖ =
𝐴
𝐴፦

(𝑒 − 𝜅) (2.67)

𝜎ኼ = 𝜎ፍፃፅፖ = −(1 +
𝐴
𝐴፦

(𝑒፟ − 𝛽)) (2.68)

The first frequency is that of the Chandler Wobble (CW). This normal mode is the equivalent of the
Eulerian wobble of a rigid planet, which is equal to 𝑒. It is a long-period motion in the body-fixed frame.
The second frequency is the nearly diurnal free wobble (NDFW), so called because it has a frequency
close to 1 in the body-fixed frame.

A motion of the rotation axis in the inertial space causes the figure axis to move in inertial space
as well, and the displacements for the two axes are not the same Van Hoolst (2015). Therefore, peri-
odical motions in the body-fixed frame (wobbles) are related to periodical motions in the inertial frame
(nutations) by the kinematic equations, that imply Van Hoolst (2015):

𝜂̃(𝜎፧) = −
1
𝜎፧
𝑚̃(𝜎፰) and 𝜎፰ = 𝜎፧ − 1, (2.69)

with 𝜂̃(𝜎፧) and 𝜎፧ the amplitude and frequency of the nutation, and 𝑚̃(𝜎፰) and 𝜎፰ the amplitude and
frequency of the corresponding wobble.

The nutation in the inertial frame relative to the nearly diurnal free wobble is known as free core
nutation (FCN). This normal mode is present only for planets with a (partially) fluid core. The frequency
of the FCN can be found from that of the NDFW by adding 1 cpsd, hence:

𝜎ፅፂፍ = −
𝐴
𝐴፦

(𝑒፟ − 𝛽) (2.70)

The FCN is a long-period retrograde motion in the inertial frame. It is important due to its vicinity in
frequency to the major long-term nutations, which may then be amplified by the resonance with this
normal mode.

For interior models which include a solid inner core (SIC), two other normal modes are expected:
the inner core wobble (ICW), describing a relative rotation between the figure axis of the SIC and
the rotation axis of the mantle, and the free inner core nutation (FICN), emerging from the relative
rotation of the inner core and the mantle. For a small inner core, the FICN induces amplifications on
the nutations which are below the predicted accuracy of the radio science experiments considered
here, which is in the order of few mas (Le Maistre et al., 2012). This is true unless the period of the
FICN is very close to the annual prograde nutation, in which case the signature of the inner core on
the amplitude of that nutation would be detectable (Defraigne et al., 2003). This condition is verified
for a narrow interval of compositions and values of the inner core radius. For a large inner core, the
amplification of the nutations due to the FICN is detectable with the expected precision. However, in
that case the resonance of the semiannual prograde nutation with the FCN is almost cancelled by the
resonance with the FCN (Defraigne et al., 2003). Therefore, the presence of a large solid inner core
could be evinced from the FCN resonance of the nutations (thus without considering the FICN), if the
amplification measured for the semiannual prograde nutation is negligible. For these reasons, along
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with the fact that recent interior models tend to exclude the presence of a SIC, the ICW and FICN
normal modes will not be considered in the following derivations.

The solution of Equations 2.66 for the wobble of the mantle is (Dehant and Mathews, 2015b):

𝑚̃(𝜎) =
(𝜎 + 1) [𝑒𝐴 + 𝛾𝜎𝐴፟ − (1 + 𝜎)𝜅𝐴]

𝐴፦(𝜎 − 𝜎ኻ)(𝜎 − 𝜎ኼ)
̃𝜁(𝜎) (2.71)

It can be seen that there are resonances close to the eigenfrequencies, as expected.
The ratio between the non-rigid wobble (or nutation) and its rigid counterpart (i.e., with the same

frequency and relative to the same external forcing) is the transfer function (Dehant and Mathews,
2015b):

𝑇፰(𝜎፰) =
𝑚̃(𝜎፰)
𝑚̃ፑ(𝜎፰)

(2.72)

Here 𝜎፰ is the frequency of the wobble, and 𝑚̃ፑ(𝜎፰) is the wobble for a rigid planet. Moreover, 𝑇፰(𝜎፰) =
𝑇፧(𝜎፧), where 𝑇፧(𝜎፧) is the transfer function of the nutation of frequency 𝜎፧ associated to the wobble
of frequency 𝜎፰. This ratio can be simplified through partial fraction decomposition, so that (Dehant
and Mathews, 2015b):

𝑇፰(𝜎፰) = 𝑅ኺ + 𝑅ᖣኺ(1 + 𝜎፰) +
𝑅ኻ

𝜎፰ − 𝜎ኻ
+ 𝑅ኼ
𝜎፰ − 𝜎ኼ

(2.73)

The coefficients 𝑅።, with 𝑖 = 1, 2, are found by multiplying 𝑇፰(𝜎፰) times 𝜎፰ − 𝜎።, and then evaluating
this expression for 𝜎፰ = 𝜎።. The other two coefficients can be found from the fact that 𝑇፰(−1) = −1
(property known as gyrostatic rigidity, for which the planet behaves as a rigid body when 𝜎፰ = 1) and
that 𝑇፰(𝑒) = 0. The same expression of the transfer function is valid for the nutations, after substituting
𝜎፰ with 𝜎፧ − 1, since 𝑇፰(𝜎፰) = 𝑇፧(𝜎፧).

Amplification of the principal nutations
If only the principal nutations are considered (that is, those for which 𝜎 << 1), the expression for the
transfer function of a planet with an elastic mantle and a fluid core is found in Le Maistre et al. (2012)
as:

𝑇፧(𝜎፧) = 1 + 𝐹
𝜎፧

𝜎፧ − 𝜎ፅፂፍ
, (2.74)

with 𝐹 the core momentum factor, equal to:

𝐹 =
𝐴፟

𝐴 − 𝐴፟
(1 − 𝛾𝑒 ) (2.75)

This formulation is justified by the fact that principal nutation will not show resonance with the Chandler
wobble eigenmode: the nutation corresponding to the Chandler wobble, which is a long-period wobble
in the body-fixed frame, is a short-period motion in the inertial frame (𝜎ፂፖ + 1 ≈ 1), thus outside the
range of frequencies of the principal nutations. Sometimes, the transfer function is expressed as an
amplification factor, equal to the transfer function minus 1 (Le Maistre et al., 2012). The amplification
factor represents the contribution of the fluid core to the nutation amplitude.

The amplitudes of the trigonometric series in the expressions of the nutations in obliquity and lon-
gitude given by Eqs. 2.18 and 2.17 are amplified by the free-core nutation according to (Le Maistre,
2013)

𝜖፜ᖣ፦ = 𝜖፜፦ (1 + 𝐹
𝜎ኼ፦

𝜎ኼ፦ − 𝜎ኼፅፂፍ
) + sin 𝜖ኺ𝜓፬፦𝐹

𝜎፦𝜎ፅፂፍ
𝜎ኼ፦ − 𝜎ኼፅፂፍ

(2.76)

𝜖፬ᖣ፦ = 𝜖፬፦ (1 + 𝐹
𝜎ኼ፦

𝜎ኼ፦ − 𝜎ኼፅፂፍ
) − sin 𝜖ኺ𝜓፜፦𝐹

𝜎፦𝜎ፅፂፍ
𝜎ኼ፦ − 𝜎ኼፅፂፍ

(2.77)

𝜓፜ᖣ፦ = 𝜓፜፦ (1 + 𝐹
𝜎ኼ፦

𝜎ኼ፦ − 𝜎ኼፅፂፍ
) − 𝜖፬፦

sin 𝜖ኺ
𝐹 𝜎፦𝜎ፅፂፍ
𝜎ኼ፦ − 𝜎ኼፅፂፍ

(2.78)

𝜓፬ᖣ፦ = 𝜓፬፦ (1 + 𝐹
𝜎ኼ፦

𝜎ኼ፦ − 𝜎ኼፅፂፍ
) + 𝜖፬፦

sin 𝜖ኺ
𝐹 𝜎፦𝜎ፅፂፍ
𝜎ኼ፦ − 𝜎ኼፅፂፍ

(2.79)

(2.80)
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Similar expressions are given for the amplifications of the nutations parameters of the Pathfinder
model in the presence of the FCN (Konopliv et al., 2006):

𝜖ᖣ፦ = 𝜖፦ (1 + 𝐹
𝜎ኼ፦

𝜎ኼ፦ − 𝜎ኼፅፂፍ
) + sin 𝜖ኺ𝜓፦𝐹

𝜎፦𝜎ፅፂፍ
𝜎ኼ፦ − 𝜎ኼፅፂፍ

(2.81)

𝜓ᖣ፦ = 𝜓፦ (1 + 𝐹
𝜎ኼ፦

𝜎ኼ፦ − 𝜎ኼፅፂፍ
) + 𝜖፦

sin 𝜖ኺ
𝐹 𝜎፦𝜎ፅፂፍ
𝜎ኼ፦ − 𝜎ኼፅፂፍ

(2.82)

The values of 𝜓፦ and 𝜖፦, the nutation amplitudes for a rigid Mars, are those shown in Table 2.2,
corrected for the value of the polar moment of inertia. In the two models by Kuchynka et al. (2014) and
Konopliv et al. (2016), the factor 𝐹 and the FCN period were set to 0.07 and −240 days, respectively, to
get the non-rigid Mars nutation. However, the nutation amplitudes, and thus the values of 𝐹 and 𝜎ፅፂፍ
have never been measured (Folkner et al., 2018).

From the expressions of the core momentum factor (Eq. 2.75), it can be seen that 𝐹 increases with
increasing core size, because the moment of inertia of the core (𝐴፟) increases, and the term 𝐴 − 𝐴፟
decreases (Folkner et al., 2018). Similarly, for a larger core radius the frequency of the FCN increases
in magnitude (that is, becomes more negative), since the dynamical ellipticity of the core increases
and 𝐴፦ decreases. Therefore, the period of the FCN decreases in magnitude (that is, becomes less
negative) for increasing radius of the CMB. A similar conclusion was obtained by Van Hoolst et al.
(2000b). There, several interior models were considered, generated by interpolating between the two
models from Sohl and Spohn (1997) for different core radii. The conclusion was that the FCN period
(𝑃ፅፂፍ = 2𝜋/𝜎ፅፂፍ) is sensitive to both the core radius and the density jump at the CMB, decreasing (in
absolute value) from 287 to 230 days for a core radius increasing from 1268 to 1768 km.

The FCN period predicted by most interior models lies between the semiannual (-343.5 days) and
the terannual (-229 days) periods (Folkner et al., 2018). In particular, recent estimates of the 𝑘ኼ pa-
rameter are consistent with an FCN period of about -230 days (Le Maistre et al., 2012), which would
lead to large amplifications of the terannual nutation terms due to resonance. This resonance ef-
fect is clearly visible in Figure 2.2a, taken from Le Maistre et al. (2012), which represents the differ-
ence between the amplitudes of the rigid and non-rigid nutations as a function of the FCN period,
for the first four terms of the series of prograde and retrograde nutations. This difference is equal to
𝜂̃(𝜎፧) − 𝜂̃ፑ(𝜎፧) = [𝑇፧(𝜎፧) − 1] 𝜂̃ፑ(𝜎፧), where 𝜂̃ፑ(𝜎፧) is the amplitude of the rigid nutation of frequency
𝜎፧. Figures 2.2b and 2.2c plot the same quantity for the nutations in obliquity and longitude, respec-
tively. The large width of the curves is due to the uncertainties on the compliances 𝛽 and 𝛾, which
have a significant influence. For example, setting 𝛽 and 𝛾 to 0 changes the FCN period by 10 days
(Le Maistre et al., 2012). It can be seen that the semiannual sine amplitude of the nutations in longi-
tude presents a large amplification from the FCN, whichever its period. The same can be said of the
prograde semiannual nutation, which has an amplification larger than 10 mas for all the FCN periods
considered. The non-rigid nutations can be determined either by estimating 𝜎ፅፂፍ and 𝐹, or by solving
for the amplitudes of the trigonometric expressions in Section 2.2. The first method relies on non-linear
equations in 𝜎ፅፂፍ. As shown by LeMaistre et al. (2012), since the estimation methods are usually linear
(see Section 3.2), solving for 𝜎ፅፂፍ and 𝐹 when the FCN period is close to the resonance leads to biased
values for these parameters. The moment of inertia and the dynamical ellipticity of the core (𝐴፟ and
𝑒፟) can be computed from the FCN period and the core momentum factor, if assumptions are made
on the compliances 𝛾 and 𝛽. However, close to the resonance, these quantities will be themselves
biased, due to the incorrect values of 𝜎ፅፂፍ and 𝐹. This is not the case if the nutation amplitudes are
estimated directly, since only linear equations in the amplitudes are involved in that estimation. There-
fore, for an FCN period close to -229 days, it is preferable to determine the liquid-core amplification
by estimating directly the nutations amplitudes. Sufficiently far from the resonance (e.g. already for a
period of -240 days), the method involving the solution of 𝜎ፅፂፍ and 𝐹 is favoured, because it requires
the determination of fewer parameters (Le Maistre et al., 2012).

Figure 2.3, taken from (Folkner et al., 2018), shows the the variation of the CMB radius as a function
of 𝜎ፅፂፍ and 𝐹, and of 𝐴፟/𝐴 as a function of 𝐹, all for different mantle mineralogy models and two mantle
temperature profile end-members, a cold and a hot one. The 𝐹𝐶𝑁 period shows larger variations in
CMB radius for different mineralogy models than the factor 𝐹, because of its proportionality to 𝑒፟,
which varies considerably for different core and mantle compositions (Folkner et al., 2018). The blue-
shaded areas represent the solutions expected for 𝐹 and for the 𝐹𝐶𝑁 period after one Martian year of
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RISE measurements. The uncertainty on the 𝐹𝐶𝑁 period depends on its value and the vicinity to the
resonance periods, but for a period of -240 days it is estimated to be around 5 days. This corresponds
to an uncertainty on the core radius of 100 km, taking into account all the models and the two extreme
temperature profiles and in the assumption of hydrostatic equilibrium for the core shape. The expected
uncertainty on 𝐹 is 0.013 for a core momentum factor of 0.07, leading to an uncertainty of 150 km on the
core radius estimate, which is less sensitive to assumptions on 𝑒፟ (Folkner et al., 2018). Similar results
are expected from LaRa, which should lead to uncertainties on the 𝐹𝐶𝑁 period in the non-resonant
case of 5 days after 600 days of tracking, and reaching up to 1 day in the resonant case (Le Maistre
et al., 2012).

(a) (b)

(c)

Figure 2.2: Influence of the FCN period, in terms of the difference with the corresponding rigid-body value, for prograde and
retrograde nutations (a), nutations in obliquity (b), and nutations in longitude (c). The period ፏፅፂፍ is in these plots indicated as
ፓፅፂፍ. Taken from Le Maistre et al. (2012)

Effect on polar motion
The polar motion is mainly caused by surface mass redistribution, in particular by the condensation
and sublimation of COኼ between the polar caps and the atmosphere (Dehant et al., 2003). This is
a seasonal process, with predominantly annual and semiannual frequencies, and involves a third of
the total atmospheric mass (Dehant et al., 2006). These seasonal effects are treated more in detail
in Section 2.3.3. Apart from these harmonic forcings, the polar motion excitation may also come from
stochastic forcing by the atmosphere and from marsquakes. The latter are expected to have a low
energy, so that the polar motion excited by marsquakes is expected to be below the measurement
noise (Dehant et al., 2006). If excited, the free wobble is subject to dissipation by friction. The rate
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(a) (b) (c)

Figure 2.3: Variation of the core radius with the FCN period (a), here indicated as Ꭱፅፂፍ, and ፅ (b), and variation of the ratio ፀ፟/ፀ
as a function of ፅ (c). The curves of different color represent different mantle mineralogy models, while solid curves and dashed
curves indicate a hot and a cold model for the temperature profile of the mantle, respectively. The blue-shaded regions are the
values and uncertainties expected after a year of InSight measurements. Taken from Folkner et al. (2018).

of dissipation of the mode is expressed through the quality factor, 𝑄ፖ. With a value of the wobble
quality factor equal to that measured from tidal effects on Phobos orbit, Yoder and Standish (1997)
found that the wobble decay time would be around 60 years. However, the tidal forcing on Phobos has
a period of 5.6 hours, considerably smaller than that the Chandler wobble, which for a rigid Mars would
be (Van Hoolst et al., 2000b; Konopliv et al., 2006):

𝑃ፂፖ =
2𝜋
Ω √

𝐴𝐵
(𝐶 − 𝐴)(𝐶 − 𝐵) = 190.8 ± 0.3 days (2.83)

Consequently, the quality factors at the two frequencies may have substantially different values.
The actual CW period of Mars was estimated to be between 190 and 210 days (Van Hoolst, 2015).

Applying the same method used for the FCN period, Van Hoolst et al. (2000b) concluded that the
Chandler wobble period is weakly sensitive to the radius and the density of the core, decreasing from
219 to 213 days for a core radius increasing from 1268 to 1768 km. Mantle inelasticity, as indicated
by a low value of 𝑄, leads to a period up to 7 days larger (Van Hoolst et al., 2000b). Moreover, the
CW period is sensitive to the seismic velocities of the mantle, increasing of 0.5 days and 5 days for
changes in 𝑉ፏ and 𝑉ፒ of 10% and 21%, respectively (Van Hoolst et al., 2000a). Thus, the accuracy on
the measured CW period should be lower than 1 day in order to be able to infer interior properties from
it (Van Hoolst, 2015).

The amplitude of the CW was estimated by Yoder and Standish (1997) to be around 10 mas from
Viking pressure measurements, although values as large as 50 mas were deemed possible. As shown
in Table 2.3, Konopliv et al. (2006) estimated a CW amplitude of 5 mas, assuming a period of 205 days
and models of the ice caps shape. The result was obtained from the time-variable tesseral degree 2
coefficients of the gravity field solution, although the difficulty in the separation of this signal from the
1/3-year wobble makes this solution not reliable.

2.3.3. Seasonal effects
The study of the effect of the seasonal changes involving the atmosphere and the ice caps on the
polar motion and the rotation rate of Mars generally starts from the assumption of no external torque.
Hence, the variations in the angular momentum of the atmosphere are balanced by the variations of
the angular momentum of the solid planet (Defraigne et al., 2000). Similarly to what was shown for
the normal modes of the planet, the total angular momentum is expressed as the product of a variable
tensor of inertia and the global angular velocity (𝜴), plus the angular momentum associated with the
relative motion between the atmosphere and the solid Mars. Substituted in the conservation of the total
angular momentum, this expression leads to the Liouville equations. The solution of these equations
for the polar motion, 𝑚̃ = 𝑚፱ + 𝑖𝑚፲, is (Defraigne et al., 2000):

𝑚̃ = [−𝑒𝐴(𝜎 + 1)𝜒̃
፥፨ፚ፝

𝐴፦(𝜎 − 𝜎ፂፖ)
(1 + 𝑘ᖣኼ) −

𝑒𝐴(𝜎 + 1)𝜒̃፰።፧፝
𝐴፦(𝜎 − 𝜎ፂፖ)

] (1 +
𝐴፟
𝐴

𝜎ፅፂፍ
(𝜎 + 1) − 𝜎ፅፂፍ

) (2.84)
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Here, the forcing was separated into a matter and a wind component, namely 𝜒̃፥፨ፚ፝ and 𝜒̃፰።፧፝. The
matter term is due to the variations in the inertia tensor, while the wind term corresponds to the variation
in the relative angular momentum. The matter term also includes the mass redistribution within the
planet caused by the surface mass redistribution, which is accounted for by the second degree Love
load number, 𝑘ᖣኼ. The forcings 𝜒̃፥፨ፚ፝ and 𝜒̃፰።፧፝ are the complex sum of the first two components of the
atmospheric angular momentum excitation functions 𝝌፥፨ፚ፝ and 𝝌፰።፧፝, for which expressions are given
in Defraigne et al. (2000). The third component of the excitation function is responsible for the length
of day variations, according to (Acker et al., 2002):

Δ𝐿𝑂𝐷
𝐿𝑂𝐷 = − 𝐶

𝐶፦
[(1 + 𝑘ᖣኼ) 𝜒፥፨ፚ፝፳ + 𝜒፰።፧፝፳ ] (2.85)

The various terms of the angular momentum excitation functions can be computed given a global
circulation model (GCM) of the atmosphere of Mars, which gives the effect of the change in both the
atmosphere and the surface ice (Konopliv et al., 2011). Examples of such models are the NASA/Ames
(Haberle et al., 1999) and the LMD (Laboratoire de Météorologie Dynamique, Forget et al., 1999).
Sanchez et al. (2003) computed the LOD variations using the Ames GCM, although with a different
approach than the one presented here, relying on a torque model. The torque approach leads to LOD
variations almost twice as large as those obtained from the total angular momentum approach, mainly
due to a larger annual harmonic in the case of the torque method. Of the two methodologies, the total
angular momentum approach is considered more reliable for the measurements of LOD variations
(Sanchez et al., 2003). The results from Sanchez et al. (2003), when using the angular momentum
approach, are similar to those obtained by Acker et al. (2002) with the LMD GCM, the differences
being mostly due to the two distinct atmospheric models. The Δ𝐿𝑂𝐷 amplitudes found by Sanchez
et al. (2003) do not take into account the internal properties of Mars, meaning that the load factor and
the amplification from the FCN are neglected. However, Karatekin et al. (2006) showed that the effects
of the liquid core on the LOD variations are small. In particular, an accuracy on Δ𝐿𝑂𝐷 better than 2%
would be needed to be able to distinguish a planet with a solid core from one with a liquid core.

The wind component accounts for around 30% of the total LOD variations. These contributions are
given by (Konopliv et al., 2011), using a total angular momentum approach and the two different GCM
models, as:

Δ𝐿𝑂𝐷፰።፧፝ፀ፦፞፬ = 0.0565 sin 𝑙ᖣ + 0.1093 cos 𝑙ᖣ − 0.1265 sin 2𝑙ᖣ − 0.0732 cos 2𝑙ᖣ, (2.86)
Δ𝐿𝑂𝐷፰።፧፝ፋፌፃ = 0.0277 sin 𝑙ᖣ + 0.0762 cos 𝑙ᖣ − 0.0784 sin 2𝑙ᖣ − 0.0772 cos 2𝑙ᖣ, (2.87)

where the amplitudes are in ms, and 𝑙ᖣ is the mean anomaly of Mars. According to Le Maistre et al.
(2012), a precision of less than 0.05 ms on the total Δ𝐿𝑂𝐷 is necessary to select, between the two
GCMs, the one in better agreement with the measurements. However, the precision of the available
rotation models, found from that of Δ𝜙 using Eq. 2.35, did not allow to easily distinguish between the
two models, although being right below this threshold. The current uncertainties on Δ𝜙 (Table 2.1)
are up to 50% smaller than those from the rotation model by (Konopliv et al., 2011), considered by
(Le Maistre et al., 2012), hence they may provide a better constraint for the GCMs. Future atmospheric
measurements, such as those from InSight (Spiga et al., 2018), will lead to more precise GCMs, and
tracking from landers like InSight and LaRa will allow to reach an accuracy on Δ𝐿𝑂𝐷 50% smaller
than the current one (Folkner et al., 2018), and good enough to distinguish between the two current
atmospheric models (Le Maistre et al., 2012).

The matter contribution to the LOD variations is proportional to the variation of the second degree
zonal coefficient of the gravity field (Chao and Rubincam, 1990):

Δ𝐿𝑂𝐷፥፨ፚ፝ = 𝜙̇23
𝑀𝑅ኼ፞
𝐶 Δ𝐽ኼ (2.88)

Hence, the wind contribution can be found by subtracting this term to the total estimated Δ𝐿𝑂𝐷. How-
ever, the result is limited by the uncertainties on the normalized polar moment of inertia and on Δ𝐽ኼ,
which is the variation of the degree 2 zonal harmonic coefficient.

The seasonal variations of the gravity field of Mars due to the COኼ cycle consist mainly of variations
in the zonal coefficients. In particular, the odd degree coefficients have variation amplitudes about 20%



2.3. MOP and Mars geophysical properties 21

larger than those of even degrees. The temporal variation of the Stokes coefficients is related to the
temporal variation of the density distribution of the planet by (Smith et al., 2009):

𝐶፧፦ + 𝑖𝑆፧፦ =
1

(2𝑛 + 1)𝑀𝑅፧፞ ∫𝒱
𝜌𝒱(𝑟, 𝜙፥ፚ፭ , 𝜆, 𝑡)𝑟፧𝑌፧፦(𝜙፥ፚ፭ , 𝜆)𝑑𝒱, (2.89)

where 𝑌፧፦(𝜙፥ፚ፭ , 𝜆) = 𝑃፧፦ sin (𝜙፥ፚ፭) (cos (𝑚𝜆) + 𝑖 sin (𝑚𝜆)), and 𝒱 is the volume.
Studies of the seasonal variations of these coefficients were performed by Smith et al. (2001), who

tracked the topography evolution related to the mass exchange at the ice caps using data from the
MOLA instrument, and estimated the variation of Mars flattening from MGS tracking data. MGS data
was also employed by Yoder et al. (2003) to estimate the seasonal variation of the low-degree gravity
field coefficients from their effect on the eccentricity and argument of pericenter of the spacecraft orbit
(for the odd zonal harmonics) and on the right ascension of the ascending node (for the even zonal
harmonics). Tracking data from a single spacecraft allows to distinguish between the signature of the
odd and the even harmonics, but it is generally not possible to separate the effects of the different even
or odd degrees (Karatekin et al., 2005). Thus, the observed time-variable coefficients are generally
lumped coefficients, being the sum of zonal coefficients from different degrees, each multiplied by a
weighting factor (Yoder et al., 2003).

The largest seasonal variations, as computed fromGCMmodels, affect the 𝐶ኻኺ coefficient, leading to
displacements of the CoM of Mars of up to 27.5 mm in the z-direction (Sanchez et al., 2006). However,
these terms are generally not detected from spacecraft tracking data, because they are hard to separate
from the errors on the ephemerides of the central body.

By performing simulations with MGS tracking data, Karatekin et al. (2005) concluded that of ne-
glecting the zonal coefficients 𝐶ኾኺ and 𝐶኿ኺ results in a 50% error in the estimated annual amplitudes
of 𝐶ኼኺ and 𝐶ኽኺ. Thus, high-degree zonal coefficients have to be considered in the determination of the
seasonal gravity field variations. In addition, they computed the variations of the zonal coefficients from
the Ames GCM, the LMD GCM, and the measurements of the thickness of the polar deposits by the
High Energy Neutron Detector (HEND) on Mars Odyssey. The results from these three models differed
by about 30% in the amplitude of the coefficients. Compared to the previous estimations by Smith et al.
(2001) and Yoder et al. (2003), the coefficients estimated from MGS tracking data showed differences
of up to 40% for COኼ, hence it was not possible to discriminate between the two GCMs and HEND
data from the MGS tracking solutions. Thus, they simulated data from an additional spacecraft at an
inclination of 50∘, showing that this resulted in lower uncertainties on the estimated coefficients and a
better separability of the even zonal coefficients.

More recent estimates of the time-varying gravity field of Mars were obtained by Smith et al. (2009),
from a larger MGS Doppler and range dataset, and by (Konopliv et al., 2011), using also Odyssey
and MRO data. The latter results showed good agreement with those from the Ames and LMD GCMs.
Konopliv et al. (2016) estimated the time-varying odd zonal lumped coefficient, but fixed the variation of
the even zonal lumped coefficient to that given by the Ames GCM. Genova et al. (2016) used the same
dataset but estimated also the even zonal degrees, with a monthly-batch mission by mission analy-
sis. This method allowed to limit the instability on the Cኼኺ solution, largely caused by MGS and MRO
data. The time-variable gravity coefficients were retrieved over 11 years, and since the contribution
of the atmosphere to their variations was modelled before the estimation using the Mars-GRAM2010
atmospheric model (Justh, 2011), these variations were only caused by the change of the polar caps
masses. The polar caps, assumed to be point masses in their geometric centre, were then found from
the estimated zonal coefficients with the simple formulas:

𝑀ፍፏ =
𝐶ኼኺ + 𝐶ኽኺ

2 𝑀, (2.90)

𝑀ፒፏ =
𝐶ኼኺ − 𝐶ኽኺ

2 𝑀, (2.91)

where 𝑀ፍፏ is the mass of the north polar cap, 𝑀ፒፏ the mass of the south polar cap, and 𝑀 the mass
of Mars. The negative of the variation of the total ice caps mass showed good agreement (correlation
of about 0.85) with the variation of the atmospheric mass as computed from the Mars-GRAM2010
pressure fields. This was expected, since the increase in atmospheric mass is due to the sublimation
of the ice caps mass, and vice versa.





3
Orbit determination and covariance

analysis
This chapter deals with radio-tracking measurements and how physical parameters can be retrieved
from them. Therefore, a description of the radio-tracking observables which will be considered in this
project is given in Section 3.1. Then, Section 3.2 presents the linear regression method employed for
the parameter estimation in Chapter 6, namely a weighted least squares filter with a priori information.
Furthermore, Section 3.3 discusses the consider covariance analysis, a powerful technique allowing
to get more realistic estimates of the actual uncertainties of the parameters obtainable from a least
squares estimation with real data.

3.1. Radio-tracking observables
This section deals with the different tracking data types that will be considered throughout the thesis
project, namely ranging (Section 3.1.1 and Doppler (Section 3.1.2), giving formulations for the corre-
sponding observables. In the literature study phase, other kinds of radio-tracking observables, such as
Very-long-baseline interferometry (VLBI) or Same beam interferometry (SBI) were deemed not precise
enough to provide a considerable contribution to the accuracy of the final MOP solution.

3.1.1. Range observables
The range is a measure of the distance between the tracked object and the tracking station. The
geometric range is the instantaneous distance between the ground station (with position vector 𝒓ፆፒ)
and the spacecraft (at 𝒓ፒ), namely (Tapley et al., 2004):

𝜌 = √(𝒓ፆፒ − 𝒓ፒ)(𝒓ፆፒ − 𝒓ፒ) (3.1)

Such an ideal observation is limited by the finite speed of light. Therefore, the actual range measure-
ment is relative to the position of the two bodies at different times.

The one-way range measures the light-time from the tracking station to the satellite, or vice versa.
If 𝑡ፓ is the time of transmission of the radio signal from one body and 𝑡ፑ the time of reception of the
signal at the other body, the quantity to be measured will be:

𝜌 = |𝒓ፒ(𝑡ፑ) − 𝒓ፆፒ(𝑡ፓ)| (3.2)

In an ideal case, the difference between 𝑡ፑ and 𝑡ፓ would be the time taken by the light to travel the
distance 𝜌, hence 𝑡ፑ = 𝑡ፓ + 𝜌/𝑐. In a real measurement, the difference between the transmission and
the reception times will deviate from the simple light-time, either due to a speed of the signal lower than
𝑐, or to a disagreement between the clocks at the two bodies (Tapley et al., 2004).

In a two-way range measurement, the round-trip light time between the tracking station and the
spacecraft is observed. This provides a more accurate value, since the clock offsets are not to be
taken into account (Tapley et al., 2004). The ranging signal is modulated over the uplink carrier at the
ground station, which is then transponded coherently by the spacecraft. The signal is then received by
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the station, and is used to infer the light-time. The uplink frequency can be either ramped or unramped.
In the general case of ramped uplink signal, the range observable can be expressed as (Moyer, 2003):

𝑞᎞ = ∫
፭ፑ

፭ፓ
𝐹᎞(𝑡)𝑑𝑡 (3.3)

where 𝐹᎞(𝑡) is the conversion factor from seconds to range units, which is proportional to the trans-
mitted frequency. The range measurement is affected by an ambiguity equal to an integer number of
wavelengths of the ranging signal (Montenbruck and Gill, 2012). This ambiguity may be solved if other
range observations are available, or using Doppler observations.

3.1.2. Doppler observables
Range-rate observations measure the relative velocity of the station and the spacecraft along the line-
of-sight (LOS). The formula for the instantaneous two-way Doppler shift is, in a first-order approximation
(Le Maistre, 2013):

Δ𝑓 = 2𝑀፛፝𝑓ፓ
𝑣፫
𝑐 (3.4)

where 𝑣፫ = 𝜌̇ is the range-rate and 𝑓ፓ is the transmitted frequency, while 𝑀፛፝ is the transponder
turnaround ratio. The signal is transponded at the spacecraft in order to avoid interference between
the uplink and the downlink (Montenbruck and Gill, 2012). In practice, the Doppler shift is integrated
over a time interval 𝑡ፂ = 𝑡ፑ፞ − 𝑡ፑ፬ , defined at the station of reception. The subsctipts 𝑠 and 𝑒 refer to
the starting time and to the ending time of the interval 𝑡ፂ. The Doppler observable is then derived from
the Doppler count, defined as (Montenbruck and Gill, 2012):

𝑁፝፨፩ = ∫
፭ፑ፞

፭ፑ፬
(𝑓ፑ − 𝑓፫፞፟)𝑑𝑡, (3.5)

where 𝑓ፑ is the frequency of the received signal and 𝑓፫፞፟ is a reference frequency. The number of
transmitted cycles of𝑀፛፝𝑓ፓ over the time interval at transmission corresponding to 𝑡ፂ at reception must
be equal to the number of cycles of 𝑓ፑ received over 𝑡ፂ:

∫
፭ፑ፞

፭ፑ፬
𝑓ፑ𝑑𝑡 = 𝑀፛፝∫

፭ፓ፞

፭ፓ፬
𝑓ፓ𝑑𝑡 (3.6)

Then, if the reference frequency is taken to be 𝑓፫፞፟ = 𝑀፛፝𝑓ፓ, the Doppler count can be written as:

𝑁፝፨፩ = 𝑀፛፝ [∫
፭ፓ፞

፭ፓ፬
𝑓ፓ𝑑𝑡 − ∫

፭ፑ፞

፭ፑ፬
𝑓ፓ𝑑𝑡] = 𝑀፛፝𝑓ፓ (𝑡ፓ፞ − 𝑡ፓ፬ − 𝑡ፑ፞ + 𝑡ፑ፬) (3.7)

The time between the transmission and the reception at either the start of the interval or the end is the
round-trip light time. Therefore:

𝑡ፑ፬ − 𝑡ፓ፬ =
𝜌፮፬ + 𝜌፝፬

𝑐
𝑡ፑ፞ − 𝑡ፓ፞ =

𝜌፮፞ + 𝜌፝፞
𝑐

(3.8)

Here, 𝜌፮ and 𝜌፝ are the range along the uplink leg and the downlink leg, respectively, while the sub-
sctipts 𝑠 and 𝑒 indicate that the ranges are relative to the starting time and to the ending time of the
interval 𝑡ፂ. The Doppler observable is then (Le Maistre, 2013):

𝑞ፃፎፏ = Δ𝑓 =
𝑁
𝑡ፂ
= 𝑀፛፝

𝑓ፓ
𝑐𝑡ፂ

[(𝜌፮፞ + 𝜌፝፞) − (𝜌፮፬ + 𝜌፝፬)] (3.9)

In this expression, 𝑁፝፨፩ is taken to be the opposite of that given by Eq. 3.7, in agreement with the
convention for which a positive range rate leads to a positive Doppler shift (Moyer, 2003). Since the
range observable represents the difference in phase between the transmitted and the received signal,
and the signal is transponded coherently, the turnaround ratio of the transponder does not appear in
the expression of 𝑞᎞, which measures the phase shift (Montenbruck and Gill, 2012).
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3.1.3. Noise budget and corrections
As mentioned in the previous section, the science return of lander and orbiter radio tracking is limited
by the accuracy of the measurements, since a geophysical signature below the noise threshold can
generally not be determined from the observations. Errors in the measurements can be due to instru-
mental noise, propagation noise, or systematic errors (Asmar et al., 2005). Current accuracy levels are
in the order of 0.1 mm/s for Doppler at 60s integration time and 1-5 m for ranging measurements (Iess
et al., 2014), as measured from post-fit residuals. These values vary a lot with the tracking system and
the orbital configuration, and may be larger in the presence of systematic errors.

Instrumental noise stems frommechanical and thermal instability of the ground and spacecraft elec-
tronics, as well as from errors in the frequency and timing system (FTS). The instrumentation instability
can be expressed in terms of fractional fluctuations in the reference frequency, 𝑦(𝑡) = Δ𝑓(𝑡)/𝑓ኺ. The
Allan variance (and the corresponding deviation 𝜎፲(𝜏)) is a measure of the stability of the reference
frequency, and is defined as (Thornton and Border, 2003):

𝜎ኼ፲(𝜏) =
1
2⟨(𝑦፤ዄኻ − 𝑦፤)

ኼ⟩ (3.10)

where 𝑦፤ and 𝑦፤ዄኻ are the average values of the fractional frequency fluctuation 𝑦(𝑡) over two adja-
cent intervals of length 𝜏, and the angle brackets represent an ensemble average. This expression is
more properly known as the two-sample Allan variance with no dead time (because two adjacent time
intervals are considered), 𝜏 being the averaging time.

For two-way Doppler tracking, where the reference frequency is provided for example by hydrogen
masers at the DSN station, the Allan deviation of the FTS errors is better than 10ዅኻ኿ at 𝜏 = 1000 s
(Asmar et al., 2005). This value is generally limited by the stability of the on-board transponder, for
which 𝜎፲ ∼ 1.8 ⋅ 10ዅኻኾ at 𝜏 = 60 s in the case of Cassini, corresponding to a noise of 0.006 mm/s
(Iess et al., 2014). For one-way range-rate, the ultrastable oscillators (USO) on-board the spacecraft
achieve a worse performance, with 𝜎፲ ∼ 10ዅኻኽ for 1000 s integration time, but in any case FTS noise
and instrumental noise in general is not the dominant contribution to the total noise (Asmar et al., 2005).

Other instrumental contributions to the noise are the ground antenna thermal and mechanical noise.
The thermal noise corresponds to a finite signal-to-noise ratio (SNR) on the link due to the non-zero
temperature of the antenna, and is a white noise on the phase. The associated Allan deviation was
estimated to be in the order of 𝜎፲ ∼ 10ዅኻዀ at 𝜏 = 1000 s by Asmar et al. (2005), and 0.005 mm/s at
Doppler integration times of 60 s for the MRO Ka-band signal (Zuber et al., 2007). Antenna mechanical
noise can be due to wind, gravitational loading, or thermal expansion, and is roughly 𝜎፲ ∼ 1.6 ⋅ 10ዅኻኾ
at 𝜏 = 60 s, or 0.005 mm/s (Iess et al., 2014). In addition, there is a numerical truncation error, which
for Cassini and Juno was estimated to be up to 6 ⋅ 10ዅኼ mm/s at 𝜏 = 60 s (Zannoni and Tortora, 2013).

For range measurements, the random errors are dominated by the thermal noise. The systematic
errors for range data are considerably larger than those for Doppler measurements (which are negligible
and mostly of low frequency), and mainly consist in biases due to delays induced by various effects,
like multipath (Iess et al., 2014).

Propagation noise is caused by the fact that the electromagnetic signal does not travel in vacuum,
but through media with different refractive indices. The main sources of this noise for a probe targeting
Mars are therefore the interplanetary and solar plasma, the Earth ionosphere and troposphere, and, in
minor part, the Martian atmosphere. The plasma and ionosphere are dispersive media, because their
refractive index (𝑛፩) depends on the carrier frequency of the signal (𝑓፜), approximately as (Le Maistre,
2013):

𝑛፩ = 1 − 40.3
𝑁፞
𝑓ኼ፜

(3.11)

𝑁፞ is the electron density, namely the number of free electrons per unit of volume, expressed in mኽ.
The interaction between the electromagnetic wave and the charged particles leads to a reduction of
the group velocity and an increase of the phase velocity. The range correction due to plasma and
ionospheric noise is (Montenbruck and Gill, 2012):

Δ𝜌 = 40.3𝑇𝐸𝐶𝑓ኼ፜
(3.12)

The total electron content (𝑇𝐸𝐶) is the total number of free electrons in the path of the signal, and is
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therefore obtained as (Montenbruck and Gill, 2012):

𝑇𝐸𝐶 = ∫
ፒ፭፨፭

𝑁፞𝑑𝑠 (3.13)

Here 𝑆፭፨፭ represents the path of the signal, and 𝑑𝑠 is the infinitesimal element of length along the path.
The correction for carrier phase measurements is equal and opposite in sign, due to the increase of
phase velocity (Montenbruck and Gill, 2012):

Δ𝜑 = −40.3𝑇𝐸𝐶𝑓ኼ፜
(3.14)

The correction in the Doppler shift, which is proportional to the rate of change of the range, is (LeMaistre,
2013):

Δ𝑓።፨፧ =
40.3
𝑐𝑓፜

𝑑(𝑇𝐸𝐶)
𝑑𝑡 (3.15)

Therefore, the Doppler shift correction depends on the time variation of the TEC along the signal path.
The TEC for interplanetary plasma depends on the distance from the Sun, which is why an important
parameter in the measurement noise is the Sun-Earth-probe (SEP) angle, that is, the angle between
the Sun and the spacecraft as seen from the Earth. Models of the distribution of the electron density in
the ionosphere and in the interplanetary plasma are available, but the most precise method to correct
the dispersion effects is to use two different carrier frequencies. Usually, the uplink signal in a single
band gets transponded in two separate bands. Assuming the paths of the two signals through the
dispersive media to be the same, the correction can be found by applying Equation 3.15 for the two
signals with different 𝑓፜ Le Maistre (2013).

The troposphere is non-dispersive, so its index of refraction does not depend on the carrier fre-
quency (Montenbruck and Gill, 2012). Its effects on the signal can be divided into those coming from
dry air, the properties of which are easy to model because they change slowly with time, and those
due to water vapour. For both components, a zenith delay is computed, which is then extended to
the different elevations of the radio link through mapping functions (Petit and Luzum, 2010). These
mapping functions will generally be close to the cosecant of the elevation of the satellite as seen from
the station (Tapley et al., 2004). In addition, the dependence on the azimuth of the signal is taken
into account through tropospheric gradients in the North-South and the East-West directions (Petit
and Luzum, 2010). Therefore, the tropospheric delay along the line-of-sight is modelled as (Petit and
Luzum, 2010):

Δ𝜌ፓ = 𝑚፡(𝑒𝑙)𝐷፡፳ +𝑚፰(𝑒𝑙)𝐷፰፳ +𝑚፠(𝑒𝑙)[𝐺ፍ cos (𝑎𝑧) + 𝐺ፄ sin (𝑎𝑧)], (3.16)

where the hydrostatic (dry) and wet zenith delays are𝐷፡፳ and𝐷፰፳, while𝑚፡ and𝑚፰ are their respective
mapping functions. The angles 𝑒𝑙 and 𝑎𝑧 are the elevation and the azimuth of the satellite, as seen
from the station. The terms 𝐺ፍ and 𝐺ፄ are the tropospheric gradients in the N-S and E-W directions,
and 𝑚፠ is the total gradient mapping function.

Other errors which typically have to be considered in the radio tracking of a spacecraft are the
unmodeled displacements of the satellite antenna phase centre, that cause a shift in the spacecraft
CoM, with respect to which the dynamical equations are integrated (Genova et al., 2016). Table 3.1
lists the contributions to the Doppler noise for the (X-band) radio tracking of the LaRa instrument, in
terms of the error on the radial velocity (Δ𝑣፫), given by Le Maistre (2013) for a Doppler integration time
of 60 s. It can be seen that the major error source is the Earth tropospheric delay, and that the total
noise is below 0.1 mm/s. The average data noise for MRO, MGS, and Mars Odyssey at 10 s integration
time and SEP angles larger than 60∘ is 0.053, 0.056, and 0.040 mm/s, with Odyssey data reaching up
to 0.03 mm/s of accuracy (Konopliv et al., 2011).

3.2. Least squares filter
This section presents the method used to determine the physical parameters of interest from the mea-
surements, namely the least-squares estimation. Only the batch least squares method is described
here, since it is the one implemented in the software used for the project. Further information on the
topic can be found, for example, in (Tapley et al., 2004) or (Montenbruck and Gill, 2012), which are
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Error source Δ𝑣፫ (mm/s)

Thermal noise 0.03
Ground station 0.04
Solar plasma < 0.09
Earth ionosphere 0.02
Earth troposphere 0.14
Mars ionosphere 0.0016
Mars troposphere 0.002

Total RMS <0.066

Table 3.1: Doppler noise contributions at ፭፜ = 60 s for LaRa, as estimated by Le Maistre (2013).

the main references used for this chapter. In Section 3.3, some details are given about the covari-
ance analysis in a batch least-squares, which allows to evaluate the influence of a parameter on the
uncertainties of the estimated parameters.

The orbit determination problem consists of the solution of two nonlinear relations:

𝑿̇(𝑡) = 𝐹(𝑿(𝑡), 𝑡) (3.17)

𝒀። = 𝐺(𝑿። , 𝑡።) + 𝝐። (3.18)

𝑿 represents the vector of the 𝑛 unknown parameters, which include the state vector of the spacecraft,
𝑺. The elements of the state vector are the three components of the position of the satellite and the
three components of its velocity. However, in the following, the entire vector of parameters, 𝑿, will often
be referred to simply as ”state vector”. The propagation of the vector of parameters, as expressed by
Eq. 3.17, is obtained from the dynamical model presented in Section 4.1. 𝒀። is a vector of 𝑝። elements,
representing themeasurements available at the epoch 𝑡።, where 𝑖 = 1, ..., 𝑙. The vector𝑿። is the vector of
parameters at the epoch 𝑡።, thus 𝑿(𝑡።). These measurements are of the same kind as those described
in section 3.1, and generally 𝑝። < 𝑛. The 𝑝።-dimensional vector of errors, 𝝐።, can be either due to
an incorrect formulation of the function 𝐺, which relates the real measurements to the parameters to
estimate, or to wrong values of the estimated parameters, or to the noise proper of the measurement
technique.

The functions 𝐹 and 𝐺 are usually nonlinear functions of 𝑿. However, the problem can be linearized
around a reference trajectory 𝑿∗, so that, neglecting terms of order higher than the first in 𝒙(𝑡) =
𝑿(𝑡) − 𝑿∗(𝑡), the two equations become (Tapley et al., 2004):

𝒙̇ = 𝐴(𝑡)𝒙(𝑡) (3.19)

𝒚። = 𝐻̃።𝒙። + 𝝐። (3.20)

with

𝐴(𝑡) = [𝜕𝐹(𝑿(𝑡), 𝑡)𝜕𝑿(𝑡) ]
∗
, and 𝐻̃። = [

𝜕𝐺(𝑿። , 𝑡።)
𝜕𝑿 ]

∗

።
(3.21)

The asterisk means that these partial derivatives are evaluated at the reference trajectory.
The deviation in the state vector at time 𝑡, 𝒙(t), may be related to that at a reference epoch 𝑡፤ through

the state transition matrix 𝜱(𝑡, 𝑡፤), with:

𝜱(𝑡, 𝑡፤) =
𝜕𝒙(𝑡)
𝜕𝒙𝒌

(3.22)

Then, using Eq. 3.19, the differential equation yielding the variation of the state transition matrix as a
function of 𝑡 can be written as:

𝜱̇(𝑡, 𝑡፤) = 𝐴(𝑡)𝜱(𝑡, 𝑡፤) (3.23)
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The initial condition of this equation derives from the fact that the state vector deviation at the reference
epoch (𝑡፤) is not modified by the state transition matrix, so, indicating with 𝐼 the identity matrix (in this
case with dimensions 𝑛 × 𝑛):

𝜱(𝑡፤ , 𝑡፤) = 𝐼 (3.24)

The state transition matrix can be used to relate the observations equation at the different epochs to
the state deviation at the reference epoch, by substituting 𝒙። in Eq. 3.19 with 𝜱(𝑡, 𝑡፤)𝒙፤:

𝒚። = 𝐻።𝒙፤ + 𝝐። , (3.25)

where 𝐻። = 𝐻̃።𝜱(𝑡። , 𝑡፤). All the measurement residuals at the 𝑙 different epochs can be regrouped in
a single vector 𝒚, which will have 𝑚 = ∑። 𝑝። elements. If the same is done for the errors and for the
measurement Jacobian matrices 𝐻።, obtaining the 𝑚 × 1 vector of residuals 𝝐 and the 𝑚 × 𝑛 Jacobian
matrix 𝐻, the observations equation is written in a more compact form as:

𝒚 = 𝐻𝒙፤ + 𝝐, (3.26)

The least squares solution for 𝒙 in 3.26 is the one minimizing the cost function

𝐽(𝒙፤) =
1
2𝝐

ፓ𝝐 = 1
2(𝒚 − 𝐻𝒙፤)

ፓ (𝒚 − 𝐻𝒙፤) (3.27)

If𝑚 ≥ 𝑛 and the Jacobian has full rank (hence if its 𝑛 columns are independent), the cost function min-
imum is found by setting 𝜕𝐽/𝜕𝒙 to 0. The resulting value for the state vector deviation at the reference
epoch is obtained by solving the following linear system of equations, known as normal equations:

(𝐻ፓ𝐻)𝒙፤ = 𝐻ፓ𝒚 (3.28)

The 𝑛 × 𝑛 matrix (𝐻ፓ𝐻) is known as the normal matrix, and is invertible given the assumptions made
on 𝐻, so that:

𝒙̂፤ = (𝐻ፓ𝐻)
ዅኻ𝐻ፓ𝒚 (3.29)

In the solution here presented, all the measurements are treated equally, while in reality, when
combining different observations (especially of different types), these may be affected by errors of
different magnitudes. The non-uniformity the measurements can be taken into account by assigning to
each equation in the system of normal equations a weight, inversely proportional to the uncertainty of
the corresponding observation. This is generalized in the weighted least squares problem, where the
cost function to minimize is:

𝐽(𝒙፤) =
1
2𝝐

ፓ𝑊𝝐 (3.30)

The solution is then given by the system of equations:

(𝐻ፓ𝑊𝐻)𝒙፤ = 𝐻ፓ𝑊𝒚 (3.31)

Here𝑊 is an𝑚×𝑚 weighting matrix. If (𝐻ፓ𝑊𝐻) is positive definite, the weighted least squares solution
is:

𝒙̂፤ = (𝐻ፓ𝑊𝐻)
ዅኻ𝐻ፓ𝑊𝒚 (3.32)

The measurements errors may be assumed to be random variables with zero mean, so that:

𝐸[𝝐] = 0 and 𝐸[𝝐𝝐ፓ] = 𝑅, (3.33)

where the operator 𝐸[] represents the expected value, and 𝑅 is the auto-covariance matrix of the
random vector of errors 𝝐. In these assumptions, the weighted least squares solution is a linear and
unbiased estimate of 𝒙፤. It is linear because it is obtained as a linear combination of the observations,
and unbiased because its expected value is 𝒙፤:

𝐸[𝒙̂፤] = 𝐸 [(𝐻ፓ𝑊𝐻)
ዅኻ𝐻ፓ𝑊𝒚] Eq. ኽ.ኼዀ= 𝐸 [𝒙፤ + (𝐻ፓ𝑊𝐻)

ዅኻ𝐻ፓ𝑊𝝐] = 𝒙፤ (3.34)

Moreover, it is possible to show that if the weighting matrix is taken to be𝑊 = 𝑅ዅኻ, the weighted least
squares estimate is the one for which the estimation error, 𝒙̂፤ − 𝒙፤, has the minimum variance (see
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e.g. Kuchynka et al., 2014, although there the errors were assumed to be uncorrelated, in accordance
to the hypoteses of the Gauss-Markov theorem). The auto-covariance matrix of the estimation error is
in this case:

𝑃፤ = (𝐻ፓ𝑊𝐻)
ዅኻ

(3.35)

It can be shown (e.g. Montenbruck and Gill, 2012) that any other linear unbiased estimator will lead to
a covariance matrix of the estimation error, 𝑃∗፤ , for which 𝑃∗፤ − 𝑃፤ is positive semi-definite, confirming
the minimum variance property of the least squares solution.

There may be a priori information about the initial state vector deviation in terms of its value, 𝒙፤, and
its uncertainty, as expressed by the weighting matrix𝑊፤ (i.e. the inverse of its auto-covariance matrix,
𝑃፤). In this case, the cost function is modified to penalize large deviations from the a apriori values:

𝐽(𝒙፤) =
1
2𝝐

ፓ𝑊𝝐 + 12(𝒙፤ − 𝒙፤)
ፓ𝑊፤ (𝒙፤ − 𝒙፤) (3.36)

The corresponding normal equations are:

(𝐻ፓ𝑊𝐻 +𝑊፤) 𝒙፤ = 𝐻ፓ𝑊𝒚+𝑊፤𝒙፤ (3.37)

Leading to the estimate:

𝒙̂፤ = (𝐻ፓ𝑊𝐻 +𝑊፤)
ዅኻ
(𝐻ፓ𝑊𝒚+𝑊፤𝒙፤) (3.38)

The covariance of the estimated vector is:

𝑃፤ = (𝐻ፓ𝑊𝐻 +𝑊፤)
ዅኻ

(3.39)

The resolution of the normal equations and the computation of the covariance matrix require that
the information matrix (𝑃ዅኻ፤ ) be non-singular. The knowledge about the uncertainties of the a priori pa-
rameters allows to add the weighting matrix 𝑊፤ to the normal matrix (𝐻ፓ𝑊𝐻), so that a non-singular
information matrix can be obtained even if the normal matrix itself is singular or close to singular. There-
fore, the effect of the a priori weighting matrix is to stabilize the information matrix.

This approach to the orbit determination problem is called batch estimation, because observations
from several epochs are accumulated and then processed at the same time. Sequential estimation, on
the other hand, allows to update the state vector with each new observation, and is therefore useful for
near-real-time applications.

In general, a reference state vector at the initial epoch, 𝑿∗(𝑡ኺ), is given, and along with it an a priori
deviation 𝒙ኺ with covariance matrix 𝑃ኺ. The value of 𝒙ኺ is usually set to 0, hence 𝑃ኺ is a measure of the
uncertainties of the elements of 𝑿∗(𝑡ኺ). From the initial state vector, the reference orbit is obtained by
integrating Eq. 3.17 over the epochs of interest, with the given 𝑿∗(𝑡ኺ) as initial condition. At the same
time, the variational equation for the state transition matrix (Eq. 3.23) is integrated, evaluating the term
𝐴(𝑡) = 𝜕𝐹(𝑿(𝑡), 𝑡)/𝜕𝑿(𝑡) over the reference trajectory at each integration step. Once the reference
trajectory and the state transition matrix have been propagated, the estimate of the initial state, 𝑿(𝑡ኺ),
is obtained by adding the solution of Eq. 3.37, 𝒙̂ኺ, to the reference value, 𝑿∗(𝑡ኺ).

The least squares estimate of 𝑿(𝑡ኺ) obtained in this way is that relative to the linearized dynamical
and observation equations. Therefore, it may not accurately reflect the true behaviour of the space-
craft. For this reason, the process is iterated multiple times, by taking the estimated initial state as
the reference initial state of the subsequent iteration. Convergence is reached if the RMS of the dif-
ference between two consecutive estimations of 𝒙̂ኺ falls below a fixed threshold (although equivalent
convergence criteria are often used).

Usually, the complete set of observations is divided into several smaller subsets, corresponding to
time intervals, or data arcs, which can be in the order of days (Konopliv et al., 2011). This allows to limit
the impact on the estimated parameters of forces which are poorly known, and, if dynamical parameters
relative to these forces are among those estimated, to more precisely model these effects. Examples
of these poorly constrained forces may be the atmospheric drag or the solar radiation pressure, for
which usually scale factors are estimated as part of the state vector. This method is known as the
multi-arc approach (Milani and Gronchi, 2010). The elements of the state vector are split into local
parameters and global parameters. The local parameters are estimated at each arc, with each time
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different initial conditions, and independently from the local parameters relative to the other arcs. The
global parameters, instead, are estimated over the whole dataset. Typically, local parameters include
the position and velocity of the spacecraft, the surface forces scale factors, thrust corrections, and range
biases, while global parameters may be the static gravity field coefficients, the rotation and orientation
parameters, and the tidal Love number (Konopliv et al., 2011).

3.3. Covariance analysis
The covariance matrix of the estimated parameters, given by Eq. 3.39, does not take into account the
systematic errors, which may arise from inaccuracies in the dynamical and measurements model. The
formal errors decrease with the number of observations, roughly as 1/√𝑚 (Dirkx et al., 2014), while
this is not true for the systematic errors, which thus put a limit to the accuracy obtainable in the orbit
determination process (Montenbruck and Gill, 2012). Hence, the formal errors of the estimated param-
eters, which correspond to the square roots of the elements on the diagonal of 𝑃፤, are a too optimistic
representation of the uncertainty of the solution. The true errors (i.e., the difference between the esti-
mated parameters and their actual values), which are not known when dealing with real observations,
may be several times larger than the formal uncertainties (Marty et al., 2009).

The true errors are known in simulations, since they can be found by comparing the estimated
parameters to those used to generate the synthetic measurements. Then these errors may be used to
calibrate the estimated uncertainties, for example by multiplying the formal errors by the amplification
factor (Le Maistre et al., 2012):

𝑘፜ፚ፥።፛ =
1

𝑁፬።፦፮

ፍ፬።፦፮
∑
፣዆ኻ

( 𝜀(𝑗)𝜎(𝑗))
ኼ

(3.40)

Here, 𝑁፬።፦፮ is the total number of simulations performed, and 𝜀(𝑗) and 𝜎(𝑗) are the true errors and the
estimated formal errors for the 𝑗-th simulation and the parameter of interest. However, this process can
be time consuming and computationally intensive, since it requires many instances of the least squares
estimation.

Another way to investigate the influence of systematic errors on the least squares solution is though
the consider covariance analysis. In this method, an additional vector of parameters, 𝒄, is selected,
consisting of the force and measurement model parameters which are affected by uncertainties, but
are not estimated. These quantities are called consider parameters. The reason why the consider
parameters are chosen not to be estimated but fixed to a reference value could be due to computation
speed and memory requirements, or to an instability of the information matrix when there is only a small
number of independent observations (Tapley et al., 2004).

Using a linearized model, the vector 𝒄 represents the displacement of the consider parameters from
their nominal values, so that the observation equations can be written as (Bierman, 1977):

𝒚 = 𝐻፱𝒙 + 𝐻፜𝒄 + 𝝐 (3.41)

The cost function with the a priori information of the reference state deviation 𝒙፤ is this time:

𝐽(𝒙፤) =
1
2(𝒚 − 𝐻፱𝒙፤)

ፓ𝑊(𝒚 − 𝐻፱𝒙፤) +
1
2(𝒙፤ − 𝒙፤)

ፓ𝑊፤ (𝒙፤ − 𝒙፤) (3.42)

Setting the derivative of the cost function with respect to 𝒙 equal to 0 leads to the least squares solution:

𝒙̂፤ = (𝐻ፓ፱𝑊𝐻፱ +𝑊፤)
ዅኻ
(𝐻ፓ፱𝑊𝒚+𝑊፤𝒙፤) (3.43)

Substituting for 𝒚 its (linearized) expression as a function of the state and consider parameters deviation
vectors (Eq. 3.41), the estimate with the inclusion of the consider parameters becomes:

𝒙̂፤ = (𝐻ፓ፱𝑊𝐻፱ +𝑊፤)
ዅኻ
(𝐻ፓ፱𝑊 (𝐻፱𝒙፤ + 𝐻፜𝒄 + 𝝐) +𝑊፤𝒙፤)

= (𝐻ፓ፱𝑊𝐻፱ +𝑊፤)
ዅኻ
(𝐻ፓ፱𝑊 (𝐻፱𝒙፤ + 𝐻፜𝒄 + 𝝐) +𝑊፤ (𝒙፤ + 𝒙፤ − 𝒙፤))

= 𝒙፤ + 𝑃፤ (𝐻ፓ፱𝑊 (𝐻፜𝒄 + 𝝐) +𝑊፤ (𝒙፤ − 𝒙፤))

(3.44)



3.3. Covariance analysis 31

with 𝑃፤ = (𝐻ፓ፱𝑊𝐻፱ +𝑊፤)
ዅኻ
. The autocovariance of the estimation error (𝒙̂፤ − 𝒙፤) is:

𝐸[(𝒙̂፤ − 𝒙፤) (𝒙̂፤ − 𝒙፤)
ፓ] =

= 𝐸 [𝑃፤𝐻ፓ፱𝑊𝝐𝝐ፓ𝑊𝐻፱𝑃ፓ፤ + 𝑃፤𝐻ፓ፱𝑊𝐻፜𝒄𝒄ፓ𝐻ፓ፜𝑊𝐻፱𝑃ፓ፤ + 𝑃፤𝑊፤ (𝒙፤ − 𝒙፤) (𝒙፤ − 𝒙፤)
ፓ𝑊

ፓ
፤𝑃ፓ፤ ]

= 𝑃፤ + 𝑃፤𝐻ፓ፱𝑊𝐻፜𝑃፜፜𝐻ፓ፜𝑊𝐻፱𝑃ፓ፤

(3.45)

where 𝑃፜፜ = 𝐸[𝒄𝒄ፓ] is the a priori covariance matrix of the consider parameters. The consider
covariance can be written as:

𝑃፱፱ = 𝑃፤ + 𝑆፱፜𝑃፜፜𝑆ፓ፱፜ (3.46)

The matrix 𝑆፱፜ is known as the sensitivity matrix (Tapley et al., 2004), with:

𝑆፱፜ = 𝑃፤𝐻ፓ፱𝑊𝐻፜ (3.47)

Another matrix of interest in the consider covariance analisis is the perturbation matrix, given by:

Γ = 𝑆፱፜[𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙(𝜎፜)] (3.48)

The perturbation matrix expresses the contribution to the uncertainty of the estimated parameters
due to a 1𝜎 error in the consider parameters.





4
Simulation setup

This chapter covers the development of the simulation environment for TGO, starting from a theoretical
description of the forces involved in its motion in space and the way these can be modeled, given in
Section 4.1. Then, Section 4.2 explains how this theory is implemented in the software used to simulate
the trajectory and the measurements of TGO.

4.1. Dynamical model
In order to correctly describe the motion of the spacecraft in space, a precise modelling of the forces
acting on it is necessary. These forces, and the corresponding accelerations, can be either of gravi-
tational or non-gravitational nature. The primary accelerations of these two kinds are described in the
next two sections. A lander is assumed to be fixed on the surface of Mars, hence its motion will simply
be that of a point of the surface of the planet. For this reason, no integration of the dynamical equations
strictly relative to the lander is performed in the orbit determination process. The motion of the lander
is obtained by solving for the global motion of the planet, along with the surface displacements from
tides and loading (given, in a linear approximation of the response to the forcing, by the corresponding
Love numbers). It is clear, then, that the forces described here are intended to be applied to the orbiter,
since for the lander they are, if present, counterbalanced by the reaction of the surface of Mars, and
have no effect on the motion of the probe in inertial space.

The integration of the dynamical equations of the satellite is usually performed in an inertial frame,
so as to avoid the inclusion of fictitious forces in the model. If 𝒓 = (𝑥, 𝑦, 𝑧) is the position vector of the
spacecraft in an inertial frame, such as the MMO frame, its acceleration will be 𝒂 = 𝒓̈, where the dots
represent time derivatives.

4.1.1. Gravitational accelerations
The gravitational forces acting on a Mars orbiter are principally due to the planet itself. If Mars were
a homogeneous sphere, its gravitational attraction on the spacecraft would be always on the direction
connecting the centres of mass of the two bodies (assuming the satellite to be a homogeneous sphere
as well). If no other force were present, the spacecraft would be in a Keplerian orbit, which is perfectly
described by a conic. However, inhomogeneities in the shape andmass distribution of the central planet
generate perturbations on the Keplerian trajectory of the satellite feeling its attraction. In particular, the
gravitational potential at a point outside of a body with a generic shape and mass distribution, can be
written as (e.g. Kaula, 2000):

𝑈 = 𝐺𝑀
𝑟 + 𝐺𝑀𝑟

ጼ

∑
፧዆ኼ

፧

∑
፦዆ኺ

(𝑅፞𝑟 )
፧
𝑃፧፦ (sin𝜙፥ፚ፭) × [𝐶፧፦ cos𝑚𝜆 + 𝑆፧፦ sin𝑚𝜆] (4.1)

In this expression of the spherical harmonics expansion of the gravitational potential, G is the gravita-
tional constant and M the mass of the central body, 𝑅፞ is the equatorial radius of the body, and 𝐶፧፦
and 𝑆፧፦ are the (fully) normalised harmonic coefficients of degree 𝑛 and order 𝑚. The first term on
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the right-hand-side of the equation is the central term, corresponding to the gravitational potential of
a homogeneous spherical body. The spherical coordinates 𝑟, 𝜙፥ፚ፭ , 𝜆 are the radial distance, the lati-
tude, and the longitude in a reference system fixed to the body. The functions 𝑃፧፦ (𝜃) are the (fully)
normalised associated Legendre polynomials. The spherical harmonics coefficients are normalised
since they vary considerably in magnitude depending on the degree and order, while their normalised
counterparts allow for an easier comparison between different harmonics. The normalised coefficients
𝐶፧፦ are obtained from the spherical harmonics coefficients 𝐶፧፦ as (Kaula, 2000)

𝐶፧፦ = √
(𝑛 +𝑚)!

(𝑛 − 𝑚)! (2𝑛 + 1) (2 − 𝛿ኺ፦)
𝐶፧፦ (4.2)

The same formula holds for the normalisation of the 𝑆፧፦ coefficients, while the inverse formula is used
to normalize the associated Legendre polynomials, namely by dividing the unnormalized value by the
square-root term. The Kronecker delta 𝛿ኺ፦ is 1 for m=0,s and 0 otherwise. Nonetheless, this formalism
will not be maintained throughout the report. Since in most of the applications considered here the fully
normalised coefficients are used, the bar above their symbol is dropped. Thus, in the following 𝐶፧፦ and
𝑆፧፦ are intended as fully normalised gravity field coefficients, and not their unnormalised counterparts,
unless stated otherwise. Moreover, is some parts of the report, like in Section 4.2.3, the symbol 𝑛 for
the degree of the gravity field harmonic is substituted by the symbol 𝑙, to avoid confusion with local
parameters with similar notation. The meaning of the subscript will anyway be made clear when this
happens.

The gravitational potential at the orbiter’s position due to the central body is given by Eq. 4.1, so
that the two-body acceleration acting on the spacecraft is given by (Tapley et al., 2004):

𝒂፜፞፧ = −𝑀(፱, ፲, ፳)(፫, Ꭻ፥ፚ፭ , ᎘)𝜵𝑈ፌፀፑፒ (4.3)

The rotation matrix 𝑀(፱, ፲, ፳)(፫, Ꭻ፥ፚ፭ , ᎘) is needed because the gravitational potential in Eq. 4.1 is defined in
the body-fixed frame, and in the set of spherical coordinates (𝑟, 𝜙፥ፚ፭ , 𝜆). The gravitational potential is
commonly represented in the body-fixed frame because then the harmonic coefficients are constant for
a rigid planet (i.e., the static gravity field is constant in the body-fixed frame). Therefore, the gradient
of the potential will itself be in the body-fixed frame, and in spherical coordinates. The rotation matrix
transforms the components of the gradient in the directions of the body-fixed spherical coordinates
to cartesian components in the inertial frame of integration. Hence, it is found as the product of two
matrices, one transforming body-fixed spherical coordinates to body-fixed cartesian coordinates, and
the other, which was already introduced as 𝑃𝑁𝑅Π (Eq. 2.7), transforming cartesian coordinates in the
body-fixed frames to cartesian coordinates in the inertial frame.

The static gravitational potential, as displayed in Eq. 4.1 assuming constant harmonic coefficients,
is however perturbed by the gravitational attraction of other bodies on Mars (mostly the Sun) and by
the non-rigidity of the planet. This generates tidal deformations of the planet, which in turn modify the
Mars gravitational potential experienced by the orbiter. The tidal potential can be expressed in terms
of variations of the gravity field harmonic coefficients (that is, those in the expansion of 𝑈ፌፀፑፒ), which
in the general case can be written as (Dirkx et al., 2014):

Δ𝐶፧፦ − 𝑖Δ𝑆፧፦ =
𝑘፧፦
2𝑛 + 1∑

፣

𝐺𝑀፣
𝐺𝑀 ( 𝑅፞

𝑟፣(𝑡̃፧፣)
)
፧ዄኻ
𝑃፧፦(sin𝜙፥ፚ፭፣(𝑡̃፧፣))𝑒ዅ።፦᎘፣(፭̃፧፣), (4.4)

The angles 𝜙፥ፚ፭፣ and 𝜆፣ are the latitude and longitude of the perturbing body, while the term 𝑟፣(𝑡̃፧፣)
is the distance of the perturbing body 𝑗 from the center of Mars at the time 𝑡̃፧፣ = 𝑡 − Δ𝑡፧፣. If Mars
were a completely elastic body, a perturbation at time 𝑡 would cause an instantaneous response from
the planet, and therefore a corresponding term in the tidal potential at time 𝑡. The dissipation inside
the planet causes a delay in the deformation of the planet, hence the component of the tidal potential
of degree 𝑛 and due to the body 𝑗 at time 𝑡 will be relative to a perturbation at time 𝑡̃፧፣. The other
terms in the expression are the mass, the latitude, and the longitude (𝑀፣ , 𝜙፣, and 𝜆፣, respectively) of
the perturbing body 𝑗. The Love numbers estimated from satellite orbits include the effect of both the
solid and the atmospheric tide (Konopliv et al., 2011). Yoder et al. (2003) identified 𝑘ኼ with the value
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of 𝑘ኼኼ, since for the MGS orbit the uncertainties on 𝑘ኼኺ and 𝑘ኼኻ were 20 times and 7 times larger than
those estimated for 𝑘ኼኼ.

The other Solar System bodies affect the orbit of the spacecraft not only in an indirect way (that is,
through tidal deformation of Mars), but also through their direct gravitational attraction on the orbiter.
These third-body effects are usually modelled by considering the perturbing body as a point mass, or
truncating its gravity field to low degrees, given its large distance from the affected body when compared
to their dimensions. These perturbing bodies include also several asteroids, which have small but non-
negligible effects on the orbit of Mars (Konopliv et al., 2011).

In the modelling of third-body effects and tidal interactions, the orbits of the perturbing bodies are
assumed to be known. Therefore, the accurate prediction of these gravitational interactions requires
precise ephemerides of the bodies involved. The standard for high-precision ephemerides is found in
the Development Ephemerides (DE) provided by JPL (e.g. Folkner et al., 2014), obtained by fitting the
orbits of planets and other Solar System bodies to observations of different kinds (spacecraft, astrome-
try, radar, VLBI, laser ranging and occultation measurements). The uncertainties are reported to be in
the order of hundreds of meters for terrestrial planets, tens of km for Jupiter and Saturn, and thousands
of km for the other planets. As for the Martian moons, accurate ephemerides are provided by Lainey
et al. (2007) and Jacobson (2010) . Both ephemerides are affected by errors of hundreds of meters,
with those from Lainey et al. (2007) showing a better agreement with optical observations (Ziese and
Willner, 2018).

In addition, variation of the gravitational potential of Mars with respect to the static solution are
caused by the sublimation and deposition of COኼ ice at the poles, as discussed in Section 2.3.3.
This seasonal mass exchange between the atmosphere and the polar caps causes seasonal varia-
tions in the harmonic coefficients of the gravity field, especially the zonal terms (Sanchez et al., 2006).
The time-varying gravity harmonic coefficients are then expressed as trigonometric series, similarly to
the periodic variations of the MOP. The main effects have annual, semiannual, and annual frequency
(Sanchez et al., 2006), thus the seasonal variation of the normalized coefficient 𝐶፧፦ is modeled as
(Genova et al., 2016):

Δ𝐶፧፦ =
ኽ

∑
፣዆ኻ
𝐴፣ፂ፧፦ cos(2𝜋𝑓፣𝑡) + 𝐵

፣
ፂ፧፦

sin(2𝜋𝑓፣𝑡), (4.5)

where 𝑓፣ = 𝑗𝑓ኻ, 𝑓ኻ being the orbital frequency of Mars (1/687 Earth days). The same formula holds for
𝑆፧፦. Values of the amplitudes are found from GCMs, as in (Sanchez et al., 2006), where expressions
for the variations of coefficients up to degree and order 40 are computed.

The contributions from the atmospheric mass change to the time-varying gravity coefficients can be
modeled separately, so that the equations in 4.5 are only relative to the mass variations of the polar
caps. The variations of 𝐶፧፦ due to atmospheric pressure variations are then given by (Genova et al.,
2016):

Δ𝐶
ፚ
፧፦ =

3
𝑅ፚ𝜌ፚ𝑔ኺ

1 + 𝑘ᖣ፧
2𝑛 + 1𝐶

ፏ
፧፦ , (4.6)

where 𝑅ፚ is the mean radius of Mars, 𝜌ፚ the mean atmospheric density, 𝑔ኺ is the mean surface gravity,
and 𝑘ᖣ፧ is the load Love number of degree 𝑛. The coefficient 𝐶

ፏ
፧፦ is the spherical harmonic coefficient

of the surface pressure field, derived from atmospheric model like the Mars-GRAM2010. An equivalent
formula can be used for Δ𝑆

ፚ
፧፦.

For high-precision applications of orbit determination, correction to the Newtonian dynamic model
have to be applied to take into account the relativistic effects, as predicted by the theory of general
relativity (GR). The main correction to the force model due to the relativistic effects comes from the
Schwarzschild term, which models the difference in the central gravitational attraction of the main body
with respect to the Newtonian mechanics (e.g. Dirkx, 2015), and can be expressed as:

𝒂፠ =
𝜇
𝑐ኼ𝑟ኽ {[2 (𝛽ፏፏፍ + 𝛾ፏፏፍ)

𝜇
𝑟 − 𝛾ፏፏፍ (𝒓̇ ⋅ 𝒓̇)] 𝒓 + 2 (1 + 𝛾ፏፏፍ) (𝒓 ⋅ 𝒓̇) 𝒓̇} , (4.7)

with 𝜇 = 𝐺𝑀 the gravitational parameter of Mars. The coefficients 𝛽 and 𝛾 are the parameterized post-
Newtonian (PPN) parameters (which are 1 in the GR), c is the speed of light, and the other symbols
have been already introduced. Themain effect of this acceleration is a secular variation of the argument
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of perigee of the orbit, which can be in the order of 10 arcsec/yr (Tapley et al., 2004). Other relativistic
effects on the gravitational attraction are the Lense-Thirring precession and the geodesic precession,
the corresponding acceleration being at least 10 times smaller than 𝒂፠ (Petit and Luzum, 2010).

4.1.2. Non-gravitational accelerations
The principal non-gravitational forces acting on a spacecraft orbitingMars include the atmospheric drag,
the solar radiation pressure, and the angular momentum wheel desaturation (AMD) thrusting (Genova
et al., 2016). Many of those non-conservative forces depend not only on the mass of the probe, but also
on its shape, and generate from interactions with its exposed surfaces. For this reason, a model of the
shape of the satellite is often needed to correctly estimate the non-gravitational effects. The spacecraft
is generally approximated by a box-wing model, consisting of multiple flat plates, each with its own
physical characteristics, that approximate the spacecraft bus (e.g. 6 panels forming a box), the solar
panels (e.g. two or more moveable plates), and the high-gain antenna (HGA) (Genova et al., 2016).
The HGA may be moveable, like for TGO, or fixed, like for the Mars Express spacecraft, the fixed
configuration being easier to model but limiting the possibility of tracking from Earth (Mazarico et al.,
2009). Each plate of this macro model will be described by its surface area (𝐴።), its normal vector, 𝒏።,
which defines its orientation in space, and its physical and optical properties.

Nonetheless, limiting the geometry of the spacecraft to the sole surface area and orientation of the
plates composing the macro model leads to a mismodeling of three-dimensional effects due to the
interaction between the plates, such as the self-shadowing (Mazarico et al., 2009). This effect consists
in a reduction of the effective exposed surface area of a plate due to the partial obscuration by another
plate. The consequences of neglecting the self-shadowing depend on the spacecraft configuration,
and are generally small but important in the parameter estimation.

The general expression of the acceleration coming from the atmospheric drag is (Genova et al.,
2016)

𝒂፝፫ፚ፠ = −
1
2
𝜌ፚ𝑉ኼ
𝑚 ∑

።
𝐶ፃ።𝐴።(𝒏። ⋅ 𝒏ፕ)𝒏ፕ (4.8)

The unit vector 𝒏ፕ is in the direction of the velocity of the spacecraft relative to the atmosphere, the norm
of which is 𝑉. This velocity will have components due to the rotation of Mars and the wind speed. The
drag acceleration is in the direction of the relative velocity itself, but the total aerodynamic acceleration
due to the interactions with the atmosphere will also include a term perpendicular to the velocity, that
is, the atmospheric lift. The parameter 𝐶ፃ። represents the adimensional drag coefficient of the plate
𝑖. The drag acceleration depends on the local density of the atmosphere. This parameter can be
determined from models of the density and temperature distribution in the Martian upper atmosphere,
such as DTM-Mars (Bruinsma and Lemoine, 2002). The temporal variations in density predicted by
the model are due to the diurnal variation of the local insolation, the intensity of the solar activity, and
the seasonal cycle of the partial densities of COኼ and O (Genova et al., 2015).

The solar radiation pressure is an acceleration caused by the exchange of angular momentum
between photons emitted by the Sun reaching the satellite and the plates of the satellite, in the finite
element model. The total acceleration acting on the spacecraft will be the sum of the contribution from
all the plates of the macro model, and can be expressed as (Gobinddass et al., 2009):

𝒂ፒፑፏ = −
𝐺ᖣ
𝑚𝑐 ∑

።
𝐴። cos𝜃። [2 (

𝛿።
3 + 𝜚። cos𝜃።)𝒏። + (1 − 𝜚።) 𝒏ፒ] (4.9)

Here, 𝐺ᖣ is the solar flux at the spacecraft position, 𝑚 is the total mass of the satellite, and 𝑐 the
speed of light. The unit vector 𝒏ፒ points towards the Sun, and the angle it forms with the surface normal
(𝒏።) is the incidence angle, 𝜃።. The parameter 𝜚። is the specular reflectivity of the plate, while 𝛿። is its
diffuse reflectivity. This formulation assumes the incoming flux to be parallel.

For a Mars orbiter, the solar radiation reflected by the surface of the planet and the black-body
radiation emission have a considerable effect on the trajectory of the spacecraft. Due to the vicinity
of the source, this radiation cannot be considered as made up of parallel rays. Hence, the surface of
Mars is approximated with a series of surface elements, each with a specific albedo and emissivity.
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The acceleration on the spacecraft due to this radiation pressure is then Marshall and Luthcke (1994):

𝒂ፑፚ፝ፌፚ፫፬ = −∑
፣

𝐺ᖣ፣
𝑚𝑐 ∑

።
𝐴። cos𝜃።፣ [2 (

𝛿።
3 + 𝜚። cos𝜃።፣)𝒏። + (1 − 𝜚።) 𝒏ፒ፣] (4.10)

The flux 𝐺ᖣ፣ is that emitted or reflected by the 𝑗-th Mars surface element, 𝒏ፒ፣ is the unit vector going
from the 𝑖-th plate to the surface element 𝑗, and the incidence angle 𝜃።፣ is the angle between this vector
and the normal to the plate, 𝒏።.

Another major acceleration acting on the spacecraft is that due to thrust in the case of manoeuvres
or angular momentum wheel desaturation (AMD) events. The direction and intensity of these forces
can be reconstructed from navigation data, but still the uncertainties in the AMDs are the limiting factor
for the determination of the seasonal 𝐽ኼ and 𝐽ኽ variations and a considerable source of error in the
detection of 𝑘ኼ from the solar tide (Konopliv et al., 2006).

4.2. Software
What follows is a general description of the three major programs relevant to this project: GINS, in
Section 4.2.1; Tudat, in Section 4.2.2; and ORB, in Section 4.2.3. Particular attention is given to the
functions used to generate the results which will be presented in Chapter 6. While this is all external
software (that is, not developed in the frame of this project, nor by the author), additional tools were
built in support of these programs, to either prepare the necessary environment files (mainly in the case
of GINS), process their outputs (mainly for Tudat), or expand and adapt some of their functionalities to
the specific problem (mainly for ORB).

4.2.1. GINS
The GINS (Géodésie par Intégration Numérique Simultanée, Marty et al., 2011) orbitography software
was developed by the GRGS (Groupe de Recherches de Géodésie Spatiale) team at CNES (Centre
National d’Études Spatiales). Unless otherwise stated, all the information comes from the algorithmic
documentation of the software (CNES/GRGS, 2018).

The development of GINS started in the 1970s, when it was used to process data from the first space
geodesy missions targeting the Earth. In the 1990s it was extended to support the analysis of data from
GPS satellites and from missions targeting other bodies of the Solar System, which currently include
the 8 planets, Pluto, the Moon, Phobos, Eros, the comets Wirtanen and Churymov-Gerasimenko, and
the Sun. The types of observations supported by GINS include Doppler and range (in 1, 2, or 3-way
configuration), VLBI, laser ranging, optical, and altimetric measurements.

The DYNAMO package consists of various tools which allow to perform algebraic operations on
the outputs provided by GINS. These may be used to combine data from different arcs, or different
measurements types. Because no estimation was performed with GINS, and thus no use of DYNAMO
was necessary, this package will not be discussed in the following.

The principal input of GINS is the director file, coded in YAML. This file lists the values of the pro-
cessing options selected for the run, as well as the names and locations of the environment files and the
measurements. The environment files include force models, the satellite macro model, rotation and ori-
entation models for the central body and the principal perturbing bodies, as well as all the ephemerides
and atmospheric models required.

Each GINS run is made up of two phases. The first phase is performed remotely on a CNES
server at the Observatoire Midi-Pyrénées, in Toulouse. Here, the director file is read by the programs
inside the PREPARS package, which retrieve all the relevant models and data, that may be stored
locally or on the server. The a priori information on the parameters to estimate is given by the user
in a vap file (valeurs a priori, French for ”a priori values”). Here and throughout the whole of GINS,
each parameter is identified by a specific signaletic element, a string of 24 characters. As well as
by indicating the value and uncertainty, the a priori knowledge about a quantity to be estimated can
also be expressed in the form of linear constraints between one or more parameters. After eventual
preprocessing operations, the values are stored on the local computer in a fic (fichier d’entrée, French
for ”input file”) text document. An additional input of the PREPARS processing is the listing file, which
provides information on the steps executed and on the director read.

The fic file is given as an input to the functions of the GINS package as such, that perform the orbit
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determination. This second phase of the processing is executed on the local computer, and yields
several outputs, depending on the choices selected in the director file. Of these, the most relevant are:

• a listing file, which, similarly to the one produced in the PREPARS processing, lists the principal
operations performed. Moreover, the values and uncertainties of the parameters, as well as the
statistics of the measurements residuals, are reported here

• an orbite file, which stores the ephemeris of the spacecraft, along with the accelerations acting
on it, depending on the format selected in the director

• a mes file, where each observation is stored along with its time stamp (at the time of reception),
along with other relevant quantities like the receiving and transmitting station identifier, the refer-
ence frequency of the link, and its elevation at the ground station.

Other files, like the statistique (storing the post-fit residuals) and the eqna (storing the system of normal
equations in binary format), are produced when a parameter estimation is performed. However, it was
not possible to estimate the MOP from TGO simulated data using GINS.

GINS has been extensively used in the estimation of the rotation parameters of planetary bodies,
both in simulation studies and in the analysis of real radio-tracking data from landers. Nonetheless,
partial derivatives of the observables with respect to the rotation parameters are different depending on
whether the planetary probe is orbiting the planet or fixed on its surface. In the latter case, the influence
of the parameter on the observable is purely kinematic, while in the case of orbiters there is also a
dynamical term to be included in the formulation of the partials. Partials of radio-tracking measurements
with respect to the rotation parameters are currently not implemented in the GINS toolbox, and both
due to time constraints and the fact that the source code of the software was not made available, it was
not possible to add this functionality to GINS.

Still, GINS allowed to implement very accurate dynamical and observation models for TGO, which
is why it was employed for the propagation of the spacecraft orbit and the simulation of radio-tracking
observations. These outputs were in turn used in the forward approach presented in Section 6.1, to
evaluate the signature of the various MOP on the TGO trajectory and radio-tracking measurements.

The dynamical model taken as nominal in the GINS simulations is shown in the first part of Table 6.1.
It includesmost of the gravitational accelerationsmentioned in Subsection 4.1.2, namely the static grav-
ity field of Mars up to degree and order 120, the central gravity of both Martian moons, the solid tide po-
tential, the third-body effects from the other Solar System planets, and the Schwarzschild relativistic cor-
rection. Attempts to include a time-varying component of the Mars gravity field due to surface mass re-
distribution and atmospheric pressure variations (Eqs. 4.5 and 4.6) were unsuccessful. Yet, the ampli-
tudes of these variations in the gravity field coefficients are way smaller than the coefficients themselves
(up to 6 orders of magnitude smaller for 𝐶ኼኺ and 𝑆ኼኺ), and since the resulting accelerations are pro-
portional to the coefficients, the forces not included in the dynamical model of TGO equally smaller com-
pared to those due to the static part of the gravity field.

Figure 4.1: ASCII schematization of the box-wing model of TGO
used by GINS for the computation of the surface forces

The seasonal gravity field influences a spacecraft
orbit enough for it to be detected from Doppler
data (Genova et al., 2016), but since the interest
here is not in the absolute orbit, but in differen-
tial orbits coming from mismodeling of the rota-
tion of Mars, the exclusion of these effects from
the simulation model should not affect the results
substantially.

The accelerations modelled in the nominal
case of GINS simulations are those given by Eqs.
4.8, 4.9, and 4.10. The use of these formulae
in GINS required the modelization of the shape
and physical properties of TGO through a macro-
model, as introduced in the first paragraph of
Subsection 4.1.2. Such models were present in GINS for other orbiters, but not for TGO. Hence,
the TGO shape model was based off the one available for MRO, mainly because of the presence of
a steerable HGA in both spacecraft. The resulting macromodel consists of a box-wing model with 4
panels for the spacecraft body and 2 for the solar panels (although the optical properties are different
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G I N S

Dynamical model

Gravitational accelerations

Type Specification

Mars static gravity MRO120D, up to degree and order 120
Phobos gravity Central term, GM = 7.084E+05 kg mኽ/sኼ

Deimos gravity Central term, GM = 9.800E+04 kg mኽ/sኼ

Mars solid tide from the Sun Degree 2, 𝑘ኼኺ = 𝑘ኼኻ = 𝑘ኼኼ =0.3
Gravity from the other planets Central terms, DE430 ephemeris
Relativistic correction Schwarzschild term

Non-gravitational accelerations

Type Specification

Atmospheric drag TGO box-wing shape model, DTM-Mars atmospheric model
Direct solar pressure TGO box-wing shape model
Mars radiation pressure TGO box-wing shape model

Observation model

Property Specification

Ground stations DSN-32 (New Norcia)
Measurements simulation step 300 s
Doppler integration time 60 s
Measurement noise None
Tropospheric correction None
Minimum elevation at G/S 5∘

Integration/propagation settings

Property Specification

Propagator Cowell
State vector elements Cartesian components in MME2000
Propagation length 10 days
Integration order 8
Integration step 60 s (fixed)

Table 4.1: Nominal TGO dynamical model (gravitational and non-gravitational accelerations), observation model, and integrator
and propagator settings, as used in GINS simulations
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on opposite sides of the same panel), plus a paraboloid representing the HGA. The computation of the
surface forces with the dynamical model presented here does not take into account the self-shadowing
of the plates.

As shown in the ASCII sketch of the TGO macromodel of Figure 4.1, a total of 11 exposed surfaces
characterize this shape model, and for each surface the values of the optical coefficients (emissivity,
specular reflectivity, diffuse reflectivity) were taken directly from the corresponding values of the MRO
model (although the values for surfaces of the same type were found to be consistent for models of
different orbiters). GINS being a proprietary software, it was chosen not to list here the values of the
optical coefficients assumed for each plate. The dimensions of each plate and of the antenna were
loosely based off information available on the size of the real spacecraft1. The axes of the body-fixed
frame were defined relative to the shape model in accordance to the definition of the TGO body-fixed
frame in the SPICE fk kernel2.

The attitude of the spacecraft body, of the solar array, and of the HGA is input in GINS through
three time series of quaternions, describing the rotation from the corresponding element-fixed frame
(that is, a frame fixed relative to the body, the solar panels, and the HGA, respectively) to the MME2000
inertial frame. The conversion of the ck SPICE kernels to series of quaternions recognized by GINS
was performed by means of Fortran routines available at ROB.

Similar scripts were used to generate other environment files required for the propagation of the
orbit of TGO. For example, a script allowed to convert the orbit of TGO, as given by the spk SPICE
kernel, to a time series of cartesian coordinates expressed in the MME2000 frame. From the resulting
file, GINS read the initial state of the spacecraft at each run. The ephemerides of the Martian moons,
as distributed by Lainey et al. (2007) in the form of spk kernels, were converted to series of Chebyshev
polynomials of degree 15 (a format used by GINS for the ephemerides of natural satellites), using yet
another Fortran routine available at ROB.

The information on the rotation of the central body can be introduced in GINS through a rotorcc file.
More information on the format of this text file can be found in its description by Le Maistre (2013). For
the following, it is sufficient to say that this is the same file format used to input a planetary rotation
model in GINS, and that is divided into different sections. The first section lists the parameter of the
main rotational motion, namely a rotation with constant spin velocity and constant precession rate.
Each of the ensuing sections of the file lists the parameters relative to a specific perturbation of the
main rotational motion. In the rotorcc file relative to the nominal rotational model, based on the model
from Konopliv et al. (2016) presented in Section 2.2.4, there are 4 blocks after the one describing the
steady rotation of the planet with constant precession rate. These blocks are relative, in the order, to
the rigid nutation series, the amplification of rigid nutations due to the FCN, the motion of the pole, and
the spin angle variations.

Accelerations due tomanoeuvres and AMD events are not included in the dynamical model of GINS,
due to missing knowledge about their predicted magnitudes and times. Completely disregarding these
effects, however, leads to unrealistic predictions of the orbital evolution of the spacecraft, which without
corrective manoeuvres may be unstable (due to the atmospheric drag, or to the build-up of other kinds
of perturbations). Large manoeuvers are therefore taken into account by propagating the orbit for
periods smaller than 10 days, assumed to be the maximum time that the satellite can go without the
need of major orbital corrections.

Hence, in a nominal simulation case, the TGO orbit is integrated over 10 days. To do so, a Cowell
propagator is used, along with an integrator of order 8 and a fixed step-size (since the orbit is nearly-
circular) of 60 s. When observations are simulated, a single Earth ground station is used, namely
the DSN station of New Norcia, Australia. For both range and range-rate, measurement points are
generated every 5 minutes. No corrections due to troposphere and ionosphere, nor any other kind of
noise, was added to the data. Measurements corresponding to a radio-link at an elevation lower than
5∘ at the ground station were automatically removed from the dataset. The nominal GINS settings and
observation model used for the simulations are shown in the second part of Table 6.1.

4.2.2. Tudat
Part of the work was performed using the TU Delft Astrodynamics Toolbox (Tudat), a multi-purpose,
modular, software suite written in C++ and developed by the Astrodynamics & Space Missions group
1http://spaceflight101.com/exomars/trace-gas-orbiter/
2All the TGO SPICE kernels were obtained from the dedicated page of the ESA SPICE Service FTP

http://spaceflight101.com/exomars/trace-gas-orbiter/
ftp://spiftp.esac.esa.int/data/SPICE/ExoMars2016/kernels
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of Delft University of Technology (Dirkx et al., 2019). Tudat was essential in the second part of this
sensitivity study, regarding the computation of estimation errors for the MOP using simulated observa-
tions. The modularity of Tudat made the implementation of the expressions for the partials with respect
to Mars rotation parameters relatively straightforward. The code for the MOP partials in Tudat was writ-
ten, verified, and validated in the frame of a timely master thesis work performed by another student,
almost in parallel with the present study. Therefore, by the time this study entered its second phase,
the functionalities needed for the covariance analysis were already available in Tudat.

The one at hand is a very standard orbit determination problem, which is why a Tudat tutorial ap-
plication about the orbit determination of an Earth satellite was taken as reference for the main code,
with very few modifications being necessary to adapt it to the specific case of TGO. Table 4.2 shows
the relevant settings used in this application. In particular, the box-wing model of the spacecraft was
discarded here in favour of a more simple spherical shape with equivalent mass and surface area, and
unitary drag and radiation pressure coefficients. The atmosphere of Mars was simulated by interpo-
lating tabulated values of different physical properties (density, pressure, temperature, gas constant,
specific heat ratio and molar mass) averaged over latitude, longitude, and time. These values were
already included in the Tudat toolbox and based on the LMD (Laboratoire de Météorologie Dynamique,
Forget et al., 1999) Global Circulation Model (GCM) for Mars. A simplified cannonball model was used
for the radiation pressure as well, the resulting force acting always along the direction connecting the
satellite and the Sun.

As for the gravitational accelerations, only the static gravity field of Mars was accounted for in the
dynamical model implemented in the Tudat script. Therefore, neither third-body effects, nor tidal in-
teractions, nor seasonal variations of the gravity field coefficients were considered. Moreover, the
relativistic effects were also assumed to be absent. The static gravity field coefficients are those of
the MRO120D model (Konopliv et al., 2016). The highest degree and order of the Martian gravity field
included in the force model was set to 40. A Cowell propagator was selected for the simulation of the
trajectory of TGO, while a Runge-Kutta-Fehlberg 7(8) variable step-size integrator is chosen, with an
initial step-size of 60 s and a minimum of 15 s. Absolute tolerances as high as 1 s were selected, since
in a near-circular orbit the step-size needed is relatively constant (hence why in Table 4.2 it is listed as
fixed).

The output from Tudat, including the information matrix and the measurement errors, is loaded into
Python scripts, which have been written to perform the covariance analysis. Through permutation and
recombination of the rows and columns of the information matrix, is it possible to obtain the formal and
the consider uncertainties for a wide range of estimation strategies.

4.2.3. ORB
A first impression of the sensitivity of the TGO radio-tracking data to the MOP is given by the signature
of these parameters on the satellite orbit, as well as on the particular observable. What is intended here
by signature of a parameter on a specific quantity is the difference between that quantity computed us-
ing the nominal dynamical model, and another evaluation of that quantity obtained with a dynamical
model where the parameter of interest is set to 0. In this sense, signatures of MOP on a radio track-
ing observable generally overestimate the sensitivity of the measurement to the parameter, because
they ignore the correlations between parameters. Nonetheless, very small signatures may indicate a
parameter that can hardly be retrieved from the observations, and thus help focus the attention of the
linear regression to a restricted set of parameters.

The most straightforward method to compute the signatures of MOP is by numerical propagation of
the satellite orbit using a nominal and a reduced force model. This process, while providing accurate
orbits and therefore signatures, may result too computationally intensive for a simple initial phase of
a full sensitivity study. Here a different technique is presented, with the advantage of being mostly
analytical.
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T u d a t

Dynamical model

Gravitational accelerations

Type Specification

Mars static gravity MRO120D, up to degree and order 40

Non-gravitational accelerations

Type Specification

Atmospheric drag Homogeneous sphere, LMD atmospheric model
Direct solar pressure Cannonball model

Observation model

Property Specification

Ground stations DSN-32 (New Norcia)
Measurements simulation step 300 s (range), 60 s (range-rate)
Doppler integration time Instantaneous Doppler
Measurement noise 1 m (range), 0.1 mm/s (range-rate)
Tropospheric correction None
Minimum elevation at G/S None

Integration/propagation settings

Property Specification

Propagator Cowell
State vector elements Cartesian components in J2000
Propagation length (arc) 10 days
Integration order 7-8
Integration step 60 s (fixed)

Table 4.2: Nominal TGO dynamical model (gravitational and non-gravitational accelerations), observation model, and integrator
and propagator settings, as used in estimations with Tudat
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Kaula’s theory
Themethod is based on the first-order integration of the Lagrange planetary equations, with a disturbing
potential 𝑅 equal to the non-central terms of the gravity field potential of Mars (Eq. 4.1):
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(4.11)

For small deviations of the orbital elements from those of a Keplerian ellipse, corresponding to a
central gravity field, the elements of the Keplerian orbit can be taken as the coordinate system in which
to express the perturbing potential. Hence, the pertubations to the central gravity field can be written
as (Kaula, 2000):

𝑅 =
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where
𝑆፥፦፩፪ = 𝑋፥፦ cosΘ፥፦፩፪ + 𝑌፥፦ sinΘ፥፦፩፪ (4.13)

and

{𝑋፥፦ = 𝐶፥፦ , 𝑌፥፦ = 𝑆፥፦ , if 𝑙 − 𝑚 even
𝑋፥፦ = −𝑆፥፦ , 𝑌፥፦ = 𝐶፥፦ , if 𝑙 − 𝑚 odd

(4.14)

The phase angle is given by:

Θ፥፦፩፪ = (𝑙 − 2𝑝)𝜔 + (𝑙 − 2𝑝 + 𝑞)𝑀 +𝑚 (Ω − 𝜃) (4.15)

The dependence of the perturbing potential on the inclination of the osculating orbit is represented
by the inclination function, 𝐹፥፦፩(𝑖), with:
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where 𝑘 is the integer part of (𝑙 −𝑚)/2, the limits of the sum over 𝑡 are 0 and the smaller between 𝑝

and 𝑘, and the sum over 𝑐 is extended to all the permissible values of this index, namely those leading
to nonzero binomial coefficients.

The eccentricity of the reference orbit appears in the expression of the perturbing potential as the
argument of the eccentricity function, 𝐺፥፩፪(𝑒). In the case of long period terms, i.e. those for which
𝑙 − 2𝑝 + 𝑞 = 0 and the contribution of 𝑀 to the phase angle disappears, it can be computed as:
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Since 𝐺፥፩፪(𝑒) is of the order of 𝑒|፪|, for near-circular orbits like that of TGO, the sum over 𝑞 can be
truncated to a few terms. The main assumption of the first-order theory developed by Kaula is that the
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only time dependent terms in the planetary equations are the orbital elements 𝜔,Ω, and 𝑀, and the
Greenwich mean sidereal time (𝜃), all with a constant time derivative. In other words, the reference
orbit is assumed to vary in time due to the secular variations of the argument of perigee, the right
ascension of the asceding node, and the mean anomaly (𝜔̇, Ω̇ , and 𝑀̇, respectively). Moreover, the
central body is assumed to be in steady rotation, with angular velocity 𝜃̇. With this assumption, the
phase angle can be written as

Θ፥፦፩፪ = Θ̇፥፦፩፪𝑡 (4.18)

with Θ̇፥፦፩፪ = (𝑙 − 2𝑝) 𝜔̇+(𝑙 − 2𝑝 + 𝑞) 𝑀̇+𝑚 (Ω̇ − 𝜃̇), constant. Because the phase angles are the only
terms in the system of differential equations 4.11, and their dependence on time is linear, the Lagrange
planetary equations can be easily integrated analytically, yielding the deviation of the orbital elements
from those of the secularly-precessing osculating orbit:
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where 𝑆፥፦፩፪ is the integral of 𝑆፥፦፩፪ with respect to its argument:

𝑆፥፦፩፪ = 𝑋፥፦ sinΘ፥፦፩፪ − 𝑌፥፦ cosΘ፥፦፩፪ (4.20)

Rotation of spherical harmonics
The assumption of uniform for the central body is certainly too strict for the application here considered,
where the focus is on the impact of small differences in detailed rotation models. Nonetheless, the for-
malism of the equations expressing the variations of the orbital elements relative to the osculating orbit
can be kept, and the perturbations to the steady rotation induced by precession, nutation, length-of-
day variations, and polar motion be considered by modifying the values of the gravity field coefficients,
which are considered constant in the classical derivation by Kaula. The coefficients 𝐶፥፦ and 𝑆፥፦ ap-
pearing in Eq. 4.19 will still be relative to a frame rotating with a constant rate 𝜃̇, which however is
now different from the body-fixed frame, due to the non-uniform rotation of the central body. Since the
spherical harmonics coefficients are constant in a body-fixed frame, the coefficients in Eq.4.19 will vary
with time. The approach of taking into account the full rotation model in Kaula’s perturbing potential by
modifying the gravity field coefficients is directly derived from Kudryavtsev (1997). In that study, orbital
perturbations due to the Earth orientation parameters were computed by expressing the rotated gravity
coefficients as trigonometric series, and then integrating analytically the Lagrange equations up to the
fifth order. Here, a simplified version of this method is tested. The main difference between the method
from Kudryavtsev (1997) and the one presented in the following is that here no attempt is made to ap-
proximate the rotated spherical harmonics coefficients with trigonometric series or any other analytical
function of the MOP. In fact, no integration of these coefficients is performed at all, which is why ana-
lytical expressions are not necessary. The perturbations to the osculating orbit due to the gravitational
potential of a body in non-uniform rotation are found by substituting directly the values of the rotated
coefficients in Eq. 4.19. In doing so, the implicit assumption that the variation in time of the spherical
harmonic coefficients is negligible compared to that of the terms cosΘ፥፦፩፪ and sinΘ፥፦፩፪. Thus, the
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dependence on time of the right-hand sides of the Lagrange planetary equation can still be effectively
considered equal to that of 𝑆፥፦፩፪ and its derivatives. This assumption is only valid when the angles of
rotation involved in the transformation of the gravity coefficients are small. This is true of the MOP of
interest for this study, although the assumption will be verified a posteriori. The two frames involved
here in the transformation of the spherical harmonic coefficients are the Mars body-fixed frame and a
frame describing a steady rotation of the planet around a fixed axis, which for simplicity is henceforth
referred to as Kaula’s frame. The z-axis of this frame is that of the GINS MME2000 reference frame,
defined by the angles 𝛼ኺ and 𝛿ኺ. The Kaula’s frame is assumed to be coincident with the MME2000
frame at 𝑡 = 0 s from J2000. Kaula’s frame rotates with respect to the MME2000 frame around their
common z-axis, with a constant rate equal to 𝑊̇. At each time step 𝑡, the rotation from the body-fixed
frame to Kaula’s frame is given by the matrix:

𝑅፤ፚ፮፥ፚ፛፟ = 𝑅ፊፚ፮፥ፚፈፂፑፅ 𝑅ፈፂፑፅ፛፟ (4.21)

with 𝑅ፊፚ፮፥ፚፈፂፑፅ the matrix describing the rotation from the ICRF to the Kaula’s frame:

𝑅፤ፚ፮፥ፚፈፂፑፅ = 𝑅፳ (−𝑊፤ፚ፮፥ፚ) 𝑅፱ (−
𝜋
2 + 𝛿ኺ)𝑅፳ (−

𝜋
2 − 𝛼ኺ) (4.22)

and 𝑅ፈፂፑፅ፛፟ the matrix relative to a rotation from the Mars body-fixed frame to the ICRF:

𝑅ፈፂፑፅ፛፟ = 𝑅፳ (
𝜋
2 + 𝛼)𝑅፱ (

𝜋
2 − 𝛿)𝑅፳ (𝑊)𝑅፱ (−𝑌ፏ) 𝑅፲ (−𝑋ፏ) (4.23)

The angles 𝛼, 𝛿,𝑊, 𝑋ፏ, 𝑌ፏ all vary with time, and specify the Martian rotation model.
It will be shown that analytical expressions of the variation with time of the spherical harmonic coef-

ficients in the perturbing potential and the subsequent integration of the resulting planetary equations
are not necessary for the purpose of the current study. In particular, since the interest is on the order
of magnitude of the signatures of the MOP on TGO’s orbit, and how it changes for different satellite
orbits, a first-order approximation of these quantities is deemed sufficient. Kudryavtsev (1997) provides
expressions for the variations of the spherical harmonic coefficients under an elementary rotation. A
method of transformation of the spherical harmonic coefficients from a body-fixed reference frame to
another with generic orientation is also presented by Dirkx et al. (2019), as developed by Boué (2017).
The two methods are equivalent, and described in Appendix A. For this application, the latter was pre-
ferred: although the formulas provided by Kudryavtsev (1997) have a simpler analytical expression, in
that they consist of trigonometric series of the angle of rotation, they are valid for an elementary rotation
around one of the 3 orthogonal axes of the frame with respect to which the rotation takes place. This
means that for a relative orientation between the body-fixed and Kaula’s frame which is described by
a series of elementary rotations, the expressions for the rotation of the gravity coefficients have to be
evaluated for each of these elementary rotations. The formulas provided by Dirkx et al. (2019) instead,
while having a less explicit dependence on the rotation angles (and therefore on time), allow as input
a generic rotation matrix, which thus can be the one describing the full rotation from the body-fixed to
the steadily rotating frame. For this reason, while requiring more processing power and computation
time for a single elementary rotation, the method from Dirkx et al. (2019) is better performing from a
time and power point of view in the case of a full rotation.

Algorithm
A numerical algorithm implementing Kaula’s equations in a MATLAB toolkit was already available a the
Royal Observatory of Belgium, distributed internally under the name ofOrbit Reaction Blocs (ORB). Mi-
nor changes to the original scripts allowed for a reduction of the running time and memory usage, while
keeping the general structure of the already validated software unchanged. This algorithm is stored in
a single function, taking as input a vector of times at which Kaula’s equations are to be evaluated, the
values of the rotation angles at each time step, the initial orbital elements of the osculating orbit, and
the fully normalized gravity coefficients. The output of the function is the matrix of the perturbed orbital
elements at each time step.

In order to guarantee compatibility with GINS, which is used to get the numerical results and for
verification of the analytical method, the rotation angles characteristic of the Mars rotation model are
read from the same input file that is used in GINS, namely the rotorcc file mentioned in Subsection
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4.2.1. The rotation model thus read was validated by comparing the corresponding body-fixed rotation
matrix with that output by GINS, showing differences attributable to numerical noise (see Section 5.1.1).

Generally, the signatures of the MOP on the orbital elements of TGO are obtained by calling this
function twice, with the same time vector but different rotation angles, and then subtracting the two
outputs. Particular attention has to be reserved to the choice of the reference orbital elements. A the
start time, the MOP signature should be zero, as was the case in the numerical results. This is because
the initial states in the two cases are assumed to be the same, so that the different evolution of the orbit
under a different Mars rotation model can be effectively studied. Setting the same initial osculating
orbits for the two function runs, however, will not lead to the same perturbed orbital elements at the
initial time. Indeed, the two body-fixed reference frames will generally not be overlapping at the initial
time, due to the Mars rotation model being relative to the J2000 epoch. Therefore, the values of the
gravity field coefficients in Kaula’s frame will be different for the two rotation models, and this will lead
to different perturbations of the orbital elements: applied to the same reference orbit, they will result
in different initial states and thus non-zero MOP signatures at the initial time. Hence the correct set of
reference orbital elements for each rotation model is found through a simple iterative process. First,
the values of the initial perturbed keplerian elements, and not the osculating orbit, are selected, and
set to be equal for the two rotation models. Then, the function is called for the initial time step only,
using the desired perturbed initial elements as input. The resulting perturbations are subtracted from
the perturbed initial elements, to obtain a new set of reference elements to be used as input for another
call of the function, at the same time step. The process is repeated until the root-sum-squared (RSS) of
the relative difference between sets of input orbital elements at two consecutive iterations falls below the
threshold value of 10. Hence the resulting input elements are taken as initial elements of the precessing
osculating orbit. The initial iterations are performed for both rotation models, so as to have two sets
of osculating Keplerian elements yielding the same perturbed elements at the initial time. While the
iterative process takes away from the property of the method to be analytical, it is considered necessary
for a precise comparison of the signatures thus obtained with the numerical results. Nonetheless, the
iterations are only used to define the input parameters, while the function itself remains fully analytical.
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5.1. Verification
In this section, the correctness of the implementation of the theory and of the functioning of the soft-
ware will be gauged. This is done separately for the two main programs developed for this thesis (see
Chapter 4): the use of Kaula’s equations to get the signatures of the MOP on the spacecraft trajectory
and observables, as performed with ORB, and the handling of the information matrix output by Tudat
to perform the covariance analysis, through the use of Python scripts. There is no verification involving
GINS, since no functionalities were added to the software. Hence, Section 5.1.1 covers the verifica-
tion of the most relevant functions added to the ORB package, while Section 5.1.2 is devoted to the
verification of the part of the covariance analysis involving the Python scripts written for the project.

5.1.1. Verification of the analytical MOP signatures algorithms
Three main functions written in MATLAB for ORB will be verified here. The first is a function allowing
to read the Mars rotation model from a rotorcc file, of the format used by GINS (see Section 4.2.1).
The second function is used for the rotation of the spherical harmonic coefficients, which are then
substituted to the constant gravity coefficients in Kaula’s equations 4.19 to model perturbations in the
rotation model of Mars. Finally, the third function to be verified is the one used for the conversion of the
keplerian elements to LOS velocity.

Input of rotation model
The accuracy of the body-fixed Mars reference frame defined by the rotation model taken as input by
the ORB scripts is tested here. The rotation matrices from the MME2000 frame and from the J2000
frame to the body-fixed frame are compared to those used in GINS for the same rotation model. The
rotation matrices used in the GINS propagation can be read in the listing file of the execution. The two
matrices reported there (one for the transformation from the body-fixed frame to the J2000 frame, the
other for the transformation from the body-fixed frame to the MME2000 frame) are relative to the initial
time of the propagation (since the body-fixed frame varies with time). These matrices output by GINS
transform vectors in the two frames, and not the axes of the reference frames, as was the case for all
the rotation matrices defined in Section 2.1. In order to obtain matrices which transform vectors and
not frame axes, the formulas expressing them as successions of elementary rotations (Eqs. 2.9 and
2.14) can still be used, but the elementary matrix are in this case the transpose of those defined in Eq.
2.2.

Therefore, once the MOP values are read from the rotorcc file and the values of the angles 𝛼, 𝛿,
𝑊, 𝑋ፏ, 𝑌ፏ at a specific time 𝑡ኺ are computed, the two rotation matrices are constructed in ORB using
Eqs. 2.9 and 2.14, with all the angles changed of sign so that the elementary rotation matrices are
transposed. Then, GINS is used to propagate the orbit of TGO, with initial time 𝑡ኺ, and using the same
rotorcc as that read in ORB. The nominal settings are used for this propagation, although the settings
themselves do not matter for this comparison, since only the body-fixed rotation matrices at the initial
time are relevant. After the GINS execution, the rotation matrices at 𝑡ኺ are retrieved from the listing
file, and compared to those computed with ORB given the same rotorcc file (thus the same MOP).

47
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The comparison of the rotation matrices is performed for different rotation files, all derived from the
nominal, described in Section 4.2.1. These new rotorcc files are obtained from the nominal one by
setting to 0 one or more terms in the different blocks. In particular, here four additional rotorcc files are
generated, by setting to 0 all the polar motion amplitudes, all the LOD variations amplitudes, the core
factor 𝐹, and the polar motion amplitudes at the Chandler wobble frequency, respectively. The resulting
5 rotation models are labeled as ”nom”, ”noPM”, ”noLOD”, ”noFCN”, and ”noCW”, respectively. The
reference time is here 𝑡ኺ = 25110.6918 JD50 (days from 01/01/1950, 00:00).

Table 5.1 show a comparison of the GINS and the ORB body-fixed rotation matrix relative to both
base inertial frames, and for the 5 rotation models described by the different rotorcc files. The first and
third columns (”Max Δ𝑅”) list the maximum, over the 9 matrix elements, of the element values given by
the two programs, divided by the value output by GINS. The second and fourth columns (”Max Δ𝑅፧፨፦”)
display the maximum relative difference between the GINS rotation matrix linked to the specific rotation
model and the GINS rotation matrix obtained for the nominal rotation model.

MME2000 J2000

Max Δ𝑅 Max Δ𝑅፧፨፦ Max Δ𝑅 Max Δ𝑅፧፨፦
Rotation model

nom 2.87e-11 - 2.87e-11 -
noPM 2.86e-11 5.69e-04 2.89e-11 4.74e-08
noLOD 2.95e-11 4.19e-06 2.95e-11 4.19e-06
noFCN 3.25e-11 6.14e-04 3.23e-11 4.77e-07
noCW 2.88e-11 3.25e-04 2.89e-11 2.62e-08

Table 5.1: Difference between the ORB and the GINS rotation matrices

The relative differences between the matrices generated by ORB and GINS for the different rotation
models are all at the same level of 1e-11. This difference is thought to originate from the limited precision
of the reference time 𝑡ኺ, since it was found to decrease for a shift of 1e-5 s in the 𝑡ኺ value used for
ORB. However, as the relative differences between the various rotation models show, the error of 1e-
11 between GINS and ORB is several orders of magnitude smaller than the effect of the MOP on
the rotation matrix. Therefore, the rotation model implemented in ORB from a generic rotorcc file is
considered reliable enough to allow for a precise evaluation of the effects of the MOP on the rotation
of Mars and thus on the orbit of a spacecraft.

Rotation of spherical harmonic coefficients
Here the rotation of the gravity coefficient is verified, by testing the consistency of the two equivalent
methods presented in Section 4.2.3, and described in Appendices A.1 (method from Kudryavtsev,
1997) and A.2 (method from Dirkx et al., 2019). Table 5.2 shows the maximum relative difference in
the variations of the coefficients coming from the two rotation algorithms, over the same time period of 2
days (from 𝑡። = 25116.6944 JD50 to 𝑡፟ = 25118.6944 JD50) and with a time step of 60 s. In other words,
the quantities compared there are the deviations of the spherical harmonic coefficients from their initial
value, due to the nominal rotation of Mars. For each coefficient, the difference between the deviations
from the twomethods (which is a function of time) is then scaled by the values of the deviations obtained
with the method in A.2, and the maximum of the resulting vector forms the corresponding entry of Table
5.2. The nominal Mars rotation model implies the input of the rotation matrix from Eq. 4.21 for the
method in A.2, or equivalently the succession of elementary rotations given in Eqs. 4.22 and 4.23 for
the method in A.1. The time series of angles are those computed from the MOP retrieved in the nominal
rotorcc file.

The difference in the output of the two methods is negligible, except for the order zero sine coef-
ficients, where the relative difference is up to 1. This result stems from the comparison criterion, and
from the fact that the implementation of the method from Dirkx et al. (2019) generates non-zero values
of the zonal sine coefficients due to numerical errors, although these values are in the order of 1e-28.
The method from Kudryavtsev (1997) does not produce this effect, since the rotations of the coeffi-
cients are described by formulas specific for each degree and order, and for the zonal sine coefficients
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𝐶፧፦ 𝑆፧፦
Degree 2 3 2 3

Order
0 3.99e-05 6.00e-09 1 1
1 5.06e-11 1.99e-08 1.90e-09 3.67e-09
2 6.19e-06 1.39e-08 7.64e-07 1.13e-07
3 - 5.87e-09 - 2.89e-09

Table 5.2: Maximum relative difference between the deviation of the ፂ፧፦ and ፒ፧፦ from their initial value using the two rotation
methods, over a period of 2 days

these formulas reduce to a constant 0 value. Hence, the difference between the two methods for these
coefficients will be strictly equal to the numerical errors in the first method, and the relative difference
will always yield 1.

As for the other coefficients, the two algorithms differ at most by about 0.005% in the computed de-
viations of 𝐶፧፦(𝑡) and 𝑆፧፦(𝑡) from 𝐶፧፦(𝑡።) and 𝑆፧፦(𝑡።) over 2 days. These differences are acceptable,
and show that both methods give an accurate representation of the evolution of the gravity coefficients
in Kaula’s frame, with a nominal rotation model. At the same time, there is reason to believe that the
same level of accuracy and consistency between the two algorithms will be reached also with a differ-
ent rotation model (e.g. one of those mentioned in Table 5.1), because then the only thing to change
would be the numerical values of the elementary rotation angles and of the elements of the full rotation
matrix.

LOS projection
Here the verification involves the LOS projection function, which allows to convert the set of perturbed
orbital elements output by the ORB main script to LOS velocity. The function is tested by comparing
the signature of polar motion on GINS simulated Doppler measurements with the signature of the same
parameter on the projected LOS velocity. For this, GINS is used to propagate 2 TGO orbits, one with
the nominal rotorcc file, and the other with a rotorcc file where all the polar motion terms are set to 0
(labelled as ”noPM” in Table 5.1). Apart from the rotation models, all the other options for the GINS
execution are the nominal ones listed in Table 6.1. The propagation is carried on over 10 days, from
𝑡። = 25110.4684 JD50 to 𝑡፟ = 25120.4615 JD50. Hence, the signature of polar motion is obtained
by subtracting the synthetic measurements output by GINS for the two runs. The orbits relative to the
two measurement simulations are stored in the orbite GINS file. From there, the cartesian components
of the velocity are projected to the line-of-sight using the function implemented in ORB. The signature
of polar motion on the LOS velocity is then found by subtraction of the two LOS velocity vector thus
computed.

Figure 5.1 shows the comparison between the signature of polar motion on the GINS simulated
Doppler measurements and on the LOS velocity projected from the corresponding GINS orbits. For
the sake of this plot, the time stamps associated with the GINS orbits had to be converted from ET to
UTC, by means of the SPICE deltet routine1. Moreover, the Doppler points were converted to LOS
velocity according to Eq. 3.4, dividing the frequency shift by 2𝑀፛፝𝑓ፓ/𝑐, where the reference downlink
frequency in the nominal GINS execution is 𝑀፛፝𝑓ፓ = 8.419 GHz, and 𝑐 is the speed of light. The
bottom part of the Figure shows the difference between the two sets of points, relative to the maximum
value of the signature on the Doppler observations. This relative difference is below 0.5%. This error is
justified by the fact that the Doppler measurements are integrated over 60 s, while the LOS projection
is proportional to the instantaneous Doppler. In view of this, the agreement is considered sufficient to
justify the use of the projected LOS velocity as a measure of the signature on the Doppler observable
itself.

In ORB, before the LOS projection, the perturbed Keplerian elements are converted to cartesian
components using the SPICE conics routine2.
1https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/FORTRAN/spicelib/deltet.html
2https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/FORTRAN/spicelib/conics.html

https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/FORTRAN/spicelib/deltet.html
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/FORTRAN/spicelib/conics.html
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Figure 5.1: Top: signature of polar motion on the projected LOS velocity (solid orange line), and on the simulated two-way Doppler
measurements (points in blue). Bottom: difference between the polar motion signature on the GINS Doppler measurements and
that on the corresponding LOS projected velocity, as a percentage of the former.

5.1.2. Verification of the covariance analysis algorithms
Observation partials
The verification of the observation partials implemented in Tudat is performed by comparing the ele-
ments of a column of the observation matrix to the numerical approximation of the partial derivatives of
the observable with respect to the parameter corresponding to said column. Here, a central finite differ-
ence over 2 points is used to approximate the partials of the observables with respect to the parameter
of interest (𝑝). This means that the numerical derivative is computed as:

𝜕ℎ
𝜕𝑝 ≈

ℎ(𝑝ኺ − Δ𝑝) − ℎ(𝑝ኺ + Δ𝑝)
2Δ𝑝 (5.1)

where the notation ℎ(𝑝ኺ − Δ𝑝) indicates an observable obtained using a dynamical model where the
parameter of interest differs by a small quantity Δ𝑝 from its nominal value, 𝑝ኺ. The numerical derivation
is performed by simulating sets of observables relative to same observation and dynamical models,
except for the value of the parameter of interest, and then combining these two vectors according
to the expression of the finite difference method. The perturbations are symmetrical with respect to
the nominal value, which corresponds to the parameter value used to generate the information matrix
with Tudat. It is stressed here that none of the partials used to get the results presented in the next
chapter were implemented in Tudat in the frame of this study. Hence, a systematic verification of the
expressions for all the partials is outside of the scope of this project. Still a single case is analyzed
here, since an equivalence between the numerical partials and the information matrix entries, apart
from confirming the validity of the expressions used for the partials, can be interpreted as a positive
feedback about the overall functioning of the estimation process setup in Tudat.

The parameter chosen for the verification of the partials is the cosine term of the CW harmonic of
the 𝑋ፏ polar motion component. Its nominal value is here assumed to be 55 mas. The choice of this
parameter is due to the fact that polar motion is the main focus of the project, and this amplitude is
expected to be the largest among the polar motion ones. The value of Δ𝑝 is taken to be 5 mas, so
that two sets of Doppler measurements are generated, using a value of 50 mas and 60 mas for 𝑋፜ፂፖ,
respectively. The estimation interests a single arc of 2 days.
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The comparison of the two types of partials (that is, those output by Tudat and stored in the infor-
mation matrix, and those computed by numerical differentiation) for each measurement point is shown
in Figure 5.2. Each point in this plot represents the difference between the two partials at a specific
observation time, scaled by the maximum (absolute) value of the information matrix column relative
to 𝑋፜ፂፖ. The choice of the scaling factor is justified by the fact that the partials oscillate around zero,
thus scaling the difference at each observation by the corresponding information matrix element would
lead to divergence problems. Moreover, the partials diverge to high positive values towards the end
of the estimation arc, which is why the last 5 observations are discarded for both sets of partials. The
divergence is due to loss of accuracy of the interpolations algorithms used in Tudat towards the edge
of the estimation domain. It can be seen that the relative difference between the two types of partials is
below 1% after two days, indicating consistency in the modelling of the dependence of the observables
on the parameter of interest.

The difference between the two types of partials is presumably due to the discretization error, and
could be lower if methods with orders of accuracy higher than the second in Δ𝑝 are used.
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Figure 5.2: Relative difference between the Doppler partials with respect to ፗ፜ፂፖ obtained by numerical differentiation and those
retrieved from the information matrix, expressed as a percentage of the maximum value of the information matrix partials

Normal matrix inversion
The covariance matrix of the estimated parameters is one of the outputs of the Tudat script. Yet, most of
the times the set of parameters estimated in Tudat is not the same as the set of parameters to estimate
in the covariance analysis performed with the Python scripts (the results of which are presented in
Section 6.3). This is true, for example, when a subset of the parameters is shifted to the consider
parameters and fixed to their a priori value. Moreover, sometimes it is preferred to use Tudat to estimate
only a subset of parameters at a time, to reduce the memory usage and avoid memory errors, which
can happen due to the large amount of measurements (about 6000 observations per day, over 700
days) and of parameters (up to about 600). Hence, generally the covariance matrix output by Tudat
cannot be employed to retrieve the uncertainties of the parameters to estimate. Instead, a new normal
matrix has to be created in Python, starting from an observation matrix obtained by combination and
rearrangement of one or more observation matrices computed with Tudat. The covariance matrix is
then found by inversion of this normal matrix, through the linalg.inv function3 of the NumPy Python
library. The accuracy of this process, which includes the parameters selection (through permutation of
the observation matrix columns) and the numerical inversion of the normal matrix, is tested here.

This is done by comparing the correlations matrix generated with the Python script to the one output
by Tudat. Only a subset of the parameters mentioned in Section 6.3 is selected for the estimation
in this verification process, with the assumption that a positive result for this reduced normal matrix
could be expanded to the inversion of the full one. Specifically, the Mars gravity field coefficients are
excluded from the set of parameters, which is therefore reduced to 582 elements. These include: the
6 cartesian components of the initial TGO state at each of the 70 10-day arcs (420 elements); the
drag and radiation pressure coefficients for each arc (140 elements); the 𝐹 and 𝜎ፅፂፍ parameters of the
3https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.inv.html

https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.inv.html


52 5. Verification and Validation

nutation amplification transfer function (2 elements); the LOD variations amplitudes (sine and cosine)
for the first four multiples of the annual frequencies (8 elements); the sine and cosine amplitudes of the
𝑋 and 𝑌 polar motion components, at the annual, semiannual, and Chandler wobble frequencies (12
elements).

The first thing to be verified is the method of selection of the parameters to estimate and the con-
sider parameters, since in this case there are no consider parameters and the full information matrix is
to be used to construct the normal matrix. This can be achieved by setting to 0 the value of the corre-
sponding variable in the Python script, and leaving the rest of the script unchanged. Then, the normal
matrix is inverted, and the corresponding normalized covariance matrix is subtracted to the reference
correlations matrix (i.e., the one given by Tudat). The resulting matrix is divided, element-wise, by the
reference correlation matrix. These operations yield the matrix of the relative differences between the
two normalized covariance matrices. Multiplying the entries of this last matrix by 100 gives the differ-
ence between the two matrices expressed as a percentage of the reference matrix. The entries of this
582x582 matrix have a mean of -0.022% and a standard deviation of 4.7%, with roughly 0.03% of the
elements being outside the 3𝜎 interval. However, the statistics of these relative error drop to 7.53e-5%
for the mean and 0.005% for the standard deviation when only the matrix blocks relative to the MOP
are compared (i.e. the intersection of the last 22 rows and columns).

The difference between the two numerical inversions can be explained by the high condition number
of the normal matrix, which is about 1e10, making the inversion solution affected by numerical noise.
Still, the agreement between the covariances computed for the MOP is accurate enough to not com-
promise the results obtained for the uncertainties of the parameters. Moreover, the level of agreement
between the two matrices indicates a correct selection of the parameters to estimate in the Python
script. Hence, the inversion method in Python can be used to compute the formal uncertainties from
the one or more Tudat observation matrices.

5.2. Validation
As for the verification, the validation only interests applications related to ORB and to Tudat, since
nothing was developed for GINS. Still, GINS is here used as a reference, in the sense that the ORB
results are validated against equivalent numerical GINS solutions, in Section 5.2.1. As for the Tudat
application and the corresponding Python script, they are validated in Section 5.2.2.

5.2.1. Validation of the analytical MOP signatures algorithms
Nominal orbit
The TGO trajectory generated by ORB with the nominal rotation model, expressed in terms of the set of
perturbed Keplerian elements, is compared to the orbit propagated by GINS with the same dynamical
model. The rotation model is read from the nominal rotorcc file, and includes the contributions from
all the MOPs, in all their harmonics. The same rotorcc file is input in GINS to model the rotation of
Mars. Both the GINS and the ORB orbit predictions are obtained with a gravitational potential of Mars
truncated to degree and order 10 as the only source of perturbation to the Keplerian orbit. Since the
GINS results are assumed to be the more precise of the two sets, these differences are also referred
to as errors.

Figure 5.3 presents a comparison of the two TGO orbits over the 2 days of orbit propagation, from
𝑡። = 6854.1918 JD to 𝑡፟ = 6856.1973 JD. The difference between the two sets of orbital elements is
given as a percentage of the maximum value of the GINS solution (and not the GINS solution itself, in
order to avoid divergence for values of the elements close to 0).

The ORB perturbed orbital elements follow closely those propagated by GINS, at least over this
time span. Both 𝑖 and Ω present a noticeable drift along with the oscillations typical of the errors on
the other elements, that may lead to error 10 times as large after the nominal 10 days of propagation
assumed for GINS and Tudat. Over 2 days, the most conspicuous exception to the good accuracy of
the ORB solution is the evolution of the argument of perigee. This orbital element shows similar spectral
components for the two orbits, but with amplitudes about twice as large for the GINS trajectory, as can
be seen in Figure 5.4. Such large differences in the 𝜔 variation amplitudes come from a mismodeling
on the part of ORB, but the precise cause of this error was not pinpointed and the problem is still
unsolved. Given the low eccentricity of the orbit, the errors in the 𝜔 amplitude result mostly in a shift
in the tangential position of the spacecraft as predicted by ORB with respect to the GINS trajectory.
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Figure 5.3: Difference between the TGO Keplerian elements obtained with ORB and GINS over 2 days, expressed as a percent-
age of the maximum value of the GINS solution for each orbital element
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Figure 5.4: Comparison of GINS and ORB propagation of the
TGO argument of perigee (Ꭶ), over 2 days

A shift in the tangential direction is also given
by errors in the value of the mean anomaly (𝑀),
which in this case are in the order of 0.1% of
the maximum GINS value (although the mean
anomaly assumes values in the range 0∘-360∘
over less than 2 hours, hence the errors relative
to the instantaneous value of 𝑀, and not to 360∘,
may be at least one order of magnitude larger
for about 30% of the time). The low eccentric-
ity of TGO may justify an ambiguity in the mean
anomaly, with the errors in 𝜔 which should in that
case be absorbed by those in 𝑀. Yet, the low
level of the errors in 𝑀 indicates that this is not
the (main) cause of the mismodeling by ORB.

Nonetheless, the computation of the orbital el-
ements is only an intermediate step of the ORB algorithm, for which the output is the signature of the
MOP on the LOS velocity. Since an a priori prediction of how these errors on 𝜔 and the other elements
propagate to the final LOS signature result is not straightforward, it is not possible to draw conclusions
on the feasibility of ORB for the computation of MOP signatures from these large errors alone.

Thus, the verification process is not abandoned, and the ORB trajectory is converted to cartesian
coordinates, expressed in the MME2000 inertial frame. The differences between the cartesian states
in this frame from the two programs are depicted in Figure 5.5, again as a percentage of the maximum
value output by GINS for each quantity. Even with the same initial conditions, and a dynamical model
consisting solely of the Mars gravity field, these differences reach up to 20 km in the position compo-
nents after only 2 days, and are in the order of tens of m/s for the velocity components. Clearly, effects
of order higher than the first in the time variable (Kaula’s main assumption is that the phase angle varies
linearly with time) have an important impact on the precise state of TGO.

As discussed previously for the Keplerian elements errors, the main intent of this ORB application is
not so much to accurately predict the absolute orbit of the spacecraft, as to asses the magnitude of the
orbital perturbations due to small variations in theMars rotationmodel. Hence, even if the absolute TGO
trajectory generated with ORB is tens of km away from the more precise GINS orbit, the differences
between two ORB orbits may still prove close enough to those from GINS to make the results useful to
the research goals.
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Figure 5.5: Difference between the cartesian components of the TGO position and velocity obtained with ORB and GINS over 2
days, expressed as a percentage of the maximum value of the GINS solution for each component

MOP signatures
Looking at the curve in Figure 5.6, this seems to be the case. The plot shows the difference between the
signature of polar motion on the LOS velocity (Δ𝑣ፋፎፒ) given by GINS and ROB. The relative difference
referred to in the y-axis on the right is the error in Δ𝑣ፋፎፒ scaled by the maximum value of the GINS
LOS velocity signature (to avoid division by 0, which is also the value of Δ𝑣ፋፎፒ at the start time). The
difference between the two signatures reaches up to 10% of the GINS maximum after 2 days. This
error is considered small enough to allow ORB to be used for a preliminary study of the magnitude of
these signatures.
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Figure 5.6: Difference in the signature of polar motion on the LOS velocity between the ORB and the GINS orbits of TGO over
2 days. The y-axis on the left shows the absolute values of the signature, while the values on the right y-axis are scaled by the
maximum value of the GINS signature

The difference between the results from the two programs can be clearly seen when comparing the
signatures of polar motion on the Keplerian elements, as in Figure 5.7. The outputs from GINS and
ORB are similar for the signatures on the elements 𝑎, 𝑖, and Ω. For the other three elements, the two
sets of signatures have sizeable differences in their trend, possibly due to different amplitudes of long-
period terms. Yet, the errors in these in-plane elements, which can be more than twice the reference
values, do not propagate with the same order of magnitude in the projection to LOS.

In order to substantially reduce the execution time of ORB, the signatures of the MOP shown above
are compared with those obtained by truncating the gravity field of Mars at degree and order 3. The
two sets of signatures on the Keplerian elements are plotted in Figure 5.8, while Figure 5.9 shows the
error on the LOS velocity signature of the low-degree gravity solution compared to the one given by a
10-by-10 potential. These errors reach up to 3% of the maximum LOS velocity signature after 2 days.
Based on this, a gravity field model truncated at degree and order 3 is taken as nominal.
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Figure 5.7: Comparison between the polar motion signature on the TGO Keplerian elements as given by ORB (blue solid line)
and GINS (orange dashed line), over 2 days

Finally, a comparison between the GINS and ORB polar motion signatures over 10 days, both ob-
tained with a degree-3 gravity field, is presented in Figure 5.10. Here it is more clear how for the
elements 𝑒, 𝜔, and 𝑀, the ORB results misrepresent long-period (in the order of tens of days) pertur-
bations by the polar motion parameters.

Still, even after 10 days, the difference in the 𝑣ፋፎፒ signature from the two methods is below 10% of
the GINS value, as shown in Figure 5.11.

While a similar agreement with the GINS signature is found for the LOD variations, the same is
not true for the FCN parameters and the precession rate. This is shown in Figure 5.12, which, like
Figure 5.7 for polar motion, plots the signatures of the core factor 𝐹 on the keplerian elements of TGO,
as obtained with GINS and with ORB. It is clear how the two solutions diverge immediately, mostly
due to secular terms in the 𝑖 and Ω signatures which are not modelled by GINS. Unmodelled effects
of the same kind also appear when ORB is used to predict the signature of the precession rate on
the spacecraft trajectory. This is possibly due to the large value of these angles compared to those
associated with polar motion and LOD variations. Consequently, ORB will only be used to predict the
signature of polar motion and LOD variations.

Truncation of the eccentricity series
Some assumptions made in the development of the ORB scripts may not hold for spacecraft in orbits
different from that of TGO. It is the case for the truncation of the series expansion of the eccentricity
function, 𝐺፥፩፪(𝑒) in Eq. 4.12, for which only terms of 𝑞 comprised between −𝑙 and +𝑙 were considered.
This was a sound approximation for TGO, given that its eccentricity is below 0.1 and the terms excluded
were smaller than 𝑒፥, thus below 0.01 (the degree 1 coefficients in the static gravity field model used are
all 0). For orbits with different eccentricities, however, the limits of the summation over 𝑞may need to be
larger to avoid neglecting significant contributions to the perturbations of the orbital elements. These
limits are parameterized through the factor 𝑞፦ፚ፱, so that the summation limits lie between −𝑞፦ፚ፱𝑙
and 𝑞፦ፚ፱𝑙. Ten different orbits are then considered, all with inclination 𝑖 = 5∘ and periapsis distance
ℎፏ = 400 km, but with eccentricities linearly spaced between 𝑒 = 0.01 and 𝑒 = 0.7. The signatures of
LOD variations on each of these orbits are computed over 2 days, using values of 𝑞፦ፚ፱ between 1 and
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Figure 5.8: Comparison between the polar motion signature on the TGO Keplerian elements given by ORB with the Mars gravity
field truncated at degree 3 (blue solid line) and at degree 10 (orange dashed line), both over 2 days

5. The maximum of each signature over the whole time span is then compared to the maximum of the
LOD signature given by GINS for the same orbits. Table 5.3 shows the ratio between the maximum
Δ𝑣ፋፎፒ given by ORB and those given by GINS. The closer this value is to 1, the more precise is the
ORB result.

The table cells are colour coded depending on the time required to generate the result with ORB.
Larger range of values for 𝑞 imply a larger number of terms in the expansion of the potential, and
consequently larger execution times. The execution time reported here includes also the time required
for the iterative adjustment of the Keplerian elements of the reference orbits, as described in Section
4.2.3. The first two rows of the Table confirm the fact that for eccentricities smaller than 𝑒 = 0.1,
using values of 𝑞፦ፚ፱ larger than 1 provides insignificant (if at all) improvement in the accuracy of the
Δ𝑣ፋፎፒ solution. On the other hand, for eccentricities larger than about 𝑒 = 0.5, not even using 𝑞፦ፚ፱ =
5 ensures that all the significant contributions from the 𝐺፥፩፪(𝑒) are considered, since the difference
between the solution with 𝑞፦ፚ፱ = 4 is still high and no convergence is reached. In particular, for the
orbit with 𝑒 = 0.7, it was found that a 𝑞፦ፚ፱ of 10 was needed to get a solution which was roughly 80%
of the GINS one, while still not converging to a constant value with larger 𝑞፦ፚ፱. The inclusion of limits
so large for 𝑞 makes the ORB script extremely slow, and takes away the major advantage of using the
analytical method with respect to the more precise numerical propagation. For this reason, only orbits
with eccentricities lower than 𝑒 = 0.5 are considered in the following.

The first two plots in Figure 5.13 show the maxima of the polar motion signature on the LOS velocity
for an array of 80 orbits characterized by the values of the eccentricities from the first 8 rows of Table
5.3, and 10 different inclinations, linearly spaced between 𝑖 = 5∘ and 𝑖 = 85∘. The first plot contains the
results from ORB, the second those from GINS. The colour scales for the two plots are the same, and
the colour distribution in each tile is the linear interpolation of the corner values. The third plot shows
the difference between the two matrices of Δ𝑣ፋፎፒ, expressed as a percentage of the GINS matrix. The
ORB matrix has a peak in the same location as the peak seen in the GINS matrix, and the overall data
distribution is also similar to the GINS one. The errors are considerably large for high inclinations and
eccentricities, reaching up to 70% of the reference value. This region corresponds to the area of the
plots where the Δ𝑣ፋፎፒ is the smallest, hence these errors do not affect the search for the pair of orbital
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1 2 3 4 5

0.010 0.9651 0.9651 0.9651 0.9651 0.9651

0.087 0.9728 0.9776 0.9777 0.9777 0.9777

0.163 0.9374 0.9793 0.9816 0.9817 0.9817

0.240 0.8511 0.9694 0.9840 0.9857 0.9859

0.317 0.6804 0.9174 0.9741 0.9857 0.9879

0.393 0.4974 0.8125 0.9375 0.9768 0.9882

0.470 0.3072 0.6312 0.8319 0.9284 0.9695

0.547 0.1588 0.4153 0.6411 0.7980 0.8925

0.623 0.0398 0.2034 0.3963 0.5737 0.7165

0.700 0.1523 0.2016 0.2768 0.3637 0.4497
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Table 5.3: Maximum ጂ፯ፋፎፒ given by ORB over the same quantity as computed with GINS, for 10 orbits with the same inclination
(኿∘) and eccentricities linearly spaced between ኺ.ኺኻ and ኺ.዁. The values along each row vary due to the different limit for the
eccentricity function ፆ፥፩፪(፞) series expansion, as expressed by ፪፦ፚ፱. The cells are color coded depending on the ORB execution
time



58 5. Verification and Validation

6854 6854.5 6855 6855.5 6856 6856.5

JD

-1.5

-1

-0.5

0

0.5

1

1.5

2

E
rr

o
r 

in
 

v
L

O
S

 [
m

m
/s

]

10 -3

-2

-1

0

1

2

3

E
rr

o
r 

in
 

v
L

O
S

 [
%

]

Figure 5.9: Difference in the signature of polar motion on the LOS velocity between two ORB orbits obtained with a Mars gravity
field up to degree and order 3 and up to degree and order 10, respectively. The y-axis on the left shows the absolute values of
the signature, while the values on the right y-axis are scaled by the maximum value of signature relative to the degree-10 orbit

elements yielding the maximum Δ𝑣ፋፎፒ.
The same comparison, on the same set of orbits, is made for the signatures of LOD variations on

the LOS velocity, as shown in Figure 5.14. Again, the values predicted by ORB are fairly similar to
those from GINS. The largest errors are again in the region corresponding to large inclinations and
eccentricities of the nominal orbit, although the maximum value of the errors is smaller than for the
polar motion signature.

5.2.2. Validation of the covariance analysis algorithms
Consider covariance computation
In this section, the computation of the contribution of the consider parameters to the final consider
uncertainty is verified. Hence, the formula from Eq. 3.46 is subject to validation. The implementation of
the consider covariance algorithm in the Python scripts is tested by solving the simple Example problem
in Tapley et al. (2004, pp. 410-416), and comparing the results with the solutions given therein. While
a step-by-step solution is given in the reference, the equations involved are also listed here. In fact, an
approach which is formally slightly different is followed here, because it better reflects the logic behind
the Python scripts, which takes as input the full information matrix and then partitions it depending on
the choice of the consider parameters. The problem is that of a point mass in free fall. The only force
acting on the mass is the gravity, assumed to cause a constant acceleration 𝑔 on the particle, so that
the equation of motion is written as:

𝑥̈ = 𝑔 (5.2)

where 𝑥 is the vertical position of the particle, which moves with a vertical velocity 𝑣. The full state
vector is:

𝑿 = [
𝑥
𝑣
𝑔
] (5.3)

The equation representing the dynamics of the system is linear:

𝑿̇ = 𝐹 (𝑿, 𝑡) = [
𝑣
𝑔
0
] = 𝐴𝑿 (5.4)

where

𝐴 = 𝜕𝐹
𝜕𝑿 = [

0 1 0
0 0 1
0 0 0

] (5.5)

Three observations of the position of the particle are available at times 𝑡ኺ = 0s, 𝑡ኻ = 1 s, and 𝑡ኼ = 2 s.
The equation relating the measurements taken at time 𝑡። to the corresponding state vector 𝑿። = 𝑿(𝑡።)
is written as in Eq. 3.18, and is also linear:

𝒀። = 𝐺 (𝑿። , 𝑡።) + 𝝐። = 𝑥 + 𝜖። = 𝐻̃።𝑿። (5.6)
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Figure 5.10: Comparison between the polar motion signature on the TGO Keplerian elements as given by ORB (blue solid line)
and GINS (orange dashed line), over 10 days and with a degree-3 Mars gravity field
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Figure 5.11: Difference in the signature of polar motion on the LOS velocity between the ORB and the GINS orbits of TGO,
computed over 10 days and with a degree-3 Mars gravity field. The y-axis on the left shows the absolute values of the signature,
while the values on the right y-axis are scaled by the maximum value of the GINS signature

with 𝜖። the (scalar) measurement error and

𝐻̃። =
𝜕𝐺(𝑿። , 𝑡።)
𝜕𝑿።

= [1 0 0] (5.7)

If the state at 𝑡ኺ = 0s is chosen as reference, the vectors 𝑿ፈ at the other observation times can be
ralated to it through the state transition matrix (see Eq. 3.23). Since this matrix is the solution of the
differential equation

𝜱̇(𝑡, 𝑡ኺ) = 𝐴𝜱(𝑡, 𝑡ኺ) (5.8)

it has the form:
𝜱(𝑡, 𝑡ኺ) = 𝐾𝑒ፀ(፭ዅ፭ኺ) (5.9)
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Figure 5.12: Difference in the signature of polar motion on the LOS velocity between the ORB and the GINS orbits of TGO,
computed over 10 days and with a degree-3 Mars gravity field. The y-axis on the left shows the absolute values of the signature,
while the values on the right y-axis are scaled by the maximum value of the GINS signature

Given the initial condition 𝜱(𝑡ኺ, 𝑡ኺ) = 𝐼, the scaling factor is 𝐾 = 1, and:

𝜱(𝑡, 𝑡ኺ) = 𝑒ፀ(፭ዅ፭ኺ) = 𝐼 + 𝐴 (𝑡 − 𝑡ኺ) +
𝐴ኼ
2 (𝑡 − 𝑡ኺ)

ኼ = [
1 (𝑡 − 𝑡ኺ) (𝑡 − 𝑡ኺ)

ኼ/2
0 1 (𝑡 − 𝑡ኺ)
0 0 1

] (5.10)

since powers of 𝐴 higher than the second are equal to the null matrix. The full design matrix is finally:

𝐻 = [
𝐻̃ኺ𝜱(𝑡ኺ, 𝑡ኺ)
𝐻̃ኻ𝜱(𝑡ኻ, 𝑡ኺ)
𝐻̃ኼ𝜱(𝑡ኼ, 𝑡ኺ)

] = [
1 0 0
1 1 1/2
1 2 2

] (5.11)

The state vector is then partitioned in parameters to estimate and consider parameters, 𝑔 being the only
consider parameter. Accordingly, the matrix of the observation partials is separated in a component
relative to the parameters to estimate (𝐻፱), and one relative to the consider parameter (𝐻፜), so that

𝐻፱ = [
1 0
1 1
1 2

] 𝐻፜ = [
0
1/2
2
] (5.12)

The a priori covariance of the parameters to estimate is taken to be the identity matrix, just like the
a priori covariance of the measurement errors, that is, 𝑊 = 𝑊ኺ = 𝐼. The a priori covariance of the
consider parameter, 𝑔, is taken here to be 3 m/sኼ, so that 𝑃፜፜ = [9] The result obrained for covariance
of the estimated parameters without consider parameters is then:

𝑃ኺ = (𝐻ፓ፱𝑊𝐻፱ +𝑊ኺ)
ዅኻ
= [ 0.4 −0.2
−0.2 0.267] (5.13)

The sensitivity matrix is found to be:

𝑆፱፜ = 𝑃ኺ𝐻ፓ፱𝑊𝐻፜ = [
0.1
0.7] (5.14)
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Figure 5.13: Comparison between ORB (top panel) and GINS (middle panel) matrices of the maximum PM signature on ፯ፋፎፒ as
a function of the orbit inclination and eccentricity. The difference between the two matrices, as a percentage of the GINS values,
is shown in the bottom panel
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Figure 5.14: Comparison between ORB (top panel) and GINS (middle panel) matrices of the maximum LOD signature on ፯ፋፎፒ
as a function of the orbit inclination and eccentricity. The difference between the two matrices, as a percentage of the GINS
values, is shown in the bottom panel
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Hence, the matrix of the consider covariances is:

𝑃፱፱ = 𝑃ኺ + 𝑆፱፜𝑃፜፜𝑆ፓ፱፜ = [
0.49 0.43
0.43 4.68] (5.15)

These results are in agreement with the reference solutions for the corresponding matrices given in the
reference (Tapley et al., 2004, pp.413-414), when 𝑃፜፜ = [9] is substituted for the a priori covariance of
the consider parameters.

TGO orbit propagation
The validation of the TGO orbits propagated with Tudat is performed by comparing the cartesian states
of the spacecraft with orbits propagated with GINS, using similar dynamical model and initial states.
The full dynamical model selected in GINS (shown in Table 6.1) is simplified to agree with the full
model of the Tudat propagation (shown in Table 4.2), which only includes the Martian gravity field up to
degree 40, the aerodynamic drag, and the radiation pressure, where the spacecraft is modelled as a
uniform sphere. The differences between the cartesian components of the position of TGO predicted,
with this dynamical model, by GINS and Tudat are shown in Figure 5.15. The position components are
relative to the MME2000 inertial frame. The disagreement between the two orbits after 10 days is in
the order of 100 m in the cartesian components. This difference is mostly due to the modelling of the
non-gravitational forces, since the Mars atmosphere and the solar flux models used in the two runs are
not the same (although the spacecraft shape and physical properties are modelled in the same way).
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Figure 5.15: Differences in the MME2000 position component of TGO between the orbit propagated by Tudat with the full
dynamical model and the orbit propagated by GINS with an equivalent dynamical model

Indeed, when the dynamical model is restricted to the sole degree-40 gravity field of Mars, the
differences are at the meter level (Figure 5.16). Here, the deviations are explained by differences in
the integrator settings (although both are of the same order and with the same step-size, as shown in
Tables 6.1 and 4.2) and eventual small disparities in the two initial states.
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Figure 5.16: Differences in the MME2000 position component of TGO between the orbit propagated by Tudat and the one
propagated by GINS with a dynamical model consisting of only the Mars gravity field up to degree 40



6
Results

In this Chapter, the main results obtained from the software described in Chapter 4 and validated in
Chapter 5 are presented. Each of the following three sections mainly focuses on the outputs of one of
the three main programs employed in this project: GINS, ORB, and Tudat. Specifically, GINS was used
to perform high-precision simultations of the trajectory and measurements of TGO, given the accurate
dynamical model described in Section 4.2.1. Hence, Section 6.1 treats the signatures of the MOP on
the spacecraft trajectory and tracking data, as computed with GINS.

ORB, instead, was used to develop an analythical method to assess those same signatures with a
simpler dynamical model but with an improvement in execution speed and insight in the process. Thus,
the outcome of this analytical study is found in Section 6.2.

Finally, Tudat was employed for the assessment of the accuracy of the MOP estimation from radio-
tracking data. This was done through a covariance analysis, the results of which are presented in
Section 6.3.

6.1. MOP signatures: numerical approach
In this section, the signatures of the relevant Mars orientation and rotation parameters will be presented,
as obtained numerically with GINS. Both the signatures in the TGO trajectory (Section 6.1.1) and in the
radio-tracking observables (Section 6.1.2) will be considered, the latter being compared to the noise
level for the specific observable in order to asses the detectability of the signal. Moreover, Section
6.1.3 will show a comparison with the polar motion signature on MRO, which should give a preliminary
assessment of if and to what extent TGO is more sensitive than MRO to the polar motion parameters.

6.1.1. Signatures on TGO trajectory
The impact of variations in the rotation model of Mars on the state of TGO can be expressed in different
sets of coordinates. Depending on the chosen coordinates in which the state of TGO is expressed,
it may result for a parameter to affect a subset of these coordinates more than the rest. This kind
of information may reveal details about the most favourable spacecraft configuration and observable
type for the retrieval of the parameter. Here, the effects on the RTN (radial, tangential, and normal)
components of the spacecraft position, velocity, and acceleration are analyzed. The RTN frame is that
relative to the nominal orbit of TGO, that is, the one obtained with a full rotation model. The state of
TGO throughout the nominal orbit is expressed in the areocentric MME2000 frame. Hence, the rotation
matrix transforming a vector in the MME2000 frame to RTN coordinates is given, at each timestep, by:

𝑅ፑፓፍፌፌፄኼኺኺኺ = [
𝒓
|𝒓|

𝒕
|𝒕|

𝒉
|𝒉| ]

ፓ
(6.1)

with 𝒓 and 𝒗 the position and velocity vectors of the spacecraft, 𝒉 = 𝒓 × 𝒗, and 𝒕 = 𝒉
|𝒉| ×

𝒓
|𝒓| . While

varying with time, the rotation matrix from the MME2000 to the RTN frame is assumed to be constant
at each time step, that is, ̇𝑅ፑፓፍፌፌፄኼኺኺኺ = 0, so that the components of the velocity and the acceleration
vectors can be obtained just like for the position vector by left-multiplication of the corresponding vector
in the MME2000 frame by 𝑅ፑፓፍፌፌፄኼኺኺኺ.
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Figure 6.1 shows the signatures of the Chandler wobble on the radial, tangential, and normal com-
ponents of the position, velocity, and acceleration of TGO over 10 days, from 𝑡። = 6847.98 JD to 𝑡፟ =
6857.96 JD. The two orbits used to generate these signatures are computed with the nominal settings
for GINS, as listed in Table 6.1. The only difference between the dynamical model in the two cases is
the rotation model of Mars, read once from the nominal rotorcc file and the other from the rotorcc file
labelled as ”noCW” in Table 5.1.

The largest effect on the position is by far in the along-track direction, building up to more than 10
cm over the 10 days period. The signature in the radial position builds up with time as well, but is two
orders of magnitude lower than that in the tangential direction. The signature in the normal direction,
instead, oscillates without diverging, with a constant amplitude of about 5 mm. The effects on the
radial and tangential component of the velocity are inverted with respect to those on the position, the
largest signature being in the radial velocity component and building up to 0.1 mm/s. The behaviour
of the signatures in the acceleration RTN components reflects that in the position components, with a
maximum signature of 10ዅ዁ m/sኼ.
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Figure 6.1: Signature of CW on the RTN components of TGO trajectory in the MME2000 frame

The reason for the similarity among curves across the plots in Figure 6.1 is to be found in the choice
of the reference frame in which these signatures are displayed, namely the RTN frame relative to the
nominal orbit. The overlap between the signature on the position in the tangential direction and the one
on the velocity in the radial direction can be visualized in the simplified case of a purely circular orbit for
TGO, and assuming the module of the velocity (𝑣) to be the same for the two orbits at each time step.
Then, a small shift (Δ𝑥ፓ) in the tangential position of the spacecraft following themismodeling of the CW,
as shown in the leftmost plot, would imply that, at a generic time, the two predictions of the spacecraft
position are separated by a small angle 𝜃. The assumption of equal 𝑣 for both predictions means that
the difference between the two velocity vector is all in the radial direction, and is roughly equal to 𝑣𝜃.
As 𝜃 = Δ𝑥ፓ/𝑥, 𝑥 being the position of TGO (all in the radial direction), the radial component of the
differential velocity is Δ𝑣ፑ = 𝑣/𝑥Δ𝑥ፓ. It happens that for TGO the ratio of the module of the velocity
and the range from Mars (about 3.35 x 103 m/s versus 3.8 x 106, both varying little along the orbit
because of the low eccentricity) is roughly 10ዅኽ. Hence, Δ𝑣ፑ ≈ 10ኽΔ𝑥ፓ, as seen in the plots. The same
argument can be made for the acceleration, which in a circular orbit is in the radial direction, so that
the difference in acceleration between two points at a small distance along-track is on the tangential
direction.

In the real case, where the two compared orbits are not perfectly circular, the small-angles approx-
imations are still valid for a Δ𝑥ፓ of a few centimetres, when compared to the thousands of km of 𝑥.
Nonetheless, the CW will also produce a signature on the norm of the velocity, 𝑣, meaning that the
differential velocity will not be all in the radial direction. Yet, the position displacement builds up faster
than the error on 𝑣 (since it the corresponding integrated quantity), so that in the case of Figure 6.1 its
effects (in generating a radial velocity signature) are larger than the direct error on the 𝑣 value, which



6.1. MOP signatures: numerical approach 67

may lead to a velocity signature in any direction. This may not be true in the case of signatures from
other parameters, hence in the following the plots for Δ𝑥, Δ𝑣, and Δ𝑎 are all shown, even if there may
be redundancy, as seen for the CW.

Similar is the relation between the signatures in the position, velocity, and acceleration due to LOD
variations, as shown in Figure 6.2. The GINS options are the same as above, except the non-nominal
rotorcc file is in this case the one labelled as ”noLOD” in Table 5.1. The magnitude of the perturbations,
however, is larger than for the CW, with the signature in the position building up to about 1 m in the
along-track direction. The signatures in the two other directions are larger as well, with that in the normal
component twice as large as with the CW, and that in the radial component one order of magnitude
larger than the CWsignature. The same observations could bemade for the signatures of LOD variation
on the velocity and acceleration RTN components, the velocity perturbation reaching a maximum of 1
mm/s after 10 days.
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Figure 6.2: Signature of LOD variations on the RTN components of TGO trajectory in the MME2000 frame

Figure 6.3 displays the signatures of non-rigid nutations (obtained by setting 𝐹 = 0 in one of the
two rotation models, hence using the ”noFCN” rotorcc file). The largest signatures are again in the
tangential direction for the position and the acceleration of TGO (up to almost 3 m and roughly 10ዅዀ
m/sኼ, respectively) and in the radial direction for the velocity (up to 2 mm/s). Moreover, the signature in
the normal direction is larger than for the previous parameters, and has an amplitude increasing with
time.

Finally, the signatures of the precession on the state and acceleration of TGO are presented in
Figure 6.4. Here the non-nominal rotorcc file is generated by setting to zero the precession rate. The
general behaviour is similar to the previous cases, in that most of the position error is in the tangential
direction. Nonetheless, the magnitude of these signatures is very large in all directions, reaching more
than 1000 m, and the signature in the radial and normal components is larger than before relative to
the tangential one.

6.1.2. Signatures on the observables
The results presented here concern the signatures of the MOP of interest on the radio-tracking observ-
ables. Only range and range-rate observations are considered, since the signatures on the position
seem to be too small to generate a sensible signal in the angular separation measurements. In partic-
ular, for VLBI with phase referencing, the realistic accuracy of 1 nrad (e.g. Bocanegra Bahamon, 2019)
translates into an uncertainty in the position of TGO in the order of 100 m (assuming a distance of the
spacecraft from Earth in the order of 100 million km). Such an uncertainty in the plane-of-sky position of
TGO (normal to the LOS direction) is well above the perturbation on the orbit arising by a mismodeling
of the MOP seen in Figures 6.1 to 6.4 (generally less than a few meters), with the exception of the
precession rate signature.
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Figure 6.3: Signature of non-rigid nutation amplification on the RTN components of TGO trajectory in the MME2000 frame
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Figure 6.4: Signature of precession on the RTN components of TGO trajectory in the MME2000 frame

For both observable types, only one ground station on Earth is assumed to maintain a radio link with
TGO, and that is the ESTRACK New Norcia station, in accordance with the nominal options of GINS
in Table 6.1. The TGO dynamical and observation, as well as the integration and propagation settings,
are also those listed in said table.

The results for each observable will be compared to a reference noise level. As a general rule of
thumb, parameters responsible for a signal in the data lower than the noise level will be hard to extract
from the measurements. This is not always true, as there is not a linear relation between the signature
in the measurements and the achievable uncertainty of the parameter: estimation of parameters with
signatures above the noise level may not be possible due to high correlations with other variables, and
a signal from a parameter could be extracted even if it is below the noise floor. Still, the signatures on
the measurements can be used as a preliminary assessment of the accuracy to be expected for the
parameter relative to others.

Range
Figure 6.5 displays the signature of the different MOP of interest on the range measurements, over a
period of 10 days. The shaded area represents the typical noise level of this type of measurements,
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supposed to be 1 m. For the Chandler wobble, the maximum signature in the range data is around 10
cm, thus well below the noise level of the observations. Both LOD variations and non-rigid amplification
of the nutations, instead, have signatures which rise above the signal noise after 2 to 4 days of tracking,
although reaching a maximum value which is right above the noise level. Different is the effect of the
precession rate on the range data, with a signal-to-noise ratio (SNR) of about 10ኽ. Therefore, range
data could definitely prove useful in the estimation of the precession rate from TGO, but the estimation
of the other MOP from this kind of data is challenging.
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Figure 6.5: Signature of different MOP on the TGO range observable

Range-rate
Figure 6.6 shows the signature of the Chandler wobble (CW), the LOD variations (LOD), the precession
rate (Prec), and the liquid-core amplification of the nutations (FCN) on the simulated TGO range-rate
observations at the ESTRACK station of New Norcia. Along with the signatures, plotted as a function
of the observation times, two angles characterizing the geometry of the observations are plotted. The 𝛽
angle is the angle formed by the orbital plane and the direction connecting the satellite and the ground
station. It is 0° for an edge-on orbit, and ±90° for a face-on orbit. The second angle plotted in the upper
part of the figure, Ω, is the right ascension of the ascending node of TGO. Because of its inclination,
TGO has a relatively short period for the precession of the orbital nodes compared to other (mainly
polar) orbiters. This period is around 140 days, and this is why the variation of the 𝛽 angle is mostly
modulated by the variations of Ω (as opposed to the relative motion of the Earth and Mars).

The measurements are simulated using arcs of 10 days, covering a total of about 150 days, so
that the full nodal precession period of TGO is probed. The noise level is set to 6 mHz, or about 0.1
mm/s, which is a conservative value (see Section 3.1.3). All the MOP considered have a signature in
the Doppler which is above the noise in most of the arcs. The LOD variations, the Chandler wobble,
and the non-rigid nutations amplification have signatures with generally an SNR of 10 and higher. The
SNR is the lowest for very negative values of 𝛽, and is maximum when 𝛽 is close to 0°, i.e. for edge-on
orbits. The high signature of the precession rate is in agreement with the results from other orbiters: an



70 6. Results

uncertainty of less than 0.04% of the nominal value of this parameter was obtained using only range
and Doppler data from orbiters (Konopliv et al., 2016).

Figure 6.6: Top: evolution of the angles ጖ and ᎏ describing the orientation of the TGO orbital plane and the LOS direction.
Bottom: signature of different MOP on the TGO Doppler observable

6.1.3. Comparison with MRO
Once the magnitude of the MOP signatures on the radio-tracking data from TGO has been assessed in
an absolute sense, it seems interesting to investigate how these signatures compare to those relative
to a spacecraft in a different orbit. Whether and to what extent the orbital configuration of TGO is
more favourable than others for what concerns the estimation of a specific MOP is one of the research
questions mentioned in Section 1.2. Several spacecraft have been orbiting Mars and providing radio-
tracking data, thus it’s important to establish the improvement to this dataset given by TGO.

A comparison between the signature of polar motion (all 3 frequencies) on the Doppler observable
of TGO and that of Mars Reconnaissance Orbiter (MRO) is shown in Figure 6.7. MRO is on a nearly
circular orbit at an inclination of about 93° and a lower altitude than TGO, around 300 km from the
Martian surface. The higher inclination is responsible for a longer period of nodal precession, which is
why the Ω angle for MRO shows little variation in the 30 days spanned by the plots. The evolution of the
𝛽 angle was not included in the Figure, because it followed closely that of Ω for both spacecraft (hence,
at least in this short time span, the variations of 𝛽 are modulated mostly by the motion of the spacecraft
orbital plane, and not by the relative motion of the Earth and Mars). The two sets of TGO observations
are obtained using the GINS nominal settings from Table 6.1, and with the rotation models labeled as
”nom” and ”noPM” in Table 5.1, respectively. The same settings are used for the two MRO simulations,
and this required the generation of the spacecraft ephemeris and attitude input files from SPICE (the
macromodel was already available in GINS), as done for TGO (Section 4.2.1).
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The maximum value of the signature is larger for TGO, but overall the difference between the two
signatures is relatively small, and probably not enough to justify a preference for TGO data in the
MOP estimation. However, only a small time period was analyzed, and although the two values of Ω
intersect in one point, the two satellites are not in the same configuration relative to Earth. Moreover,
there might be a significant improvement from the combination of both datasets that is not quantifiable
from themeasurement signatures alone (nor will it be investigated further in this report). A more general
study of how the MOP signature in the observable varies with the spacecraft orbit, with a better-suited
method, will be presented in Section 6.2.

Figure 6.7: Top panel: evolution of the right ascension of the ascending node for TGO (blue points) and MRO (orange points)
over 30 days. Bottom panel: signature of PM on the Doppler observable from TGO (blue points) and MRO (orange points) over
30 days

6.2. MOP signatures: analytical approach
The main results obtained from the analytical method for the assessment of the MOP signatures on
spacecraft radio-tracking measurements are presented in this section. These results were obtained
using the functionalities implemented in theORB package through the functions verified and validated in
Sections 5.1.1 and 5.2.1, respectively. Only the signatures of polar motion and length-of-day variations
will be considered, since for the other parameters the ORB results were found to be in disagreement
with those from GINS. Moreover, the only type of measurement analyzed here is the range-rate, given
the low signature on the range observations seen in Section 6.1.2 for CW and LOD variations.

Unless otherwise specified, the only force acting on the spacecraft is the gravitational attraction of
Mars, with its non-central component expanded up to degree and order 3. In Section 6.2.1 the space-
craft is TGO, so the results can be compared with those obtained numerically with GINS, presented in
Section 6.1. In Section 6.2.2, instead, the methods are applied to a range of spacecraft orbits.

6.2.1. Results for TGO
This section lists the principal results obtained for the analytical signatures of the MOP on the trajectory
and radio-tracking observables of TGO, as obtained with the ORB scripts. The results are generally
displayed alongside equivalent quantities computed numerically with GINS, with a dynamical model
consisting only of the degree-3 gravity potential of Mars. This serves both as a case-specific validation
of the analytical signatures (the general validation was presented in Section 5.2.1) and as an indication
of the extent by which errors on various intermediate results influence the final solution. A detailed
verification and validation of the analytical method are however discussed in Chapter 5. The initial
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Element a e i 𝜔 Ω M
Unit m - deg deg deg deg

Value 3781287.53 0.0067 73.57 63.75 49.17 239.05

Table 6.1: Mean orbital elements of the nominal ORB orbit over 10 days

state is the same for both the GINS and the ORB orbits: this is achieved by fitting the reference orbit
in ORB iteratively, as described in the ”Algorithm” part of Section 4.2.3.

Figure 6.8 shows the perturbation in the orbital elements of TGO due to the polar motion (which
includes the annual, semiannual, and Chandler wobble harmonics). Hence, the quantities plotted are
the relative differences between the keplerian elements of two TGO orbits: one orbit is obtained with
the nominal rotation model (i.e. by using the nominal rotorcc file), while the other is generated after
removing the polar motion terms from the rotation model (i.e., using the rotorcc file labelled as ”noPM” in
Table 5.1). The orbits span 10 days, from 𝑡። = 6847.98 JD to 𝑡፟ = 6857.96 JD (same as the GINS orbits
of Section 6.1.1). For each orbital element, the relative difference here plotted is equal to the ratio of
the difference between the elements in the two orbits and the mean value of the element in the nominal
orbit (i.e., the one with a nominal rotation model) given by ORB. These mean elements are the same
for all the cases analyzed in this section, since the nominal orbit is the same, and are listed in Table 6.1.
The normalization is applied in order to correctly compare such different quantities as the signatures
on the semi-major axis, the eccentricity, and the angular elements. From this figure, the parameters
which are affected the most by polar motion are the eccentricity and the argument of perigee, both
showing relative variations in the order of 10ዅ6%. For these same parameters, as well as for the mean
anomaly, the analytical solution (shown in blue) deviates the most from the numerical one (in red). More
specifically, the eccentricity solution presents a trend which is absent in the numerical results, while the
analytical perturbations of both 𝜔 and 𝑀 have long-period (tens of days) components that are different
from those of the numerical solution. These errors in the analytical prediction of Δe, Δ, 𝜔,andΔM are
presumably due to the ambiguities coming from the near-circularity of the TGO orbit, and could be
reduced by the use of an unambiguous set of orbital elements.

Converting the keplerian elements of both orbits to cartesian coordinates, projecting the velocity
vector along the direction connecting the spacecraft and the New Norcia station on Earth, and then
subtracting these two line-of-sight (LOS) velocities, yields the results of Figure 6.9. The variations of
the LOS velocity are equivalent to the instantaneous Doppler observable. Nevertheless, the GINS
solution (again in red) is still generated by projecting the orbital elements, and not by simulating directly
the observable. It can be seen that the numerical and the analytical solutions for the perturbation
in the LOS velocity present a good agreement. This is in spite of the important differences in the
perturbations of the orbital elements 𝑒, 𝜔, and 𝑀 described above. Hence, although the eccentricity
and the argument of perigee show the largest (relative) perturbations due to polar motion, the impact of
these perturbations on the signatures of the MOP on the Doppler observable must not be as significant
as that from the semi-major axis and the out-of-plane perturbations of the angles 𝑖 and Ω. If the latter
perturbations are shown to be the prevalent contribution to the LOS velocity perturbation, it could mean
that more than the absolute position of TGO it is the orientation of its orbit with respect to the Earth
which is responsible for the signature from the figure. The period of the main spectral component of
the LOS velocity signature is around 2 hr, close to the orbital period of TGO.

The same process is repeated for the LOD perturbations on the orbital elements and the LOS veloc-
ity. Figure 6.10 shows the relative perturbations of the keplerian elements. The agreement between the
GINS solution and the analytical results is better than for polar motion, especially for the eccentricity.
Still, the amplitudes of the perturbations on both 𝜔 and𝑀 are underestimated by the analytical method.
Overall, the signatures in the parameters show more complex modulations than for polar motion. This
is possibly due to the fact that for polar motion the Chandler wobble harmonic was dominant because
of its amplitude, 10 times larger than the others. All orbital elements present relative perturbations due
to LOD variations which are 2 or 3 times larger than those due to polar motion.

The perturbations on the projection of the cartesian components of the velocity along the LOS
caused by LOD variations are displayed in Figure 6.11. Here as well the two different methods show
better agreement than for the polar motion signature. With the initial conditions selected (given by the
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Figure 6.8: Signature of PM on the TGO perturbed keplerian elements, as given by ORB (blue curve) and GINS (red curve)

TGO state of epoch from the SPICE spk kernel), the signature of LOD variations on the LOS velocity
is, at its peak, about twice the maximum of the same perturbation due to polar motion. The period of
the main sinusoidal component is similar to that of the CW signature, and close to the orbital period of
TGO.

6.2.2. Extension to different orbits
The main application of the analytical method developed here is the evaluation of the MOP signatures
on different orbits and over long periods of time in a faster and lighter way compared to a numerical
propagation of the orbits. With this goal in mind, the code is expanded to allow for a grid of two pa-
rameters to be created, and then to evaluate the analytical signatures at each point of this grid. The
parameters used for the construction of the grid are in this case the eccentricity and the inclination
of the osculating orbit. Moreover, the altitude at the pericenter of the orbit is set to ℎፏፄፑ = 400 km
for all the orbits, so that the semi-major axis is given by the value of the eccentricity, according to
𝑎 = ℎፏፄፑ/(1 − 𝑒). The other three orbital elements, however, are free to vary. They are set initially all
to 0°.

In what is effectively a bi-dimensional grid search optimization of the signature of the MOP on the
LOS velocity, the quantity to maximize is set to be the maximum of the absolute value of the signature
(a curve of the kind shown in Figure 6.9).

The grid for the following figures was generated with 10 linearly spaced points for the eccentricity,
with values comprised between 0.01 and 0.5, and 10 linearly spaced points for the inclination, with
values ranging from 5° to 85°. Since the method utilized the classical Keplerian elements, the minimum
values of the eccentricity and inclinations are rigorously different than 0, in order to avoid the ambiguities
typical of circular and of equatorial orbits. The upper limit on the eccentricity values is mostly due to a
poor performance of the algorithm at high values of 𝑒. As mentioned before, the eccentricity function
in Kaula’s expression of the potential is a power series of the eccentricity. If the eccentricity is small,
the series can be truncated at the first three terms. For larger and larger eccentricities, more and more
terms of the series are needed for an accurate reconstruction of the orbit. The current version of the
algorithm implements a variable number of terms of the eccentricity series, starting from 2𝑙 + 1 up to
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Figure 6.9: Signature of PM on the TGO LOS velocity, as given by ORB (blue points) and GINS (red points)

10𝑙+1, 𝑙 being the degree of the gravity field. Higher numbers of terms in the series make the algorithm
too slow to be of any advantage with respect to a numerical propagation, which is why eccentricities
larger than 0.5 are not considered here.

The value plotted for each of the 100 points in Figure 6.12 is the maximum of the polar motion
signature on the LOS velocity. According to this plot, with the assumptions made on the values of the
four others elements of the osculating orbit, the signature of polar motion on the LOS velocity is largest
for nearly-circular orbits (inclination around 0.01) with an inclination close to about 40°. The maximum
of the signature for orbits with 𝑒 and 𝑖 close to these values is at least twice that of orbits with different
eccentricities and inclinations. Thus the orbit of TGO, with its inclination of about 74° degrees, would
not be the most sensitive one to the polar motion parameters of Mars. Yet it would be more sensitive
than many other spacecraft, which are mostly in near-polar orbits.

The same grid of values of 𝑒 and 𝑖 is used to obtain the plot in Figure 6.13, representing the maxima
of the signature in the LOS velocity caused by the LOD variations.

Additional plots of this kind can be found in Appendix B. In particular, Figure B.1 shows that the result
obtained for the PM signature does not vary significantly if the perigee altitude is set to 600 km instead
of 400 km. Similarly, from Figure B.2 it can be seen that the same maximum for the PM signature on
the LOS velocity is found even if the orbits are extended over a single 700 days arc (although in this
case the quantity plotted is the RMS of the signature, since the time steps are larger and the data more
sparse). On the other hand, Figure B.3 shows that just by fixing the values of the remaining orbital
elements to 45∘ instead of 0∘, a completely different result is obtained for the optimal orbit, which is
in that case one with high inclination and an eccentricity of about 0.3. Therefore, conclusive results
about the optimal orbital configuration for the estimation of PM and LOD cannot be inferred from the
bidimensional case. Instead, the optimization process should interest all six of the orbital elements.

6.3. TGO covariance analysis results
This section presents the results of the covariance analysis performed with Tudat, with the aim of
assessing the uncertainties of the MOP solution obtainable from TGO alone and from combination of
TGO data with those from landers. The Tudat settings and the spacecraft dynamical model are those
listed in Table 4.2. In the nominal case, the synthetic Doppler measurements from TGO are simulated
over 700 days, divided in arcs of 10 days with 2-hours overlap. The initial state of the spacecraft at each
arc is retrieved from the SPICE spk kernel. The spacecraft orbit is propagated assuming a nominal
rotation model for Mars, that is, equivalent to the one listed in the nominal rotorcc file for the GINS
and ORB executions. Hence, this rotation model includes the constant precession rate, the non-rigid
nutations, the polar motion, and the length-of-day variations, with the same parameter values (and the
same number of harmonics for the trigonometric series) as in the rotorcc file. In Section 5.2.2, the
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Figure 6.10: Signature of LOD on the TGO perturbed keplerian elements, as given by ORB (blue curve) and GINS (red curve)

orbit propagated by the Tudat application was validated through comparison with the GINS orbit, both
propagations using the nominal settings and rotation model.

The simulated measurements are then used to compute the partial derivatives with respect to the
full set of parameters to estimate, which form the elements of the information matrix. The least squares
algorithm in Tudat is stopped at the first iteration, and the outputs, including the full information ma-
trix, are fed to the Python scripts described in Section 4.2.2, which yield the final formal and consider
uncertainties.

The set of parameters to estimate is large: along with the sine and cosine amplitudes of the polar
motion components and the LOD variations, and the 𝐹 and 𝜎ኺ parameters of the nutation transfer func-
tions, the degree-2 and 3 gravity field coefficients are also estimated, because significant correlations
are expected between some of those coefficients and the rotation parameters of Mars. In addition to
this set of global parameters, the initial state and the 𝐶ፃ and 𝐶ፑ coefficients also need to be estimated
in order to ensure a correct reconstruction of the spacecraft orbit over each 10-days arc. Attempting to
solve for this complete set of parameters with just the 700 days of TGO observations leads to consider-
ably high values of the condition number for the normal matrix (𝑃ፂፎፍፃ = 1.495x1011 for the normalized
matrix), and therefore to results which are heavily affected by numerical noise. More reliable solutions
for the uncertainties of the MOP estimates are obtained by including a priori information about the pa-
rameters. However, adding a diagonal a priori covariance matrix only lowers the condition number to
𝑃ፂፎፍፃ = 1.490x1011. Further precision could be obtained by restricting the estimation to only a subset
of the parameters, and leaving the rest fixed to their a priori value, while still taking into account their
assumed uncertainties and the way those affect the estimated parameters. As explained in Section
3.3, the parameters of the latter subset will be referred to as consider parameters in the following. De-
pending on the choice of the consider parameters, the restricted normal matrix has condition numbers
as low as 𝑃ፂፎፍፃ = 1010, leading to a reduction of the numerical noise in the solution.

In order to select which parameters to estimate and which to consider, the normal matrix relative
to the complete set of unknowns is constructed. Here it is assumed that the formal errors for the
full-set solution, while degraded by numerical noise, are still representative of the order of magnitude
of the actual uncertainties of the least squares solution. Then the formal errors thus obtained are
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Figure 6.11: Signature of LOD on the TGO LOS velocity, as given by ORB (blue points) and GINS (red points)

divided by the a priori standard deviation of the corresponding parameters. Figure 6.14 shows this
ratio as computed for the global parameters. Excluded from this figure are the 4 Chandler wobble
amplitudes and the 8 amplitudes (2 for each frequency) of the LOD variations, as these parameters
are the main focus of the study. The parameters for which the resulting formal error is more than 1%
of the initial uncertainty are moved to the set of consider parameters, while the others are kept in the
parameters to estimate. The threshold is arbitrary, but the rationale behind the selection criteria is that
for the parameters for which the final uncertainty is close to the a priori one, fixing the error to the initial
estimate will not influence the covariance analysis solution considerably. On the other hand, fixing the
uncertainties of such parameters allows to reduce the total number of unknown to solve for, making
the system of normal equations potentially more stable. As indicated by the shaded area, the variables
included in the estimation are the FCN frequency and the core factor 𝐹, as well as the zonal gravity
coefficients of degree 2 and 3.

The a priori uncertainties assumed for the parameters are generally half of their nominal value,
except for the initial state parameters (1 km and 1 m/s on the position and the velocity components,
respectively) and the static gravity coefficients, for which the uncertainties published alongside the
MRO120D solution are used. Moreover, the a priori errors of the PM and LOD amplitudes are set to
10 mas when their nominal value is lower than 20 mas, to avoid having uncertainties lower than the
nominal ones shown in Table 2.1. What is told by Figure 6.14, namely that the 𝐶ኼኺ and 𝐶ኽኺ solutions
could be reduced by 100 times using 700 days of TGO data alone, is quite unrealistic. However, no
gravity coefficients of degree higher than 3 were estimated. As mentioned in Section 2.3.3, even and
odd zonal gravity coefficients show high correlations among them, because they perturbation on the
orbit may have the same phase angle (Eq. 4.15). Therefore, estimating the full gravity field should lead
to more realistic formal errors for the zonal gravity coefficients. Similar is the situation for the 𝐹 and 𝜎ኺ
parameters, since their uncertainties are 10 lower than the expected by RISE after 1 year of operations
(Folkner et al., 2018). While here as well the case could be made that in a real estimation, correlation
with other parameters would raise the formal errors considerably, a software error cannot be excluded.
The handling of the information matrix by the Python scripts, leading to the normal matrix and conse-
quently, after inversion, the formal uncertainties, was verified in Section 5.1.2. Moreover, the results
shown here were found to remain unchanged when singular value decomposition was employed for
the inversion of the normal matrix. Thus, an eventual problem could be in the Tudat application cre-
ated for the project. The computation of the partial derivatives was also verified (although not for these
parameters), and the implementation of the TGO dynamical model and Mars nominal rotation model
was validated with GINS (Section 5.2.2). Hence, the source of these overly optimistic uncertainties is
still undetected.

The next sections will present the formal uncertainties solutions for the subset of MOP included in
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Figure 6.12: Maximum signature of PM on the LOS velocity computed with ORB, as a function of the orbit eccentricity and
inclination, assuming a fixed pericenter altitude of 400 km

the parameters to estimate, with and without the contribution of the consider parameters thus selected.
Specifically, Section 6.3.1 describes the formal and consider uncertainties of the Chandler wobble ob-
tained in the nominal TGO estimation, and similar results for LOD variations and the FCN amplification
of the nutations are found in Sections 6.3.2 and 6.3.3, respectively. Section 6.3.4 discussed the effect
of including TGO range measurements in the dataset, while Section 6.3.5 reports the effects of different
changes in the nominal estimation settings on the final uncertainties. Finally, Section 6.3.6 presents a
comparison of the TGO only solution with that from an ideal lander, and with the combined solution of
TGO and lander data.

6.3.1. Chandler wobble
This section presents the formal error solutions obtained for the amplitudes of the Chandler wobble
harmonic of the Martian polar motion, assuming a period of 200 d. The results for the 𝑋 and 𝑌 com-
ponents are shown in Figure 6.15. The solid lines represent the evolution of the formal errors over
the tracking period when the uncertainties of the consider parameters are not taken into account. The
dashed lines, instead, show the formal error solutions including the effect of the consider parameters.
The final results, after the full 700 days of TGO tracking, are displayed in Table 6.2, along with the a
priori values and errors.

The consider uncertainties are substantially larger than those obtained when ignoring the consider
parameters uncertainties. The formal errors decrease steadily with the increasing number of tracking
data, due to the increasing number of observations. This is typical of the pure formal uncertainties,
which, assuming that the addition of data does not affect the correlations between the parameters,
depend on the number of measurements 𝑁 approximately as √1/𝑁 (Dirkx et al., 2014). On the other
hand, the consider uncertainties decrease steeply during the first 200 days of tracking, and then plateau
around values one order of magnitude larger than the formal uncertainties. The steep initial decrease
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Figure 6.13: Maximum signature of LOD on the LOS velocity computed with ORB, as a function of the orbit eccentricity and
inclination, assuming a fixed pericenter altitude of 400 km
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Figure 6.14: Ratio of the formal errors with the full set of unknowns and the a priori uncertainties of the unknowns themselves.
The shaded area indicates the subset of parameters which is added to those to estimate, leaving all the others as consider
parameters.

is due to the ability of the filter to decorrelate more and more the CW amplitudes from the consider
parameters as the number of observations increase and the variability of configurations by which these
data are obtained increases. Once the full period of the signal is sampled, and in the case of the CW it
is indeed 200 days, most of the correlations are resolved and the consider uncertainties decrease less
rapidly.

Figure 6.16 plots the rows of the perturbation matrix relative to each CW amplitude. The perturba-
tion matrix is computed from Eq. 3.48, by multiplying the sensitivity matrix (Eq. 3.47) by a diagonal
matrix containing the formal errors assumed for the consider parameters. The elements of each row
of the perturbation matrix represent the contribution of each consider parameter to the total consider
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Figure 6.15: Formal error solutions for the CW amplitudes without (solid lines) and including (dashed lines) the consider param-
eters uncertainties in the estimation

Parameter A priori [mas] Formal error [mas]
Value Error Without CP With CP

𝑋፜ፂፖ 54.6551 27.3275 0.5068 1.9602
𝑋፬ፂፖ 0.7346 10 0.5154 0.9760
𝑌፜ፂፖ -33.2059 16.6029 0.4521 1.7174
𝑌፬ፂፖ -7.4894 10 0.4593 1.0724

Table 6.2: Chandler wobble amplitudes: a priori values and uncertainties, and formal errors with and without consider parameters
after 700 days

uncertainty of the estimated parameter corresponding to the row. In particular, for each amplitude,
the difference between the consider uncertainty and the pure formal error is equal to the RSS of the
contributions from each of the consider parameters (i.e. the elements of the perturbation matrix row, as
plotted in the figure). It can be seen that for both the 𝑋 and 𝑌 components, most of the contribution to
the solution is due to the uncertainties on the amplitudes of the corresponding polar motion components
at the other two frequencies, and to the error on the tesseral and sectorial gravity field coefficients of
degree 2. In particular, the 𝑋 component is overall more sensitive to the uncertainty in the 𝐶ኼኻ and 𝐶ኼኼ
coefficients, while the contribution of the gravity field uncertainties to the 𝑌 component is mostly due to
the 𝑆ኼኻ and 𝑆ኼኼ coefficients. The tesseral coefficients are non-zero when the body-fixed frame and the
frame used for the expression of the gravity potential are oriented differently, which is the case for a
mismodeling of polar motion. Specifically, using approximated formulas from (Petit and Luzum, 2010):

𝐶ኼኻ(𝑡) = √3𝑋ፏ(𝑡)𝐶ኼኺ − 𝑋ፏ(𝑡)𝐶ኼኼ + 𝑌ፏ(𝑡)𝑆ኼኼ
𝑆ኼኻ(𝑡) = −√3𝑌ፏ(𝑡)𝐶ኼኺ − 𝑌ፏ(𝑡)𝐶ኼኼ − 𝑋ፏ(𝑡)𝑆ኼኼ

(6.2)

These expressions are a simplification of the results that the algorithms in Appendix A would give (as
discussed in Kudryavtsev, 1997). They show how the polar motion parameters are related to the
tesseral and sectorial gravity field coefficients. Hence, correlations between these spherical harmonic
coefficients and the polar motion amplitudes are expected.

6.3.2. Length-of-day variations
Figure 6.17 shows the evolution of the formal errors for the amplitudes of the 4 LOD variations harmon-
ics taken into account. As in the previous section, the formal errors are displayed as solid lines, while
the consider uncertainties are represented by dashed lines. Table 6.3 shows the values of the a priori
values and uncertainties and the two sets of solutions with the full 700 days of tracking data.

As with the CW amplitudes, the formal errors are a too optimistic estimate of the true uncertainties
of the parameters, and the introduction of the consider parameters leads to an increase of final uncer-
tainties, albeit not as large as the previous case. The formal errors generally display an initial steep
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Figure 6.16: Perturbation matrix elements for the CW variations amplitudes

decrease followed by a further decrease with the days of tracking which is due only to the addition
of observations. After 700 days, all formal errors converge to similar final values, with the consider
uncertainties being around twice this value or less.
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Figure 6.17: Formal error solutions for the LOD amplitudes without (solid lines) and including (dashed lines) the consider pa-
rameters uncertainties in the estimation

The rows of the perturbation matrix corresponding to each amplitude of the LOD variations are
plotted in Figure 6.18. Overall, most of the contribution to the consider uncertainties is due to the error
on the spherical harmonic coefficients of degree 2 and order 2. These coefficients are indeed the most
representative of a mismodelling of the rotation of the planet around the rotation axis, thus significant
correlations between 𝐶ኼኼ and 𝑆ኼኼ and the LOD variations amplitude are expected.
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Parameter A priori [mas] Formal error [mas]
Value Error Without CP With CP

𝜙፜ኻ 481 240.5 0.98941 1.9672
𝜙፬ኻ -331 165.5 1.0064 2.3770
𝜙፜ኼ -103 51.5 1.0117 1.3106
𝜙፬ኼ -101 50.5 0.9942 1.8451
𝜙፜ኽ -35 17.5 0.9921 1.1102
𝜙፬ኽ -4 10 1.0317 1.1442
𝜙፜ኾ -10 10 0.9582 1.1762
𝜙፬ኾ -8 10 1.0634 1.1310

Table 6.3: LOD variations amplitudes: a priori values and uncertainties, and formal errors with and without consider parameters
after 700 days
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Figure 6.18: Perturbation matrix elements for the LOD variations amplitudes

6.3.3. Nutations transfer function parameters
The evolution of the 𝐹 and 𝜎ኺ uncertainties as a function of the days from the start of the data acquisition
are displayed in Figure 6.19. The values of the errors after the full 700 days of tracking can be found in
Table 6.4. The impact of the consider parameters is smaller for these parameters than for the CW and
the LOD variations amplitudes. Both the formal and the consider uncertainties results are very close
to the relative values shown in Figure 6.14 for the solution without a priori constraints, being close to
1% and 0.1% of the a priori error, respectively. As mentioned when commenting Figure 6.14, these
values are almost two orders of magnitude too low compared to results from other studies (37% and
3% relative to the same a priori errors, according to Folkner et al., 2018), and in light of the fact that
these parameters have never been estimated from radio-tracking data.

Parameter A priori Formal error
Value Error Without CP With CP

𝐹 [-] 0.07 0.035 3.7210e-4 3.9233e-4
𝜎ኺ [deg/day] 1.5 0.75 9.2969e-4 9.8728e-4

Table 6.4: Nutation transfer function parameters: a priori values and uncertainties, and formal errors with and without consider
parameters after 700 days

The contribution of the each consider parameter to the final consider covariance of the two nuta-
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Figure 6.19: Formal error solutions for the FCN parameters without (solid lines) and including (dashed lines) the consider pa-
rameters uncertainties in the estimation

tion function parameters is represented in Figure 6.20, which plots the rows of the perturbation matrix
relative to the two estimated MOP. The contributions to the consider covariance of the polar motion
amplitudes have the same shape for both parameters, with a peak at the sine amplitude of the semi-
annual harmonic. The semiannual period is 343.5 days, while the one hypothesized for the FCN is
240 days. Hence, while the two periods are still very far apart, the interactions between the signals
could explain why the effect of the semiannual polar motion component is larger than the annual one.
As for the gravity field, most of the contribution to the consider covariance is due to the 𝐶ኼኻ and 𝐶ኼኼ
coefficients for 𝐹, and to 𝑆ኼኼ for both parameters.
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Figure 6.20: Perturbation matrix elements for the FCN parameters

6.3.4. Impact of range measurements
All the results presented above are obtained using only two-way Doppler data. Here the impact of the
addition of range measurements to the set of Doppler observations is tested. The range measure-
ments are assumed to be roughly 5 times less frequent than the Doppler ones, with one data point
every 5 minutes. The relative variation of the formal error solution for the CW and the LOD variations
amplitudes is shown in Figures 6.21 and 6.22, respectively. On the y-axis in both figure is plotted the
difference between the formal errors with both Doppler and range data and those with Doppler data
only, expressed as a percentage of the Doppler-only solution. As usual, solid lines are relative to the
pure formal errors, while dashed lines indicate quantities related to the consider uncertainties. The
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variations in the solution following the addition of range measurements are well below 1% for both sets
of MOP. This holds true whether the consider parameters are included or not. Such a result was to
be expected from the comparison between the signatures of these parameters on the range observ-
ables (just above the noise level), and those of the same parameters on the Doppler measurements,
as shown in Section 6.1. The same conclusion could also have been reached using the analytical ap-
proach in Dirkx et al. (2018), for the comparison of the range and range-rate sensitivity to a parameter.
While the method is valid in general, the specific formula derived these applies to parameters which
lead to sinusoidal partials for the range data, of the type 𝜕𝜌/𝜕𝑝 = 𝐴 sin𝜔𝑡 (where 𝜌 is the range observ-
able and 𝑝 the parameter. The partials in the instantaneous range-rate are simply the first derivative of
those in the range, so that for such a parameter 𝜕𝜌̇/𝜕𝑝 = 𝐴𝜔 cos𝜔𝑡. Then, the ratio of the sensitivity of
the Doppler to the parameter compared to that of the range measurements is proportional to the figure
of merit (Dirkx et al., 2018):

Ξ፪ =
𝜎᎞
𝜎᎞̇
𝜔 (6.3)

with 𝜎᎞ and 𝜎᎞̇ being the noise levels of the range and Doppler measurements, respectively.
The signatures of polar motion and LOD variations on the LOS velocity of TGO, shown in Figures 6.9

and 6.11 can, in a first approximation (since they represent the variation of the range-rate observable
for a 100%-variation of the parameter), be taken as representative of the behaviour of the range-rate
partials. Both curves show a main sinusoidal component with a period of about 2 hours, modulated
mainly by a trend and another sinusoidal, which make the amplitude increase and oscillate with time.
However, these two additional effects should not affect the validity of Eq. 6.3 (at least for the trend, a
confirmation is given by Dirkx et al., 2018). Hence, assuming a range noise at the 1 m level and a
Doppler noise of 0.1 mm/s, given 𝜔 = 2𝜋/2 hr = 8.73 s-1, the figure of merit from Eq. 6.3 is Ξ፪ = 8.73.
Hence, Doppler data is roughly 10 times more sensitive than range data for these parameters.
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Figure 6.21: Relative variation of the CW amplitudes uncertainties following the addition of range data to the Doppler

6.3.5. Stability of the solution
In order to establish to what extent the solution obtained is dependent on the settings chosen, different
estimation conditions are tested, and the resulting formal errors are compared to those from the nomi-
nal case. The variations of the formal error solutions both with and without the inclusion of the consider
parameters are expressed, for each estimated parameter discussed above, in terms of the ratio be-
tween the case-specific solution and the nominal one. In the following, several cases are presented,
characterized by different estimation models and assumptions.

Case 1: Inclusion of Mars occultations in the viability conditions
The observations used in the nominal estimation case include those at times where Mars is along the
LOS, between TGO and the ground station. Clearly, in real tracking conditions, no Doppler measure-
ments are produced at these times, since there is no direct radio link between the spacecraft and the
Earth. However, an unsolved software error causes the inclusion of Mars occultations in the Tudat via-
bility conditions to entail the removal about twice the points normally affected by the type of occultation
mentioned above. The observations removed are not only those obtained when Mars is on the LOS
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Figure 6.22: Relative variation of the LOD amplitudes uncertainties following the addition of range data to the Doppler

and in front of TGO as seen from Earth, but also those corresponding to the opposite configuration of
the spacecraft and Mars on the LOS, with TGO in front of Mars as seen from Earth. With this latter
geometry, the radio link with the spacecraft is unobstructed, and measurements can be generated.
Therefore, while removing the Mars occultations from the data selection criteria leads to optimistic re-
sults, because of a larger number of data compared to what is achievable in real conditions, including
them, with the current state of the scripts used, yields conservative solutions, at least for what concerns
this particular aspect.

The ratio between the conservative solution, given by a synthetic dataset from which those points
where Mars is on the LOS are excluded, and the nominal one are plotted in Figure 6.23. The solid line
connects the ratios between the two formal errors for each MOP, while the dashed line connects ratios
of the consider covariances for the two cases. The ratios between the formal errors are larger than 1
for all the parameters. Thus, the formal errors obtained when the Mars occultations are included in the
viability conditions are larger than the nominal solutions, as expected from the inverse proportionality
of the formal uncertainties and the square root of the number of data points. The ratios for the consider
uncertainties are more erratic, suggesting sigmas smaller than for the nominal case for three different
parameters. Nevertheless, the formal error ratios are close to unity, and the largest deviation in the
consider errors is 150% of the nominal solution. Hence, the lack of removal of data points corresponding
to an occultation is here judged to not compromise the reliability of the nominal solution.

Case 2: No overlap between consecutive arcs
In this case, the 2-hours overlap between one arc and the next is removed, making the end time of one
arc correspond to the start time of the one after. The overlap removal degrades the solution for all the
parameters, as shown by the errors ratios in Figure 6.24, which are all larger than 1. Again, the solid
line connects points corresponding to the formal errors without consider parameters, and the dashed
line connects ratios between errors which include the consider parameters, both curves showing similar
behaviour. The 𝐹𝐶𝑁 frequency presents a large error ratio compared to the other parameters, yet all
the deviations stay well below 1% of the nominal errors.

Case 3: Variation of the measurements errors
Here, the standard deviation of the Gaussian noise added to the simulated measurements is increased
from the already conservative value of 0.1mm/s to 0.5mm/s. Such a noise value is about an order of
magnitude larger than what is currently achievable with an X-band radio link, and its use in a realistic
scenario can be justified possibly for arcs with very low SEP angles, where the quality of the signal
is severely degraded by solar plasma (see Eq. 3.15 and the related discussion). Still, this new noise
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Figure 6.23: Uncertainties of the estimation case including Mars occultations relative to the nominal solution
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Figure 6.24: Uncertainties of the estimation case without arc overlap relative to the nominal solution

value is not used as much to get realistic estimates of the uncertainties, but to test the relation between
the (single) measurement error and the resulting formal error. From the formulas in Section 3.2, it can
be seen that without a priori information, the ratio between the formal errors obtained using two different
measurements sigmas is equal to the ratio of these sigmas. In this case, this ratio is 5. Indeed, most the
formal error ratios shown in Figure 6.25 are around the value of 5 for most of the parameters, with some
exceptions which are presumably due to the influence of the a priori covariance on the solution. Thus,
approximate values of the formal errors corresponding to a different noise level of the measurements
can be inferred by scaling the nominal errors by the ratio of the two noise levels. In particular, a Doppler
noise of 0.05 mm/s should lead to formal uncertainties which are roughly half of the values presented
here for the nominal case.

Case 4: Reduced arc length
Up until now, arcs of 10 days of length have been considered. Figure 6.26 shows the effect on the
estimated uncertainties of reducing this length, by dividing the whole tracking period into arcs of 5
days. While the formal errors (solid line) of the Chandler wobble parameters remain more or less
unchanged, those of the LOD variations amplitude are double the nominal solution, and those of the
non-rigid nutations transfer function parameters become three times as large as in the nominal case.
The consider uncertainties ratios are close to those of the formal errors, except for the LOD variations
parameters, where they are up to two times the ratios of the errors without consider parameters.
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Figure 6.25: Uncertainties of the estimation case with measurements error 5 times larger than the nominal, relative to the nominal
solution
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Figure 6.26: Uncertainties of the estimation case with arcs of 5 days relative to the nominal solution

Case 5: Reduced tracking time per day
Here the number of hours in which the measurements are taken each day is varied from the nominal
value of 12 hr. Figure 6.27 displays the error ratios relative to a tracking window of maximum 10 hours
each day, always from the New Norcia ground station. The same results are presented in Figure 6.28,
but for an even shorted maximum daily tracking time of 6 hours, which is generally half the value of
the nominal case. A shorter tracking time means a smaller number of observations, and thus larger
formal errors. For both tracking lengths, however, the change in the uncertainties is at most 120% of
the nominal value.

Case 6: Estimation of Mars variable gravity field
The zonal gravity field coefficients 𝐶ኼኺ and 𝐶ኽኺ estimated in the nominal case are assumed to be global
parameters, meaning that only the static gravity field of Mars is estimated. Nonetheless, the same
processes tied to some of the MOPs, like the seasonal mass exchanges between the ice caps and
the atmosphere, are also responsible for variations in the gravitational potential of Mars, due to the
mass redistribution. This variability of the gravity is mostly expressed in the zonal spherical harmonic
coefficients (Karatekin et al., 2005). Hence, substantial correlations are expected between the variable
zonal gravity coefficients and, for example, LOD variations amplitudes. The spacecraft accelerations
due to the gravitational potential are linear in the spherical harmonic coefficients, and so are the Doppler
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Figure 6.27: Uncertainties of the estimation case with 10 hr/day of tracking, relative to the nominal solution

XcCW XsCW YcCW YsCW ϕc1 ϕs1 ϕc2 ϕs2 ϕc3 ϕs3 ϕc4 ϕs4 F σ0
Estimated parameter

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Fo
rm

al
 e

rro
r r

at
io

Formal
Consider

Figure 6.28: Uncertainties of the estimation case with 6 hr/day of tracking, relative to the nominal solution

partials. Thus, the same elements of the information matrix used in the estimation of the static zonal
coefficients can be used for the estimation of the time-varying coefficients. In this estimation case, the
𝐶ኼኺ and 𝐶ኽኺ coefficients are treated as local parameters, meaning they are estimated at each arc. This
is done by substituting the information matrix column corresponding to each zonal coefficient with as
many columns as there are arcs, and distributing the partials from the removed column over these new
columns according to the arc to which each measurement belongs. The nominal values and a priori
uncertainties of the zonal coefficients are the same at every arc, and equal to those of the static gravity
field (Konopliv et al., 2016).

The ratios thus obtained are shown in Figure 6.29. While the formal errors of both the polar motion
and the LOD variations parameters (which are thought to be strongly correlated to the variable gravity
field) stay close to the nominal solutions, the errors for the non-rigid nutation parameters are more than
10 times the nominal solutions. This means that a more realistic prediction for these parameters is
obtained by estimating them together with the variable gravity field coefficients.

6.3.6. Comparison with lander estimates
The TGO Doppler data are now combined with those from a single lander on Mars, in order to assess
the impact of the orbiter observations on the precision of the joint solution. The lander properties are
chosen in such a way as to replicate as closely as possible those predicted for LaRa. Therefore, the
landing site is fixed at 18.20∘ N of latitude and 335.45∘ E of longitude on the Martian surface. The radio
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Figure 6.29: Uncertainties of the estimation case including Mars variable gravity field relative to the nominal solution

link with Earth is assumed to be in the X-band, hence the same noise level as TGO data is taken for
the simulated two-way Doppler observations from the lander. Like for TGO, in these simulations the
lander is tracked by the sole New Norcia ground station. The observation schedule consists of 1 hour of
tracking per week, with one measurement point per minute. The complete set of lander measurements
spans the same 700-days period as the TGO data used for the previous results, which is a little more
than 1 Martian year.

First, the formal errors resulting from the lander data alone are computed. The estimated parame-
ters for the lander include the same set of MOP estimated with TGO, as well as the cartesian position
of the lander. As in the orbiter case, the amplitudes of the first two polar motion frequencies are moved
to the consider parameters. Therefore, a total of 17 parameters is estimated from the lander observa-
tions, while the number of consider parameters is 8. The a priori errors for the estimated MOP are once
again equal to half their nominal value, or equal to the minimum value of 10 mas. As for the lander
position components, instead, their a priori uncertainty is set to 1 km.

Table 6.5 lists, along with the a priori statistics, the formal errors with and without the consider
parameters of the CW amplitudes, the LOD variations amplitudes, and the rest of the parameter set. All
the uncertainties are obtained with synthetic data from the full tracking period of 700 days. The last two
columns of the table list the solution obtained from synthetic RISE data by Folkner et al. (2018), in terms
of the nominal values used in the simulation and the formal errors. These formal uncertainties are in
general agreement with those predicted for RISE, if not for too optimistic estimates of the LOD variations
amplitudes, which are 2 to 3 times larger than those provided there. This despite the higher latitude of
the lander with respect to that of RISE, which should yield a worse sensitivity LOD variations (LeMaistre
et al., 2012), and the higher amount of data for RISE, given its 1-hr per day tracking schedule, compared
to the 1-hr per week assumed here. However, the RISE estimation included parameters not part of
those estimated here, above all the precession rate of Mars, which may justify the degradation of the
solution compared to the one obtained here. Moreover, the noise profile in the RISE simulation was
more complex than the white noise used here, with time-correlated noise due to solar plasma. This
more realistic noise budget may also contribute to the larger values of the RISE uncertainties for the
LOD variations amplitudes.

Of particular interest is the error on the nutation transfer function parameters, which are about twice
as large as those expected from RISE, but are still a more reasonable result than the excessively
optimistic estimates obtained with the orbiter simulations. In this case, the higher frequency of the
RISE observations could help explain the differences between the two solutions (Table 6.4).

The combination of orbiter and lander data can be justified by looking at the correlation matrices of
the orbiter-only solution and the lander only-solution, as shown in Figures 6.30 and 6.31, respectively.
The TGO estimated parameter show much lower correlations than in the lander estimation. This is
thanks to the richer geometry relative to Mars provided by the orbiter, allowing to better separate the
signals in the Doppler of different parameters.

Thus, the orbiter and lander datasets are merged, and the POD algorithm is applied to this full set
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Parameter Unit A priori Formal error Folkner et al. (2018)
Value Error Without CP With CP Nominal Uncertainty

𝑋፜ፂፖ mas 54.6551 27.3275 4.5182 4.5239 - -
𝑋፬ፂፖ mas 0.7346 10 3.6170 3.6221 - -
𝑌፜ፂፖ mas -33.2059 16.6029 2.5334 2.5356 - -
𝑌፬ፂፖ mas -7.4894 10 2.3423 2.3440 - -
𝜙፜ኻ mas 481 240.5 2.9406 3.0453 481 6
𝜙፬ኻ mas -331 165.5 1.7178 1.7879 -331 4
𝜙፜ኼ mas -103 51.5 2.4864 2.5512 -103 5
𝜙፬ኼ mas -101 50.5 2.4427 2.6000 -101 4
𝜙፜ኽ mas -35 17.5 2.0229 2.0242 -35 4
𝜙፬ኽ mas -4 10 2.0299 2.0326 -4 3
𝜙፜ኾ mas -10 10 1.6138 1.6197 -10 2
𝜙፬ኾ mas -8 10 1.7965 1.7971 -8 2
𝑋 m 2920272 1000 0.0173 0.0175 - -
𝑌 m -1350573 1000 0.0234 0.0235 - -
𝑍 m 1066231 1000 19.0081 19.0083 - -
𝐹 - 0.07 0.035 0.0270 0.0282 0.07 0.013
𝜎ኺ deg/day 1.5 0.75 0.0473 0.0490 1.5 0.023

Table 6.5: Lander-only solution: a priori values and uncertainties, and formal errors with and without consider parameters after
700 days of tracking. The last column reports the accuracy expected from RISE on the LOD variations and FCN parameters, as
obtained by Folkner et al. (2018)

X
c

CW
X
s

CW
Y
c

CW
Y
s

CW
�
c

1
�
s

1
�
c

2
�
s

2
�
c

3
�
s

3
�
c

4
�
s

4 F �0

X
c

CW

X
s

CW

Y
c

CW

Y
s

CW

�
c

1

�
s

1

�
c

2

�
s

2

�
c

3

�
s

3

�
c

4

�
s

4

F

�0

1.000.010.060.010.010.010.020.000.100.010.020.080.030.00

0.011.000.010.020.010.010.010.000.000.080.070.040.010.02

0.060.011.000.000.010.000.040.000.120.050.070.070.020.00

0.010.020.001.000.030.010.020.030.030.130.090.070.010.00

0.010.010.010.031.000.060.100.050.000.030.040.020.010.00

0.010.010.000.010.061.000.040.070.110.020.030.070.010.00

0.020.010.040.020.100.041.000.030.030.040.040.100.020.02

0.000.000.000.030.050.070.031.000.080.140.050.030.040.00

0.100.000.120.030.000.110.030.081.000.020.100.010.010.01

0.010.080.050.130.030.020.040.140.021.000.060.100.010.03

0.020.070.070.090.040.030.040.050.100.061.000.100.010.01

0.080.040.070.070.020.070.100.030.010.100.101.000.020.01

0.030.010.020.010.010.010.020.040.010.010.010.021.000.51

0.000.020.000.000.000.000.020.000.010.030.010.010.511.00

Figure 6.30: Correlations between the MOP estimated as part
of the TGO solution
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of the lander solution
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of observations. This is achieved by combining the two information matrices. The parameters solved
for in the joint estimation are the states of TGO at the beginning of each arc, the aerodynamic drag
and solar radiation pressure coefficients of TGO for each arc, the cartesian position of the lander, and
the MOP estimated in the previous results. As before, the amplitudes of the annual and semiannual
harmonics of the forced polar motion are taken as consider parameters. For simplicity, there is no
estimation of the Mars gravity field, although this means that the orbiter contribution to the final so-
lution will be overestimated. Hence, the TGO information matrix has a smaller number of columns.
On the other hand, three columns of zeroes are added to this matrix, representing the partials of the
TGO observable with respect to the lander position. In the same way, columns of zeros are added to
the lander information matrix, one for each of the states and surface-forces coefficients estimated for
TGO. Consequently, the two information matrices have the same number of columns, and are stacked
vertically to generate the information matrix for the joint estimation. The two matrices are stacked by
using the same weight, as the noise level of the orbiter and lander measurements are assumed to be
the same.

The solutions for the MOP and the lander position, as estimated from the full combined dataset, are
listed in Table 6.6. The formal errors for the CW amplitudes are very close to those part of the TGO-only
solution (Table 6.2), due to the lower sensitivity of the lander to polar motion. The formal uncertainties
for the LOD variations amplitudes are instead about 10% smaller than those obtained exclusively from
the spacecraft measurements (Table 6.3). The final formal errors for the 𝐹 and 𝜎ኺ parameters are again
unrealistically low, and very close to the orbiter-only solution (Table 6.4). In the same Table, it can be
seen that the errors on the lander position are smaller than for the lander-only solution (Table 6.5),
because in the combined solution the other parameters are known with higher accuracy.

Parameter Unit A priori Formal error
Value Error Without CP With CP

𝑋፜ፂፖ mas 54.6551 27.3275 0.4994 1.1568
𝑋፬ፂፖ mas 0.7346 10 0.5087 0.7116
𝑌፜ፂፖ mas -33.2059 16.6029 0.4326 0.9614
𝑌፬ፂፖ mas -7.4894 10 0.4416 0.6067
𝜙፜ኻ mas 481 240.5 0.8451 1.0170
𝜙፬ኻ mas -331 165.5 0.7834 0.8263
𝜙፜ኼ mas -103 51.5 0.8247 0.9232
𝜙፬ኼ mas -101 50.5 0.7947 0.9721
𝜙፜ኽ mas -35 17.5 0.8007 0.8088
𝜙፬ኽ mas -4 10 0.8176 0.8378
𝜙፜ኾ mas -10 10 0.7805 0.8006
𝜙፬ኾ mas -8 10 0.8366 0.8480
𝑋 m 2920272 1000 0.0151 0.0152
𝑌 m -1350573 1000 0.0155 0.0164
𝑍 m 1066231 1000 17.4700 17.6470
𝐹 - 0.07 0.035 3.5770e-4 4.0000e-4
𝜎ኺ deg/day 1.5 0.75 9.2961e-4 9.6641e-4

Table 6.6: Lander and TGO combined solution: a priori values and uncertainties, and formal errors with and without consider
parameters after 700 days of tracking.

Given the equal weighting of the two datasets, the combined solution for the MOP is led by the heav-
ily optimistic results of TGO (as discussed in Section 6.3.3). However, both the consider uncertainties
and the errors obtained when including the variable gravity in the estimation, suggest that in reality the
errors may be one order of magnitude larger than the nominal solution. For this reason, another com-
bined estimation is performed, this time weighting the two datasets differently. In particular, the noise
level of the TGO observations is raised tenfold, while that for the lander is kept the same. The evolution
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over time of the uncertainties of the estimated parameters resulting from this new dataset is presented
in Figures 6.35 to 6.34. The corresponding final uncertainties are listed in Table 6.7. Rescaling the
information matrices when combining data from different orbiters and landers is a common practice in
the processing of real data (Konopliv et al., 2016; Kuchynka et al., 2014). In particular, the factors used
by Konopliv et al. (2016) for the rescaling of orbiter data in the MRO120D solution are between 10 and
15, hence the same order of magnitude as the one used here. Konopliv et al. (2016) also rescaled
the lander data, by a factor of 15. However, the radio-tracking data from LaRa will be whitened, and
no meaningful systematic errors are expected in the real case (Le Maistre et al., Submitted), which is
why the weighting of the lander observation in this new combined dataset is kept to 1. The weighting
factors assumed here are more or less arbitrary values. More accurate scale factors for each set of
measurements can be obtained with techniques such as the Helmert’s method (Sahin et al., 1992),
which is an iterative method solving for the optimal weighting by comparison of the a priori observation
errors and the post-fit residuals. However, because of time constraints, it was not possible to operate
a similar analysis for the combination of the two simulated datasets.

The results of the weighted solution are discussed in Chapter 7, as they are considered the main
(numerical) results of this project.
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Figure 6.32: Formal error solutions for the CW amplitudes with (solid lines) and without(dashed lines) including the consider
parameters uncertainties in the estimation, as obtained from the weighted combined dataset
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Figure 6.33: Formal error solutions for the LOD amplitudes with (solid lines) and without(dashed lines) including the consider
parameters uncertainties in the estimation, as obtained from the weighted combined dataset
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Figure 6.34: Formal error solutions for the nutation amplification parameters, with (solid lines) and without(dashed lines) including
the consider parameters uncertainties in the estimation, as obtained from the weighted combined dataset
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lines) including the consider parameters uncertainties in the estimation, as obtained from the weighted combined dataset
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Parameter Unit A priori Formal error
Value Error Without CP With CP

𝑋፜ፂፖ mas 54.6551 27.3275 4.2390 4.2450
𝑋፬ፂፖ mas 0.7346 10 3.6011 3.6057
𝑌፜ፂፖ mas -33.2059 16.6029 2.4315 2.4246
𝑌፬ፂፖ mas -7.4894 10 2.3337 2.3353
𝜙፜ኻ mas 481 240.5 2.8582 2.7114
𝜙፬ኻ mas -331 165.5 1.6188 1.6108
𝜙፜ኼ mas -103 51.5 2.4161 2.2805
𝜙፬ኼ mas -101 50.5 2.2230 2.1940
𝜙፜ኽ mas -35 17.5 1.9968 1.8919
𝜙፬ኽ mas -4 10 1.9890 1.4089
𝜙፜ኾ mas -10 10 1.5963 1.5278
𝜙፬ኾ mas -8 10 1.7676 1.5537
𝑋 m 2920272 1000 0.0170 0.0172
𝑌 m -1350573 1000 0.0226 0.0227
𝑍 m 1066231 1000 18.9959 19.0000
𝐹 - 0.07 0.035 0.0215 0.0221
𝜎ኺ deg/day 1.5 0.75 0.0416 0.0427

Table 6.7: Lander and TGO combined and weighted solution: a priori values and uncertainties, and formal errors with and without
consider parameters after 700 days of tracking. The orbiter data is rescaled by a factor of 10

For better clarity, Table 6.8 lists the formal errors (without consider parameters) obtained from the
four different datasets: the orbiter measurements, the lander measurements, the combination of lander
and orbiter data, and the combined dataset with weighting.

Parameter Unit A priori Formal error
Value Error TGO Lander Combined Weighted

𝑋፜ፂፖ mas 54.6551 27.3275 0.5068 4.5182 0.4994 4.2390
𝑋፬ፂፖ mas 0.7346 10 0.5154 3.6170 0.5087 3.6010
𝑌፜ፂፖ mas -33.2059 16.6029 0.4521 2.5334 0.4326 2.4315
𝑌፬ፂፖ mas -7.4894 10 0.4593 2.3423 0.4416 2.3337
𝜙፜ኻ mas 481 240.5 0.9894 2.9406 0.8451 2.8582
𝜙፬ኻ mas -331 165.5 1.0064 1.7178 0.7834 1.6188
𝜙፜ኼ mas -103 51.5 1.0117 2.4864 0.8247 2.4161
𝜙፬ኼ mas -101 50.5 0.9942 2.4427 0.7947 2.2230
𝜙፜ኽ mas -35 17.5 0.9921 2.0229 0.8007 1.9968
𝜙፬ኽ mas -4 10 1.0317 2.0299 0.8176 1.9890
𝜙፜ኾ mas -10 10 0.9582 1.6138 0.7805 1.5963
𝜙፬ኾ mas -8 10 1.0634 1.7965 0.8366 1.7676
𝐹 - 0.07 0.035 3.7210e-4 0.0270 3.5770e-4 0.0221
𝜎ኺ deg/day 1.5 0.75 9.2969e-4 0.0473 9.2961e-4 0.0416

Table 6.8: MOP estimation: a priori values and uncertainties, and formal errors without consider parameters after 700 days of
TGO-only tracking, of lander-only tracking, of TGO-lander combined non-weighted observations, and of TGO-lander combined
weighted observations





7
Discussion

Here the principal results shown in Chapter 6 are examined, in order to gain insight on their significance
and plausibility and their connection to the research question and subquestions, which will be answered
in Chapter 8. First, Sections 7.1, 7.2, and 7.3, discuss the impact of TGO data on the uncertainties
estimated from the lander-orbiter combined datasets for the CW amplitudes, the LOD amplitudes, and
the FCN parameters, respectively. Then, Sections 7.4 and 7.5 investigate how the conclusions from the
first three sections affect the knowledge about the interior and the atmosphere of Mars, respectively.

7.1. Impact of TGO on the CW solution
Once rescaled by a factor of 10 (to take into account the fact that the TGO solution is expected to be
about one order of magnitude larger than that obtained from the Tudat, as discussed in Section 6.3.6),
the formal uncertainties of the CW amplitudes given by the orbiter measurements are close to those
corresponding to the lander-only solution, as shown in Table 7.1. In particular, the two solutions differ at
the decimal level for the 𝑋 component of polar motion, while for the 𝑌 component the orbiter estimates
are almost twice those from the lander. A lander detects the wobble through a change in its distance
from the rotation axis of the planet (Konopliv et al., 2006), hence it is logical to think that the lander data
may be sensitive to one polar motion component more than the other. On the other hand, the orbiter
can detect both components of the polar motion, hence its sensitivity is the same for both. Thus for
the component to which it is more sensitive, the lander data provides twice the precision given by the
orbiter, while for the other component the precision from the two datasets is the same.

Parameter Formal error [mas]
Orbiter Lander

𝑋፜ፂፖ 4.9645 4.5182
𝑋፬ፂፖ 4.5721 3.6170
𝑌፜ፂፖ 4.3408 2.5334
𝑌፬ፂፖ 4.1490 2.3423

Table 7.1: Chandler wobble amplitudes: comparison of the TGO-only values, after rescaling by a factor of 10, and lander-only
solution.

The TGO uncertainties can then be compared to the only available estimates of the CW amplitudes
from real tracking data of orbiters (MGS and Odyssey), given by Konopliv et al. (2006). There, uncer-
tainties of about 6 mas (when scaling by 10 the 1-sigma error) were obtained, although with a nominal
CW period of 205 d (compared to the 200 d period assumed here), and with estimated values of the
amplitudes an order of magnitude smaller than those taken as nominal values in this study. Still, as
the expression of the Doppler observable is linear in the CW amplitudes, and thus the observation
partials do not depend on the value of the parameter, the formal uncertainties corresponding to a dif-
ferent nominal model for the CW should not vary significantly from those presented here. Moreover,
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as seen in Figure 6.6, the CW signature on the Doppler with the current nominal model have an SNR
higher than 10 over 10 days of tracking. Hence, the signal due to a forced polar motion at the Chandler
frequency with amplitudes 10 times lower than those assumed here should still have an SNR larger
than 1, although whether it can actually be estimated from the data depends from other parameters,
as discussed in Section 6.1.2.

The improvement of the CW amplitudes solution following the addition of TGO measurements to
the lander dataset is then presented in Figure 7.1, in terms of the ratio between the uncertainties of the
combined solution (listed in Table 6.8, in the ”Weighted” column) and those of the lander-only solution
(Table 6.8 or 7.1). The maximum reduction is in the formal uncertainty of the 𝑋፜ፂፖ amplitude, for which
the two datasets appeared to have a similar sensitivity (and which has also the largest nominal value in
the rotation model assumed for Mars). For this parameter, the formal error from the combined dataset
is roughly 6% smaller than that obtained from lander data alone.

XCWC XCWS YCWC YCWS
Estimated parameter

0.94

0.95

0.96

0.97

0.98

0.99

Fo
rm

al
 e

rro
r r

at
io

Figure 7.1: Ratio of the CW amplitudes formal errors from the combined weighted dataset and the lander-only solution

7.2. Impact of TGO on the LOD solution
The solution for the LOD variations amplitude obtained with the rescaled TGO-only full dataset can be
compared to the uncertainties for the same parameter given in the orbiters-only solution of Konopliv
et al. (2016). The two sets of uncertainties are shown in Table 7.2. Although the formal errors from
TGO are lower than those from the MRO120D orbiter solution, it’s hard to conclude on the better
sensitivity of the first dataset to the LOD variations amplitude. Indeed, the scaling factor of 10 chosen
for TGO, while justified in its order of magnitude by the study of the effects of some of the systematic
errors and the inclusion of more parameters in the estimation, is an arbitrary value. A factor of 15
would be equally plausible, and produce uncertainties which are closer to those of MRO120D. Still, the
differences between the two solutions may be simply due to them coming from very different estimation
conditions. For the MRO120D, years of data MGS, Odyssey, and MRO are combined, meaning that
the data points are about 50 times as much as those used for the TGO estimation. This should lead
to uncertainties equal to or smaller than those from TGO. However, the set of parameters estimated
as part of the MRO120D solution is way larger than those included in the TGO estimation, comprising
the gravity field coefficients up to degree and order 120, the degree-2 Love number, and the Mars
precession rate.

As for the impact of TGO measurements on the LOD amplitudes solution of the combined datasets,
it can be assessed by computing the ratio between this combined solution and that obtained from the
lander alone. These ratios are displayed in Figure Figure 7.2, for each of the LOD variations amplitudes.
Due to the high accuracy expected from the LaRa data, the contributions of the spacecraft observation
to the total solution for LOD are limited. Themaximum reduction of the formal uncertainties following the
inclusion of the orbiter data is about 8% of the corresponding lander-only solution, for the semiannual
sine amplitude. For frequencies higher than the semiannual, the impact of the TGO data is minimal,
with about 1% of improvement obtained using the combined dataset instead of the lander data alone.
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Parameter
Formal error [mas]

TGO-only solution MRO120D, orbiter
(Konopliv et al., 2016)

𝜙፜ኻ 9.8646 17
𝜙፬ኻ 10.0044 17
𝜙፜ኼ 9.8872 16
𝜙፬ኼ 9.6867 17
𝜙፜ኽ 8.6142 15
𝜙፬ኽ 7.1734 16
𝜙፜ኾ 6.9090 15
𝜙፬ኾ 7.2797 15

Table 7.2: LOD variations amplitudes: comparison of the TGO-only values, after rescaling by a factor of 10, and the orbiter-only
solution from Konopliv et al. (2016).
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Figure 7.2: Ratio of the LOD variations amplitudes formal errors from the combined weighted dataset and the lander-only solution

7.3. Impact of TGO on the nutation transfer function solution
The solutions for the non-rigid nutation parameters given by the orbiter data are overly optimistic. Even
after scaling the orbiter information matrix by the factor of 10, the uncertainties of these parameters are
about one order of magnitude below those obtained from the lander data, as shown in Table 7.3. These
solutions are once again obtained by using a priori errors equal to 10 times those used in the nominal
TGO estimation. The 𝐹 and 𝜎ኺ estimates from lander data, instead, are consistent with the expected
RISE solution provided by Folkner et al. (2018), of 0.013 and 0.023 deg/day, respectively. The larger
uncertainties estimated here for the lander compared to the RISE solution are possibly due to the larger
amount of data expected from RISE, for which 1 hr of tracking per day is planned (compared to 1 hr
per week in the observation schedule hypothesized here). No reference values for the estimation of
these parameters from orbiter data is available in the literature, meaning their retrieval from spacecraft
Doppler data is difficult. Hence, the formal errors for the orbiter case seem very unrealistic when
compared to those from the lander, which are supposedly obtainable by experiments like RISE or
LaRa. The very low formal errors obtained from TGO data can be ascribable to the non-inclusion of
correlations with other parameters (such as the degree 2 Love number, or the precession rate), which
are not part of the set of parameters and which may cause the formal errors to be far larger, or to
possible software errors, as discussed in Section 6.3.

For completeness, considerations on the impact of TGO on the combined solution are made for
these parameters as well, however unbelievable the correctness may be. Thus, Figure 7.3 plots the
formal errors from the combined solution as a fraction of those from the lander-only solution. Although
the sensitivity of TGO data to those parameters is overestimated, the combined solution is still driven
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Parameter
Formal error [mas]
Orbiter Lander

𝐹 [-] 0.0036 0.0272
𝜎ኺ [deg/day] 0.0090 0.0482

Table 7.3: Nutation amplification parameters: comparison of the TGO-only values, after rescaling by a factor of 10, and lander-
only solution.

by the lander observations, with uncertainties that are closer to the lander-only ones than to those from
TGO. Thus, the uncertainties for the combined solution have still reasonable values. The addition of
TGO data results in a reduction of about 20% for the 𝐹 error, and of about 12% for the 𝜎ኺ solution.
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Figure 7.3: Ratio of the nutation amplification parameters formal errors from the combined weighted dataset and the lander-only
solution

7.4. Impact of TGO on the knowledge of Mars interior
Without a reliable assessment of the improvement of the 𝐹 and 𝜎ኺ solutions coming from TGO, it is
hard to draw any conclusions with regards to the effect of TGO data on the uncertainty of the core-
mantle boundary radius. Based on a qualitative analysis of Figure 2.3b, an improvement of 20% on an
uncertainty of 0.0270 would translate in an improvement on the knowledge of the CMB radius anywhere
from 20 km to 100 km, depending on the nominal value of 𝐹. However, the lander-only solution is about
twice as large as that expected for RISE (0.013). Thus, even if the results from the previous Section
were to be trusted, combination of TGO data with a more accurate lander dataset (better reflecting the
expected precisions of both LaRa and RISE) would presumably yield a considerably reduced impact
of TGO on the combined solution. This would in turn correspond to a reduced effect on the accuracy
of the CMB radius estimate.

It was not possible to include the period of the CW in the parameters to estimate. As mentioned in
Section 2.3.2, the period of this normal model is also dependent on the core radius, although a precision
lower than 1 day would be required to infer interior properties with sufficient accuracy. A tentative
assessment of the sensitivity of the TGO measurements to the CW period is made by comparing the
LOS velocities outputs by ORB for two Mars rotation model which differ only in the period of this mode,
200 d for one and 201 d for the other. This way a signature on the LOS velocity of 0.3 mm/s is obtained,
well above the noise level of 0.1 mm/s. It’s not possible however, based just on this, to conclude that
the CW period can be retrieved from TGO data with an uncertainty lower than 1 d.

7.5. Impact of TGO on the knowledge of Mars atmosphere
Detection of the CW on Mars may reveal information about the atmosphere dynamics at frequencies
close to the CW period: a continuous forcing is needed to overcome the dissipation and sustain this
normal mode, otherwise will disappear over time scales of tens of years, as mentioned in Section
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2.3.2. Detecting the CW on Mars could prove the existence of this forcing, which should plausibly
come from interactions between the atmosphere and the surface. This is of particular interest because
this frequency is not multiple of the annual frequency, for which the processes are relatively well known
fromGCMmodels. TGO should be able to detect such amode, as long as it is excited and has sufficient
amplitude. However, in the combination with LaRa data, the improvement coming from TGO to the CW
estimation is fairly limited (no more than 6%, as seen in Section 7.1). An orbit more sensitive to these
parameters, and therefore having a larger effect on the accuracy of the combined solution, could be
found by optimization of the LOS velocity signatures as given by the ORB method 6.2.2.





8
Conclusions and recommendations

This chapter presents the main conclusions which can be drawn from the results and the relative dis-
cussions shown in Chapters 6 and 7, respectively. The results are here shown in relation to the corre-
sponding research (sub-)question.

• What is the signature of the different MOP on the trajectory of TGO and the different radio tracking
observables?
In Section 6.1, the LOD variations were found to have a signature in the order of 1 m in the position
of the spacecraft and of 1 mm/s in its inertial velocity after 10 days of propagation. The signature
of the non-rigid amplification of the nutations had a similar magnitude, while that of the Chandler
wobble components of polar motion, with the assumed amplitude of up to 50 mas, was 10 times
smaller. This translated to signatures on the range observables of up to about 1 m for LOD and
FCN, and up to 10 cm for the CW. The signatures on the LOS velocity (and thus on the Doppler
observable) for both CW and LOD variations were shown to be at least 10 times larger than the
conservative value assumed for the measurement noise level of 0.1 mm/s. As suggested by this
high signature in the LOS velocity, the LOD, FCN, and CW parameters were all retrieved from
simulated TGO data (Sections 6.3.1 to 6.3.2) with accuracies generally smaller than 10% of the
a priori uncertainties.

• Is there an optimal method of combining data from InSight, LaRa, and TGO for the estimation of
MOP?
Combination of the TGO and a LaRa-like lander with unitary weighting generated results judged
too optimistic in comparison to those from similar studies, as discussed in Section 6.3.6. This
solution was mainly driven by the low uncertainties from TGO (when compared to the lander-only
solution and to values from literature), especially for the nutation amplification parameters. There-
fore, the stability of the orbiter-only solution was tested in Section 6.3.5, by varying some of the
estimation settings. Based on these results and the comparison with previous estimations and
expected uncertainties of LaRa and RISE measurements, a weighting factor of 10 was adopted
for the rescaling of the TGO observations when combined to those from a single lander. As shown
in Section 6.3.6, this configuration resulted in an improvement of up to 6% in the accuracy of the
amplitudes of the CW components with respect to the lander-only solution. For the LOD varia-
tions, the improvement following the inclusion of TGO data was maximum for the sine amplitude
of the annual and semiannual harmonics, up to a decrease of 8 % in the uncertainties. An even
higher improvement resulted for the nutation transfer function parameters, with a variation of 20
% on the value of 𝐹 and of 12 % on the frequency of the FCN.

• What is the expected improvement in the accuracy of the physical parameters of Mars coming
from this improved accuracy on the MOP?
As discussed in Chapter 7, the improvement in the accuracy of the nutation transfer function
parameters is considered too optimistic to be used for reliable estimations of the impact of the
orbiter data on the inference of the core radius. At the same time, it was not possible to gauge the

101



102 8. Conclusions and recommendations

accuracy of the CW period estimation, which is why overall no clear conclusions on the improve-
ment of the core radius estimation can be made. On the other hand, the improvement on the CW
and LOD estimation will prove useful in the characterization of Mars atmospheric dynamics both
at seasonal time scales (cycle of COኼ) and at the CW period, assuming that this free mode is
excited and sustained at a sufficient amplitude.

• What is the set of orbital elements which maximizes the impact of the orbiter tracking data on the
combined solution for the MOP?
In Section 5.2.1 it was shown that a simple first-order analytical method based on Kaula’s equa-
tions and on algorithms of rotation of the spherical harmonics can be used to accurately predict
the effect of a mismodeling of the complex rotation of the central body on the trajectory of an
orbiting spacecraft. This faster method was preferred to the numerical propagation of the orbits
in studying the variation of the maximum signature of CW and LOD on the LOS velocity, leading
to the results shown in Section 6.2.2. Although the method was advantageous only for orbits with
eccentricities lower than 0.5, being based on series expansions, it determined in this range two
orbits which should maximize the science return in terms of MOP estimation. These two orbits
had an eccentricity of about 0.01 and an inclination close to 40∘ for the CW, and a high eccentricity
(close to 0.5) and near-equatorial inclination (5∘) for the LOD estimation. Thus, spacecraft with
orbital elements different than those of TGO could provide better improvement to the combined
solution, although estimation with these hypothetical orbiters was not performed here. Still, these
results proved valid only for a specific set of the other orbital elements. Hence, an optimization
extended to all six orbital elements would be more adequate to the goal.

Overall, most of the goals mentioned in Chapter 1 were only partially met. The sensitivity of TGO
to the MOP was tested extensively through simulations of orbits and radio-tracking data (Section 6.1),
including a comparison with a different spacecraft to asses the relative level of this sensitivity. However,
for what concerns the optimal weighting of the combined dataset, only two cases were considered
(Section 6.3.6): the unitary weighting and an arbitrary value for the scaling of TGO. This process should
be carried out more rigorously, possibly using iterative methods like Helmert’s method, mentioned in
that section.

The inference of Mars interior and atmosphere parameters was hindered by the unreliability of the
MOP estimates for the FCN parameters. Finding the source of these problems, whether it is a model
error or simply due to a too-small set of estimated parameters, should be the first step before embarking
in a more precise inference of parameters like the CMB radius from these uncertainties.

Finally, ORB has shown to be successful in determining, from a wide array of orbits the one most
sensitive to a specific parameter. However, as mentioned in Section 6.2.2, the optimization should
involve all the Keplerian elements. Moreover, investigating the use of a different set of orbital elements
for ORB could lead to the resolution of the differences with GINS seen for the perturbations on 𝜔, M,
and 𝑒. In any case, from what came out of the preliminary solution in Section 6.2.2, the TGO orbit
should not be the optimal one in terms of sensitivity to the MOP. It was shown that polar motion should
be obtainable from TGO data with an accuracy close to that of the lander solution, while previous
orbiter missions have generally failed to give a reliable estimate of these parameters. Still, this is not a
conclusive indication that the inclusion of TGO data to the lander measurements is advantageous with
respect to that of other orbiters.
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A
Appendix A: Rotation of spherical

harmonics coefficients

A.1. Method from Kudryavtsev (1997)
The method described in Kudryavtsev (1997) allows to compute the spherical harmonics coefficients
following an elementary rotation around the X, Y, or Z axis of the original frame.

For a rotation around the Z axis of an angle 𝑤, indicating with 𝐶፧፦ and 𝑆፧፦ the (unnormalized)
spherical harmonic coefficients in the original frame, and with 𝐶፳፧፦ and 𝑆፳፧፦ the spherical harmonic
coefficients in the rotated frame, the latter coefficients are found as:

𝐶፳፧፦ = 𝐶፧፦ cos (𝑚𝑤) + 𝑆፧፦ sin (𝑚𝑤)
𝑆፳፧፦ = 𝑆፧፦ cos (𝑚𝑤) − 𝐶፧፦ sin (𝑚𝑤) (A.1)

For rotations around the other two axes the formulas are more involved:

𝐶∗፧፦ = ℜ(Γ፧፦)
𝑆∗፧፦ = ℑ(Γ፧፦)

(A.2)

where the asterisk can be either 𝑥 or 𝑦, depending on the rotation axis, and:

Γ፧፦ =
𝛿፦𝑛!

(𝑛 + 𝑚)!𝐻
∗
ኺ𝐶፧ኺ +

ፍ

∑
፬዆ኻ
[𝛿፦

(𝑛 + 𝑠)!
2 (𝑛 + 𝑚)! (𝐻

∗
፬ + (−1)፬𝐻∗ዅ፬)] 𝐶፧፬+

+
ፍ

∑
፬዆ኻ
[𝑖 𝛿፦

(𝑛 + 𝑠)!
2 (𝑛 + 𝑚)! (𝐻

∗
፬ + (−1)፬𝐻∗ዅ፬)] 𝑆፧፬

(A.3)

Here 𝑖 = √−1 is the imaginary unit,

𝛿፦ = {
1, if 𝑚 = 0
2, if 𝑚 ≠ 0

and

𝐻፱፬ =∑
፤
𝑖ኼ፧ዅኼ፤ዅ፦ዅ፬𝐶፤፧ዅ፦𝐶𝑛 +𝑚፧ዅ፤ዅ፬(cos

𝑢
2)

ኼ፤ዄ፦ዄ፬
(sin 𝑢2)

ኼ፧ዅኼ፤ዅ፦ዅ፬
(A.4)

𝐻፲፬ =∑
፤
(−1)፧ዅ፤ዅ፬𝐶፤፧ዅ፦𝐶𝑛 +𝑚፧ዅ፤ዅ፬(cos

𝑣
2)

ኼ፤ዄ፦ዄ፬
(sin 𝑣2)

ኼ፧ዅኼ፤ዅ፦ዅ፬
(A.5)

The terms 𝐶፤፧ዅ፦ and 𝐶𝑛 +𝑚፧ዅ፤ዅ፬ are binomial coefficients, 𝑢 and 𝑣 are the angles of the elementary
rotations around the X and the Y axis, respectively, and the limits of the index 𝑘 are given by:

max (0, −𝑚 − 𝑠) ≤ 𝑘 ≤min (𝑛 − 𝑚, 𝑛 − 𝑠) (A.6)
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A.2. Method from Dirkx et al. (2019)
Given an input rotation matrix 𝑅, it is converted to quaternion rapresentation according to:

𝑞ኺ =
√1 + 𝑅ኻኻ + 𝑅ኼኼ + 𝑅ኽኽ

2
𝑞ኻ =

𝑅ኽኼ − 𝑅ኼኽ
4𝑞ኺ

𝑞ኼ =
𝑅ኻኽ − 𝑅ኽኻ
4𝑞ኺ

𝑞ኽ =
𝑅ኼኻ − 𝑅ኻኼ
4𝑞ኺ

(A.7)

If the trace of the rotation matrix is close to −1 the process is stopped, in order to avoid singularities,
and the spherical hamronics coefficients are left unchanged.

What follows is then taken entirely from Dirkx et al. (2019) and the references therein. From the
quaternions, the Cayley-Klein parameters are computed as:

𝑎 = 𝑞ኺ − 𝑖𝑞ኽ
𝑏 = 𝑞ኼ − 𝑖𝑞ኻ

(A.8)

Then the vector 𝒄 is defined as:

𝒄 = [ℜ(𝑎), ℑ(𝑎), ℜ(𝑏), ℑ(𝑏)]ፓ (A.9)

The Wigner D-matrices are hence computed by recursion, starting from:

𝐷ኺኺ,ኺ = 1 (A.10)

𝐷ኻ፦,፤ = [
(𝑎∗)ኼ √2𝑎∗𝑏 𝑏ኼ

−√2𝑎∗𝑏∗ |𝑎|ኼ − |𝑏|ኼ √2𝑎𝑏
(𝑎𝑏∗)ኼ −√2𝑎𝑏∗ (𝑎∗)ኼ

] (A.11)

where 𝑎∗ and 𝑏∗ are the complex conjugate of the Cayley-Klein parameters 𝑎 and 𝑏. The values of the
subscripts𝑚, 𝑘, with −𝑙 ≤ 𝑚, 𝑘 ≤ 𝑙, determine a specific element of the generic D-matrix, relative to the
central elements. Therefore, the central element is indicated by the subscript 0, 0, while the values of
𝑚 are positive for the rows below the central one, and values of 𝑘 are positive for columns to the right
of the central one.

Then, for the D-matrices of higher degree and for 𝑚 ≥ 0:

𝐷፥፦፤ =
ኻ

∑
፩዆ዅኻ

𝑐፥;፩፦፤𝐷ኻኻ,ዅ፩𝐷፥ዅኻ፦ዅኻ,፤ዄ፩ (A.12)

with

𝑐፥;ዅኻ፦፤ = √ (𝑙 + 𝑘)(𝑙 + 𝑘 − 1)
(𝑙 + 𝑚)(𝑙 + 𝑚 − 1)

𝑐፥;ኺ፦፤ = √
2(𝑙 + 𝑘)(𝑙 + 𝑘)

(𝑙 + 𝑚)(𝑙 + 𝑚 − 1)

𝑐፥;ኻ፦፤ = √
(𝑙 − 𝑘)(𝑙 − 𝑘 − 1)
(𝑙 + 𝑚)(𝑙 + 𝑚 − 1)

(A.13)

For 𝑚 < 0:
𝐷፥፦፤ = (−1)፦ዅ፤(𝐷፥ዅ፦,ዅ፥)

∗
(A.14)
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Given:

𝑣፥፦፤ = (−1)፤ዄ፦√
2 − 𝛿ኺ፤
2 − 𝛿ኺ፦

(A.15)

the matrices ℜ፥፦፤ and ℑ፥፦፤ are defined as:

ℜ፥፦,፤ = ℜ(𝑣፥፦፤𝐷፥፦፤)
ℑ፥፦,፤ = ℑ(𝑣፥፦፤𝐷፥፦፤)

(A.16)

The fully normalized coefficients 𝐶
ፅኼ
፥፦ and 𝑆

ፅኼ
፥፦ in the rotated frame 𝐹ኼ are then found from the fully

normalized coefficients in the original frame, 𝐹ኻ, according to:

𝐶
ፅኼ
፥፦ = (2 − 𝛿ኺ፦) (ℜ፥፦,ኺ𝐶

ፅኻ
፥ኺ +

1
2

፥

∑
፤዆ኻ

((ℜ፥፦,፤ + (−1)፤ℜ፥፦,ዅ፤) 𝐶
ፅኻ
፥፤ + (ℑ፥፦,፤ + (−1)፤ዄኻℑ፥፦,ዅ፤) 𝑆

ፅኻ
፥፤))

𝑆
ፅኼ
፥፦ = −(2 − 𝛿ኺ፦) (ℑ፥፦,ኺ𝐶

ፅኻ
፥ኺ +

1
2

፥

∑
፤዆ኻ

((ℑ፥፦,፤ + (−1)፤ℑ፥፦,ዅ፤) 𝐶
ፅኻ
፥፤ + (−ℜ፥፦,፤ + (−1)፤ℜ፥፦,ዅ፤) 𝑆

ፅኻ
፥፤))

(A.17)
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Appendix B: MOP optimization plots

Figure B.1: Maximum signature of PM on the LOS velocity computed over 10 days with ORB, as a function of the orbit eccentricity
and inclination, assuming a fixed pericenter altitude of 600 km
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Figure B.2: RMS of the signature of PM on the LOS velocity computed over 700 days with ORB, as a function of the orbit
eccentricity and inclination, assuming a fixed pericenter altitude of 400 km
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Figure B.3: Maximum signature of PM on the LOS velocity computed over 10 days with ORB, as a function of the orbit eccentricity
and inclination, assuming a fixed pericenter altitude of 400 km. The initial values of the Ꭶ, ጖, andፌ angles are here all equal to
ኾ኿∘
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