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Distributed UWB inter-ranging for MAV swarms in large
GNSS-denied environments

F.A. Dupon, S.U. Pfeiffer∗, Prof. Dr. G.C.H.E. de Croon∗

Delft University of Technology, Delft, The Netherlands

The use of micro air vehicles (MAV) is becoming increasingly mainstream and with them their applications
have become more demanding across the board. The application of MAV’s in large GNSS-denied
environments often asks for a distributed and scalable localisation system with minimal reliance on
static localisation hardware. In this research a distributed ultra-wideband (UWB) localisation system
that takes advantage of the collaborative capabilities of a swarm of MAV’s has been developed and tested
in both simulation and practice. Additionally, a modular UWB simulator has been developed which
enables researchers to test UWB localisation schemes for a swarm of MAV’s. It has been found that
when taking advantage of the UWB inter-agent ranging capabilities of a swarm of micro air vehicles,
one can increase the coverage of an UWB setup in spaces with coverage-issues and conversely increase
the accuracy of an existing UWB setup that has full UWB coverage.

I. Introduction

D
ue to recent technological advancements, unmanned
aerial vehicles are becoming increasingly popular
these days. They exist in all sorts of designs and
shapes. Thanks to their versatility, they are being

used in a wide range of applications. Unmanned aerial vehicles
(UAV) are not only being used by recreational users, but also by
industry and researchers. For example, they are being deployed
by large multinationals to inspect wind turbine blades or oil
pipelines, but they can also be found at the local park for
leisure. These advancements make it possible to miniaturise the
UAV’s into micro air vehicles (MAV). Although they are often
computationally less capable than their larger counterparts, they
have the advantage that they are small, lightweight, and are
often accompanied with a lower unit cost. This relatively new
category of micro air vehicles gives way to a new range of
applications, requiring robust and computationally lightweight
solutions. Those micro air vehicles can be deployed stand-alone,
but often the big advantage is that they can also be deployed in
swarm configurations. In many use cases, the application of such
robotic swarms can have specific advantages. A homogeneous
swarm, consisting of multiple micro air vehicles performing
the same action can dramatically decrease the completion time
of a task, while a heterogeneous swarm, consisting of multiple
unique micro air vehicles, each with their own speciality, is able
to perform many different tasks at once [1].

Aside from the specific application of the micro air vehicles,
they all have one thing in common: the need for a localisation
system to obtain a location estimate. This is often necessary
in order to perform a task accurately and autonomously. The
localisation systems can be GNSS-based, but often, solutions
have to be found to enable localisation in GNSS-denied envi-
ronments, or environments where the reception is intermittent.
For such GNSS-denied environments alternative localisation
systems exist. The localisation system central to this research
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is the ultra-wideband (UWB) Loco Positioning System (LPS)
made by Bitcraze [2]. In this paper one will investigate how
one can increase the UWB localisation accuracy of a swarm of
MAV’s in both environments with full and intermittent UWB
coverage, by making use of the collaborative capabilities of a
swarm of MAV’s. Please refer to Figure 1 for a depiction of
a swarm of MAV’s performing collaborative localisation. In
the scope of this research, the industrial use case of monitoring
and inspection of crops in greenhouses by a swarm of small
micro air vehicles is highly relevant. It is often not possible to
fit such a large space with UWB equipment enabling indoor
localisation, as an UWB anchor has a limited range of around
≈ 15 − 20 m. However, by using the transcending capabilities
of a swarm of micro air vehicles it is possible to deploy an
ad-hoc distributed localisation network that can cross gaps that
fail to be covered by UWB anchors.

Figure 1. Swarm of 4 Crazyflies improving state-estimate by inter-
agent ranging in TU Delft Cyberzoo. Exchanging more information
renders lower RMSE between ground truth and state-estimate in
limited-coverage environment.
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The goal of this work is to implement an optimised inter-agent
ranging approach for MAV swarms which enables them to be
less dependent on static UWB anchors for localisation in the
TU Delft Cyberzoo. The design hypothesis is that a swarm
of micro air vehicles can perform inter-agent ranging with the
swarm members, improving each other’s state estimate, while
reducing their dependence on static UWB anchors. Exploiting
the inter-agent ranging capabilities of a swarm of micro air
vehicles makes it possible to increase the localisation accuracy in
spaces where UWB reception is intermittent, or to enable UWB
localisation in large areas, without the burden of having to add
numerous static anchors to the environment. Additionally, the
approach presented in this paper is distributed and lightweight,
such that it does not interfere with the specific task a MAV
swarm member might have.

First, in Chapter II, the methodology used in this paper
will be discussed. This entails fundamental UWB localisation
concepts and schemes, as well as an explanation of the simulator
framework developed for this research. Next, in Chapter III, the
simulation tests and results will be presented, together with a
thorough discussion of the results. The presented localisation
schemes have been validated in practice and the results of these
tests are presented in Chapter IV. Finally, this paper is concluded
and proper recommendations are made. These can be found in
Chapter V.

II. Methodology
In this paper, we will investigate how one can increase the
UWB localisation performance of MAV’s in large environments
by making use of the swarming capabilities of a group of
these MAV’s. First, in section II.A, one will explain how
localisation is achieved with UWB. After which, in Section
II.B, the simulation environment used during this research will
be discussed. In Section II.C, one will perform an excursion
on collaborative localisation and explain how this research fits
in current collaborative localisation theory. Finally, in Section
II.D the UWB localisation schemes that have been investigated
as part of this paper will be presented.

A. Ultra-Wideband (UWB) Localisation
Ultra-wideband is one of the most recent, accurate and promising
technologies for indoor localisation [3], making use of radio
technology characterised by its very large bandwidth compared
to conventional narrow-band systems [4]. As stated by Al-
ammar et al., the Federal Communications Commission (FCC)
has defined UWB as a radio frequency (RF) signal covering
a portion of the frequency spectrum larger than 20% of the
center-carrier frequency, or having a bandwidth larger than 500
𝑀𝐻𝑧 [5]. Thanks to this large bandwidth of the UWB signals
this technology is highly suitable for positioning systems. As
ultra-wideband uses different signal types and radio spectra,
it does not easily interfere with other radio frequency-based
localisation systems. UWB positioning systems transmit a
signal over multiple frequency bands, ranging from 3.1 to 10.6
𝐺𝐻𝑧 [6]. This brings advantages such as better penetration
through obstacles, accurate position estimation, high-speed data

transmission and low cost and low power transceiver designs [7].
In general, a data rate of about 100 Megabits per second (𝑀𝑏𝑝𝑠)
can be achieved [3]. Thanks to the fact that UWB covers a
wide portion of the frequency spectrum and transmits ultra
short pulses, UWB can transmit large packets of information
using very low transmission energy [5]. Also, the short pulses
of the ultra-wideband localisation system are easy to filter
out, meaning that it is easier to distinguish the original pulses
from the pulses generated by multi-path effects and it permits
determining an accurate time of flight (TOF) estimate of a burst
transmission from a short-pulse transmitter [6]. This property
makes that UWB becomes suitable for indoor localisation,
making it possible to achieve centimetre accuracy, by exploiting
the time of flight (TOF) of the signal using suitable localisation
algorithms such as TOA, TDOA and others. How these are
used in this paper will be explained below.

1. Time Of Arrival (TOA)
The Time Of Arrival localisation algorithm (TOA), also called
Time of Flight (TOF), is based on signal propagation time
between a receiver and transmitter [5]. The system is based
on accurate synchronisation of the arrival time of a signal
transmitted by a transmitter target to several receiver anchors
[8]. The Time Of Arrival algorithm can be based on One-
Way Ranging (OWR) or Two-Way Ranging (TWR). More
specifically, when calculating a positioning estimate using the
One-Way Ranging approach, the distance from the target to the
receiver anchors is estimated, comparing the one-way arrival
time of a time-stamped signal at the receiver anchor. This
happens while the clocks of the anchors and target have been
precisely synchronised and the location of the anchors are
known. When it is not possible to accurately synchronise the
receiver and transmitter’s clocks, a Two-Way Ranging approach
can be used. In this case, the signal travels two-ways, from
transmitter to receiver and back to the transmitter. This way,
the clock offset is cancelled out. Time Of Arrival is a feasible
localisation algorithm, as the signal propagation speed and the
time the signal takes to reach the receiving anchor is known.
A Time Of Arrival measurement 𝑡𝑖 can be seen in Equation 1,
in which 𝑝 is the position of the target, 𝑝𝑖 the position of the
anchor, Θ the clock offset between the anchor and target, 𝑐 the
speed of light and 𝑛𝑖 the noise existing of measurement and
transmission noise [9].

𝑡𝑖 =
∥𝑝 − 𝑝𝑖 ∥

𝑐
− Θ + 𝑛𝑖 (1)

The TOA algorithm was found to be an accurate solution for
indoor positioning, as it is possible to filter out multi-path effects
[8]. Also, by synchronised TOA measurements, localisation
simplifies to the intersection of spheres, this way 3D localisation
can be performed with at least 3 anchors. Please refer to
Equation 2 for a depiction of how these TWR measurements
are used for a localisation update with 𝑖 number of anchors.

𝑑𝑖 =
√︃
(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2 + (𝑧 − 𝑧𝑖)2 (2)
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2. Time Difference Of Arrival (TDOA)
The Time Difference Of Arrival (TDOA) localisation algorithm
uses the arrival time-difference of a signal sent by a transmitter
and received by three or more receivers [3]. As the time
difference between arrival times of signals cancels out the offset
between transmitter and receiver clock, there is no need for
time-synchronisation between receiver and transmitter clock [9],
as long as the receivers are synchronised. This decreases the
complexity and hardware cost of the system. A Time Difference
Of Arrival measurement 𝑡𝑖, 𝑗 can be seen in Equation 3, in which
𝑝 is the position of the target, 𝑝𝑖 and 𝑝 𝑗 are the positions of the
anchors, 𝑐 the speed of light, 𝑛𝑖 and 𝑛 𝑗 the measurement and
transmission noise for the respective anchors [9].

𝑡𝑖, 𝑗 =
∥𝑝 − 𝑝𝑖 ∥ −

𝑝 − 𝑝j


𝑐
+ 𝑛𝑖 + 𝑛 𝑗 (3)

Position estimates are obtained by calculating the intersection
of the hyperbolic curves that are obtained with each TDOA
measurement [8]. In order to combine the different TDOA
measurements received at each receiver anchor, the anchors
have to be in contact, requiring significant bandwidth [3]. The
concept of TDOA explained here involves one target transmitter
and multiple receiving nodes. Please note that this concept can
also be switched, in which a single target receiver measures the
change in arrival time of signals transmitted by multiple anchors
[3]. Please refer to Equation 4 for a depiction of how these
TDOA measurements are used for a localisation measurement
update with anchor 𝑖 and 𝑗 .

𝑑𝑖, 𝑗 =
√︃
(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2 + (𝑧 − 𝑧𝑖)2−√︃(
𝑥 − 𝑥 𝑗

)2 + (
𝑦 − 𝑦 𝑗

)2 + (
𝑧 − 𝑧 𝑗

)2 (4)

B. Simulation environment
In order to investigate the distributed UWB localisation schemes
presented in this paper, the backbone of the MAV swarm sim-
ulation environment Swarmulator, developed by M. Coppola
was used [10]. The original Swarmulator mainly focuses on
the development of behavioural controllers for robotic swarms
and therefore is lacking fundamental functionality necessary
for this research. It does not include an ultra-wideband setup,
no quadrotor dynamics, nor accompanying sensors and sensor
fusion or state estimator filters. Therefore, it has been decided
to fork Swarmulator and incorporate this extra functionality,
only maintaining the animation, logger and thread manage-
ment functionality of Swarmulator. Please find the additional
functionalities described below and illustrated in Figure 2.

1. Trajectory generator
For every quadrotor that is spawned in the simulation environ-
ment, a predefined trajectory must be generated. The trajectory
generator module can generate trajectories for the quadrotors
through predefined way-points. It is based on Matlab’s way-
pointTrajectory System object [11]. For every way-point the
arrival time must be specified. The resulting trajectory min-
imises the required change in velocity and thus acceleration.

Figure 2. Simulation framework showcasing the additional functional-
ity added to the Swarmulator environment.

This way one ensures that the generated trajectory is the least
challenging for the quadrotor dynamics to attain. In the simu-
lator and trajectory generator, the trajectory frequency can be
specified as desired. By default, the trajectory is generated and
read at a frequency of 100 Hz.

2. EKF sensor fusion
An Extended Kalman Filter (EKF) with constant acceleration
is being used for sensor fusion and state-estimation. The filter
runs at a predefined frequency of 250 Hz and can be adjusted
to preference. During the prediction step an accelerometer
provides acceleration measurements. The accelerometer (hav-
ing zero-mean Gaussian additive noise) runs at a predefined
frequency, with as default a frequency of 1000 Hz and 𝜎 of
0.01 m/s2. Whenever an UWB measurement is available, the
prediction step is followed by an UWB measurement update
step. The measurement update step can perform measurement
updates for TDOA or TWR UWB measurements. Additionally,
it is possible to specify the maximum update frequency of the
TWR and TDOA measurements. Please refer to Figure 3 for a
schematic representation of the workings of this estimator.
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Initial estimate
𝑥0 and 𝑃0

Prediction step
1) Project the state ahead

𝑥−𝑘 = 𝑓 (𝑥𝑘−1, 𝑢𝑘 , 0)
2) Project the error covariance ahead

𝑃−
𝑘 = 𝐴𝑘𝑃𝑘−1𝐴

𝑇
𝑘 +𝑄𝑘−1

Update step
1) Compute the Kalman gain
𝐾𝑘 = 𝑃−

𝑘 𝐻
𝑇
𝑘

(
𝐻𝑘𝑃

−
𝑘 𝐻

𝑇
𝑘 + 𝑅𝑘

)−1

2) Update estimate with measurement 𝑧𝑘
𝑥𝑘 = 𝑥−𝑘 + 𝐾𝑘

(
𝑧𝑘 − ℎ

(
𝑥−𝑘 , 0

) )
3) Update the error covariance

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘) 𝑃−
𝑘

Figure 3. Illustration of the general EKF flowchart.

3. Simplified quadrotor dynamics & PID controller
The physical model of the quadrotor is implemented in similar
fashion as described by Samir et al. [12] and is described
by Equation 5, with 𝑥, 𝑦 𝑧 being the motion along these axes
as a consequence of the pitch (\) roll (𝜙) or yaw (𝜓) motion.
Please note that as the simulation environment is 2D and for
simplification purposes, the yaw angle and motion in 𝑧 direction
are set to zero. Additionally,𝑈1,𝑈2,𝑈3 and𝑈4 are depicted as
the torques corresponding to the quadrotor’s degrees of freedom
(DOF). Zero-mean noise with 𝜎 of 0.005 is added to every
torque input. The quadrotor’s characteristics are modelled
according to the parameters of the Crazyflie 2.0 and they can
also be found in Table 1 of Appendix VI [13].

¥𝜙 = ¤\ ¤𝜓
(
𝐼𝑦 − 𝐼𝑧
𝐼𝑥

)
− 𝐽𝑟
𝐼𝑥

¤\Ω + 𝑙

𝐼𝑥
𝑈2

¥\ = ¤𝜙 ¤𝜓
(
𝐼𝑧 − 𝐼𝑥
𝐼𝑦

)
+ 𝐽𝑟
𝐼𝑦

¤𝜙Ω + 𝑙

𝐼𝑦
𝑈3

¥𝜓 = ¤𝜙 ¤\
(
𝐼𝑥 − 𝐼𝑦
𝐼𝑧

)
+ 1
𝐼𝑧
𝑈4

¥𝑧 = −𝑔 + (cos 𝜙 cos \) 1
𝑚
𝑈1

¥𝑥 = (cos 𝜙 sin \ cos𝜓 + sin 𝜙 sin𝜓) 1
𝑚
𝑈1

¥𝑦 = (cos 𝜙 sin \ sin𝜓 − sin 𝜙 cos𝜓) 1
𝑚
𝑈1

(5)

The PID controller of the quadrotor is subdivided in a linear
and angular control system and steers the state-estimate towards
the desired trajectory. The outer part of the PID controller
controls the linear displacement in 𝑥 and 𝑦 direction as demanded
by the specified trajectory and runs at a trajectory frequency
of 100 Hz. The inner part of the PID controller controls the
required rotations to achieve the desired linear displacement
and runs at the simulation frequency of 1000 Hz.

4. Ultra-wideband setup
In the simulator, the basic functionality of the UWB based Loco
Positioning System designed by Bitcraze has been implemented
[2]. It is possible to define the location of UWB anchors
—these anchors run in their own thread and transmit UWB
measurements at a predefined frequency— with a specified
signal length and range. One can spawn two kinds of UWB
anchors in the simulation. These will be itemised below:

• Static anchors: It is possible to spawn static anchors in the
2D plane. These anchors have a predefined 𝑥 and 𝑦 location
which does not change and is known by all quadrotors in
the simulation.

• Dynamic anchors: These anchors can be seen as UWB
anchors on top of (moving) quadrotors. This enables the
quadrotor to act as tag and anchor simultaneously. Their
𝑥 and 𝑦 location for measurement generation correspond
to the 𝑥 and 𝑦 true state of the quadrotor. Additionally,
dynamic anchors transmit their 𝑥 and 𝑦 state-estimate
as well as uncertainty information along with the UWB
measurements. The state-estimate and measurement is
used by the receiving agent for UWB localisation and can
be supplemented with the received uncertainty information.

C. Swarm collaborative localisation
The goal of this research is to develop a collaborative locali-
sation approach that makes use of UWB-inter agent ranging
measurements in order to improve one’s location estimate. In
order to develop a suitable distributed collaborative localisation
proposition that can be implemented on the EKF’s of the indi-
vidual swarm members, it is recommended to take a step back
and investigate the dynamics of a swarm of inter-agent ranging
agents from the centralised perspective, in which sensor fusion
is performed off-board by a single entity that has access to all
information of the swarm. This is important as to have a proper
understanding of how inter-agent ranging can have an influence
on the quadrotor’s state-estimates. As a matter of fact, when a
swarm of quadrotors is inter-agent ranging, their states can be
expected to become correlated with respect to each other.

Let’s investigate a simple case as to why the states become
correlated after several inter-agent ranging measurements have
taken place below, after which the equations for a centralised
EKF of 𝑛 robots will be presented. This is the ideal-case
centralised scenario, which takes into account the implications
of inter-agent ranging measurements on the cross-correlation
between the states of the quadrotors. The centralised approach
does not have communication or computational constraints that
come with a distributed approach and is therefore a good basis for
the derivation of a distributed scheme. Once the centralised EKF
is derived, it is possible to make a proposition to how one can
design a distributed approach and how this distributed approach
is compromised as compared to the centralised EKF. These
compromises arise from the inherent characteristics of a swarm
of micro MAV’s, that generally come with communication and
computational power constraints. The distributed propositions
that will be tested in this paper will be discussed in Section
II.D.
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1. Simple inter-agent ranging example
The example that will be presented in this paper is extracted
from the example discussed by I. Roumeliotis et al. on their
paper on distributed collective localisation [14]. Let’s assume
two robots (A & B) having on-board sensors to construct their
own state-estimate and the additional capability to perform
inter-agent ranging with respect to each other. Every robot has
its own independent uncertainty estimate related to it’s own
position. Under the assumption that the estimate of A and B
are independent, the additional uncertainty for robot A due to
an inter-agent ranging measurement between agent A and B
can be depicted by Equation 6, with 𝑃𝐴(𝑚) being the additional
uncertainty due to the measurement, 𝑃Δ𝐴,𝐵 corresponding to
𝑅, being the measurement noise of the inter-agent ranging
measurement and 𝑃𝐵(−) being the uncertainty estimate of agent
B at the time of the measurement.

𝑃𝐴(𝑚) = 𝑃Δ𝐴,𝐵 + 𝑃𝐵(−) = 𝑅 + 𝑃𝐵(−) (6)

After agent A performs an inter-agent ranging measurement
with respect to agent B, agent A can update its uncertainty
estimate by merging the uncertainty corresponding to the inter-
agent ranging measurement with it’s own estimate. This is
depicted by Equation 7. Rewriting this relationship, one can
see that the estimated location of robot A becomes the weighted
average of robot A’s estimated position and uncertainty, together
with the estimated position and uncertainty acquired from the
inter-agent ranging measurement. This is also wat happens
when performing a simple measurement update in an EKF or KF.
The updated estimate can be seen in equation 8, with 𝑋𝐴 being
the self-estimated location of robot 𝐴 and 𝑋𝐴(𝑚) being the
estimated location of robot A due to the ranging measurement.

𝑃−1
𝐴 = 𝑃−1

𝐴(−) + 𝑃−1
𝐴(𝑚) (7)

𝑃−1
𝐴(+)𝑋𝐴(+) = 𝑃−1

𝐴(−)𝑋𝐴(−) + 𝑃−1
𝐴(𝑚)𝑋𝐴(𝑚) (8)

Please note that above relations are only valid under the
assumption that the state of agent A and B are independent.
After the first ranging measurement, the states of the agents
become correlated. Assuming independence and thus not taking
into account cross-covariances between the agent’s states will
result in under-estimation of the agent’s uncertainty. This
also shows the importance of an optimised inter-agent ranging
approach. Not including uncertainty information can not only
lead to a grave measurement error, but also to an exponential
decrease in uncertainty, which can in turn lead to an inconsistent
outcome of the state-estimator [14].

Take once again the example explained by I. Roumeliotis
et al. [14]. We have two agents A and B, that have both an
initial uncertainty 𝑃𝐴 and 𝑃𝐵 of value 4 each. Lets assume
they inter-agent range once. Their updated uncertainty becomes
𝑃𝐴 and 𝑃𝐵 of value 2. Now assume agent A and B each move
again, which adds an uncertainty of 8 to each of the agent’s
uncertainty values. When the quadrotors range again under
the assumption that their state estimates are still independent,
their updated uncertainty information is 10/2 = 5. However,
this is an under-estimation. After the first inter-agent ranging

measurement, the state-estimates of agent A and B have become
correlated. The uncertainty corresponds to a value of 2 + 4 = 6,
which takes into account the independent parts of information
[14].

2. Centralised EKF excursion for n inter-agent ranging quadro-
tors

A suitable way of investigating how the states of quadrotors are
evolving while inter-agent ranging is by deriving the equations
for a centralised EKF of 𝑛 quadrotors. Let’s assume agent
1 is inter-agent ranging towards agent 2. For a schematic
representation of the workings of an EKF, please refer to
Figure 3. The combined state-vector of all quadrotors in the
swarm is represented by matrix 𝑥𝑛 and is projected ahead by
every quadrotor individually. It is assumed that the quadrotors
move independently according to their own state propagation
functions. Please refer to equations 9 and 10 for these first steps.

𝑥−𝑘,𝑛 = 𝑓
(
𝑥𝑘−1,𝑛, 𝑢𝑘,𝑛, 0

)
(9)

with

𝑥𝑛 =
[
𝑥1 𝑥2 . . . ˆ𝑥𝑛−1 𝑥𝑛

]𝑇
(10)

After propagating the state ahead, one can do the same for
the error covariance of each quadrotor. 𝑃𝑛,𝑛 denotes the error
covariance matrices for every agent of the swarm, including
their cross-covariances. Please note that after the first inter-
agent ranging measurement update step, cross-correlations are
introduced. Before the first measurement update step, cross-
correlations (off-diagonal error-covariance elements) are zero.
Please find the final part of the EKF prediction step in equation
11 to 15.

𝑃−
𝑘 = 𝐴𝑘𝑃𝑘−1𝐴

𝑇
𝑘 +𝑄𝑘−1 (11)

with

𝐴𝑘 =



𝐴𝑘,1 0 . . . 0 0
0 𝐴𝑘,2 . . . 0 0
...

...
...

...
...

0 0 . . . 𝐴𝑘,𝑛−1 0
0 0 . . . 0 𝐴𝑘,𝑛


(12)

𝑃𝑘−1 =



𝑃𝑘−1,1,1 𝑃𝑘−1,1,2 . . . 𝑃𝑘−1,1,𝑛−1 𝑃𝑘−1,1,𝑛
𝑃𝑘−1,2,1 𝑃𝑘−1,2,2 . . . 𝑃𝑘−1,2,𝑛−1 𝑃𝑘−1,2,𝑛

...
...

...
...

...

𝑃𝑘−1,𝑛−1,1 𝑃𝑘−1,𝑛−1,2 . . . 𝑃𝑘−1,𝑛−1,𝑛−1 𝑃𝑘−1,𝑛−1,𝑛
𝑃𝑘−1,𝑛,1 𝑃𝑘−1,𝑛,2 . . . 𝑃𝑘−1,𝑛,𝑛−1 𝑃𝑘−1,𝑛,𝑛


(13)

𝑄𝑘−1 =



𝑄𝑘−1,1 0 . . . 0 0
0 𝑄𝑘−1,2 . . . 0 0
...

...
...

...
...

0 0 . . .𝑄𝑘−1,𝑛−1 0
0 0 . . . 0 𝑄𝑘−1,𝑛


(14)

resulting in
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𝑃−
𝑘 =



𝐴1,𝑘 · 𝑃𝑘−1,1,1 · 𝐴𝑇
1,𝑘 +𝑄𝑘−1,1 𝐴1,𝑘 · 𝑃𝑘−1,1,2 · 𝐴𝑇

2,𝑘 . . . 𝐴1,𝑘 · 𝑃𝑘−1,1,𝑛−1 · 𝐴𝑇
𝑛−1,𝑘 𝐴1,𝑘 · 𝑃𝑘−1,1,𝑛 · 𝐴𝑇

𝑛,𝑘

𝐴2,𝑘 · 𝑃𝑘−1,2,1 · 𝐴𝑇
1,𝑘 𝐴2,𝑘 · 𝑃𝑘−1,2,2 · 𝐴𝑇

2,𝑘 +𝑄𝑘−1,2 . . . 𝐴2,𝑘 · 𝑃𝑘−1,2,𝑛−1 · 𝐴𝑇
𝑛−1,𝑘 𝐴2,𝑘 · 𝑃𝑘−1,2,𝑛 · 𝐴𝑇

𝑛,𝑘

...
...

...
...

...

𝐴𝑛−1,𝑘 · 𝑃𝑘−1,𝑛−1,1 · 𝐴𝑇
1,𝑘 𝐴𝑛−1,𝑘 · 𝑃𝑘−1,𝑛−1,2 · 𝐴𝑇

2,𝑘 . . . 𝐴𝑛−1,𝑘 · 𝑃𝑘−1,𝑛−1,𝑛−1 · 𝐴𝑇
𝑛−1,𝑘 +𝑄𝑘−1,𝑛−1 𝐴𝑛−1,𝑘 · 𝑃𝑘−1,𝑛−1,𝑛 · 𝐴𝑇

𝑛,𝑘

𝐴𝑛,𝑘 · 𝑃𝑘−1,𝑛,1 · 𝐴𝑇
1,𝑘 𝐴𝑛,𝑘 · 𝑃𝑘−1,𝑛,2 · 𝐴𝑇

2,𝑘 . . . 𝐴𝑛,𝑘 · 𝑃𝑘−1,𝑛,𝑛−1 · 𝐴𝑇
𝑛−1,𝑘 𝐴𝑛,𝑘 · 𝑃𝑘−1,𝑛,𝑛 · 𝐴𝑇

𝑛,𝑘
+𝑄𝑘−1,𝑛


(15)

One can see that during a prediction step of a swarm of
MAV’s, one does not only has to propagate the agent’s individual
covariance matrices, but also the cross-covariance matrices of
all the quadrotors in the swarm. This comes with a higher
computational load than when an an agent just has to propagate
its own auto-covariance. In absence of this constraint, it is
possible to convert this centralised EKF in a distributed EKF by
distributing all the equations of the EKF under the agents of the
swarm. However, this comes with a high communication load,
which is most often not available in a fully decentralised swarm.
Additionally, it is often not possible for a scalable distributed
swarm to communicate the calculated cross-covariance matrices
with all agents of the swarm. Apart from the computational
and communication constraints, it is also difficult to make this
approach scalable for a dynamically varying number of swarm
members.

In order to figure out how the uncertainty of a ranging-
agent can be included in our decentralised inter-agent ranging
schemes, the second part of the centralised EKF excursion will
be performed as well. Here, the centralised EKF measurement
update equations will be derived for an inter-agent measurement
update between agent 1 and 2. Once again, it is assumed
that some inter-agent ranging updates have taken place already,
rendering non-zero cross-covariance terms. First, the Kalman
gain for an inter-agent ranging measurement between agent 1
and 2 must be computed and is depicted in Equation 16 to 18.

𝐾𝑘 = 𝑃−
𝑘 𝐻

𝑇
𝑘

(
𝐻𝑘𝑃

−
𝑘 𝐻

𝑇
𝑘 + 𝑅𝑘

)−1
(16)

𝐾𝑘 =



(𝑃−
𝑘,1,2 − 𝑃−

𝑘,1,1𝐻
𝑇
𝑘,1,2)𝑆−𝑘,1,2

(𝑃−
𝑘,2,2 − 𝑃−

𝑘,2,1𝐻
𝑇
𝑘,1,2)𝑆−𝑘,1,2

(𝑃−
𝑘,3,2 − 𝑃−

𝑘,3,1𝐻
𝑇
𝑘,1,2)𝑆−𝑘,1,2

...

(𝑃−
𝑘,𝑛−1,2 − 𝑃−

𝑘,𝑛−1,1𝐻
𝑇
𝑘,1,2)𝑆−𝑘,1,2

(𝑃−
𝑘,𝑛,2 − 𝑃−

𝑘,𝑛,1𝐻
𝑇
𝑘,1,2)𝑆−𝑘,1,2



(17)

with

𝑆−𝑘,1,2 = 𝐻𝑘,1,2𝑃
−
𝑘,1,1𝐻

𝑇
𝑘,1,2

− 𝑃−
𝑘,2,1𝐻

𝑇
𝑘,1,2 − 𝑃−

𝑘,1,2𝐻𝑘,1,2 + 𝑃𝑘,2,2 + 𝑅𝑘 (18)

Finally, after calculation of the Kalman gain, the state of
the inter-agent ranging quadrotors is updated, after which the
EKF update step is finalised by updating the cross- and auto-
covariances as well. For a depiction of these steps, please refer
to Figure 3. Similar to the prediction step of the centralised
EKF, the update equations of the centralised EKF can be dis-
tributed over all quadrotors in the swarm as well. However,

this is challenging the same computational and communication
constraints as with distributing the prediction step equations.
Another interesting note is the fact that not only the quadrotors
taking part in the inter-agent ranging measurement are affected
by the ranging measurement. As a matter of fact, due to the
measurement update between agent 1 & 2, the other agents
experience an information change as well, for which one has to
compensate. One can see the cross-covariances as how much
information is shared between the agents [14][15]. Therefore
if agents undergo a change in information due to inter-agent
ranging, every agent in the swarm can update their view on this
information. This brings along an extra measurement update
scheduling challenge. In turn, one can also see that in case
all agents share the same information —cross-covariances—
the update reduces to only the ranging agent. How this cen-
tralised EKF will be simplified in a distributed approach will
be explained in the next section.

D. Distributed collaborative localisation for swarming
For UWB localisation of a single MAV in environments where
UWB anchor coverage or accuracy is not an issue, one can
make use of readily available positioning algorithms based
on TWR or TDOA as discussed in Section II.A. As a matter
of fact, one should not only be able to take advantage of the
information provided by the static UWB anchors (TDOA), but
also of the information provided by other agents in the swarm
(TWR). The hybrid TDOA-TWR localisation schemes proposed
here make it possible for an agent to perform TDOA with static
anchors and TWR between dynamic anchors (agents) when
in range. As explained in Section II.C, exchanging ranging
information between quadrotors can result in correlated states
and often comes with a high communication and computational
burden. Therefore, the schemes presented in this section will
undergo some crucial simplifications that allows them to become
lightweight and distributed.

First, in Subsection II.D.1, the implementation of the sim-
ple hybrid TDOA-TWR distributed localisation scheme will be
discussed. This is the most simplified approach, in which the
quadrotor does not take into account uncertainty information
of ranging quadrotors. Next, in Subsection II.D.2, one will
propose a covariance updated (CU) hybrid TDOA-TWR locali-
sation scheme, which aims at counteracting ranging uncertainty
by taking into account the auto-covariance of the ranging MAV
by augmenting the ranging measurement noise. Finally, in
Subsection II.D.3, one will discuss the Covariance intersec-
tion covariance updated (CI-CU) Hybrid TDOA-TWR scheme,
which does not only takes into account the auto-covariance
values of the ranging quad-rotors by augmenting the mea-
surement noise, but also attempts at conservatively fusing the
measurement estimate under unknown correlation.
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1. Simple Hybrid TDOA-TWR for swarming
In the simple inter-agent ranging approach the MAV’s are per-
forming TDOA with static anchors and TWR in between swarm
members. When performing TWR, the TWR measurement
—which is a proxy for the distance between two agents— is com-
municated, together with the state-estimate of the transmitting
quadrotor. This means that during an inter-agent ranging mea-
surement towards a quadrotor, no extra uncertainty information
is exchanged, except for the quadrotor’s state-estimate. It is
essential that the state-estimate is communicated, as this is an
estimate for the anchor’s position at the time of the measurement
and the only position metric that is known by the quadrotor’s in
the swarm. When the EKF in the ranging quadrotor receives
a ranging measurement, the associated measurement noise is
only based on the noise of the ranging measurement and no
noise correction is made for the uncertainty of the quadrotor;
the error between the quadrotor’s state and state-estimate. For a
graphical representation of this method, please refer to Figure 4.
This method is based on some simplifications and assumptions,
which are itemised below:

• It is assumed that the position of the dynamic anchor is the
state-estimate of the ranging quadrotor. This means that
the error between the ranging quadrotor’s state and state-
estimate will be propagated through the TWR measurement
if no correction for this uncertainty is made.

• It is assumed that the states of all quadrotors are independent
(cross-correlations 𝑃𝑘,𝑖, 𝑗 are zero with 𝑖, 𝑗𝜖 {1, 2, . . . , 𝑛}∧
𝑖 ≠ 𝑗) and that they remain independent after inter-agent
raging has taken place.

• In order to limit communication, no auto-covariance met-
rics are communicated in between the quadrotors. Instead,
a ranging quadrotor only receives the ranging TWR mea-
surement and a state-estimate.

Quad 1

Quad 2

𝑑
+ 𝑛

𝑑
+ Y

+ 𝑛

State
State-estimate

Figure 4. Quad 1 simple inter-agent ranging with Quad 2.

Above assumptions enable the centralised EKF to become a
fully distributed one. Implementing above assumptions in the
EKF of an individual quadrotor, one can rewrite Equation 16
and find the associated measurement update equations for an

inter-agent ranging measurement between quadrotor 1 and 2 of
a swarm of 𝑛 quadrotors. These are described in Equation 19 to
21. One can see that in this decentralised implementation, only
the ranging quadrotor is involved in the measurement update,
as full independence between the quadrotors states is assumed.

𝐾𝑘 = 𝑃−
𝑘,1,1𝐻

𝑇
𝑘,1,2 (𝐻𝑘,1,2𝑃

−
𝑘,1,1𝐻

𝑇
𝑘,1,2 + 𝑅𝑘)−1 (19)

𝑥1 = 𝑥1 + 𝐾𝑘 (𝑧 − 𝑧𝑚) (20)

𝑃𝑘,1,1 = (𝐼 − 𝐾𝑘𝐻𝑘,1,2)𝑃−
𝑘,1,1 (21)

The simple inter-agent ranging approach has both it’s up-
sides and downsides. On the one hand it is computationally
lightweight and does not require extensive inter-swarm com-
munication, while on the other hand the simplifications made
have the potential to gravely influence the performance of this
localisation scheme. The larger the error between the MAV’s
state and state-estimate, the larger the inter-agent ranging er-
ror. Not correcting for this error can affect the performance
of this scheme. One can reason that the receiving quadrotor
will assume a measurement noise that is too low to compensate
for the error between state and state-estimate of the ranging
quadrotor, shifting it’s own state estimate towards the erroneous
state-estimate measurement of the ranging quadrotor. Please
refer to Figure 4 for a schematic representation of such an inter-
agent ranging measurement and how the state/state-estimate
delta can cause erroneous measurements. Additionally, when
no correction is made for the auto- and cross-correlations of
the inter-agent ranging quadrotors of the swarm, the agents of
the swarm will tend to consistently underestimate their own
state-covariance. Underestimating this covariance can render
the quadrotor’s filter inconsistent, as explained in Section II.C.
The performance of this ranging scheme will be evaluated in
Chapter III and IV.

2. Covariance updated Hybrid TDOA-TWR for swarming
As explained in the previous section, the simple Hybrid TDOA-
TWR for swarming scheme is a highly simplified inter-agent
ranging scheme which is prone to errors. These errors occur as
no correction is made for the fact that one is ranging towards
an uncertain source. Therefore, we propose an improved
covariance updated (CU) Hybrid TDOA-TWR for swarming
scheme, which takes into account the uncertainty measures of
the ranging quadrotor in the form of an augmented measurement
noise that takes into account auto-covariance measures. Once
again, this localisation scheme is based on some assumptions
and simplifications, which are itemised below:

• It is assumed that the position of the dynamic anchor is the
state-estimate of the ranging quadrotor. This means that
the error between the ranging quadrotor’s state and state-
estimate will be propagated through the TWR measurement
if no correction for this uncertainty is made.

• It is assumed that the states of all quadrotors are independent
(cross-correlations 𝑃𝑘,𝑖, 𝑗 are zero with 𝑖, 𝑗𝜖 {1, 2, . . . , 𝑛}∧
𝑖 ≠ 𝑗) and that they remain independent after inter-agent
ranging has taken place.
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• It is assumed that the filter on the ranging quadrotor is con-
sistent. This means that one assumes zero-mean estimation
errors, together with a covariance matrix of the output that
is smaller or equal to the calculated covariance matrix [16].

As explained in Section II.B, every quadrotor in the swarm
runs an EKF for state-estimation. The EKF of the MAV consists
of a prediction step and an update step. For clarification, the
steps of an EKF for state-estimation are presented in Figure
3. During every prediction and update step, the covariance
estimate 𝑃𝑘 of the quadrotor’s state is updated. The covariance
matrix 𝑃𝑘,𝑡 of an agent at a time 𝑡 is a proxy for the quadrotor’s
confidence in it’s own state-estimate. As a matter of fact, the
covariance matrix is also often called the error covariance matrix,
as it describes the predicted error between the quadrotor’s
state and predicted state-estimate. An example of how such a
covariance matrix evolves in absence of measurement updates
is illustrated in Figure 5. There one can see an evaluation of
the covariance error ellipse in absence of measurement updates
for a simulation time of 26 seconds. One can see that the state
is drifting away from it’s state-estimate and desired trajectory,
and this growing uncertainty can also be seen in the growing
error ellipse.

−10 −5 0 5
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5

X position [m]
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error ellipses
ground truth
state-estimate
desired trajectory

Figure 5. Growing covariance error ellipse for a drifting MAV.

Upon performing a TWR measurement update, the TWR
measurement receives a weight corresponding to the Kalman
Gain 𝐾 . In turn, this Kalman gain is influenced by the measure-
ment noise 𝑅, that is associated with the received measurement.
In the simple Hybrid TDOA-TWR for swarming approach, this
measurement noise was solely based on the noise associated
with the TWR measurement and no extra noise factor corre-
sponding to the uncertainty of the quadrotor about it’s state
was included. The CU Hybrid TDOA-TWR for swarming ap-
proach aims at augmenting the measurement noise to include
the uncertainty modelled by the covariance error matrix. Im-
plementing above assumptions in the EKF of an individual
quadrotor, one can once again rewrite Equation 16 and find
the associated measurement update equations for an inter-agent
ranging measurement between quadrotor 1 and 2 of a swarm of
𝑛 quadrotors.

𝐾𝑘 = 𝑃−
𝑘,1,1𝐻

𝑇
𝑘,1,2 (𝐻𝑘,1,2𝑃

−
𝑘,1,1𝐻

𝑇
𝑘,1,2 + 𝑃𝑘,2,2 + 𝑅𝑘)−1 (22)

𝑥1 = 𝑥1 + 𝐾𝑘 (𝑧 − 𝑧𝑚) (23)

𝑃𝑘,1,1 = (𝐼 − 𝐾𝑘𝐻𝑘,1,2)𝑃−
𝑘,1,1 (24)

Rewriting Equation 22, the relation for 𝑅𝑇𝑊𝑅−𝐶𝑂𝑉 can be
deducted as depicted in Equation 25, with 𝑅𝑇𝑊𝑅−𝐶𝑂𝑉 being
the updated noise variance.

𝑅𝑇𝑊𝑅−𝐶𝑂𝑉 = 𝑃𝑘,2,2 + 𝑅𝑘 (25)

Now, in order to reduce the covariance matrix to a scalar,
enabling the quadrotor to perform a scalar measurement update,
one can take into account the covariance 𝑃𝑘,2,2 of the ranging
quadrotor in the direction of the measurement update. This
has the advantage that the covariance of the residual becomes a
scalar, which is easily invertible in calculation of the Kalman
gain. Mathematically, the variance of an error ellipse under an
angle can be calculated with the transformation as shown in
Equation 26.

𝑆𝑑𝑑 = 𝑆𝑥𝑥 cos2 \ + 2𝑆𝑦𝑥 cos \ sin \ + 𝑆𝑦𝑦 sin2 \ (26)

With 𝑆𝑥𝑥 , 𝑆𝑥𝑦 and 𝑆𝑦𝑦 being the variances and covariances
of the error ellipse over their respective axis and \ being the
angle between the quadrotor’s states in the 𝑥𝑦 plane. For a
graphical representation, please refer to Figure 6. Please note
that as only the state-estimates are known, the angle between
the state-estimates is used for this calculation, which can be
a source of error. Finally, the variance of the measurement
noise corresponding to a TWR inter-agent ranging measurement
taking into account the uncertainty associated by the MAV’s
error-ellipse in the direction of the ranging measurement is
illustrated in Equation 27. For a visual representation of how the
covariance error ellipse can be used to update the measurement
noise of an inter-agent ranging measurement, please refer to
Figure 6.

𝑅𝑇𝑊𝑅−𝐶𝑂𝑉 = 𝜎2
𝑇𝑊𝑅 + 𝑆𝑑𝑑 (27)

With 𝑅𝑇𝑊𝑅−𝐶𝑂𝑉 being the updated noise variance, 𝜎2
𝑇𝑊𝑅

being the original TWR noise variance and 𝑆𝑑𝑑 being the
variance of the quadrotor’s covariance error ellipse in the
direction of the measurement.

Additionally, the transformation and assumptions made in
Equation 26 and 27 have been validated by means of several
Monte Carlo simulations. A quadrotor has been simulated to
fly a rectangular trajectory as presented in Section III.A and it’s
corresponding state, state-estimate and error-covariance matrix
values have been logged for a duration of 110 seconds. For
every logged data-point of the simulation, 1000 pseudo TWR
measurements have been generated, polled from the plane of
the covariance error-ellipse. The variance of this data-set cor-
responds to the simulated measurement noise variance during
120 seconds of simulation. Subsequently, the measurement
noise variance has also been calculated according to the trans-
formation presented in Equation 26 and 27. With as angle \, the
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Figure 6. Quad 1 covariance updated (CU) inter-agent ranging towards
Quad 2.

angle between the state-estimates. In Figure 7, one can see that
the variance calculated with the relation presented in Equation
26 and 27 accurately approximates the simulated variance and
therefore validating our approach.

0 20 40 60 80 100 120
0

1

2

3

4
·10−2

time [s]

𝑅
𝑇
𝑊

𝑅
−𝐶
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𝑉

calculated 𝑅𝑇𝑊𝑅−𝐶𝑂𝑉

simulated 𝑅𝑇𝑊𝑅−𝐶𝑂𝑉

Figure 7. Calculation and simulation of 𝑅𝑇𝑊𝑅−𝐶𝑂𝑉 for validation
purposes.

Please note that the differences between the simulated and
calculated variance can be attributed to the fact that the state-
estimate has been used to calculate the angle between the
quadrotors, instead of the state. Therefore, as long as the
MAV’s state-estimate approximates the state, one can validate
the approach under the assumptions made at the beginning
of this section. Additionally, one has to keep in mind that
the true mean of the Gaussian generated by the EKF does not
always follow the approximated mean, which is also a factor
that can affect the performance of this covariance updated
approach. The EKF linearises the system dynamics, while these
are inherently non-linear. Because of the linearisation around a

single point, the covariance matrix is an approximate Gaussian
ellipse, in which the true mean does not always follow the
approximated mean. One could obtain a better approximation
of the Gaussian ellipse by means of the Unscented Kalman Filter
(UKF), in which one calculates not one, but multiple sigma-
points which are used for the Gaussian transformation, rendering
a better approximated Gaussian and a better approximated mean.
Please refer to Figure 8 for a schematic representation of this
deficiency. Additionally, as this approach does not take into
account, nor compensates for the exclusion of cross-covariance
factors between the quadrotors, there is the risk that the EKF
becomes inconsistent after which the EKF underestimates the
true covariance error ellipse, reducing the performance of this
localisation scheme. In Chapter III and IV, this presented
localisation scheme will be evaluated and one will investigate
whether this scheme does render favourable results, regardless
of the simplifications and assumptions applied in this scheme.

True Mean

True Covariance

EKF estimated
Mean

EKF estimated
Covariance

UKF estimated
Mean

UKF estimated
Covariance

Figure 8. Error covariance ellipses for EKF & UKF.

3. Covariance Intersection noise augmentation for distributed
swarming

As explained in Section II.C, the ideal case scenario for inter-
agent ranging of a swarm of quadrotors involves a centralised
EKF, or a distrubuted EKF with extensive communication and
computational resources. These scenarios enable optimal fusion
of uncertainty information, taking into account interdependen-
cies between the states of the swarm members. However, in
a decentralised swarm consisting of micro MAV’s, extensive
communication and computational resources are not available.
In order to overcome this burden, two simplified inter-agent
ranging schemes have been presented in Section II.D.1 and
II.D.2. Both of these schemes come with the assumption that
the states of the quadrotors in the swarm are independent and
they remain independent after inter-agent ranging has taken
place. Additionally, it has been shown in Section II.C that not
taking into account the dependent part of information during an
inter-agent ranging update has the potential to consistently un-
derestimate the error-covariance of the ranging agent, rendering
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the state-estimation filter inconsistent over time.
The author proposes to augment the measurement noise and

distance measurement of the EKF measurement update step of
the CU Hybrid TDOA-TWR localisation scheme with the Covari-
ance Intersection (CI) method. The CI method aughts to fuse
two estimates that have unknown cross-correlation in a conserva-
tive manner, taking into account an estimated cross-covariance
of the two fused estimates. This is done by calculating a conser-
vative covariance ellipse that encloses the intersection region of
the two estimates, regardless of the cross-covariance between
those estimates [17][18][19]. The CI method is illustrated
in Equation 28. Additionally, 𝜔 must be chosen to optimise
a selected criterion rendering conservative cross-covariance
estmiates (e.g. trace of 𝑃𝐶𝐼 ). As this decentralised localisation
system aims at being lightweight and computationally efficient,
an approximated optimal 𝜔 is calculated, according to Equation
29 and as discussed by [20][21].

𝑃−1
𝐶𝐼 = 𝜔𝑃

−1
1 + (1 − 𝜔)𝑃−1

2

𝑃−1
𝐶𝐼 �̂�𝐶𝐼 = 𝜔𝑃

−1
1 �̂�1 + (1 − 𝜔)𝑃−1

2 �̂�2
(28)

𝜔 =

��𝑃−1
1 + 𝑃−1

2
�� − ��𝑃−1

2
�� + ��𝑃−1

1
��

2
��𝑃−1

1 + 𝑃−1
2

�� (29)

Instead of performing the covariance intersection method on
the full state-estimates of the quadrotors, it has been decided
to augment the ranging distance measurement and associated
measurement noise with the CI method in one dimension; the
direction of the ranging measurement. This is done by transform-
ing the covariance matrices in the direction of the measurement.
The CI method for an agent 𝑖 receiving a measurement from
agent 𝑗 is described below.

Agent 𝑖 receives an inter-agent ranging measurement 𝑑 from
agent 𝑗 , together with agent 𝑗’s estimated position 𝑥 𝑗 and covari-
ance block 𝑝 𝑗 . The covariance is transformed in the direction of
the ranging measurement and added to the ranging measurement
noise. This is the first estimate �̂�1 and associated covariance
𝑃−1

1 of the ranging measurement. Next, the second estimate �̂�2
is constructed from estimated quantities, being the estimated
position 𝑥 of agent 𝑗 and agent 𝑖. The associated covariance of
this estimate consists of the measurement noise of the ranging
measurement with the transformed covariance blocks of agent 𝑖
and 𝑗 added to it. This is the second estimate. Finally, equation
28 and 29 are applied and an updated ranging distance and
measurement noise are obtained. This measurement is then
processed by the normal EKF measurement update equations.

This variation on the CI method attempts to mitigate some
inconsistency problems that can arise from underestimating
the variance associated with a ranging measurement update.
One has to be aware that manipulating the measurement and
measurement noise increases the computational requirements
of the localisation schemes. However, as this method applies CI
in one dimension, matrix inversions reduce to scalar division,
which is relatively computationally lightweight. How this CI-
CU Hybrid TDOA-TWR scheme performs in comparison to the
other schemes will be discussed in Chapter III and IV.

III. Simulation Results & Discussion
In this section, the performance of the simple, CU and CI-CU
Hybrid TDOA-TWR localisation schemes will be evaluated by
means of a simulation. The simulations are generated with the
simulator model described in Section II.B and the applied algo-
rithms are implemented as explained in Section II.D. First, in
Section III.A the simulated test-setup and simulation scenarios
will be discussed, after which in Section III.B and III.C the
results of simulated tests with full anchor coverage and limited
anchor coverage respectively will be discussed. Additionally,
in Section III.D, an exploration on the EKF consistency will be
performed involving how the presented localisation schemes
affect this performance metric.

A. Simulated test-setup
In order to evaluate the UWB positioning schemes presented in
this paper, a 2D test-setup has been developed and implemented
in the modified Swarmulator simulator. For every simulated
test-case in this paper, the same base test-setup has been used.
This decision has been made in order to ensure uniformity and
comparability between the tests. During the tests, the quadrotors
will fly a trajectory consisting of an approximated rectangle
of 15 × 5 meters in anti-clockwise direction. This trajectory
has been optimised such that it minimises changes in velocity,
making it less challenging for the MAV’s dynamics to attain.
The trajectory will be flown once by each MAV, for a total of 65
seconds. In case multiple MAV’s are spawned in the simulation,
all of the MAV’s are flying the same trajectory and are equally
distributed along the trajectory.
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Figure 9. Visualisation of the simulated test-setup.

A total of 8 static UWB anchors have been placed in the
test-environment. Their locations are tabulated in Table 2 of
the Appendix. It is possible to vary the frequency at which
the anchors transmit UWB packages, this to ensure the desired
UWB measurement update frequency can be attained. In turn,
one can change the desired UWB measurement update rate
for inter-agent ranging TWR measurements and for TDOA
measurements with static UWB anchors. One can also spawn
dynamic anchors for every agent in the simulation, or specify
a maximum range for UWB anchors. For more information
regarding the simulator, please refer to Section II.B. For a
depiction of the simulation test-setup, please refer to Figure 9.
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All the tests performed in this section will be making use
of the same base parameters. It has been decided to run the
simulation at the default frequency of 1000 Hz, with an EKF
frequency of 250 Hz. Additionally, the TDOA measurement
update frequency has been set to 50 Hz. This has been validated
by observing the achieved TDOA package update rate of a
Crazyflie in the UWB setup at the TU Delft Cyberzoo [22].
Bitcraze has specified that the best TDOA performance for a
scalable setup is achieved by limiting the total UWB packages
to 400 packages/s. This to avoid collision between packages.
Therefore, with 8 static anchors in the test-setup, it has been
decided to limit the transmission frequency of the static UWB
anchors to 50 Hz per anchor. Similarly, when quadrotors are
TWR inter-agent ranging, the maximum of aired packages is
also limited to 400 packages/s, limiting the dynamic anchors’
transmission frequency to 400/𝑛, with 𝑛 being the number of
inter-agent ranging agents. In practice, TDOA and TWR can
be performed on different UWB channels, decreasing the risk
of collision.

The TDOA and TWR measurements are being generated
by calculating the distance between the states of the agent and
overlaying this measurement with zero-mean Gaussian noise. A
TDOA measurement is calculated with a Gaussian noise profile
with 𝜎 of 0.22 m and a TWR measurement with a noise profile
with 𝜎 of 0.16 m. This has also been validated by static test
data of the Loco Positioning System anchors and nodes [2][22].
These values have also been adapted in the quadrotor’s EKF
as fixed measurement noise values. This decision has been
made as one would like to evaluate the effects of optimised
inter-agent ranging schemes, while simultaneously ruling out
errors induced by a sub-optimal choice of measurement noise.
For future research, the dynamic calculation of measurement
noise is implemented as well in the Simulator.

It has been decided to evaluate the performance of the pre-
sented localisation schemes by varying the number of inter-agent
ranging quadrotors between 1 − 8, as well as by varying the
inter-agent ranging frequency in 20 steps between 2 and 20 Hz,
with the maximum of 20 Hz being double the TWR inter-agent
ranging frequency that can be attained with the Crazyflie 2.1
hardware and inter-agent ranging Loco positioning decks [2].
The data-points with a single quadrotor 𝑛 = 1 correspond to
a non-cooperative EKF. In order to be able to infer conclu-
sions from this simulation, a total of 30 simulations have been
performed for every data-point in the subsequent evaluations.
This has been made possible by running 30 forked Swarmulator
simulations in parallel on a Google Cloud console instance,
running a general purpose E2 CPU, with 8 vCPU’s and 32GB of
memory. Generation of a single surface plot consisting of 120
data-points, entails a total of 4800 simulations and takes about
14 hours and 40 minutes to complete. For a more thorough
discussion of the retrieved data please refer to the sections
below.

In order to properly evaluate the performance of the inter-
agent ranging schemes, it has been decided to test all schemes
for a full-coverage test-case and a limited coverage test case. For
the full-coverage test scheme the quadrotors have connection to
the UWB anchors at all times. During the limited-coverage test

case, the test-setup is augmented with a zone in which there is no
connection to the static UWB anchors. In that zone, quadrotors
have to rely on inter-agent ranging with other swarm agents
in order to correct for their IMU drift and achieve accurate
positioning. Please refer to Figure 9 for a representation of this
limited coverage setup. For a discussion of the results of the
full-coverage test and limited-coverage test-case please refer to
Subsection III.B and III.C respectively.

B. Inter-agent ranging full-coverage test results
The first tests that have been performed are simulated full-
coverage tests. These tests consist of a varying number of
quadrotors flying in the simulated test-setup as described in
Section III.A and illustrated in Figure 9. Please note as these
are the full-coverage tests, the zone without UWB coverage has
been disabled for these tests. All test results presented in this
section have been performed for the simple, CU as well as the
CI-CU Hybrid TDOA-TWR inter-agent ranging schemes.

For the full-coverage test-case it has been decided to not put
limits on the UWB beacon range. Bitcraze has specified that
the maximum range of UWB anchors is about ≈ 15 − 20 m
and this value fluctuates dependent on the specific hardware
setup [2]. Additionally, as the intention of these simulated
tests is to objectively quantify the performance of the proposed
inter-agent ranging schemes, it has been decided not to limit
the measurement range between the inter-agent ranging agents.
Surface plots with the results of the simple, CU, as well as the
CU-CI Hybrid TDOA-TWR inter-agent ranging scheme for the
full-coverage test-case can be found in Figure 20, 21 and 22 of
Appendix VI respectively.

1. Varying number of quadrotors
It is possible to slice the surface plots resulting from this test-
case along the inter-agent ranging frequency axis. This way one
can take a look at the the inter-agent ranging performance when
varying the number of quadrotors while keeping the inter-agent
ranging frequency fixed. Slices of the surface plot with an
inter-agent ranging frequency of respectively 2, 10 and 20 Hz
can be seen in Figure 10.

One can see that when increasing the number of quadrotors
flying the trajectory, the localisation error is decreasing given
that the inter-agent ranging frequency is kept high enough. As a
matter of fact, when varying the number of quadrotors between
1 − 8, one can observe for the simple scheme a maximum
localisation improvement of 23.12%, for the CU scheme an
improvement of 27.27% and for the CI-CU scheme a maximum
localisation improvement of 32.47%. One can see that the
improvement in localisation error diminishes when the number
of quadrotors exceeds 4 agents. Additionally, one can observe
that in general, the CI-CU Hybrid TDOA-TWR scheme comes
with the lowest RMSE (state & state-estimate), followed by the
CU and the simple schemes, as long as the inter-agent ranging
frequency is kept high enough. As a matter of fact, one can
observe in Figure 10 that at a low inter-agent ranging frequency
of 2 Hz no real localisation improvement is visible and the higher
the frequency, the better the performance of the localisation
schemes. For example, the localisation improvement associated
with the CI-CU scheme with 4 quadrotors and inter-agent
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Figure 10. Simulation results for the full-coverage Hybrid TDOA-
TWR with varying n of quadrotors and fixed inter-agent ranging
frequency of 2 Hz, 10 Hz and 20 Hz (CU = Covariance Updated,
CI-CU = Covariance Intersection Covariance Updated).

ranging frequency of 20 Hz is 30.37%, at a frequency of 10𝐻𝑧
21.14% and at a frequency of 2 Hz only 5.21%. Taking a look
at the inter-percentile spread of the localisation schemes in
Figure 10, one can clearly see that the CI-CU scheme comes
with the highest stability and performance, followed by the CU
and simple scheme respectively. Additionally, one can also see
that the stability of the scheme individually also increases with
increasing frequency.

It can also be observed that the improvement between the
localisation schemes is rather small. This is to be expected. This
is the full-coverage test case, of which the quadrotors are inter-
agent ranging at a frequency ranging from 2 − 20 Hz, while the
quadrotors are simultaneously ranging towards static anchors
at a much higher frequency of 50 Hz. As the quadrotors are
inter-agent ranging at a much lower rate than they are receiving
location updates from UWB anchors, their covariance error
matrix is not propagating very far in between measurement
updates, leaving with a fairly accurate position estimate already.
Additionally, due to the fact that the quadrotors are receiving
UWB updates from static anchors at a much higher rate than
the inter-agent ranging frequency, the rate at which their states
are becoming correlated is lower as well. Because of this feat,
the cross- and auto-covariance terms remain fairly small and
so is the compensation of the error-covariance uncertainty in
the measurement noise. These small error-covariance values
render small uncertainty compensation values and because of
this also a small observed localisation improvement between
the schemes.

One can also observe that a higher inter-agent ranging fre-
quency does not always render a lower RMSE between state
and state-estimate. As a matter of fact, when two quadrotors
are inter-agent ranging, one can observe a deterioration in local-
isation performance. This can be explained by the fact that the
inter-agent ranging frequency in the simulation is kept constant,
regardless of the number of quadrotors in the simulation. This
means that when two agents are inter-agent ranging their states
become correlated at a faster rate than when there are more
agents in the simulation at the same inter-agent ranging fre-
quency. Therefore, the first signs of EKF inconsistency —which
is a result of the simplifications implemented the localisation
schemes— can be seen at a low number of quadrotors and high
inter-agent ranging frequency. Additionally, one can see that
the simple scheme is most prone to this inconsistency, followed
by the CU and greatly mitigated by the CI-CU scheme.

2. Varying inter-agent ranging frequency
Slicing the surface plots obtained for the full-coverage test-case
along the 𝑛 quadrotor axis, one can take a look at the inter-agent
ranging performance when varying the inter-agent frequency
and keeping the number of quadrotors constant. This helps
understanding what happens to the localisation performance
when one varies the inter-agent ranging frequency. Slices of
the surface plot with varying inter-agent ranging frequencies
for respectively 2, 4, 6 and 8 quadrotors are presented in Figure
11. One can observe that in general, a higher TWR frequency
comes with a lower observed localisation error, given that the
EKF is consistent. This leaves out the cases with low number
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of quadrotors and high inter-agent ranging frequency. Addition-
ally, one can see that regardless of the number of quadrotors,
the localisation schemes in which uncertainty information is
exchanged benefit from a higher TWR frequency and the more
uncertainty information is exchanged at that frequency, the
higher the benefit. However, with a higher inter-agent ranging
frequency, the returns on localisation improvement becomes
less. For example, with 6 inter-agent ranging quadrotors, the lo-
calisation improvement between the simple and CI-CU scheme
is 3.41% at a frequency of 6 Hz, 5.6% at a frequency of 10 Hz
and 6.56% at a frequency of 20 Hz. Once again one can observe
that an increase in TWR frequency does not always render a
decrease in localisation error. In similar fashion as explained in
the previous section, one can observe that when the number of
inter-agent ranging quadrotors is low and the inter-agent ranging
frequency is high, a deterioration of localisation performance
takes place due to inconsistency. In Figure 11 a), one can see
that schemes exchanging more uncertainty information render
more consistent results and are better at counteracting this
deterioration. Please refer to Section III.D for an excursion on
the consistency of the EKF and how this can be mitigated.

C. Inter-agent ranging limited-coverage test results

The second round of tests that have been performed are simulated
limited-coverage tests. These tests are more relevant than
the full-coverage tests, as they represent how the distributed
localisation schemes can be used in cases of intermittent UWB
anchor reception. There are numerous use-cases where MAV’s
are flying in an environment where reception of a localisation
system is not self-evident and where the deployment of an
ad-hoc distributed sensor network consisting of a swarm of
MAV’s supplemented with some base station anchors can be
the solution. Think of the industrial use case of monitoring and
inspection of crops in large greenhouses for example. The goal
of this series of tests is to present the localisation performance
of the localisation schemes when the UWB anchor reception
is intermittent. Once again, this series of tests consists of a
varying number of quadrotors flying in the simulated test-setup
as described in Section III.A. This time, the zone without UWB
coverage has been enabled. Outside of the zone the quadrotor
has full reception towards the static UWB anchors, inside the
zone there is no connection at all to static UWB anchors and
the quadrotor is solely relying on its own position estimate
(IMU) and inter-agent ranging measurements between swarm
members. The quadrotors flying inside the zone without static
UWB anchor reception are allowed to range towards quadrotors
outside the zone and vice versa. As the intention of these
simulated tests is to objectively quantify the performance of
the proposed inter-agent ranging schemes, it has been decided
to not limit the measurement range between the inter-agent
ranging agents. Once again all the test results presented in this
section have been performed for the simple, CU and CI-CU
inter-agent ranging schemes. Surface plots with the results of
the simple, CU and CI-CU inter-agent ranging scheme, can be
found in Figures 23, 24 and 25 of Appendix VI respectively.
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Figure 11. Simulation results for the full-coverage Hybrid TDOA-
TWR with varying inter-agent ranging frequency for fixed number of
quadrotors of 2, 4, 6 and 8 quadrotors (CU = Covariance Updated,
CI-CU = Covariance Intersection Covariance Updated).
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1. Varying number of quadrotors
In order to have a better understanding of how a swarm of
quadrotors can improve it’s location estimate by inter-agent
ranging with neighbouring agents in the swarm, one can slice the
resulting surface plots along the inter-agent ranging frequency
axis. In Figure 13, one can see the limited-coverage simulation
results with varying quadrotors, keeping the inter-agent ranging
frequency constant at a value of 2, 10 and 20 Hz respectively.
Once again, one can observe that the CI-CU scheme generally
comes with the lowest RMSE (true state & state-estimate)
followed by the CU and simple schemes respectively.

As this time the test-setup involves a zone without UWB
reception, the quadrotors have to perform inter-agent ranging in
order to compensate for IMU drift inside that zone. One can
see that when a single quadrotor is trying to fly the trajectory
(without inter-agent ranging measurements), the quadrotors
experience extreme drift when crossing the zone without UWB
reception. As a matter of fact, the median observed RMSE of
a quadrotor flying the trajectory without inter-agent ranging is
0.9 meters. The drifting error of the quadrotor flying through
the zone without UWB coverage is dependent on the size of
the zone. Such an error has the potential to greatly affect the
performance of a real life application. When increasing the
number of quadrotors flying the trajectory, one can observe that
the localisation error is decreasing.

For example, when simulating the simple scheme for 2
quadrotors at an inter-agent ranging frequency of 10 Hz, an
improvement of 39.14% can be observed, of 64.22% for 4
quadrotors, 66.36% for 6 quadrotors and 76.31% for 8 quadro-
tors. Additionally, one can once again observe that the schemes
exchanging more uncertainty information come with a lower
localisation error. For comparison, when varying the number
of quadrotors between 1 − 8 for the CI-CU scheme, one can ob-
serve for an inter-agent ranging frequency of 10 Hz, an average
localisation improvement of 40.34% for 2 quadrotors, 75.97%
for 4 quadrotors, 79.56% for 6 quadrotors and 81.77% for 8
quadrotors can be observed. One can see that the observed
localisation improvement diminishes after adding more than 4
quadrotors. This point is highly dependent on the trajectory and
zone without UWB coverage. The quadrotors are distributed
over the trajectory presented in Section III.A. When a quadrotor
is flying inside the zone without UWB coverage it is able to
range towards an agent that does have connection to the static
UWB beacons. Basically relaying the UWB network, creating
an ad-hoc distributed localisation network.

In absence of inter-agent ranging measurements, the quadro-
tors inside the zone without UWB reception are drifting and
the error between state and state-estimate is increasing with
every prediction step. The agents are benefiting from every
measurement obtained from agents outside of the zone. There-
fore, the problem of inconsistency is here less visible as in
the full-coverage test-case. One can say that for the limited-
coverage test-case the influence of inconsistency does not have
a crucial impact on the localisation performance of this scheme.
However, it still exists and this will be discussed in Section
III.D.
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Figure 12. Simulation results for the limited-coverage Hybrid TDOA-
TWR with varying n of quadrotors and fixed inter-agent ranging
frequency of 2Hz, 10Hz and 20Hz (CU = Covariance Updated, CI-CU
= Covariance Intersection Covariance Updated).
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2. Varying inter-agent ranging frequency
Once again slicing the surface plots obtained for the limited-
coverage test-case along the 𝑛 quadrotor axis, one can take
a look at the inter-agent ranging performance when varying
the inter-agent ranging frequency and keeping the number of
quadrotors constant. This way one can visualise the impact of
increasing the inter-agent ranging frequency when a swarm of
quadrotors is flying in an area with limited UWB coverage.

From Figure 13, one can see that in general, with increasing
frequency comes a decrease in localisation error. Additionally,
one can observe that the rate of improvement in terms of
localisation error is decreasing with the increase in inter-agent
ranging frequency. For example, for the simple scheme with 4
quadrotors, one can observe between 0 and 4 Hz a localisation
improvement of 19.29%, between 8 and 12 Hz an improvement
of 17.75% and between 16 and 20 Hz, this improvement is only
12.2%. Similarly for CI-CU scheme, one can observe between
0 and 4 Hz an average localisation improvement of 62.18%,
between 8 and 12 Hz an improvement of 3.81% and between
16 and 20 Hz, this improvement is neglectable. The return on
localisation accuracy is diminishing with higher frequency, in a
practical application this is an important trade-off factor.

Additionally, the increase in localisation accuracy between
the simple, CU and CU-CI schemes is decreasing as well with
increasing frequency. For example, the decrease in localisation
error for the CU scheme in comparison to the simple scheme
for 8 quadrotors is 47.56% for an inter-agent ranging frequency
of 2 Hz, 23.07% for an inter agent ranging frequency of 10 Hz
and only 18.38% for an inter-agent ranging frequency of 20 Hz.

D. Inconsistency Excursion
Apart from evaluating the performance of the localisation
scheme in terms of absolute positioning error, it is also possible
to evaluate the performance of our localisation filter by means
of evaluating the average normalized (state) estimation error
squared (NEES) during our simulations. The calculation of
the NEES values during our simulation is a means of checking
the credibility of the error-covariance produced by our filter.
By means of the NEES test one tries to figure out whether the
estimated error actually approximates the true error. Testing for
this criterion is important, as the distributed localisation schemes
presented in this paper are greatly simplified in comparison
to the centralised usecase. Due to the varying degree of
simplifications implemented in the localisation schemes, it can
be expected that their susceptibility to inconsistency varies as
well. Please refer to Equation 30 for a definition of NEES,
according to Huang et al. [16].

𝜖𝑘 = 𝑥𝑇𝑘 𝑃
−1
𝑘 |𝑘𝑥𝑘 (30)

with 𝑃𝑘 |𝑘 being the associated sub-matrices of the error
covariance matrix 𝑃𝑘 corresponding to the quadrotor’s position
and 𝑥𝑘 being represented by the EKF’s estimation error here
being associated with the quadrotor’s ground truth position 𝑥𝑘
and estimated position 𝑥𝑘 . Please refer to Equation 31 for a
decomposition of this estimation error.

𝑥𝑘 = 𝑥𝑘 − 𝑥𝑘 (31)
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Figure 13. Simulation results for the limited-coverage Hybrid TDOA-
TWR with varying inter-agent ranging frequency for fixed number of
quadrotors of 2, 4, 6 and 8 quadrotors (CU = Covariance Updated,
CI-CU = Covariance Intersection Covariance Updated).
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In similar fashion as with the RMSE, the average NEES values
have been calculated for both the limited and full coverage test-
cases. As explained by Huang et al., it is known that the NEES
of a random variable spanning M-dimensions follows a 𝜒2

distribution [16]. The mean of a 𝜒2 distribution of dimension
M is M. In this case the NEES is evaluated for the x and y
position of the quadrotors. The x and y position of the quadrotor
is a 2D metric and therefore one can expect optimal values of
NEES to be around 2. The higher the NEES value, the larger
the inconsistency presented by the filter.

The average NEES values for both the limited- and full-
coverage test-case have been calculated and they are presented
in Figure 14. The NEES values are plotted with a varying
inter-agent ranging frequency between 2 and 20 Hz, for 2, 4,
6 and 8 inter-agent ranging quadrotors respectively. From
Figure 14, one can see that with a larger inter-agent ranging
frequency, the larger the presented inconsistency of the EKF.
Additionally, the presented inconsistency is larger the more
simplifications the schemes incorporate. This is to be expected,
schemes undergo some major simplifications in comparison to
the ideal distributed EKF. This has been presented in Section
II.C. Therefore, with every measurement update, inconsistency
of the EKF is provoked. The higher the inter-agent ranging
frequency, the more measurement updates, the more inconsistent
the EKF becomes.

It can be observed that the consistency can be delayed and
decreased. As the inter-agent ranging frequency is kept constant
for every agent in the swarm, the rate at which the states of
the swarm agents become correlated decreases not only with
the inter-agent ranging frequency, but also with the number
of quadrotors in range. Therefore, having a dense swarm
of MAV’s can help delaying the inconsistency problem. It
can also be observed that the full-coverage test-case does not
suffer from the same level of consistency problems as the
limited-coverage test-case. This can be explained by the fact
that the limited-coverage test-case undergoes major drift when
the quadrotors are flying in the zone without UWB anchor
coverage. In Figure 14, one can clearly see that at a high
number of quadrotors, inconsistency is drastically decreased
with the uncertainty exchanging schemes as opposed to the
simple approach. This shows that compensating for uncertainty
measures has favourable results.

The degree of inconsistency improvement of the localisation
schemes is dependent on many factors. The better uncertainty
compensation in the ranging measurement, the smaller the inter-
agent ranging inconsistency problem becomes. Additionally,
one also has to take into account the model being used in
the propagation step of the quadrotor’s EKF. The localisation
schemes assume that the filter on the ranging quadrotor is
consistent, meaning that one assumes zero-mean estimation
errors and a covariance matrix of the output that is slightly
smaller or equal to the calculated covariance matrix. The better
the output of the model approximates the quadrotor’s behaviour,
the better the representation of the error-covariance matrix
becomes in times of drift (multiple sequential prediction steps),
the lower inconsistency presented when the quadrotor has no
UWB coverage.
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Figure 14. Simulation results for the full- and limited-coverage Hybrid
TDOA-TWR NEES values with varying inter-agent ranging frequencies
for fixed number of quadrotors of 2, 4, 6 and 8 quadrotors (CU =
Covariance Updated, CI-CU = Covariance Intersection Covariance
Updated). NEES of value 2 indicated in gray.
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IV. Cyberzoo Test Results & Discussion
In this Chapter, the performance of the simple, CU and CU-CI
Hybrid TDOA-TWR localisation schemes will be evaluated
in practice. The purpose of this chapter is to validate the
simulations and methods presented in Section II and III. First,
in Section IV.A, the test-setup will be presented. This entails a
description of the testing environment, as well as the hardware
used for this research. Next, in Section IV.B, the results of the
practice tests will be presented and discussed.

A. Cyberzoo test-setup
The validation tests have been performed at the TU Delft
Cyberzoo. This is a micro air vehicle test facility at the TU
Delft faculty of Aerospace Engineering, where one can test a
wide variety of unmanned air vehicles (UAV) in a safe manner.
It has been decided to use the Crazyflie 2.1 as platform for the
practice tests. The Crazyflie 2.1 is a lightweight quadrotor that
can be equipped with various sensors and can run custom scripts
in order to change it’s behaviour. The Cyberzoo is equipped
with an Optitrack system that will be used for ground truth
recording.

The ecosystem of Bitcraze makes it possible to equip the
Crazyflie with all the necessary sensors for this research. For
the tests performed in this research a total of 4 Crazyflies
have been used. Each of the Crazyflies are equipped with
two Loco-positioning UWB decks and one Flowdeck v2. The
first Loco-positioning deck is used to perform TDOA with
the static UWB anchors of the Cyberzoo, while the second
Loco-positioning deck is used to perform TWR with the swarm
members. Additionally, the Flowdeck v2 provides optical flow
measurements and is used for height control and limiting drift
in absence of UWB measurements. Hosting this many sensors
is a highly unsupported configuration, requiring adapted wiring
and adjustments to the firmware. For full integration with the
Bitcraze ecosystem, the Crazyflie client has been adapted to
accommodate these changes as well.

Due to the fact that the Crazyflie is carrying an unsupported
payload the Crazyflie is flying close to it’s maximum take-off
weight. The advertised maximum take-off weight of a Crazyflie
2.1 is 42g, of which the Crazyflie itself is 27g. This leaves 15g
of useful payload. The 2 UWB decks (3.3g each), Flowdeck
v2 (1.6g) and battery (7.1g) account for a total payload of
15.3g. This means that the Crazyflie is loaded to its limits and
this greatly affects the stability of the system during take-off
and flight manoeuvres. For example, if the voltage drop of
the battery is higher than 0.8v or the motors are not perfectly
balanced anymore, the Crazyflie crashes when giving full thrust.
The flight time of the Crazyflie is also highly reduced to a
maximum of 3 minutes. Additionally, when flying 4 Crazyflies
in the Cyberzoo, high levels interference on the radio channel
take place (regardless of distributing channels), making the
swarm hard to control. An extension to the ceramic antenna of
the Crazyflie has been implemented and this partially solved the
issue. Nevertheless, due to the limited stability of the test-setup,
only a specific test-case with 4 quadrotors has been tested.

B. Test results
The main test will be a limited coverage test, in which the
application of the three inter-agent ranging schemes (simple,
CU, CI-CU) has been tested in practice. In similar fashion as
with the simulated tests, the 4 Crazyflies will fly an approximated
square of 4× 4 meters in clockwise direction. The 4 quadrotors
will fly the square trajectory simultaneously, while being evenly
distributed on the trajectory. While flying the trajectory, the 4
Crazyflies will perform TDOA localisation with static anchors
in the Cyberzoo and inter-agent ranging in between the swarm
members. Since the Cyberzoo is too small to leave the range
of the static UWB anchors, a zone in which the Crazyflie does
not have connection to the static UWB anchors is implemented,
emulating a limited-coverage environment. Inside that zone, the
Crazyflie does not have connection to the static UWB anchors
anymore and has to rely on inter-agent ranging measurements
between the swarm members to compensate for drift. Please
refer to Figure 15 for a representation of this test trajectory. This
test-case makes it possible to evaluate the performance of the
localisation scheme when the UWB connection is intermittent.
Imagine that the test-setup is a greenhouse with UWB reception
on the sides, but no UWB connection in the middle of the field.
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Figure 15. Visualisation of the limited-coverage Cyberzoo test-setup.

Above trajectory has been flown at least 2 times consecutively
for every localisation scheme and at least 5 batches for every
scheme were recorded. Additionally, the trajectory has been
flown as well with 1 quadrotor without inter-agent ranging
capabilities. This way one can clearly illustrate the advantage of
our inter-agent ranging approaches above drifing across the area
without coverage. Please refer to Figures 26 to 29 of Appendix
VI for a qualitative visualisation of the tests. Although the
improvement in localisation performance between the schemes
is subtle, it is still visually noticeable. Additionally, the average
of the test runs for every test-scenario can be found in the bar
plot in Figure 16.

From Figure 16, one can clearly see that by exchanging
more information, the localisation performance of the swarm
improves. As a matter of fact, the average RMSE without inter-
agent ranging was found to be 0.44 meters, while the average
RMSE of the simple, CU, and CI-CU schemes were found to be
0.28, 0.17 and 0.13 respectively. Additionally, an increase in
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Figure 16. Cyberzoo test results for the Simple (S), Covariance
Updated (CU) and Covariance Intersection Covariance Updated (CI-
CU) localisation schemes with 4 MAV’s compared to no ranging (NO)

average normalised state-estimation error squared (NEES) could
be seen when comparing the no inter-agent ranging case and the
simple case, with an expected decrease for the CU and CI-CU
localisation schemes. It can also be seen that no significant
decrease in NEES can be observed between the CU and CI-CU
test-case. This can be explained by the fact that the Crazyflies
are inter-agent ranging at a rather low frequency of around
≈ 10 Hz. Additionally, the Crazyflies are receiving optical flow
measurements from the Flowdeck v2, keeping the estimated
covariance in bounds. The NEES is also calculated based on
the covariance values and the error between state-estimate and
ground truth. The ground truth is obtained through Optitrack
measurements and these have shown to have some variation
in them as well. It can be seen that as long as the inter-agent
ranging frequency is kept low, the CI-CU scheme gives little
advantage to the CU scheme in terms of reducing inconsistency.

In order to showcase the other possibilities of the presented
inter-agent ranging schemes, it has been decided to emulate
above test-scenario in a small-scale greenhouse test. This time
a greenhouse with limited UWB coverage is simulated in the
Cyberzoo. Once again, this test is performed with 4 Crazyflies.
This time, 3 Crazyflies hover stationary in the zone with static
UWB anchor connection. These can be seen as Crazyflies flying
at the borders of the greenhouse field, still in connection with
UWB beacons placed around the crops. The fourth Crazyflie is
performing a task in the middle of the greenhouse (e.g. scanning
a crop). In the middle of the greenhouse there is no connection
to the static UWB anchors. Instead, Crazyflie number 4 has
to rely on inter-agent ranging measurements with agent 1-3 to
receive an absolute location update. In the meantime, all of the
Crazyflies are inter-agent ranging with each other. Crazyflies
1-3 are basically relaying the UWB network, extending the
reach of the UWB network, allowing Crazyflie 4 to receive
an absolute localisation update in a zone without static UWB
anchor connection. Please refer to Figure 17 for a depiction of
this test-setup.

In Figure 18, one can see the amount of drift a single Crazyflie
experiences when it does not have connection to static UWB
anchors and is not performing inter-agent ranging measurements
with its peers. One can see that the quadrotor experiences large
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Figure 17. Visualisation of the small scale greenhouse test-setup.

amounts of drift and the location estimate deteriorates quickly.
This flown trajectory has an associated RMSE of about 0.6
meters between ground truth and state-estimate.
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Figure 18. Visualisation of the small scale greenhouse test with 4
Crazyflies and no inter-agent ranging

In Figure 19, one can see the performance of the CU localisa-
tion scheme when a Crazyflie is flying in a zone without UWB
connection and relies on inter-agent ranging measurements
received from its peers. One can see an improvement in perfor-
mance with an associated RMSE of about 0.29 meters. During
testing it has been found that the performance of the simple, CU
and CI-CU localisation schemes were comparable. Therefore
only the result for the CU localisation scheme is shown. The
explanation for these comparable results are due to the fact that
CF 1-3 are in constant connection to the static UWB anchors.
This results in an accurate position fix for these Crazyflies,
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keeping their covariance estimates low. Due to this low uncer-
tainty, augmenting the measurement noise with the covariance
of the ranging agent results in marginal improvements. Ideally,
the location estimate of Crazyflies 1-3 would experience some
deterioration when not compensating for the uncertainty of
quadrotor 4 in the inter-agent ranging measurements. However,
as UWB measurement update rate with the static UWB anchors
for CF 1-3 is of a greater magnitude than the inter-agent ranging
measurements, this deterioration is very small and difficult to
record with the available hardware.
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Figure 19. Visualisation of the small scale greenhouse test with 4
Crazyflies and Covariance Updated (CU) inter-agent ranging

In the ideal scenario, above tests are reproduced in a larger
area and the ground truth is logged for every agent of the
swarm. This way one can clearly record the fact that exchanging
uncertainty information between the swarm members prevents
localisation deterioration for agents with static UWB anchor
connection and improves localisation performance for agents in
a zone without static UWB anchor connection.

V. Conclusion & Recommendations
In this work the performance of a distributed and scalable
localisation system with minimal reliance on static localisation
hardware has been evaluated both in simulation and in practice.
For the generation of the simulated results, a modular Simu-
lator designed for the testing of UWB swarming localisation
schemes has been developed on the backbone of Swarmulator.
In order to perform the practice tests in the Cyberzoo, a custom
Crazyflie 2.1 has been developed as well. It has been found
that when augmenting the measurement noise of UWB ranging
measurements with the uncertainty associated with the ranging
quadrotor, an improvement in localisation performance can be
observed. In simulation this has been found to be true for an
environment with full UWB coverage and limited UWB cover-
age. In practice, these improvements could only be observed
for an area with limited UWB coverage. Full UWB coverage
improvements could not be recorded in practice due to the fact

that these improvements are small and difficult to capture.
A total of three inter-agent ranging schemes were presented:

simple, covariance updated (CU) and covariance intersection
covariance updated (CI-CU). In simulation it has been found that
in general, the CI-CU scheme comes with the best performance,
followed by the CU and the simple schemes respectively, both
in terms of localisation error (RMSE) and filter consistency
(NEES). In practice, it has been found that in terms of locali-
sation error the CI-CU scheme also has the best performance,
followed by the CU and simple schemes. However, this time
the performance of the CI-CU scheme and the CU scheme
were on par in terms of filter consistency. In an attempt to
show a practical application of the inter-agent ranging schemes,
a small scale greenhouse test has been performed. This test
has shown that inter-agent ranging by a swarm of micro air
vehicles can render powerful results given the right practical
implementation.

By performing both tests in simulation and in practice, an
attempt has been made at crossing the reality gap. This has
proven to be difficult and with these proper recommendations for
future work can be made. The simulator used for the simulations
in this paper is properly tuned such that the simulated quadrotors
are stable and its filters are consistent. It has been found that
the Crazyflie 2.1 does not feature this stability or consistency.
In future work, both the hardware and the firmware should be
revisited. On the hardware side the reliability of the system
should be increased. This involves increasing the useful payload
and flight time of the system. An example solution for this
would be a redesign of the airframe and the implementation
of brushless motors. Additionally, one could increase the
reliability of the custom sensor setup by multiplexing the useful
pins of the Crazyflie 2.1. With this more capable Crazyflie, one
can also implement on-board logging, reducing the experienced
interference issues. On the software side the inter-agent ranging
scheduling technique can be revisited. This way the inter-agent
ranging frequency can be increased and the performance of the
inter-agent ranging schemes can be re-evaluated for these higher
frequencies. Additionally, this scheduling technique can allow
for a swarm with changing number of members, making the
localisation scheme fully scalable. The Crazyflie’s sensor fusion
system and Flowdeck v2 implementation should also be revisited
such that the Crazyflie renders a more representable covariance
estimate. Once the hardware and software improvements have
been implemented, it is possible to couple this localisation
system with an associated swarming behaviour, showcasing the
full power of this distributed localisation scheme. One could
for example use this localisation scheme for the inspection of
crops in large greenhouses. This way an ad-hoc localisation
system could be deployed without extensive installation of
infrastructure.
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VI. Appendix

Table 1. Parameters of simulated Crazyflie

Crazyflie Parameter Value

mass 0.022 [𝑘𝑔]
arm length l 0.042 [𝑚]
Jx (around rot. axis) 0.0000091914 [𝑘𝑔 · 𝑚2]
Jy (around rot. axis) 0.0000091914 [𝑘𝑔 · 𝑚2]
Jz (around rot. axis) 0.0000228 [𝑘𝑔 · 𝑚2]
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Table 2. Coordinates of static UWB anchors for the simulated test-
setup

Anchor ID x-pos [m] y-pos [m]

0 -12 -1.5
1 12 -1.5
2 -12 -3
3 12 -3
4 -12 1.5
5 12 1.5
6 -12 3
7 12 3
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Figure 20. Full-coverage Simple Hybrid TDOA-TWR with varying n
of quadrotors and varying inter-agent ranging frequency
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Figure 21. Full-coverage CU Hybrid TDOA-TWR with varying
n of quadrotors and varying inter-agent ranging frequency (CU =
Covariance Updated)
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Figure 22. Full-coverage CI-CU Hybrid TDOA-TWR with varying
n of quadrotors and varying inter-agent ranging frequency (CI-CU =
Covariance Intersection Covariance Updated)
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Figure 23. Limited-coverage Simple Hybrid TDOA-TWR with varying
n of quadrotors and varying inter-agent ranging frequency
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Figure 24. Limited-coverage CU Hybrid TDOA-TWR with varying
n of quadrotors and varying inter-agent ranging frequency (CU =
Covariance Updated)
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Figure 25. Limited-coverage CI-CU Hybrid TDOA-TWR with varying
n of quadrotors and varying inter-agent ranging frequency (CI-CU =
Covariance Intersection Covariance Updated)
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Figure 26. Limited-coverage 1 MAV no inter-agent ranging Cyberzoo
test
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Figure 27. Limited-coverage 4 MAV’s Simple Hybrid TDOA-TWR
Cyberzoo test
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Figure 28. Limited-coverage 4 MAV’s CU Hybrid TDOA-TWR
Cyberzoo test (CU = Covariance Updated)
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Figure 29. Limited-coverage 4 MAV’s CI-CU Hybrid TDOA-TWR
Cyberzoo test (CI-CU = Covariance Intersection Covariance Updated)
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2
Additional Developments

In this extra appendix additional developments that were part of this master thesis work will be dis-
cussed. The tools that are part of these developments are highly relevant for this research but can be
very useful for further research as well. First, in Section 2.1 the additional developments on the Swar-
mulator platform will be presented, as well as the possibilities for future work, after which, in Section 2.2,
the customised Crazyflie 2.1 and it’s tools will be presented as well. This allows the reader to recreate
the test-setup for his own research or for replication purposes. Please find all of the developments on
the thesis Github repository1.

2.1. Swarmulator
The Swarmulator simulator is a lightweight micro air vehicle behaviour simulator developed in C++2. It
is a modular simulator that allows the user to test schemes for swarming behaviour in a structured way.
It is possible to develop your own simulated agent and accompanying behavioural controller. However,
out of the box the original Swarmulator does not accommodate elaborate quadrotor dynamics, accom-
panying sensors and sensor fusion or state-estimation filters. Therefore, it has been decided to fork
Swarmulator and develop an extended version accommodating these functionalities, without break-
ing the original functionality of the behavioural simulator. Please find the diagram of these additional
functionalities itemised below and illustrated in Figure 2.1.

• UWB setup

The basic functionality of the UWB based Loco Positioning System designed by Bitcraze has been
implemented. Currently the simulated UWB localisation system supports a TWR, TDOA and the hybrid
TWR-TDOA localisation schemes used for this research. Every beacon runs in its own thread, allowing
for full independent generation of it’s measurements. At compile time, the desired localisation algorithm
can be chosen and in a similar modular way as with the modules of the original Swarmulator, it is
possible to implement your own localisation scheme. Additionally, the UWB signal characteristics can
be set in a preferences file, without recompiling the simulator (anchor locations, inter-agent ranging
toggle, signal length, frequency preferences, inter-agent ranging algo, UWB signal noise...).

• Trajectory generator

Every quadrotor that is spawned in the Simulator follows a predefined trajectory. The simulator auto-
matically recognises when a trajectory file is loaded with the quadrotor ID in its name (xytrajectoryn.txt)
and the respective trajectory is loaded. Next, the PID trajectory controller steers the state-estimate
towards the desired trajectory. The PID values can once again be adjusted without recompilation. For
future work it is possible to swap out the trajectory module for a behavioural controller, merging the
simulator’s new functionalities with the old.

1https://github.com/FrdrcDpn/UWB_loc_thesis.git
2https://github.com/coppolam/swarmulator
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• Simplified Quadrotor dynamics and PID controller

In order to simulate representative quadrotor behaviour in the 2D simulator environment, a quadrotor’s
physical model has been implemented, only modelling the torques over the quadrotor’s degrees of
freedom. For simplification purposes, the yaw angle and motion in z-direction are set to zero. The
PID controller of the quadrotor is subdivided in a linear and angular control system and steers the
state-estimate towards the desired trajectory. The inner PID controller controls the required rotations
to achieve the desired torques for the linear displacement, while the outer PID controller steers the
acquired linear displacement from the state-estimator towards the desired trajectory. All of the quadro-
tor’s parameters and controller parameters have been set in a preferences file and can be changed
without re-compilation.

• Sensors and EKF state-estimator

For sensor fusion an EKF state-estimator has been written. Every quadrotor run’s its own EKF in
its own thread. The quadrotor receives accelerometer measurements for its prediction step and the
measurement update step depends on the available UWB measurements. The state-estimator has
been written in a modular way, such that one can easily add or remove sensors from the estimator.
Additionally, it is also possible to swap out the estimator for the estimator of choice. Once again, all
of the state-estimator’s parameters can be changed in a preference file, without recompilation of the
simulator.

• New compilation flags

Apart from themany new preferences that one can set in the simulator’s preference file, one also has
to compile the simulator with some extra compilation flags. With the flag CONTROLLER=UWBSIM_controller
one can set the EKF state-estimator and trajectory follower, with AGENT=quadrotor one selects the
quadrotor dynamics and with BEACON=beacon_hybrid_extra, one selects the desired UWB algorithm.
This augments the full compilation code to the following:

make clean && make CONTROLLER=UWBSIM_controller AGENT=quadrotor
BEACON=beacon_hybrid_extra ANIMATION=OFF LOG=ON

Figure 2.1: Swarmulator extra functionality diagram
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2.2. Customised Crazyflie v2.1
A custom Crazyflie v2.1 firmware has been written with support for two Loco Positioning UWB decks
and one flodeck v2. In this section an overview will be given of these developments and all the neces-
sary information will be given to replicate this setup. First, the firmware with its additional quircks and
features will be presented after which some supporting software developments will be presented as
well. Finally, the Crazyflie’s custom wiring diagram is shown as well.

• Crazyflie v2.1 firmware

An extra deck driver has been added in order to support a second Loco Positioning UWB deck that can
receive UWB inter-agent ranging measurements. The deck driver has support for the wiring diagram as
shown in this section. By setting a compile flag, using the modified python Crazyflie Client or crazyflie-
suite, the desired UWB algorithm can be selected for every deck individually. The inter-agent ranging
algorithm has been inspired on L. Shushuai’s github repository on relative-localisation.3. Also, the
possibility has been added to change the inter-agent ranging algorithms or disable UWB decks in flight
by setting the respective parameters.

• Supporting software developments

In order to be able to change the settings or command the Crazyflie such that it can perform the desired
manoeuvres, both the python crazyflie-suite4 and Crazyflie client5 have been used. The crazyflie-suite
has been modified to accommodate the needs for this research. This entails the proper trajectory,
logging configuration and startup behaviour. The Crazyflie client has been modified in order to support
the extra UWB deck. Thanks to this modification, one can view the status or change the algorithm
of the individual UWB decks through the client. For an illustration of this modification, please refer to
Figure 2.2

Figure 2.2: Crazyflie client supporting extra UWB deck

• Crazyflie v2.1 wiring diagram

The final part that makes this thesis project possible is the modified Crazyflie 2.1. The wiring diagram
that makes it possible to accommodate two Loco Positioning System UWB decks and one flowdeck
is depicted in Figure 2.3. Please note that due to the fact that the Crazyflie 2.1 only has 4 GPIO pins
(which is not enough for the current configuration), the reset pin of UWB deck 2 shares the RX pin used
by the Flowdeck v2. It has been found that it is possible to share these pins while giving adequate
stability. However, for further developments, it is advised to multiplex one of the four available GPIO
pins for expandability and increased stability.

3https://github.com/shushuai3/cf_onboard_swarm/tree/swarm
4https://github.com/tudelft/crazyflie-suite
5https://github.com/bitcraze/crazyflie-clients-python
6www.bitcraze.io

https://github.com/shushuai3/cf_onboard_swarm/tree/swarm
https://github.com/tudelft/crazyflie-suite
https://github.com/bitcraze/crazyflie-clients-python
www.bitcraze.io
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Figure 2.3: Crazyflie 2.1 wiring diagram to accomodate 2 UWB decks and 1 flowdeck v26
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