

Delft University of Technology

Refactoring with Regular Expressions

Spinellis, Diomidis

DOI
10.1109/MS.2024.3439028
Publication date
2024
Document Version
Final published version
Published in
IEEE Software

Citation (APA)
Spinellis, D. (2024). Refactoring with Regular Expressions. IEEE Software, 41(6), 29-33.
https://doi.org/10.1109/MS.2024.3439028

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/MS.2024.3439028
https://doi.org/10.1109/MS.2024.3439028

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

0 7 4 0 - 7 4 5 9 / 2 4 © 2 0 2 4 I E E E NOVEMBER/DECEMBER 2024 | IEEE SOFTWARE 29

ADVENTURES IN CODE Editor: Diomidis Spinellis
dds@aueb.gr

CODE REFACTORING1 IS a key prac-
tice of software development. It entails
improving the code’s internal qual-
ity without altering its functionality.
Regularly applied, it reduces accu-
mulated technical debt, contributing
to the code’s long-term sustainabil-
ity. Refactoring can also be employed
proactively to enable or simplify a sub-
sequent implementation task. Many
integrated development environments
(IDEs) can automate common refac-
toring operations, such as renaming
an identifier or extracting a method
or constant. Yet there are cases where
the IDE does not support the required
refactoring operation or even a proj-
ect’s programming language. Then,
rather than laboriously changing each
element by hand, it can be profitable
to automate the process by employ-
ing the power of regular expressions.
This method saves work and time
and reduces errors and keyboard fa-
tigue, while also making the task
more interesting.

I faced such a case when I at-
tempted to extend the CScout refac-
toring browser for code that is written
in C2 to make it collect metrics re-
garding the C preprocessor’s use. (The

C preprocessor offers features such as
file expansion and textual macro re-
placements. I feel that its overuse ac-
cumulates technical debt by making
the code difficult to understand, de-
bug, and reason about. The CScout
extension would allow me to quantify
its use across files and along time.)

The CScout code (written in C++)
stems from a quarter-century ago
and shows its age: formatting and
identifier names are inconsistent; it
lacks unit tests; many of its units,
such as files, classes, and methods,
are overly large; and it does not em-
ploy several modern C++ features.
Admittedly, it also shows the imma-
turity of its (and this column’s) au-
thor at that time; improving current
and legacy code quality is a lifelong
pursuit for dedicated software de-
velopers. Yet, adding the new met-
rics started smoothly. I located the
classes where file and function met-
rics were stored, changed them into
a pair representing values before and
after the preprocessor (223dbd0)
(the shown Git hashes refer to openly
available commits in the task’s work
branch: https://github.com/dspinellis/
cscout/commits/pre-post-metrics/),
and started updating each metric op-
eration to tally accordingly the value
before or after the C preprocessor

(08dd981), while also noting where
I could add new metric collection
taps (eb7021c) for the newly required
counterpart metrics.

Then, unexpectedly, hell broke
loose. All I had done was add a single
line of code: a newly required header
file, token.h, in the metrics.h file. (A
C/C++ header file, typically suffixed
with .h, defines the interface to some
functionality, while a corresponding
code file, .c or .cpp, contains the im-
plementation.) However, the newly
included header introduced a circu-
lar include dependency: metrics.h "
(new) token.h " tokid.h " fileid.h "
filemetrics.h " metrics.h.

Circular dependencies are always
bad news. At best, they introduce
tight undesirable coupling, mak-
ing code difficult to understand,
modularize, and refactor. At worst,
they can lead to broken builds and
undefined build time and runtime
behavior. In my case, because the de-
pendencies were required by diverse
templated (generic) C++ functions,
necessarily residing in the interde-
pendent header files, the cycle pre-
vented CScout from compiling.

After long head-scratching and
diagram sketching, first to isolate the
circular dependency, then to under-
stand its cause, and finally to design a

Refactoring With Regular
Expressions
Diomidis Spinellis

Digital Object Identifier 10.1109/MS.2024.3439028
Date of current version: 10 October 2024

mailto:dds@aueb.gr
https://github.com/dspinellis/cscout/commits/pre-post-metrics/
https://github.com/dspinellis/cscout/commits/pre-post-metrics/
https://orcid.org/0000-0003-4231-1897

ADVENTURES IN CODE

30 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

fix, I knew how to address the prob-
lem. CScout represents all elements
of the program it analyzes through
a unique (file-identifier, file-offset)
pair. It abstracts the file identifiers
(small integers) as tiny objects of the
Fileid class. As Fileids get embed-
ded into billions of objects, CScout
stores additional details about files in
a Filedetails class. A vector, named
i2d, indexed by file identifier, effi-
ciently maps file identifiers into file
details. To improve the code’s read-
ability, Fileid had several methods,
such as set_required, shown in Fig-
ure 1, that operated on Filedetails
through an indirection via the file
identifier-to-details mapping vector.

void set_required(bool v) {
 i2d[id].set_required(v);
}

This entanglement between the
ubiquitous Fileid class and the newly
wider-spread Filedetails class was
the circular dependency’s root cause.

The solution involved isolating the
Filedetails class from Fileid (a00700b;
see Figure 2) and rewriting more than
one hundred calls to 30 different

Fileid instance methods to instead call
corresponding Filedetails static (class)
methods with the Fileid passed as
an argument to them (e306417). For
example, the method call on to set_
required the Fileid object fi,

f.set_required(true);

would need to become

Filedetails::set_required(f, true);

git-subst to the Rescue
When programming, I often en-
counter cases where I want to re-
place some text through all files of
a project. This can be to clarify an
identifier’s name, to correct an in-
consistently spelled term, to spell
out a cryptic file name, to replace
a number with a symbolic con-
stant, or, as in what I will describe,
to refactor some code. IDEs, code
editors, and command line tools
offer some such functionality, but
they often have trouble identify-
ing the files on which to apply the
changes, performing too few or
too many of them. Years ago, I de-
cided that this operation should be

a plug-in for the Git version control
system that would replace a speci-
fied string with another in all files
managed by Git. I implemented it as
a simple shell script named git-subst
and never looked back; until today,
I have used the corresponding com-
mand more than 500 times.

The git-subst command offers sev-
eral benefits. Because it is a Unix shell
command, it can be easily automated,
as I did in this case, to be applied mul-
tiple times with different arguments.
It is recorded in the shell’s command
line history, and it can therefore be
recalled, edited, and reapplied until
the intended result is obtained. Also,
its use can be easily and clearly doc-
umented in commit messages so that
others can readily review or replicate
its invocation. Compared with IDE
facilities, such as the Visual Studio
Code “Search & Replace” command,
git-subst works independently of the
editor or IDE being used. Therefore,
it can be used quickly without launch-
ing an IDE, and it can be also applied
in situations where an IDE with such
functionality is not available. Com-
pared with a Unix command line
invocation of a sed in-place (-i) re-
placement command, git-subst auto-
matically applies the change only to
source code files and does so in all un-
derlying directories.

The git-subst command is installed
by copying it from its Git reposi-
tory (https://github.com/dspinellis/
git-subst/) to a directory in the exe-
cutable files’ path and giving it exe-
cute permission. Once there, Git will
automatically locate it and allow the
execution of commands such as

git subst 3.1415927 Math.PI

which will replace all instances
of the number “3.1415927” with
the symbolic constant Math.PI. The

Fileid

id: int
i2d: vector<Filedetails>

set_required(bool)

Filedetails

required: bool

set_required(bool)

Association
1 1Calls

FIGURE 1. Class details before the refactoring.

Fileid

id: int

Filedetails

i2d: vector<Filedetails>
required: bool

set_required(bool)

Association
1 1

FIGURE 2. Class details after the refactoring.

https://github.com/dspinellis/git-subst/
https://github.com/dspinellis/git-subst/

ADVENTURES IN CODE

 NOVEMBER/DECEMBER 2024 | IEEE SOFTWARE 31

string to replace is specified as a
regular expression: a versatile rec-
ipe for specifying diverse classes
of different strings. Regular ex-
pressions are supported by many
programming languages, libraries,
command line tools, and editors.
When programming, I use regular
expressions several times per hour.
If this does not match your own
experience, you may be wasting
keystrokes and energy. Consider
investing a couple of hours in how
they are put together and then ap-
plying them in your work.

A few git-subst command line
options provide finer control of its
operation. The -c option allows the
specification of a positive context for
the lines where the replacement will
take place, again as a regular expres-
sion. For example, git subst -c ^//colour
color will Americanize the spelling of
color only in comment lines [those
starting (^) with //]. Other options
can specify a negative context (-C,
lines where the replacement will not
be made), the files where the change
will take place (e.g., rather than the
default, which will apply the change
to all files that are under version con-
trol, all JavaScript files can be speci-
fied with “*.js”), or to perform a trial
run without actually making the re-
placement (-n).

The element to be replaced is spec-
ified as a regular expression, which
allows, e.g., the specification that
only whole words rather than parts
be replaced: git subst ‘ \<statuscode\>’ status-
Code. (The \< sequence matches a be-
ginning of word boundary.) A more
advanced feature is the ability of git
subst to capture (remember) parts of
a regular expression by placing them
in brackets and then “replay” that
part by writing its original number
preceded by a backslash in the re-
placement string. For example,

git subst ‘\.custom\(([̂)]*)\)’ ‘.\1’

will change .custom(name) into .name,
.custom(phone) into .phone, and so on.
The preceding regular expression
reads as follows: match a literal dot
\., followed by custom, followed by a
literal bracket \(, followed by any-
thing but a bracket [^)] any number
of times*, capture that (), followed
by a literal closed bracket \). Then
the replacement string specifies to

write a . followed by the captured
part \1. Capturing parts of a regular
expression and reusing those in the
replacement is a powerful method
for performing sophisticated ad hoc
refactoring changes.

At 130 lines of code, including
license, comments, and usage infor-
mation, the implementation of git-
subst is probably one of the most
leveraged pieces of code I have writ-
ten. It obtains the files containing
the pattern that needs replacement
and processes only these, by using
the blindingly fast git-grep com-
mand. It then uses the Unix stream
editor sed to perform the replace-
ment. It also relies on git-stash to
implement the replacement trial run
option. Most of the remaining code
deals with option processing and au-
todetecting and adjusting internally
used command interfaces according

to the flavor of Unix that git-subst
runs on: Linux, macOS, Cygwin, or
a BSD variant.

Getting It All Together
Armed with git-subst, my plan for
refactoring the code involved ob-
taining a clean list of methods that
needed adjustment and then dynami-
cally generating git-subst invoca-
tions to fix each one of them. The
method definitions appeared in the

fileid.h header file in single lines,
such as the following:

void set_required(bool v) {[…]}

I converted these into a list of
method names for which I needed to
adjust the corresponding calls, with
a series of editor commands, involv-
ing simple regular expressions. In in-
teractive settings, often, rather than
writing a single complex regular ex-
pression, it is easier to split the task
into smaller simple steps. It my case,
I instructed the vim editor to per-
form the following changes:

• g/ \ / \ //d: Globally (g) delete (d) all
comment (//) lines.

• %s/ {.*: Throughout the file (%),
remove a brace followed by any
character (.) repeated any num-
ber of times (*).

Capturing parts of a regular
expression and reusing those in the
replacement is a powerful method

for performing sophisticated ad hoc
refactoring changes.

ADVENTURES IN CODE

32 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

• %s/ const//: Remove a space fol-
lowed by const.

• %s/const //: Remove const followed
by a space.

• %s/^[^] * //: Remove the method’s
return type by removing from
the beginning of the line (^) any-
thing but a space ([^]) repeated
any number of times (*), fol-
lowed by a space.

• %s/& //: Remove the reference
sign (&) followed by a space.

• %s/^&//: Remove the reference
sign appearing at the beginning
of the line (^).

• g/^$/d: Globally (g) delete (d) all
empty lines, i.e., lines whose
beginning (^) is immediately fol-
lowed by their end ($).

This left me with a list of 29 func-
tion names followed by their argu-
ments, such as the following:

garbage_collected()
set_required(bool v)
required()
set_compilation_unit(bool v)
compilation_unit()

I then separated methods that took
no argument from those with argu-
ments because the two would re-
quire slightly different handling: the
former would need to have the Fileid
passed as a single new argument,

while the latter would need to have
the Fileid passed as the first argu-
ment followed by a comma.

I separated the methods into the
two categories by piping the list through
the Unix sort command, specifying the
open bracket as the field separator and
the second field (i.e., the argument, if
any) as the key [sort -t\(-k2].

The final step involved massaging
the list of method names to create for
each one a git-subst invocation that
would change the existing Fileid in-
stance method calls into Filedetails
static method calls with the Fileid
object on which the method was
originally called now passed as a pa-
rameter. For example, the git-subst
command for the set_required method
calls was

git subst ‘([A-Za-z][A-Za-z0-9_]*)\.(set_required)\(‘
‘Filedetails::\2(\1, ‘

This reads as follows: find (while
capturing, as denoted by the brack-
ets) a variable name, which starts
with an alphabetic character ([A-Za-z]),
followed by letters, digits, and un-
derlines ([A-Za-z0-9_]), any number of
times (*), followed by a dot (\.; the
unescaped dot character matches
any character), followed by set_re-
quired (again captured), followed by
an open bracket. This matched reg-
ular expression is replaced with a

static method call to the method
of the same name (\2; in this case set_
required), with the object on which
the method was called (the first cap-
tured identifier; \1) as an argument
after the open bracket, followed by
a comma. For methods lacking argu-
ments, I used a similar git-subst com-
mand but without a trailing comma.

The risk of automatically perform-
ing automatically generated global sub-
stitutions with approximately matching
regular expressions can be mitigated
by using Git as a safety harness. I fol-
lowed each git-subst invocation with
git-commit (and a suitable one-line
subject; see, e.g., b9e24e9) and then
git-grep to see all instances of the
identifier and the changes performed
on it. If a specific replacement went
awry, it was thus easy to undo the
change and adjust it as needed.

Did I enter these almost one hun-
dred commands by hand? Of course
not. I used another (surprise!) regular
expression replacement in my editor
to convert the method name into the
three commands. For the methods
taking arguments this was

%s/.*/git subst ‘([A-Za-z][A-Za-z0-9_]*)\\.(&)\\(‘
‘Filedetails::\\2(\\1, ‘̂ Mgit grep &^Mgit commit -am
‘WIP &’

This reads as follows: globally
(%) substitute (s), any character (.) re-
peated any number of times (*) (i.e.,
the method name) with the git-subst
invocation we saw using the replaced
method name (&) where needed, fol-
lowed by a new line (^M), followed by
git-grep and the identifier name (&),
followed by another new line and
then a git- commit command with an
appropriate commit message.

Retrospective
So what happened here? First, I used
several simple regular expression

ABOUT THE AUTHOR

DIOMIDIS SPINELLIS is a professor in the Department of Management

Science and Technology, Athens University of Economics and Business,

104 34 Athens, Greece, and a professor of software analytics in the

Department of Software Technology, Delft University of Technology, 2600

AA Delft, The Netherlands. He is a Senior Member of IEEE. Contact him at

dds@aueb.gr.

mailto:dds@aueb.gr

ADVENTURES IN CODE

 NOVEMBER/DECEMBER 2024 | IEEE SOFTWARE 33

replacements to convert the original
Fileid method declarations into a list
of method names. I then employed a
somewhat hairy regular expression re-
placement command to convert these
automatically into several git-subst in-
vocations for refactoring the method
calls. The automation’s enabler was
the implementation of git-subst as a
Unix shell command. The git-subst
invocations also relied on a regular
expression to convert the Fileid object
instance method call into a Filedetails
class static method call with the origi-
nal object passed as an argument.

Furthermore, I used Git commits af-
ter each replacement to provide me
with a clean slate on which to see (and
undo, if needed) the effects of the sub-
sequent one. After the code compiled,
I invoked the git-rebase command to
squash the 30 temporary commits
(2078973…e7cbff2) into a single one
(e306417), which would make the
project’s history easier to read.

Regular expressions are not a pan-
acea for refactoring code. They are
difficult to apply on statements that
span multiple lines, and there are
classes of patterns (such as balancing

brackets) that regular expressions are
not powerful enough to match. But
overall, leveraging regular expres-
sions for refactoring is a vital profi-
ciency that should be part of every
developer’s skill set.

References
 1. M. Fowler, Refactoring: Improving

the Design of Existing Code. Boston,

MA, USA: Addison-Wesley, 2000.

 2. D. Spinellis, “CScout: A refactoring

browser for C,” Sci. Comput. Program.,

vol. 75, no. 4, pp. 216–231, Apr. 2010,

doi:10.1016/j.scico.2009.09.003.

IEEE Computer Society
Has You Covered!
WORLD-CLASS CONFERENCES —
Over 195 globally recognized conferences.

DIGITAL LIBRARY — Over 900k articles covering
world-class peer-reviewed content.

CALLS FOR PAPERS — Write and present your
ground-breaking accomplishments.

EDUCATION — Strengthen your resume with the
IEEE Computer Society Course Catalog.

ADVANCE YOUR CAREER — Search new positions
in the IEEE Computer Society Jobs Board.

NETWORK — Make connections in local Region,
Section, and Chapter activities.

Explore all member benefi ts
www.computer.org today!

Digital Object Identifier 10.1109/MS.2024.3459129

http://dx.doi.org/10.1016/j.scico.2009.09.003

	029_41ms06-adventurescode-3439028

