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Summary

Temporal segmentation of medical procedures holds the potential to improve patient safety, provide
decision support to clinicians, and serve as the basis for context-aware robotic assistance systems.
However, clinical adoption remains hindered by two key challenges: the scarcity of annotated data and
limited generalizability across diverse surgical settings. This thesis therefore explores 2D skeleton-
based temporal segmentation as a privacy-preserving and data-efficient alternative to conventional
RGB-based methods. Using the CAG-skeleton dataset, which consists of pose sequences extracted
from external cardiac angiography (CAG) recordings, the study investigates various model architec-
tures and limited supervision strategies for identifying 14 procedural phases.

A two-stage framework, combining a skeleton-based feature extractor with a temporal model, was
adopted. A review and comparison of proven models revealed combinations of PR-GCN or MS-G3D
feature extractors with LSTM or TCN temporal models to hold the most promise in the low-data med-
ical domain. After training all combinations on low-data subsets of the CAG-skeleton dataset, it was
found that all models outperformed a non-learning baseline model, which always predicts the mean
procedure. Between the learning models, clip-wise segmentation accuracy differences held no sta-
tistical significance, but LSTM-based models showed a statistically significant superior understanding
of sequential order. Considering both sequential metrics and computational efficiency, the PR-GCN +
LSTM combination was selected for extensive evaluation, achieving a clip-wise segmentation accuracy
of 83.95% when trained on 146 CAG procedures.

To further address the data scarcity challenge, two limited supervision approaches were explored.
Transfer learning using the Kinetics-skeleton dataset showed no statistically significant performance
gains, suggesting that the knowledge learned from Kinetics-skeleton does not effectively transfer to
the surgical domain, and/or that the information transferred is relatively easy for the model to learn
from scratch during training. In contrast, pseudo-labeling via class-balanced self-training showed great
potential for reducing annotation requirements as it provided consistent improvements to the models’
clip-wise segmentation accuracy in the low data regime.

Overall, this study introduces skeleton-based representation as a modality holding large potential for
medical temporal segmentation and highlights pseudo-labeling as an effective strategy for reducing
annotation requirements.
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1
Introduction

The increasing integration of machine learning into medical settings may transform how we understand,
analyze, and support operative workflows. [1] One promising application is the temporal segmentation
of medical videos, where every frame of a procedure video is automatically assigned to a specific
procedural segment. A procedural segment represents a defined part of the surgical workflow, which
can bemodeled at different levels of granularity, ranging from coarse phases that describe major stages
of the procedure, to intermediate steps and fine-grained actions such as grasping, cutting, or suturing.

To illustrate this concept in a real-world clinical context, Figure 1.1 presents an overview of a cardiac
angiography (CAG) procedure recorded with an external camera. The figure demonstrates how a
procedure can be divided into distinct phases, each corresponding to a specific stage in the workflow.

If reliable temporal segmentation systems were deployed in clinical practice, they could directly improve
patient outcomes and healthcare quality. For example, automatic action recognition could enable real-
time detection of complications, ensure adherence to safety protocols, provide immediate decision
support to clinicians, and enhance medical training by offering detailed feedback on performance. [1;2;3]
Moreover, by providing continuous contextual information about the current procedural phase, temporal
segmentation systems can serve as the basis for context-aware robotic assistance systems, enabling
robots to anticipate upcoming steps and support surgeons in a timely and task-specific manner. [4;5] In a
broader societal context, these systems hold the potential to increase patient safety, shorten operative
times, and reduce hospital costs through improved efficiency and workflow optimization. [6;4]

Despite this promise, temporal segmentation methods remain absent in clinical practice. The primary
obstacles are twofold: a lack of generalizability across diverse real-world medical environments and
the scarcity of annotated medical video data. [7;8] Addressing these limitations is essential if temporal
segmentation is to transition from experimental settings to robust, real-world clinical deployment.

1.1. The challenge of generalizability
A core requirement for medical temporal segmentation systems is the ability to generalize across di-
verse clinical contexts. Models that succeed only in highly specific clinical contexts offer limited practical
value. To be clinically viable, generalization must be achieved on multiple levels:

• Patients: Models must work for individuals of different body types, ages, genders, and skin tones.
A system that only functions on data from fit or light-skinned patients risks introducing inequities
in healthcare delivery.

• Surgeons: Surgeons may follow different habits when executing the same procedure. For in-
stance, one surgeon may consistently perform a specific movement before transferring to a new
phase, while another may not. Models that overfit to these individual patterns risk failing in broader
clinical use.

• Operating room environments: Hospitals differ in the layout of operating rooms, the positioning
of cameras, and the equipment used. Variations in patient attire, surgical instruments, or imaging
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1.1. The challenge of generalizability 2

systems can further challenge model robustness. Even subtle differences, such as wall colors,
lighting conditions, or clothing styles, can degrade the performance of vision-based models.

• Geographical and regulatory contexts: Medical practices differ across countries due to cultural
or regulatory variations. For instance, adherence to safety checklists may be stricter in some
regions than others, requiring models to adapt to localized practices.

Failure to generalize across these levels can compromise both the safety and effectiveness of tempo-
ral segmentation systems. Ensuring robust generalization is therefore essential for their reliable and
ethical deployment in clinical practice.

Figure 1.1: Overview of procedural phases in a cardiac angiography procedure recorded with an ex-
ternal camera. Each image is an anonymized frame of the video recording corresponding to a distinct
phase in the workflow: A) Preparation before patient entry, B) Patient entry, C–D) Patient on table,
E) First contact with cardiologist, F) First catheter insertion, G) First X-ray after catheter insertion, H–
I) Catheter switch: H) first catheter removal, I) second catheter insertion, J–K) First (J) and later (K)
X-rays after second catheter insertion, L) Second catheter removal, M) Wound closure, N) Patient off
table, and O) Patient exit and start of cleaning. The colored bar below illustrates the temporal sequence
of the phases and the position of each frame within the overall procedure. The vertical lines beneath
the bar indicate one-minute intervals.
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1.2. The challenge of limited annotated data
Alongside generalizability, the limited availability of annotated surgical data remains a critical bottle-
neck. Annotating medical videos requires expert-level clinical knowledge and is both time-intensive
and costly. [9] In addition, privacy regulations restrict data sharing, resulting in small datasets collected
from only a few hospitals, which limits model performance and hinders robust model training and eval-
uation. [10] Consequently, temporal segmentation models are prone to overfitting to specific institutions
and often fail to generalize in broader clinical settings.

1.3. Data modalities for temporal segmentation
The choice of data modality is a key factor in the generalizability of temporal segmentation systems.
Most existing approaches rely on RGB video, which captures rich visual detail but is highly sensitive to
variations in background, lighting, viewpoint, and clothing. [11] In low-data environments, models trained
on a single operating room often overfit to specific visual features, such as wall colors or surgical
gowns, resulting in poor generalization to new clinical settings. Similarly, methods based on object or
instrument detection are vulnerable to differences in equipment brands or visual appearances across
hospitals.

Other explored modalities include binary instrument usage signals [12], RFID tags and sensors [13], sur-
gical staff or instrument tracking [14;15], eye-gaze tracking [16], and contextual signals such as table incli-
nation and lighting state [17]. While these approaches can provide useful information, their real-world
viability is limited, as they often require workflow modifications, additional equipment, or extensive co-
operation with industry stakeholders to access machine data.

In contrast, this work explores the skeleton modality, which, despite its advantages, has not yet been
explored for medical temporal segmentation. The skeleton modality represents human motion as a
sequence of body joint positions. Advances in depth sensors [18] and human pose estimation algo-
rithms [19] have made it feasible to extract skeleton sequence data reliably, even from standard RGB
video inputs. Skeleton representations abstract away appearance, background, and lighting condi-
tions, thereby reducing noise and capturing the essence of movement in a way that is both compact
and largely invariant to environmental conditions. [20;21] Three-dimensional skeletons are particularly
useful as they offer robustness to viewpoint changes, while both 2D and 3D skeletons mitigate privacy
concerns since identifiable visual information is discarded. This makes skeleton-based approaches a
strong candidate for robust and ethically responsible temporal segmentation of medical procedures.

However, skeleton-based data may not solve all challenges. While skeleton representations abstract
away appearance, background, and lighting, which reduces noise and improves generalizability, they
also discard information that could be informative for temporal segmentation, potentially limiting model
performance. Furthermore, surgeon-specific patterns, hospital room layout, and geographical differ-
ences remain sources of variability that cannot be fully abstracted away by motion alone. Ensuring
robustness against these factors requires access to sufficiently large and diverse datasets.

Importantly, because skeleton representations do not contain identifiable patient information, they en-
able the creation of larger, more diverse, and international datasets. This property could improve
generalizability across all levels.

1.4. Limited supervision learning
A promising solution to the limited annotated data challenge lies in limited supervision learning, where
learning strategies reduce dependence on complete annotations while leveraging unlabeled or coarsely
labeled data. Approaches range from weak supervision, where only coarse information, such as action
order, is available, to semi-supervised methods that combine small labeled sets with larger unlabeled
ones, and self-supervised approaches that learn meaningful representations by solving pretext tasks
(e.g., predicting the order of shuffled frames or reconstructing masked inputs). The features learned in
this way can then be transferred to temporal segmentation, improving performance even when anno-
tated data is scarce. [22;23]

This work specifically investigates two limited supervision strategies. The first is transfer learning, which
leverages large-scale non-medical datasets to compensate for the limited availability of medical data.
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The core idea is that abundant non-medical motion data can be used during pretraining to capture the
generic spatio-temporal structure of skeleton sequences. Subsequently, the pretrained model is fine-
tuned on the surgical phase segmentation task. This approach maximizes the efficient use of scarce
surgical annotations while reducing the overall annotation burden.

The second strategy is pseudo-labeling, a semi-supervised technique designed to reduce the number
of procedures that require costly frame-level annotations. In this approach, a model is first trained on
the small annotated subset and then used to assign provisional labels (pseudo-labels) to the unlabeled
procedures. These pseudo-labels are subsequently used for further training, which enables the model
to generalize beyond the limited labeled set. However, incorrect pseudo-labels can introduce noise
and degrade performance. To address this, confidence thresholds or ensemble methods are typically
used to filter unreliable predictions [24;25].

1.5. Scope of this study
This study addresses two key challenges that limit the clinical adoption of temporal segmentation in
the medical domain: the scarcity of annotated data and the difficulty of achieving robust general-
ization across different surgical settings. To tackle these challenges, it investigates two limited su-
pervision techniques that are applied to data based on the human skeleton modality: transfer learn-
ing through pretraining on a large-scale non-medical dataset, and pseudo-labeling using unlabeled,
domain-specific medical data. Notably, the skeleton modality has not previously been applied in the
medical context, allowing this study to provide novel insights into its potential effectiveness and limita-
tions for temporal segmentation of surgical procedures.

In addition to evaluating the effect of limited supervision techniques, this study also compares different
learning architectures for skeleton-based temporal segmentation. Specifically, multiple combinations
of feature extractor and temporal modeling architectures are explored to assess their respective per-
formance and data efficiency. This comparison may provide insight into which model architecture
characteristics are best suited for skeleton-based medical temporal segmentation under limited data
conditions.

The central research question guiding this work is:

What is the effect of introducing limited supervision techniques, specifically pretraining and
pseudo-labeling, on the segmentation accuracy of 2D skeleton-based temporal phase seg-
mentation of medical procedures?

To answer this question, the study also investigates the following sub-question:

Which model architectures, specifically combinations of feature extractors and temporal
models, show great promise for high segmentation accuracy in skeleton-based medical
temporal segmentation?

By addressing these questions, this study contributes to the development of temporal segmentation
systems that are both robust and capable of generalizing across diverse clinical environments under
low-data conditions.

1.6. Report structure
The remainder of this thesis is structured as follows.

Chapter 2 introduces the background and related work. It begins by presenting the 2D human skeleton
dataset (CAG-skeleton) used to evaluate the models and learning strategies in this study (Section 2.1).
A second dataset is required for pretraining, but since no comparable medical dataset exists, a dataset
from the human action recognition domain is selected in Section 2.2.

Next, this chapter reviews prior work on suitable architectural design choices in Section 2.3. Skeleton-
based feature extractor models trained on the transfer learning dataset are reviewed and compared
in Subsection 2.3.1. Models offering the best trade-off between reported performance and parame-
ter efficiency, and for which pretrained weights are publicly available, are selected for further use. To
overcome differences between the human action recognition and medical temporal phase segmenta-
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tion domains, a second learning model is required that models longer-range temporal relations. These
temporal models are reviewed and compared in Subsection 2.3.2, and the most suitable ones, based
on ability to capture longer-range temporal relations and data efficiency are selected. Various limited
supervision approaches are introduced in Subsection 2.3.3, and the selected transfer learning and
pseudo-labeling methods are introduced in more detail. The chapter concludes with an overview of the
contributions of this work (Section 2.4).

Chapter 3, methodology, first introduces a non-learning baseline model which will be used as a refer-
ence point for evaluating the effectiveness of the proposed learning methods. The proposed transfer
learning approach requires alignment between the CAG-skeleton dataset and the Kinetics-skeleton
dataset. Preprocessing steps to align the CAG-skeleton dataset in terms of structure, temporal res-
olution, and joint configuration are described in Section 3.2. The training pipeline, optimized hyper-
parameters, and learning methods of the feature extractor, temporal model, transfer learning, and
pseudo-labeling approaches are presented in Sections 3.3, 3.4, 3.6, and 3.7, respectively.

To reduce computational requirements, the limited supervision methods are evaluated using only the
best-performing combination of feature extractor and temporal model, as identified in Section 3.5. The
effectiveness of the limited supervision methods is determined using the paired t-test, introduced in
Section 3.8. Finally, the performance metrics used to evaluate and compare model performance are
presented in Section 3.9.

Chapter 4 presents the experiments and results. To analyze performance under varying amounts of
data, 39 distinct training subsets were created, with their division and training, validation, and test splits
described in Section 4.1. Quantitative and qualitative findings are reported, and compared against
the non-learning baseline model. The effectiveness of the studied model architectures, and limited
supervision strategies are analyzed in Sections 4.2 and 4.3 respectively.

Chapter 5 discusses the findings in the context of the challenges identified in the introduction. It reflects
on the effect of limited supervision for medical phase segmentation, highlights remaining challenges,
and proposes directions for future work. The chapter concludes with the overall conclusions of the
study.



2
Background & Related Work

This chapter provides the background and related work that form the foundation for the experiments
conducted in this study. Section 2.1 introduces CAG-skeleton, the 2D human skeleton dataset used
to evaluate the models and learning strategies in this study. Next, Section 2.2 gives the requirements
for the dataset which will be used for the transfer learning limited supervision strategy. It compares
various datasets from the human action recognition domain and selects the best one based on size
and similarity to the CAG-skeleton dataset.

The learning methods explored in this study are introduced in Section 2.3. Feature extractor models
trained on the transfer learning dataset are compared in Subsection 2.3.1. Models offering the best
trade-off between performance and parameter efficiency, and for which pretrained weights are publicly
available, are selected for further use. To overcome differences between the human action recognition
and medical temporal phase segmentation domains, a second learning model is required that models
longer-range temporal relations. These temporal models are investigated in Subsection 2.3.2, and the
most suitable ones, based on ability to capture longer-range temporal relations and data efficiency are
selected. Various limited supervision approaches are introduced in Subsection 2.3.3, and the selected
transfer learning and pseudo-labeling methods are presented in more detail. The chapter concludes
with an overview of the contributions of this work (Section 2.4).

2.1. CAG-skeleton dataset
To compare the performance of models and learning strategies analysed in this study, this work uses
the CAG-skeleton dataset. The CAG-skeleton dataset is introduced by Butler et al. [26], and contains
recordings of 290 coronary angiography (CAG) procedures performed at the Reinier de Graaf Gasthuis
hospital in Delft, the Netherlands. It provides 2D pose sequences derived from video recordings of
actual procedures, and includes frame-level phase annotations for a subset of cases. Data collection
was approved by the Medical Ethics Committee Leiden The Hague Delft (protocol number Z19.057,
dated 30-10-2019), and informed consent was obtained from all participating patients and clinical staff.

Each procedure was recorded using four Axis M1125 cameras, capturing different viewpoints at a
resolution of 1920×1088 pixels and a frame rate of 25 frames per second. A cardiologist, scrub nurse,
up to two lab assistants, and the patient were present during each procedure.

2.1.1. Pose estimation
To acquire ground truth pose annotations, ten procedures were selected in collaboration with local
clinical experts to represent team diversity and capture rare procedural deviations. For each procedure,
51 frames were uniformly sampled across a 30-second interval and annotated with 2D keypoints across
all four viewpoints (see figure 2.1 [27]), resulting in 2040 annotated frames in total. Annotations excluded
fully occluded individuals and keypoint reflections (e.g., those appearing on monitors), but included
visible staff in adjacent rooms, such as the control room or hallway.

Among the four viewpoints, the south (S) wall camera was identified as optimal in terms of viewpoint
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2.1. CAG-skeleton dataset 7

quality and occlusion levels, and was therefore used for further analysis. Full-length recordings from
this viewpoint were processed with PoseBYTE [26], producing 290 skeleton sequences in COCO format
(Figure 2.2). Each keypoint is defined by an (x, y) coordinate and a confidence score.

Figure 2.1: Cathlab dimensions (in meters) and camera viewpoints. [27]

2.1.2. Phase segmentation
All 290 procedures were segmented into 14 predefined clinical phases. Annotations were performed by
a medical student under the supervision of an expert. Figure 1.1 presents anonymized frames from a
representative procedure alongside their corresponding phase labels. Table 2.1 provides an overview
of the phase definitions, as well as the mean and interquartile range (IQR) of their durations and the
number of procedures in which each phase occurred. It should be noted that the dataset exhibits
substantial class imbalance in phase durations. In addition, some phases, such as Additional catheter
change (13) and First X-ray acquisition after additional catheter change (14), do not occur in every
procedure. Furthermore, a subset of procedure recordings start late or end early, resulting in missing
phases.

Several phases also feature (nearly) identical activity patterns, complicating classification based solely
on observablemotions. For example, First X-ray acquisition (5) and First X-ray acquisition after catheter
switch (7) involve (nearly) identical movements.

Improper data storage resulted in temporal misalignment between the phase labels, video recordings,
and pose data. Realignment was performed manually by the authors of this paper. For each proce-
dure, the time interval between two visually distinctive phases was used to resynchronize videos and
annotations. Pose sequences were separately aligned by matching the interval from the first staff entry
to the last staff exit with the corresponding video segment. All realignments were manually verified by
overlaying pose data and annotations onto the video recordings.

2.1.3. Final dataset
The resulting CAG-skeleton dataset after realignment contains:

• 189 procedures with both pose data and 14 annotated clinical phases
• 101 procedures with pose data only (no phase labels)
• 2D keypoints with confidence scores in COCO format (see figure 2.2 [28])
• Up to five persons per frame
• Frame rate of 25 frames per second
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Table 2.1: Clinical phase definitions in the CAG-skeleton dataset with mean duration [min], interquartile
range [min], and the number of procedures in which each phase occurs.

Clinical
Phase Description

Mean
duration

Interquartile
range

Procedures
containing phase

0 Start Preparation 10.02 3.88 - 13.29 250
1 Patient entry 0.60 0.3 - 0.55 254
2 Patient transfer to table 10.66 8.17 - 12.62 271
3 First contact cardiologist with patient 6.29 3.33 - 7.27 271
4 Endovascular access (catheter insertion) 0.22 0.07 - 0.23 271
5 First X-ray acquisition 5.10 2.35 - 5.93 290
6 Removal of right catheter & insertion of left catheter 0.99 0.72 - 1.05 290
7 First X-ray acquisition after catheter switch 5.62 3.08 - 6.79 290
8 Removal of second (left) catheter 1.76 1.19 - 2.05 289
9 Wound closure 3.44 2.43 - 4.1 287
10 Patient off table 0.66 0.32 - 0.8 282
11 Patient exit & cleaning 1.47 0.42 - 1.92 278
12 Additional catheter change 6.67 4.49 - 7.55 77
13 First X-ray after additional catheter change 5.21 3.33 - 6.33 78

All procedures 47.03 34.93 - 55.77 290

Figure 2.2: COCO skeleton format [28]. Keypoints locations include: nose, left eye, right eye, left ear,
right ear, left shoulder, right shoulder, left elbow, right elbow, left wrist, right wrist, left hip, right hip, left
knee, right knee, left ankle, right ankle.

2.2. Transfer learning dataset
Since one of the limited supervision techniques explored in this work is transfer learning, a second
dataset is required for pretraining. Ideally, this dataset should resemble the CAG-skeleton dataset in
terms of skeleton representation, activity complexity, and viewpoint characteristics, thereby ensuring
that the pretrained model learns features relevant to the downstream task of phase segmentation in
CAG procedures.

Moreover, the pretraining dataset should be sufficiently large. A larger dataset enables the model to
acquire a more diverse and representative set of motion patterns, which in turn enhances its general-
ization capability.
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As no other skeleton-based medical temporal segmentation datasets are available to the author, a
dataset from a different research domain must be used. As research on skeleton sequences has
predominantly been explored within the field of human action recognition (HAR), this domain is selected.

Within HAR, numerous datasets have been published, each developed for different application domains.
These datasets vary substantially in size, recording method, skeleton structure, and actions analyzed,
depending on their intended use cases. For example, Kishore et al.’s Indian Sign Language dataset [29]
was designed for sign language recognition and includes 18 keypoints per hand to capture fine-grained
finger movements. Yun et al.’s Two-person Interaction Detection dataset [30], on the other hand, focuses
specifically on human–human interactions and excludes single-person activities. Jang et al.’s ETRI-
Activity3D dataset [31] records daily living activities of elderly individuals to support the development of
future human-care robots. Similarly, Martin et al.’s Drive&Act dataset [32] targets driver monitoring, with
a focus on detecting secondary in-vehicle activities.

A quantitative comparison and summary of the reviewed datasets is presented in Table 2.2. The fol-
lowing subsections discuss data acquisition techniques (Section 2.2.1), skeleton structures (Section
2.2.2), and the final selection of the dataset which will be used for transfer learning (Section 2.2.3).

Table 2.2: Datasets used within the skeleton-based human action recognition domain. A dash (“–”)
indicates that the corresponding information was either not reported by the dataset creators or could
not be found despite an extensive search by the author of this thesis.

Dataset Year Modality D
im

en
si
on

al
ity

#
Jo

in
ts

#
Se

qu
en

ce
s

#
A
ct
io
ns

M
ul
ti-
pe

rs
on

HDM05 [33] 2007 MOCAP platform 3D 31 1457 70 7

DailyActivity3D [34] 2012 MS Kinect V1 3D 20 320 16 7

HOJ3D [35] 2012 MS Kinect V1 3D 20 200 10 7

Two-person Interaction
Detection [30] 2012 MS Kinect V1 3D 15 300 8 3

UCFKinect [36] 2013 MS Kinect V1 3D 15 1280 16 7

MSR Action 3D [37] 2013 MS Kinetics 3D 20 600 20 7

J-HMDB [38] 2013 RGB camera with
Amazon Mechanical Turk 2D 13 928 21 7

IAS-lab action [39] 2013 NITE middleware 3D - 540 15 7

Berkeley MHAD [40] 2013 Impulse MOCAP system 3D 21 660 11 7

CMU [41] 2014 MOCAP platform 3D 22 44 9 3

Northwestern UCLA
Multiview 3D [42] 2014 MS Kinect V1 3D 21 100 10 7

UTD-MHAD [43] 2015 MS Kinect V1 3D 20 861 27 7

MV-TJU [44] 2015 MS Kinect V1 3D 20 7040 22 7

NTU RGB+D [45] 2016 MS Kinect V2 3D 25 56,880 60 3

PKU-MMD [46] 2017 MS Kinect V2 3D 25 21,545 51 3

RGB-D Varying-view [47] 2018 MS Kinect V2 3D 25 25,600 40 7

Kinetics-skeleton [48;49] 2018 RGB camera with
OpenPose [50] 2D+c 18 260,230 400 3

Indian Sign Language [29] 2018 Vicon MOCAP system 3D 57 2500 500 7

DHP19 [51] 2019 Vicon MOCAP system 3D 13 5610 33 7

MMAct [52] 2019 - - - 36764 37 7

Drive&Act [32] 2019
Near-infrared cameras

with OpenPose [50], OpenFace [53]

& triangulation
3D 13 - 83 7

ETRI-Activity3D [31] 2020 MS Kinect V2 3D 25 112,620 55 7

EV-Action [54] 2020 MS Kinect V2
& Vicon-T40 3D 39 7000 20 7

NTU RGB+D 120 [55] 2020 MS Kinect V2 3D 25 114,480 120 3

IKEA ASM [56] 2021 RGB video with 3D VIBE [57] 3D 17 16,764 31 7
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Dataset Year Modality D
im

#
J

#
S

#
A

M
P

KLHA3D102 [58] 2021 Vicon MOCAP system 3D 39 10,200 102 7

UAV-Human [59] 2021 Azure Kinect DK
with RMPE [60] 2D 17 67,428 155 3

KLYOGA3D [58] 2021 Vicon MOCAP system 3D 39 2,100 42 7

2.2.1. Data acquisition
The datasets summarized in Table 2.2 differ in how skeleton data is obtained. Broadly, acquisition relies
on RGB-D sensors, motion capture systems, or pose estimation from RGB or near-infrared video.

RGB-D sensors, such as the Microsoft Kinect, capture synchronized RGB and depth images. Com-
bined with toolkits such as OpenNI [36] or the Kinect SDK [43], these devices enable real-time tracking of
human skeleton joints and their approximate 3D positions.

Marker-based motion capture systems, such as the Vicon platform, provide more precise 3D skeleton
tracking by using optical cameras to record reflective markers placed on the body [54].

In contrast, the CAG-skeleton dataset relies on a monocular RGB setup, where 2D skeletons are esti-
mated directly from video recordings. While several other datasets provide full 3D skeleton represen-
tations, this does not make them unsuitable for transfer learning, as 3D sequences can be projected
into 2D space.

2.2.2. Skeletons
A critical factor in selecting an suitable dataset for transfer learning is the structural compatibility of
the skeleton representations. For transfer learning to be effective, the pretrained model should have
already learned meaningful spatial and temporal relationships between keypoints that are transferable
to the target data. Such transfer is more likely when the source and target datasets employ comparable
skeleton structures.

The datasets reviewed vary considerably in this regard, differing in both the number of keypoints and
their anatomical placement. Figure 2.3 [58] illustrates several examples of these variations.

Among the analyzed datasets, only three exhibit skeleton structures that closely resemble that of
the CAG-skeleton dataset: the IKEA ASM dataset [56], the UAV-Human dataset [59], and the Kinetics-
skeleton dataset [48;49]. Of these, the Kinetics-skeleton dataset is structurally almost identical, differing
only in the addition of a single neck keypoint.

2.2.3. Final dataset selection
The choice of pretraining dataset was guided by four criteria:

1. Structural similarity of the skeleton representation
2. Viewpoint similarity (for 2D skeletons)
3. Dataset size
4. Ability to handle multi-person scenes

Applying the first criterion narrowed the candidates to three datasets: Kinetics-skeleton, IKEA ASM,
and UAV-Human. The UAV-Human dataset was excluded because its 2D drone-based recordings
introduce steep top-down viewpoints that differ substantially from those in the CAG-skeleton dataset.

Between the remaining two options, the Kinetics-skeleton dataset offers clear advantages: it is con-
siderably larger than the IKEA ASM dataset and includes multi-person interactions. Consequently, the
Kinetics-skeleton dataset was selected as the most suitable source for pretraining.
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Figure 2.3: Subset of skeletons structures used throughout the datasets. [58]

Figure 2.4: Framework of skeleton-based action recognition approaches. Image adapted from Shin et
al. (2024) [21].

2.3. Learning methods
Once skeleton data is collected, the recognition or segmentation process begins. The general pipeline
of skeleton-based methods, shown in Figure 2.4, typically consists of preprocessing, feature extraction,
and classification [21].

Early approaches relied on handcrafted features such as joint angles, velocities, and relative distances,
followed by classical sequence methods such as Hidden Markov Models (HMMs). While interpretable,
these approaches lacked the representational power to capture complex spatiotemporal dynamics in
real-world data [21].

With the rise of deep learning, Recurrent Neural Networks (RNNs) and their variants such as Long
Short-Term Memory (LSTM) networks and Gated Recurrent Units (GRUs) became dominant for mod-
eling temporal dependencies in skeleton sequences. Although effective for short-term actions, they
suffer from vanishing gradients and difficulties in modeling long-range dependencies [61]. Temporal
Convolutional Networks (TCNs) emerged as an alternative, offering stable receptive fields, paralleliz-
ability, and improved performance in longer sequences [62].

A major breakthrough came with Graph Convolutional Networks (GCNs), which directly exploit the
graph structure of skeletons. The Spatial-Temporal GCN (ST-GCN) [49] extends standard convolution to
spatiotemporal skeleton graphs, enabling simultaneous modeling of spatial relationships (joints within
a frame) and temporal dynamics (joints across frames). Subsequent research found several limitations
of the original ST-GCN framework:

1. The graph structure in ST-GCN is predefined based on the physical structure of the human skele-
ton. While this captures anatomical relations effectively, it ignores semantic dependencies be-
tween joints that are not directly connected. For instance, in actions such as ”touching the face”,
the interaction between the hand and the head, although not anatomically linked, is crucial for
accurate recognition. [63;20].

2. While manually predefined graph structures are intuitive, they lack flexibility and often require
dataset-specific customizations. This increases the manual effort required to adapt the model to
different skeleton formats/datasets.
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3. As ST-GCN extract spatial features, and models temporal dynamics in two distinct steps, it strug-
gles to capture joint co-occurrences across space and time simultaneously. Identifying actions
like ”running”, where the model needs to focus on the swing of the hands and the movements of
the legs simultaneously, becomes challenging as the co-occurring movements of the arms and
legs parts across both space and time cannot be identified well. [64]

4. ST-GCN architectures tend to be highly complex and over-parameterized, resulting in inefficient
model training and inference. [65;66] Recent work by Xie et al. [65] demonstrated that sparse variants
of ST-GCN, using up to 95% fewer parameters, can achieve comparable performance compared
to their dense counterparts (degradation of less than 1% in top-1 accuracy across four benchmark
datasets, including NTU-RGB+D 60/120, Kinetics-400, and FineGYM).

To address these challenges, extensions of ST-GCN have been proposed that incorporate learnable
adjacency matrices (ST-GCN++ [67], DG-STGCN [68]), reduce model complexity (PR-GCN [69]), and intro-
duce the attention mechanisms. Parallel to these developments, transformer-based architectures have
been introduced, leveraging self-attention to model long-range dependencies. For example, Plizzari et
al. [70] proposed the Spatio-Temporal Transformer network (ST-TR), which applies spatial self-attention
to capture correlations between joints within a frame and temporal self-attention to capture dynamics
across frames.

While these models achieve strong performance in the field of human action recognition (HAR), it
is important to distinguish HAR from temporal phase segmentation. In HAR, the task is to assign a
single action label (e.g., walking, sitting, throwing) to a short skeleton sequence, typically lasting only
a few seconds. In contrast, temporal phase segmentation extends this to much longer sequences
and requires identifying multiple consecutive actions or phases with frame- or segment-level precision.
This introduces additional challenges, includingmodeling long-range temporal dependencies, detecting
action boundaries, and handling large variations in action duration.

Therefore, in this study, a standard HARmodel is employed as a feature extractor to capture short-term
spatio-temporal dynamics, and is combined with a dedicated temporal model designed to efficiently
learn longer-range temporal dependencies.

2.3.1. Feature extractor selection
The choice of feature extractors was guided by two factors: (1) the availability of a pretrained model on
the Kinetics-skeleton dataset, and (2) practical considerations of model scale and trainability. Pretrain-
ing on Kinetics-skeleton is essential, as it is the only dataset structurally compatible with CAG-skeleton
and of sufficient size to support effective transfer learning (see Section 2.2). Training models from
scratch and performing extensive hyperparameter searches on the Kinetics-skeleton dataset would
be computationally infeasible given the resources and timeframe of this project. Consequently, only
models with publicly available pretrained weights on the Kinetics-skeleton dataset were considered.

Although state-of-the-art methods such as ProtoGCN [71] or two-stream architectures (incorporating
both joint and bone inputs) achieve strong performance on Kinetics-skeleton, their large parameter
counts make them impractical for this study. Larger models not only require substantially more com-
putational resources but also tend to overfit rapidly on the comparatively small datasets common in
the medical domain. For this reason, parameter efficiency was treated as an important consideration:
models with moderate size are more feasible to train and generally require less target data for training
and effective fine-tuning. This consideration also motivated a focus on joint-only configurations, as the
bone modality, while offering marginal gains in some benchmarks, approximately doubles model size
without introducing fundamentally new information.

After filtering and ranking the candidates identified in an extensive literature review (Table 2.3), two
models arose: MS-G3D [72] and PR-GCN [69]. MS-G3D demonstrated stronger performance on Kinetics-
skeleton, while PR-GCN offered a highly compact design with just 580 thousand parameters. These
complementary characteristics motivated their joint selection as feature extractors for subsequent ex-
periments.
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Table 2.3: Overview of evaluated models. 3 in Bone indicates usage of both joint and bone inputs, Top-
1/Top-5 are classification accuracies (%). Paramsmarked with † are sourced from a alternative studies.
Params marked with ‡ are manually sourced using pretrained models. 3 in Code and Pretrained show
public availability and are hyperlinks.

Module Year Bone Top-1 Top-5 Params (M) Code Pretrained

ST-GCN [49] 2018 30.7 52.8 3.1† 3

AR-GCN [73] 2019 33.5 55.1
SLnL-rFA [74] 2019 36.6 59.1

STGR-GCN [75] 2019 33.6 56.1
AS-GCN [76] 2019 34.8 56.5 6.9† 3

DGNN [77] 2019 3 36.9 59.6 8.2† 3

2s-AGCN [78] 2019 3 36.1 58.7 7.1† 3

Ours-Conv [79] 2019 30.8 52.6
Ours-Conv-Chiral [79] 2019 30.9 53.0

MS-G3D [72] 2020 35.8 58.6 3.14 3 3

2020 3 38.0 60.9 6.29 3 3

GCN-NAS [80] 2020 35.5 57.9 3

2020 3 37.1 60.1 3

MS-AAGCN [81] 2020 36.0 58.4 3

2020 3 37.8 61.0 3.8† 3

Dynamic GCN [82] 2020 3 37.9 61.3 3.6
A-CA-GCN [83] 2020 34.1 56.6 5.38

PeGCN [84] 2020 34.8 57.2 3

SS-GCN [85] 2021 35.2 57.5 6.9
DualHead-Net [86] 2021 36.6 59.5 3.0 3

2021 3 38.3 61.1 3

PR-GCN [69] 2020 33.6 56.1 0.58 3 3

2s-AAGCN+TEM [87] 2021 3 38.6 61.6
S-TR [70] 2020 32.4 55.3 3.19‡ 3 3

2020 3 35.4 57.9 12.35‡ 3 3

T-TR [70] 2020 32.4 55.2 1.76 3 3

2020 3 33.1 55.9 6.58‡ 3 3

ST-TR [70] 2020 34.5 57.6 4.95‡ 3 3

2020 3 37.0 59.7 18.93‡ 3 3

T-TR-agcn [70] 2020 34.4 57.1 2.22‡ 3

2020 3 34.7 56.4 8.06‡ 3 3

ST-TR-agcn [70] 2020 36.1 58.7 5.41‡ 3

2020 3 38.0 60.5 12.41‡ 3 3

AAM-GCN [88] 2021 3 37.5 60.5
PoseConv3D [89] 2022 46.0 2.0 3

2022 3 47.7 2.0 3

STF [90] 2022 38.2
2022 3 39.9

Sybio-GNN [91] 2022 3 37.2 58.1 14.85
UNFGEF [92] 2022 3 37.6 60.5

SKP [93] 2023 3 43.1
LKA-GCN [94] 2023 37.8 60.9 3.47

2023 3 37.8 60.9 3.78
2s-GATCN [95] 2023 3 36.7 59.8
HAR-ViT [96] 2023 38.1 60.9

ProtoGCN [71] 2024 3 51.9 75.6 25.85‡ 3 3

DS-GCN [97] 2024 3 50.6 3

Gnet [98] 2025 3 38.2 7.36
Tnet [98] 2025 3 30.7 4.33

SA-TDGFormer [98] 2025 3 39.0 7.36
LMSTGCN [99] 2025 3 37.7 60.5 5.4

https://github.com/yysijie/st-gcn
https://github.com/limaosen0/AS-GCN
https://github.com/tsinghua-fib-lab/DGCN
https://github.com/lshiwjx/2s-AGCN
https://github.com/lshiwjx/2s-AGCN
https://github.com/lshiwjx/2s-AGCN
https://github.com/andreYoo/PeGCNs
https://github.com/tailin1009/DualHead-Network
https://github.com/tailin1009/DualHead-Network
https://github.com/sj-li/PR-GCN
https://github.com/sj-li/PR-GCN
https://github.com/Chiaraplizz/ST-TR
https://github.com/Chiaraplizz/ST-TR
https://github.com/Chiaraplizz/ST-TR
https://github.com/Chiaraplizz/ST-TR
https://github.com/Chiaraplizz/ST-TR
https://github.com/Chiaraplizz/ST-TR
https://github.com/Chiaraplizz/ST-TR
https://github.com/Chiaraplizz/ST-TR
https://github.com/Chiaraplizz/ST-TR
https://github.com/Chiaraplizz/ST-TR
https://github.com/Chiaraplizz/ST-TR
https://github.com/Chiaraplizz/ST-TR
https://github.com/Chiaraplizz/ST-TR
https://github.com/Chiaraplizz/ST-TR
https://github.com/Chiaraplizz/ST-TR
https://github.com/Chiaraplizz/ST-TR
https://github.com/Chiaraplizz/ST-TR
https://github.com/Chiaraplizz/ST-TR
https://github.com/kennymckormick/pyskl?tab=readme-ov-file
https://github.com/kennymckormick/pyskl?tab=readme-ov-file
https://github.com/firework8/ProtoGCN
https://github.com/firework8/ProtoGCN
https://github.com/davelailai/DS-GCN
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2.3.2. Temporal model selection
The kinetics-skeleton dataset consists of short segments with a temporal length of ten seconds. Con-
sequently, the pretrained MS-G3D and PR-GCN feature extractors are limited to modeling short-range
temporal dependencies. While this may be sufficient for recognizing distinct actions, it is inadequate for
medical phase segmentation, where different phases may exhibit (nearly) identical short-term motion
patterns (e.g. First X-ray acquisition (F) and First X-ray acquisition after catheter switch (H)).

Accurately distinguishing between phases requires modeling longer-term contextual information, under-
standing not only what action is being performed but also where it occurs within the broader temporal
structure of the surgical workflow. A common solution used in medical phase segmentation is to com-
bine short-term models with a dedicated temporal module capable of learning long-range temporal
dependencies.

In the medical phase segmentation literature, a wide range of temporal modeling approaches have
been explored (see Appendix A for details). These include:

• Hidden Markov Models (HMMs): Early works often leveraged HMMs to model temporal depen-
dencies between surgical phases. HMMs capture the sequential nature of procedures using
probabilistic state transitions and have the advantage of interpretability and low data require-
ments. [100;101;102]

• Recurrent Neural Networks (RNNs) and Long Short-Term Memory networks (LSTMs): These
models extend standard neural networks to sequential data. RNNs can capture short-term depen-
dencies but are prone to vanishing gradients in long sequences, while LSTMs incorporate gating
mechanisms to retain relevant long-term information and reduce phase flickering. [103;104;105]

• Three-Dimensional Convolutional Neural Networks (3D-CNNs): By extending 2D convolutions
into the temporal dimension, 3D-CNNs learn spatiotemporal motion patterns, such as hand or
tool movements. However, they are computationally intensive and typically limited to short-range
temporal dependencies. [106;107;108]

• Temporal Convolutional Networks (TCNs): TCNs address the temporal limitations of 3D-CNNs
using causal and dilated convolutions to capture both short- and long-range dependencies effi-
ciently. Residual connections allow deep TCNs to be trained without suffering from the vanishing
gradient problem. [109;110;111]

• Transformer-based architectures: Transformers leverage self-attention to model extremely long-
range dependencies. Vision Transformers (ViTs) process frames as sequences of patches to
encode spatial features, while Video Transformer Networks (VTNs) extend this mechanism to
capture both spatial and temporal dependencies across frames. Although powerful, transformers
require substantial annotated data and computational resources, often necessitating pretraining
on large video datasets. [112;113;114]

The temporal module selected for this study must capture long-range dependencies while remaining
data-efficient, given the limited size of the CAG-skeleton dataset. Hidden Markov Models (HMMs),
while lightweight and interpretable, have limited modeling capacity due to their simplified probabilistic
structure, which makes it difficult to capture complex temporal patterns and subtle variations in high-
dimensional skeleton features. RNNs and 3D-CNNs face practical limitations: RNNs struggle with
vanishing gradients over long sequences, while 3D-CNNs require substantial computational resources
and large amounts of training data. Transformer-based models, including Vision Transformers and
Video Transformer Networks, are capable of modeling extremely long-range dependencies but are
generally infeasible in the medical domain due to their high data and pretraining requirements.

To balance temporal modeling range and data efficiency, this study therefore focuses on two widely
adopted architectures in medical phase segmentation: LSTMs and TCNs, which can efficiently learn
both short- and long-term dependencies.



2.4. Contributions 15

2.3.3. Limited supervision learning
Over 95% of medical temporal segmentation studies rely on fully supervised learning methods, which
require dense frame-level annotations that are costly, time-consuming, and dependent on expert sur-
gical knowledge. Consequently, most available datasets remain relatively small, limiting the ability
of supervised models to generalize across hospitals, surgeons, and patients. To address these lim-
itations, various limited supervision strategies have been developed depending on the availability of
annotations [22]:

• Fully supervised TAS: Each frame of every training video is annotated with an action label.
• Point-level supervised TAS: For each action instance in a video, a single frame (a ”point”) within
its temporal duration is labeled.

• Weakly supervised TAS: Only coarse-grained labels are available for training. These can be an
ordered list of occurring labels [115;116], or a set of all possible labels without information about
order or occurrence [117].

• Semi-supervised TAS: The training set is divided into a small set of fully annotated videos and a
(typically larger) set of unlabeled or weakly labeled videos.

• Self-supervised TAS: Models are pretrained on a pretext task (such as ordering shuffled frames)
such that they learn meaningful features from unlabeled data. The learned features are then
leveraged for a downstream task, i.e. supervised, semi-supervised, or unsupervised TAS.

• Unsupervised TAS: No labels are available for training.

Appendix B provides a detailed overview of these strategies. This work specifically explores transfer
learning and pseudo-labeling.

The transfer learning approach leverages large-scale datasets from the human action recognition (HAR)
domain to reduce reliance on medical data. The underlying idea is that abundant HAR data can be
used during pretraining to capture the generic spatio-temporal structure of skeleton sequences, without
depleting the limited medical annotations. After pretraining, the model is fine-tuned on the surgical
phase segmentation task, allowing it to adapt to the domain-specific characteristics. This strategy
maximizes the efficiency of the available surgical training data thereby reducing the quantity of medical
annotations required.

Pseudo-labeling combines a small set of annotated data with a larger set of unlabeled data. A model
trained on the labeled subset assigns provisional labels (pseudo-labels) to the unlabeled videos, which
are then used for further training. This iterative process enables generalization beyond the labeled
data. However, incorrect pseudo-labels can introduce noise and degrade performance. To address
this, confidence thresholds or ensemble methods are typically used to filter unreliable predictions [24;25].

A common issue in pseudo-labeling is bias toward easy-to-classify actions: when applying a fixed
confidence threshold, the majority of confident predictions often consist of simple or abundant classes.
To mitigate this selection bias, Zou et al. (2018) [118] proposed a class-balanced self-training (CBST)
framework, where different confidence scores are used per class for pseudo-label selection. CBST will
also be explored in this study.

2.4. Contributions
In summary, this work addresses the challenges of limited data availability and poor generalizability
in medical temporal segmentation by investigating the use of skeleton-based representations in com-
bination with limited supervision techniques. Specifically, it evaluates the performance of two feature
extractors, MS-G3D and PR-GCN, paired with two temporal models, LSTM and TCN, trained under
three supervision regimes: full supervision, transfer learning using the Kinetics-skeleton dataset, and
pseudo-labeling via class-balanced self-training on the CAG-skeleton dataset.

The main contributions of this work are as follows:

1. To the best of the authors’ knowledge, this is the first study to investigate skeleton-based medical
temporal segmentation, introducing a modality to the medical domain that is well-established in
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human action recognition and highly suitable for generalization across unseen clinical environ-
ments.

2. A general training framework is proposed for medical temporal segmentation of any human-
performed procedure where skeleton sequences can be extracted or recorded.

3. This work explores the use of transfer learning and class-balanced self-training pseudo-labeling
for skeleton-based medical phase segmentation, assessing their potential to reduce the need for
costly annotated data while maintaining competitive segmentation performance.



3
Methodology

This chapter presents the proposed methodology used in this study. To establish a reference point
for evaluating the effectiveness of the proposed methods, a simple non-learning baseline model is
proposed in Section 3.1 that solely relies on the average duration of each surgical phase, computed
across all procedures in the training set.

The proposed transfer learning approach requires alignment between the CAG-skeleton dataset and
the Kinetics-skeleton dataset. Preprocessing steps to align the CAG-skeleton dataset in terms of struc-
ture, temporal resolution, and joint configuration are described in Section 3.2. The training procedures
for the feature extractor and temporal models are presented in Sections 3.3 and 3.4, respectively. To
reduce computational requirements, only the best-performing feature extractor temporal model combi-
nation is used for limited supervision analysis. The model combination selection, using statistical tests,
is discussed in Section 3.5.

The limited supervision strategies, transfer learning using the Kinetics-skeleton dataset, and pseudo-
labeling via class-balanced self-training, are discussed in Sections 3.6 and 3.7. To determine their
effectiveness, the paired t-test is used, which is described in Section 3.8. Finally, the chapter concludes
with Section 3.9, which presents the performance metrics used to evaluate and compare models across
different training configurations and data subsets.

3.1. Baseline model
To establish a reference point for evaluating the effectiveness of the proposed methods, a simple non-
learning baseline model was implemented. This baseline relies solely on the average duration of each
surgical phase, computed across all procedures in the training set. For phases that occur at multiple
points within the temporal sequence (e.g., Additional catheter change and X-ray after additional catheter
change), the mean duration of each occurrence was calculated separately. The resulting sequence
of average phase durations defines a mean procedure. During evaluation, this mean procedure is
compared against all procedures in the test set to determine the baseline model’s performance.

3.2. Dataset preprocessing
To enable efficient transfer learning from models pretrained on the Kinetics-skeleton dataset, the CAG-
skeleton dataset was adapted to match its structure and characteristics. These modifications ensure
that pretrained models can generalize to the CAG-skeleton dataset with minimal fine-tuning, thereby
reducing the amount of CAG-specific data required for training.

3.2.1. Frame Rate Adjustment
The kinetics-skeleton dataset was recorded at 30 frames per second (fps), whereas the CAG-skeleton
dataset was originally captured at 25 fps. To align the temporal resolutions, the CAG-skeleton dataset
was upsampled to 30 fps by inserting an additional frame after every five original frames. For individuals
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withmatching person_id values across adjacent frames, joint coordinates in the interpolated framewere
estimated via linear interpolation.

3.2.2. Neck joint addition
Unlike the Kinetics-skeleton dataset, the CAG-skeleton dataset does not include a neck joint. To ad-
dress this, two approaches were evaluated. First, a lightweight neural network with one hidden layer
was trained on Kinetics-skeleton data to predict the neck position per frame from the remaining joints.
Second, a simple approximation was tested, where the neck joint was placed at the midpoint between
the left and right shoulder. The neural network offered insignificant gains over the midpoint method,
which was not only computationally more efficient but also provided an approximation sufficiently close
to the ground truth (Figure 3.1). Consequently, the midpoint approximation was chosen over the more
complex solution.

Figure 3.1: Frame 100 of kinetics-skeleton segment __PYrzYbzKE with label jumpstyle dancing. Green
dot indicates the midpoint between the left and right shoulder. Blue dots indicate ground truth joint
locations.

3.2.3. Normalize, reorder, filter, and segment
To further align with the Kinetics-skeleton format, the CAG-skeleton data was normalized, keypoints
were reordered, and sequences were segmented into 10-second clips. During inspection, it was ob-
served that the pose estimation occasionally produced clearly misplaced keypoints for a single frame,
despite high confidence scores. To correct such anomalies, a median filter with a kernel size of 3
was applied independently to each person’s pose sequence. This filter replaces each keypoint’s co-
ordinates with the median over a short temporal window, effectively smoothing abrupt noise without
creating large motion blur. Figure 3.2 illustrates an example of this “keypoint jumping” before and after
filtering.

3.2.4. Remaining discrepancies
Despite these preprocessing steps, several discrepancies remain. One issue is keypoint drift, where a
joint gradually deviates from its true position over time. Unlike keypoint jumping, keypoint drift moves
slowly, making it more difficult to detect and correct. A second limitation arises from the ground truth
phase annotations, which are accurate only to within approximately five seconds. As a result, pre-
dictions at phase boundaries may be correct, yet appear misaligned with the ground truth annotated
labels, as the label still reflects the preceding or subsequent phase. However, because phase bound-
aries only occur near a small fraction of the total number of clips, their local misalignments are unlikely
to meaningfully affect the reported performance.
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Figure 3.2: Keypoint jumping in frame 88126 of CAG-procedure with procedure_id 100 before and after
median filter application.

3.3. Feature extractor training
Feature extractor models are trained on 10-second skeleton sequences (300 frames) to predict the
medical phase of the final frame of the sequence. To ensure that the learned representations are max-
imally discriminative, training employs a cross-entropy loss, weighted inversely to phase occurrence
of the training set. This weighting scheme prioritizes separability across all phases, preventing overfit-
ting to common phases and promoting discriminative embeddings, which in turn enables downstream
temporal models to more effectively distinguish between phases.

The model architectures are kept identical to their pretrained configurations to enable initialization with
weights from the Kinetics-Skeleton dataset. Training was performed with a maximum of 300 epochs,
early stopping with a patience of 15 epochs, and learning rate decay with a patience of 5 epochs and
a decay factor of 0.5. All other hyperparameters, such as the base learning rate and batch size, were
aligned with those used during pretraining on Kinetics-Skeleton.

A graphical overview of the feature extractor training pipeline is provided in Figure 3.3.

Figure 3.3: Overview of the training pipeline for the feature extractor. A 300-frame-long skeleton se-
quence is used as input for either the MS-G3D or PR-GCN model. The resulting feature vectors are
used as input for a fully connected neural network (FCN) to predict the medical phase of the final frame
in the sequence.
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3.4. Temporal model training
The temporal models are trained on sequences of feature vectors obtained by passing consecutive 10-
second clips through the feature extractor models. Each model is trained to predict the clinical phase
of the final frame of the sequence.

Training is performed using non-weighted cross-entropy loss and the Adam optimizer. Similar to the
feature extractor models, a learning rate scheduler with a decay factor of 0.5 and a patience of 5 epochs
is used, in combination with early stopping using patience 15 and a maximum of 300 epochs. Each
model is trained with a maximum temporal lookback of 250 consecutive 10-second clips (41 minutes
and 40 seconds). For missing clips at the start of a procedure (e.g., up to 249 clips when predicting the
phase of the first recorded clip of a procedure), zero feature vectors are inserted. These vectors were
generated by passing an empty clip (without skeleton sequences) through the feature extractor.

A grid search over the hyperparameters listed in Table 3.1 is performed for each dataset and temporal
model architecture. The LSTM and TCN training pipelines are graphically presented in figures 3.4 and
3.5, respectively.

Table 3.1: Hyperparameters searched during training of temporal models.

LSTM TCN
Learning rate 1e-3, 5e-4, 1e-4 1e-2, 1e-3, 1e-4
Batch size 16, 32, 64 16, 32, 64
Number of layers 1, 2, 3 4, 5, 6, 7, 8
Hidden layer size 64, 128, 256 32, 64, 128
Kernel size N/A 3
Dropout 0.1, 0.2, 0.3 0.1, 0.2, 0.3

Figure 3.4: Training pipeline of the LSTM model. 250 feature vectors, obtained by passing 10-second
clips through the feature extractor models, are used as input to the LSTMmodel. The final output of the
LSTM model is used as input for a fully connected neural network (FCN) to predict the medical phase
of the final frame of the sequence.
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Figure 3.5: Training pipeline of the TCN model. 2D (with D equal to the number of layers, or depth, of
the TCN model) or up to 250 feature vectors, obtained by passing 10-second clips through the feature
extractor models, are concatenated and used as input to the TCN model. The output of the TCN is
passed to a fully connected neural network (FCN) to predict the medical phase of the final frame of the
sequence.

3.5. Determining best model combination
To reduce computational requirements, only the best-performing model combination in the low data
regime (up to 40 procedures) is used for limited supervision analysis. Model selection is based on the
clip-wise and segmental performance metrics, which will be introduced in Section 3.9.

When comparing multiple machine learning models across different experimental conditions, it is impor-
tant to determine whether observed performance differences are statistically significant. To do so, this
study employs the Friedman test, a non-parametric test that is commonly used to detect differences
among several related groups. [119]

In the Friedman test, the algorithms are ranked separately for each dataset, where the best-performing
algorithm gets rank 1, the second-best rank 2, etc. The average rank of each algorithm is then computed
by Rj =

1
N

∑
i r

j
i , where rji is the rank of the j-th out of k algorithms on the i-th out of N datasets.

The null hypothesis H0 is that all models perform equivalently, i.e., they have equal expected ranks Rj .
The alternative hypothesis is that at least one model differs significantly from the others.

X 2
F =

12N

k(k + 1)

∑
j

R2
j −

k(k + 1)2

4

 (3.1)

If the Friedman statistic, computed using equation 3.1, is greater than a specified threshold (dependent
on the value of k and N ), the null hypothesis is rejected. When this is the case, a post-hoc test is
required to identify which specific model has a statistically significantly different performance. In this
work, the Nemenyi post-hoc test is used, which compares all classifiers pairwise. If the difference in
average ranks between two models exceeds the critical difference, their performances are considered
significantly different.

The best-performing model combination is selected for the limited supervision analysis. If no model
shows statistically better performance, the most computationally efficient model is chosen.
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3.6. Transfer learning training
As indicated in Section 2.3.3 and 2.2, the goal is to leverage the large-scale Kinetics-Skeleton dataset
from the human action recognition domain to reduce reliance on the costly annotated medical data.
Training occurs as described in sections 3.3 and 3.4, with the only change being that the feature ex-
tractor models are initialized with weights fully trained on the Kinetics-Skeleton dataset. This way, the
feature extractor models transfer the knowledge of the generic spatio-temporal structure of skeleton
sequences, learned on the Kinetics-Skeleton dataset, and only require fine-tuning on the limited medi-
cal data. As such, the limited medically annotated data is used efficiently, and not depleted early on in
the training process to learn the generic spatio-temporal structure of skeleton sequences.

3.7. Pseudo-labeling
This study employs the class-balanced self-training (CBST) framework introduced by Zou et al. (2018) [118]
(see Section 2.3.3). The selected model combination first generates predictions on the section of the
training data not included in the training set used for training.

In the CBST framework, as described by Zou et al., the predictions are sorted class-wise based on
their confidence scores. A parameter kc is defined for each class c, such that exp (−kc) equals to the
probability ranked at round (p×Nc) for that specific class. Here Nc denotes the number of predictions
belonging to class c and p is the proportion of predictions selected as pseudo-labels (starting at 20%).
A prediction is retained as a pseudo-label if the ratio between its confidence score and exp(−kc) for
the corresponding class is greater than one.

In practice, this procedure is equivalent to simply selecting the top 20% most confident predictions
within each class as pseudo-labels.

After pseudo-label selection, the entire training pipeline is retrained, as described in Sections 3.3
and 3.4, this time using both the original labeled dataset and the generated pseudo-labels.

Following retraining, Zou et al. again make predictions on the portion of the training data excluded
from the initial training dataset (including the data previously used for pseudo-label generation). Next,
the top 25% most confident predictions are selected as pseudo-labels for a second training iteration.
This process is repeated in 5% increments, up to a maximum of 50%, or until the validation loss stops
improving.

However, given the limited computational resources available, and the diminishing returns of pseudo-
labeling when training with a greater labeled training set (and thus proportionally less unlabeled data
available to generate pseudo-labels), this work explores pseudo-labeling up to 40 labeled training pro-
cedures and using 20% of unlabeled data as pseudo-labels only.

3.8. Determining limited supervision effectiveness
To evaluate the effectiveness of the limited supervision methods, the paired t-test is used. The pared t-
test determines whether the observed differences in performance of two models evaluated on the same
datasets are statistically significant. Unlike the Friedman or Nemenyi tests, which are designed for
comparisons involving multiple models, the paired t-test is specifically suited for pairwise comparisons.

The test is based on the differences between paired performances, where each pair corresponds to
the results of two models (with and without a limited supervision method) trained on the same dataset.
The null hypothesis assumes that the mean difference µd between the models is zero, indicating no
significant performance difference. The test statistic is computed as:

t =
µd

σd/
√
N

(3.2)

where µd is the mean of the performance differences, σd is their standard deviation, and N is the
number of datasets. The resulting test statistic t is compared to the t-distribution to determine if the
observed difference between the models is statistically significant.
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3.9. Performance metrics
In this work, two complementary metrics are used to quantify the performance of the models: clip-
wise accuracy, which quantifies frame-level correctness, and the normalized Levenshtein edit distance,
which assesses the structural similarity between predicted and ground-truth phase sequences.

3.9.1. Clip-wise accuracy
Clip-wise accuracy measures the proportion of correctly classified clips relative to the total number of
clips in a sequence. This metric provides a straightforward measure of overall classification perfor-
mance and is intuitive to interpret. However, because each clip is evaluated independently, this metric
does not account for the temporal or sequential structure of the predictions. Consequently, clip-wise
accuracy may remain high even when a model fails to capture the correct procedural order or produces
temporally inconsistent predictions (see predictions A and B in Figure 3.6).

Figure 3.6: Clip-wise accuracy and Levenshtein edit distance score of three fictitious predictions, A, B,
and C. The blue, red, and green colors represent three distinct phases.

3.9.2. Normalized Levenshtein edit distance
To account for temporal ordering and segmentation quality, the normalized Levenshtein edit distance is
used. Thismetric evaluates theminimum number of operations (insertions, deletions, and substitutions)
required to transform the predicted sequence of phase labels into the ground-truth sequence. The
resulting distance is normalized by the length of the ground-truth sequence, enabling fair comparison
across procedures of different durations.

Unlike clip-wise accuracy, the edit score measures how well the model has learned the sequential order
of the procedure. It penalizes over- and under-segmentation as well as phase ordering errors. Lower
values indicate better alignment between the predicted and actual procedural sequences.

Figure 3.6 illustrates the difference of clip-wise accuracy and edit distance using three fictitious predic-
tions: A, B, and C. Although both predictions A and B achieve identical clip-wise accuracy, prediction
B exhibits fragmented and temporally inconsistent outputs, leading to a substantially higher (worse)
Levenshtein edit distance. Similarly, both predictions A and C achieve a perfect Levenshtein edit dis-
tance (zero) while prediction C shows a much lower clip-wise accuracy. This example demonstrates
the complementary nature of both metrics: accuracy reflects the model’s precision on a local clip-level,
while the Levenshtein edit distance captures its performance at a global sequence-level scale.



4
Experiments

The dataset splitting strategy, following a leave-one-user-out (LOUO) protocol to prevent overfitting to
individual surgeons, is outlined in Section 4.1. Sections 4.2 and 4.3 discuss the performed experiments,
report the achieved performance, and analyze the strengths and weaknesses of the model.

4.1. Dataset splitting
Consistent with prior work [120;121;109], this study adopts a leave-one-user-out (LOUO) protocol, ensuring
that no surgeon appears in both the training and test sets. This approach prevents potential overfitting
to surgeon-specific behaviors or characteristics from artificially inflating test performance.

Since distinguishing individual surgeons from the video recordings is challenging, given recording qual-
ity and the standardized clothing, masks, and caps, a practical approximation was applied by splitting
the dataset by surgeon gender. This produced 146 procedures performed by male surgeons for training
and 43 procedures performed by female surgeons (22.8% of the labeled data) for testing.

To analyze performance across varying amounts of training data, 39 subsets were generated from
the training set, containing 5 (x10 subsets), 10 (×10 subsets), 20 (×7 subsets), 30 (×4 subsets), 40
(×3 subsets), 50, 65, 80, 100, and 146 procedures, respectively. Each subset was further divided into
training and validation splits using an 80/20 ratio. For smaller training sizes (≤40 procedures), up to ten
subsets (indicated as A, B, C, etc.) were created, while ensuring mutual exclusivity between subsets
with the same procedure count (e.g., 5A ∩ 5B = ∅, 5B ∩ 5C = ∅, 5A ∩ 5C = ∅, etc.). Averaging
performance across these subsets reduces the influence of outliers, which are especially common in
low-data environments.

The construction of subsets A, B, and C followed a nested structure to allow for better comparison
between the procedure counts. For example:

• 5A ⊂ 10A ⊂ 20A ⊂ 30A ⊂ 40A ⊂ 50 ⊂ 65 ⊂ 80 ⊂ 100 ⊂ 146
• 5B ⊂ 10B ⊂ 20B ⊂ 30B ⊂ 40B ⊂ 80 ⊂ 100 ⊂ 146
• 5C ⊂ 10C ⊂ 20C ⊂ 30C ⊂ 40C ⊂ 146

A detailed overview of the first three subsets per procedure count, including the specific procedures they
contain and their corresponding class occurrence rates, is provided in Appendix C. The training datasets
are generally distributed similarly to the test set, while the validation set shows a class distribution
that differs more substantially from both the training and test sets. Notably, the B-validation subsets
completely lack clinical phases 12 and 13. Furthermore, because procedure lengths vary, datasets
with the same number of procedures contain different numbers of clips.
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4.2. Supervised learning results & model architecture selection
To identify the feature extractor–temporal model combination that performs best in a low-data setting,
such as in medical phase segmentation, themodels were trained on the first three datasets (A, B, and C)
containing up to 40 procedures, and evaluated on the test set. Table 4.1 reports the average clip-wise
segmentation accuracy across procedure counts. For comparison, the table also includes results from:
(i) the non-learning baseline model which makes predictions for all test procedures using the average
training procedure in the training set, and (ii) using a feature extractor alone without a temporal model.
More detailed results, including clip-wise segmentation accuracy per individual dataset and per-phase
accuracy, are provided in Appendix D.

Table 4.1: Mean clip-wise segmentation accuracy (%) ± std (%) evaluated on the test set of (i) non-
learning baseline model; predicting all test procedures using the average training procedure in the
training set, (ii) using a feature extractor alone without a temporal model, and (iii) using a feature
extractor–temporal model combinations. All models are trained on all the first three subsets containing
up to 40 procedures.

Number of training procedures:
Model 5 10 20 30 40

Training set average 34.02 ± 0.59 33.77 ± 0.94 32.89 ± 1.79 33.35 ± 1.98 33.73 ± 1.20
MS-G3D 24.12 ± 7.16 31.16 ± 4.05 38.20 ± 1.39 37.15 ± 5.43 41.11 ± 0.76
MS-G3D + LSTM 60.86 ± 0.94 66.44 ± 4.13 69.63 ± 3.46 71.76 ± 3.48 73.66 ± 1.10
MS-G3D + TCN 62.89 ± 3.06 66.12 ± 0.55 70.72 ± 0.31 73.13 ± 1.94 73.06 ± 0.77
PR-GCN 30.98 ± 4.55 35.61 ± 7.77 36.99 ± 5.06 41.81 ± 2.50 38.77 ± 5.97
PR-GCN + LSTM 61.63 ± 5.11 70.02 ± 2.01 69.85 ± 3.07 72.26 ± 4.18 74.35 ± 3.08
PR-GCN + TCN 64.21 ± 3.44 72.12 ± 1.53 71.01 ± 2.58 72.40 ± 3.10 74.56 ± 2.48

Comparing clip-wise segmentation accuracy across varying training set sizes (Table 4.1) shows that
feature extractors alone achieve limited clip-wise segmentation accuracy (24–42%). Moreover, when
training on small datasets it often performs worse than the non-learning baseline which simply predicts
the average procedure sequence (32-34%). By contrast, feature extractor–temporal model combina-
tions substantially improve performance, reaching accuracies above 70% with as few as 20 training
procedures, highlighting the importance of temporal context.

Among the temporal models, both LSTM and TCN architectures yield comparable performance im-
provements, with TCN models showing a marginal advantage over LSTM-based counterparts in terms
of clip-wise accuracy. In addition, PR-GCN–based models achieve a slightly higher mean accuracy
compared to MS-G3D models, indicating a potential benefit of their small architectures. Nonetheless,
a Friedman test, conducted using each individual dataset as a data point, revealed no statistically sig-
nificant differences in clip-wise accuracy among any of the four evaluated model combinations. (see
Appendix E).

To assess how well models learned the sequential order of a procedure, the normalized Levenshtein
edit distance was computed (Table 4.2), which measures alignment between predicted and ground
truth phase sequences. Here LSTM-based models clearly outperform TCN based achitectures. To
ensure this difference is statistically relevant, a Friedman test was conducted.

Table 4.2: Mean normalized Levenshtein edit distance score ± std of feature extractor–temporal model
combinations trained on the first three subsets containing up to 40 procedures (a score of zero indicates
a perfect match between predicted phase sequence and ground truth phase sequence).

Number of training procedures:
Model 5 10 20 30 40

MS-G3D + LSTM 0.606 ± 0.041 0.556 ± 0.013 0.548 ± 0.046 0.538 ± 0.026 0.532 ± 0.008
MS-G3D + TCN 0.679 ± 0.067 0.730 ± 0.047 0.695 ± 0.025 0.672 ± 0.009 0.676 ± 0.055
PR-GCN + LSTM 0.562 ± 0.043 0.533 ± 0.024 0.476 ± 0.032 0.564 ± 0.020 0.472 ± 0.038
PR-GCN + TCN 0.692 ± 0.022 0.696 ± 0.034 0.627 ± 0.029 0.616 ± 0.064 0.619 ± 0.009
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The Friedman test yielded a statistic of 34.28 (p ≪ 0.001), indicating statistically significant differences
among the evaluated models. A subsequent post-hoc Nemenyi test confirmed that LSTM-based mod-
els achieve significantly lower edit distances than TCN-based models. In contrast, no statistically sig-
nificant differences were observed between MS-G3D– and PR-GCN–based models (see Appendix E).

Figure 4.1 provides a visual overview of the model predictions across two procedures. The models
consistently underperform in recognizing uncommon phases (12 and 13) or short phases (1, 4, 6, 10,
and 12), with the exception of phase 8 (Removal of second catheter), which is generally well identified.
Additionally, all models tend to predict phase 0 at the beginning of each recording, even when the true
initial phase occurs later in the procedure (which occurs when recordings begin after the actual start of
the intervention). This can likely be attributed to a lack of temporal context.

Furthermore, predictions from TCN-based models contain phase flickering, characterized by rapid tran-
sitions between phases, indicating that these models have not learned the normal sequential progres-
sion of a procedure. This issue is exemplified by the PR-GCN + TCN predictions on procedure 234
(Figure 4.1), where the model incorrectly predicts phase 0 as the final phase. LSTM-based models
show this behavior to a lesser extent. The differences in how well the models capture the inherent
sequential structure of procedures directly correlates to the observed variations in Levenshtein edit
distances (Table 4.2).

Figure 4.2 presents the confusion matrices for all six configurations trained on dataset 40A. Without ex-
plicit temporal modeling, feature extractor models (MS-G3D, PR-GCN) regularly confuse visually similar
but temporally distant phases. For example, phase 11 (Patient exit & cleaning) is often misclassified
as the visually similar phase 0 (Preparation before patient entry). This confusion is eliminated once
temporal models (LSTM or TCN) are added and longer-range temporal context is taken into account,
highlighting its importance.

Despite the use of a weighted loss function during training, the stand-alone feature extractor models
never predict phases 4 (Endovascular access) or 12 (Additional catheter change). This suggests that
these relatively short phases are context-dependent and visually similar to other phases. This problem
persists and is extended to other short phases when temporal models are introduced. The usage of
an unweighted loss likely contributes to this problem, as the model is incentivized to prioritize frequent,
long-duration phases at the expense of rarer or shorter ones.

To reduce computational requirements, only the best-performing model combination in the low data
regime is used for limited supervision analysis. Taken together, these results suggest that while the
models do not statistically significantly differ in clip-wise segmentation accuracy, LSTM-based models
showed superior sequential understanding compared to TCNs. Given their lower computational cost
relative to MS-G3D, PR-GCN–based models are particularly attractive. For this reason, the PR-GCN
+ LSTM configuration was selected for further analysis under limited supervision.

Figure 4.1: Predictions for all feature extractor-temporal model combinations trained on dataset 40A.
Each tick on the horizontal axis presents one minute in the procedure (i.e. six clips).
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Figure 4.2: Confusion matrices for all six models trained on dataset 40A.
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4.3. Extensive training & Limited supervision results
To allow for more confident comparisons, the PR-GCN, PR-GCN + LSTM, pretrained PR-GCN (prePR-
GCN), and prePR-GCN + LSTM models were trained using all 39 datasets. As the pseudo-labeling
strategy requires adequate amounts of unlabeled data to function well, it was trained on all datasets
containing up to 40 procedures. For training on each individual training set, all training data not included
in that specific set can be used to generate pseudo-labels.

4.3.1. Extensive training
Training the PR-GCN + LSTM model on all labeled training data resulted in a class-wise accuracy of
83.85%, with a normalized Levenshtein distance of 0.3837, significantly outperforming models trained
on fewer data samples (see Tables 4.3 and 4.4).

Table 4.3: Mean clip-wise segmentation accuracy (%) of PR-GCN-based, pretrained PR-GCN-based
(prePR-GCN), and PR-GCN + LSTM trained with pseudo-labeling (pseudo(PR-GCN + LSTM)) for all
labeled dataset sizes.

Number of training procedures:
Model 5 10 20 30 40 50 65 80 100 146

PR-GCN 28.65 34.12 36.60 42.64 38.77 41.90 45.08 43.22 42.39 51.32
prePR-GCN 28.17 32.83 33.96 40.71 40.02 46.50 49.78 40.16 51.12 53.37
PR-GCN + LSTM 62.49 65.49 69.69 74.52 74.35 77.35 77.87 77.68 77.39 83.95
prePR-GCN + LSTM 60.05 67.85 69.18 72.47 74.00 77.86 79.86 75.95 83.19 83.85
pseudo(PR-GCN + LSTM) 66.14 71.78 72.49 75.89 78.29 N/A N/A N/A N/A N/A

Table 4.4: Mean normalized Levenshtein distances of PR-GCN + LSTMmodel trained with and without
pretraining on Kinetics-skeleton (prePR-GCN + LSTM) and using pseudo-labeling (pseudo(PR-GCN +
LSTM)) for all labeled dataset sizes.

Number of training procedures:
Model 5 10 20 30 40 50 65 80 100 146

PR-GCN + LSTM .5616 .5333 .4760 .5641 .4716 .3992 .4951 .5201 .4663 .3837
prePR-GCN + LSTM .5578 .5364 .4911 .5795 .5085 .4462 .4907 .4379 .4085 .4639
pseudo(PR-GCN + LSTM) .5802 .5377 .4888 .5254 .4823 N/A N/A N/A N/A N/A

When comparing the confusion matrix of the PR-GCN + LSTM model trained on 40 versus 146 proce-
dures (Figures 4.2 and 4.3), it can be seen that training on more data not only reduces the number of
incorrect predictions, but also the severity of the errors is reduced, i.e., misclassifications tend to be
temporally closer to the correct phase. Nevertheless, certain errors remain. These become apparent
when analyzing the confusion matrices (Figure 4.3), temporally plotted predictions (Figure 4.4), and
the original video data.

For example, the confusion matrix indicates that phase 1 (Patient entry) is frequently confused with
phase 0 (Preparation before patient entry). The prediction plots suggest that this confusion arises both
from small accumulated boundary offsets and a large misclassification in procedure X. Upon reviewing
the video footage of procedure X, it becomes clear that the patient entered the room while preparations
were still ongoing. The patient subsequently leaves, preparations resume, and the patient enters again
three minutes later. In this segment of the procedure, the model’s prediction actually reflects the true
sequence of events more accurately than the ground truth labels, and is more informative.

Phases 2 (Patient transfer to table) and 3 (First contact of cardiologist with patient) are frequently con-
fused. The prediction plots reveal two main causes: (i) the model occasionally predicts the first contact
too early, and (ii) the boundary between these phases is often highly uncertain, leading the model to
oscillate between them. Video inspection of the first cause shows that the model sometimes interprets
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actions performed close to the patient by nurses as the cardiologist’s first contact. For instance, in
procedure H, approximately five minutes into the recording, a nurse moves an object located below the
patient’s right wrist, the same location typically used by the cardiologist to administer local anesthetics,
causing the model to mistakenly identify this as the start of phase 3.

Further video analysis addressing the second cause revealed inconsistencies within the annotated data
itself. In procedure G, for example, the ground truth transition to phase 3 (First contact cardiologist) is
incorrectly placed at the second rather than the first contact. As the model is trained on this mislabeled
data, its ability to learn accurate phase boundaries is hindered. Additionally, in procedure J, vascular
access is established via the patient’s left arm. Here, the cardiologist’s first contact occurs while stand-
ing on the opposite side of the hospital bed, a situation that is uncommon and thus underrepresented
in the training data. Finally, several remaining confusions between phases 2 and 3 could not be at-
tributed to the aforementioned causes, and no additional plausible explanations were identified in the
other procedures.

Short phases remain particularly challenging. While phase 4 (Catheter insertion) is now occasionally
detected, unlike in models trained on Dataset 40A, it is still frequently misclassified. This difficulty arises
partly because phase 4 is not always present in the ground truth sequence. When the phase lasts less
than 10 seconds, it may fall entirely within the middle of a clip where the start and end frames belong
to phases 3 and 5. Furthermore, even slight temporal misalignments in the prediction can cause the
model to miss the ground truth phase label altogether. Similarly, phase 6 (Catheter switch) is detected
inconsistently. Video analysis indicates that its movements closely resemble other procedural actions,
such as reinsertion or extraction of the guiding wire, or moving of themanifold or contrast tubing, making
reliable discrimination of this phase difficult.

Phase 8 (Catheter removal), by contrast, is recognized more reliably, with only minor deviations in
phase boundary placement. Nonetheless, two recurring types of errors are observed. First, similar to
phase 6, it is occasionally confused with other movements that exhibit similar motion patterns. Second,
phase 12 (Additional catheter change) is frequentlymisclassified as phase 8, as both begin with catheter
removal and only the subsequent catheter insertion distinguishes both phases.

The confusion matrix reveals clear confusion among the X-ray phases (5, 7, and 13). The prediction
plots show that this can be partly attributed to the model’s inconsistent recognition of the catheter switch
phases (6, 8, and 12). However, the model occasionally predicts phase 5 (X-ray before catheter switch)
after the catheter switch has already occurred, indicating that it has not yet fully captured the correct
temporal sequence of this segment of the procedure.

Figure 4.3: Confusion matrix of PR-GCN + LSTM model trained using 146 procedures, both with and
without pretraining on the Kinetic-skeletons dataset.
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Figure 4.4: First 24 test set predictions (Pred) and ground truth labels (GT) of the PR-GCN + LSTM
model trained on 146 procedures.

In contrast, later phases such as Wound closure (9), Patient off table (10), and Patient exit & cleaning
(11) are recognized more consistently, and with relatively accurate phase boundaries. One noteworthy
example is procedure U, in which the patient is transferred out of the room using a hospital bed. After
wound closure, the patient remains briefly on the operating table before walking towards the hospital
bed. The ground truth labels transition to phase 11 only when the hospital bed is rolled out of the room,
whereas the model briefly predicts phase 11 during the transfer itself.

Other noteworthy findings from the video analysis include:

• Procedure I: Between 0 and 1 minutes, a nurse enters the room and is mistaken by the model for
the patient, resulting in a one-clip misclassification as phase 1 (Patient entry).

• Procedure J: Near the end of the recording, the cardiologist walks away toward the screen to point
something out to the patient or a nurse. This movement is misclassified as phase 8 (Catheter re-
moval), likely because the cardiologist often performs a similar motion immediately after catheter
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removal to allow the nurses to proceed with wound closure.
• Procedure K: The cardiologist first removes and reinserts a guiding wire, predicted by the model
as phases 6 and 12, respectively, before deciding to switch vascular access from the right wrist to
the groin. The model identifies the subsequent catheter removal as phase 8 (Catheter removal).
The nurses then close the wound at the right wrist, which the model also identifies, although both
steps are not included in the ground truth labels. Finally, the catheter insertion at the groin area
is again predicted as phase 8 by the model.

• Procedure N: At 39minutes, themodel incorrectly predicts phase 13. However, additional catheter
changes occurring at 48 and 52 minutes are visible in the video and model predictions, but ab-
sent from the ground truth annotations. The procedure concludes with the nurses assisting the
patient off the table, noticing residual blood on the patient’s wrist, helping the patient lie back
down, cleaning the area, and then assisting the patient off the table once more. This sequence of
actions is captured quite accurately by the model, yet it is not reflected in the annotated ground
truth labels.

Overall, the predictions, confusion matrices, and video analyses demonstrate that the model has not
yet fully learned the sequential order of the complete procedure. Temporally short phases that require
near-perfect temporal alignment, as well as visually similar phases that differ only by subtle motion
cues (e.g., catheter changes and X-ray phases), remain the primary sources of error. Nonetheless, the
model exhibits notable robustness in handling rare or atypical procedural scenarios, often producing
contextually reasonable predictions even when these deviate from the annotated ground truth.

The analysis also underscores the limitations of the ground truth labels themselves. Several annota-
tions contain temporal inaccuracies, skip relevant actions, or impose a rigid phase sequence that does
not always reflect real procedural variability. These inconsistencies partly explain some of the remain-
ing misclassifications and indicate that model performance is not only restricted by the model quality
but also by imperfect annotation quality. In this regard, the model’s predictions occasionally provide a
more faithful representation of the true procedural flow than the available ground truth labels.

4.3.2. Transfer learning
The performance of the PR-GCN models initialized with weights pretrained on the Kinetics-Skeleton
dataset (pre-PR-GCN) is reported in Tables 4.3 and 4.4. Both the clip-wise accuracies and normalized
Levenshtein distances show that pretrained initialization has no clear advantage over random initial-
ization. This observation is supported statistically by a paired t-test, which yielded p-values of 0.936
for accuracy and 0.272 for Levenshtein distance, indicating that the observed performance differences
are not significant. Moreover, a comparison of the confusion matrices for the randomly initialized and
pretrained models (Figure 4.3) reveals no phase-specific performance improvements, implying that
pretraining does not enhance recognition of specific procedural phases.

4.3.3. Pseudo-labeling
For each training dataset, the corresponding trained PR-GCN + LSTM model is used to generate pre-
dictions on the training samples that were not part of the dataset. The class-balanced self-training
(CBST) framework, described in Section 3.7, is then applied to select per class the most confident 20%
of these predictions as pseudo-labels. The clip-wise accuracies of both the generated predictions and
the selected pseudo-labels are presented in Table 4.5. On average, the selected pseudo-labels are ap-
proximately 15% more accurate than the overall prediction set, confirming a strong positive correlation
between model confidence and prediction accuracy.

Table 4.5: Mean prediction accuracy of the unlabeled data and pseudo-label accuracy per labeled
training set size.

Number of training procedures:
Model 5 10 20 30 40

Unlabeled train data 54.75 63.46 64.83 66.36 69.00
Pseudo-labels 69.06 78.31 79.30 81.18 82.76
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Figure 4.5: Confusion matrix of PR-GCN + LSTM model trained using dataset 40A, both with and
without pseudolabeling.

The models were then retrained using both the original labeled dataset and the generated pseudo-
labels. For all datasets, the validation scores of the retrained models improved compared to those of
the original models. The clip-wise accuracies and normalized Levenshtein distances of models trained
with and without pseudo-labeling are reported in Tables 4.3 and 4.4. While a clear improvement in
clip-wise segmentation accuracy is observed, the normalized Levenshtein distances show no clear
improvements. This observation is supported by a paired t-test, which yielded a p-value ≪ 0.001 for
accuracy and 0.237 for Levenshtein distance.

Comparing the confusion matrices of models trained with and without pseudo-labeling (Figure 4.5),
along with video analysis of major errors, reveals that pseudo-labeling does not eliminate any specific
type of error. Instead, it reduces the frequency of all error types.



5
Discussion & Conclusion

This thesis aimed to tackle two key barriers to the clinical adoption of temporal segmentation in the
medical domain: (1) the scarcity of annotated data and (2) the difficulty of achieving robust generaliza-
tion across different surgical settings. In order to achieve this, it explored 2D skeleton-based temporal
phase segmentation for cardiac angiography (CAG) procedures using the CAG-skeleton dataset, with
the goal of identifying 14 procedural phases based solely on human skeleton sequences extracted from
external video.

5.1. Promising model architecture
Consistent with prior work in temporal segmentation, a two-stage architecture was adopted, consisting
of (i) a feature extractor that encodes short-term spatio-temporal patterns in the skeleton data, and (ii) a
temporal model that captures long-range dependencies. A variety of skeleton-based feature extractors,
used in the neighboring human action recognition domain, and temporal models, commonly used in
medical temporal segmentation, were reviewed and compared.

Among these architectures, PR-GCN and MS-G3D feature extractors, and LSTM and TCN temporal
models showed the greatest promise in terms of data efficiency and potential performance. Combina-
tions of all four models were experimentally evaluation on a series of small subsets of the CAG-skeleton
dataset, which revealed no statistically significant difference in frame-level classification accuracy. How-
ever, architectures incorporating LSTM models demonstrated a superior understanding of procedural
order and temporal continuity, likely owing to the LSTM’s internal memory mechanism.

Considering both architecture performance and computational efficiency, the PR-GCN + LSTM com-
bination was selected for further investigation. The resulting model, consisting of a PR-GCN feature
extractor, an LSTM-based temporal model, and a fully connected classification head, was trained on
146 CAG procedures and achieved a clip-wise segmentation accuracy of 83.95%, highlighting the po-
tential of the underexplored skeleton modality for medical workflow analysis.

Despite these promising results, several challenges remain. The sequential order of the entire proce-
dure is still not perfectly learned. Especially temporally short phases, requiring near-perfect alignment,
and phases where movements closely resemble other procedural actions, continue to cause misclas-
sifications. Moreover, detailed inspection revealed limitations in the ground truth annotations, which
sometimes exhibit temporal inaccuracies, skip relevant actions, or enforce a rigid procedural order that
does not always align with real-world surgical variability. Nonetheless, the model exhibits notable ro-
bustness, often generating plausible predictions in atypical or noisy scenarios that deviated from the
annotated ground truth.

The persistent bottleneck of limited annotated data motivated the subsequent exploration of limited
supervision strategies, aiming to further enhance model generalization and clinical applicability.
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5.2. Limited supervision
To address the scarcity of annotated training data, this study investigated two strategies for leveraging
additional information: transfer learning and pseudo-labeling.

5.2.1. Transfer learning
Pretraining the PR-GCN feature extractor on the large-scale Kinetics-skeleton dataset (i.e. transfer
learning) yielded no statistically significant improvement in segmentation accuracy or normalized Lev-
enshtein distance. This outcome suggests that either the knowledge learned from Kinetics-skeleton
does not effectively transfer to the surgical domain, or that the information transferred is relatively easy
for the model to learn from scratch during training. A combination of both explanations is most plausible.

The domain gap between the Kinetics-skeleton and surgical datasets is substantial. Most actions
in Kinetics-skeleton involve large-scale, full-body human activities such as sports or daily motions,
whereas surgical workflows are characterized by fine-grained hand and arm movements captured from
a fixed and relatively distant camera viewpoint. Consequently, the knowledge transferred from pre-
training may be limited to low-level spatiotemporal relationships between joints, such as basic motion
continuity, which can be rapidly relearned during task-specific training. In contrast, the higher-level
temporal dependencies and contextual relations required to differentiate surgical phases are largely
absent from the source dataset, reducing the effectiveness of the pretrained initialization.

Consequently, the pretrained weights may transfer only marginally useful knowledge to the surgical
domain, providing no meaningful advantage over random initialization. Utilizing more domain-specific
pretraining or self-supervised representation learning on unlabeled surgical videos could be used to ob-
tain spatiotemporal features that are both relevant and transferable to medical temporal segmentation
tasks.

5.2.2. Pseudo-labeling
Pseudo-labeling, in contrast, showed clear potential for exploiting unlabeled data. Even with a single
pseudo-labeling iteration, it improved segmentation accuracy by approximately 15 percentage points in
low-data regimes. This indicates that incorporating confidently predicted labels into the training process
can substantially enhance data efficiency and generalization. Since this work applied only one pseudo-
labeling cycle, following the complete learning schedule proposed by Zou et al. [25] may further boost
performance.

5.3. Recommendations and future work
Despite achieving a strong performance of 83.95% clip-wise accuracy, several systematic errors re-
main. The next subsections examine these errors and potential remedies, while the final subsection
highlights future research needed to better understand the proposed approach and to advance its clin-
ical readiness for adoption.

5.3.1. Short phases
Rare or short phases, particularly catheter insertion, remained under-recognized. This can likely be
attributed to models prioritizing longer and more frequent phases. Potential solutions include the use
of weighted loss functions, which encourage the model to pay more attention to underrepresented
classes. Weights should be carefully selected to avoid overemphasizing short phases, which could
reduce clinical relevance of the achieved predictions. Alternatively, integrating object detections (e.g.
of the catheters, guiding wires or patient) could provide highly informative cues for rare events.

5.3.2. Sequential understanding
Although the LSTM-based models showed statistically significantly better sequential understanding
compared to TCN-basedmodels, errors remained. These errors weremost prominent in visually similar
phases, such as catheter switches and X-ray acquisitions, but also showed a limited understanding of
overall procedural order. For example, the model occasionally predicted phase 5 (X-ray before catheter
switch) after phase 6 (catheter switch), which is clinically impossible.

To enhance temporal modeling capabilities and reduce such errors, several strategies are recom-
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mended:

1. A penalty term could be introduced to the loss function that increases with the temporal distance
between the predicted and true phase. For instance, if the ground truth is phase 5, misclassifying
it as phase 7 should result in a stronger penalty than misclassifying it as phase 6.

2. Post-hoc sequence filtering, where models with inherent sequential constraints, such as Hidden
Markov Models, are used after the LSTM or fully connected network, could eliminate impossible
phase transitions.

3. Sequence masking, where phases that have already occurred cannot reappear after a defined
threshold, may reduce sequential order errors, as it enforces procedural order.

In addition, more advanced sequence models such as transformers may offer further improvements
by modeling even longer-range temporal dependencies. However, these architectures typically require
large datasets for training, thus their advantages are unlikely to be fully realized within the low-data
setting of medical phase segmentation.

5.3.3. Annotation
Video analysis revealed that several procedural annotations contain temporal inaccuracies, omit rele-
vant actions, or impose a rigid phase sequence that does not always reflect real procedural variability.
These annotation errors could be mitigated by employing a second annotator to label all videos, with
discrepancies resolved through discussion and mutual agreement. However, this approach would ef-
fectively double the labeling cost. The same effort might be more efficiently spent on expanding the
overall size of the annotated dataset.

Uncommon occurrences during procedures are inevitable in real-world clinical settings. For example,
a patient entering the procedural room during preparation or the need to repeat wound closure after
the patient begins to move off the table are uncommon scenarios but still occur in procedures X and
U (Figure 4.4), respectively. The current phase labels may impose a sequence that is too rigid to
capture such real-world variability. Since each procedural phase consists of multiple distinct actions
(e.g., the X-ray phases involve actions such as manipulating and rotating the catheter, injecting contrast
fluids, etc.), action segmentation could offer a more flexible, fine-grained, and procedurally accurate
alternative. Therefore, future work could investigate the segmentation of individual actions rather than
rigid phases. If required, these recognized actions could then serve as inputs for phase segmentation
or be used directly in robotic assistance systems, providing more actionable insights than phase labels
alone.

5.3.4. Model insights and clinical readiness
To better understand the proposed approach and advance its clinical readiness for adoption, future
work should explore, in addition to the aforementioned aspects, the following areas:

• Ablation of feature extractor: While adding a temporal model to the PR-GCN feature extractor
substantially improved clip-wise segmentation accuracy, the independent contribution of the fea-
ture extractor remains unexplored. Ablation studies using skeleton data directly with a temporal
model (e.g., LSTM or TCN) could clarify its relative importance.

• Video-modality comparison: This study relied exclusively on skeleton data. Future work could use
the raw video data to assess whether skeletons provide a significant performance gain or if video-
based features offer additional benefits. Such studies would clarify the trade-off between low-
dimensional, highly informative skeleton representations and richer, but noisy visual modalities.

• Generalizability across clinical settings: Although the model generalized well across patients and
surgeons within the dataset, its robustness to variations in hospital layout, procedural protocols,
equipment, camera setups, or skeleton detection algorithms remains unexplored. Evaluating
performance across different geographical locations and institutions is essential before clinical
adoption.

• 3D skeleton usage: Employing 3D skeletons could improve clinical adaptability by reducing sen-
sitivity to camera viewpoint and orientation. This would make the approach more practical to use
across diverse hospital environments.
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5.4. Conclusion
In conclusion, this thesis demonstrates the feasibility and possibilities of skeleton-basedmedical tempo-
ral segmentation using cardiac angiography procedures. It reviewed several model architectures, and
the proposed PR-GCN + LSTM model showed strong potential in low-data settings. Transfer learning
using the Kinetics-skeleton dataset showed no statistically significant performance gains, suggesting
that the knowledge learned from Kinetics-skeleton does not effectively transfer to the surgical domain,
and/or that the information transferred is relatively easy for the model to learn from scratch during train-
ing. In contrast, pseudo-labeling via class-balanced self-training showed great potential for reducing
annotation requirements as it provided consistent improvements to the models’ clip-wise segmentation
accuracy in the low data regime. Nevertheless, challenges remain in accurately modeling rare or short
phases, improving sequential understanding, and ensuring generalizability across medical contexts.
Addressing these limitations through loss function engineering, 3D skeleton usage, post-hoc filtering
and more advanced sequence modeling will be crucial steps toward reliable, scalable, and clinically
useful workflow analysis systems.



Declaration of AI Assistance

OpenAI’s Chat-GPT has been used for this paper to provide new perspectives and improve the report
writing. Although Chat-GPT provides substantial assistance, there is a large possibility of encountering
inaccuracies and incorrect information. Therefore, individual research must always be conducted to
validate Chat-GPT’s answers. In the end, the author’s own perspectives were broadened with those
provided by Chat-GPT.
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A
Temporal Models

Within the field of video based temporal segmentation of medical procedures, various temporal models
have been explored, which are listed below and will be discussed in the following sections.

• Hidden Markov Models [100;101;122;102]

• Recurrent Neural Networks [103]

• Long Short-Term Memory networks [123;124;125;126;127;128;104;105;129;130;131;132;133;134]

• Three-Dimensional Convolutional Neural Networks [106;107;108]

• Temporal Convolutional Networks [109;110;111;5;135;136;137;138]

• Transformer based [112;139;140;141;85;142]

- Vision Transformer [114;143;144;145]
- Video Transformer Network [123;113]

Much of the information presented in this chapter is based on Hands-On Machine Learning with Scikit-
Learn, Keras, and TensorFlow by Aurélien Géron [146].

A.1. Hidden Markov Model
Hidden Markov Models (HMMs) are among the earliest temporal models applied to surgical phase
segmentation. In an HMM, the observed features (either handcrafted or learned) are assumed to be
generated by an underlying sequence of unobserved states, which in this context are the surgical
phases. HMMs are based on the Markov property: the probability of being in a particular state (phase)
at time t depends only on the state at time t− 1, not on any earlier states.

An HMM consists of two key components:

1. Transition probabilities, which describe the likelihood of moving from one hidden state (phase) to
another. These ensure the final sequence follows a logical order.

2. Emission probabilities, which describe the likelihood of observing a particular feature vector given
the current hidden state.

When training a HMM, it learns both the transition and emission probabilities.

HMMs have a simple and lightweight probabilistic structure, that explicitly incorporates the sequen-
tial phase order. However, they struggle to capture long-range temporal patterns due to the Markov
assumption, which limits temporal dependencies to only the immediately preceding state (phase).

A.2. Recurrent Neural Network
Recurrent Neural Networks (RNNs) are a special type of neural network developed to handle sequential
data. At each time step, an RNN takes an input vector and combines it with a hidden state from the
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previous step. This allows the network to learn short-term temporal dependencies without significantly
increasing model complexity or increasing input size (Figure A.1).

Figure A.1: Graphical representation of a simple recurrent neural network with one hidden layer. xt

represents an input feature at time t, f represents an activation function, Ot represents an output at
time t. Due to recursion, the model retains information from previous frames.

Although standard RNNs can handle short-term dependencies while keeping the parameter count man-
ageable, thus reducing the need for excessive training data, they struggle with long-term dependencies
due to the vanishing gradient problem. During backpropagation, gradients either shrink too much (van-
ishing gradients) or explode, making it difficult to learn relationships between frames that are temporally
separated far apart.

A.3. Long Short-Term Memory networks
Long Short-Term Memory networks (LSTM) are a type of RNN designed to address the vanishing
gradient problem and effectively model long-term dependencies.

Each LSTM unit consists of several key components that regulate information flow over time (see figure
A.2). The forget gate (ft) determines which information is retained, and which information is discarded
from the previous memory cell. The input gate (it) controls how much new information is stored in
the memory cell, allowing the model to update its internal memory based on the incoming data. The
cell state (Ct) acts as long-term memory. It maintains long-term dependencies by retaining relevant
information across frames. Finally, the output gate (ot) determines which information from the current
memory cell is used for the final hidden state. The final hidden state serves both as the output of the
model, and as short-term memory.
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Figure A.2: Graphical representation of a long short-term memory network. Ct represents the cell state
(or long term memory) at time t, ht the output of the model, and the sort term memory at time t, ft the
forget gate, it the input gate, ot the output gate, σ the sigmoid activation function, and tanh the tanh
activation function.

At each time step t, the LSTM updates its memory and hidden state by selectively forgetting, updat-
ing, and outputting information. This enables LSTMs to retain important historical information while
discarding irrelevant past details, learn both short-term and long-term temporal dependencies between
surgical phases, and reduce phase flickering by considering both the past and current context. Despite
this, LSTMs still struggle with very long-range temporal dependencies. [61]

A.4. Three-Dimensional Convolutional Neural Network
Three-Dimensional Convolutional Neural Networks (3D CNNs) extend traditional 2D CNNs by adding a
temporal dimension to the kernel. This enables them to perform spatiotemporal convolutions, allowing
the model to learn motion patterns. Although 3D CNNs are able to understand for example hand or tool
movements, the kernel expansion to the temporal dimension results in a significant increase in model
parameters. Thus both computational cost, and required training data is significantly increased com-
pared to their 2D CNNs. Furthermore, 3D CNNs by themselves can only model short-range temporal
dependencies, still requiring models such as LSTMs to model long-range dependencies.

A.5. Temporal Convolutional Network
Temporal Convolutional Networks (TCNs) address the short temporal range limitation of 3D CNNs.
They apply 1D convolutions over time to model temporal dependencies, using dilated causal convo-
lutions to capture both short- and long-range relationships. The use of dilation allows the model to
incorporate previous information of a much longer time span without requiring a proportional increase
in the number of layers (see Figure A.3).



A.6. Transformer based 50

Figure A.3: Graphical representation of dilated causal convolutions. Temporal receptive field increases
exponentially with increased network depth.

To prevent vanishing gradients in deep networks, TCNs incorporate residual connections, similar to
ResNets. This allows them to be trained even with many layers. However, despite their advantages,
TCNs still have limitations. The maximum receptive field is determined by the number of layers and dila-
tion rates. If sequences are extremely long, TCNs may still struggle to capture dependencies between
far away time steps.

TCNs can be designed with varying numbers of stages. While Ramesh et al. (2021) [138] found that a
multi-stage TCN did not provide a significant improvement over the single-stage variant for both step
and phase recognition, the majority of TCNs in the included literature still contain multiple stages [109;147]
[135;136;110;111].

A.6. Transformer based
Recent advances in deep learning have introduced transformers, originally developed for natural lan-
guage processing (the T in GPT stands for Transformer), into the field of TAS. Transformers utilize the
self-attention mechanism to process the sequential data and capture long-range dependencies.

The self-attention mechanism determines the relevance of different input tokens when producing an
output. Transformers specifically utilize the multi-head attention mechanism, which allows the model
to process information through multiple self-attention layers simultaneously. This gives the model the
ability to focus on different aspects of the input, capturing a richer representation of it. By dividing the at-
tention process into multiple heads, the mechanism can attend to different parts of the input sequence
independently. Multi-head attention improves the expressiveness of attention layers without signifi-
cantly increasing the number of parameters. It achieves this by running several attention computations
in parallel and then merging their results.

In contrast to other methods, transformers are able to model extremely long-range dependencies. The
self-attention mechanism computes the relevance of all parts of the input sequence simultaneously.
However, given that the self-attention mechanism scales quadratically with sequence length, it is com-
putationally expensive for long videos. Furthermore, transformers require large amounts of annotated
training data. For this reason, transformers are often pretrained on large video datasets before being
fine-tuned on surgical videos. For this reason, transformers are often pretrained on large video datasets
before being fine-tuned on surgical videos.

Two noteworthy transformer architectures used in TAS are Vision Transformers and Video Transformer
Networks.

A.6.1. Vision Transformer
The Vision Transformer (ViT) treats each video frame as a sequence of small patches. These patches
are projected into feature vectors, and a positional embedding is added to retain spatial information.
The resulting embeddings are then used as tokens in the self-attention mechanism, modeling spatial de-
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pendencies. In TAS, ViTs often process frames independently and primarily serve as feature extractors.
They encode spatial information that can then be passed to temporal models for action segmentation.

A.6.2. Video Transformer Network
Video Transformer Networks (VTNs) [148] extend ViTs by integrating temporal self-attention across frames.
Instead of treating each frame individually, VTNs model relationships between frames, capturing both
spatial and temporal dependencies.

A typical VTN consists of a feature extractor (often a 2D CNN or ViT) that extracts spatial features
from each frame. This is followed by a transformer encoder that applies self-attention across frames,
allowing the model to capture long-range dependencies. Finally, the sequence is passed through a
classifier which predict the phase of the current frame.

While transformers have proven to be effective in TAS, their high computational cost, and training data
requirements remains a challenge.



B
Limited Supervision Learning

Within the broader domain of action segmentation or recognition, several levels of supervision are used
depending on annotation availability: [22]

• Fully supervised: Each frame of every training video is annotated with an action label that is
available for training.

• Point-level supervised: For each action instance in a video, a single frame (a ”point”) within its
temporal duration is labeled.

• Weakly supervised: Only coarse-grained labels are available for training. These can be an or-
dered list of occurring labels [115;116], or a set of all possible labels without information about order
or occurrence [117].

• Semi-supervised: The training set is divided into a small set of fully annotated videos and a
(typically larger) set of unlabeled or weakly labeled videos.

• Self-supervised: Models are pretrained on a pretext task (such as ordering shuffled frames) such
that they learn meaningful features from unlabeled data. The learned features are then leveraged
for a downstream task, i.e. supervised, semi-supervised, or unsupervised TAS.

• Unsupervised: No labels are available for training.

Although the temporal segmentation of medical videos literature uses a large variety of models, most
(∼97%) are fully supervised learning methods, training only on fully annotated data. Obtaining large
amounts of fully annotated surgical data is time-consuming and requires specific domain expertise.
Therefore, limited supervised learning approaches (weakly supervised, semi-supervised, self-supervised
and unsupervised learning) provide promising alternatives. By leveraging both (coarse-grained) labeled
and unlabeled data, they can achieve on-par performance with supervised alternatives whilst reducing
the amount of time-intensive and costly labels used.

In the following sections, various limited supervision methods, and their implementation in TAS are
discussed.

B.1. Weakly supervised methods
Weakly supervised techniques aim to reduce the annotation burden byminimizing the reliance on dense
frame-level supervision. Among the studied forms of weak supervision in temporal action segmentation,
action transcript-based and action set-based methods are popular, each providing different levels of
supervision. [23]

B.1.1. Action transcript-based methods
Action transcript based methods rely on a sequential list of actions that occur in a video. They do
not require frame-level annotations or temporal boundary information, thereby reducing the annotation
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burden. Action transcript based methods can broadly be categorized into iterative two-stage and single-
stage methods. [149]

Iterative two-stage solutions begin with an initial estimate of frame-wise labels based on the provided
transcript label and progressively improve the previous predictions and re-estimate the model parame-
ters iteratively. [150;151] Supporters of single-stage solutions argue, however, that the two-stage solutions
are initialization-sensitive and may not always converge. [23]

Early works by Kuehne et al. [152] provide an example of a two-stage solution using the video modality
on medical data. They model each action class using a Hidden Markov Model (HMM). The models
are first initialized by an initial segmentation, generated by uniformly distributing all actions across the
video timeline. The HMM parameters are optimized to maximize the likelihood that the observed video
sequence is generated by the HMMs, given the action order from the transcript. Afterward, new action
boundaries are inferred based on the updated model, and these boundaries are used to re-estimate
the HMM parameters. Each HMM state’s observation probabilities are modeled with Gaussian Mixture
Models (GMMs). These steps are repeated until model convergence.

B.1.2. Action set-based methods
Action sets are a unique unordered set of the actions that may occur in a video. They are a weaker
form of supervision than action transcripts, as they lack the action ordering and frequency (how often
an action occurs). [153]

Unlike transcript-based annotation, which still requires the annotator to watch the entire procedure to
determine the sequence and catch rare or anomalous actions, action sets can be annotated rapidly.
Since action sets do not guarantee that every listed action occurs in the video (i.e., actions can have
zero occurrence), [154], and the order of actions does not need to be correct, a single universal set of
possible and anomalous actions can be reused across all videos within the same domain, such as
surgery. As a result, the annotation cost is extremely low and remains constant regardless of dataset
size.

A 2023 study by Ding et al. [23] compared fully supervised, transcript-based, and action set-based meth-
ods on the Breakfast dataset. Fully supervised models achieved an average Mean over Frames (MoF),
defined as the proportion of correctly classified frames across the video, of approximately 67%, with
the top model reaching 77.5%. [155] In contrast, the best iterative two-stage transcript-based methods
reached 49.9% [156], single-stage transcript methods reached 50.8% [157], and action set-based meth-
ods achieved 42.4% [158]. These results shows that the reduction in annotation burden comes at a large
cost to model performance.

B.1.3. Weak supervision in surgical activity recognition
Ramesh et al. [116] present the only study within video based medical phase segmentation research
that applies weak supervision. Their approach tries to segment the surgical videos into fine-grained
surgical steps using coarse phase annotations as weak supervision. The proposed model, trained on
the Bypass40 [138] and CATARACTS [159] datasets, utilizes a coarse-to-fine method in which a subset
of videos is annotated with detailed surgical steps, while the remainder are annotated only with higher
granularity surgical phases (11 phases vs 44 steps for Bypass40 [138] and 5 phases vs 19 steps for
CATARACTS [159]).

To exploit both annotation types, they use a Single-Stage Temporal Convolutional Network (SS-TCN)
with a ResNet-50 backbone. When step-level labels are available, the model is supervised via cross-
entropy loss. For phase-only videos, they use a step-phase mapping matrix that maps step predictions
to phases and apply a step-phase dependency loss. This allows the network to learn from both coarse
and fine annotations without retraining. Their results show a 10–13% increase in accuracy, precision,
recall, and F1 score when using both 3 step-labeled videos and 21 phase-labeled videos compared
to only 3 step-labeled videos on the Bypass40 dataset. This increased to 13-22% when training on
the CATARACTS dataset with 3 step-labeled videos and 22 phase-labeled videos. The study demon-
strates that introducing weak supervision through coarse annotations can substantially enhance model
performance in endoscopic settings.
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B.2. Self-supervised methods
In the context of temporal action segmentation (TAS), self-supervised methods aim to learn temporally
and semantically meaningful video representations from unlabeled videos. These learned representa-
tions can then be transferred to downstream tasks such as surgical phase or step recognition using
limited annotated data. This approach reduces reliance on expensive manual annotations, as the
model no longer needs supervision to learn the structure and meaning of video sequences, but only to
perform a downstream task.

Unlike semi-supervised learning, which relies on a mix of labeled and unlabeled data during task-
specific training, self-supervised learning involves a two-stage process: (1) pretraining on a pretext
task defined on unlabeled data, and (2) fine-tuning on the downstream TAS task. These pretext tasks
are designed to encourage the model to learn temporal structure and semantic meaning in the videos,
without access to ground-truth labels.

The core idea is to use automatically generated pseudo-labels in the pretext task to learn temporal and
semantic features without requiring human annotation. [22] Several pretext tasks have been proposed
for self-supervised TAS, which include but are not limited to:

• Clip/frame order prediction: The model is trained to identify the correct temporal order of shuffled
frames or clips. By learning to sort sequences, the model leverages the chronological order of
video frames/clips to learn discriminative temporal representations. [160]

• Video Jigsaw: Multiple video frames are divided into grids of patches. The model is trained to
solve jigsaw puzzles on these patches from multiple frames. This trains the network to correctly
identify the position of a patch within a video frame as well as the position of a patch over time. [161]

• Rotation prediction: A set of rotations are applied to all videos, and a pretext task is defined as
prediction of these rotations. [162]

• Video speed: The model is trained to detect is a video is sped up, or playing at normal rate, thus
learning a space-time representation. [163]

• Contrastive learning: Contrastive methods learn feature embeddings by bringing similar samples
closer together and pushing dissimilar samples apart in latent space. In videos, this often means
grouping pairs from different augmentations of the same clip or temporally nearby frames, while
pushing frames from other videos further apart. [164]

• Masked Autoencoders (MAE): Random portions of the data are masked and the model is trained
to reconstruct themissing parts using the visible information. This helps themodel to learn the con-
text and structure of the data, including sequence dynamics and time-dependent events. [165;160]
IIn the TAS domain, masked modeling has shown advantages over contrastive learning, partic-
ularly in efficiency and robustness. Unlike contrastive learning, MAE does not require carefully
curated pairs or augmentations, reducing computational cost in many scenarios. [166]

• Joint-Embedding Predictive Architectures (JEPA): JEPA extends on MAE by predicts a latent
representation of the missing content instead of reconstructing pixels. This not only promotes
learning of context, but also forces learning of high-level abstractions in latent space rather than
detailed pixel reconstructions. [167;166]

Once the pretraining phase is complete, the learned representations are fine-tuned using a small set
of annotated examples. Depending on the task and available supervision, this fine-tuning may follow
fully supervised, weakly supervised, or semi-supervised methods.

A 2022 benchmark study by Thoker et al. [168] evaluated nine video-based self-supervised models on
multiple datasets. They observed that while many self-supervised learningmodels performwell on stan-
dard datasets, performance often varies significantly depending on the downstream task and domain.
Therefore, careful consideration must be given to method selection.

B.3. Unsupervised methods
Unsupervised learning eliminates the need for any human-annotated labels during training, making it
the most annotation-efficient learning method. Instead of relying on external supervision, these meth-
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ods exploit intrinsic patterns in the data, such as visual similarity, motion dynamics, and temporal reg-
ularities, to learn meaningful segmentations.

In the context of Temporal Action Segmentation (TAS), unsupervised approaches generally fall into
three categories: (1) two-step iterative methods, which alternate between representation learning and
frame-wise clustering, (2) joint methods, which perform representation learning and clustering simulta-
neously, and (3) boundary detection methods, which identify action transitions within videos. [23]

The first method to perform temporal action segmentation using solely visual inputs was introduced by
Sener and Yao [169]. They used a two-stage approach to segment complex activities into sub-activities
that alternate between a discriminative appearance model and a generative temporal model. In each
iteration, the model learns a visual representation of sub-activities (discriminative model) and their
temporal ordering across videos (generative model).

The appearance model maps frame-level features into a low-dimensional embedding space using a lin-
ear transformation, optimized such that visual features from the same sub-activity are pushed together,
while different sub-activities are pulled apart. This enables the model to discover visual groupings
that correspond to sub-activities. To capture the structure and variation in the temporal ordering of
sub-activities, they employ a Generalized Mallows Model (GMM), a probabilistic distribution over per-
mutations. This model allows for variability in action sequence orderings across different videos and
can handle missing steps.

Although unsupervised learning has a clear annotation cost advantage, it remains largely absent from
surgical phase segmentation literature. [170] Several factors may contribute to this. First, unsupervised
models may produce clusters that lack clinical meaning. Second, even fully supervised models struggle
with the fine-grained nature of surgical activity recognition due to the high visual similarity between
steps and the subtlety of transitions. Therefore, it is unlikely that unsupervised methods will produce
sufficient results for clinical applications. Finally, weakly, self-, and semi-supervised methods offer a
more practical compromise, requiring less annotation than full supervision while still providing clinically
relevant clusters. Nevertheless, these factors remain speculative, as only a handful of studies have
tested the potential of unsupervised learning in surgical phase segmentation.

B.4. Semi-supervised methods
Semi-supervised methods only use a small number of videos that are fully annotated and many videos
that are either unlabeled or include only weak labels. The techniques used in semi-supervised learning
on videos can broadly be categorized into four categories discussed below. [171]

B.4.1. Generative methods
Generative methods aim to model the underlying structure of video data by learning to generate new,
realistic-looking frames or features. The core idea is that if a model can recreate what videos look like, it
must have learned meaningful representations. A common approach involves Generative Adversarial
Networks (GANs), where a generator network produces synthetic frames or features, and a discrimina-
tor network tries to distinguish them from real ones, encouraging the generator to improve. [172;173]

In the context of TAS, generative methods remain uncommon, due to the difficulty of producing syn-
thetic images that are sufficiently realistic. [173] However, with recent advancements in image and video
generation models, generative approaches may warrant renewed exploration in the TAS domain.

B.4.2. Consistency regularization methods
Models are trained to maintain stable predictions under various perturbations, such as spatial or tem-
poral augmentation [174], noise [174;175], time warping [175;176], time masking [175;176], etc. The perturbation
method is crucial to the success of consistency regularization. A small perturbation would be insuffi-
cient to learn a robust model, while a lager perturbation may destroy the semantic information of original
data. [174]
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B.4.3. Pseudo-labeling or self-training methods
These methods assign provisional labels (pseudo-labels) for unlabeled videos using a model trained
on the labeled subset. These pseudo-labels act as supervision for further training, enabling the model
to generalize beyond the labeled subset. This approach assumes that the model can generalize well
enough to assign reasonably accurate labels. However, incorrect pseudo-labels can introduce noise,
and degrade performance. Therefore, confidence thresholds or ensemble models are often employed
to filter out low-quality pseudo-labels and mitigate error propagation. [24;25]

B.4.4. Hybrid methods
Hybrid methods combine elements from multiple semi-supervised strategies, such as integrating con-
sistency regularization with pseudo-labeling [177], to achieve optimal outcomes.

B.4.5. Semi-supervised learning in video-based medical phase segmentation
Shi et al. [132] is the only study within the video based medical phase segmentation domain that uses
semi-supervised learning. Their novel SurgSSL framework is a hybrid approach combining what they
call a self-supervised Visual and Temporal Dynamic Consistency (VTDC) method with pseudo-labeling.

Given a video clip, VTDC creates sub-clips by downsampling the clip in the time dimension using flexible
stride and using conventual visual-level data augmentation such as flipping, rotation and mirroring, on
every frame. Given two subsequences from the same video clip, they train the model to give consistent
predictions, similar to consistency regularization. The second stage of SurgSSL performs pseudo-
labeling on the VTDC-subclips.

SurgSSL [132] is tested on the Cholec80 [100] and M2CAI16 [100] datasets, and shows 4-8% accuracy
increase for various labeled/unlabeled data ratios compared to fully supervised models trained only on
the labeled data. The authors also show that using only 50% of labeled videos yields results nearly
equivalent to full-supervision on the Cholec80 [100] dataset, demonstrating the method’s potential for
reducing annotation burden in surgical phase segmentation.

B.5. Conclusion
The choice of learning method for surgical phase segmentation represents a fundamental trade-off
between annotation cost and model performance. Each level of supervision offers advantages and
limitations that influence its applicability (to the clinical domain).

Fully supervised methods offer the highest accuracy, as they learn directly from frame-level annotations.
However, this accuracy comes at an very high annotation cost, requiring surgical domain experts to
annotate each frame, which is both time consuming and impractical for large datasets.

Point-level supervision offers a slight reduction in annotation burden by requiring only a single labeled
frame per action instance, rather than all frames including temporal boundaries. While this reduces
labeling time, it still remains relatively annotation-intensive, and requires domain expert.

Weakly supervised methods significantly reduce the annotation effort. Transcript-based approaches
rely on an ordered list of actions occurring in the video, which removes the need for frame-level annota-
tions, but still requires a domain expert to watch the entire video. In contrast, action set-based methods
offer a more scalable solution by only requiring an unordered set of possible actions. These sets can
be reused across videos, drastically reducing annotation burden. However, this simplicity comes at the
cost of reduced model performance.

Self-supervised learning eliminates the need for any labels during pretraining by using pretext tasks to
learn temporal and semantic video representations. The pretrained models are then fine-tuned with a
small amount of labeled. Although computationally intensive, self-supervised learning can drastically
reduce annotation requirements, especially when combined with limited supervision in downstream
tasks.

Unsupervised learning, while theoretically the most annotation-efficient, remains largely unexplored
in surgical phase segmentation. Its limited adoption is likely due to possible challenges in producing
clinically meaningful segmentations in the absence of any supervision.
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Semi-supervised learning offers a compelling middle ground, combining a small amount of labeled data
with a larger pool of unlabeled or weakly labeled videos. Techniques such as pseudo-labeling, consis-
tency regularization, and hybrid training strategies have demonstrated significant performance gains
in surgical datasets like Cholec80 [100], in some cases approaching the performance of fully supervised
models using only half the annotations.

In conclusion, while fully supervised methods remain the gold standard in surgical phase segmentation
performance, they are rarely feasible in practice due to the cost of annotation. Among the alterna-
tive methods, combining self-supervised representation learning with hybrid semi-supervised learning,
holds the most potential for surgical phase segmentation. It effectively reduces annotation burden while
maintaining clinical relevance and segmentation quality.



C
Data subset details

The distribution of procedures across datasets, and the phase occurence rates in each dataset are
presented in tables C.1 and C.2 respectively.

Table C.1: Distribution of procedures across datasets. ‘ID’ refers to the internally used procedure
identifier. ‘T’ indicates the procedure is used for training, ‘V’ for validation, and ‘E’ for testing.

ID 5A 5B 5C 10A 10B 10C 20A 20B 20C 30A 30B 30C 40A 40B 40C 50 65 80 100 146 Test

100 T T T T T T T
101 T T T T T T
102 T T T T T T T T
105 T T T T T T
112 E
119 V V V V
121 V
122 T T T T T T T
127 E
134 T T T T T T T T T T
140 T
142 V V V V V
143 T T T T T T
148 T
167 E
168 V
182 E
183 T T T
184 T
189 T
195 E
197 T T T T T T
199 T T T T T
221 V V V V V
228 E
234 E
240 E
243 T T T
246 T
252 T T T T T T T
253 T
256 T T T T T T T
259 T T T T T T T T
266 E
273 T T T T T T T
282 T T T T T T
290 V V
292 E
302 T T T T
307 E
310 E
312 T T
314 T T T T
316 T T T
320 T T T T T
324 T T T T T T
327 V V V V
334 V V V V V V V V
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ID 5A 5B 5C 10A 10B 10C 20A 20B 20C 30A 30B 30C 40A 40B 40C 50 65 80 100 146 Test

335 T
346 E
350 T T T T T T T T
360 V
362 T T T T T T T
364 T T T T T
365 T T T T T T T
369 T T T T T T T T
371 T T T T T
378 E
383 V V V V V V V V
388 T
395 E
399 T T T T T T
400 T T
404 T T T T
411 T T T T T T T T T
416 V V V V V V V
421 T T T T T T T
422 V V V V V V V
435 V V V V V V V V V V
438 T T T T T T T T
446 E
449 T T T T T T T
453 T T T T T T T T
458 T T T T T
461 E
462 E
467 T T T T T
474 E
476 T T T T T T T
478 E
485 V V V V V V V
488 E
491 V V V V V V V
495 E
501 T T T T T T T T T T
502 T T T T T T T T T T
503 T T T T T T T T T T
508 T
509 E
510 T T T
515 T
526 T T T T T T T T
537 E
540 E
542 T T T T T
545 T T T T T T
548 T T T T T
550 T T T
555 T T T T T T
569 T T T T T T T T
574 T T T T T T T T
576 T
579 T T T T T T T T T
581 V V V V V V
585 T
586 T T T T T
591 T T
592 V V V V V
595 E
597 E
600 V V V V V V V V
605 T T T T T
620 E
624 T
625 E
626 T
627 T T T T T T T
638 T T T
643 E
645 T T T T T T T T
646 V V V V V V V V
648 T T T T
650 E
652 T T T T T
661 T
662 V V V V V V V
666 T T T
670 E
678 E
679 T T T T T
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ID 5A 5B 5C 10A 10B 10C 20A 20B 20C 30A 30B 30C 40A 40B 40C 50 65 80 100 146 Test

691 T T T T T T T T T
693 T T T T T T
695 T T T T T T
712 T
732 T T T T T T
736 E
738 T T T T T T T T T
742 V V V V V V V
745 T T T T
751 T T T T T T T T T
752 V
753 T T T T
756 T
757 V V V V V V
760 E
767 T T T T
768 E
771 V V V
772 T T T T T T T T T T
781 V
783 T T T T T T
791 T
792 T T T T T T T T
805 T T T T T T T
810 T T T T T T
812 T T T T T T T T
814 T T T T T T T T
815 T T T T T T T
816 E
824 T T T T T T
827 E
829 V V V V V V
836 T
839 T T T T
845 E
854 V V
856 V V V V V
858 T T T T T T T
869 T T
871 T T T T
879 T T T T T
881 T T T T T T T
889 T T T T T T
892 E
914 T T T T T
917 T
928 E
933 T
936 T T T T T T T T
942 T T T T
944 V V V V V V V V V
946 T T T T T T
966 T T T T
968 T T T T T T T T T
973 T T T T T
980 E
986 T T T T T T T
993 T T T T T T
999 E
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D
Results

A summary of class-wise segmentation accuracies and Levenshtein edit distance scores of all analyzed
models can be found in Table D.1 and D.2, respectively. Detailed per-dataset and per-phase results,
including visual representations of predictions made on the test set, can be found using the following
link:

https://tud365-my.sharepoint.com/:f:/r/personal/gdebakker_tudelft_nl/Documents/
Master%20thesis%20-%20G.%20de%20Bakker?csf=1&web=1&e=eNpcAw

Access can be requested by sending an email to: g.debakker@student.tudelft.nl
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E
Statistical comparison of models

using the Friedman test

E.1. Methodology
When comparing multiple machine learning models across different experimental conditions, it is im-
portant to determine whether observed performance differences are statistically significant. This study
employs the Friedman test, a non-parametric test that is commonly used to detect differences among
several related groups. [119]

In the Friedman test, the algorithms are ranked seperately for each data, where the best performing
algorithm gets rank 1, the second best rank 2, etc. The average ranks of each algorithm is then com-
puted by Rj = 1

N

∑
i r

j
i , where rji is the rank of the j-th out of k algoriths on the i-th out of N data

sets.

The null hypothesis H0 is that all models perform equivalently, i.e., they have equal expected ranks Rj .
The alternative hypothesis is that at least one model differs significantly from the others. The Friedman
statistic is computed as:

X 2
F =

12N

k(k + 1)

∑
j

R2
j −

k(k + 1)2

4

 (E.1)

If the null hypothesis is rejected, post-hoc tests are required to identify which specific model have
statistically different performance. In this work, the Nemenyi test is used, which compares all classifiers
pairwise. If the difference in average ranks between two models exceeds the critical difference, their
performances are considered significantly different.

E.2. Implementation
In this study, each feature extractor temporal model combination was initially trained 15 times, three
times per training set size (5, 10, 20, 30, 40). Accuracy-based rankings are presented in table E.1,
where columns represent the different models, and rows represent datasets. The average ranks for
the models are as follows:

• MS-G3D + LSTM: 2.73
• MS-G3D + TCN: 2.73
• PR-GCN + LSTM: 2.47
• PR-GCN + TCN: 2.07

Using equations E.1 gives a Friedman statistic X 2
F equal to 2.68, corresponding to a p-value of 0.44.

This indicates that the obtained results do not provide sufficient statistical evidence to conclude with
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Table E.1: Clip-wise segmentation accuracy-based model rankings per training set.

Dataset MS-G3D + LSTM MS-G3D + TCN PR-GCN + LSTM PR-GCN + TCN
5A 1 3 4 2
5B 4 3 1 2
5C 3 2 4 1
10A 1 4 2 3
10B 4 3 2 1
10C 4 3 2 1
20A 3 4 1 2
20B 4 1 3 2
20C 1 3 4 2
30A 2 1 3 4
30B 2 3 1 4
30C 4 2 3 1
40A 2 1 4 3
40B 3 4 1 2
40C 3 4 2 1

Average rank 2.73 2.73 2.47 2.07

Table E.2: Levenshtein edit distance score-based model rankings per training set.

Dataset MS-G3D + LSTM MS-G3D + TCN PR-GCN + LSTM PR-GCN + TCN
5A 2 3 1 4
5B 2 4 1 3
5C 1 4 2 3
10A 2 3 1 4
10B 2 4 1 3
10C 1 4 2 3
20A 2 4 1 3
20B 2 4 1 3
20C 2 4 1 3
30A 1 3 2 4
30B 1 4 2 3
30C 2 4 3 1
40A 2 4 1 3
40B 2 4 1 3
40C 2 4 1 3

Average rank 1.73 3.80 1.40 3.07

confidence that any model consistently outperforms the others in terms of clip-wise segmentation ac-
curacy

Performing a statistical test comparing Levenshtein edit distance scores gives the average ranks listed
in table E.2. The correspsonding Friedman statistic X 2

F is 34.3 corresponding to a p-value «0.001
indicating that there is a model that is statistically different from the others.

To determine which model(s) differ significantly, a Nemenyi post-hoc test was performed using the
scikit_posthocs python library. The resulting pairwise p-values are shown in Table E.3.

The post-hoc analysis reveals several statistically significant differences between TCN-based and
LSTM-based models, but no statistically significant difference between MS-G3D-based and PR-GCN
based models. This suggests that LSTM-based models provide more accurate temporal sequences
than TCN-based models in the context of skeleton-based surgical phase segmentation.

It is important to note that the Friedman test assumes that each “experimental condition” is independent
of the others. However, because of the nested dataset structure (5A⊂ 10A⊂ 20A, etc.), subsets are not
independent. This violates Friedman’s assumption and artificially inflates the sample size, potentially
resulting in overly optimistic p-values and an increased risk of false positives. However, given the
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Table E.3: Nemenyi post-hoc test results (p-values) for pairwise model comparisons based on edit
distance.

MS-G3D + LSTM MS-G3D + TCN PR-GCN + LSTM PR-GCN + TCN
MS-G3D + LSTM 1.000 «0.001 0.894 0.024
MS-G3D + TCN «0.001 1.000 «0.001 0.404
PR-GCN + LSTM 0.894 «0.001 1.000 0.002
PR-GCN + TCN 0.024 0.404 0.002 1.000

size of the achieved p-values and observing the achieved results rationally, it is expected that this
does not influence the conclusion. Nevertheless, given the magnitude of the observed differences in
p-values and the observed ranking patterns, it is unlikely that this changes the overall interpretation of
the results.
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