

Capacity increase of a CO-plant

3034

3036

Study of the capacity increase of an existing CO-plant

G-groep, february 1993

Faculteit der Werktuigbouwkunde en Maritieme Techniek Laboratorium Apparatenbouw voor de Procesindustrie

CAPACITY INCREASE OF A CO-PLANT

CONTENTS

Summary

1 Introduction	1-1
2 The current process	2-1
2.1 Feed of the plant	2-1
2.2 Desulphurisation of the natural gas	2-1
2.3 Reforming of natural gas	2-2
2.4 Proces gas purification	2-2
Literature	2-4
3 Reformer	3-1
3.1 Theory	3-1
3.1.1 The reformer	3-1
3.1.2 Carbon-free operation of the reformer	3-4
3.1.3 Necessary energy input in the reformer tubes	3-7
3.1.4 The overall heat transfer coefficient	3-11
3.1.5 Possible ways to increase the CO-plant capacity	3-13
3.1.5.1 Less N ₂ in the feed	3-13
3.1.5.2 Using a pre-reformer	3-13
3.1.5.3 Adding CO ₂ to the feed	3-14
3.2 Calculations and results	3-15
3.2.1 Design	3-15
Literature	3-19
4 Modelling the proces	4-1
4.1 Reformer section	4-1
4.2 CO ₂ removal section	4-2
4.3 Drying section	4-3
4.4 Cryogenic separation section (coldbox)	4-3
Literature	4-5
5 Simulation	
5 1 Design	5-1
5.1 Design	5-3
5.2 Actual	5-3
5.2.2 Calculations using simulated streams	5-3
5.2.2 Calculations using simulated sections	5-5
5.3 Less N ₂ III the feed	5-5
5.3.2 Colculations using less N in the feed	5-5
5.4 Conscing increase of 20 % by adding CO, to the feed	5-7
5.4 Capacity increase of 20 $\%$ by adding \cos_2 to the root increase 5.4 1 Simulation	5-7
5.4.2 Calculations using a CO, tich feed stream	5-8
5.5 Capacity increase of 20 % by adding CO. to the feed and using	nga
pre reformer	5-10
5.5.1 Simulation	5-10
5.5.2 Calculations	5-12
J.J.2 Calculations	5-12

5.6 Conclusions	5-14
6 MEA-section 6.1 Introduction 6.2 MEA 6.3 Absorber 6.4 Stripper 6.5 Heat exchangers 6.6 Pumps 6.7 Process gas drying 6.8 Conclusion Literature	6-1 6-1 6-2 6-2 6-3 6-4 6-12 6-13 6-14
7 Cryogenic separation 7.1 Introduction 7.2 Columns 7.3 Conclusion	7-1 7-1 7-1 7-2
 8 Nitrogen removal 8.1 Advantages of removal of nitrogen from natural gas feed 8.2 Available separation technology	8-1 8-1 8-2 8-2 8-4 8-7 8-9 8-23 8-23
 9 Plant cost calculations 9.1 Investment cost	9-1 9-2 9-3 9-4 9-4 9-5 9-5 9-5 9-5 9-5 9-7 9-7 9-7 9-9 9-9 9-13 9-14 9-15

9.4.1 Design process (KTI)	9-15
9.4.2 The new process (using only extra CO ₂)	9-16
9.4.3 The new process (using extra CO ₂ and a pre-reformer)	9-17
Literature	9-18

10 Alternative methods for CO-production

10.1 Possibilities for CO-production	10-1
10.1.1 Coal gasification	10-1
10.1.2 The CO ₂ reformer	10-4
10.2 Membranes for H ₂ separation	10-6
10.3 PSA for CO-H ₂ separation	10-8
10.4 COSORB for CO-raw gas separation	10-12
10.4.1 The COSORB process	10-12
10.4.2 Simulation of the COSORB unit	10-15
10.5 Produced H ₂ in a fuel cell system	10-32
10.6 Evaluating the new plant design	10-37
10.7 Conclusions for the new plant	10-41
10.8 Conclusions and recommandations	10-46
Literature	10-47

11 Recommandation and conclusions..... 11.1 Conclusions..... 11.2 Recommandations.....

12 Experiences with ASPEN Plus

12.1 Introduction to ASPEN Plus	12-1
12.2 How to create an ASPEN input file	12-1
12.3 ASPEN's special features	12-1
12.4 Problems and possibilities for improvement	12-2

Appendices

PREFACE

This report is the result of the G-group study at the Delft University of Technology in spring 1993. The G-group study, which lasted 12 weeks, is carried out by students mechanical- and chemical engineering and is done before graduating.

We would like to thank everybody who has helped us with the completion of this report, in particular our supervisors ing. A. de Bruin, prof. dr. ir. J. de Graauw, prof. ir. J. Grievink, ir. V. Mattheij, drs. F.A. Meijer and dr. Z. Olujić.

Their coaching, criticism and ideas have been of great value for the completion of this report.

G-group:

Asheesh Doerdjan	WB
René van Eerten	WB
Marc van Gestel	WB
Ed Hanenberg	WB
Alexander Hilkhuijsen	WB
Jasper Kwakkelstein	WB
Arnold Tol	WB
Maarten Verhaar	WB
Ivo Ketelaars	ST
Patrick den Ridder	ST
Siila Santegoeds	ST
Jeroen Stoffels	ST
John Zevenbergen	ST

SUMMARY

This report is the result of a study of the G-Groep of february 1993. In Bergen op Zoom GE Plastics (GEP) has two plants for producing CO. This CO is an intermediate in the production of different plastics.

The purpose of this study is to accomplish a capacity increase of 20 % of the actual CO production in CO plant II. The different options to upscale the plant were handled in a pre-study. The main subjects for investigation are:

- * removing N₂ from the natural gas feed
- * changing the reformer, eventually adding a pre-reformer
- * changing the feed composition
- * investigate gas separation processes after the reformer
- * producing a simulation by using, on request of GEP, the ASPEN PLUS program
- * look for alternative CO production systems

In order to have an economically feasible method, the total group of thirteen students was divided in four groups and one ASPEN PLUS expert. After a few weeks some groups finished most of their work and some students went to other groups. The occupation of the groups was as follows:

- 1) investigate the reformer to get 20 % more CO output and give data to simulate with ASPEN.
- investigate the gas separation processes after the reformer with the new streams of group one and give data to ASPEN in order to simulate the gas separation units.
- 3) investigate a possible way to remove the N_2 from the natural gas feed and analyse the advantages of this removal on the production capacity.
- 4) investigate the other ways to produce and separate CO with a totally new plant based on different technology.

The conclusion of group 1 is that an increase of the reformer capacity is possible by using an extra feedstream consisting of CO_2 , eventually in combination with a pre-reformer. With this extra CO_2 an increase of CO production of approximately 20 % is possible. If the feed is for 80 % free of N₂ the increase in CO production or heatduty is neglectible.

Group 2 has calculated that a greater gasflow coming out of the reformer, in the case of only adding extra CO_2 to the reformer feed, can be treated in the stripping section of the MEA-system with addition of several heatexchangers, and that the regeneration of the MEA solution has a limit of 17 % capacity increase when operating at 90 % flooding. This 17 % capacity increase is sufficient for a total plant scale up of 20%, because the CO_2 concentration is lower in the new plant. When using a pre-reformer the equipment in the MEA section does not need to be changed. The columns in the coldbox all have sufficient overcapacity for 20% capacity increase in both cases. Pumps and compressors also handle the capacity increase in both cases.

Group 3 has simulated a plant which has a N_2 removal of 80 % out of the natural gas stream needed for 20 % more CO production. The N_2 -removal is done by cryogenic

separation. The costs of such a plant are not only so high that a commercial use is not recommendable, but also the use of N_2 free natural gas as feedgas has no use for higher CO production, according the conclusion of group 1.

Group 4 has made a study for a total new plant with the same CO production as the scaled up existing plant and this new plant consists of a CO_2 reformer with a CO Vacuum Swing Adsorption (VSA) system for the CO recovery. The new plant makes no use of the unit for N₂ free natural gas feed, because of cost calculations. The CO in this plant is produced for \$ 0.60/kg. Also the costs for a COSORB (CO-complex adsorption system) and a H₂ fuel cell system, for electricity generation out of the H₂-rich stream of the H₂-PSA, are calculated.

Coal gasification would only be economical producing more then 6.5 ton/hr, which is far more then 1.22 ton/hr and therefore not an option.

Working with ASPEN gave a lot of difficulties but most of them were problems with our computernetwork. The program itself has been very usefull to calculate the new streams and all physical properties of the stream.

The upscaled plant will have a CO price of \pm \$0.88 which is less expensive than the current CO price.

The costs for one ton CO with the total new process designed by group 4 is \$ 0.60. So the conclusion is when a total new plant will be made a good alternative will be the process of group 4.

Some further attention can be given to cost calculations, which are only an indication of the new CO production costs.

1. INTRODUCTION

In Bergen op Zoom General Electric Plastics produces carbon monoxide in CO-plant I and CO-plant II. The carbon monoxide is produced by steam reforming of natural gas over a nickel based catalyst. After reforming the process gas contains many components: CO, CO_2 , CH_4 , H_2 , H_2O and N_2 , so the next step in the production of carbon monoxide is purification of the process gas. The purification steps are carbon dioxide removal, drying and cryogenic separation of methane, carbon monoxide and hydrogen.

The goal of this G-group is to investigate the possibility to increase the capacity of CO plant II by twenty percent, using Aspen for the simulations. Hence the capacity has to be increased from 1,26 tons per hour to 1.51 tons pure CO per hour.

A short description of the current proces is given in chapter two. In chapter three the reformer, which is the main bottle neck for capacity increase, is investigated. The way the plant is modelled in Aspen is described in chapter four. After the modelling, we have used Aspen to investigate the different influences on the production capacity, hence chapter five deals with the simulation and calculation of the streams in the CO-plant. In chapter six the removal and recovery of CO_2 with MEA is discussed. After the CO_2 separation the process gas is purificated to CO and N_2 by means of cryogenic separation; this is described in chapter seven. Because natural gas is used as feed in the current process, we have to deal with N_2 in the process gas. So in chapter eight advantages and methods for N_2 removal are studied. In chapter nine the total costs are estimated. Alternatives for the production of CO are discussed in chapter ten. Recommandations and conclusions for the capacity increase of CO-plant II are given in chapter eleven. Finally the experiences with ASPEN are described in chapter twelve.

2. THE CURRENT PROCESS

In this chapter CO plant II will briefly be discussed, in order to understand the production process of CO. The information of the plant was released by General Electric Plastics [2.1]. If we summerize the information we get a block scheme with design main stream-numbers, which can be found in appendix 2. With the aid of this block scheme the process is described. Appendix 2 is completed with the KTI process flow diagrams of CO plant II.

2.1 Feed of the plant

The feed which is used for the production of CO is Dutch natural gas. The properties of this gas can be found in a book published by the Nederlandse Gasunie [2.2]. The composition of this gas is given in table 2.1.

Component	Formula	% (mol)	% (mass)
methane	CH ₄	81.29	69.97
ethane	C_2H_6	2.87	4.63
propane	C ₃ H ₈	0.38	0.90
butane	C_4H_{10}	0.15	0.47
pentane	C₅H ₈	0.04	0.16
hexane	C ₆ H ₁₄	0.05	0.23
nitrogen	N ₂	14.32	21.52
oxygen	O ₂	0.01	0.02
carbon	CO ₂	0.89	2.10
dioxide		100	100

table 2.1: Average composition of natural gas

2.2 Desulphurisation of the natural gas

Since sulphur poisons the reformer catalyst, it is necessary to remove the sulphur from the natural gas. If no recycled hydrogen is added to the natural gas feedstream then the gas stream goes to a carbon bed desulphurizer.

At normal production conditions however recycled hydrogen is used. Then the gas stream follows another desulphurisation route; the feed is transported through a cobalt-molybde-num catalyst bed (COMOX). In this bed the sulphur compounds are converted in H_2S . In a zinc oxide reactor H_2S is adsorbed.

2.3 Reforming of natural gas

The feedstream to the reformer exists of four separate streams:

- Desulphurized natural gas with or without recycled hydrogen.
- Recycled CO₂ from the CO₂ removal section.
- Recycled tail gas from the CO recovery section.

- Process steam.

The feedstream enters at a temperature of 487 °C and is sent into tubes which are packed with a catalyst. The chemical reactions which occur in the reformer can be described by two main reactions:

$CH_4 + H_2O \neq CO + 3H_2$	endothermic	(2.1)
$CO_2 + H_2 \neq CO + H_2O$	endothermic	(2.2)

The overall reaction is endothermic and favoured at high temperature. The energy needed for the reactions is provided by side wall mounted burners. The heat is transferred by radiation and convection to the process gas in the catalyst tubes. The flue gasses are used for pre-heating of the feed and steam production. The burners are started up with natural gas and when H_2 -rich gas from the CO recovery unit is available natural gas is replaced by the H_2 -rich gas.

At the reformer outlet (temperature 860 °C) the methane equilibrium is approached to 20 °C lower, so the equilibrium constant of 840 °C is taken. The CO equilibrium is approached to 0 °C, so the equilibrium constant of 860 °C is taken. Hence with known outlet pressure, temperature and feed composition it is possible to calculate the reformer outlet composition.

In the reformer the steam to carbon ratio should stay above a certain minimum value because of the carbon deposition tendencies. This is the reason why an excess of steam is added. The reformer outlet temperature is decreased in two cooling steps to a temperature of 40 °C. The condensated steam is almost completely separated from the process gas.

2.4 Process gas purification

In the MEA section the CO_2 is removed from the process gas. The process gas is counter currently transported through an absorbtion column with a monoethanolamine (MEA) stream at a temperature of 40 °C. The CO_2 reacts with MEA according to the next reaction:

$HO-CH_2-CH_2-NH_2 + H_2O + CO_2 \neq HO-CH_2-CH_2-NH_3 + HCO_3 \quad (2.3)$

The CO_2 rich MEA solution is transported to the MEA stripper. The CO_2 can be released from the solution at low pressure and a temperature of 120 °C. The CO_2 stream flows to the compressor where it is compressed and recycled to the reformer.

The process gas is compressed in a compressor and transported to the process gas drying unit where the temperature is reduced to 35 °C. The formed condensate is separated by a gas liquid separator. In the last step of the drying unit the process gas is transported to a set of mole sieve beds where the last bit of H_2O is removed. The process gas leaving the drying unit contains H_2O and CO_2 at a level of 0.1 ppm volume. This ratio is necessary to avoid clogging problems in the cold box.

The process gas coming from the drying unit contains H_2 , CO, N_2 and CH₄. To separate this gas, cryogenic separation is used (Linde Coldbox). This separation method is based on the difference in boiling points. The process gas is cooled to -200 °C by heat exchangers. For this process, the required refrigeration can be obtained by H_2 expansion and a CO recycle loop. A disadvantage of the cryogenic process is that the nitrogen present in the process gas can not be completely seperated from the carbon monoxide, because of the close physical properties (boiling point and molecular weight). At the end the process gas contains CO and N_2 in a 9:1 ratio.

Literature

- [2.1] Design and operating manual carbon monoxide plant II, General Electric Plastic, KTI.
- [2.2] Geerssen, T.M., Physical properties of natural gases. Groningen, 1988.

3.THE REFORMER

3.1.Theory

3.1.1.The reformer

Figure 3.1. A schematic representation of the reformer.

The reformer consists of 20 tubes, which are filled with a catalyst. The tubes are suspended in a furnace which are heated with side wall mounted burners. The hot flue gas leaving the furnace is used to heat other streams.

When the CO plant is started up the burners are fed with methane. When the plant is in operation enough hydrogen is produced to feed the burners. Methane and hydrogen are fed to the burners with an excess of oxygen. The reactions taking place are:

$\mathrm{CH_4} + \mathrm{2O_2} \rightarrow \mathrm{CO_2} + \mathrm{2H_2O}$	$\Delta H = -802.6 \text{ kJ/mol}$	(3.1)
$H_2 + 0.5O_2 \rightarrow H_2O$	$\Delta H = -241.8 \text{ kJ/mol}$	(3.2)

Table 3.1 lists 11 reactions [3.1] which in theory may occur between CH_4 , CO_2 , CO, H_2 , H_2O and carbon. Whether the reactions occur depends on the composition of the gas by a given pressure and temperature. Reactions 3.3 to 3.7 are mutually depended. Therefor only 2 of these reactions are needed to calculate the conversion of methane and carbon dioxide. In literature usually reactions 3.3 and 3.4 are used to calculate the conversion, because these reactions give the best understanding in what happens in the reformer. Reactions 3.8 to 3.13 are carbon deposition reactions which are unfavourable in the reformer.

number	reactions				∆H ₂₉₈ KJ/mol
3.3	$CH_4 + H_2O$	**	CO	+ 3H ₂	+ 206.1
3.4	$CO + H_2O$	**	CO ₂	+ H,	- 41.15
3.5	$CH_4 + 2H_2O$	**	CO ₂	+ 4H,	+ 165.0
3.6	$CH_4 + CO_2$	2 2	2C0	$+ 2H_{2}$	+ 247.3
3.7	$CH_4 + 3CO_2$	**	4CO	$+ 2H_2O$	+ 330.0
3.8	CH₄	2 2	С	$+ 2H_2$	+ 74.82
3.9	2CO	78	С	$+ CO_2$	- 173.3
3.10	$CO + H_2$	72	С	$+ H_2 O$	- 131.3
3.11	$CO_{2} + 2H_{2}$	72	С	$+ 2H_2O$	- 90.13
3.12	$CH_4 + 2CO$	**	3C	$+ 2H_2O$	- 187.6
3.13	$CH_4 + CO_2$	**	2C	$+ 2H_2O$	- 15.3

Table 3.1. Possible reactions in methane steam reforming.

When natural gas is used as a feed higher alkanes are also present. The reactions of these alkanes are listed in Table 3.2. The most important reaction of Table 3.2 is the carbon deposition reaction (3.16); higher alkanes have a higher potential for carbon deposition than lower alkanes.

Table 3.2. Possible reactions in methane steam reforming when higher alkanes are present.

number	reactions	∆H ₂₉₈ KJ/mol
3.14 3.15 3.16	$\begin{array}{llllllllllllllllllllllllllllllllllll$	- + + + + +

Equilibrium constants

All reactions in Table 3.1 and 3.2 are equilibrium reactions. To predict the composition of the process gas at a given temperature and pressure, the equilibrium constants must be calculated. Therefor the equations have to be solved simultaneously. The equilibrium constants of the most important reactions, reactions 3.3 and 3.4, can be calculated with the following equations [3.2]:

for reaction 3.3

$$K_3 = \exp[-\frac{27464}{T} + 30.707] \tag{3.1}$$

and for reaction 3.4 below 773 K

$$K_4 = \exp\left[\frac{4578}{T} - 4.33\right] \tag{3.2}$$

and for reaction 3.4 above 773 K

$$K_4 = \exp\left[\frac{4084}{T} - 3.765\right] \tag{3.3}$$

with

T : the equilibrium temperature (K) K_3 : the equilibrium constant for reaction 3.3 (atm²) K_4 : the equilibrium constant for reaction 3.4 (-).

With the K-values now calculated and the feed composition known, the composition can now be calculated with the following equations, assuming that no carbon deposits and that all higher alkanes are converted into methane.

$$K_{3} = \frac{P_{CO} * P_{H_{2}}^{3}}{P_{CH_{4}} * P_{H_{2}O}}$$
(3.4)

and

$$K_4 = \frac{P_{H2} * P_{CO2}}{P_{CO} * P_{H2O}}$$
(3.5)

where P_i is the partial pressure of the components which can be calculated with the following equation.

$$P_i = \frac{n_i}{n_{ext}} * P \tag{3.6}$$

with n_i : number of moles of component i n_{tot} : total number of moles P: pressure (Pa)

3.1.2.Carbon-free operation of the reformer

Carbon formation in a steam reformer will reduce the activity of the catalyst. As a result of the carbon deposition the rate of heat transfer decreases, resulting in higher

temperatures of the reformer tubes. These higher temperatures will eventually lead to overheating. This overheating will increase the carbon formation, resulting in a selfaccelerating situation and breakdown of the catalyst.

In the plant the steam to carbon ratio must be optimized. Steam favours the methane conversion, prevents carbon formation but too much steam is not economical.

Carbon formation can take place by the following reactions [3.3]:

Methane cracking	$CH_4 \neq C + 2H_2$	$\Delta H = 74.8 \text{ kJ/mol}$	(3.8)
Boudouard coking	$2CO \neq C + CO_2$	$\Delta H = -173.3 \text{ kJ/mol}$	(3.9)
CO reduction	$CO + H_2 \neq C + H_2C$	$\Delta H = -131.3 \text{ kJ/mol}$	(3.10)
Higher hydrocarbons	$C_nH_m \neq nC + m/2 H$	2	(3.17)

sub reaction (3.8). The methane cracking reaction is endothermic and exhibits a volumetric increase. Hence it is favoured by high temperatures and low pressures. Because methane is consumed and hydrogen is produced in the reformer, the methane cracking reaction will most likely take place near the reactor inlet, where methane is still present. Temperatures at the reformer outlet will thermodynamically favour cracking, but then there is so much hydrogen and so little methane, that there is no affinity for the coking reaction.

sub reaction (3.9) and (3.10). Both the Boudouard and CO reduction reactions are exothermic and result in a volumetric decrease. Hence these reactions are thermodynamically favoured by low temperatures and high pressures. Since there is no CO at the inlet of the reformer, both the Boudouard and the CO reduction reactions can not take place even though they are thermodynamically favoured. A region near the reformer inlet can however exist, where temperatures are low enough and concentrations of CO and H_2 high enough to enable these reactions to thermodynamically take place.

sub reaction (3.17). Higher hydrocarbons are prone to carbon formation. If not reformed in the upper part of the tubes, they will crack to carbon further down. Since the amount of higher hydrocarbons in natural gas is low and due to the saturated character of these hydrocarbons, we have not evaluated them separately. The hydrocarbons will crack due to the activity of the catalyst, so they will be considered to be CH_4 . The critical steam to carbon ratio will be taken more conservative in the beginning of the reformer to cope with the carbon-forming potential of the higher hydrocarbons.

From the reactions 3.9 and 3.10 it can be seen that H_2O and CO_2 will remove the deposited carbon. To optimize the flow in the reformer it is necessary to consider the risk of carbon formation.

The risk of carbon formation is evaluated by means of "The principle of equilibrated gas ". [3.4]. This principle states: "Carbon formation is to be expected if the gas shows affinity for

carbon after the establishment of the methane reforming and the shift equilibria ". The principle is no law of nature, it's merely a rule of thumb which results in a steam to carbon ratio that is rather conservative. Since the principle is a rule of thumb, a total analysis of the reformer is necessary for complete safety. This analysis should contain kinetic factors of carbon formation and gasification, radial temperature profiles, catalyst activity etc.. Since such an analysis is very complex it will not be carried out in this report.

With known feed, K-values, temperatures and pressures in the reformer it is possible to calculate the equilibrated gas composition. With this calculated composition it is possible to calculate the potential for coke formation.

Potential for carbon formation:

$$-\Delta G_{a} = R * T * \ln(\frac{K_{3,i}}{Q_{a}})$$
(3.7)

with

 $K_{3,i}$: equilibrium constant for graphite formation for reaction i (i = 8 or 9) Q_e : P_{H2}^2/P_{CH4} or P_{CO2}/P_{CO}^2 (K values of reactions 3.8 and 3.9 of the equilibrated gas)

no potential for carbon formation results in $\triangle G_e > 0 \rightarrow Q_e > K$ hence:

 $P_{H}^{2}/P_{CH4} > K_{3,8}$ $P_{CO2}/P_{CO}^{2} > K_{3,9}$

The CO reduction reaction does not have to be considered, because the shift reaction is at equilibrium inside the pellets and therefore its affinity for coking will be the same as the Boudouard reaction. $K_{3,8}$ and $K_{3,9}$ are given in figure 3.2 [3.5].

Figure 3.2. Equilibrium constants as a function of temperature for some common reactions.

3.1.4. Necessary energy input in the reformer tubes.

Introduction.

Heat transfer in the reformer is important. Therefor we want to know how much energy is approximately needed to heat the gas and to let the reactions take place. The extent of conversion of the two most important reactions can be calculated with the Mercury program, given in appendix 3.2. In this program the higher alkanes are assumed to be immediately converted into methane before participating in the proces. After the higher alkanes being converted, the total energy needed for the (real) conversions and heating can be calculated.

Hydrogen and air are burned to supply the energy, needed for the reactions in the reformer. The feed is preheated to 760.15 K. It then enters the reformer, where the higher alkanes are converted into CH_4 , according to reaction (3.14). These reactions are endothermic. We have to devise a path, for purposes of calculation, to proceed from reactants (here the higher alkanes) at 760.15 K to product (here CH_4), also at 760.15 K. Since data are available for the standard heats of reaction at 298.15 K, the most convenient path is the one which includes the reactions at 298.15 K.

Figure 3.3. Path for calculation first reactions

The dashed line represents the actual path, with enthalpy change ΔH . Since this enthalpy change is independent of the path chosen, equation (3.8) is valid.

$$\Delta H = \Delta H^{\circ}_{P} + \Delta H^{\circ}_{298} + \Delta H^{\circ}_{P}$$

(3.8)

For the calculation of ΔH°_{298} , reaction (3.14) has to be considered. The calculation of ΔH°_{r} means that first of all we have to convert a real gas into an ideal gas, see equation 3.14. This enthalpy change is H^{R} . Secondly we have to "cool" the now ideal gas at 760.15 K to 298.15 K. For ΔH°_{p} it is the other way around, which means that after the reaction, the product CH_{4} is "warmed" as an ideal gas, and then made a real gas at 15.5 bar and 760.15 K.

Approximate results of H^R for mixtures can often be obtained with critical parameters for the mixture and a simple linear mixing rule for the acentric factor. Since values for the actual critical properties T_c and p_c for mixtures are rarely known, the pseudoparameters T_{pc} and p_{pc} are used, determined again by a simple linear mixing rule. Thus by definition,

$$T_{pc} = \Sigma y_i * T_{ci} \tag{3.9}$$

$$p_{pc} = \Sigma y_i * p_{ci} \tag{3.10}$$

$$\omega = \Sigma y_i * \omega_i \tag{3.11}$$

The pseudoreduced temperature and pseudoreduced pressure, which replace T_r and p_r , are determined by

$$T_{pr} = \frac{T}{T_{pc}}$$
(3.12)

and

$$P_{pr} = \frac{p}{P_{pc}} \tag{3.13}$$

Thus, for a mixture at a given T_{pr} and p_{pr} we may determine a value of H^{R} using the following equation:

$$\frac{H^{R}}{R*T_{pc}} = p_{pr}*[B^{0}-T_{pr}*\frac{dB^{0}}{dT_{pr}}+\omega*(B^{1}-T_{pr}*\frac{dB^{1}}{dT_{pr}})]$$
(3.14)

$$B^{0}=0.083 - \frac{0.422}{T_{pr}^{1.6}}$$

$$B^{1}=0.139 - \frac{0.172}{T_{pr}^{4.2}}$$

$$\frac{dB^{0}}{dT_{pr}} = \frac{0.675}{T_{pr}^{2.6}}$$

After this the enthalpy change has to be calculated after "cooling" the stream from 760.15 K to 298.15 K via the ideal path. This can be done with equation (3.15):

$$\Delta H^{ig} = (\Sigma n_i * c_{p_{-1}}) * (T_2 - T_1) \tag{3.15}$$

Here n_i is the number of moles of each higher alkane that enters the reformer in one hour. This because the flows are given in moles per hour, and for the SI unit of enthalpy only mole-numbers are of interest here.

$$c_{p_{mh,i}} = R * (A_i + B_i * T_{am} + \frac{C_i}{3} * (4 * T_{am}^2 - T_1 * T_2) + \frac{D_i}{T_1 * T_2})$$
(3.16)

with

$$T_{am} = \frac{T_1 + T_2}{2}$$

So now ΔH°_{R} is known:

$$\Delta H^{\circ}_{P} = \Delta H^{R} + \Delta H^{ig}$$

In general a chemical reaction can be written as

$$|v_1|A_1 + |v_2|A_2 + \dots + |v_3|A_3 + |v_4|A_4 + \dots$$

where $|v_i|$ are stoichiometric coefficients and A_i chemical formulas. The species on the left are reactants; those on the right are products. We adopt a sign convention for v_i that makes it

positive (+) for products

negative (-) for reactants

The v_i with their accompanying signs are called stoichiometric numbers. So in reaction (3.3)

 $v_{CH4} = -1$ $v_{H20} = -1$ $v_{C02} = 1$ $v_{H2} = 3$

This sign convention allows the definition of a standard heat of reaction to be expressed mathematically by the equation:

$$\Delta H_{298}^{\circ} = \Sigma v_i * H_{298}^{\circ} i \tag{3.17}$$

where H_{i}° is the enthalpy of species i in its standard state and the summation is over all products and reactants. The standard-state enthalpy of a chemical compound is equal to its heat of formation plus the standard-state enthalpies of its constituent elements. If we arbitrarily set the standard-state enthalpies of all elements equal to zero as the basis of calculation, then the standard-state enthalpy of each compound is its heat of formation. In this event, $H_{298,i}^{\circ} = \Delta H_{fi}^{\circ}$ and (equation 3.18) becomes

$$\Delta H^{\circ}_{298} = \Sigma v_i * \Delta H^{\circ}_{fi} \tag{3.18}$$

where the summation is over all products and reactants. We here assume that the higher alkanes are all converted in CH_4 at a temperature of 760.15 K.

After this the enthalpy change for the product CH_4 , can be calculated. When this is "heated" and "made" a real gas, the same formulas can be used as for the reactants. Only T_1 and T_2 are switched. Now also ΔH^P can be calculated.

$$\Delta H^{o}{}_{P} = \Delta H^{P} + \Delta H^{ig} \tag{3.19}$$

Because the flow of these higher alkanes is relatively small, it can be expected that the total heat needed so far is not very much, but for significant reasons we must look at this as well.

The CH₄ formed by these reactions can be added to the amount of CH₄ already available in the feed. At this point we are able to look at the main reactions occurring in the reformer and which are mainly of interest for the heat balance of the reformer. Figure 3.4 represents the way we modelled the problem, that is, how to calculate the required enthalpy change ΔH between entering gas and leaving gas.

Figure 3.2. Path of main reactions

The calculations are about the same as those for the higher alkanes, that is why the formulas mentioned above can be used. This means that we also have to convert the real gas into an ideal gas, then "cool" to 298.15 K, let the reactions take place, and "warm" the products formed here to 1133.15 K. The calculations are performed with the program *mathcad*. This can be found in appendix 3.1.

3.1.4. The overall heat transfer coefficient.

The heat transfer in the reformer from the burner gas through the tubes to the process gas is limiting. In order to produce more carbon monoxide there are, in case of the reformer, three possible ways to do so. The first and most obvious option is a change in the reformer feed. The question then is: when will the heat transfer become limiting. The second option is to change the material the tubes are made of. The better the tube material conducts heat or the higher the service temperature of the tube, the more carbon monoxide can be produced. The third option is a combination of the two options mentioned above.

For the calculation of the transferred heat, equation (3.20) is used.

$$\phi_{\rm w} = U * A * \Delta T_{\rm in} \tag{3.20}$$

with

Φw : Transferred heat (= heat or energy flow) (W)
 U : Overall heat transfer coefficient (W/m²/K)
 A : Outside tube wall area for heat transfer (m²)
 (AT)ln : Logarithmic mean temperature difference (K)

The overall heat transfer coefficient expresses the combined effect of the whole series of resistances through which the transferred heat must flow. Generally there are three resistances. First of all the resistance for heat transfer from the outside fluid to the outside tube wall. Secondly the resistance for heat transfer through the tubes. Finally the third resistance will be from the inside tube wall to the inside fluid, see equation (3.21).

$$\frac{1}{U} = \frac{D_i}{D_u * h_u} + \frac{D_i}{2 * k_w} * \ln \frac{D_u}{D_i} + \frac{1}{h_i}$$
(3.21)

with

U : Overall heat transfer coefficient

Du: External tube diameter

Di : Internal tube diameter

hi : Internal heat transfer coefficient

hu : External heat transfer coefficient

kw : Conductivity of tube material

In this particular case the outside tube wall temperature is known. This means that the outside resistance can be omitted.

In literature an empirical relation for the resulting equation for the calculation of the overall heat transfer coefficient was found, see equation (3.22) [3.6].

$$\frac{1}{U} = \frac{D_{ii}}{2 * \lambda_{st}} * \ln \frac{D_{ie}}{D_{ii}} + \frac{1}{a_w} + \frac{D_{ii}}{8 * \lambda_{er}}$$
(3.22)

with

$$a_{w} = \frac{8.694 * \lambda_{er}^{\circ}}{D_{ti}^{\frac{4}{3}}} + \frac{0.512 * \lambda_{g} * D_{ti} * Re_{p} * Pr^{\frac{1}{3}}}{d_{p}}$$
(3.23)

$$\lambda_{er} = \lambda_{er}^{*} + \frac{0.111 * \lambda_{g} * Re_{p} * Pr^{\frac{1}{3}}}{1 + 46 * \frac{d_{p}^{2}}{D_{u}^{2}}}$$
(3.24)

As can be seen from equation (3.22), the overall heat transfer coefficient only deals with the resistances to heat transfer of the tube material, the process gas and the catalyst particles. This means that the "black box" considerably reduces. On the other hand, this implies that the outside tube wall temperature as well as the outside tube area have to be known. Indeed this is the case. Both parameters can be found or be calculated from the data given by KTI [3.7]. The logarithmic mean temperature difference, better known as the driving force for heat transfer, is given by equation (3.25).

$$\Delta T_{\rm in} = \frac{(TI - tI) - (T2 - t2)}{\ln \frac{TI - tI}{T2 - t2}}$$
(3.25)

3.1.5. Possible ways to increase the CO-plant capacity

The heat transfer in the reformer tubes is the limiting factor. Therefore other feeds or other pieces of equipment must be used to increase the CO production.

3.1.5.1. Less N₂ in the feed

One possible way to increase the CO production is to reduce the amount of N_2 in the feed. Because N_2 is an inert gas, the energy needed to heat the nitrogen in the reformer tubes are pure wastes of energy. By removing the nitrogen this energy can be used for reaction energy, needed for the production of CO.

3.1.5.2. Using a pre-reformer

A possible way to increase the CO production is to put a pre-reformer ahead of the reformer. A pre-reformer is an adiabatic reactor [3.9], which converts all the higher hydrocarbons into a mixture of carbon oxides and hydrogen. The methane reforming and shift reactions are taking place to chemical equilibrium. A pre-reformer operates with a inlet temperature of 380-520 °C. Since the pre-reformer is an adiabatic reactor the temperature will decrease about 50 °C. After the pre-reformer the gas is heated again and sent to the reformer. A pre-reformer is packed with several types of catalysts. In top, where there is no risk of carbon formation, an alkali free catalyst is used (15%), then an intermediate alkali promoted catalyst (25%) and at the bottom again an alkali free catalyst is used (65%). A schematic arrangement of a prereformer in combination with a reformer is given in figure 3.5.

Figure 3.5. A schematic representation of a pre-reformer in a plant.

The advantages and disadvantages resulting from installation of a pre-reformer are summarized below:

- Low risk of carbon formation in the reformer even with higher hydrocarbons in the feed due to their conversion in the pre-reformer.
- All sulphur is removed from the feed in the pre-reformer.
- The steam to carbon ratio can be lowered in the reformer.
- The capacity of the plant can be increased, because there is an extra heat input after the pre-reformer.

Disadvantages of a pre-reformer:

- The pre-reformer will result in a larger pressure drop.
- The pre-reformer will increase the investment cost.

3.1.5.3. Adding CO₂ to the feed

A possible way to increase the CO production is to add CO_2 to the feed. While the reaction reaction enthalpy of the reaction of CO_2 into CO is 1/5th the reaction enthalpy of the reaction of CH₄ to CO (see Table 3.1), more CO can be produced with the same energy consumption in the reformer tubes. An other advantage is that CO_2 reacts with deposited coke to form CO (reaction 3.9), so the steam to carbon ratio can probably be lowered. The steam to carbon ratio can also be lowered because during the reaction of CO_2 to CO also water is formed (reaction 3.4). A disadvantage of this method is the price of CO_2 which is about twice that (per mole) of CH₄. Following the patent of Green [3.10] the H₂ to CO_2 ratio must be close to one.

3.2.Calculations and results

3.2.1.Design

Simulation with Aspen

The reformer was first simulated with the design concentrations and specifications (appendix 5). These data correspond to a production of 1220 kg/h CO. The results of this simulation can be found in appendix 5 and in Table 3.3.

Table 3.3. The heat duties of the heat exchangers, calculated with the design feed.

equipment	heat duty (10 ⁵ W) design		
H-2101	41.7807		
H-2102	4.3005		
H-2103	8.0790		
H-2104	2.7157		
H-2105A	4.4251		
H-2105B	5.4867		
H-2106	6.5278		
H-2107	18.3583		
V-2101	-0.4166		
V-2103	4.3241		

Heat transfer in the reformer tubes

The temperature gradient inside and outside (tube wall) the tubes can be considered to be linear. The composition half-way is considered to be the average composition in the tubes from inlet to outlet. The conductivity, specific heat and the viscosity of the process gas are based on this composition, the average temperature and the average pressure. The composition half-way the tubes was determined with the mercury (appendix 3.2) program, with the assumption that K_3 is -10 °C, see also Table 3.4 for the composition of the gas half-way the tubes.

Comp.	$\Phi_{ m mol}$ kmol/hr	Percentage (mol%)	Φ _m kg/hr	Percentage (weight%)
H ₂	78.0	0.263	155.2	0.029
CO ₂	41.9	0.142	1840.8	0.344
CO	15.8	0.053	444.2	0.083
H ₂ O	119.9	0.405	2156.6	0.403
N ₂	8.8	0.030	246.1	0.046
CH ₄	31.7	0.107	508.4	0.095
	296.1	1.000	5351.3	1.000

Table 3.4. Composition of the process gas half-way the tubes.

In order to determine the energy flow, three parameters are needed, as can be seen from equation (3.20).

A (Outside tube area)

Information given by KTI [3.7].

 $A = 75 m^2$

(AT)In (Logarithmic mean temperature difference)

Can be determined with equation (3.25) and Figure (3.6) [3.6].

$$(\Delta T)_{\rm h} = \frac{(720 - 487) - (925 - 860)}{\ln \frac{720 - 487}{925 - 860}} = 132K \tag{3.25}$$

Figure 3.6. Temperature profile of the reformer tubes.

U (Overall heat transfer coefficient)

Can be determined with equation (3.21). See for the results of the calculation of the coefficient appendix 3.3.

 $U = 448 \text{ W/m}^2/\text{K}$

This results in the following energy flow.

 $\phi_w = U * A * (\Delta T)_{\text{in}} = 448 * 75 * 132 = 4.44 MW$

The overall heat transfer coefficient can also be calculated, or rather be verified, by using equation (3.20) with the data given by KTI [3.7].

 $\phi_w = U * A * (\Delta T)_{\rm in}$

4.17MW=U*75*132

 \longrightarrow U = 421 W/m²/K

This means a difference of only 6 percent. Besides the accuracy of the equations used, the difference between the two overall heat transfer coefficients is most likely caused by depositions, mainly of carbon on the tube wall and the catalyst particles. The depositions have a lower thermal conductivity resulting in a lower energy flow. The calculated heat transfer coefficient can be corrected for the depositions with a so called foulingfactor.

Coke formation

With the iteration program given in appendix 3.2 the design (KTI) equilibrium constants are calculated and with figure 3.2 the thermodynamic equilibrium constants are determined, see Table 3.5. The calculated equilibrium constants are larger than the thermodynamic equilibrium constants, because with the equations used, no allowance is made for the higher alkanes and the higher temperatures near the tube wall.

T (°C)	P (bar)	Therm. K _{3,8} (atm ²)	Therm. K _{3,9} (-)	Design (KTI) K _{3,8} (atm ²)	Design (KTI) K _{3,9} (-)
487 500 550 600 650 700 750 800 850 860	15.00 14.88 14.41 13.94 13.47 13.00 12.53 12.06 11.59 11.50	0.30 0.41 0.86 1.92 4.06 6.36 13.5 24.5 34.8 40.4	365 221 40.4 9.97 4.06 1.00 0.30 0.135 0.052	0.498 0.637 1.53 3.37 7.17 15.1 32.9 77.3 198	618 390 75.3 17.8 5.35 1.95 0.874 0.484 0.336

Table 3.5. Thermodynamic and design (KTI) equilibrium constants for the coke deposition reactions.

Appendix 3.1. Reformer heat duty calculations.

Appendix 3.2. Prediction of the streams and calculation of the equilibrium constants.

Appendix 3.3. Calculation of the design (KTI) overall heat transfer coefficient.

Literature

- 3.1. J. Xu and G.F. Froment, A.I.Ch.E.Jl, 1989 35 88.
- 3.2. M.H. Hyman, Hydrogen Processing and Petroleum Refiner, 1968 47 131.
- 3.3. E.S. Wagner and G.F. Froment, Hydrogen Processing, July 1992, 69.
- 3.4. J.R. Rotrup-Nielsen, Science and Technology, Springer Verlag, 82 (1983), vol. 5.
- 3.5. J.M. Smith, H.C. van Ness, Introduction to Chemical Engineering Thermodynamics, 509 (1987).
- 3.6. J.C. De Deken, E.F. Devos and G.F. Froment, Steam reforming of natural gas, Chem. React. Eng., 1982 281.
- 3.7. Process data sheets for the reformer of CO plant II, KTI.
- 3.8. Design and operating manual.
- 3.9. L. Storgaard and H. Topoe, Hydrogen Processing, 1992 137.
- 3.10. R.V. Green, U.S. US Patent 3,943,236 (1976).

4.2 CO₂ removal section

The CO_2 removal section involves the CO_2 removal including the water removal, the CO_2 compression and the desulphurisation (see appendix 2, flowsheet 200-FP-41/45). We will look at each of these different functions, including their operation units, separately.

The first step is to determine which units are indispensable with regard to the model. We therefore have to look at the main process streams. It is not necessary to sum up every unit in ASPEN+, because the operation units given by ASPEN can perform several functions in one block. One of these functions is the pressure of the process streams. It is usually provided by pumps or compressors. These types of equipment have been left out as much as possible in order to simplify the flowsheet.

The CO_2 removal section consists of several main operation units. Besides the two packed columns there are some auxiliary units like a reboiler, heat exchangers and knock out drums (K.O. drums). The water cooled heat exchangers (H2108, H2111, H2112) are modelled as HEATER blocks. For these blocks one can specify output temperature and pressure. The other heat exhangers (H2109A, H2109B) are modelled as one block. The block we used is the HEATX block. This block has two in- and outlet streams for the cold and hot streams. For the reboiler (type kettle reboiler) we had to use a separate block. This because ASPEN simulates a reboiler as a part of the column, where the heat stream is given. In order to get this heat stream we placed a HEATER block where the process stream entered the reboiler. Then we connected this heat stream to the reboiler.

The K.O. drums are ordinary vessels where the mixed phases are separated into a gas stream and a liquid stream. All these types of equipment are modelled by a FLASH2 block. This is a block where normally the input is flashed, by pressure drop or temperature difference. This becomes a K.O. drum when these variables are kept constant. A special approach is needed for the MEA vent tank (V2110). It does officially not contribute to the separation process but because it has some losses which are leaving the entire proces we had to simulate it as a separate block. For this block the SEP block was used in which the components that were leaving the process stream could be specified.

The two packed columns (V2105, V2106), which are the driving forces behind this section, are modelled as two RADFRAC blocks. These blocks use rigorous fractionation calculations and can also be used for absorbers and strippers. In case of the stripper it is necessary to specify a reboiler duty in order to let ASPEN know a reboiler is connected.

All the streams which are bypassing the main process, like the streams to and from the mixer (M2104) and the aeration/inhibitor injection tank (V2111), are left out because they are not taking part in the main process. This means that the equipment connected to these streams are not modelled either.

In the CO_2 compression section the CO_2 rich gas is compressed by several two stage reciproking compressors (K2103). These are presented in the model as two COMPR blocks. The only problem is that ASPEN is not equiped with this type of compressor. Therefore the most flexible one is used which is the polytropic cenrifugal compressor. The interstage and final cooling, provided by two water cooled heat exhangers (H2113,
H2114), are, like in the CO₂ removal section, modelled as HEATER blocks. For the K.O. drums (V2113, V2114) the same blocks were used as the blocks applied in the CO₂ removal section, serving the same purpose. All other auxiliary equipment, like suction dampers and filters, were left out because of the earlier mentioned reason.

The desulphurisation of the process stream is achieved by a catalyst which is packed in a vessel (V2115). Because the stream has only traces of sulphur and the feed (in ASPEN) has no sulphur components what so ever, the unit is totally neglected even though it causes a small pressure drop.

For a total view of the modelled equipment and flows in this section see appendix 4.

4.3 Drying section

This section has two main functions, namely the compression of the process gas and the removal of the last traces of water and CO_2 (see appendix 2, flowsheet 200-FP-42). This is necessary for usage of the process gas in the cryogenic separation section. These functions, with their operation units, will be discussed also separately.

The compression of the process gas is achieved by a reciproking compressor (K2104). This is presented in the model as a COMPR block. Because of the earlier mentioned problem the polytropic centifugal compressor is chosen.

The final cooling, provided by a water cooled heat exhanger (H2115), is again modelled as a HEATER block. For the K.O. drums (V2116, V2117) the FLASH2 blocks where used. All other auxiliary equipment, like suction dampers and filters were again left out because of the reason mentioned above.

The actual drying of the process stream occurs in three columns filled with a zeolite mole sieve. Two of these columns are actually working while the third one is being regenerated by a H_2 rich stream. Even though the process is complicated because of the different residence times, valves and controlling sequences, this part of the process is modelled by just one block. Because of the simplicity of the drying process itself and the preference of the mole sieve a SEP block is chosen in which the several amounts of the compents in the different streams are specified.

For a total view of the modelled equipment and flows in this section see appendix 4.

4.4 Cryogenic separation section (coldbox)

The goal of this section is to separate the CO from the other components in the process stream. This is done by cryogenic separation which occurs in a special unit called the coldbox. It is then compressed and ready for further usage in other processes on the site (see appendix2, flowsheet 200-FP-43/44). Again the section is discussed in these two above mentioned parts.

The coldbox is probably the most complicated unit of the plant. Not only because of the fact that the separation ocurrs at extremly low temperatures but also because of the complexity of the equipment, the recycle streams and the heat transfer in this unit. It is therefore important how the different streams are modelled. The model is primarily based on the compositions of the different streams. The heat transfer between the streams and units are modelled in such way it only serves a controlling purpose. The coldbox consists of five operation units, namely one heat exchanger and four columns with reboilers and/or condensors. One of the columns is rather complicated. This because of the huge condensor part in the top.

The feed gas cooler (E21) is modelled as a MHEATX block. This block has several inand outlets and therefore very suitable for this purpose. All other heat transfer units, like reboilers and condensors (E22, E23U/L, E24, E25, E27), are, for the same reason mentioned in paragraph 4.2, presented as HEATER blocks. These different blocks however are not connected to the corresponding reboilers or condensors because of the complexity of the heat balance.

The CO-wash column (T21) consists of two parts. The upper part where the vaporized liquid is condensed and washed and the lower part where the actual mass transfer takes place. Because of this obvious difference in duty the column is modelled in three separate parts. The lower part is modelled as a RADFRAC block and the upper part as two FLASH2 blocks (there are two different temperatures present). The way the mass flows in the upper part however is difficult to predict. Therefore a simple construction is made by returning the liquid flow of the second FLASH2 block to the first FLASH2 block.

The other columns (T22, T23, T24) are also entered as RADFRAC blocks with different reboiler and/or condensor specifications. The CO/CH₄ splitter (T22) has a reboiler and the feed flash column (T23) has a condensor. Therefore the condensor (T22) and the reboiler duties (T23) are specified. The reflux flash column (T24) has both.

Other equipment, like (controlling) valves, where modelled as HEATER blocks. Also the decision was made to leave out the expansion machines because they do not contribute to the separation process but only to the state in which the H_2 rich gas is leaving the CO-wash column (T21).

The CO rich product gas is compressed by several two stage reciproking compressors (K2105). These are modelled as two COMPR blocks. The interstage- and final cooling, also provided by two water cooled heat exhangers (H2118, H2119), are, like in the CO_2 compression section, modelled as HEATER blocks. All other auxiliary equipment like suction dampers and filters were again left out.

For a total view of the modelled equipment and flows in this section see appendix 4.

Literature

- 4.1 Design and operating manual carbon monoxide plant II, General Electric Plastic, KTI.
- 4.2 Aspen Plus User Guide, 1988, Aspen Technology, Inc.

5.SIMULATION AND CALCULATION OF THE STREAMS IN THE PLANT

In this chapter the simulation of the different options as described in chapter 3 will be discussed. First the design values are being simulated in order to get good settings for the different blocks, to simulate the different possibilities to increase the capacity. Furthermore the coke deposition and the heat transfer coefficient are investigated.

5.1 Design

For simulation of the process the design data of the KTI and Linde flowsheets were used (see appendix 2). The pressure, temperature and composition of the streams were pursued as much as possible. The different blocks are specified with a temperature (difference) and a pressure (drop) as much as possible. The blocks with other specifications are discussed separately.

In the reformer section the reformer tubes, simulated by a Gibbs reactor, contain one or more reactions that do not reach equilibrium, a restricted chemical equilibrium calculation must be performed and a set of linearly independent reactions involving all components present in the system must be supplied. In this case reaction 5.1 has its equilibrium at 840 °C as calculated in the Design and Operating Manual [5.1]. All other reactions reach equilibrium at the reactor temperature (design temperature 860 °C). In order to give a temperature approach for reaction 3.3 the following nine reactions were supplied to Aspen:

$CH_4 + H_2O$	≠ CO	$+ 3H_{2}$	$T_{app.} = -20^{\circ}C$	(5.1)
$CO + H_0$	\neq CO ₂	+ H ₂		(5.2)
$C_{H_1} + H_2$	≠ 2CH₄			(5.3)
$C_{H_{\circ}} + 2H_{\circ}$	⇒ 3CH₄			(5.4)
$C_{H_{10}} + 3H_2$	≠ 4CH			(5.5)
$C_{4}H_{10} + 4H_{2}$	= 5CH			(5.6)
$C_{H_{12}} + 5H_{2}$	≠ 6CH			(5.7)
$\Omega_{a} + 2CO$	≠ 2CO2		$T_{ann} = -860^{\circ}C$	(5.8)
$N_2 + C_4 H_{10} +$	2H ₂ O = 2MEA		$T_{app.} = 2000^{\circ}C$	(5.9)

Although the last two reactions will not occur in the reformer these reactions are given, because the components O_2 and MEA appear further on in the process. To make sure that none of these reactions will take place a large temperature approach is given.

For the heat exchangers in the reformer section, were steam is generated, the vapor fraction is given in stead of the temperature. The flash2 block is simulated with a temperature and a vapor fraction in the outlet stream. For the splitters the mass fractions and a pressure drop are specified.

All attempts to split the steam stream failed, therefore it was necessary to disconnect these streams. The H_2 rich stream to the burners is also not connected to simplify the simulation process. This could be done, because the stream does not contribute to the actual process.

In the CO_2 removal section the separation block is specified with the component fractions, calculated from the design flowsheets, and a pressure drop of zero. For the absorber (V2105) the number of stages and the reboiler and condensor duty are specified (both zero). The number of stages required are defined by pursuing the design top stream composition. The stripper (V2106) is simulated with the number of stages, the condensor duty (zero) and an estimation of the reboiler duty. The final value of the reboiler duty is found by simulating the column with a spec on the mass flow of CO_2 leaving the top.

Between the two columns (MEA) is, in the original flowsheet, a loop in which the MEA circulates. Aspen, however, does not converge if this loop is closed. This because a little bit of MEA and water is transferred to other streams. This can be solved by entering a MEA buffer or by disconnecting the loop. The last option is chosen.

An other difficulty occurs when the heater duty (H2110), which provides the duty for the reboiler, is connected to the column (V2106). The duties differ so much from each other that the desired separation is not possible. Therefore the heat stream is disconnected and the duty of the heater serves only a controlling purpose.

In the drying section only the separator has diviant specifications. The separation block is specified with component fractions, calculated from the design flowsheets, and a pressure drop of zero.

For the cryogenic separation section a heat duty of zero and a pressure drop is given for all modelled valves. The recycle H_2 rich stream to the reformer is given by a mass flow of H_2 in the splitter B1. For the columns first the condensor and reboiler duties, which are zero are given. Then the mass flow of the bottom is given to calculate the boilup or reflux ratios. With these ratios it is possible to replace several duties. This is done to keep the section as flexible as possible. Except for the T23, where a condensor duty is specified because of the fact that at least one (condensor or reboiler) duty has to be specified.

Difficulties in this section occured mainly with the heat balance and the connection of the heaters with the reboilers and condensors of the columns. Therefore these heat streams are not connected to each other. The main goal was to pursue the composition of the mass flows as they are given on the Linde design flow sheets. The duties of the heaters therefore serve only a controlling purpose. Another problem was that the Linde data, first used for the coldbox, did not correspond with the data on the KTI design flowsheets. Hence it was necessary to increase the flows until they matched the KTI design flows.

The results of the design simulation are given in appendix 5. The simulation data correspond with the KTI data. There is only a difference between the CO product stream no. 226 (\pm 1 kmol N₂ too much) and in the H₂ rich stream no. 228 (too little N₂) coming out of the coldbox.

The heat flow going into the reformer tubes given by Aspen (4.19 MW), does also agree with the KTI value. Because the streams are almost the same as the given design streams by KTI, the already calculated heat transfer coefficient (448.3 W/(m²K) is maintained (paragraph 3.1.4). The calculated heat transfer coefficients will be compared with each other and be used to make a prediction of the heat flow by other feed streams. Assuming a constant temperature of the outside tube wall (constant ΔT_{in}).

The CO design production rate, calculated by Aspen is 1225 kg/h.

5.2 Actual

5.2.1 Simulation

The actual amount of CO produced is 1.26 ton/hr, this is about 3.2 % higher than the design production (1.22 ton/hr). With the iteration program described in appendix 3 the necessary increase in the amount of feed is calculated (using the multiplication factor). This calculation leads to a feed increase of \pm 2.9 %. Therefore all design feed streams are increased with 2.9 %. Also some block specifications need to be increased, because of the increased feed. Namely one condensor duty, one mass flow over a top of a column and the amount of H₂ recycled (change in splitter). The other block specifications are given in such a way that no change in the specifications is needed when all the feed streams are increased with the same fraction. The most important in and out going streams are given in appendix 5.

The streams that are increased with 2.9 % are : 201, 205, 253, 260, 281 and BIN (stream 251 is not increased with 2.9 %, resulting in a too high temperature of stream 7). The block specifications that are increased with 2.9 % are : the condensor duty of column T23, the mass flow of CO_2 over the top of column V2106 and the mass flow of H_2 recycled (change in splitter B1).

5.2.2 Calculations using simulated streams

For calculation of the heat transfer coefficient, the stream which enters the reformer is used. The composition of this stream is given in table 5.1 With this stream the composition of the stream half way the reformer is calculated using the iteration program of appendix 3 and by assuming a linear temperature and pressure profile in the reformer. With this composition the heat transfer coefficient is calculated in the same way as carried out in paragraph 3.1.4. This results in a heat transfer coefficient of 458.6 W/(m²K). The heat flow, calculated by Aspen, in the reformer tubes (H2101) is 4.32 MW. The actual heat transfer coefficient will be compared to the heat transfer coefficient of the reformer tubes using other feed streams in order to make an estimation of the new heat flow.

STREAM Comp.	207 stream entering the tubes (kmol/hr)	stream half way the tubes (kmol/hr)	208 stream going out the tubes (kmol/hr)
H ₂	9.09	80.55	153.49
CO	7.11	16.19	55.11
CO ₂	31.19	42.91	31.90
N ₂	8.92	8.92	8.92
O ₂	0.00	0.00	0.00
CH₄	49.13	32.63	4.72
C ₂ H ₆	1.56	0.00	0.00
C ₃ H ₈	0.20	0.00	0.00
C ₄ H ₁₀	0.08	0.00	0.00
C ₅ H ₁₂	0.02	0.00	0.00
C ₆ H ₁₄	0.03	0.00	0.00
MEA	0.00	0.00	0.00
H ₂ O	155.86	123.35	106.45
AR	0.00	0.00	0.00
T (°C) P (bar)	487.0 0	673.50	860.00
F (bar)	15.00	13.25	11.50

Table 5.1 Stream composition in the reformer tubes

The equilibrium coefficients of the coke deposition reactions 3.8 and 3.9 are calculated using stream 207, the iteration program of appendix 3 (calculating the composition) and the equations mentioned in chapter 3.1.2, assuming a linear temperature and pressure profile in the reformer tubes. In table 5.2 the thermodynamical equilibrium constants are given for the coke deposition and the calculated ones of the equilibrated gas. To prevent coke deposition the actual values need to be higher than the thermodynamic values. Since the theory used (see 3.1.2) is a rule of thumb, the actual values should be taken as safety reference when the reformer feed is changed.

As can be seen in table 5.2 the current process operates in a safe region since the actual k-values are at least 1.3 times bigger than the thermodynamic k-values.

T (°C)	P (bar)	Therm. K _{3.8} (atm ²)	Therm. K _{3.9} (-)	Actual K _{3.8} (atm ²)	Actual K _{3.9} (-)
487	15.00	0.30	365.00	0.50	620.00
500	14.88	0.41	221.00	0.64	391.00
550	14.41	0.86	40.40	1.53	75.50
600	13.94	1.92	9.97	3.38	17.90
650	13.47	4.06	4.06	7.18	5.35
700	13.00	6.36	1.00	15.10	1.95
750	12.53	13.50	0.30	32.90	0.87
800	12.06	24.50	0.13	77.20	0.48
850	11.59	34.80	0.05	197.00	0.33
860	11.50	40.40	0.04	240.00	0.31

Table 5.2 Thermodynamic and actual equilibrium constants for the coke deposition reactions.

Aspen calculates an actual CO production rate of 1260 kg/hr, which is the same as the given actual production rate.

5.3 Less N₂ in the feed

5.3.1 Simulation

For the simulation a natural gas stream with less N_2 is used. The N_2 is removed using a simulation of a Linde patent (paragraph 8.2.2.2). Using this patent \pm 80 % of the N_2 is removed. Because the mole fraction of N_2 isn't large in most of the streams, the other streams and block specifications are kept the same as with the actual simulation. The most important in and out going streams are given in appendix 5.

5.3.2 Calculations using less N₂ in the feed

For the feed with less N_2 also the heat transfer coefficient is calculated using the stream half way given in table 5.3 (see 5.3.1)

This results in a heat transfer coeficient of 450.8 W/(m²K). The heat flow, calculated by Aspen, in the reformer tubes (H2101) is 4.29 MW. Compared with the actual value, the heat transfer coefficient has decreased ± 4 %. This will also decrease the heat flow with ± 4 %, resulting in a heat flow of : 0.96*4.32=4.15 MW. So the calculated heat flow by Aspen will not be reached, resulting in a lower temperature of the stream coming out of the reformer tubes. Which will cause a lower production of CO.

STREAM Comp.	207 stream entering the tubes (kmol/hr)	stream half way the tubes (kmol/hr)	208 stream going out the tubes (kmol/hr)
H ₂	8.61	79.90	152.76
00	6.05	15.78	54.29
CO2	31.19	42.32	31.64
N ₂	1.78	1.78	1.78
0 ₂	0.00	0.00	0.00
CH_4	49.21	32.64	4.80
C_2H_6	1.56	0.00	0.00
C₃H ₈	0.20	0.00	0.00
C_4H_{10}	0.08	0.00	0.00
$C_{5}H_{12}$	0.02	0.00	0.00
C ₆ H ₁₄	0.03	0.00	0.00
MEA	0.00	0.00	0.00
H ₂ O	155.85	123.87	106.69
AR	0.00	0.00	0.00
T (°C)	487.00	673.50	860.00
P (bar)	15.00	13.25	11.50

Table 5.3 Stream composition in the reformer tubes

The equilibrium coefficients of the coke deposition reactions 3.8 and 3.9 are calculated as in chapter 5.2.2 and given in table 5.4.

As can be seen in table 5.4 the process, with less N_2 in the feed, operates in a safe region with k-values, which are almost the same as the actual k-values.

Aspen calculates a CO production rate of 1253 kg/hr. This is lower than the actual production rate (1260 kg/hr) and will decrease further due to the too high heat flow. So the removal of N_2 out of the feed gas is no good solution for increasing the production capacity. An advantage of the N_2 removal is the big increase in purity of the CO product stream.

T (°C)	P (bar)	Therm. K _{3.8} (atm ²)	Therm. K _{3.9} (-)	Less N ₂ K _{3.8} (atm ²)	Less N ₂ K _{3.9} (-)
487	15.00	0.30	365.00	0.50	629.00
500	14.88	0.41	221.00	0.65	397.00
550	14.41	0.86	40.40	1.56	76.60
600	13.94	1.92	9.97	3.43	18.10
650	13.47	4.06	4.06	7.27	5.41
700	13.00	6.36	1.00	15.20	1.96
750	12.53	13.50	0.30	33.10	0.87
800	12.06	24.50	0.13	77.20	0.48
850	11.59	34.80	0.05	197.00	0.33
860	11.50	40.40	0.04	239.00	0.32

Table 5.4 Thermodynamic and equilibrium constants for the coke deposition reactions with less N_2 .

5.4 Capacity increase of 20 % by adding CO₂ to the feed.

5.4.1 Simulation

Using the iteration and the heat duty calculation program of appendix 3 an estimation is made of the feed streams necessary to increase the CO production by 20 %. This is done by assuming a constant heat flow (actual value). Using these streams an estimation is made of the needed changes in the actual streams and block specifications. Extra pressure drops due to the increased mass flow are neglected.

This results in changing the following streams : 201, 205, 251, 253, 260 and 281 (appendix 5).

The changes in block specifications are:

- mass flow of H₂ recycled, splitter B1 (more H₂ needed in the feed)

- condenser duty of block T23 (higher CO flow)

- mass flow of CO_2 over the top of column V2106 (more CO_2 in the stream coming out of the reformer)

- the mass fractions of water (coming out of the steam drum) specified in block SPLIT (stream 208 which must be cooled down by making steam has become bigger)

The bigger H_2 recycle stream is let to the H_2 -mix block, which in practise gives a stream to the desulphurizer with a too high fraction of H_2 (more than 10 mole %). An other assumption is the input of CO_2 into the natural gas stream. In practise the CO_2 can better be mixed with the CO_2 recycle stream.

The new block specifications are given in table 5.5 and all the streams are given in appendix 5.

Block	block type	changed specification	stream	new value
B1	splitter	mass flow	202	97.0 kg/hr
SPLIT	splitter	mass fraction	A C E G	0.13586 0.16845 0.63000
T23	radfrac	condensor duty		-5923 W
V2106	radfrac	mass flow of CO ₂ over the top	213	1662 kg/hr

Table 5.5 Changed block specifications.

5.4.2 Calculations using a CO₂ rich feed stream.

Also for the CO_2 rich feed the heat transfer coefficient is calculated (see 5.3.1) using the stream half way the reformer tubes given in table 5.6.

This results in a heat transfer coefficient of 500.2 W/(m²K) due to the higher Reynolds number. The heat flow, calculated by Aspen, in the reformer tubes (H2101) is 4.37 MW. Compared with the actual value, the heat transfer coefficient has increased \pm 9 %. This will also increase the heat flow with \pm 9 %, resulting in a heat flow of : 1.09*4.32 =

4.71 MW. So the calculated heat flow by Aspen is lower than the calculated one, resulting in a higher temperature of the stream coming out of the reformer tubes. Which will give a higher production of CO. But it must be considered that no temperature approach is used for the CO₂ conversion. With the new CO₂ rich feed streams a temperature approach may be needed, because more CO₂ must be converted in the reformer tubes. When a temperature approach is needed the CO₂ recycle stream will be higher.

The velocity in the tubes has increased compared to the actual velocity, because the number of moles has increased. This can result in a higher temperature approach for both reactions 3.3 and 3.4. This results in a higher recycle stream and a lower CO production rate.

STREAM	207	stream half	208
Comp.	stream entering the tubes (kmol/hr)	way the tubes (kmol/hr)	out the tubes (kmol/hr)
Ha	52.40	79.90	170.53
CO	19.80	15.78	67.01
CO ₂	51.65	42.32	37.07
N ₂	8.49	1.78	8.46
0,	0.00	0.00	0.00
CH	46.64	32.64	5.96
CH	1.43	0.00	0.00
C ₁ H ₂	0.18	0.00	0.00
C ₄ H ₁₀	0.07	0.00	0.00
C5H12	0.02	0.00	0.00
C ₆ H ₁₄	0.02	0.00	0.00
MEA	0.00	0.00	0.00
H ₂ O	131.17	123.87	113.04
AR	0.00	0.00	0.00
T (°C) P (bar)	487.00 15.00	673.50 13.25	860.00 11.50

Table 5.6 Stream composition in the reformer tubes

As can be seen in table 5.6 the stream coming out of the reformer is bigger compared with the actual stream. This may lead to some capacity increase in the MEA section (see paragraph 6.5).

The equilibrium coefficients of the coke deposition reactions 3.8 and 3.9 are calculated as in chapter 5.2.2 and given in table 5.7.

As can be seen in table 5.4 the current process operates in a somewhat less safer region with k-values, which are some smaller than the actual k-values. But with more CO_2 present in the reformer tubes, CO_2 is able to remove coke, so that the somewhat lower k-values can be accepted.

Aspen calculates a CO production rate of 1551 kg/hr, which is an increase of 23 %.

The mentioned influences on the CO production are hard to predict, but taking everything into account, the addition of CO_2 to the feed will be a good solution to increase the capacity of the plant.

T (°C)	P (bar)	Theory K _{3.8} (atm ²)	Theory K _{3.9} (-)	20% more CO K _{3.8} (atm ²)	20% more CO K _{3.9} (-)
487	15.00	0.30	365.00	0.43	545.00
500	14.88	0.41	221.00	0.56	344.00
550	14.41	0.86	40.40	1.36	66.70
600	13.94	1.92	9.97	3.00	15.90
650	13.47	4.06	4.06	6.39	4.76
700	13.00	6.36	1.00	13.50	1.73
750	12.53	13.50	0.30	29.20	0.77
800	12.06	24.50	0.13	67.90	0.43
850	11.59	34.80	0.05	172.00	0.29
860	11.50	40.40	0.04	229.00	0.28

Table 5.7 Thermodynamic and equilibrium constants for the coke deposition reactions for the simulation with CO_2 added to the feed.

5.5 Capacity increase of 20 % by adding CO₂ to the feed and using a pre-reformer.

5.5.1 Simulation

A pre-reformer converts all higher alkanes, with the advantage that in the reformer the k-values can be lowered and that an extra heat flow can be added to the stream after the pre-reformer. A steam to carbon ratio of 0.4 can be taken in a pre-reformer feeded with natural gas [3.9], the ratio used in the simulation is 0.5. In the reformer the k-values are lowered by adding less steam to the feed. This results in a lower CO₂ recycle, a higher CH₄ recycle and a lower mass flow coming out of the reformer. With a pre-reformer the feed can be taken higher, resulting in a ± 5 % higher CO production.

With the capacity increase using the CO_2 rich feed stream, the MEA section has to be changed. This is because of the higher mass flow coming out of the reformer. Using a feed stream with added CO_2 and a pre-reformer it can be possible to have an increased CO production without the need to change the MEA section.

After the desulphurizer block a mixer is placed to add steam to the pre-reformer feed stream. After the mixer a heater is placed to get the wanted temperature (500 °C) at the inlet of the pre-reformer. For the simulation the pre-reformer is put after the heater and is simulated with a Gibbs reactor. The heater can be left out when the right temperatures are chosen in the heat exchangers, heated by the reformer flue gasses. The extra CO_2 is added to stream 205. In practise the extra CO_2 can better be added to the CO_2 recycle stream (temperature of stream 205 is too high).

The following streams are changed compared with the actual simulation : 201, 205, 251, 253, 260 and 281 (appendix 5).

Also some new streams are entered to connect the new blocks namely stream : 142, 143, 144, 146 and 147 (appendix 5).

The block specification which are changed are :

- mass flow and streams of the recycled H2, splitter B1 (more H2 needed in the feed)

- condenser duty of block T23 (higher CO flow)

- mass flow of CO_2 over the top of column V2106 (less CO_2 in the stream coming out of the reformer

- the mass fractions of water (coming out of the steam drum) specified in block SPLIT (other streams to warm up)

- boilup ratio of block T22 (to get the CH₄ out of the feed, the CH₄ reclycle is bigger)

- the streams coming in block H2O-mix (extra H2 recycle stream is entered)

The added blocks are : B2, B3 and B5 (see appendix 4).

The block specifications are given in table 5.8 and 5.9 and all the streams are given in apppendix 5. In the product stream there is still too much CH_4 present (0.01 kmol), which mean that the boilup ratio of column T22 is still too high.

Block	block type	changed specification	stream	new value
B1	splitter	mass flow out	150 202 140	80.0 kg/hr 10.7 kg/hr
SPLIT	splitter	mass fraction	A C E G	0.08 0.10 0.704
T23	radfrac	condensor duty		- 6000 W
V2106	radfrac	mass flow of CO ₂ over the top	213	1200 kg/hr
T22	radfrac	boilup ratio		6.0
H ₂ O-mix	mixer	extra stream coming in	140	

Table 5.8 Changed block specifications.

Block	block type	stream in	stream out	specification
B2	mixer	142 144	143	P _{out} = 18.5
B3	rgibbs	147	146	heat duty = 0 $P_{out} = 15$ bar
B5	heater	143	147	$P_{out} = 18.2 T_{out} = 500 \ ^{\circ}C$

Table 5.9 Added block with their specifications

5.5.2 Calculations

Also for the CO_2 rich feed combined with a pre-reformer the heat transfer coefficient is calculated (see 5.3.1) using the stream half way the reformer tubes given in table 5.10. This results in a heat transfer coefficient of 462.8 W/(m²K). The heat flow, calculated by Aspen, in the reformer tubes (H2101) is 4.21 MW. Compared with the actual value, the heat transfer coefficient is almost the same. The calculated heat flow by Aspen is somewhat lower than actual heat flow. A temperature approach for the CO_2 reaction maybe needed (see paragraph 5.4.2). But taking everything into account the conversion calculated by Aspen should give a good estimation for the CO production.

As can be seen in table 5.10 the stream coming out of the reformer is looking to the total mass and mole flow, about the same compared to the actual stream. So no capacity increase is needed in the MEA section (see paragraph 6.5).

STREAM	207 stream entering	stream half way the tubes	208 stream going
Comp.	the tubes	(kmol/hr)	out the tubes
	(KIIIOI/III)	(KIIIOI/III)	(KIIIO4III)
H ₂	52.67	82.60	170.53
co	6.92	17.38	63.40
CO ₂	41.29	40.92	28.39
N ₂	8.59	8.59	8.59
0,	0.00	0.00	0.00
CH	51.79	41.69	8.21
C,H	0.00	0.00	0.00
C ₄ H ₈	0.00	0.00	0.00
C ₄ H ₁₀	0.00	0.00	0.00
C.H.	0.00	0.00	0.00
C ₆ H ₁₄	0.00	0.00	0.00
MEA	0.00	0.00	0.00
H ₂ O	122.15	112.42	91.46
AR	0.00	0.00	0.00
T (°C)	487.00	673.50	860.00
P (bar)	15.00	13.25	11.50

Table 5.10 Stream composition in the reformer tubes

The equilibrium coefficients of the coke deposition reactions 3.8 and 3.9 are calculated as in chapter 5.2.2 and given in table 5.11.

As can be seen in table 5.11 the process operates in a less safer region comparing the k-values with the actual k-values. But since the higher alkanes are converted in the pre-reformer, it must be possible to accept the lower k-values.

Aspen calculates a CO production rate of 1507 kg/hr, which is an increase of 20 %.

T (°C)	P (bar)	Theory K _{3.8} (atm ²)	Theory K _{3.9} (-)	20% more CO K _{3.8} (atm ²)	20% more CO K _{3.9} (-)
487	15.00	0.30	365.00	0.43	537.59
500	14.88	0.41	221.00	0.55	337.97
550	14.41	0.86	40.40	1.31	64.70
600	13.94	1.92	9.97	2.86	15.11
650	13.47	4.06	4.06	5.96	4.44
700	13.00	6.36	1.00	12.20	1.57
750	12.53	13.50	0.30	25.48	0.68
800	12.06	24.50	0.13	56.13	0.35
850	11.59	34.80	0.05	134.10	0.23
860	11.50	40.40	0.04	161.02	0.21

Table 5.11 Thermodynamic and equilibrium constants for the coke deposition reactions for the simulation using a pre-reformer and CO_2 added to the feed

The adding of CO_2 to the feed in combination with a pre-reformer seems to be a good solution. Comparing to the solution with only extra CO_2 added to the feed, the advantage of using a pre-reformer is that the capacity of the MEA section need not be changed.

5.6 Conclusions

The capacity of the plant can be increased in two ways :

1. adding CO_2 to the feed

2. adding CO_2 to the feed in combination with a pre-reformer.

For the first option the MEA section must be changed. For the second option a prereformer must be installed. Which option is the best will depend on the costs (chapter 9).

6 MEA section

6.1 Introduction

In the MEA-section the CO_2 gas is removed from the process gas. The process gas is counter-currently transported through an absorption column with a monoethanolamine (MEA) stream at a temperature of 40 °C, where the CO_2 is absorbed into the MEA-solution. The CO_2 rich MEA solution is transported to the MEA-stripper. The CO_2 is released from the solution at low pressure and a temperature of 120 °C. The CO_2 stream flows to the compressor where it is compressed and recycled to the reformer. The process gas is compressed and flows to the drying unit.

6.2 MEA

Monoethanolamine used for CO_2 -removal works as follows: The hydroxyl group reduces the vapor pressure and increases the water solubility. The amino group provides the necessary alkalinity in water solutions to absorp CO_2 .

 $2RNH_2 + CO_2 + H_2O \neq (RNH_3)_2CO_3$

 $(\text{RNH}_3)_2\text{CO}_3 + \text{CO}_2 + \text{H}_2\text{O} \neq (\text{RNH}_3)\text{HCO}_3$

 $2RNH_2 + CO_2 \neq RNHCOONH_3R$

Under normal conditions the composition of the equilibrium varies with the partial pressure of the CO_2 over it. But the vapor pressures of these products increase rapidly with temperature, which makes it possible to strip the absorbed gas from the MEA-water solution by the application of heat. As mentioned above monoethanolamine can react directly with CO_2 and has a greater alkalinity which gives it a greater effectiveness then other amines.

6.3 Absorber

The process gas enters the base of the MEA absorber at a temperature of 40°C and a pressure of 10.5 bar. The process gas flows through three packed beds of 2 inch diameter stainless steel Cascade Mini Rings (CMR) with a packing factor of 22. The CO_2 is absorbed in the MEA solution which flows downwards through the packing and absorbes essentially all the CO_2 .

The CO2 reacts with MEA according to the next reaction :

 $HO-CH_2-CH_2-NH_2 + H_2O + CO_2 \neq HO-CH_2-CH_2-NH_3 + HCO_3$

The MEA solution leaves the base of the absorber at a temperature of 72°C due to the heat of absorbtion. In heat exchanger H-2109 it cools the lean MEA solution from the stripper and heats up to 103 °C.

In ASPEN the actual vapour flows have been calculated together with densities and viscosities of vapour and liquid. This is presented in appendix 6. The maximum possible vapour flow has been determined also using the generalized pressure drop correlation, also presented in appendix 6.

This results in a maximum possible capacity increase, of this absorber, of 109% at 60% flooding with the same packing. Which is more then sufficient for the 20% capacity increase.

6.4 Stripper

The rich MEA solution enters near the top of the MEA-stripper via a flashing liquid distributor and flows down over two packed beds of stainless steel Cascade Mini Rings (CMR) with a packing factor of 29. The solution then flows via a liquid draw off tray into the MEA-reboiler. In this reboiler vapour is generated which flows to the stripper column through the chimney of the liquid draw-off tray and up the tower stripping the CO_2 from the solution. In the top of the stripper the vapour is washed with reflux condensate. The hot lean solution at 120°C flows through the MEA cross exchangers back to the absorber.

In ASPEN the actual flows, densities and viscosities have been calculated based on the Linde data. With these data the maximum possible vapour flow has been determined using the generalized pressure drop correlation, presented in appendix 6.

This results in a maximum possible capacity increase of 17% at 90% flooding, which is very high, with the actual packing. This is just enough for the 20% capacity increase of the plant when using only extra CO_2 in the reformer feed.

6.5 Heat exchangers

When using only extra CO_2 in the reformer feed, the increased flows in the MEA-section make new heat exchanger dimensioning necessary. The new flows are from ASPEN, other data are based on KTI values. The best choice for reasons of efficiency and costs has turned out to be the use of parallel heat exchangers. In appendix 6 this is illustrated with an estimation of the new temperatures using the old heat exchangers with new flows.

The following heat exchangers and condensors should be installed parallel to the existing ones:

heat exchanger parallel to:	H-2108	H-2109 A/B	H-2110 H-2111 H-2		H-2112
flow shell side (kg/hr)	3350.4	3350	3848	23775	10152
flow tube side (kg/hr)	13060	3594	1324	1040	403.2
shell outside diameter (mm)	152	135	495 95		181
number of tubes	24	18	40	44	28
temperatures tube side in (°C)	25	72	180	25	102
temperatures tube side out (°C)	35	103	132	35	40
temperatures shell side in (°C)	88	120	120	133	25
temperatures shell side out (°C)	40	88	120	40	35
pressure drop shell (bar)	0.26	0.26	-	0.25	0.4
pressure drop shell/tube (bar)	0.4	0.14	0.24	0.15	0.08
overall heat transfer coef- ficient (kJ/m ² °C hr)	2928.8	2573.16	3757.2	2263	483
length (m)	5.5	6	6	3.9	3.0
total surface (m ²)	7.63	12.42	14.2	8	4.9

(6.1)

6.6 Pumps

Introduction

The pumps used in the MEA section are designed for a certain operating point. When more fluid must be pumped, a couple of ways to achieve so are discussed here, with the possibilities :

- 1. Another pump in parallel with the original one.
- 2. Another pump in series with the original one.
- 3. Parallel pipelines.
- 4. change the RPM's of the pump.

Before discussing these four possibilities, it is wise to give a brief resume of the most important aspects of a centifugal pump.

Characteristic of the pump.

A characteristic is known as a functional relationship between two or more for the process relevant variables. The two best-known variables are the suction head H and the volume flow ϕ_v (fig. 6.2). The suction head is the pressure increase in the pump, converted into the height of a column of the pumped fluid:

$$H = \frac{1}{\rho g} (p_2 - p_1) = h_{geom}$$

The pressure difference itself is called the manometric head. H is expressed in lengthunits, so in SI units it is in meters. When working with centrifugal pumps, the "characteristic" is meant to be H as a function of ϕ_v .

fig 6.2 pumpcharacteristic

The form of the characteristic of a centrifugal pump can be explained with simple physicle models. The simplest model is Euler's, by which the moments of inertia theorem is used for the fan under the assumption that the flow of the fluid is homogeneous and takes along with the rotating movement (fig 6.3). This model results in a lineair characteristic, of

which the tangent depends on the fanblade configuration. The requirements aren't coming up in a real fan completely, through which the characteristics descend. On top of that, the fan is situated in a pump, so there will be flowresistance, of which the effect roughly is changing with the square of the volume flow ϕ_v . Flows less and more than the optimal operating point, results in oblique entrance in the fan. This all means that Euler's characteristic will never achieved (fig 6.4).

Fig 6.3 Euler's characteristic

1 Effect of not homogeneous distibution

2 Effect of flow resistances

3 Effect of obique entrance (with respect to fan direction.)

Systems characteristics

Often there is a functional relationship between pressure drop and volume flow for the system a pump cooperates with. When this relationship is drawn in the $H-\phi_v$ diagram, the result is an operating point of the pump.

Example 1

Systems with only height difference, without flow resistance in the pipes (fig 6.5 and 6.6).

Here the geometric height h_{geom} is the same as the height H (formula 6.1)

If the height difference doesn't depend on the flow ϕ_v , then the system curve is a horizontal.

system with heightdifference

Example 2

Only flow resistances, no height differences.

Assume the flow resistance can be described by a square resistance law (valid in tubes above Re ≈ 2000):

fig 6.6

$$\Delta p = \frac{L}{D} \xi \frac{1}{2} \rho c^2 = constant \cdot \varphi_v^2$$
(6.2)

fig 6.7 system with only piperesistance

With this model the pipe characteristic is a parabola with its top in the origin of the axiscross. In fig 6.7 two system curves with different values for the constants are drawn.

fig 6.8

fig 6.9

System curves for the more common case

More common case: height difference, pressure difference and flowresistance (fig 6.8 and 6.9). This is a combination of example 1 and 2, whereby also different gas pressures p_0 and p_3 above the levels are assumed. So now we have:

$$\frac{p_2 - p_1}{\rho g} = H_{pump} = \frac{p_3 - p_0}{\rho g} + h_{geom} + \frac{\Delta p_{pipe}}{\rho g}$$
(6.3)

Unstable behaviour of a centrifugal pump.

It is possible that a characteristic has a rising and descending part as shown in fig. 6.10. In that case the pump might operate unstable, depending on the coupled system and the position of the operating point. Assume that with the as example drawn system, the system curve exists of a static height (H_{01}) and a resistance height (H_{pipe1}). The resulting operating point is W_1 . Here, the value of H_0 depends on the use: The pump must deliver as much as the user can take. Assume, this is not the case and the deliverance of the pump becomes to large. The operating point W moves across the pump characteristic to a higher value of H, causing ϕ_v to decrease. An equilibrium can be found that way, for example at W_2 . Decreases the consumption by the user, the pump will search for a new equilibrium, whereby H_0 increases again and ϕ_v decreases. The utmost stable operating point that can be achieved that way, is W^{*}, when the deliverance of the pump still is too large, H_0 wants to rise further; the pump can deliver less, but at a lower H_0 ; The pump stops at that point and when no retraction valve is used, even backflowing may occur. When because of this backflowing, H_0 decends the pump will be able to work again. The present operating point lies on the rightside of the characteristic. The value of ϕ_v is however much to big again,

and the operating point will again move towards W^* , after which the cycle repeats. At this way a pulsing behaviour shows up, not only in the fluid flow, but also in the traction of the pump. The frequency depends on the volume flow and the resevoir dimensions. When the pump load only exists of static height (no pipe resistance), then the ultimate between the stable and instable part of the characteristic lies not near W^* , but in the top T of the curve. When the load exists only out of pipe resistance (pump working on a smore valve for example), then the pipe curve always has a point of intersection with the pump characteristic.

fig 6.10 pump characteristic with chance for instability.

ad 1) Pump operating in parallel

Where it is necessary to increase the amount of liquid to be pumped, two or more pumps are often installed beside one another. This condition has been sketched in fig 6.11.

fig 6.11 two pumps in parallel

fig 6.12 different configurations

With either pump 1 or 2 in operation, capacities would be Q_1 and Q_2 respectively at manometric heads H_1 and H_2 . If pumps 1 and 2 are operating in parallel, the capacities of pumps 1 and 2 at equal head can be added. The new curve intersects the pipe characteristic in point Q_3 - H_3 . Pump 1 capacity is now Q_1 ' and pump 2 capacity Q_2 '. The above mentioned pipe characteristic refers only to the common discharge line of the pumps and hence the friction of the individual suction and discharge lines should be substracted from

the Q-H_{tot} curve by the methode described under 3.1 before determining operating points for pumps 1 and 2.

ad 2) Pumps operating in series

If the manometric head of one pump appears to be too low to displace a certain quantity of liquid through a given pipeline, more pumps can be installed in the same pipe line to increase the pressure. The discharge of the first pump is connected to the suction of a second pump. Depending on local conditions, these pumps can either be placed close to each other (in the same room) or far apart. It is unusual to install pumps in series in new installations since a multy-stage pump is usual preferred. If two pumps, 1 and 2 with identical Q-H_{tot} curve are installed, capacity will amount to Q₁ when either pump 1 or 2 is operated seperately. When both pumps are operated in series, the joint Q-H_{tot} curve is found by adding the manometric head at equal capacities. The intersection with the pipe characteristic now shows operating point Q₂ with series-operation (fig 6.12)

ad 3) Parallel pipelines

If the capacity of one pipeline becomes too low - e.g. because of plant enlargement - a second pipe can be placed parallel to the existing one.

An increase in capacity is provided that can be calculated as follows: in graph (6.13) a pump in the existing pipeline is operating at capacity Q_1 and H_{tot} H_1 . If the pump operates on the new line only, capacity is Q_2 at H_{tot} H_2 . Pipe characteristic of the total system can be found by adding capacities of the old and new pipeline (at equal friction).

 $Q_1' + Q_2' = Q_3$. The intersection of this characteristic with pump Q-H_{tot} curve gives operating point $Q_3 - H_3$. Capacity per pipeline can be found by reading same for the particular pipe at head H₃ (Q₁' and Q₂').

ad 4) Change the RPM's of the pump

For centrifugal pumps, there is a relation between manometric head H and the rotationfrequency n. At different rotationfrequencies the same centrifugal pump has different pump charateristics. The one belonging to the higher rotation frequency lies above, the one belonging to the lower rotation frequency lies under the normal Q-H_{tot} curve (fig 6.14).

fig 6.14 different rpm's

These characteristics are determined by a congruence law, that is why the shapes are alike. For fluids with low viscosity the following relations exist:

$$\frac{\boldsymbol{\varphi}_{\boldsymbol{v},2}}{\boldsymbol{\varphi}_{\boldsymbol{v},1}} = \frac{n_2}{n_1} \tag{6.4}$$

 $\frac{H_{tot,2}}{H_{tot,1}} = \frac{n_2^2}{n_1^2}$ (6.5)

$$\frac{P_2}{P_1} = \frac{n_2^3}{n_1^3} \tag{6.6}$$

Here P is the power needed to pump. The index 1 relates to the original situation. This congruence law can be tested when the new rotation frequency does not deviate from the original rotation frequency.

Power for the pumping

The power the electro engine has to deliver can be calculated as follow:

$$-P_{axis} = \frac{\nu \left(p_2 - p_1\right) \phi_m}{\eta} = \frac{\rho g H \phi_v}{\eta}$$
(6.7)

Here η is the total efficiency of the pump, ϕ_m is the massflow.

The massflow will rise 15% so this means that the power increase per pump will also be around 15%. The cheapest and easiest way to increase the flow will be the latter described way, so with a higher rotation frequency. Questions remaining now are: can the electro engine handle the power, and doesn't the flow resistance become too huge in the pipes?

Calculations have been made for the pumps in the MEA section, with two massflows: ϕ_{m1} and $\phi_{m2}(=1.2*\phi_{m1})$. The efficiency was set on $\eta=0.8$. With formula 6.7, the power needed was calculated, by assuming that only the massflow would change; the rest like pressures, viscosities and mixture ratios are constant. We just want to see if the pumps can handle the flowincrease, so we need to have a estimation of the powerconsumption. These were the results:

	φ1	φ ₂	Pin	Pout	ν	P _{KTI}	P _{+20%}
	kg/s	kg/s	bar	bar	cP	kW	kW
N2101A/B	6.10	7.32	1.5	13.7	9.8e-4	9.1	10.9
N2102A/B	0.27	0.33	0.5	0.7	1.0e-3	0.02	0.02
N2103	0.63	0.76	0.6	0.7	9.8e-4	0.01	0.01

Table 6.1: calculations results.

There will be no problems for the pumps to increase the flow. Only pump N2101 has to pressurize the fluid, the other two pumps have to displace fluid more than pressurize it. Because no extra data then the sheets are known, nothing can be said about the point of instability of the pumps.

6.7 Process gas drying.

The process gas from the MEA absorber contains CO_2 and H_2O , which would freeze in the cold box. The dryer removes these components to a level of 0.1 ppm volume.

The process gas from the MEA section has a temperature of 40 °C and a pressure of 9.4 barg. Any entrained condensate in the gas is separated in a K.O. drum. After this the gas is filtered, compressed, cooled and again sent through an K.O. drum. The gas leaving this K.O. drum (temperature 35 °C, pressure 27.5 barg) is sent to one of the three mole sieve beds, which will further remove the H₂O and the CO₂. One adsorbent bed is in line taking fresh feedgas to adsorb all carbon dioxide and water. The gas from this bed is then routed through a second bed, used as a guard bed, before flowing to the cold box. The third bed is in regeneration. In appendix 6 the cycle sequence is showed.

The process gas dryers are mole sieve beds. Molecular sieves are called zeolites. Commercial molecular sieve zeolites are usually synthetic. They are crystalline framework aluminosilicates containing alkali metal cations. The structure extends in three dimensions by a network of ALO_4 and SiO_2 tetrahedra linked to each other by sharing of oxygen atoms. Molecular sieves possess the high porosity that is characteristic of all adsorbents. In addition, the ordered crystalline structure of the molecular sieve provides pores of a constant size.

The pore size of molecular sieves can be enlarged or diminished by appropriate cation exchange. Therefore many commercial types are available with pore openings ranging from 0.3 nm to about 1.0nm. This property gives molecular sieves unique advantages in certain applications because many gases or liquids can be excluded form the microporous structure. Larger pore molecular sieves can also be used to simultaneously dry and purify streams.

Because of the ordered structure, molecular sieves have excellent capacity at low water concentrations and do not exhibit a capillary condensation pore-filling mechanism at high water concentrations. Molecular sieves are also inert to most fluids and are physically stable when wetted with water. Strong inorganic acids or alkalies should be avoided as well as temperatures above 700 °C.

For the generation of the process gas dryers, the hydrogen rich gas from the cold box is heated to 200 °C by steam and passed across the bed at low pressure to drive off the CO_2 and H_2O . The regeneration contains the following steps:

Depressurisation step.

The bed is reduced slowly in pressure to the same pressure level as the regeneration gas.

Heating step.

A flow loop of regeneration gas is established and the heating cycle is started.

Cooling step

The regenerated bed goes on to cooling. The generation gas now bypasses the regeneration heater and the cold gas slowly cools the bed.

Purge step

The regenerated bed goes onto a purge step. This is to slowly purge the bed of its regeneration gas volume so that when it actually goes into line there is no significant change in the quality of gas flowing to the cold box.

Repressurisation step.

The regenerated bed is now repressurized to operating pressure.

If the production capacity of the plant is increased by using only extra CO_2 in the reformer feed, then the CO_2 and H_2O amount sent to the dryers will be somewhat greater. This will result in a shorter adsorbtion time, so the guard- or the regeneration time must be decreased. At first it is necessary to decrease the regeneration time, which maybe possible by using more H_2 to regenerate the dryer and by speeding up the separate regeneration steps. If it is still necessary to decrease the guard time to cope with the decreased absortion time the risk of freezing in the cold box will be greater. So the twenty precent capacity increase may leed to a higher risc of freezing in the cold box.

6.8 Conclusion

The capacity increase for 20% more CO production by adding CO_2 to the reformer is possible with the existing MEA equipment, although the 90% flooding in the stripper is high. The heat exchangers in the MEA section need parallel heat exchangers. The dryer section need not to be changed, although the risk of freezing in the coldbox could be greater. Further stretching would require an other stripping column. The columns in the coldbox all have enough overcapacity and also the pumps do not need to be changed.

When using a pre-reformer in combination with adding extra CO_2 there will be no need to change anything because the flows are the same or less and the CO_2 content is about the same.

Literature

- [6.1] Olujić, Ž., 'Introduction to design of Equilibrium Separation Processes'. Laboratory for Process Equipment TU Delft, 1992.
- [6.2] Coulson, J.M. and Richardson, J.F., 'Chemical Engineering Volume 6', Pergamon 1991.
- [6.3] Kohl, A. and Riesenfeld, F., 'Gas Purification', 4th edition, Gulf Publishing Company, 1985.
- [6.4] Design and operating manual carbon monoxide plant II, G.E.P., KTI
- [6.5] Kirk-Othmer, 'Encyclopedia of Chemical Technology', third edition, volume 8

7 CRYOGENIC SEPARATION

7.1 Introduction

The process gas coming from the drying unit containing H_2 , CO, N_2 and CH₄ goes to the coldbox, the cryogenic separation. This separation is based on the difference in boiling points of CO and H_2 + CH₄. The process gas is cooled to a temperature of -203/-193 °C by heat exchangers. For this process, the required refrigeration can be obtained by H_2 expansion and a CO recycle loop. The cold box consists of condensators, flash drums, CO/CH₄ splitters and a CO wash column. Because of the close physical properties the N₂ can not be completely separated from the CO.

7.2 Columns

Feed gas coming from the drying unit is precooled against separation products in heat exchanger E-21. In the reboiler E-22 of the column T-22 the feed gas is further cooled down by producing rectification vapour in the column T-22, and then is fed into the lower part of the column T-21.

In this column, a methane rich liquid is produced in the bottom and a methane-free liquid is produced in the top. In the top cooler E-23 L and U, the top gas of T-21 is cooled down to 201°C by condensing a maximal amount of carbon monoxide. The hydrogen-rich gas is warmed up in E-23 U, enters the first stage of the piston expander EM-21 and is warmed up a third time in E-23 U. After passing E-23 L, it is warmed up in E-21 and leaves the plant. A part of the liquified carbon monoxide is used as reflux for T-21 to wash out the methane from the gas stream.

The remaining part of the carbon monoxide is taken from a chimney tray in the upper part of T-21 and expanded into the H_2 flash column T-24, where the dissolved hydrogen is boiled out.

The methane rich bottom product of T-21 is expanded into the other H_2 flash column T-23, where the dissolved hydrogen is also boiled out. The top products of the two H_2 flash columns, mainly hydrogen are fed to the tail gas. The bottom liquid of T-23 is expanded and used as refrigerant in one pass of the condenser E-23 L.

It is then fed into the middle section of the CO/CH_4 splitter T-22. The expanded bottom liquid of the other H2 flash column T-24 is mixed together with the two expanded carbon monoxide streams from the reboilers E-22 of the CO/CH_4 separation column T-23. Afterwards this stream is used firstly as refrigerant in the condensor E-25 of the column T-24 and enters then the CO/CH_4 splitter as reflux.

The bottom liquid of the column T-22 consisting mainly of methane represents the major part of the tail gas to which the head product of the H_2 flash columns T-23 and T-24 are added. It is warmed up in E-21 and leaves as tail gas. The top product of T-22 represents the carbon monoxide product.

The carbon monoxide recycle is first cooled down against separation products in the heat exchanger E-21 is split into three streams. Two streams provide heat to the reboiler E-22 of T-22 and reboiler E-24 of T-23. The third stream is injected into the H_2 flash column

T-24 as stripping gas. The two carbon monoxide streams from the reboilers E-22 and E-24 are expanded, and mixed to the bottom liquid of T-24.

7.3 Conclusion

The columns all have enough capacity for the 20% capacity increase by either using extra CO_2 in the feed or by using a pre-reformer in combination with the extra CO_2 in the feed. Appendix 7 contains the calculations.

8. NITROGEN REMOVAL

In this chapter the advantages of the removal of nitrogen from the natural gas feed are discussed. The different methods to achieve this are described and simulated where possible.

8.1. Advantages of removal of nitrogen from natural gas feed

The feed of the plant, natural gas from Groningen, contains about fourteen volume percent nitrogen. Because the nitrogen is an inert gas it will flow through the plant without being used anywhere. The energy that is needed to pressurize, to heat and to cool the nitrogen during the process are wastes of energy. When we release the flows from nitrogen they can contain more usefull components, which results in more feedstock and probably in a capacity increase. When the nitrogen is totally or partially removed from the feed gas then the product will have a higher purity than the actual one which has a molar ratio carbon monoxide/nitrogen of 9/1.

After separating the nitrogen from the natural gas there will be two flows, a nitrogen-rich flow and a nitrogen-poor flow. The latter will be the feed of the existing CO plant, the nitrogen rich flow can be fed in the natural gas net of the total plant. This is possible because the amount of gas that the CO plant takes from the gas net of the total plant is about ten percent. So when the nitrogen-rich flow, which is very small compared to the total gasnet is mixed with the natural gas of this gasnet the result will be an increase of the nitrogen that is negligible small.

8.2. Available separation technology

This paragraph will study the different methods that can be applied for the nitrogen separation, which in practice means the separation of nitrogen from methane, because methane is the most important component in natural gas. The following methods will be discussed:

-Absorption -Cryogenic separation -Membranes -Pressure Swing Adsorption

8.2.1. Absorption

Generally absorption is a very suitable method for separating one component. The absorbent is a large molecule that binds the specific component that has to be removed. The problem in this case is that such a molecule is not yet available for nitrogen separation from methane. So absorption is not suitable for this proces.

8.2.2. Cryogenic separation

The most applied method for nitrogen removal from a gas which contains methane is cryogenic separation. Cryogenic separation is separation at low temperatures in order to liquefy one or more components or to create low or high solubilities of one component in another. This paragraph describes two methods of cryogenic separation. The first is an installation with one column, the second uses three columns.

8.2.2.1. Method I

The first method is described in two German patents from 1970 of Messer Griesheim GmbH [lit. 8.1, 8.2]. It is based on a nitrogen containing natural gas that is separated in a nitrogenrich flow and a nitrogen-poor flow, which contains almost all the methane, by one column. It is not known if this installation is operating in practice. The description of this method is the following. Figure 8.1 shows the flowsheet on the next page.

The natural gas enters the plant in pipe 1. In heat exchanger 1 the flow is cooled by the leaving products and then heats the bottom of the column in reboiler 2 in order to create a boil up. Then the flow (3) is flashed in valve 3 to column pressure of about 28 bar and fed into the column. Via pipe 5 the nitrogen-rich flow is withdrawn from the top of the column. This stream can be pure nitrogen, depending on how far the rectification is raised. In this case this is not necessary and also to expensive. The nitrogen-rich flow passes heat exchanger 4, where it is heated, and is then expanded in turbine 5, in which it is cooled deeply. The created coldness is used in heat exchanger 6 in the middle of the column in order to create a reflux, necessary for the destillation. The rest of the column (pipe 11) after which it is splitted (8) in two flows. The largest flow (90%) is flashed in valve 9 in order to create coldness and is then heated by the entering gas. Then it leaves the plant through pipe 14 at a pressure of about 7 bar.

A part of the bottom products flows through pipe 15 and is cooled, after which it is flashed to about 2 bar. This flow is used as an open cycle in order to create a reflux in the top of the column. It is flashed in valve 10 to about 2 bar and is then evaporated in heat exchanger 11, which results in the desired reflux. The pressureless nitrogen-poor stream in pipe 19 flows through heat exchangers 4 and 7 in which it is heated in countercurrent flow with the cooling bottom products. In heat exchanger 12 the cycle medium is brought to about 5 °C and is then compressed to column pressure by compressor 13. After flowing through water cooler 14 and heat exchanger 12 the cycle medium is vapour flow 25.

The way this patent is simulated with Aspen Plus is described in Appendix 8, which also contains the results of the simulation.

Fig. 8.1. Flowsheet of method I.

8.2.2.2. Method II

The second method is described in a Dutch patent from 1972 of Linde A.G., Germany [lit. 8.3]. The invention is related to a process for separating nitrogen from natural gas by rectification at low temperatures. The carbon dioxide, together with the two or more C-atoms containing hydrocarbons and a part of the methane, is separated by rectification as a high boiling fraction at medium pressure level. The CO_2 -free fraction is separated in a nitrogen and a methane fraction by further rectification. After heat exchanging with the hot stream which enters the system, the latter two streams are taken from the system as high boiling fractions. It is not known if this installation is operating in practice. The description of this method is given in the following. Figure 8.2 shows the flowsheet on page 8-6.

In compressor 1 the natural gas is compressed to 48 bars. Assuming that the natural gas contains no water, so the dryers (2) are not needed, the gasmixture is cooled in heat exchanger 3, so that the higher hydrocarbons (C_5 +) are almost completely condensed. In separator 4 the liquefied higher hydrocarbons are separated. The vapour fraction is condensed in heat exchangers 5 and 6. After being flashed in valve 7, the mixture enters the medium-pressure column (33 bars) 8.

The bottom product of this column has the following composition: 3 mole-% N_2 , 91.5 mole-% CH_4 , 3.6 mole-% C_2H_6 , 0.5 mole-% C_3H_8 , 0.1 mole-% C_4H_{10} and 1.3 mole-% CO_2 . This fraction is a product and carried off at 175 K via pipe 9, vapourized and heated in heat exchangers 5 and 3 and delivered at 32 bars.

The overhead product of column 8, containing 36 mole-% N_2 and 64 mole-% CH_4 , is carried off via pipe 10 at a temperature of 164 K. In heat exchanger 11 this vapour fraction is partially condensed at 151 K. The liquid fraction contains 68 mole-% CH_4 and is gathered in separator 12. The liquid partially returns to column 8 via pipe 13 as a CO_2 -wash stream. After being flashed, the vapour fraction enters colomn 15 via pipe 14 at 28 bars. The bottom temperature of this column is 148 K; the percentage nitrogen of the vapour is 30 mole-%.

The remaining part of the vapour from separator 12 is carried off via pipe 16 and together with the bottoms of column 15 cooled in heat exchanger 17 at 112 K and enters via valve 18 the low-pressure column 19 at 1.5 bars. The wash stream needed for this column is gained in column 15. At the top of this column, liquefied nitrogen containing 5 mole-% CH₄ with a temperature of 123 K is carried off via pipe 20 and partially returns via pipe 21 to column 15 as a methane-free wash stream. The remaining part is cooled in heat exchanger 22 to 86 K and after being flashed, enters column 19 as a wash stream.

The liquefied CH_4 -fraction at the bottom of column 19 still contains 3 mole-% nitrogen and is almost CO_2 free (50 ppm). This fraction, with a temperature of 109 K, leaves column 19 via pipe 23, compressed with pump 24 to 13 bars and heated in heat exchanger 17 to 146 K. At point 25 almost completely condensed circulation-methane is added. This stream is compressed by compressor 26 to 36 bars, cooled in heat exchangers 3 and 5, condensed in heat exchanger 6, subcooled in heat exchanger 27 to 160 K and flashed in valve 28 to 13 bars, taking a temperature of 151 K. The united CH_4 -streams are vapourized in heat exchanger 11 in countercurrent flow with condensed CO_2 -free overhead product from column 8, and

heated to 158 K. After heating in heat exchangers 27, 5 and 3, the stream is taken from the system at ambient temperature. The amount circulation-methane is taken at point 33 and sucked by compressor 26. The CO_2 -free methane fraction is mixed with the higher hydrocarbons from separator 4, and taken from the system via pipe 30. The percentage carbon dioxide and higher hydrocarbons in stream 30 is 2 mole-%.

The separated nitrogen leaves the top of column 19 as a vapour fraction at a temperature of 83 K and a percentage of N_2 of 99.5 mole-%. This stream is heated in heat exchangers 22, 17, 11, 27, 5 and 3 to ambient temperature and taken from the system via pipe 32 at atmospheric pressure.

The way this patent is simulated with Aspen Plus is described in Appendix 8, which also contains the results of the simulation.

Fig. 8.2. Flowsheet of method II.

8.2.3. Membranes

A very actual way of gas separation is separation by membranes. Membranes are materials with a certain porosity, which gives them the ability of working as a sieve. For the purpose of liquid separation membranes are already being used for a long time, but gas separation by membranes in a commercial way is a recent method.

The principle of gas separation by membranes is simple. When a component has to be removed from a gas mixture in a certain room a membrane can be placed in this room in such a way that two separated rooms are formed. When the pressure in both rooms is equal, no separation will occur. The membrane behaves the same for all gas particles from both sides. Even when one component goes much easier through the membrane than the other components, this counts for both sides and netto nothing happens. Only when a difference in pressure is created between both rooms, for example by making one vacuum, separation will occur. Then there is a stream in one direction and the component that goes easy through the membrane will reach the vacuum room faster then other components, so the concentration of this component in the vacuum will increase. When the vacuumpump is set off, the separation stops and after a while the begin situation is reached again. So only when there is a difference in pressure over the membrane gas separation will occur. The different gasses flow netto to the room with the lowest concentration, but each in it's own tempo. This depends on the properties of the membrane, the type of gas and the interaction between these two factors. The passage of the gasmolecules through the solid material of the membrane is attended by forming and breaking up weak physical-chemical connections which vary by the the different components that are used.

In fact two processes are important: the solution of the gas in the solid material and the transport of the gas through it. Essential is the first step: the binding of the gas on the surface of the solid membrane. The next step is breaking up the first connection and forming new one's deeper in the membrane.

If the forces of the connections are small, few gas will dissolve, while the diffusion through the membrane passes relatively fast. When the connections are too strong, then the gas molecules never leave there places and no diffusion will take place. The transport velocity through the membrane depends on the combination of these effects. This explains that a physical-chemical active compound like water easier passes the membrane than an inert gas, like nitrogen. The processes are of course dependent on temperature.

For the amount of gas (F) that passes the membrane per second a simple relation counts:

$$F = \frac{P * O * \Delta p}{d} \tag{8.1}$$

This means that the gas stream is proportional to the surface O of the membrane and to the pressure difference Δp over the membrane and inversely proportional to the thickness (d) of the separating layer. The constant of proportion P contains the structure properties of the membrane and the hidden interaction processes and is called the "constant of permeability". This constant is a function of temperature.

For a given membrane material P varies with different gasses. The ratio of the P-values of

two different gasses is called the selectivity (α) of this couple. For a given gas P varies with different membrane material.

There are two classes of membranes: organic and anorganic membranes. Organic membranes are generally polymers. For gas separation polymeric membranes with pores are not usefull because of their bad selectivity. Better useful are the polymeric membranes which are close, but they can not be seen as simple sieves anymore. In fact this is a process where gas dissolves in the polymer and the gas molecules whip from one hole to another.

There are some polymeric materials that are already commercial for gas separation: polydimethylsiloxane (PDMS), polydimethylfenyleenoxide (PPO), cellulose acetate and polysulfone. The constant of permeability and the selectivity are very different for each of this materials.

For practical uses it is necessary to have a great pressure difference over the membrane, that is as thin as possible, in order to get a gas throughput as great as possible. The thickness of the membrane is the crucial factor in this process, because with a thinner membrane the pressure drop decreases, which makes the process cheaper, with regard to the energy demand of pumps or compressors. The problem however is the mechanical strength of the membrane, that of course decreases by making it thinner. This problem was solved by making an asymmetric membrane, that means asymmetric in the structure of the pores. Such a membrane consists of a very compact top layer, with a thickness of a few micrometres or less, that has good selectivity properties, layed on a thicker support layer with a thickness of about a tenth millimetre, that takes care of the mechanical strength. This support layer has a very open pore structure and a resistance for the gas that can be neglected.

Our question was what the possibilities are of a membrane with regard to nitrogen separating from natural gas, or practically the same, with regard to separating nitrogen from methane. This means we looked for a membrane that permeates nitrogen better than methane, thus a membrane with a selectivity $\alpha(N_2/CH_4)$ greater than one. A membrane that permeates methane better than nitrogen is also possible, but since the amount of methane is much greater than the amount of nitrogen in the natural gas (43.3 kmol CH₄ versus 7.5 kmol N₂ per hour) this is not practical, except for a selectivity that is very much smaller than one. For moderate selectivities the most practical way to separate two components is to let the smallest amount of the two permeate the fastest in connection with the process time.

Methane has a higher solubility than nitrogen in most liquids and polymers, so we expect that most membranes have a $\alpha(N_2/CH_4)$ less than one. This proved to be true [lit. 8.4]; cellulose acetate has $\alpha=0.73$ and polysulfone has $\alpha=1.0$. So with cellulose acetate nitrogen and methane can be separated, but this process won't be a very fast one, for the reasons described above. At this moment the technology is not yet able to separate nitrogen and methane in a

commercial way, but some companies, like Separations Technology Associates [lit. 8.5], are active in developing such membranes.

8.2.4. PRESSURE SWING ADSORPTION

Introduction

Separation of gasses accounts for the major production costs in chemical, petrochemical and related industries. There has been a growing demand for economical and energy-efficient gas separation processes. Although cryogenics remain the most widely used process for this purpose, the last two decades have seen a tremendous growth in research activities and commercial applications of adsorption-based gas separation processes [lit. 6]. The increasing interest in this area is also reflected in the large number of research articles and patents published in the field of adsorption separation. Such a growing relevance of this area can be attributed to the following factors:

- Development of synthetic and more selective adsorbents.
- An improved theoretical understanding of adsorption from gaseous mixtures.
- A better understanding of multicomponent adsorber dynamics.
- Development of an efficient pressure swing cycle.

The basic principle of PSA

Separation by an adsorptive process is based on the selective accumulation of one or more components of a gas mixture on the surface of a microporous solid. When a gaseous mixture is exposed to an adsorbent for a sufficient time, an equilibrium is established between the adsorbed phase and the gas phase. The adsorbed phase often has a composition different from that of the bulk phase. The gas phase becomes richer in the less selectively adsorbed component, as depicted in Figure 8.3 on the next page.

The attractive forces responsible for adsorption are of the van der Waals type. Desorption can be achieved either by increasing the temperature of the system or by reducing the adsorbate pressure. The desorption step also regenerates the adsorbent. Thus, the adsorptive separation process consists of a cyclic sequence of adsorption and desorption steps. When desorption is achieved by decreasing the pressure, the process is called pressure swing adsorption (PSA).

One of the components is selectively adsorbed at higher partial pressure and desorbed subsequently by lowering the partial pressure. The change in the partial pressure of the component can be caused either by decreasing the total pressure, by changing the composition of the gaseous mixture, or by doing both simultaneously. Figure 8.4 on the next page shows the amount of gas adsorbed as a function of partial pressure at a particular temperature. The amount adsorbed decreases along the curve from point A to point B with a decrease in the partial pressure of the component.

SELECTIVITY OF ADSORPTION

A > B

Fig. 8.3. Principle of adsorptive separation.

Qads = f (T, P,....)

Fig. 8.4. Adsorption isotherms showing pressure and temperature swings.

8-10

The adsorption capacity available for separation in PSA is the difference in the capacities for the given component at the two pressures. However, in practice, due to the heat of adsorption, there is an associated change in the temperature of the system and hence the working PSA capacity is slightly different, as depicted in Figure 8.5.

Fig 8.5. Adsorption isotherms showing pressure and temperature swings and PSA working capacity.

The primary steps in PSA

The PSA system in its basic form consists of two beds which are alternately pressurized and depressurized according to a programmed sequence. A two-bed system is shown in Figure 8.6 on the next page. The basic steps of the PSA process are shown in Figure 8.7 on page 8-13 and summarized in the following.

1. Feed pressurization

The feed gas is compressed into an adsorbent-fixed bed from one end, with the other end being closed. The gas freed from the adsorbed components is accumulated at the closed end.

2. Product release

At the upper operating pressure, the adsorbate-free gas, usually the product, is withdrawn from the far end of the bed while feed flow is maintained. Three distinct regions develop inside the adsorbent bed, as shown in Figure 8.7 on page 8-13.

- Near the feed entry the bed is saturated with the adsorbate and the gas phase has the composition of the feed.
- Near the exit the bed is still adsorbate free and the gas phase has the product composition.
- The region lying between the above two ends is called the mass transfer zone. This is where adsorption is occurring, and the gas phase composition changes rapidly along the axial position. The adsorption front moves along the bed as more feed

Fig. 8.6. Schematic diagram of a two-bed PSA process.

is introduced. Eventually the bed is completely saturated, with the mass transfer zone having reached the end of the bed, at which point the feed is said to breakthrough into the product stream.

3. Depressurization

To regenerate the saturated bed, the next step involves reducing the operating pressure (blowdown or depressurization). The adsorbate is largely desorbed into the gas phase, released as a waste stream, or collected as a product in case it is valuable.

4. Low pressure purge

To complete the regeneration of the bed, the adsorbent is purged with product quality gas at low pressure, usually countercurrent to the feed flow from the product end. In this case also, distinct regions form and the purge gas will eventually breakthrough the waste.

PSA is well suited to rapid cycling, and it generally operates at a relatively low adsorbent

loading because selectivity is greatest in the Henry's law region. A high pressure operation is desirable because it minimizes the purge loss, but this gain is offset by the greater blowdown losses for a high pressure system. A low temperature operation is needed to maximize capacity and selectivity, but cooling below the ambient temperature is generally not economical. Some of the points that make separation by PSA economically attractive are the following:

Fig. 8.7. The basic steps in a PSA process.

- A high concentration of the desired and less strongly adsorbed component in the gas mixture.
- Moderate purity requirement for the desorbed product.
- A low heat adsorption (less than 30 kJ/mol) of adsorbable component to facilitate rapid desorption.
- A linear adsorption isotherm for the strongly adsorbed component.
- Small adsorption/desorption pressure ratio.

Major developments in the PSA process

One of the major disadvantages of the earliest PSA system was low recovery of the product gas. For example, in the separation of air for oxygen production, the recovery was rarely

above 25% in a simple two-bed system. To overcome this disadvantage, a variety of process modifications have been made. A critical review of the literature during the past two decades shows that the major part of research in this area has been directed towards improving the process economy by enhancing the product recovery. Some of the most important developments are briefly described in the following.

Pressure equalization step

The major operating cost in PSA is the energy required for pressurization of the feed. In the early PSA systems a large part of this energy was lost during blowdown. Berlin[lit. 2] suggested a pressure equalization step to conserve this energy. After the first bed has been purged and the second bed has completed the adsorption step, instead of blowing down the second bed directly, both the beds are interconnected to equalize the pressure. The first bed is partially pressurized with the product-rich gas from the outlet of the second bed. Following pressure equalization, the beds are disconnected and the first bed is pressurized with the feed gas while the second bed is vented to complete blowdown. Inclusion of this step in the PSA process sequence has not only minimized energy losses but also resulted in a substantial increase in recovery.

Multibed system

More complex processes, including three- and four-bed systems, have been developed to take advantage of the pressure equalization step. A four-bed PSA system is shown in Figure 8.7 on the next page. In this system, one bed is in the adsorption step and the other three beds are in various stages of repressurization, depressurization or purging. The principle is an extension of the Berlin [lit. 2] system.

The process operates at two intermediate pressures between the feed pressure and the exhaust pressure (usually atmospheric). At the end of the adsorption step, bed 2, which is at high pressure, is connected at the discharge end to column 4, which has just completed the purge step and is essentially at atmospheric pressure, and the pressures are equalized. In this way the product-rich gas is conserved and used for partial pressurization of bed 4. Final repressurization of bed 4 is accomplished by using product gas from bed 1, and the feed is connected to the inlet of column 4. A fraction of the remaining gas from bed 2 is used for reverse-flow purging of bed 3. When the pressure in bed 2 has fallen to required level, beds 2 and 3 are disconnected and the residual gas from bed 1 and repressurized to the first intermediate pressure with gas from bed 4, which has just completed the adsorption step. The final repressurization is accomplished by using product gas, and the feed is then connected to the inlet of bed 2.

LESS ADSORBED

PRODUCT

Fig. 8.7. Schematic diagram of a four-bed PSA process.

The advantages over the two-bed process at the cost of a more complex flow sheet are the following:

- Considerable reduction in power consumption.
- High product recovery.
- High purity product.
- Constant product flow rate.

The use of more than one type of adsorbent in a single PSA unit, a guard bed to remove impurities, and rapid cycling to improve the adsorbent productivity are some of the other recent improvements. Other developments in the process include vacuum swing adsorption (VSA), polybed PSA (up to 10 beds), and multiproduct recovery.

Adsorbents used in PSA

The choice of an adsorbent for PSA application is governed by its adsorption capacity and selectivity for the desired component. The selectivity or the separation factor of component A over B is given by

$$\alpha_{A|B} = \frac{x_A y_B}{y_A x_B}$$
(8.2)

where x and y are the adsorbed and the gas-phase concentrations. Simulation studies for countercurrent adsorption separation processes reveal that for the process to be economical, the minimum acceptable intrinsic separation factor for the desired component is about 3. With a separation factor of less than 2, it is difficult to design a satisfactory process.

A study by T.C. Frankiewicz and R.G. Donnelly [lit. 7] shows that nitrogen is weakly adsorbed on the surfaces of numerous zeolites. Methane is a weakly polarizable molecule which, as a result of this polarizability, is also weakly adsorbed on zeolites. In general, the heat of adsorption for CH_4 is equal or slightly greater than the heat of adsorption for N_2 and as a result an adsorption separation of these gasses either does not occur or happens by a weakly selective CH_4 adsorption. In the 1950s, there was discovered that N_2 could be selectively adsorbed from a CH_4/N_2 mixture by cooling a 4A molecular sieve to between 0°C and -78°C. However, this system was limited by slow kinetics, a weak selectivity and the need to thermally regenerate the sorbent.

In the begin 1980s, the naturally occurring zeolite clinoptilolite (clino) was found which can selectively adsorb N₂ in the presence of CH₄ near ambient temperature. The zeolite designated ZBM-15 has the largest ability to separate a N₂/CH₄ mixture.

Given the ability of the clino ZBS-15 to effect CH_4/N_2 separation, the named study reviews the results from several series of pressure swing CH_4/N_2 separation experiments and shows how to design a process to use this effect. An economic evaluation suggested the process would be economically viable for small plants (2x10⁶ ft³/day).

The pressure swing separation of CH₄ and N₂.

In order to investigate the process aspects of the pressure swing separation of CH_4 and N_2 the apparatus depicted in figure 8.8 on the next page, was constructed. Valves V1 through V5 are fitted with electric switching mechanisms that are interfaced to a computer. The two pressure transducers, three mass flow meters, and column temperature are also monitored by the same computer. All gas effluent from the apparatus through vent or vacuum is sampled through a molecular leak valve for analysis by the quadrupole mass spectrometer. The mass spectrometer in turn reports these compositions to the computer. Once a run is initiated, the apparatus is under complete control of and monitored by the computer.

The back pressure regulator (BPR) is set to give the desired pressure in the adsorption column (C1 or C2) being used. Although it is possible with this apparatus to involve both columns

Fig. 8.8. A schematic drawing of the computer controlled pressure swing apparatus.

alternately in a separation experiment, this was not done during the experiments described. so that all vent and vacuum regeneration gasses could be analized for every cycle in the run. During a pressure swing run, gas enters the adsorption column, C1 or C2, through valve V2. Valve V3 is set to allow gas to exit the selected adsorber through the back pressure regular (BPR) as soon as the desired operating pressure is achieved. For depressurization, V3 is switched to allow the column exit gas to bypass the BPR and be vented through valve V4. V4 is a vacuum/vent selector and V5 allows a single pressure transducer to monitor system pressures at up to four selected points.

A sample data plot is shown in figure 8.9 on the next page. Feed gas is 40% N_2 and 60% CH_4 . A mass balance is calculated for CH_4 and N_2 for each step in the process as well as for the complete adsorption cycle. The mass balance includes a Van der Waals calculation of the amount gas stored in column voids and the volume of gas adsorbed on the zeolite.

Fig. 8.9. Adsorber parameters are plotted versus time for a pressure swing run. Note the common scale for $\%N_2$ and adsorber pressure.

Table 8.1 on the next page lists the independent variables and their respective ranges which were included in the described study. Dependent variables can be defined in numerous ways depending upon the objectives of the particular experimental series being conducted. Typically, a pressure swing adsorption cycle program is input to the apparatus's computer control program, e.g., per figure 8.9, and the cycle repeated under computer control until the experimental objective is achieved. For this work, 6 to 24 cycles were normally used with total run times up to 8 hours.

Figures 8.10 on the next page and figure 8.11 on page 8-20 illustrate changes in two dependent variables: dynamic N_2 adsorption capacities and CH_4/N_2 separation factors. Independent variables are column temperature, operating pressure, and time allowed for vacuum regeneration. This experimental series used a constant feed rate of 6.0 l/min over a time of 1.00 min into a 1 inch diameter x 24 inch long adsorber filled with 180 g of zeolite. Column depressurization took place for 1.00 min. and this was followed by a variable length vacuum regeneration.

Table 8.1. Operational variables and variable ranges studied for the pressure swing separation of CH₄ and N₂.

Gas Feed Rate	16.7 - 50.0 scc/g. of zeolite-min.
Feed gas composition	10 - 40% N ₂
Adsorber Temperature	0° - 55°C
Operating Pressure	75 - 300 psia
Adsorber Granule Size	.18 - 3.5 mm
Column Regeneration	0 - 20 min. vacuum or CH4 purge

Fig. 8.10. Average SCC of N₂ adsorbed per gram of the clino ZBS-15 for a 3 variable factorial design experimental series. Feed was 33.3 SCC/g of zeolite per cycle of 40% N₂/60% CH₄ gas.

Fig. 8.11. CH₄/N₂ separation factors for a 3 variable factorial design experimental series. Feed was 33.3 SCC/g of zeolite per cycle of 40% N₂/60% CH₄ gas.

Adsorbent particle sizes, although not a design variable, did affect some results for hydrodynamic reasons. As can be seen from the centerpoints, a slight deterioration in column performance resulted with the switch from 60x80 to a 6x10 mesh adsorbent. Although this effect was real and reproducable, the effects on the three design variables were generally more significant.

At the bottom of figure 8.10, capacities derived from the clino N_2 adsorption isotherms are also listed. The factorial design results suggest that over 90% of the theoretical N_2 adsorption capacity can be dynamically used in a pressure swing process provided adsorbent regeneration is adequate. The column temperature does not strongly effect dynamic N_2 adsorption capacity, but does influence N_2/CH_4 separation factors in the process. This results from a slowing of CH_4 kinetics as temperature is decreased.

The longest step in the pressure swing cycle for CH_4/N_2 over clinoptilolite is regeneration. Because this step involves vacuum and represents unproductive time in the process, regeneration was closely studied. Regeneration times were varied from 10 sec. to 20 min. and regeneration mode was changed from vacuum (approx. 20 torr system pressure) to quiescent to CH_4 purge. The results for 5 of these runs are summarized in figure 8.12 for a 20% N_2 , 80% CH_4 feed gas. It appears that a vacuum regeneration time of at least 6 minutes is required to maintain product quality over multiple cycles. Other modes of regeneration were not succesful and it appears that a process design cannot reasonably incorporate anything but vacuum regeneration.

Process design and economics

Using the detailed mass balance data for the experiments described above, a commercial process design was developed and subjected to an economic analysis. The process involves the use of 10 adsorbed beds sized to handle 2.0 or 20.0×10^6 SCF/day of feed gas containing 20-30% N₂ and 70-80% CH₄. The product varies from 90-95% methane depending upon the feed composition. Pressure swing separation costs were found to be \$ 0.35/10⁶ Btu for the larger plant and \$ 1.20/10⁶ Btu for the smaller plant. Corresponding costs for cryogenic separation of the same feedstocks were estimated to be \$ 0.29/10⁶ Btu for the 20.0 x 10⁶ SCF/day plant and \$ 1.66/10⁶ for the smaller plant.

Thus pressure swing separation of CH_4/N_2 appears to be viable for small plants.

Fig. 8.12. Product quality from an adsorber varies as the regeneration time is varied. Feed gas is 20% N₂/80% CH₄.

Potential adsorbents

Although there is some room for improvement in the PSA process, the potential gains in process economics in the future are likely to come from the development of new and improved adsorbents. Major advances have been made in the synthesis of new zeolite structures since the development of the first synthetic zeolite A. The development of silicate, ZSM type, metallosilicates, aluminophosphates ALPOs, silicoaluminophosphates SAPOs, metalloaluminophosphates MeAPOs, particularly the more recent synthesis of VPI-5, aluminoborates, and beryllophosphates shows that the field of zeolite synthesis is yet to reach its maturity even after the considerable synthetic efforts of the last 40 years. At present, mainly A, X, mordenite, and some natural zeolites are being commercially used as adsorbents in the separation of gasses by PSA. The commercial potentials of such zeolites as silicates. ZSM type, and the ALPOs are yet to be explored. These present interesting and varied surfaces, and they call for extensive studies from the adsorption point of view. For example, silicate has a highly hydrophobic surface, while A and X are strongly hydrophilic in nature. ALPOs have an intermediate hydrophilicity. This class of zeolites may become specialized adsorbents for separation processes. Recent studies have shown that silicalite is a potential adsorbent for the separation of N_2/CH_4 and CO_2/CH_4 , with selectivities for N_2 and CO_2 being more than 3, as shown in Table 8.2.

Temperature (K)	CO ₂	CO ₂ /CH ₄	CH₄/N₂
273	20	3.5	3.5
283		3.0	2.8
298		2.7	2.7
323		2.5	2.2
343	4	2.0	-

Table 8.2. Separation factors for sorption of CO₂, N₂, and CH₄ on silicate.

8.3. Conclusion

In order to remove nitrogen from the natural gas feed, we studied four different methods.

The first, absorption, is a suitable method for separating one specific component. For our situation it is not, because there is no suitable absorbent available for N_2/CH_4 separation.

The second method, cryogenic separation, is a method that is very often used in the separation of nitrogen from methane. Two possibilities were studied: a method which makes use of one column, and a method that uses three small columns. Both methods were patented more than twenty years ago.

The first method is able to remove about 81 percent of the nitrogen. The removed nitrogen including a little methane and some other components are mixed with the total gas net of the entire plant. The difference in concentrations will be very small, so they don't have consequences for other processes. This method costs about 8 million Dfl. No costs for the fact that the method is patented have to be calculated, because the patent is older than twenty years, so the patent is not protected anymore.

The second cryogenic method removes 79.6 percent of the nitrogen; 3.3% of the N₂ remains in the feed. The methane-purity raised from 81.3% to 91.8%, and only 0.03 kmol/hr CH₄ (0.068% of the total feed) remains in the removed nitrogen stream. The latter stream is mixed with the total gas net. Like the first method, no costs for the fact that the method is patented have to be calculated, because the patent is older than twenty years.

The costs of both methods could not be estimated, since the heat exchanging surfaces of the multi-flow heatexchangers, which are necessary for cost calculatings, could not be estimated. Because in both methods various multi-flow heat exchangers are used, the calculating of the costs of the plants became impossible.

The third nitrogen-removing method that was studied is separation by membranes. Compact polymeric membranes are able to separate nitrogen from methane, but since their selectivity is not good enough, the separation is slow and not very suitable. This is also the reason of the fact that membranes for N_2/CH_4 separation are not commercial yet.

The last investigated method is pressure swing separation. According to the experiments described, pressure swing adsorption is viable for small plants $(2x10^6 \text{ ft}^3/\text{day}, \text{ which is about } 0.6 \text{ m}^3/\text{sec.})$. Since the present CO-plant has a lower capacity, is pressure swing adsorption a possible method to remove nitrogen from natural gas.

Literature

- [8.1] Messer Griesheim GmbH, Frankfurt, West-Germany Patent 2,022,954 (2 Dec. 1971).
- [8.2] Messer Griesheim GmbH, Frankfurt, West-Germany Patent 2,055,229 (18 May 1972).
- [8.3] Linde A.G., Wiesbaden, Dutch Patent 7205577 (9 November 1972).
- [8.4] E.W. Funk and N.L. Norman, Purification of natural gas by membranes, Gas Separation Technology,
- [8.5] E.J. Hoffman, K. Venkataraman and J.L. Cox, Membrane separation for subquality natural gas, Energy Progress, March 1988, Vol.8, No. 1.
- [8.6] R.V. Jasra, N.V. Choudary and S.G.T. Bhat, Separation of gases by pressure swing adsorption, Separation science and technology, 26(7), pp. 885-930, 1991.
- [8.7] T.C. Frankiewicz and R.G. Donnelly, Methane/Nitrogen separation over the zeolite clinoptilolite by the selective adsorption of nitrogen, American Chemical Society, 1983.

9. PLANT COST CALCULATIONS

9.1. Investment cost

There are several methods to determine the investment cost. An more accurate method needs more detailed information than a method that is not so accurate. The following methods in order of accuracy can be used:

- sales method (first indication)
- scale up method (to determine the influence of capacity)
- 'step' method (to compare different pathways), Zevnik-Buckanan, Wilson, Taylor, etc.
- 'factor' method (a global absolute determination), Lang, Holland, Miller, Guthrie, etc.
- office type (a more detailed absolute method)
- detailed method

The factor method is used here to compare new possibilities for the CO plant (improvements) with the already existing plant and to determine the investment cost. The method requires only the available information about the process equipment, furthermore it is relatively easy and quick to use.

9.1.1. The factor method

The investment cost of a plant, determined with the factor method, is based on the purchase costs of the most important pieces of equipment of the process, these are:

- furnaces
- pressure vessels
- columns
- heat exchangers
- compressors
- pumps

To determine the purchase costs of these pieces of equipment the equations of Dr. Ž. Olujić (Lit.9.1) are used; for comparison the prices from Webci (Lit.9.2) are used.

The purchase cost equipment (PCE) is multiplied with two factors, the f_a factor, to determine the Physical Plant Cost (PPC), and the f_b factor, to estimate the Fixed Capital (FC). Thus:

 $PPC = f_a * PCE$ $FC = f_b * PPC$

The f_a and the f_b factor can be found in Table 9.1 (Lit.9.3). For the CO plant no storage facilities are needed, and, as the process streams are all fluids, the f_a factor equals 3.25 and f_b equals 1.45. To determine the total investment cost the working capital (5 to 30% of the

fixed capital) must be added to the fixed capital.

	Process type			
Item	Fluids	Fluids- solids	Solids	
1. MAJOR EQUIPMENT, TOTAL PURCHASE				
COST	PCE	PCE	PCE	
f_1 Equipment erection	0-4	0.45	0.50	
f_2 Piping	0.70	0-45	0-20	
f_3 Instrumentation	0.20	0-15	0-10	
f_4 Electrical	0-10	0-10	0-10	
f_5 Buildings, process	0-15	0-10	0-05	
*f ₆ Utilities	0-50	0-45	0-25	
*f7 Storages	0-15	0-20	0-25	
*f ₈ Site development	0.05	0-05	0-05	
*f, Ancillary buildings	0.15	0-20	0-30	
2. TOTAL PHYSICAL PLANT COST (PPC) PPC = PCE $(1 + f_1 \dots + f_9)$			202 3230	
= PCE ×	3.40	3.15	2-80	
f_{10} Design and Engineering	0-30	0-25	0-20	
f_{11} Contractor's fee	0.05	0-05	0-05	
f_{12} Contingency FIXED CAPITAL = PPC(1+ $f_{10}+f_{11}+f_{12})$	0-10	0-10	0-10	
= PPC ×	1-45	1-40	1.35	

Table 9.1.	Typical	factors for	the	estimation of	project	fixed	capital	cost
------------	---------	-------------	-----	---------------	---------	-------	---------	------

* Omitted for minor extensions or additions to existing sites.

9.1.2. The purchase cost of the equipment

The purchase cost estimation by Dr. Ž. Olujić is given in US dollars (\$). The correlations use an I factor to correct for the annual inflation. This index I can be found in the Chemical Engineering Plant Cost Index of the Journal 'Chemical Engineering' (see Table 9.2).

Table 9.2. The chemical engineering plant cost index.

For the different pieces of equipment the following I values were found (December 1992):

Type of equipment	CE index
Furnace	357.8
Pressure vessel	357.8
Column	357.8
Internals	357.8
Packing	391.0
Heat exchanger	357.8
Compressor and pump	560.3
Driver	381.9

Table 9.3. The I values of different pieces of equipment

9.1.2.1. The furnace

The correlation developed for furnaces includes both the furnaces for heating the process fluids and the cracking and the reforming furnaces:

$$C_{e} = C_{e} * F_{e} * F_{e} * F_{e} * F_{e} * (I/336.2)$$
(9.1)

Here C_{fuo} (US \$) is the base cost (mid 1985), F_m (-) the material of construction factor, F_p (-) the design pressure cost factor, I (-) the Chemical Engineering Plant Cost Index and 336.2 the CEPC index for this type of equipment in 1985. The corresponding cost factors can be found in the following table, and the base cost is correlated against the heat transfer duty (3000 < Q(kW) < 150000):

$$C_{fm} = \exp(5.639 + 0.85*\ln Q)$$

(9.2)

Table 9.4. Cost factors of furnaces

Material of construction	F _m	Design pressure (bar)	F _p	Type of furnace	Ft
Carbon steel	1	10	1	Heater	1
Alloy steel	1.36	50	1.1	Pyrolysis	1.1
Stainless steel	1.6	100	1.25	Reformer	1.5

9.1.2.2. The pressure vessel

Pressure vessels are columns, drums, tanks and reactor shells. The cost of a pressure vessel is calculated from:

$$C_{pv} = C_{pvo} * F_{m} * F_{p} * (I/336.2)$$
(9.3)

The correlation for the base cost is:

. .

$$C_{pvo} = (a + b^*l)^* d^{1.1}$$
(9.4)

where 1 (m) is the length or height of the vessel and d (m) the corresponding internal diameter. The values of the coefficients a and b are given in Table 9.5.

Table 9.5. Vessel coefficients.

Vertical vessels	а	b	Horizontal vessels	a	b
1.5 < l(m) < 5	1500	1100	$\begin{array}{c} 1.5 < l(m) < \ 6 \\ 6 & < l(m) < 25 \end{array}$	890	705
5 < l(m) < 90	1294	1141		512	768

Table 9.6. Cost factors for material of construction and design pressure

Material of construction	Fm	Pressure (bar)	F _p
Carbon steel (CS)	1	1 - 5	1
CS, SS-lined	2.3	5 - 10	1.1
Stainless steel (SS)	3.7	10 - 20	1.2
CS, Monel-lined	3.9	20 - 30	1.4
Monel	6.4	30 - 40	1.6

9.1.2.3. The column

The shells of columns may be considered as vertical pressure vessels, therefore correlation (9.3) can be used for prediction of the corresponding price. In addition the cost of column internals has to be estimated. Hence, the correlation for the cost of a distillation, absorption or desorption column is:

$$C_{co} = C_{pv,vert} + C_{int}$$
(9.5)

where index 'vert' denotes vertical pressure vessel and index 'int' the cost of column internals which differs for tray and packed columns.

9.1.2.3.1. Correlations for cost of trays

The cost of trays may be estimated by:

$$C_{int} = N_{ir} * C_{ir} * F_{m} * F_{nt} * F_{it} * (I/336.2)$$
(9.6)

where N_{tr} (-) is the number of trays in the column, F_{nt} (-) cost factor for the number of trays and F_{tt} (-) cost factor for the tray type. C_{tr} (US \$) is the base cost for a valve tray of carbon steel, which may be estimated for columns with internal diameters d (m) from 0.3 to 4 m by:

$$C_{n} = 58.7 + 88.4^{*}d + 52.9^{*}d^{2}$$
(9.7)

Values of characteristic cost factors are given in Table 9.7.

Tray type	F _{tt}	Material of construction	F _m	Number of trays	F _{nt}
Sieve Valve Bubble cap Grid	1 1.45 2.90 0.90	CS SS	1 1.7	20 10 7 4 1	1 1.5 2 2.5 3

Table 9.7. Characteristic cost factors of trays.

9.1.2.3.2. Cost of packings

The prices for random packings obtained in 1990 are ± 5000 f/m³ or ± 2940 \$/m³ (1 \$ = f1.7) for pall rings (stainless steel) with a diameter of 50 mm. For distributers the prices are ± 6000 f/m³ or ± 3530 \$/m³. For cost updating the given prices must be multiplied with (I/393), where I is the CE index of packings (I=391).

9.1.2.4. The heat exchanger (shell and tube)

The cost of a shell and tube heat exchanger is calculated from:

$$C_{he} = C_{heo} * F_{p} * F_{t} * (I/336.2)$$
(9.8)

 C_{heo} (US \$) is the base cost, which is given as a function of the transfer area A (m²).

$$C_{beo} = \exp\left(a + b^* \ln A\right) \tag{9.9}$$

9-5

The values of coefficients a and b as well as the values of corresponding cost factors are given in Tables 9.8 and 9.9.

Material of Shell/Tube	Material of construction Shell/Tube		b
CS/CS	$\begin{array}{l} 10 < A(m^2) < 900 \\ 10 < A(m^2) < 900 \\ 10 < A(m^2) < 900 \\ 10 < A(m^2) < 60 \\ 60 < A(m^2) < 900 \end{array}$	7.085	0.656
CS/Brass		6.980	0.7133
CS/SS		6.587	0.9955
SS/SS		7.439	0.8861
SS/SS		8.6063	0.601

Table 9.8. The coefficients of shell and tube heat exchangers.

Table 9.9. The cost factors of shell and tube heat exchangers.

Design pressure (bar)	Fp	Type of heat exchanger	Ft
1 - 10 10 - 20 20 - 30 30 - 50 50 - 70	1 1.1 1.25 1.3 1.5	Kettle reboiler Floating head U-tube Fixed tube	1.4 1 0.85 0.8

9.1.2.5. The compressor

The cost of gas transporting equipment does not include a driver, whose cost must be estimated separately. The correlation includes the cost of the base device and a material of construction cost factor:

$$C_{com} = C_{como} * F_m * (I/418.3)$$
 (9.10)

where the base cost C_{como} is correlated against the power consumption (kW):

$$C_{como} = [exp (a + b*lnP)] * 0.6$$
 (9.11)

The values of the coefficients corresponding to the common compressor types and the cost factors for the material of construction are given in Table 9.10.

Type of compressor	a	b	Type of compressor	CS	F _m SS	Ni-alloys
Axial, centrifugal, recipro- cating $(30 \le P \le 10000)$	6.628	0.968	Axial Centrifugal	1 1	5.8 4.5	14.1 10.5
Rotary $(30 < P < 1000)$	7.817	0.618	Reciprocating Rotary	1 1	5 4	12 9

Table 9.10. Coefficients and cost factors of the compressor.

9.1.2.5.1. The driver (electric motor)

For standard electric motors the following correlation may be used:

$$C_{--} = C_{---} * F_{+} * F_{---} * (I/331.2)$$
 (9.12)

where F_{red} is a factor which takes into account the cost of the reduction in the number of revolutions. Common value is 1 but in the cases when the reduction is needed then the value 1.35 should be used. The values of the F_t factor are 1.4 for explosion proof motors and 0.75 for open drip proof motors. The reference price is for a totally enclosed electric motor and is correlated against the required brake power (0.5 < P(kW) < 5000):

 $C_{emo} = \exp \left[5.33 + \ln P * (0.3 + \ln P * (0.162 - 0.014 * \ln P)) \right]$ (9.13)

9.2. Operating costs

An estimation of the operating costs is needed to judge the viability of a project and to chose between possible alternative processing schemes. Generally the operating costs are divided into two groups, the fixed costs and the variable costs.

Fixed costs:

- 1. Maintenance (labour and materials)
- 2. Operating labour
- 3. Laboratory costs
- 4. Plant overheads
- 5. Capital charges
- 6. Rates (and any other local taxes)
- 7. Insurance
- 8. Licence fees and royalty payments

Variable costs:

- 1. Raw materials
- 2. Miscellaneous operating materials
- 3. Utilities
- 4. Shipping and packaging

The costs listed above are direct costs of producing the product at the plant site. In addition to these costs, the site will have to carry its share of the Company's general operating expenses. These will include:

- 1. General overheads
- 2. Research and development costs
- 3. Sales expense
- 4. Reserves

All these various components of the operating costs are summarized in Table 9.11. This table will be used to estimate the total production costs.

Table 9.11. Summary of the operating costs.

Variable costs	Typical values
1. Raw materials	from flow-sheets
2. Miscellaneous materials	10 per cent of item (5)
3. Utilities	from flow-sheet
4. Shipping and packaging	usually negligible
Sub-total A	
Fixed costs	
5. Maintenance	5-10 per cent of fixed capital
6. Operating labour	from manning estimates
7. Supervision	20 per cent of item (6)
8. Plant overheads	50 per cent of item (6)
9. Capital charges	15 per cent of the fixed capital
10. Insurance	1 per cent of the fixed capital
11. Rates	2 per cent of the fixed capital
12. Royalties	1 per cent of the fixed capital
Sub-total B	
Direct production costs A + B	
13. Sales expense	20-30 per cent of the direct
14. General overheads	production cost
15. Research and development	production cost
Sub-total C	
Annual production $cost = A + B + C =$	
Production cost (Arg -	Annual production cost
- roodenon cost £ /kg =	Annual production rate

9.3. Calculations of the investment cost 9.3.1. Design process

The purchase costs of the equipment are given below. The prices calculated with the method of Dr. Ž. Olujić are compared with the Webci prices (guilders are converted to US dollars, 1 dollar equals 1.7 guilders).

Equipment code	Number	PCE according to Olujić (10 ³ x \$)	PCE according to Webci (10 ³ x \$)
H-2101	1	857.5	857.5
TOTAL PCE		857.5	857.5

Table 9.12. The purchase cost of the furnace (reformer).

Webci has no prices for furnaces, so the same prices as Olujić are taken. The price for the catalyst in the reformer is 30 guilders per litre or 18 \$ per litre. The total price is 1560×18 (\$) = 28×10^3 US \$.

Table 9.13. The purchase costs of the catalyst.

TOTAL PCE $(10^3 \times \$)$

28

Table 9.14. The purchase costs of the pressure vessels.

Equipment code	Number	PCE according to Olujić $(10^3 \times \$)$	PCE according to Webci (10 ³ x \$)
V-2101	1	5.7	11
V-2102	2	8.1	12
V-2103	1	5.2	13
V-2104	1	19.3	14
V-2107	1	12.7	15
V-2108	1	11.0	15
V-2109	1	8.1	14
V-2110	1	15.5	10
V-2111	1	2.0	10
V-2112	1	8.1	12
V-2113	2	6.9	14
V-2114	2	5.2	14
V-2115	1	5.2	11
V-2116	1	3.0	10
V-2117	3	3.3	11
V-2119	1	1.8	10
TOTAL PCE		148.3	253

Equipment code	Number	PCE according to Olujić (10 ³ x \$)	PCE according to Webci (10 ³ x \$)
V-2105	1	24.1	83
V-2106	1	57.6	131
V-2118	3	12.1	38
T-21	1	89.0	68
T-22	1	23.0	54
T-23	1	14.1	37
T-24	1	13.1	37
TOTAL PCE		257.2	524

Table 9.15. The purchase costs of the columns without trays and packings.

Table 9.16. The purchase costs of the trays of the columns.

Equipment code	Number	PCE according to Olujić (10 ³ x \$)	PCE according to Webci (10 ³ x \$)
V-2105	1	0.5	0.4
V-2106	1	3.3	2.1
V-2118	3	0.7	-
T-21	1	5.9	2.2
T-22	1	13.4	3.0
T-23	1	8.9	1.4
T-24	1	8.9	1.4
TOTAL PCE		43.0	10.5

Table 9.17. The purchase costs of the packings (Pall rings and distributors) of the columns.

Equipment code	Number	PCE according to Olujić (10 ³ x \$)	PCE according to Webci (10 ³ x \$)
V-2105 V-2106 V-2118	1 1 3	19.1 19.9	27.0 25.7
TOTAL PCE	,	39.0	52.7

٦

The purchase cost of MEA in the columns V-2105 and V-2106 is calculated by subtracting the packing volumes (11.7 m³) from the column volumes (22.31 m³) and adding 10% for the MEA in the pipes. The price of MEA is f1.94/kg or 1.14 \$/kg, so the total purchase cost of MEA is 13 x 10³ \$.

Table 9.18. The purchase cost of MEA.

TOTAL PCE $(10^3 \times \$)$	13

Equipment code	Number	PCE according to Olujić (10 ³ x \$)	PCE according to Webci (10 ³ x \$)
H-2102	1	3.4	10
H-2103	1	15.2	27
H-2104	1	7.0	20
H-2105	2	5.4	12
H-2106	1	8.9	16
H-2107	1	13.3	18
*H-2108	1	14.1	32
*H-2109A	1	12.3	25
*H-2109B	1	25.0	30
*H-2110	1	59.0	78
*H-2111	1	36.2	45
*H-2112	1	18.4	30
H-2113	2	6.6	15
*H-2114	2	5.1	14
*H-2115	3	8.5	18
*H-2116	1	4.6	13
*H-2117	1	4.5	13
H-2118	2	7.1	16
H-2119	2	4.1	12
*H-2120	1	3.7	14
E-21	1	14.5	21
E-22	1	42.7	25
E-23L	1	126.7	53
E-23U	1	184.9	88
E-24	1	10.2	16
E-25	1	10.2	16
E-27	1	10.2	16
TOTAL PCE		706.8	797

Table 9.19. The purchase costs of the heat exchangers.

The heat exchangers denoted with * are U-tubes, and their prices are 10-15% more expensive than the prices for heat exchangers given by Webci. Therefore 15% is taken into account in the prices of the U-tubes.

Equipment code	Number	PCE according to Olujić (10 ³ x \$)	PCE according to Webci (10 ³ x \$)
K-2101	2	12	12
K-2102	2	7	7
K-2103	4	102.6	94
K-2104	3	151.9	126
K-2105	4	72.6	62
TOTAL PCE		1194.6	1041

Table 9.20. The purchase costs of the compressors and ventilators.

K-2101 and K-2102 are ventilators. Olujić has no prices for these equipment, therefore the same prices as Webci are taken.

Equipment code	Number	PCE according to Olujić (10 ³ x \$)	PCE according to Webci (10 ³ x \$)
K-2103 K-2104 K-2105	4 3 4	19.2 26.7 14.2	31 35 15
TOTAL PCE		213.7	290

Table 9.21. The purchase costs of the drivers.

The purchase costs, the fixed capital and the investment cost of the whole plant (design) are given in Table 9.22.

Table 9.22. The investment costs of the design plant.

10 ³ x US \$	according to Olujić	according to Webci
Total PCE	3502	3867
Total PPC PPC=f _a *PCE	11380	12568
Fixed Capital FC=f _b *PPC	16501	18223
Working Capital (10%)	1650	1822
Investment cost	18151	20046

9.3.2. The new process (only extra CO_2)

For the new process a CO_2 storage tank is needed with a volume of 15 m³ and several heat exchangers have to be expanded by adding some new heatexchangers. The purchase costs can be found in the Tables 9.23 and 9.24.

Equipment code	PCE according to Olujić (10 ³ x \$)	PCE according to Webci (10 ³ x \$)
CO ₂ storage tank	11.7	29

Table 9.23. The purchase cost of a st	orage	tank.
---------------------------------------	-------	-------

Table 9.24. The heat exchangers.

Equipment code	Number	Extra transfer area (m ²)	PCE according to Olujić (10 ³ x \$)	PCE according to Webci (10 ³ x \$)
H2108 extra	1	7.63	4.1	13.5
H2109A extra	1	6.21	3.9	12.9
H2109B extra	1	6.21	4.4	18.3
H2110 extra	1	14.2	10.1	25.0
H2111 extra	1	8.0	5.7	19.6
H2112 extra	1	5.0	3.3	12.2
H2113 extra	2	3.0	2.3	9.7
H2114 extra	1	2.0	1.9	10.8
H2115 extra	1	2.0	2.2	10.8
H2115 extra	2	3.5	3.0	11.5
H2116 extra	1	1.5	1.8	10.8
H2117 extra	1	1.5	1.5	10.8
H2118 extra	2	7.0	4.0	11.5
H2119 extra	1	4.0	2.8	10.0
H2120 extra	1	1.5	1.4	10.8

The other equipment remains the same. The investment cost is shown in Table 9.25.

10 ³ x US \$	according to Olujić	according to Webci
Extra PCE	73	260
Extra PPC ($f_a = 2.55$)	187	663
Extra FC ($f_{b} = 1.45$)	271	961
Total fixed capital	16772	19184
Investment cost	18449	21102

Table 9.25. The investment cost.

9.3.3. The new process (using extra CO₂ and a pre-reformer)

For the new process a CO_2 storage tank is needed with a volume of 15 m³ and and a pressure vessel with catalyst. The total amount of catalyst needed per year remains the same, because due to the pre-reformer the life time of the catalyst in the reformer increases. The purchase costs can be found in the Tables 9.26 and 9.27.

Table 9.26. The	e purchase	cost of	a	storage	tank.
-----------------	------------	---------	---	---------	-------

Equipment code	PCE according to Olujić (10 ³ x \$)	PCE according to Webci (10 ³ x \$)
CO ₂ storage tank	11.7	29

Table 9.27. The purchase cost of a pressure vessel

Equipment code	PCE according to Olujić (10 ³ x \$)	PCE according to Webci (10 ³ x \$)
pre-reformer vessel	12.0	20

The other equipment remains the same. The investment cost is shown in Table 9.28.
10 ³ x US \$	according to Olujić	according to Webci
Extra PCE	24	49
Extra PPC ($f_a = 2.55$)	61	125
Extra FC ($f_{b} = 1.45$)	88	181
Total fixed capital	16589	18404
Investment cost	18640	20244

Table 9.28 The investment cost.

9.4. Calculation of the operating costs

9.4.1 Design process (KTI)

The annual operating costs are calculated by using Table 9.11 and the investment cost determined by Olujić. The operating time is 95% of one year, 345 days/year or 8280 hours/year.

A. The variable costs:	
1.Raw materials	
- Natural gas 0.19 Dfl/Nm ³ or 0.00277 \$/mol	
53.1 kmol/h x 8280 h/y x 0.00277 \$/mol	1218×10^3 \$
- Boiler feed water 1.15 Dfl/m ³ or 0.68 \$/m ³	
6.466 m ³ /h x 8280 h/y x 0.68 \$/m ³	$36 \times 10^3 $ \$
2. Miscellaneous materials	$165 \times 10^3 $ \$
3.Utilities	
- Electricity for compressors	
2260 kW x 8280 h/y x 0.064 Dfl/kWh (or 0.038 \$/kWh)	704×10^3 \$
- Degradation costs of the catalyst	
1/5 y ⁻¹ x 28,000 \$	$6 \times 10^{3} $ \$
- Degradation costs of MEA	
$0.4 \text{ v}^{-1} \text{ x } 11670 \text{ kg x } 1.14 /\text{kg}$	$5 \times 10^3 $ \$
4.Shipping and packaging - not applicable	
Subtotal A	2134 x 10 ³ \$

B. The fixed costs:	
5.Maintenance	1650 x 10 ³ \$
6.Operating labour	
Four manpower are needed to operate the plant	
continuously. One continuous manpower costs	
f350,000 per year or 206,000 \$ per year.	824 x 10 ³ \$
7.Supervision	$165 \times 10^3 $ \$
8.Plant overheads	$412 \times 10^3 $
9. Capital charges	$2475 \times 10^3 $ \$
10.Insurance	$165 \times 10^3 $
11.Rates	$330 \times 10^3 $
12.Royalties	$165 \times 10^3 $ \$
Subtotal B	6186 x 10 ³ \$
Direct production costs A + B	8320 x 10 ³ \$
 C. Share of the Company's general operating expenses (25% of the direct production costs) 13.Sales expense 14.General overheads 15.Research and development 	
Subtotal C	2080 x 10 ³ \$
Annual operating costs (A + B + C) Production cost (1221.4 kg CO/h)	10400 x 10 ³ \$ 1.03 \$/kg.

9.4.2. The new process (using only extra CO₂)

For the variable costs just the prices for raw materials and miscellaneous change:

- 1. Raw materials
- Natural gas: 50.1 kmol/h x 8280 h/y x 0.00277 $\mbox{mol} = 1149 \times 10^3$
- Carbondioxyde: 14.2 kmol/h x 44.0 kg/kmol x 8280 h/y x 0.185/1.7 \$/kg = 584 x 10³ \$

2. Miscellaneous materials = 168×10^3 \$

Subtotal A = 2652×10^3 \$

For the fixed costs only the costs for operating labour, supervision and plant overheads don't change. The other costs will be:

5. Maintenance = 1677×10^3 \$

- 9. Capital charges = 2516×10^3 \$
- 10. Insurance = 168×10^3 \$

11. Rates = 335×10^3 \$

12. Royalties = 168×10^3 \$

Subtotal B = 6265×10^3 \$

The direct production costs (A + B) are 8917 x 10^3 \$, therefore the subtotal of C (25% of the direct production costs) is 2229 x 10^3 \$.

The annual operating costs for the new process are $11146 \ge 10^3$ and the production cost for CO will be (55.402 kmol CO/h x 28 kg/kmol x 8280 h/y)⁻¹ x 11146 x 10³ \$/y = 0.87 \$/kg.

9.4.3. The new process (using extra CO₂ and a pre-reformer)

For the variable costs just the prices for raw materials and miscellaneous change:

1. Raw materials

- Natural gas: 50.2 kmol/h x 8280 h/y x 0.00277 \$/mol = 1151 x 10³ \$
- Carbondioxyde: 13.9 kmol/h x 44.0 kg/kmol x 8280 h/y x 0.185/1.7 \$/kg = 550 x 10³ \$

2. Miscellaneous materials = 168×10^3 \$

Subtotal A = $2620 \times 10^3 \$$

For the fixed costs only the costs for operating labour, supervision and plant overheads don't change. The other costs will be:

5. Maintenance = 1660×10^3 \$

- 9. Capital charges = 2488×10^3
- 10. Insurance = $166 \times 10^3 \$$

11. Rates = 332×10^3 \$

12. Royalties = 166×10^3 \$

Subtotal B = 6213×10^3

The direct production costs (A + B) are 8833 x 10^3 \$, therefore the subtotal of C (25% of the direct production costs) is 2208 x 10^3 \$.

The annual operating costs for the new process are 11041×10^3 \$ and the production cost for CO will be (53.809 kmol CO/h x 28 kg/kmol x 8280 h/y)⁻¹ x 11041 x 10³ \$/y = 0.89 \$/kg.

LITERATURE

- Olujić, Ž., 'Approximate Design and Costing of Equipment used in Absorption, Destillation, Extraction and Stripping processes'. Laboratory for Process Equipment, TU Delft, 1991.
- 9.2. Webci, Wubo, 'DACE-prijzenboekje', 16th edition. Dutch Association of Cost Engineers, Leidschendam, 1992.
- 9.3. Richardson, J.F., Coulson, J.M., 'Chemical Engineering volume 6'. Pergamon, New York, 1983.
- Montfoort, A.G., 'De Chemische Fabriek'. Faculteit der Scheikundige Technologie en der Materiaalkunde, TU Delft, 1990.

10 ALTERNATIVE METHODS FOR CO-PRODUCTION

10.1 Possibilities for CO-production

10.1.1 Coal Gasification

Another process to make CO is coal gasification. In this process solid coal is reformed into gaseous CO and sometimes, depending on the feed, H_2 which has to be separated later in the process. Coal is gasified in either by partial combustion or by CO₂-hydro-gasification. Very often a process is a combination of both modes, depending on the product desired. The main reactions that take place in a coal gasifier are :

$C + H_2O$	22	$CO + H_2$	Hydrogasification
$CO + H_2O$	4 4	$CO_2 + H_2$	Hydrogasification
$C + \frac{1}{2}O_{2}$	**	CO	Partial oxidation
$C + CO_2$	#	2 CO	CO ₂ gasification

The product needed is CO, thus when you look at the reactions it is obvious that reactions with O_2 and CO_2 are preferred. In practice gasification of coke can be carried out in a fixed bed slagging gasifier which is continuously operated at slightly above atmospheric pressure. A possible scheme is illustrated in fig.10.1.

The feed needed for this process contains O_2 , CO_2 , sized coal and flux (typically limestone). Flux is added to the coal in order to obtain favorable ash melting temperatures and slag viscosities. The solid feed is fed to the reactor via a fully automatic controlled system consisting of conveyors, bunkers, chutes and locks. The gaseous feed (CO_2 and O_2) is injected in the reactor's bottom section via a mixing tube. The generated gas ascends countercurrently to the coal bed and the crude gas leaves the reactor at about 870 °C at the top with a CO concentration of 90-92 % depending on feedstock qualities. Some coke fines are also carried over from the reactor along with the crude gas stream. These fines are separated in a cyclone and recycled to the reactor. After the cyclone the crude gas is passed through a scrubber where it is water saturated and cooled. Here the gas is not only cooled but also residual traces of dust are being removed. Finally, the crude gas is cooled to 35 °C. At the bottom liquefied coke ash (slag) is removed batchwise with a automatic deslagging system. Of course the gasproduction continuous during deslagging.

fig.10.1 : scheme for coke gasification and gas purification units.

After the reactor the crude gas contains about 90-92 % CO. To remove the CO_2 there are some different methods. In [1] there are two options mentioned, the Amisol process and the DEA process. The Amisol process is more expensive but applied if there are stringent requirements with respect to sulfur compounds. The Amisol is capable of removing all sulfur compounds down to a level of less than 0.1 ppm total sulfur.

The Amisol process works with a mixture of two solvents, consisting of diethylamine (chemical solvent) and methanol (physical solvent). The DEA process on the other hand has only a chemical solvent diethanolamine in water. This is a cheaper process which can be selected when a sulfur concentration of approx. 500 ppm is acceptable.

After the CO_2 removal a CO concentration of 97 to 98.5% by volume is available. This CO makes a good feedstock for most syntheses. This process is commercially proven by Lurgi GmbH ,Frankfurt, Germany. Both investment and operating costs are rather competitive in comparison to processes based on natural gas. Investment costs come out rather low because:

- * After the reactor the CO concentration is much higher in comparison to the CO concentration for processes based on natural gas. 90 to 92 % for the coke process versus 28 % for the natural gas process. This makes the gas volume to be handled much lower; hence smaller equipment size will do latter in the process.
- * Normally no gas separation unit is required as a CO concentration of 98+ % can be achieved just by removal of CO₂ and sulfur compounds.

Also the operating costs are rather low because of:

- Low specific consumption figures for coke, O₂ and CO₂ due to the high selectivity for CO of the gasification process.
- * Low specific utility consumption rates like electricity and cooling water. This is also based on the high selectivity for CO, plus the fact that a gas separation unit is not normally required.

The costs for producing one ton of CO are given below in table 10.1 and are for a CO plant with a capacity of minimal 6.5 ton/hour. When in a natural gas plant the hydrogen only can be used as fuel, the gasification process is 70 to 100 % below the cost of CO production in a natural gas plant. lit.[10.1]. The reason of not seriously being a candidate for an alternative production process is the minimum capacity for being competitive. It is only economical attractive with a production of at least 6.5 ton/hour. The current capacity for the two GEP plants is about 2.2 ton/hour.

Of course there are other reactor types which are not of the moving bed type but are entrained flow reactors. They operate at higher temperatures with greater mass flow; hence the entrained flow reactors are only economical at higher capacity.

coke	0.36 t	DM 300 / t	108
oxygen	200 Nm ³	DM 0.16 / t	32
CO ₂	250 Nm ³	DM 0.14 / t	35
limestone	0.02 t	DM 100 / t	2
electrical power	75 kWh	DM 0.12 / t	9
cooling water	18 m ³	DM 0.1 /t	2
labor	6 pers.	DM 60.000/year	7
capital investment			65
total production cost for one ton CO			260

Table 10.1: Cost in DM for the production of one ton CO (1986).

10.1.2 The CO₂ reformer

For the alternative CO production plant a reformer is used which has the same principle as the reformer of the existing plant. The reformer consists of the same compositions as the existing reformer: vertical tubes with catalyst, heaters in the wall but the reformer has a different feed composition due to different feed and different recycle streams.

The total feed to the reformer (feed + reflux) is given in table 10.2.

reformer feed	kmol/h	
CH₄	40.75	
CO ₂	58.33	
N ₂	13.6	
H ₂ O	113.0	

Table 10.2 : feed composition alternative reformer

In the reformer the following reactions describe the CO-conversion:

1)	$CH_4 + H_2O$	22	$CO + 3H_2$
2)	$CO + H_2O$	22k	$CO_{2} + H_{2}$

with:

$$K_1 = \exp\left[-\frac{27464}{T} + 30.707\right]$$
 (10.1)

$$K_2 = \exp\left[\frac{4084}{t} - 3.765\right]$$
 (only for T > 773 K) (10.2)

The calculations for this equilibrium reactions are calculated with mercury at 860 K. The result of these calculations is the output of the reformer (table 10.3).

reformer output	kmol/h
CH_4	1.942
CO ₂	42.15
N ₂	13.6
H ₂ O	90.38
CO	55.00
H ₂	100.2

Table 10.3: alternative reformer output

To prevent coke forming in the reformer, according to group 1, a equation which shows a coke forming value is mentioned:

$$\frac{1/2CO_2 + H_2O}{CH_4} > 3.0 \tag{10.3}$$

For this situation the coke forming value is 3.5, which is good enough.

10.2 Membranes for H₂ separation

Below are some possible H₂ membrane applications:

fig. 10.4: H₂ membrane system: first CO recovery

fig. 10.5: H₂ membrane system: first H₂ recovery

The difference between the alternative processes above in fig. 10.4 and fig. 10.5 is that the hydrogen and carbon monoxide separation stages are reversed. When the H_2 membrane separation comes before the CO removal, the membrane stage sees a heightened partial pressure of carbon monoxide and therefore more carbon monoxide is lost through the membrane as permeate in the hydrogen-rich stream. Thus recovery of carbon monoxide in fig. 10.5 is much lower than the recovery of CO in fig. 10.4. (92 % vs 99 %). That is the reason why in the next alternatives always first CO recovery takes place and later the H_2 recovery.

In this membrane process the carbon monoxide lean gas mixture enters a H_2 -rejection membrane stage in which H_2 permeates through a membrane to the low pressure side of the membrane as permeate, while the remaining gas mixture passes over the surface of the membrane as the reject stream. A preferred membrane that is selective for hydrogen over the remaining constituents of the gas mixture comprising CO, CO₂, CH₄, N₂, Ar is polymeric cellulose acetate or polysulfone. It should be noted that, as an alternative, the feed stream to the membrane can be boosted in a compressor to aid the H₂ separation in the membrane.

The advantage of using a H_2 membrane separation unit is the high product purity (95-99%) and the high recovery (85%). The right feed condition necessary for a high recovery is a high feed concentration. The H_2 concentration after the CO separation is about 69 %, which is not extremely high.

The disadvantages of using a H_2 membrane unit is the large pressure drop on the product side. Also a H_2 membrane has a poor CO₂ and H_2O separation selectivity. Because the H_2 rich stream consists (except H_2) mainly of CO₂, a membrane system is not recommendable.

A recent (1990) study lit.[10.4] of separating H_2 from coal-gas has indicated that for 99.5 % purity membrane, the separation efficiency is only 40 %. This is the result of bad feed conditions.

10.3 PSA for CO - H₂ separation

The design of the H₂ PSA system

Separation by an adsorptive process is based on the selective adsorption of one or more components of a gas mixture on the surface of a microporous solid. When a gaseous mixture is exposed to an adsorbent for a sufficient time, the gas phase becomes richer in the less selective adsorbent. Desorption can be achieved either by increasing the temperature or by reducing the adsorbate pressure. Thus, the adsorptive separation process consists of a cyclic sequence of adsorption and desorption steps. When desorption is achieved by decreasing the partial pressure of the selective component, the process is called pressure swing adsorption (PSA). A modern pressure swing adsorption system is made up of four or five pressure vessels containing an appropriate adsorbent (adsorbent beds) with interconnecting piping and valving with an automatic control device as shown in fig.10.6

fig 10.6 : complete CO VSA and $\rm H_2$ PSA system.

(107)

In the A-beds the H_2 adsorbent is placed and in the B-beds the CO adsorbent is placed. Hence the primary product is Carbon Monoxide and the secondary product is hydrogen.

The adsorbent - in this case of the type 5A Zeolite sieves - is selected on the basis of the application requirements. This zeolite has a greater affinity for carbon-dioxide, methane and carbon monoxide than for hydrogen.

With the equation according to White lit.[10.5], the fluidization limit for packed beds is determined, and with that the minimal column diameter. The maximum interstitial velocity according to White:

$$v_{s}(\max) = -\frac{\mu E_{1}}{2\rho_{0}E_{2}} + \sqrt{\left(\frac{\mu E_{1}}{2\rho_{0}E_{2}}\right)^{2} + \frac{\rho_{a}g}{\rho_{0}E_{2}}}$$
(10.4)

with:

$$\begin{split} \mu &= viscosity \text{ in Pa s} \\ \rho_o &= density \text{ of the gas in kg/m}^3 \\ \rho_a &= density \text{ of the adsorbent (zeolite 5A) in kg/m}^3 \end{split}$$

and:

$$E_{1} = 1471 \frac{(1-\epsilon)^{2}}{\epsilon^{3} D_{p}^{2} g} \qquad E_{2} = 17.16 \frac{(1-\epsilon)}{\epsilon^{2} D_{p} g}$$
(10.5)
(10.6)

with:

 $\varepsilon = \text{total void factor}$ D_p = particle diameter

From the maximum velocity, the minimal column diameter is determent with the minimal area :

$$A = \frac{\omega_0}{\rho_0 v_s} \tag{10.7}$$

with:

 $\omega_0 = \text{mass flow in kg/s}$

An estimation of the column height can be determined from the amount adsorbents necessary for the adsorption of the residual components.

$$L = \frac{1}{A\rho_{a}n_{k}} * \sum \frac{\Phi_{mol,i} t_{c}}{(Q_{a,i})_{P_{ads}} - (Q_{a,i})_{P_{das}}}$$
(10.8)

with:

 $\begin{array}{ll} n_k & = \text{number of beds} \\ t_c & = \text{cycle time in sec.} \\ \Phi_{\text{mol,i}} & = \text{flow of component i in mol/s} \\ Q_{a,i} & = \text{amount adsorbed component i in mol/kg} \\ P_{ads} & = \text{adsorption pressure} \\ P_{des} & = \text{desorption pressure} \end{array}$

The pressure drop over the bed is calculated with the modified Sabri-Ergun equation lit.[10.6]:

$$\frac{\Delta P}{L} = E I \mu v_s + E 2 \rho_0 v_s^2 \tag{10.9}$$

The results from these equations can be found in the appendix 10.(page A10-1)

The equipment costs for a H_2 VSA system, the so called Purchased Cost Equipment (PCE), are:

======> fl. 1.12 * 10⁶

The total investment costs are determent by the factoring method. The so called Fixed Cost (FC) are:

======> fl. 5.26 * 10⁶

The calculations of these costs can be found in appendix 10 (page A10-3)

The design of the CO VSA adsorption system

This Vacuum Swing Adsorption system is located before the H_2 PSA system and after the dryers to remove the water. The adsorbent in this case is an adsorbent consisting of a silica and/or alumina carrier with an amount of cupric salt in the range of 1 to 5 mmols/g and a reducing agent to convert cupric ion into cuprous ion in the range of 0.01 to 0.3 g/g carrier. The adsorbent has a adsorption capacity of 21.7 cc/cc adsorbent at atmospheric pressure and releases 9.9 cc/cc adsorbent at 0.04 bar lit.[10.8], 9.9 cc / cc adsorbent is the same as 3.6 mol CO/gr. Because CO is the only component that has to be adsorbed, the beds are smaller than in the H₂-PSA system.

With the equation of White (10.4) the fluidization limit for packed beds is determined and with those results the minimum column diameter.

From the maximum velocity, the minimal column diameter is calculated, using equation 10.4. An estimation of the column height is calculated with equation 10.8 with only CO is adsorbed.

The result of the design of the CO VSA system is in appendix 10.(page A10-2)

The equipment costs for a CO VSA system, the so called Purchased Cost Equipment (PCE), are:

======> fl. 0.877 * 10⁶

The total investment costs are determent by the factoring method. The so called Fixed Cost (FC) are:

======> fl. 4.13 * 10⁶

Of course the costs of a combined CO-VSA and H_2 -PSA system are lower because piping and control system are combined. The combined equipment costs (PCE) are:

=====> fl. 1.83 * 10³

The total investment costs for a combined CO-VSA and H₂-PSA system are:

======> fl. 8.61 * 10³

The calculation of these cost can be found in appendix 10 (page A10-3/4)

10-11

10.4 COSORB[®] for CO-raw gas separation

10.4.1 The COSORB® Process

Absorption of carbon monoxide is important in the processes for purification of CO as well as in the removal of CO from various gas streams. The COSORB® Process for the recovery and purification of carbon monoxide from synthesis gases and industrial waste gas streams was developed during the late 1960's and early 1970's. The process utilizes a proprietary COSORB® Solvent composed of a pi bond complexing compound, copper aluminum tetrachloride, dissolved in an aromatic solvent base. The first commercial COSORB® plant was successfully started up at the Dow Chemical Company Plant in Freeport, Texas, U.S.A. in early 1976. Since this early success, the COSORB® Process has enjoyed wide acceptance in the chemical process industry. The COSORB® Process has been applied to numerous diverse feed gases containing carbon monoxide and other inert gases to produce a high purity carbon monoxide product.

The COSORB[®] Process is based on the selective complexation of carbon monoxide in a liquid solvent (toluene). The solvent has an aromatic base with an active component referred to as CuAlCl₄. The high selectivity of this solvent for carbon monoxide at ambient temperature and the ease of decomplexation at a higher temperature are the basis for the simplicity of the process. The solvent can effectively remove carbon monoxide from gaseous streams at any practical operating pressure. The COSORB[®] process is essentially a simple absorption/desorption process for carbon monoxide, similar to a carbon dioxide removal process. Its development followed a rather conventional pattern. Extensive vapor liquid equilibrium data were collected in the laboratory. This was followed by bench scale laboratory evaluations of the process. These data were then utilized as the basis for the design and simulation program (appendix 10) of the COSORB[®] unit.

The basic design of a COSORB[®] unit is illustrated in Fig. 10.7 and consists of four sections: 1) Feed gas preparation, 2) the COSORB[®] solvent-CO complexer and COSORB[®] solvent-CO decomplexer circuit, 3) aromatic recovery from the product gas streams, and 4) the compression and power recovery of the product streams.

The feed gas preparation section consists of the process steps required to remove the irreversibly reactive compounds from the feed gas prior to its contact with the COSORB^{\oplus} solvent. Water is usually removed by a combination of refrigeration and molecular sieves. After conventional treatment for the removal of sulfur compounds, the sulfur compounds are reduced to acceptable levels by treatment with activated carbon. In those cases where hydrogenation of the feed gas is required, zinc oxide beds may be used to reduce sulfur compounds to an essentially "zero" level upstream of the hydrogenation catalyst.

The complexor and decomplexer section of the COSORB[®] process consists two major columns, which are either packed or trayed columns, with internals identical to standard absorption and stripping columns. The feed gas is countercurrently contacted with the COSORB[®] solvent in the complexor, and the CO is released from the COSORB[®] solvent in the decomplexor.

The other common components in a carbon monoxide-rich stream, carbon dioxide, methane, hydrogen, nitrogen and oxygen are physically absorbed.

Since there is a low physical absorption of these inert gases, only a fraction of the inert gases in the feed gas will be absorbed in the COSORB[®] solvent and then exit with the solvent from the complexor. These physically dissolved gases will be produced with the decomplexed CO product. However, these impurities may be removed from the COSORB[®] solvent by various combinations of flashing, stripping and complexation in an inert-removal column upstream of CO production in the decomplexor. The design requirements of this third column are determined by the feed compositions and product purity requirements.

The carbon monoxide-rich solvent flows from the bottom of the absorber to a flash unit and then to a heat exchanger and is heated against recycling lean solvent, and where it gives up a large fraction of the dissolved carbon monoxide to the gas phase. The inerts are preflashed, and the final carbon monoxide product is taken overhead of the stripper. The aromatic base of the solvent is generally the stripping medium. The hot lean solvent flows through the heat exchanger, where it is cooled and then recycled to the absorber. The complexor, decomplexor and optional inerts-removal column overhead streams require further treatment to reduce losses of the volatile aromatic base of the COSORB® solvent. Aromatic recovery in the complexor and decomplexor overhead streams is accomplished by a combination of compression, refrigeration and treatment with activated carbon. The inerts column overhead stream is small and is generally sufficient for economical recovery of the aromatics. A turbine compressor compresses the carbon monoxide by making use of pressure from the feed gas to the absorber. With this approach, the stripper could be operated, for example at five psig. Carbon monoxide product of 99% is easily attained in this system. The loss of the aromatic base of the solvent is reduced by use of recovery facilities on the carbon monoxide product stream and the hydrogen-rich stream.

The COSORB[®] plant can be built with carbon steel. The gas feed must be substantially free of water, hydrogen sulfide, and sulfur dioxide, as these compounds all irreversibly react to a significant extent with the solvent and produce traces of hydrogen chloride in the product streams. In those instances where downstream processes are sensitive to parts-per-million levels of hydrogen chloride, the complexer and decomplexer overheads may require treatment to remove hydrogen chloride to below detectable limits.

Packed towers are more then adequate to allow the separation to produce high-purity carbon monoxide at multimillion-pound-per-day rates. The only utilities necessary are cooling water, low pressure steam, and power sufficient to pomp the solvent from the stripper to the absorber.

Figure 10.7 Cosorb process for recovering carbon monoxide from industrial gases

10-14

10.4.2 Simulation of the COSORB[®] unit (Non-isothermal gas absorption)

10.4.2.1 Introduction

Gas Absorption with chemical reaction induces the absorption rate which is expressed by means of "enhancement factor" corresponding to the liquid film resistance. The enhancement factor differs by different systems and different operation conditions. The molecular interaction energy of chemical absorption-complexing is often much greater then that of *Van der Waals* force in physical absorption, but still less than covalent energy. And since complexing absorption is reversible, it is easy for desorption (regeneration), therefore it is a highly selective, widely useful and practical separation process which involves large heat effects such as heat of reaction, heat of solution, sensible heat transfer between liquid and gas phase. In this case, the computation and design of these absorbers have to consider of chemical equilibrium, phase equilibrium, mass transfer and heat transfer.

10.4.2.2 Fundamental Theory

COSORB[®] Solvent utilizes the pi complex bonding between the aromatic solvent, e.g., toluene, to the metal salt adduct of cuprous chloride and aluminum chloride (CuAlCl₄) to achieve very high concentrations of the solid CuAlCl₄ in the aromatic liquid. The species in COSORB[®] Solution are C₇H₈:CuAlCl₄ + approximately 1.5 C₇H₈; Thus an overall total molar ratio toluene/copper = 2.5. The pi complexed copper is capable of further complexing with electron donating ligands, such as carbon monoxide, which can donate pi electrons to form additional pi complex bonds to the copper(I) metal. Of key importance to the COSORB[®] process is the fact that the additional pi bond can be made at ambient temperature and low CO partial pressure and be broken simply by elevating the temperature. The mixture of C₇H₈:CuAlCl₄ plus 1.5 free C₇H₈ is simply convenient vehicle to transport the copper(I) metal and its inherent complexing nature from the CO Absorber to the CO Stripper and back again. COSORB[®] Solvent, as defined, has physical properties much like the toluene portion of the solvent and thus exhibits reasonable heat transfer and good mass transfer characteristics.

The absorption of carbon monoxide in CuCl-AlCl₃-toluene complex solution can be described as a stoichiometric reaction as follows :

 $CO + CuAlCl_4$ -toluene $\langle ----- \rangle CuAlCl_4(CO)$ -toluene (10.10)

This reversible reaction can be represented by the following scheme :

 $A(g) + B(l) \iff E(l)$ (10.11)

The theory of gas absorption with fast reversible reaction has been described by Onda (1970) lit. [10.10] and the relevant equations applicable to the present case are described in detail by Gholap and Chaudhari (1988) lit. [10.11]. The ratio of chemical absorption rate and that of physical absorption namely "enhancement factor" (E) expresses the effect of chemical reaction to the absorption, and it differs by different systems, operating and boundary conditions. The equations for enhancement regime and the following condition must be satisfied :

$$3 \leq E \leq E_{\infty} \tag{10.12}$$

where E_{∞} is the enhancement factor for instantaneous reversible reaction and Danckwerts and his coworkers (1970) lit. [10.12] have declared the enhancement factors by the film theory, where

$$E = 1 + \frac{K_{eq} * [CuAlCl_4]_{Bulk}}{(1 + K_{eq} * [CO]^*)}$$
(10.13)

Where, K_{eq} is the true equilibrium constant and $[CO]^*$ is the concentration of A at the gas-liquid interface and $[CuAlCl_4]_{Bulk}$ is the concentration of Copper in the bulk

The K_{eq} as function of the temperature is obtained from the literature Golaph and Chaudhari (1992) lit. [10.13] using the plot data of that publication.

In chemical absorption, the overall gas phase mass transfer coefficient Kog can be expressed in the form :

$$K_{og} * a = \frac{1}{\frac{1}{\frac{1}{k_{g,CO} * a} + \frac{1}{E * H * k_{LCO} * a}}}$$
(10.14)

Where, E is the enhancement factor and H is the Henry constant obtained by physical absorption. In this case physical solubility in toluene has been aided from Seidell (1940) lit. [10.14].

The gas and liquid mass transfer coefficient have been obtained from the Onda model from Coulson (1983) lit. [10.15]

10-16

The mass-transfer coefficient in the liquid phase, k_{ICO} is given by the dimensionally consistent equation :

$$k_{l,CO} * \left(\frac{\rho_l}{g * \mu_l}\right)^{\frac{1}{3}} = 0.0051 * \left(\frac{L}{a_w * \mu_l}\right)^{\frac{2}{3}} * \left(\frac{\mu_l}{\rho_l * D_{l,CO}}\right)^{\frac{-1}{2}} * (a_p * d_p)^{-2}$$
(10.15)

The mass-transfer coefficient in the gas phase, k_{gCO} is given by the dimensionally consistent equation :

$$k_{g,CO} * \left(\frac{R * T}{a_p * D_{g,CO}} \right) = 5.23 * \left(\frac{G}{a_p * \mu_g} \right)^{0.7} * \left(\frac{\mu_g}{\rho_g * D_{g,CO}} \right)^{\frac{1}{3}} * (a_p * d_p)^{-2}$$
(10.16)

The wetted area is provided by :

$$a_{w} = a_{p} * (1 - \exp(-1.45 * \left(\frac{L}{a_{p} * \mu_{l}}\right)^{0.1} * \left(\frac{a_{p} * L^{2}}{g * \rho_{l}^{2}}\right)^{-0.05} * \left(\frac{L^{2}}{a_{p} * \sigma * \rho_{l}}\right)^{0.2} * \left(\frac{\sigma}{\sigma_{c}}\right)^{-0.75}$$
(10.17)

For the viscosity of the liquid we used an complex equation :

$$\mu_{l} = Exp\left[-4.12227 - 2.3403 * Exp(C_{2} * Ra^{3}) + D_{2} * Ra^{2} + E_{2} * Ra + B_{2}\right] (10.18)$$

Where,

$$B_2 = \frac{\left(1051.795 + 2026.852 * Exp(F_2 * Ra^2 + G_2 * Ra)\right)}{T_1}$$
(10.19)

 $\begin{array}{l} C_2 = -5.08093E\text{-}2 \\ D_2 = 12.2693E\text{-}2 \\ E_2 = -6.78159E\text{-}2 \\ F_2 = -9.6315E\text{-}2 \\ G_2 = 8.026396E\text{-}2 \end{array}$

Ra is the molar ratio toluene/copper and Lo is the molar loading carbon monoxide/copper

For the density of the liquid we used the equation :

$$\rho_{l} = 1000 * \left[\left(\frac{1.5562}{Ra + 1} \right) + 0.1881 \right] - \left[\left(\frac{0.0002614}{Ra + 1} \right) + 0.0009207 \right] *$$

$$(T_{l} - 273.15) - \left(\frac{Lo * 0.06}{Ra} \right)$$
(10.20)

The diffusion coefficient of carbon monoxide in the liquid and gas phase is respectively obtained from the Wilke and Chang equation and the Gilliland equation :

$$D_{g,CO} = \frac{1.173 * 10^{-13} * \sqrt{M_{avr,l} * T_l}}{\mu_l * (0.0307)^{0.6}}$$
(10.21)

$$D_{g,CO} = \frac{1.013 * 10^{-7} * T_g^{1.75} * \sqrt{\frac{1}{M_{CO}} + \frac{1}{M_{avr,g}}}}{P * \left(18.9^{\frac{1}{3}} + 10.5^{\frac{1}{3}}\right)^2}$$
(10.22)

For the mean viscosity of the gas phase we used the next equation :

$$\mu_l = 0.0172 + (T_{g2} - T_{gl}) * 10^{-4}$$
(10.23)

For the density of the gas phase we uses the Redlich & Kwong approach :

$$\rho_g = \frac{M_{avrg}}{V_1} \tag{10.24}$$

10-18

$$V_{1} = \frac{R * t_{g}}{P} + b_{RK} - \frac{a_{RK} * (V_{1} - b_{RK})}{\sqrt{T_{g}} * P * V_{1} * (V_{1} + b_{RK})}$$
(10.25)

$$a_{RK} = 0.42748 * R^2 * \frac{T_{c,mix}}{P_{c,mix}} \qquad b_{RK} = \frac{0.08664 * R * T_{c,mix}}{P_{c,mix}} \qquad (10.26)$$

In this simultaneous mass and heat transfer process, analogy between mass and heat may be used to obtain the heat transfer coefficient. Since the liquid film resistance in the heat transfer process may be neglected, the interface temperature is very close to the liquid film temperature, so the heat transfer coefficient is obtained as follows :

$$\left(\frac{h_{g}*a}{k_{g,CO}*a}\right) = C_{pg}*(Le)^{\frac{2}{3}} = C_{pg}*\left(\frac{\lambda_{g}}{\rho_{g}*C_{pg}*D_{g,CO}}\right)^{\frac{2}{3}}$$
(10.27)

For the heat conductivity of the gas phase the next equation has been obtained :

$$\lambda_g = \mu_g * \left(C_{pg} + \frac{10.4}{M_{avrg}} \right)$$
(10.28)

Meanwhile, for sake of the similarity between mass and heat transfer, mass flow rate not only affects on the mass transfer coefficient, but also affects the heat transfer coefficient. If in the chemical reaction absorption which involves appreciable concentration change, the result of this influence should be considered, and the heat transfer coefficient h_g should be modified to h_g ':

$$h'_{g} = -G_{B} * \left(\frac{(C_{pCO} * \left(\frac{dY_{CO}}{dZ}\right) + C_{pTol} * \left(\frac{dY_{Tol}}{dZ}\right)}{1 - \exp\left[G_{B} * \frac{C_{pCO} * \left(\frac{dY_{CO}}{dZ}\right) + C_{pTol} * \left(\frac{dY_{Tol}}{dZ}\right)}{h_{g,CO}}\right]} \right)$$
(10.29)

The evaporation and condensation of the volatile solvent (toluene) may evaporate or condense along with temperature change in the packed column. This changeable phenomenon also influences the heat transfer process and has already been included in Eq. (10.29). In fact, the liquid layer on both the inner and outer surface of packings are available to the evaporation process, so the available wet surface is much larger then that of physical absorption, and the resistance of the liquid phase would be very small. However, in physical absorption the thickness of the liquid layer and the flow rate at each point of the wet surface of the packings are different, so the thin liquid layer or low mobility part of the liquid film would be saturated and might be hardly absorb the solute (carbon monoxide). That is the reason why there would be lager liquid resistance. Therefore, the liquid resistance of evaporation and condensation of toluene in comparison with that of absorption, can be neglected, so k_{gTol} is able to be obtained from Eq. (10.30) :

$$\frac{k_{g,Tol}}{k_{g,CO}} = \frac{D_{g,Tol}}{D_{g,CO}}$$
(10.30)

According to the performance of the process described, assumptions for the mathematical model have been reasonably illustrated :

- (1) For sake of the complexing absorption is a fast reaction, the bulk concentration may be considered as equilibrium concentration, and the concentration at the interface may be considered as the equilibrium concentration in physical absorption.
- (2) Since the liquid resistance can be ignored in the heat transfer process, the temperature of the interface is the same as that of the bulk of the liquid.
- (3) Since the liquid resistance can be ignored during toluene is evaporating, the partial pressure of toluene may approach to its vapor pressure. In addition, backward mixing along axis would not be taken into account; the surface of heat transfer is the same as that of mass transfer.

......

10.4.2.3 Mathematical Modelling

(1) Equation of mass transfer rate :

1 Mass transfer of carbon monoxide :

$$N_{co} * a * dz = K_{og} * a * P * (Y_{co} - Y_{coe}) * dz = -G_B * dY_{co}$$
(10.31)

From This equation, the rate of change of carbon monoxide concentration in differential packings is as follows :

$$\frac{dY_{co}}{dz} = \frac{-Kog * a * P * (Y_{co} - Y_{coe})}{G_{p}}$$
(10.32)

2 Mass transfer of toluene :

From Eq. (10.32), the rate of change of toluene concentration in differential packings is as follows :

$$N_{Tol} * a * dz = k_{gTol} * a * P * (Y_{Tol} - Y_{Tole}) * dz = -G_B * dY_{Tol}$$
(10.33)

Where k_{gTol} can be obtained from Eq. (10.30). Hence, the change rate of toluene concentration in differential packings is :

$$\frac{dY_{Tol}}{dz} = \frac{-k_{gTol} * a * P * (Y_{Tol} - Y_{Tole})}{G_B}$$
(10.34)

10-21

(2) Enthalpy balance, in differential packings : (Fig.10.8)

1 For gas phase (I) :

OUT = IN - CONVERSION

IN : Input rate of enthalpy = $G_B * H_G$ OUT : Output rate of enthalpy =

$$G_{B}*(H_{G} + dH_{G}) - (G_{B}*dY_{CO})*[C_{pCO}*(t_{G} - t_{0}) + H_{OS}] + -(G_{B}*dY_{Tol})*[C_{pTol}*(t_{G} - t_{0})*H_{V}$$
(10.35)

where the last two terms of heat transfer are caused by mass transfer and :

$$H_{G} = C_{pB} * (t_{G} - T_{0}) + Y_{CO} * [C_{pCO} * (t_{G} - t_{0}) + H_{OS}] + Y_{T} * [C_{p} * (t_{G} - t_{0}) + H_{V}]$$
(10.36)

$$dH_{G} = C_{pB} * dt_{G} + Y_{CO} * C_{pCO} * dt_{G} + [C_{pCO} * (t_{G} - t_{0}) + H_{OS}] * dY_{CO} +$$

$$Y_{Tol} * C_{pTol} * dt_G + [C_{pTol} * (t_G - t_0) + H_V] * dY_{Tol}$$
(10.37)

CONVERSION : the rate of heat transfer from gas to liquid phase =

$$q_{G}^{*}a^{*}dz = h_{G}^{*}a^{*}(t_{G}^{-}t_{L})^{*}dz$$
(10.38)

therefore,

$$-G_B * (C_{pB} + C_{pCO} * Y_{CO} + C_{pTol} * Y_{Tol}) * dt_G = h_G * a * (t_G - t_L) * dz$$
(10.39)

Then the temperature profile of gas phase along the packings height is as follows :

$$\frac{dt_G}{dz} = \frac{-h_G *a * (t_G - t_L) * (C_{pB} + C_{pCO} * Y_{CO} + C_{pTol} * Y_{Tol})}{G_B}$$
(10.40)

If mass transfer flux is considerably large, h_G has to be modified as h_G' .

2 For liquid phase (II) :

OUT = IN - CONVERSION

IN : Input rate of enthalpy =

$$(L + dL)*(h + dh_L) + (-G_B*Y_{CO})*[C_{pCO}*(t_G - t_0) + H_{OS}] +$$

$$(-G_B * dY_{Tol}) * [C_{pTol} * (t_G - t_0) + H_V]$$
(10.41)

OUT : Output rate of enthalpy = L^*h_L

CONVERSION : rate of transfer from liquid phase to gas phase =

$$-q_{G}^{*}a^{*}dz = -h_{G}^{*}a^{*}(t_{G} - t_{L})^{*}dz$$
(10.42)

Then

$$L * C_{q} * (\frac{dt_{L}}{dz}) = G_{B} * (C_{pB} + C_{pCO} * Y_{CO} + C_{pTol} * Y_{Tol}) * (\frac{dt_{G}}{dz})$$

+
$$G_B * [(C_{pCO} * (t_G - t_0) + H_{OS}] * (\frac{dY_{CO}}{dz})$$

+
$$G_B * [C_{pTol} * (t_G - t_0) + H_V] * (\frac{dY_{Tol}}{dz})$$
 (10.43)

Where t_0 is the reference temperature. As a result, the temperature profile along the packings in the liquid phase dt_1/dz can be obtained from Eq. (10.32), (10.34), (10.40).

(3) The overall material balance and heat balance :

Overall material balance :

$$L_1 * X_{CO1} - L_2 * X_{CO2} = G_B * (Y_{CO1} - Y_{CO2})$$
(10.44)

Where subscript 1 denotes the bottom and 2 denotes the top of the column,

$$Y_{CO} = \frac{y_{CO}}{(1 - y_{CO} - y_{Tol})}, \quad G_B = G_1 * (1 - y_{COI} - y_{Toll}) \quad (10.45)$$

From the overall heat balance, the temperature of the column bottom $t_{L1}\xspace$ can be obtained :

$$Cp_{al} * (t_{L2} * L_2 - t_{Ll} * L_1) =$$

$$(G_2 * C_{pg2} * T_{g2} - G_1 * C_{pg1} * Tg_1) + H_{OS} * G_B * (Y_{CO2} - Y_{CO1}) + H_V * G_B * (Y_{TO2} - Y_{TO1})$$
(10.46)

10-24

10.4.2.3 Computing and simulation

From the initial conditions, the flux of both gas and liquid phase, their concentration and temperature and from the known parameters-enthalpy of complexing, enthalpy of solvent evaporation, the specific heat, density, molar weight of gas and liquid mixture, diffusivity, enhancement factor, etc., the liquid flux, temperature and composition for the bottom of the tower can be determined from the total heat and total mass balance. Furthermore, with the aid of forth-order Runge-Kutta approach, Eqs. (10.32), (10.34), (10.43) have been solved, from which the temperature profile and concentration profile along the packed tower has also been obtained.

The flow diagram for computing the carbon monoxide absorber tower have been shown in the following algorithms (The turbo Pascal program is printed in appendix 10) :

SUBROUTINE

10-26

10.4.2.4 Result and discussion

For the calculation of carbon monoxide complexing absorbed in the aluminum cuprous tetrachloride-toluene solution, the computer program COSORBER have been used, while the initial data of the COSORB® tower (table 10.4) have been put in, the results of computing conformed with the data obtained from the experimental of a pilot plant.

COMPOS. FEEDGAS	CO Flow	55.02 [kmol/h]	Temp. Gas	308.15 [K]
	H_2 Flow	129.3 [kmol/h]	Tol. Flow	0.000 [kmol/h]
	CO_2 Flow	29.35 [kmol/h]	Inrt. Flow	175.4 [kmol/h]
	N_2 Flow	12.33 [kmol/h]	Tot. Flow	230.5 [kmol/h]
	CH_4 Flow	4.412 [kmol/h]	Y_{co} Flow	0.3136 [-]
	Ar Flow	0.000 [kmol/h]	Y_{Tol} Feed	0.0000 [-]
COSORB [®] SOLVENT	Tot. Flow	225.0 [kmol/h]	Temp. Liq.	313.15 [K]
	X _{co} Feed	0.0028 [-]	Cu Flow	62.55 [Kmol/h]
	X _{cu}	0.2774 [-]	CO Flow	0.631 [Kmol/h]
TOWER SPEC	Pressure	27.0 [bar]	Crit. Surf.	75 [Dyne/cm]
	Height	8.00 [m]	Packing	0.038 [m]
	Cross a.	0.70 [m]	Step h	0.04 [m]
	Spec. a.	130.0 [m]	Efficiency	0.90 [-]
ESTIMATIONS	Flow Top	175.0 [kmol/h]	# iteration	100 [-]
	Tg Top	314.15 [K]	Init. Flag	0 [-]
	Y _{co} Top	0.00005 [-]	error	5E-6 [-]

Table 10.4 Input for COSORB® simulation with COSORBER (appendix 10)

For the gas feed we used the gas composition and gas flux of the calculated optimum from the reformer. For the COSORB[®] solvent we used the composition of the average analytical COSORB[®] data. For the packing of the tower we used metal pall rings (0.038 m). To get the required recovery the tower has to be 8 m high and a cross area of 0.7 m with a pressure of 28 bar.

Also the results of computing of the pressurized tower conformed with the theoretical regulations. The results of the input from table 10.4, have been shown in table 10.5 and the typical temperature profiles and concentration profiles along the packed height have been shown in Fig 10.9 and 10.10.

It is visualized for the fact that the temperature of the liquid phase at the bottom (T_{L1}) decreases with the increasing of the liquid flux, and the required height of the packed tower also decreases. Meanwhile, the maximum temperature of the liquid has eliminated gradually, and similarly for the maximum temperature of the gas phase. At the same time, according to the different feed temperature of the gas phase at the bottom of the tower, the required height of the packings and the maximum gas temperature are different.

These results illustrated the reasonable accuracy of the mathematical model nd simulation of the simultaneous mass and heat transfer process in the chemical absorber.

The average value of the overall mass transfer coefficient $K_{o,g}$ approaches to the experimental data in pilot plant. Because of the situation of the solute in liquid phase of the column bottom, the liquid resistance induced and the enhancement factor reduced, so the mass transfer coefficient is rather small. And because of the solute is rather concentrated in the gas phase of the tower bottom, the solute gas flux is rather large, so the gas resistance is considerably small and the liquid resistance is obviously the dominant.

Height [m]	G Flow [kmol/h]	L Flow [kmol/h]	Y _{co} [-]	Y _{Tol} [-]	T _{liquid}	T _{gas}
0.0	230.452	279.876	2.387514E-1	0.0000000	359 32	308 15
0.4	192.477	241.901	7.992858E-2	8.626694E-3	328.86	311.05
0.8	181.145	230.057	2.259267E-2	5.609578E-3	319.19	312.15
1.2	177.663	227.088	8.407853E-3	4.151519E-3	316.13	312.62
1.6	176.573	225.997	2.825435E-3	3.635643E-3	315.18	312.89
2.0	176.229	225.653	1.057301E-3	3.467124E-3	314.89	313.07
2.4	176.121	225.546	4.983931E-4	3.414167E-3	314.81	313.23
2.8	176.087	225.512	3.218511E-4	3.399694E-3	314.80	313.36
3.2	176.076	225.501	2.661109E-4	3.396578E-3	314.80	313.49
3.6	176.074	225.498	2.485232E-4	3.397110E-3	314.81	313.60
4.0	176.073	225.498	2.429829E-4	3.398684E-3	314.82	313.71
4.4	176.073	225.498	2.412457E-4	3.400480E-3	314.83	313.81
4.8	176.073	225.498	2.407085E-4	3.402246E-3	314.84	313.90
5.2	176.074	225.498	2.405493E-4	3.403912E-3	314.85	313.98
5.6	176.074	225.498	2.405086E-4	3.405461E-3	314.86	314.06
6.0	176.074	225.499	2.405046E-4	3.406895E-3	314.87	314.13
6.4	176.074	225.499	2.405115E-4	3.408220E-3	314.88	314.19
6.8	176.075	225.499	2.405213E-4	3.409443E-3	314.89	314.25
7.2	176.075	225.499	2.405313E-4	3.410573E-3	314.90	314.31
7.6	176.075	225.499	2.405409E-4	3.411616E-3	314.91	314.36
8.0	176.075	225.500	2.405498E-4	3.412579E-3	314.92	314.41

Table 10.5 Results of the COSORB® simulation output

Up in the packings, the gas resistance increased and the mass transfer coefficient decreased because of the higher efficiency of the absorption and the rapidly reducing solute concentration. However the gas solute concentration decreases while the height of the packings increases and the active concentration in absorbent increases, so the enhancement factor increases, and the liquid mass transfer coefficient at the top nearly doubles, but still smaller then the gas phase. This phenomenon becomes more appreciable when the liquid flux is smaller. This agree with the fact and also explores the mechanism of the process.

In the pressurized tower, if the same absorbent flux, temperature and feed composition are used, the required recovery for the same packings height would be higher then that of the conventional tower. This fact is caused by the increasing of the overall mass transfer coefficient. Further to analyze the mass transfer coefficient of the gas and liquid phase respectively, it would show that because the gas diffusivity reduces fifteen times (if 15 atm of pressure in the tower), the corresponding mass transfer coefficient decreases appreciably.

fig 10.9 The concentration profile of solvent and solute in the column

fig 10.10 Temperature profile of gas and liquid in absorber

However, the liquid phase in the pressurized tower reacts with the highly concentrated solute, the rate of complexing absorption increases while the surface tension on the wet packings increases, the convection effect and the surface renewal of the liquid phase increases, so that the enhancement factor and the rate of absorption increased. As a result, the liquid mass transfer coefficient at conventional absorber, the liquid mass transfer coefficient at the bottom of the pressurized absorber also increases several times compared with that in the conventional absorber. Obviously, the gas film resistance would be the dominant factor along the whole tower. From the result, it can be shown that the main factors for the change of gas and liquid film resistance in the chemical absorption process. Due to the different operating conditions, the result of simulating and computing, the mechanism and principles of the process can be explored clearly.

Since in this process the input gas is wet, the evaporation and condensation of the volatile solvent is limited therefore, the maximum temperature of the liquid is not appreciable, that means there would be no hot point along the absorber. (fig 10.10). The minimum driving force region is close to the bottom of the absorber, while the ratio of the liquid and gas is quite small, the minimum driving force region is still at the top of the tower. Because of the required high recovery, the concentration of the active component of the gas phase is so dilute that it is difficult to be absorbed.

10.4.2.5 Costs of COSORB®

The investment costs, feed gas and utility requirements for a reformer feed gas is presented in appendix 10 table A 10.10. The investment requirements for the battery limits of COSORB[®] units include the initial charge of all expendable items, but do not include peripherical facilities such as buildings, flare systems and other equipment or process systems associated with supplying utilities, or administration of the unit. The utilities shown are based on operating the plant at design capacity.

The feed gas composition to the COSORB[®] unit is saturated with water in addition to the components shown in table 10.4 and contains particle matters and sulfur compounds. The gas stream require compression and cooling before particulates sulfur and water can be removed economically. The investment and operating costs presented herein include feed gas compression, water removal, sulfur removal and particulate removal facilities necessary to permit feeding the synthesis gas steam to COSORB[®] unit complexor.

The recovery costs consists the operating and investment cost for the COSORB[®] unit. The required sales price is the recovery cost plus net cost of the synthesis gas feed stream. The variable and fixed costs of recovering CO were calculated at design capacities of 1500 kg/h of CO. Fixed cost are based on 8,000 operating hours per year. Manpower includes one operator plus a fraction of direct supervision. Maintenance and taxes are calculated using industrial averages as shown, and depreciation is included based on ten year straight line rates. The annual cost of investment is taken as 30 percent of the installed cost of the battery limits COSORB[®] unit. This is equivalent to assuming a rate of return on investment of 30 percent before taxes. The recovery costs including investment costs are presented in appendix 10 table A 10.11.

10.4.2.6 Conclusion

The mathematical model of adiabatic absorber with chemical reaction has been computed by the computer program COSORBER for the COSORB[®] system, and the results has conformed with the experimental data of a pilot plant. The enhancement factor, mass transfer coefficient and the profile of both temperature and concentration for both gas and liquid phase have all been described and visualized. By means of the forth order Rung-Kutta method, the differential equations of both heat and mass transfer have been solved, the results are reasonably accurate and less time consuming. Further more, the more precise of this model for scale up designing would be suggested as follows :

The effect of back mixing along the axis may be provided to modify the original one, also, the influence on the boundary and bulk conditions by simultaneous mass and heat transfer need to be further examined.

10.5 produced H₂ in a fuel cell system

Looking at the CO plant it is obvious that not only CO is produced but also a lot of H_2 . In plant II for example the H_2 production is now some 150 kmol/h. Most of this quantity is used as fuel for the heating of the reformer. This is a rather expensive heating fuel. Having in mind that for selling the H_2 purifying is needed, another possible use of the hydrogen in the future could be a fuel cell system.

Fuel cell systems are electrochemical conversion systems, where the chemical energy escaping from the oxidation reaction, directly is transformed into electrical energy. For that purpose H_2 is the feed of the anode and O_2 out of the air is the feed to the cathode. The electrochemical reaction takes place at the electrodes, where an electric voltage is generated. As a result of ion-transport in the cell - using an electrolyte between the electrodes - a electron transport using an extern circuit exists, which can deliver electrical power.

In the past years a lot of different fuel cell systems are developed. Generally those systems are called after there electrolyte. The most important fuel cell are the alkaline fuel cell (AFC), the phosphoric acid fuel cell (PAFC), the molten carbonate fuel cell (MCFC), the solid oxide fuel cell (SOFC) and the polymer electrolyte fuel cell (PEFC). The temperature in those cells varies from 80 °C (PEFC) to 1000 °C (SOFC). For electricity production the most important are the PAFC-, the MCFC- and the SOFC-systems. These systems produce a DC-voltage combined with heat.

The classical natural gas systems for electricity production has a maximum efficiency of 40 - 45 %. The modern STEG-units (steam- and gas-turbines) have a maximum efficiency of 50 - 55 %. At this moment an efficiency of 50 % is the technical limit. The conversion of hydrogen and oxygen in a fuel cell is not a Carnot-cycle with its thermodynamic laws, but a electrochemical proces. That is why the efficiencies can be higher in a fuel cell. The results of a study of an MCFC-system show that the efficiency of such a system is about 52 -58 %. In fig.10.11 a comparison between efficiencies of different electrical power systems is made. The good environment characteristics are also a result of the fact that fuel cells are working with electrochemical conversion. Because of the fact that there is no direct combustion of fuel and oxygen the emission of SO_x, NO_x, CO and hydrocarbons can be very low.

fig.10.11 : efficiencies of different systems.

The characteristics and advantages of fuel cell systems make a variety of applications possible. Fuel cells can be placed for generating a continue basic load, which is interesting for its high efficiency. The fact that the high electrical efficiency also remains by peak loads, makes fuel cells possible for so called loadfollowing uses, but in this case the use of gasturbines is preferred because of the lower installation costs and the fast characteristics of gasturbines. The most promising application in the near future is the cogeneration of electricity and heat. In first instance only PAFC-systems will be commercial available, but these systems have the disadvantage of producing heat at low temperature and have only an efficiency of 35-45 %. More useful, but only commercial in the second half of the nineties, are the MCFC- and the SOFC-systems. These systems produce high quality heat and have an efficiency of almost 60 %. This is the reason for choosing for the MCFC-system.

The hart of a fuel cell system is formed by the fuel cell itself. A fuel cell consists of a stack of basic-elements, such as a anode, cathode and in between the characteristic electrolyte. These cells, connected in series, are separated by a bipolar separationplate. which has not only a separation function but has also the function of distribution the fuel and the oxide-gasses correct. A schematic view of a fuel cell is given in fig. 10.12.

10-33

The reactions that take place in the fuel cell (MCFC) are:

Anode: $H_2 + CO_3^{2} ---> H_2O + CO_2 + 2 e^{-1}$

Cathode: $CO_2 + 1/2 O_2 + 2 e^- --> CO_3^{2-}$

Nett: $H_2 + 1/2 O_2 ---> H_2O$

Fig 10.13 : MCFC-system

Fig.10.13 gives the circuit diagram of a MCFC-system with H_2 and air as feed. The feed reacts at the anode and produces steam, carbon dioxide and electricity. Some CO₂ is mixed with air and fed to the cathode after being compressed. The cathode off-gas comes free under pressure and can deliver power for compression air and electricity generation. The pressure is one of the most important operating parameter. At high pressure the fuel cell gives better results than at atmospheric pressure. This difference can be explained by the Nernst equation (10.47). This equation gives the correlation between the open cell voltage (OCV) and the gas composition:

$$OCV = E^{0} + \frac{RT}{2F} * \ln \frac{[pH_{2}]}{[pCO_{2}] * [pH_{2}O]} + \frac{RT}{2F} * \ln[pCO_{2}] * [pO_{2}]^{\frac{1}{2}}$$
(10.47)

With :

 E_0 = the OCV by reference conditions

- R = universal gas constant
- T = absolute temperature
- F = Faraday constant
- p = partial pressure

Looking at the Nernst equation, it follows that the OCV is higher when the partial pressures from H_2 and O_2 are higher. The addition of inert components, such as N_2 from the air, will lower the partial pressure which will also lower the OCV. The best is to avoid inert components as much as possible. This is possible with recycle flows. A higher operating pressure gives not only a higher efficiency of the cell but also the volume of the gas decreases which results in smaller recycle compressors. On the other hand the performance of the steam turbine decreases with higher pressure. The optimum operation pressure is 7-8 bar.

The question of this system will be economical, has to be calculated later when such system is on the commercial market. At this moment several institutions around the world are working on the development of fuel cells. In the Netherlands there is "BCN' which means BrandstofCel Nederland (Fuel Cell Holland). This is a cooperation between "Verenigde Machine Fabrieken Stork NV, De Koninklijke Schelde Groep BV, ECN (Energy Centre Netherlands) and "Interduct clean technologie Delft".

The only economical system is the PAFC system. In lit [10.18] a study at the economics of a H_2 fuel cell is made. In Table 10.6 below are the results for the situation of a 20 % more CO producing plant with a H_2 separation unit which recovers 99% of the hydrogen at high purity.

Costs, in Dfl * 1000 (1990)	H ₂ -PAFC stack 4 MW
investment costs	8000
annual capital costs	1248
operation & maintenance	400
over-all efficiency (%)	52
fuel (1 $\text{Nm}^3 \text{H}_2 = 0.34 \text{Nm}^3 \text{NG}$)	1690
total annual costs	3338
kWh's produced	32 * 106
kWh-cost (ct/kWh _e)	10.4

Table 10.6 : cost estimation of H₂ fuel cell

The investment costs are based on data presented in lit.[10.19]. The investment cost of the fuel cell is the average of two figures mentioned : 1056 / kW (1980) and fl. 3960 for small units (1990). As the current system is not a small unit the price per kW is fl.2000.-. Capital charge is based on 15.6% (10 years, 9% interest rate). Maintenance and

operational costs are assumed at annual 5% of the total investment costs, whereas the stack is supposed to run during 8000 hrs/a. The H₂ fuel price is the price of the amount natural gas with the same heat value. Also given in lit.[10.19] is the fact that 1 Nm³/h of hydrogen corresponds to 1.23 kW electric power.

Looking at the price for one kWh electricity (10.4 ct/kWh) and comparing this with the price of the electricity on the plant (6.4 ct/kWh), the first conclusion is that the H_2 flow can not be used in a fuel cell system. However when you take into account that:

- 1) the calculations made in this paragraph are very rough.
- the price of a fuel cell will decrease rapidly when large amounts are being produced.
- 3) because of the fact that this is a clean technology, maybe a subsidy will be given by the government.
- 4) the price of 10.4 ct/kWh is lower than the price of the common household user.

So there is a possibility of selling the electricity to the local power station, just as electricity from windmill generators is being sold.

10.6 EVALUATING THE NEW PLANT DESIGN

The new plant consists of various units. After the reformer there are several separation equipments. In this paragraph the influence of the different units and their conditions will be considered in order to understand the behavior of the total plant. The equipment that are involved in the plant are a reformer, a dryer, a COSORB[®] or a CO-vacuum swing adsorption unit (CO-VSA), and possibly a H₂-pressure swing adsorption (H₂-PSA) and a N₂-removal unit. The conditions of the several equipment are shown in fig.10.14

fig.10.14 : working conditions of equipment

After the reformer the gas stream consists mainly of CO, H_2 , CO₂, CH₄, H₂O and N₂. In the dryer all the H₂O from the gas stream has to be removed before the gas is led to the COSORB[®] unit. In the COSORB[®] or CO-VSA unit almost all the CO (>99.9%) is removed with high purity (>99.9%). The other stream which leaves the unit consists mainly of CO₂, H₂, CH₄ and N₂. With this stream it is possible to do several possibilities, which now will be discussed.

One option is to remove all H_2 in order to sell it. The H_2 -PSA unit removes almost all the H_2 (99.9%) with high purity (99.9%), which is necessary if the H_2 will be sold. The other gas stream which leaves the PSA unit contains CO₂, CH₄ and N₂, so a part of this stream could be recycled to the reformer. This stream has to be compressed from 1 to 14.2 bar and the temperature has to be brought from 40°C to 487°C. A part of the stream has to be purged in order to prevent accumulation of some substances. Because not all CO₂ reacts in the reformer, the little purge stream may consist of a high CO₂-percentage. A little MEA-stripper could be used to remove this CO₂, which will be recycled to the reformer, so that less CO₂ will be required in the feed and the feedcost will decrease.

Another possibility is to recycle a part of the H_2 from the H_2 -PSA unit to the reformer in order to increase the CO-production. This is achieved by the fact that H_2 will react with the CO₂, so that more CO₂ (and less CH₄) is converted to CO in the reformer. A little MEA stripper for removing the CO₂ from the purge gas can also be used in this case. It seems that if 60% of the produced H_2 is recycled to the reformer a maximum CO production can be achieved with a certain feed. Higher H_2 -recycles decrease the CO-production, because too much H_2 decreases the conversion of CH₄ to CO and H_2 .

If it is able to work with low purgestreams, the benefit of recycling H_2 becomes insignificant and the first option is recommended.

As the purge stream seems to have very little combustion value, it has no use burning this stream in the furnace.

The effect of a N_2 -removal unit for the feedgas is that less N_2 is circulating in the recycleloop so that less purging is possible. If less purging is possible, less feed is required and the feedcost is lowered.

The amount of H_2 which is produced by the H_2 -PSA depends on the feedgas composition. If a certain feed is used, this amount does not seem to differ very much in the cases recycling H_2 to the reformer or not. When recycling H_2 , the amount of H_2 which come out of the reformer increases also.

Another option is to work without a H_2 -PSA unit. The gas stream coming out from the COSORB[®] or CO-VSA unit contains H_2 , CO₂, CH₄ and N₂, so part of this stream is recycled to the reformer while the other part is purged in order to prevent accumulation. The recycle stream doesn't have to be compressed, but it has to be brought to a temperature of 487°C. If the recycle is getting too much (so less is being purged), H_2 is piling up in the loop. This can decrease the conversion of CH₄ to CO and H₂, which results in a lower CO production. To solve this problem more CO₂ and less CH₄ (and so less steam) is fed to the reformer. The use of a N₂-removal unit is only advantageous if high recycles are being applied. As no higher recycle than 60% is applied, this unit will not be necessary in this case.

to remove the CO_2 from the stream before burning it in the furnace have to be considered.

In the reformer mentioned in the earlier chapters, a gas stream of about 300 kmol/hr is going into the reformer (in the 20% capacity increased case). If the same reformer is being considered, the amount of gas going into the reformer at one of the new possibilities must be lower than this value. The gastemperature in the tubes will otherwise not be able to rise from 487°C to 860°C due to the decreased heat transfer, and the reaction will not be able to occur as required.

With recycling the different streams not only the amount of the stream that goes into the reformer should be considered, but also the composition of the stream should be analyzed. This is very important, because coke formation in the reformer has to be avoided. This can be done by adding steam. Also more CO_2 has also has a positive influence on avoiding coke formation. More steam is required when H_2 is recycled, because then more CO_2 reacts, which result in less CO_2 in the recycleloop. The problem that occur in this case, is that more steam has a negative effect on the CO-production. This can be solved by adding more CO_2 instead of steam and less CH_4 .

Fig 10.15: three options considered

index: $1 = CO_2$ -reformer 2 = dryer 3 = CO-VSA $4 = H_2$ -PSA $5 = N_2$ removal unit

10.7 CONCLUSIONS FOR THE NEW PLANT

To come to a conclusion which plant is economically the best for producing 55 kmol CO/hr the original reformer with different feed is used. The cases that are considered here are :

- PLANT 1: a plant with a H_2 -PSA and without a N_2 -removal unit. No H_2 from the H_2 -PSA unit is being applied as feed to the reformer. A recycle of 90% is applied.
- PLANT 2: a plant with a H_2 -PSA and with a N_2 -removal unit. No H_2 from the H_2 -PSA unit is being applied as feed to the reformer. A recycle of 60% is applied.
- PLANT 3: a plant without a H₂-PSA and without a N₂-removal unit. As a recycle of 60% is applied, a N₂-removal unit is not necessary.

The three plants are shown in fig.10.15. The different streams that are involved in the three processes are shown in table 10.7 to 10.9. The feedgas compositions are calculated by trial and error with a computerprogram, Mercury, which simulated the plant mathematically. When searching for a feed for the plants, some aspects had to be taken into consideration. These where:

- a. the plant has to produce 55 kmol CO/hr.
- b. the amount of gas into the reformer had to be about 250 kmol/hr.
- c. the coke formation criterium has to be applied:

$$\frac{1/2CO_2 + H_2O}{CH_4} > 3 \tag{10.46}$$

To work safe a value of 3.5 is applied.

d. the amount of all the gasses except for H_2 going into the H_2 -PSA may not exceed a value of 60 kmol/hr, otherwise this unit would become too expensive.

e. the amount of CO_2 in the feed has to brought to a minimum, because CO_2 is expensive

PLANT 1 (kmol/h)	H ₂	со	CO2	CH₄	H ₂ O	N ₂
feed			34	39	110	6.86
recycle			25.55	1.11		10.29
reformer in			59.55	40.11	110	17.15
reformer out	97.81	55.23	42.58	1.85	88.71	17.15
products	97.81	55.23				
purge			17.03	0.74		6.86

Table 10.7 : streams of plant 1

Table 10.8 : streams of plant 2

PLANT 2 (kmol/h)	H ₂	со	CO ₂	CH₄	H ₂ O	N ₂
feed			20.4	39	113	1.36
recycle			37.93	1.75		12.24
reformer in			58.33	40.75	113	13.60
reformer out	100.2	54.99	42.15	1.94	90.38	13.60
products	100.2	54.99				
purge			4.22	0.19		1.36

Table 10.9 : streams of plant 3

PLANT 3 (kmol/h)	H ₂	СО	CO2	CH₄	H ₂ O	N ₂
feed			40	28.5	80	4.97
recycle	77.92		17.61	2.65		7.36
reformer in	77.92		57.61	31.15	80	12.33
reformer out	129	55.00	29.35	4.41	81.53	12.33
products		55.00				
purge	51.08		11.74	1.77		4.97

To make an estimation for the prices for producing CO, the method of chapter 9 is applied. However, the cost estimation of this chapter is not as accurate as in chapter 9, because in chapter 9 flowsheets of a consisting plant were available.

Chosen is for a CO-VSA unit, because the price of this unit seems to be lower than that for a COSORB^{\circ} unit. The investment cost of the N₂-removal unit is estimated to be \$ 3.000.000.

In order to calculate the costs of the utilities, the heat duties of the reformer, compressor work and the heat duties for the different recycles were calculated.

In table 10.10 the investment costs of the three plants are calculated. As expected the investment costs are the cheapest for plant 3 and most expensive for plant 2. Finally in table 10.11 the production cost of CO is calculated. It can be seen that although the price of raw materials and utilities of plant 3 is the highest, the production costs for this plant are the lowest.

Costs in 10 ³ \$	plant 1	plant 2	plant 3
Furnace Dryer system Recycle compressor Compressor drivers CO-VSA CO-VSA + H ₂ -PSA	885.5 75 39.4 9.2 1074	885.5 75 48.5 12.3 1074	885.5 75 516
PCE	2083.1	2653.1	1476.5

Table 10.10 : investment costs for the three options

Total PPC PPC=f _a *PCE	6770.1	8622.6	4798.6
Fixed Capital FC=f _b *PPC Working Capital (10%)	9816.6 981.7	12502.8 1250.3	6958.0 695.8
Investment Cost	10798.3	13753.1	7653.8

Table 10.11 : CO-	product cost calculation
-------------------	--------------------------

A. Variable Costs in 10 ³ \$	plant 1	plant 2	plant 3
 Raw materials Feed gas price Net H₂ Credit Utilities 	2769 -640	2246 -656	2619
 Electricity for recycle compressors Natural Gas: 	39	55	
 heat exchangers furnace 	8 416	11 419	48
Subtotal A	2592	2075	2667
B. Fixed Costs in 10 ³ \$			
1. Maintenance	981.7	1250.3	695.8
2. Operating Labour	824	824	824
3. Supervision	165	165	165
4. Plant Overheads	412	412	412
5. Capital charges	14/2.5	1875.4	1043.7
0. Insurance	98.5	125	69.6
7. Raics 8 Royalties	190.4	250	139.2
6. Royantes	90.2	125	09.0
Subtotal B	4248	5026.7	3418.9
Direct Production Costs A+B	6840	7102	6086
Direct Housedon Costs A+D	0040	/102	0080
C. Share of the Company's general operating expenses (25% of direct prod. costs)	1710	1776	1522
[
Annual Operating Costs (A + B + C) in 10^3 \$	8550	8878	7608
Production Cost (1540.6 kg CO/hr)	\$ 0.67/kg	\$ 0.70/kg	\$ 0.60/kg

When a new reformer should be designed, it could be designed for bigger gas streams so that it is possible to work with H_2 -recycles or with higher total recycles if no H_2 -PSA unit is used. This can cause a cheaper feed gas, because less feed is then required to produce the same amount of CO. But there are also some disadvantages when working under these conditions. The recycle streams have to be brought to reformer conditions (temperature, pressure) and more heat will be required in the reformer as the streams are bigger. All these factors should be considered when a new reformer will be designed, because a theoretical optimum does not have to be a practical optimum, just because of the economic aspects that are involved.

10.8 CONCLUSIONS AND RECOMMENDATIONS

Searching for an alternative CO-production process, several different options are found. For these options the costs for investment, feed, maintenance, operating and labour are calculated. After evaluation of costs, the most economical CO-production plant is chosen. The conclusions, based on the different options mentioned in this chapter, are:

- 1. For a CO production process is coal gasification only economical with a production higher than 6.5 ton/hr. Because the production in the existing plant is only 1.22 ton/hr., the choice is made to use the existing furnace fed with a different feed containing much CO_2 .
- 2. After cost evaluation, the most economical way to produce CO is with a plant consisting of a CO₂-reformer and a CO-Vacuum Swing Adsorption system. The CO is produced for \$ 0.60 /kg CO.
- 3. The COSORB[®] process is reliable process to recover CO from a mixed gas stream. However the investment cost are rather high the COSORB[®] process operating cost are low. The recovery cost of CO amount \$ 0.70 /kg CO.
- 4. If there is a H_2 rich stream coming out of the plant, the H_2 can be put in a Phosphoric Acid Fuel Cell (PACF) to produce electricity for 10.4 dutch cents/ kWh. This is more than the electricity generated on the site, but less expensive than the normal electricity rate.

RECOMMENDATIONS

- 1. Because the equipment prices are coming from different sources, it is recommendable to evaluate the actual prices on the current market for the different equipment. This might change the price for producing CO.
- 2. Some further investigations can be made on the recent developments in the area of H_2 membrane separation systems. This is recommendable because the developments for such systems are going fast.

LITERATURE:

- 10.1 Lath E., Herbert P., 'make CO from coke, CO₂ and O₂', Hydrocarbon Processing, August 1986, pp. 55-56.
- 10.2 Kirk-Othmar, 'fuels, synthetic (gaseous)', volume 11, pp. 411-425.
- 10.3 US. patent : 5.073.356, 'Integrated process for the production of carbon monoxide', David E. Guro, Air Product and Chemicals Inc.
- 10.4 Farooque, Kush and Abens, 'Novel electrochemical hydrogen separation device using phosphoric acid membrane cell', Separation Science and Technology, 25 (13-15), 1990, pp. 1361-1373
- 10.5 White, D.M., Barkley, P., Chem. Engng. Prog., 85 (1989), pp 25-33.
- 10.6 Jasra R.V., Choudary N.V., Bhat S.G.T., Separation Science and Technology, 26 (7), (1991), pp 855-930.
- 10.7 Watson Allan M., Linde AG, 'Use pressure swing adsorption for lowest cost hydrogen',march (1983), pp.91-95.
- 10.8 US. patent : 4.914.076, Toshiaki Tsuji, 'method of producing an adsorbent for separation and recovery of CO', apr. 3 (1990).
- 10.9 Smits, J.M., H.C. Van Ness, 'Introduction to Chemical Engineering Thermodynamics', McGraw-Hill, New York, fourth edition (1987).
- 10.10 Onda, K., E. Sada, T. Kobayashi and M. Fujine, 'Gas Absorption Accompanied by Complex Chemical Reactions-I.Reversible Chemical Reactions', Chem.Eng.Sci. 25, 753-760 (1970).
- 10.11 Gholap, R. V. and R. V. and Chaudhari, 'Absorption of Carbon Monoxide with Reversible Reaction in Cuprous Chloride Solutions', Ind. Eng. Chem. Res. 27, 2105-2110 (1988).
- 10.12 Danckwerts, P. V., 'Gas-Liquid Reactions', McGraw-Hill, New York (1970).
- 10.13 Gholap, R. V. and R. V. and Chaudhari, 'Absorption of Carbon Monoxide with Reversible Reaction in CuAlCl₄-Toluene-Complex Solutions', Can. J. Chem. Eng. 70, 505-510 (1992)
- 10.14 Seidell, A., 'Solubilities of Inorganic and Metal Organic Compounds', D. Van Nostrand, New York (1940).

- 10.15 Coulson, J.M., J.F. Richardson, 'Chemical Engineering', vol. 6, R.K. Sinnott, (1983).
- 10.16 Changluo, Z., Z. Rongxian, J. Gengming, and W. Qingzi, 'A mathematic model and simulation for non isothermal gas absorption with chemical reaction', J. Chem. Ind. Eng., 2, 115-129, (1987).
- 10.17 Perry, R.H., D. Green, 'Perry's Chemical Engineers' Handbook', McGraw-Hill, New York, sixth edition.
- 10.18 Laag, P.C. van der, Lugten P.E., 'systeemstudies voor brandstofcellen', Energiecentrum Oktober (1990), pp. 264-268.
- 10.19 Seeters van J.E.A.M., Fortuin J.B., 'Utilization potential of secondary hydrogen gas in industry as fuel for fuel cell systems in the Netherlands', TEBODIN report for NOVEM B.V.
- 10.20 Klein, C.A.N. van der, 'De Brandstofcel: Ontwikkelingen en perspectieven', Energiespectrum Maart (1990), pp. 77-82.
- 10.21 Teuner S.C., 'Make CO from CO₂', Hydrocarbon Processing, May (1985), pp. 106-107.
- 10.22 Esselink A.J., 'Low cost carbon monoxide', K.T.I.- report, The Hague, (1975).
- 10.23 Wang Shoou-I, 'careful design considerations can optimize H₂/CO production', Technology nov 1, (1982), Oil & Gas journal, pp. 55-62.

11 CONCLUSIONS AND RECOMMANDATIONS

11.1 Conclusions

- The capacity increase of 20% is possible in two ways:
 - 1. Adding more CO₂ in the feed stream.
 - 2. Adding more CO_2 in the feed stream in combination with a pre-reformer.

Both solutions lead to the same CO price (\$ 0.88). This is less expensive than the actual CO price (\$ 1.03). Option 1 will make adaption of the MEA equipment necessary. Option 2 will not, but a pre-reformer has to be installed. The choice will depend on costs and ease of installation.

- Separate N₂ removal is economically not a better option for the current process, although it helps to increase purity.
- A completely different plant designed by group 4 could produce CO for \$0.60/kg. This is less expensive than the current CO production which has a CO price of \$0.78/kg.
- Coal gasification is not a good option because it is only economically by productions higher than 6.5 ton/hr.
- ASPEN is a very good aid designing new processes and process equipment. However working with ASPEN gave a lot of difficulties but most of them were problems with our computernetwork. The large memory use also gave some problems. The program itself has been very usefull to calculate the new streams and all physical properties of the stream but the enthalpy balances were unreliable.
- As alternative separation methods only cryogenic separation and PSA have to be taken into account. At this point membranes are commercially not available. For absorption is at this point no absorbent available. Cryogenic separation can be done by using a process designed by Linde or a process designed by Griesheim Gmbh. Linde's process is commercially available. Both methods remove approximately 80% N₂. PSA is too experimentally at this moment. If applied, it will only work in smaller plants like the one in use.

11.2 Recommendations

- The 20% capacity increase by adding CO₂ to the feed in combination with a prereformer is a good option and relatively inexpensive.
- The effect of the feed stream with a smaller amount of nitrogen on the Coldbox should be investigated.

12. EXPERIENCES WITH ASPEN PLUS.

12.1. Introduction to Aspen-Plus.

Aspen Plus (hereafter to be referred to as Aspen) is one of the many commercially available packages for the simulation of processes in the chemical industry. The use of Aspen is limited to static simulations, so no time-dependent processes can be modelled. The version used was release 8.5-4, in combination with ModelManager version 3-1.

12.2. How to create an Aspen input file.

Since the release of ModelManager, creating an Aspen input file has become very simple, especially when using ModelManager with graphics. In that case, the only thing to be done is drawing the flowsheet on the screen, selecting the various pieces of processequipment from a menu and connecting these blocks by entering streams; most blocks have a number of icons to choose from. While building the flowsheet you must keep in mind what you want to have calculated; if you are not interested in an energy balance, most of the pumps are unnecessary, since Aspen does not take into account the pressure drop over a pipeline. It is also possible to give the desired outlet pressure after the pump as a specification on the previous block. Likewise, you can model a compressor as a heater with an increasing pressure over the apparatus, and a distillation column as a separation block with given composition and temperatures of the outgoing streams. When all blocks are placed, ModelManager asks for all required input, such as the equations of state to be used, the flows and compositions of the feed streams and the specifications for all blocks, e.g. the number of trays in a column, pressure drops over the various pieces of process-equipment and the reactions taking place in a reactor. When sufficient data is entered, ModelManager gives a prompt that the simulation can be executed and creates an input file to be used by the program itself; before the release of ModelManager these input files had to be writen directly, thus requiring a reasonable knowledge of the language used by Aspen. A more detailed description on the use of ModelManager and Aspen is given in appendix 12, as well as all models and an example of an Aspen input-file.

12.3. Aspen's special features.

Aspen is one of the more advanced simulation packages on the market and offers quite a lot of special features. For one, the choice of the model for the equation of state to be used is to be made out of over 25 options, varying from the ideal gas law to the Kent-Eisenberg model which is to be selected when using alkanolamines to remove CO_2 from a stream. It is possible to give every piece of process-equipment its own thermodynamic model.

An other impressive option is the amount of data which can be obtained about the operation of a distillation column; Aspen automatically gives data regarding the vapour/liquid equilibrium, but can also, on request, give properties of the mixture on each individual tray such as the surface tension, the viscosity, the density and the interaction parameters.

If enough expertise on the use of the computer language Fortran is present, one can write the routine to be used in a user-defined block; this can be necessary if the apparatus to be modelled is not present in the standard list used by Aspen (see appendix 12), or if the results of the standard routine are not satisfactory. Aspen is a user-friendly program, providing an on-screen help facility on most of the topics; for more difficult and acute problems there is the Aspen-Plus-Hotline where a team of experts is ready to solve them.

12.4. Problems and possibilities for improvement.

The problems encountered while working with Aspen can be divided into three major groups: problems with the host-computer ("the network"), difficulties understanding and using the program itself and problems occurring while running the simulation.

The problems with the host-computer were the most time-consuming and often occurring; most of them can be described to lack of memory on the host-computer. In a case like that, Aspen gives a prompt that there is not enough memory left to generate the output files and the simulation is terminated. In the worst case the lack of memory does not occur until the simulation is completed; Aspen then tells you to delete a number of other files and tries again to read in the results. If however the the available memory is not enough, the entire program is terminated losing all data. When the network is used by someone else running more memory-consuming programs, Aspen will not run at all; there is no solution to this problem, however. Most of the other problems were solved when the amount of memory assigned to us was doubled. In this context I would like to point out the possibility of making a back-up file in which all relevant data is stored and which can be copied from the network to a floppy disk.

The inability to understand Aspen is caused by not having an up-to-date manual on how to use ModelManager. Most of the problems were solved eventually, but some remained. To name a few: it has not become clear how you can make a correction when you made a mistake in entering the name of a particular stream or block. Equally disturbing is the fact that numlock is inactive under ModelManager, even though you have got an enormous amount of data to enter. There is also no way of printing only a part of the entered flowsheet; when the simulated process is rather complicated this certainly is desirable.

Problems occurring when running or attempting to run a simulation are the following: sometimes, when using special routines for the equation of state, Aspen has to link with its library, which can take up to a quarter of an hour. There is, however, the possibility of saving these routines which we did not discover until recently. We already discussed the problems occurring when the network is used by others. Sometimes, Aspen refuses to read in the results, either by ignoring your command to do so or by pretending to be reading them in while doing nothing at all. Aspen would sometimes generate error messages nobody could understand, or present results which are physically impossible without giving as much as a warning. In this context I would like to point out the danger that a heat exchanger cools both streams (without change of phase), even though the enthalpy of one of them rises substantially. This has probably a lot to do with the unaccurateness of the enthalpy-calculating routines; this is the major reason for not being able to simulate processes with very complex heat recovery, such as the Coldbox.

Table A2.1 : design streams of CO plant II

Bloc	k Scheme	CO plant II								-	-	Vali	Contraction of the local division of the loc		and the second second	the second s		Contraction of the local division of the loc
11 .			· · · · · ·			100	1		Com	ponon	5 1	13 1 P	L		1		lu al	1 · ·
Strea	m nunbor	stream number	pressure [bac]	Tomp [°C]	Hı	(0	(O ₁	N ₂	O ₂	CHy	C2Hb	Cs He	(4110	(sHiz	CeHn	MEA	H'O	tot AL
	1	201	20	15	-	-	20,8	213,4	0,2	692.7	45.5	8.7	4.3	1.5	2,3	-	-	y89.4
	2	. 202	20.0	120	10,7	2.5	-	2.2	-	•	-	-	-	1	-	-	·	15.4
	2	203	17,5	400	10.7	2.5	20,8	215,7	0,2	692.7	45.5	8.7	4.3	1,5	2.3	-	-	1004,8
	4	205	22.2	220	•	•	•	•	•	•	•		•	•		-	2725,2	2125.2
	5	204	14.6	. 40	6.2	199,н	13135	29.8	-	60.7	•	-	•••	.*	••	-	3.7	1621.3
	6	207	14.0	487	16.9	201,g	13343	245,4	-	761.4	45,5	8.7	4,3	1.5	2,3	•	2729.1	5351,3
	7	208	10.5	860	300,5	1498,1	1380,6	245,4		69.1	•	•	•	•	•	•	1858.0	5351.7
	S	209	10.0	180	300.5	1498,1	1380,6	245,4	-	69.1		•	•	•	-	•	41 92.6	77.06.3
	9	211	· 9.4	40	300.5	1498,1	1380.6	245,4		69.1	.	•		•	•	-	31,4	3525.1
	10	212	9.3	40	300.1	1496.0	0.5	245,1	-	69.0	•	:		-		•	27.9	2138,6
	11	215	0,5	10	0,4	1.0	1313,5	0.3		0,1							28	1344.3
	12	227	1,0	31	5,8	197.3	-	29,4	-	68.6		•	•		•	-	-	301,1
	13	216	0,5	40	6,2	199,4	1313.5	29,8	•	68.7	•	•			· -		. 28	1645,6
1	14	217	15,2	40	6.2	199,4	1313,5	29,8		68.7	-		-	-	-	-	3.7	1621.3
	15	· 251	26.0	104	1. . .	-	-	-	-	-	-	-	• -	-	-	-	6183.9	6183.9
	16	254	22.2	. 220	-	-		-	-		-	-	• .	-	-		5936,5	5936,5
	1]	255	27.2	220	-	:	-	-	•	-	-	-	-	-	-	-	347.9	347.9
	10	266	2.5	. gð		-		-	-		1:	-		- 1	-		4261.2	4261.2
	19	219	27.7	35	300.1	1196,0	0.5	245,1	-	69.0							7.8	2118.5
	20	223	21,2	35	198.3	1487.1	-	243.7		68,6	-		-		-		-	1097.8
	21	221	2.7	27	241,4	56.7	-	50,1	-	-				· .			-	348,2
	22	222 [ANTENDS	100 2.0	40	243,2	65,6	0,5	51,5		0,1			-	· .	-	-	7.0	369.0
	13	226	8.6	35	-	1221.4	-	153.6			. ·	14		-				1375,0
	24	225	8.6	35.	-	238,6		390			-					.		268.7
	25	224	1.0	31	-	1460,1	-	18.6										1643.7
	26.	228	3.5	25	292,5	68.3	-	60,7							· ,			421.5
	27 Lon ruas	2 219	2.0	25	511	11.7		10,6										73 4
				208	-	1	-	-	•			- 1	•		-	1 .	11046,)	1 1046 2 -

.

1

confidential

confidential

confidential

confidential

confidential

confidential

Appendix 3.1 Reformer heat duty calculations.

T1 := 487 + 273.15 p1 := 15 R := 8.314 T2 := 860 + 273.15 p2 := 11 Tst := 25 + 273.15 Tam := $\frac{T1 + T2}{2}$ $\begin{bmatrix} 2.016\\ 28.011\\ 44.010\\ 28.013 \end{bmatrix}$ $\begin{bmatrix} 8.38\\ 7.21 \end{bmatrix}$ $\begin{bmatrix} 149.06\\ 57.00 \end{bmatrix}$

$$M := \begin{bmatrix} 16.043 \\ 16.043 \\ 30.070 \\ 44.097 \\ 58.124 \\ 72.151 \\ 86.178 \\ 18.015 \end{bmatrix}$$
 yin :=
$$\begin{bmatrix} 30.32 \\ 8.76 \\ 47.46 \\ 1.51 \\ 0.20 \\ 0.07 \\ 0.02 \\ 0.03 \\ 151.49 \end{bmatrix}$$
 yuit :=
$$\begin{bmatrix} 53.48 \\ 31.37 \\ 8.76 \\ 4.31 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 103.13 \end{bmatrix}$$

ytotin := ∑yin

ytotuit := Zyuit

 $y1 := \frac{yin}{ytotin}$ $y2 := \frac{yuit}{ytotuit}$

Tci :=	33.2 132.9 304.2 126.2 190.6 305.4 369.8 425.2 469.6 507.4 647.3	⊕i :=	22 .049 .225 .040 .098 .152 .193 .251 .296 .344	рсі	: =	13.0 35.0 73.8 33.9 46.0 48.8 42.5 38.0 33.7 29.7 220.5
--------	--	-------	--	-----	-----	---

			-3		5]
		3.249	0.422.10	Ø	0.083.10
			-3		5
		13.376	0.557.10	Ø	-0.031.10
		5 457	-3	22	5
		13.43/	1.045.10	Ø	-1.157.10
		3.280	0.593.10	0	5
			di 0.0.0	U .	0.040.10
		1.702	9.081.10	-2 144.10	
			-3		2
Cpcoef	:=	1.131	19.225.10	-5.561.10	0
			-3	-6	
		1.213	28.785.10	-8.824.10	Ø
			-3	-6	
		1.935	36.915.10	-11.402.10	Ø
		0 010	-3	-6	
	2.464	2.464.10	45.351.10	Ø	
	3 005	-3 F7 700.10	-6		
		0.020	JJ. / ZZ ' 10 -7	-16.791.10	Ø
		3 470	1 450.10	2	5
		L	1.400 10	Ø	0.212.10

	30.41362781]
	32.42198198
	52.47736443
	31.97570426
	69.29036111
Cplos =	118.74389363
	170.04141815
	220.57482461
	382.14034121
	321.24517664
× .	40.46635497

cpin := y1 Cplos

cpuit := y2 Cplos
Eerst ga ik ethaan en hoger (487gr C) laten reageren tot CH4

ytoteerst := ∑yeerst

Tpc1 := yfrac^{T.}Tceerst ppc1 := yfrac^{T.}pceerst 01 := yfrac^{T.}0eerst

ppr1 := ppc1 0

BØ1	:= 0.083	- 0.422 1.6 Tpr1	d801 :	= 0.675 2.6 Tpr1
B11	;= 0.139	- 0.172 4.2 Tpr1	dB11 :	= 0.722 5.2 Tpr1

Hr1 := ytoteerst R Tpc1 ppr1 (B01 - Tpr1 dB01 + 01 (B11 - Tpr1 dB11))

$$id \longrightarrow 25 \text{ gr C}$$

$$peerst := \begin{cases} Cplos \\ 5 \\ Cplos \\ 6 \\ Cplos \\ 7 \\ Cplos \\ 7 \\ Cplos \\ 8 \\ Cplos \\ 9 \end{bmatrix} \text{ ytoteerst } cp = 134.44369555$$

SHreact := ytoteerst cp (298.15 - T1)

	[-65.220]	j := Ø4
	-118.880	
Hr :=	-172.290	
	-225.840	
	-280.200	yCH4 := $(j + 2)$ yeerst
		j . j
8Hr :=	= yeerst Hr	ڭ

Nu is er alleen CH4 dus deze weer opwarmen tot 487 gr C

δHprod := yCH4·Cplos ·(T1 - 298.15) 4

Even reeel gas van maken :

$$Tr := \frac{T1}{Tci} \qquad pr := \frac{p1}{pci}$$

 $B01 := 0.083 - \frac{0.422}{1.6}$ $B11 := 0.139 - \frac{0.172}{4.2}$ Tr

$$dB01 := \frac{0.675}{2.6} \qquad dB11 := \frac{0.722}{5.2} \\ Tr \qquad Tr$$

$$Hr2 := yCH4 \cdot R \cdot Tci \cdot pr \cdot \begin{bmatrix} B01 - Tr \cdot dB01 + \omega i \cdot (B11 - Tr \cdot dB11) \\ 4 \end{bmatrix}$$

SHreactiel := Hr1 + Hr2 + SHr + SHprod + SHreact

$$y1 := \begin{bmatrix} yin \\ 0 \\ yin \\ 1 \\ yin \\ 2 \\ yin \\ 3 \\ \begin{bmatrix} yin + yCH4 \\ 4 \\ yin \\ 10 \end{bmatrix}$$

$$Tci := \begin{bmatrix} Tci \\ 0 \\ Tci \\ 1 \\ Tci \\ 2 \\ Tci \\ 4 \\ Tci \\ 10 \end{bmatrix}$$

$$pci := \begin{bmatrix} pci \\ 0 \\ pci \\ 1 \\ pci \\ 2 \\ pci \\ 3 \\ pci \\ 4 \\ pci \\ 10 \end{bmatrix}$$

$$0i := \begin{bmatrix} 0i \\ 0 \\ 0i \\ 1 \\ 0i \\ 2 \\ pci \\ 3 \\ pci \\ 4 \\ pci \\ 10 \end{bmatrix}$$

ytot1 :=
$$\Sigma y1$$

yfract1 :=
$$\frac{y1}{ytot1}$$

Tpc1 := yfract1^{T.}Tci
ppc1 := yfract1^{T.}pci
 ω_1 := yfract1^{T.} ω_1

ppri :=
$$\frac{pi}{ppci}$$

$$Tpr1 := \frac{T1}{Tpc1}$$

 $y2 := \begin{bmatrix} yuit \\ yuit \\ 1 \\ yuit \\ 2 \\ yuit \\ 3 \\ yuit \\ 4 \\ yuit \\ 10 \end{bmatrix} ytot2 := Ey2 \\ yfract2 := \frac{y2}{ytot2}$

$$B01 := 0.083 - \frac{0.422}{1.6}$$

$$B01 := \frac{0.675}{2.6}$$

$$B11 := 0.139 - \frac{0.172}{4.2}$$

$$B11 := \frac{0.722}{5.2}$$

$$B11 := \frac{0.722}{5.2}$$

Hr1 := ytot1 R Tpc1 ppr1 (B01 - Tpr1 dB01 + 01 (B11 - Tpr1 dB11))

Tpc2 := yfract2^T.Tci Τ2 Tpr2 := ppc2 := yfract2^T·pci Tpc2 p2 ppr2 := ----- $\omega_2 := yfract 2^{T_1} \omega_i$ ~~ ppc2 0.675 Ø 0.422 BØ2 := Ø.Ø83 - _____ dBØ2 := ' 2.6 Tpr2 Tpr2

B12	:= 0.139	- 0.172	dB12 :=	.722
		4.2 Tpr2	Τp	-2

Hr2 := R·ytot2·Tpc2·ppr2·(B02 - Tpr2·dB02 + ω2·(B12 - Tpr2·dB12))

nu voor ideaal mengsel van 487 naar 25 gr C

$$cplos := \begin{bmatrix} Cplos \\ 0 \\ Cplos \\ 1 \\ Cplos \\ 2 \\ Cplos \\ 3 \\ Cplos \\ 4 \\ Cplos \\ 5 \end{bmatrix} cpl := yfract1^{T} cplos$$

δHreactant := ytot1 cp1 (298.15 - T1) δHprod := ytot2 cp2 (T2 - 298.15)

```
X := 47.46
Y := 1.07
```

```
yout := yin + X - Y
   1
           1
yout := yin
             + Y
   2
           2
yout := yin
   3
           3
yout := yin - X - Y
   1Ø
           10
yout := yin + 3 \cdot X + Y
   Ø
           Ø
         yout := yCH4 - X
```

 $Q := \delta H totaal + \delta H reactiel$ $Q totaal := \frac{Q}{3600}$

Qtotaal = 4.43445582 10

kWatt

Appendix 3.2. Prediction of the streams and calculation of the equilibrium constants.

To predict the composition of the flows, the following equations were solved with Mercury. T =

 $\begin{array}{l} T_{app3} = \\ T_{app4} = \\ P = \\ \end{array} \\ \begin{array}{l} m = \\ H_{2f} = m^{*} \\ CO_{f} = m^{*} \\ CO_{2f} = m^{*} \\ CO_{2f} = m^{*} \\ H_{2} C_{f} = m^{*} \\ H_{2} O_{f} = m^{*} \\ H_{2} O_{s} = \\ \end{array}$

$$K_3 = \exp[-\frac{27464}{T - T_{app3}} + 30.707]$$

$$K_4 = \exp[\frac{4578}{T - T_{app4}} - 4.33]$$

$$K_4 = \exp[\frac{4084}{T} - 3.765]$$

$$K_{3} = \frac{P_{CO} * P_{H_{2}}^{3}}{P_{CH_{4}} * P_{H_{2}O}}$$

$$K_4 = \frac{P_{H2} * P_{CO2}}{P_{CO} * P_{H2O}}$$

$$P_i = \frac{n_i}{n_{tot}} * P$$

 $H_2 r = 0.0562 * H_2$

CO,=0.1348*CO

CO2r=0.951*CO2

 $H_2O_r = 0.002 * H_2O$

 $CH_{4r} = 0.994 * CH_4$

 $N_{2r}=0.13*N_2$

 $H_2 = H_{2r} + H_{2f} + 3 * x - y$

 $CO=CO_r+CO_f+x-y$

 $H_2O=H_2O_r+H_2O_f-x-y$

 $CH_4 = CH_{4r} + CH_{4f} - x$

 $CO_2 = CO_{2r} + CO_{2f} + y$

 $N_2 = N_{2r} + N_{2f}$

$n = H_2 + CO + CO_2 + CH_4 + H_2O + N_2$

with

T : temperature (K).

T_{appi}: temperature approach for reaction j (K).

P : pressure (atm).

m : multiplication factor for the natural gas (-).

H₂O_s: molar flow of steam, added to the feed (kmol/h).

 i_f : molar flow of component i in feed (kmol/h).

i, : molar flow of component i in recycle (kmol/h).

- i : amount of component i in equilibrium with the other components (kmol/h).
- K_i : equilibrium constant of reaction j.
- x : conversion of CH_4 (kmol/h).
- y : production of CO₂ (kmol/h).
- n : total molar flow (kmol/h).

Furthermore, the flows of the components are assumed to be positive. The recycle ratio is calculated by using the design streams.

Appendix 3.3. Calculation of the design (KTI) overall heat transfer coefficient.

For the calculation of the overall heat transfer coefficient the following data was required [A1]:

- kst : Conductivity of tube metal (W/m/K)
- Dti : Internal tube diameter (m)
- Dte : External tube diameter (m)
- aw : Wall heat transfer coefficient (W/m²/K)
- ker : Effective conductivity of the catalyst bed (W/m/K)
- ker° : Static contribution of the effective conductivity of the catalyst bed (W/m/K)
- kg : Process gas conductivity (W/m/K)
- dp : equivalent particle diameter (m)
- rhog : density of process gas (kg/m³)
- v : velocity of process gas (m/s)
- μ : viscosity of process gas (Pa * s)
- Cpg : Specific heat of process gas (J/kg/K)
- Vcyl: volume of a cylinder with same external diameter and height as the annular catalyst particle (m³)
- Scyl: external surface area of a cylinder with same external diameter and height as the annular catalyst particle (m²)
- Sp : external surface area of the catalyst particle (m²)
- Vp : volume of the catalyst particle (m³)
- ϵ : void fraction of packing (-)
- Dt : inner catalyst diameter (m)

kst (Conductivity of the tube metal)

The tubes are made of steel containing 30-35 % Ni, 19 - 23 % Cr and 1 - 1.5% Nb [A2].

kst = 23.2 W/m/K

Du (internal tube diameter)

Information given by KTI [A2].

Dti = 0.10 m

Dte (external tube diameter)

Information given by KTI [A2].

Dte = 0.12 m

ker° (static contribution of the effective conductivity of the catalyst bed)

Relation found in literature [A3]. For (Raschig) Rings equation (A3.1) was found.

$$\frac{k_{er}}{k_g} = 3 \tag{A3.1}$$

kg (process gas conductivity)

The conductivities of the components and of the process gas, under the given conditions, are mentioned in table A3.1 [A4] (except for CO [A5]).

Table A3.1. Conductivities of the components and the process gas.

Comp.	Conductivity (W/m/K)	Percentage (weight%)	Contribution
H,	42.91E-2	0.029	12.44E-3
CO ₂	6.48E-2	0.344	22.29E-3
CO	6.67E-2	0.083	5.54E-3
H ₂ O	9.04E-2	0.403	36.43E-3
N ₂	6.21E-2	0.046	2.86E-3
CH ₄	15.65E-2	0.095	14.87E-3
gas			kg = 94.43E-3

Cpg (specific heat of process gas)

For the calculation of the specific heat of the components, equation (A3.2) is used [A3.6].

$$Cp_{g}^{ig} = R * (A + B * T + C * T^{2} + D * T^{-2})$$
 (J/mol/K) (A3.2)

The constants of the components, used in equation (A3.2) are mentioned in table A3.2.

component	A	В	С	D
CH ₄	1.702	9.081E-3	-2.164E-6	
N ₂	3.280	0.593E-3		0.040E5
H ₂	3.249	0.422E-3		0.083E5
CO	3.376	0.557E-3		-0.031E5
CO ₂	5.457	1.045E-3		-1.157E5
H ₂ O	3.470	1.450E-3		0.121E5

Table A3.2. Constants for the calculation of the specific heats of the components.

With equation (A3.2), the specific heats of the components and of the process gas can be calculated. See for the results table A3.3.

Table 3.3. Specific heat of the components and of the process gas.

Comp.	Specific heat (J/kg/K)	Percentage (weight%)	Contribution
H ₂	15205.0	0.029	441.0
CO ₂	1193.6	0.344	410.6
CO	1157.9	0.083	96.1
H ₂ O	2247.8	0.403	905.9
N ₂	1141.8	0.046	52.5
CH ₄	4343.8	0.095	412.7
gas			Cpg = 2318.7

v (velocity of process gas)

Under the prevailing conditions the ideal gas law is valid (A3.3).

$$n = \frac{p * V}{R * T} \tag{A3.3}$$

With the law, the process gas volume flow through the reformer can be calculated.

$$\frac{13.25*10^5*\phi_{\nu}}{8.314*946.65}=296.1*\frac{1000}{3600}$$

 $\implies \Phi_v = 0.4886 \text{ m}^3/\text{s}$

The reformer has 20 tubes, so the process gas volume flow per tube can be determined.

 $\longrightarrow \Phi_v = 0.0244 \text{ m}^3/\text{s/tube}$

This means for the velocity of the process gas through the tubes

$$\phi_{\nu} = \nu * A = \nu * \pi * \frac{1}{4} * D_{ii}$$

------> v = 3.11 m/s

dp (equivalent particle diameter)

The dimensions of the rings are shown in fig. A3.1.

Figure A3.1. Dimensions of the catalyst rings.

The particle diameter dp is defined as follows, to account for the shape of the annular catalyst particle.

$$d_p = 6 * \frac{V_{cyl}}{S_{cyl}} * E^n$$

with

$$E = \frac{V_p * S_{cyl}}{S_p * V_{cyl}}$$

and

$$n = \frac{\frac{D_{ti}}{D_t}}{(e * \frac{D_{ti}^2}{D_t^2})^{0.4} + 0.01 * (e * \frac{D_{ti}^2}{D_t^2})^{0.75}}$$

Dt (inner catalyst diameter)

Information given by KTI [A2]

$$Dt = 8E-3 m$$

μ (viscosity of process gas)

The viscosities of the components and the process gas under the given conditions are mentioned in table A3.4.

Comp.	Viscosity (Pa*s)	Percentage (weight%)	Contribution
H ₂	2.0E-5	0.029	0.6E-6
CO ₂	4.2E-5	0.344	14.0E-6
CO	4.1E-5	0.083	3.4E-6
H ₂ O	3.3E-5	0.403	13.0E-6
N ₂	4.1E-5	0.046	1.9E-6
CH₄	2.9E-5	0.095	2.7E-6
			$\mu = 36.4E-6$

Table A3.4. Viscosity of the components and process gas.

ε (void fraction of packing)

For the void fraction of the packing the following value is assumed.

 $\epsilon = 0.43$ (-)

rho (density of process gas)

The density of the process gas can be calculated with equation (A3.4).

$$rhog = \frac{\Phi_m}{\Phi_v} = \frac{5351.3}{1758.8} = 3.04 \frac{kg}{m^3}$$
(A3.4)

Calculation of the dimensionless constants:

$$Re_{p} = \frac{rhog * v * d_{p}}{\mu} = \frac{3.04 * 3.11 * 5.0E - 3}{36.4E - 6} = 1301$$

$$Pr = \frac{\mu * Cp_g}{k_g} = \frac{36.4E - 6 * 2318.7}{94.43E - 3} = 0.8931$$

Calculation of the overall heat transfer coefficient:

$$a_{w} = \frac{8.694 * 0.283}{(0.1)^{\frac{4}{3}}} + \frac{0.512 * 94.43E - 3 * 0.1 * 1301 * 0.9630}{5.0E - 3}$$

$$= 53.06 + 1211.61$$

$$= 1264.67$$

$$k_{er} = 0.283 + \frac{0.111 * 94.43E - 3 * 1301 * 0.9630}{1 + 46 * \frac{(5.0E - 3)^{2}}{(0.1)^{2}}}$$

$$= 0.283 + 11.779$$

$$= 12.062$$

$$\frac{1}{U} = \frac{0.1}{2 * 23.2} * \ln(1.206) + \frac{1}{1264.67} + \frac{0.1}{8 * 12.062}$$

$$= 4.037E - 4 + 7.907E - 4 + 10.363E - 4$$

$$\longrightarrow$$
 U = 448 W/m²/K

Literature

- A1. J.C. De Deken, E.F. Devos and G.F. Froment, Steam reforming of natural gas, Chem. React. Eng., 1982 281.
- A2. Process data sheets for the reformer of CO plant II, KTI.
- A3. S. Yagi and D. Kunii, Studies on effective thermal conductivities in packed beds, A.I.Ch.E.Л, 1957 3 373.
- A4. R.H. Perry and P.W. Green, Perry's Chemical Engineers' Handbook, 6th edition, McGraw-Hill, New York, 1991.
- A5. J. Millat, Thermal conductivity of nitrogen and carbon dioxide, J. Phys. Chem. Ref. Data, 1989 18 575.
- A6. J.M. Smith and H.C. van Ness, Introduction to chemical engineering thermodynamics, McGraw-Hill, New York, 1987.

figuur A4.1 Aspen flowsheet reformer section

A4-1

figuur A4.2 Aspen flowsheet CO2 removal section

A4-2

4

- -.

r).

figuur A4.3 Aspen flowsheet drying section

figuur A4.4 Aspen flowsheet cryogenic separation section

A4-4

figuur A4.5 reformer section with pre-reformer

×

A4-5

APPENDIX 5

Block specifications of the reformer section used in Aspen

Code	Block definition	Stream in	Stream out	T _{out} (°C)	p _{out} (bar)
H2101	RGIBBS	207	208	860	11.5

Table A5.1. The reactor (reformer).

The Gibbs reactor has nine reactions, three of them have a temperature approach (chapter 5).

Table A5.2. The burners.

Code	Block definition	Stream in	Stream out	T _{out} (°C)	-Δp (bar)
BURNER	RGIBBS	Bin	Bout	1005.0	0.5

Table A5.3. The heat exchangers.

Code	Block definition	Stream in	Stream out	T _{out} (°C)	-∆p (bar)	Vapour fraction
H2102	HEATX	1 (h)	2 (h)		0	
		A (c)	B (c)		0	0.048
H2103	HEATX	2 (h)	3 (h)		0	
		206 (c)	207 (c)	487	0.5	
H2104	HEATX	3 (h)	4 (h)		0	
		202B (c)	203 (c)	400	0.3	
H2105A	HEATX	4 (h)	5 (h)		0	
		C (c)	D (c)		0	0.048
H2105B	HEATX	5 (h)	6 (h)		0	1000 201000
		E (c)	F (c)		0	0.048
H2106	HEATX	6 (h)	7 (h)		0	
		251 (c)	251B (c)	180	0.2	
H2107	HEATX	208 (h)	208B (h)		0	
		G (c)	H (c)		0	0.048

'h' and 'c' stand for hot and cold stream.

Table A5.4. The desulpherizer.

Code	Block definition	Stream in	Stream out	T _{out} (°C)	p _{out} (bar)
V2101	HEATER	203	203B	350.0	18.2

Table A5.5. The steamdrum.

Code	Block definition	Stream in	Stream out	T _{out} (°C)	V _{frac}
V2103	FLASH2	STMFD 251B	STM (v) LIQ (l)	221	0.0421

'v' and 'l' stand for vapour and liquid.

Table A5.6. The mixing points.

Code	Block definition	Stream in	Stream out	P _{out} (bar)
M2102	MIXER	208C, 253	209	11.0
CO2-MIX	MIXER	203B, 204	204B	16.2
DRUMMIX	MIXER	B,D,F,H	STMFD	0
H2-MIX	MIXER	201, 202	202B	21.0
H2O-MIX	MIXER	204B, 205	206	15.6
H2O-MIX2	MIXER	208B, 260	208C	11.0

Table A5.7. The splitter.

Code	Block definition	Stream in	Stream out	Fraction of flow	-Δp (bar)
SPLIT	FSPLIT	LIQ	A C E G	0.13586 0.16845 0.56366	0

Block specifications of the coldbox section used in Aspen

Code	Block definition	Stream in	Stream out	ΔT (°C)	T _{out} (°C)	-Δp (bar)	p (bar)	Heat duty
E21 E22 E22B E23A E24 E25-27 H2118 H2119 V29 V31 V37 V39 V41 V37 V39 V41 V47 V6 V8 V9	MHEATX HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER	220 (h) 225 (h) L22 (c) L49 (c) L48 (c) L2 L36 L4 L38 L44 224A 224C L29 L31 L37 L39 L41 L47 L6 L8 L9	L2 (h) L35 (h) 228 (c) 224 (c) 227 (c) L3 L37 L22 L41 L46 224B 224D L7 L10 L43 L40 L43 L40 L42 L13 L28 L33 L30	-192.6 -190.1 205.5 197.9 - 7.2 - 5.7 - 2.5	-176.1 -184.5 30.0 35.0	0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 3.1 5.3 6.6 1.25 6.6 0.1 21.83 3.02 19.50	3.9	0 0 0 0 0 0 0 0 0 0

Table A5.8. The heat exchangers and valves.

Table A5.9. The splitters.

Code	Block definition	Stream in	Stream out	Fraction of flow	Flow (kg/h)
B1	FSPLIT	228	140 202		H ₂ : 10.7
CO-SPLIT	FSPLIT	224D	226 225	0.16347	
SPLIT1	FSPLIT	L35	L38 L36	0.546 0.156	
SPLIT2	FSPLIT	LD	L39 L9 LG	0.25640	

Code	Block definition	Stream in	Stream out	-Δp (bar)
MIX1	MIXER	LB LE	LF	0
MIX2	MIXER	L13 L7	L48	0
T22MIX	MIXER	L42 L43 L11	L44	0

Table A5.10. The mixing points.

Table A5.11. The flashers.

Code	Block definition	Stream in	Stream out	T _{out} (°C)	p _{out} (bar)
CO1	FLASH2	LF	LC (v) LD (l)	-171.5	27.347
CO2	FLASH2	LC	L4 (v) LE (l)	-201.5	27.3

Table A5.12. The columns.

Code	Block definition	Stream in	Stream out	T (°C)	p (bar)
T21	RADFRAC	L3 (st.20)	LB (st.1)	-173.6 (st.1)	27.3 (st.1)
		LG (st.10	L6 (st.20)	-172.0 (st.20)	
T22	RADFRAC	L33 (st.9)	L46 (st.1)		2.25 (st.1)
		L46 (st.1)	L47 (st.12)		
T23	RADFRAC	L28 (st.1)	L29 (st.1)		5.4 (st.1)
			L8 (st.4)		
T24	RADFRAC	L40 (st.5)	L31 (st.1)		7.6 (st.1)
		L30 (st.1)	L11 (st.5)		

Code	Condensor duty	Reboiler duty	Molar boilup ratio	Molar reflux ratio	Mass reflux ratio
T21 T22 T23 T24	0 0 -4962.0	0 0	7.51333	6.55	10.355

Table A5.13. The compressors.

Code	Block definition	Stream in	Stream out	T _{out} (°C)	p _{out} (bar)	Mechanical efficiency
K2105-1	COMPR	224	224A	100.0	6.0	1.0
K2105-2	COMPR	224B	224C	90.0	9.6	1.0

The compressors are polytropic centrifugal compressors. 'st.' stands for stage, 'v' for vapour, 'l' for liquid, 'h' for hot streams and 'c' for cold streams.

Block specifications of the MEA section used in Aspen

Code	Block definition	Stream in	Stream out	T _{out} (°C)	p _{out} (bar)	-∆p (bar)
H2108 H2109A H2109B H2110A H2111 H2112 H2113 H2114	HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER	281B 281C 282 209 210 213 216B 216B	281A 281B 282B 209B 210B 213B 216C 216F	40.0 88.0 104.0 132.0 40.0 40.0 40.0 40.0	14.7 10.7 10.4 1.5 16.2	0 0 0.2

Table A5.14. The heat exchangers.

Table A5.15. The separators.

Code	Block definition	Stream in	Stream out	-∆p (bar)	Fraction of flow
VENTTANK	SEP	215	215B 214	0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table A5.16. The mixing points.

Code	Block definition	Stream in	Stream out	p _{out} (bar)
CO-MIX	MIXER	215B 227	216	1.5
COND-MIX	MIXER	264 265	266	3.5
CONDMIX2	MIXER	269 268	284	1.5

Code	Block definition	Stream in	Stream out	T _{out} (°C)	p _{out} (bar)
V2107	FLASH2	209B	210 (v) 264 (l)	40.0	10.7
V2108	FLASH2	210B	211 (v) 265 (l)	40.0	10.4
V2109	FLASH2	213B 284	215 (v) 285 (l)	40.0	1.5
V2113	FLASH2	216C	216D (v) 268 (l)	40.0	9.6
V2114	FLASH2	216F	204 (v) 269 (l)	40.0	16.2

Table A5.17. The flashers.

Table A5.18. The columns.

Code	Block definition	Stream in	Stream out	T _{spec} (°C)	p _{spec} (bar)
V2105	RADFRAC	281 (st.1) 211 (st.20)	212 (st.1) 282 (st.20)	40.0 (st.1) 72.0 (st.20)	10.3 (st.1) 10.4 (st.20)
V2106	RADFRAC	285 (st.1) 282B (st.5)	213 (st.1) 218C (st.18)	102.0 (st.1) 120.0 (st.16)	1.7 (st.1)

Code	Condensor duty	Reboiler duty		
V2105	0	0		
V2106	0	2,850,000		

V2105 has for component CO_2 a Murphree efficiency of 0.2 at stage 10. The reboiler duty of the V2106 column is an estimation, it is manipulated by the specification that the mass flow of CO_2 at stage 1 must be 1380 kg/h.

Table A5.19. The compressors.

Code	Block definition	Stream in	Stream out	T _{out} (°C)	p _{out} (bar)	Mechanical efficiency
K2103-1	COMPR	216	216B	145.0	9.6	1.0
K2103-3	COMPR	216D	216E	145.0	15.4	1.0

'v' and 'l' stand for vapour and liquid, 'st.' stands for stage.

Block specifications process gas compression and drying section used in Aspen

Table A5.20. The heat exchanger.

Code	Block definition	Stream in	Stream out	T _{out} (°C)	-Δp (bar)
H2115	HEATER	218B	218C	35.0	2 0.2

Table A5.21. The separator.

Code	Block definition	Stream in	Stream out	-∆p (bar)	Fractions of flow
V2118	SEP	219	220 OUT	0 0	220: H_2 0.994 CO 0.994 N_2 0.994 CH ₄ 0.994 rest 0

Table A5.22. The flashers.

Code	Block definition	Stream in	Stream out	T _{out} (°C)	p _{out} (bar)
V2116	FLASH2	212	218 (v) MEASUMP (l)	40.0	10.3
V2117	FLASH2	218C	270 (l) 219 (v)	35.0	28.3

Table A5.23. The compressor.

Code	Block definition	Stream in	Stream out	T _{out} (°C)	p _{out} (bar)	Mechanical efficiency
K2104	COMPR	218	218B	145.0	28.5	1.0

'v' and 'l' stand for vapour and liquid.

STREAM ID FROM : TO :	1 BURNER H2102	140 B1	2 H2102 H2103	201 H2-MIX	202 B1 H2-MIX
SUBSTREAM: MIXED PHASE:	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR
H2 CO CO2 N2 O2 CH4 C2H6 C3H8 C4H10 C5H12 C6H14 MEA H2O AR	$\begin{array}{c} 3.7117-05\\ 1.2567-06\\ 2.3270\\ 260.6468\\ 9.2645\\ 7.8087-31\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 121.8739\\ 3.1215\end{array}$	139.4111 2.5668 0.0 1.1188 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	$\begin{array}{c} 3.7117-05\\ 1.2567-06\\ 2.3270\\ 260.6468\\ 9.2645\\ 7.8087-31\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 121.8739\\ 3.1215 \end{array}$	$\begin{array}{c} 0.0\\ 0.0\\ 0.4726\\ 7.6178\\ 0.0\\ 43.1777\\ 1.5131\\ 0.1972\\ 7.3980-02\\ 2.0790-02\\ 2.6689-02\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ \end{array}$	$5.3075 \\ 9.7723-02 \\ 0.0 \\ 4.2596-02 \\ 0.0 \\ 0$
TOTAL FLOW: KMOL/HR KG/HR	397.2340 1.0021+04	143.0969 384.2934	397.2340 1.0021+04	53.1001 989.2000	5.4478 14.6304
CUM/SEC	7.8199	0.2718	7.0955	1.6236-02	1.0351-02
TEMP C	1005.0000	14.1653	886.5673	15.0000	14.1653
PRES BAR	1.5000	3.5000	1.5000	21.0000	3.5000
VFRAC	1.0000	1.0000	1.0000	1.0000	1.0000
LFRAC	0.0	0.0	0.0	0.0	0.0
SFRAC	0.0	0.0	0.0	0.0	0.0
ENTHALPY:					0.0005.00
J/KMOL	-4.3561+07	-2.2895+06	-4.7900+07	-6.8254+07	-2.2895+06
J/KG	-1.7268+06	-8.5254+05	-1.8988+06	-3.6638+06	-8.5254+05
WATT	-4.8066+06	-9.1007+04	-5.2854+06	-1.006/+06	-3464.7506
ENTROPY:					0.001 2005
J/KMOL-K	3.7538+04	-8631.7295	3.3977+04	-9.4630+04	-8631.7295
J/KG-K	1488.0866	-3214.1423	1346.8881	-5079.7284	-3214.1423
DENSITY:	1 1110 00	0 1461	1 5551 00	0 0004	0 1461
KMOL/CUM	1.4110-02	0.1461	1.5551-02	16 0006	0.1401
KG/CUM	0.3559	0.3926	0.3922	10.9230	0.3920
AVG MW	25.2260	2.6855	25.2260	18.0289	2.0855

.

STREAM ID FROM : TO :	202B H2-MIX H2104	203 H2104 V2101	203B V2101 CO2-MIX	204 V2114 CO2-MIX	204B CO2-MIX H2O-MIX
SUBSTREAM: MIXED PHASE:	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR
H2 CO CO2 N2 O2 CH4 C2H6 C3H8 C4H10 C5H12 C6H14 MEA	5.3075 9.7723-02 0.4726 7.6604 0.0 43.1777 1.5131 0.1972 7.3980-02 2.0790-02 2.6689-02 0.0	5.3075 9.7723-02 0.4726 7.6604 0.0 43.1777 1.5131 0.1972 7.3980-02 2.0790-02 2.6689-02 0.0	5.3075 9.7723-02 0.4726 7.6604 0.0 43.1777 1.5131 0.1972 7.3980-02 2.0790-02 2.6689-02 0.0	$\begin{array}{r} 3.5315\\ 6.7552\\ 29.8423\\ 0.9805\\ 0.0\\ 4.5586\\ 1.0273-10\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	8.8390 6.8529 30.3149 8.6410 0.0 47.7363 1.5131 0.1972 7.3980-02 2.0790-02 2.6689-02 0.0
H2O AR	0.0	0.0	0.0	0.1952 0.0	0.1952
TOTAL FLOW: KMOL/HR KG/HR CUM/SEC	58.5479 1003.8304 1.7996-02	58.5479 1003.8304 4.4333-02	58.5479 1003.8304 4.6625-02	45.8634 1613.8120 1.9687-02	104.4113 2617.6425 7.4631-02
STATE VARIABLES: TEMP C PRES BAR VFRAC LFRAC SFRAC	14.2592 21.0000 1.0000 0.0 0.0	400.0000 20.7000 1.0000 0.0 0.0	350.0000 18.2000 1.0000 0.0 0.0	40.0000 16.2000 1.0000 0.0 0.0	226.9639 16.2000 1.0000 0.0 0.0
ENTHALPY: J/KMOL J/KG WATT	-6.2116+07 -3.6229+06 -1.0102+06	-4.5105+07 -2.6307+06 -7.3355+05	-4.7665+07 -2.7801+06 -7.7520+05	-2.8085+08 -7.9815+06 -3.5780+06	-1.5009+08 -5.9868+06 -4.3532+06
ENTROPY: J/KMOL-K J/KG-K	-8.5515+04 -4987.6213	-4.8826+04 -2847.7721	-5.1700+04 -3015.3746	-6218.8838 -176.7363	-2.5305+04 -1009.3497
DENSITY: KMOL/CUM KG/CUM AVG MW	0.9037 15.4942 17.1454	0.3668 6.2897 17.1454	0.3488 5.9805 17.1454	0.6471 22.7701 35.1873	0.3886 9.7429 25.0704

.

STREAM ID FROM : TO :	205 H2O-MIX	206 H2O-MIX H2103	207 H2103 H2101	208 H2101 H2107	208B H2107 H20-MIX2
SUBSTREAM: MIXED PHASE:	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR
H2 CO CO2 N2	0.0 0.0 0.0	8.8390 6.8529 30.3149 8.6410	8.8390 6.8529 30.3149 8.6410	149.1467 53.5113 30.9846 8.6410	149.1467 53.5113 30.9846 8.6410
C2 CH4 C2H6 C3H8	0.0	47.7363 1.5131 0.1972	47.7363 1.5131 0.1972	4.5862 7.6396-05 3.1213-09	4.5862 7.6396-05 3.1213-09
C4H10 C5H12 C6H14 MEA	0.0 0.0 0.0	7.3980-02 2.0790-02 2.6689-02 0.0	2.0790-02 2.6689-02 0.0	6.6516-18 2.8846-22 9.6476-31	1.7555-13 6.6516-18 2.8846-22 9.6476-31
H2O AR	151.2739 0.0	151.4691 0.0	151.4691 0.0	103.4714 0.0	103.4714 0.0
TOTAL FLOW: KMOL/HR	151.2739	255.6853	255.6853	350.3414	350.3414
KG/HR CUM/SEC	2725.2000	5342.8425 0.1795	5342.8425	5342.8432	5342.8432
STATE VARIABLES:					
TEMP C	220.0000	215.1403	487.0000	860.0000	269.2265
PRES BAR	23.2000	15.6000	15.1000	11.5000	11.5000
VFRAC	1.0000	1.0000	1.0000	1.0000	1.0000
LFRAC	0.0	0.0	0.0	0.0	0.0
SFRAC	0.0	0.0	0.0	0.0	0.0
ENTRALPT:	-2 3647+08	-2 0120+08	-1.8980 ± 08	-9.5417+07	-1 1642+08
J/KG	-1.3126+07	-9.6284+06	-9.0830+06	-6.2567+06	-7.6339+06
WATT	-9.9366+06	-1.4290+07	-1.3480+07	-9.2857+06	-1.1330+07
ENTROPY:					
J/KMOL-K	-5.4783+04	-3.5298+04	-1.6547+04	3.5999+04	1.0004+04
J/KG-K	-3040.9421	-1689.2132	-791.8444	2360.5322	655.9938
DENSITY:					
KMOL/CUM	0.6244	0.3955	0.2396	0.1217	0.2550
KG/CUM	11.2492	8.2662	5.0071	1.8571	3.8901
AVG MW	18.0150	20.8961	20.8961	15.2503	15.2503

STREAM ID FROM : TO :	208C H20-MIX2 M2102	209 2 M2102 H2110A	209B H2110A V2107	210 V2107 H2111	210B H2111 V2108
SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR	VAPOR	VAPOR	MIXED	VAPOR	VAPOR
H2 CO CO2 N2 O2 CH4 C2H6 C3H8 C4H10 C5H12 C6H14 MEA H2O AR	$149.1467 \\ 53.5113 \\ 30.9846 \\ 8.6410 \\ 0.0 \\ 4.5862 \\ 7.6396-05 \\ 3.1213-09 \\ 1.7555-13 \\ 6.6516-18 \\ 2.8846-22 \\ 9.6476-31 \\ 205.9804 \\ 0.0 $	$149.1467 \\ 53.5113 \\ 30.9846 \\ 8.6410 \\ 0.0 \\ 4.5862 \\ 7.6396-05 \\ 3.1213-09 \\ 1.7555-13 \\ 6.6516-18 \\ 2.8846-22 \\ 9.6476-31 \\ 230.9596 \\ 0.0 $	$\begin{array}{r} 149.1467\\ 53.5113\\ 30.9846\\ 8.6410\\ 0.0\\ 4.5862\\ 7.6396-05\\ 3.1213-09\\ 1.7555-13\\ 6.6516-18\\ 2.8846-22\\ 9.6476-31\\ 230.9596\\ 0.0\\ \end{array}$	$\begin{array}{c} 149.1465\\ 53.5112\\ 30.9640\\ 8.6410\\ 0.0\\ 4.5862\\ 7.6396-05\\ 3.1213-09\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 1.4203\\ 0.0\\ \end{array}$	$149.1465 \\ 53.5112 \\ 30.9640 \\ 8.6410 \\ 0.0 \\ 4.5862 \\ 7.6396-05 \\ 3.1213-09 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 1.4203 \\ 0.0 \\ 0.0 \\ 1.4203 \\ 0.0$
TOTAL FLOW: KMOL/HR KG/HR CUM/SEC	452.8505 7189.5432 0.4951	477.8296 7639.5432 0.4461	477.8296 7639.5432 0.2928	248.2695 3503.4858 0 1683	248.2695 3503.4858 0 1731
STATE VARIABLES:	011001	011101	012520	0.1000	0.1/01
TEMP C PRES BAR VFRAC	250.6157 11.0000 1.0000	177.3879 11.0000 1.0000	132.0000 10.7000 0.7017	40.0000 10.7000	40.0000 10.4000
LFRAC SFRAC ENTHALPY	0.0	0.0	0.2982	0.0	0.0
J/KMOL J/KG WATT	-1.4364+08 -9.0475+06 -1.8069+07	-1.5088+08 -9.4369+06 -2.0026+07	-1.6456+08 -1.0293+07 -2.1842+07	-7.5301+07 -5.3361+06	-7.5300+07 -5.3360+06
ENTROPY :	-1.0009407	-2.0020+07	-2.1042+07	-3.1930+00	-3.1930+00
J/KMOL-K J/KG-K	-1294.8596 -81.5598	-8374.8101 -523.8183	-4.0828+04 -2553.6608	9002.9636 637.9822	9242.6793 654.9693
KMOL/CUM KG/CUM	0.2540	0.2975	0.4533	0.4097	0.3983
AVG MW	15.8762	15.9880	15.9880	14.1116	14.1116

Ŷ,

STREAM ID FROM : TO :	211 V2108 V2105	212 V2105 V2116	213 V2106 H2112	213B H2112 V2109	214 VENTTANK
SUBSTREAM: MIXED PHASE:	VAPOR	MIXED	VAPOR	MIXED	MIXED
H2	149.1465	149.1453 53.5103	1.2347-03 9.0080-04	1.2347-03 9.0080-04	0.0
CO2	30,9640	1.1361-02	31.3565	31.3565	1.4921
N2	8,6410	8.6409	5.3417-05	5.3417-05	2.5822-06
02	0.0	0.0	0.0	0.0	0.0
CH4	4.5862	4.5862	1.9257-05	1.9257-05	0.0
C2H6	7.6396-05	7.6395-05	1.0253-10	1.0253-10	0.0
C3H8	3.1213-09	3.1213-09	0.0	0.0	0.0
C4H10	0.0	0.0	0.0	0.0	0.0
C5H12	0.0	0.0	0.0	0.0	0.0
C6H14	0.0	0.0	0.0	0.0	0.0
MEA	0.0	4.0481-03	5.2707-05	5.2707-05	3.9385-05
H2O	1.4203	1.4521	222.5219	222.5219	6.1036-02
AR	0.0	0.0	0.0	0.0	0.0
TOTAL FLOW:			050 0007	050 0007	1 5522
KMOL/HR	248.2695	217.3506	253.8807	253.8807	1.5552
KG/HR	3503.4858	2142.0500	5388.7656	0 1576	7 4394-03
CUM/SEC	0.1731	0.1532	1.3112	0.1576	7.4304-03
STATE VARIABLES:	40.0000	10 0112	110 0117	40 0000	40,0000
TEMP C	40.0000	10 3000	1 7000	1.5000	1.5000
PRES BAR	1 0000	0 0000	1 0000	0.1284	1.0000
VFRAC	1.0000	2 4896-05	0.0	0.8715	2.0877-06
LFRAC	0.0	2.4890-05	0.0	0.0	0.0
SI KAC	0.0	0.0	0.0	0.0	2,222
ENTRALET:	-7 5300+07	-3.0027+07	-2.5786+08	-3.0052+08	-3.8730+08
J/KG	-5.3360+06	-3.0468+06	-1.2148+07	-1.4158+07	-9.0092+06
WATT	-5.1930+06	-1.8129+06	-1.8185+07	-2.1193+07	-1.6710+05
ENTROPY	0.12000.00				
T/KMOL-K	9242.6793	9210.8349	-3.1120+04	-1.4501+05	894.0483
J/KG-K	654.9693	934.6095	-1466.1721	-6831.6594	20.7971
DENSITY:					
KMOL/CUM	0.3983	0.3938	5.3781-02	0.4472	5.8003-02
KG/CUM	5.6206	3.8819	1.1415	9.4922	2.4934
AVG MW	14.1116	9.8552	21.2255	21.2255	42.9889

.

			-		
STREAM ID FROM : TO :	215 V2109 VENTTANI	215B VENTTANI K CO-MIX	216 K CO-MIX K2103-1	216B K2103-1 H2113	216C H2113 V2113
SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR	VAPOR	VAPOR	VAPOR	VAPOR	MIXED
H2 CO CO2 N2 O2	1.2348-03 9.0093-04 31.3349 5.3433-05 0.0	1.2348-03 9.0093-04 29.8427 5.0851-05 0.0	3.5314 6.7552 29.8427 0.9805 0.0	3.5314 6.7552 29.8427 0.9805 0.0	3.5314 6.7552 29.8427 0.9805 0.0
CH4 C2H6 C3H8 C4H10 C5H12 C6H14	2.0125-05 1.0253-10 0.0 0.0 0.0	2.0125-05 1.0253-10 0.0 0.0 0.0	4.5587 1.0253-10 0.0 0.0 0.0	4.5587 1.0253-10 0.0 0.0 0.0	4.5587 1.0253-10 0.0 0.0 0.0
MEA H2O AR TOTAL FLOW:	3.9385-05 1.2817 0.0	0.0 0.0 1.2207 0.0	0.0 0.0 1.2207 0.0	0.0 0.0 1.2207 0.0	0.0 0.0 1.2207 0.0
KMOL/HR KG/HR CUM/SEC STATE VARIABLES:	32.6188 1402.1713 0.1562	31.0656 1335.4003 0.1487	46.8894 1632.3086 0.2202	46.8894 1632.3086 4.6881-02	46.8894 1632.3086 3.4589-02
TEMP C PRES BAR VFRAC LFRAC SFRAC ENTHALPY:	40.0000 1.5000 1.0000 0.0 0.0	40.0000 1.5000 1.0000 0.0 0.0	33.1462 1.5000 1.0000 0.0 0.0	145.0000 9.6000 1.0000 0.0 0.0	40.0000 9.4000 0.9806 1.9364-02 0.0
J/KMOL J/KG WATT ENTROPY:	-3.8728+08 -9.0093+06 -3.5091+06	-3.8728+08 -9.0093+06 -3.3420+06	-2.7988+08 -8.0399+06 -3.6455+06	-2.7584+08 -7.9238+06 -3.5928+06	-2.8072+08 -8.0639+06 -3.6563+06
J/KMOL-K J/KG-K DENSITY: KMOL/CUM	916.9114 21.3302	917.9789 21.3551	1.3082+04 375.7963	8963.4490 257.4827	-4538.7397 -130.3791
KG/CUM AVG MW	2.4933 42.9864	2.4933 42.9863	2.0589 34.8118	0.2778 9.6716 34.8118	0.3765 13.1089 34.8118

.
STREAM ID FROM : TO :	216D V2113 K2103-3	216E K2103-3 H2114	216F H2114 V2114	218 V2116 K2104	218B K2104 H2115
SUBSTREAM: MIXED PHASE:	VAPOR	VAPOR	MIXED	VAPOR	VAPOR
H2 CO CO2 N2 O2 CH4 C2H6 C3H8 C4H10 C5H12 C6H14 MEA H2O AR	$\begin{array}{r} 3.5315\\ 6.7552\\ 29.8423\\ 0.9805\\ 0.0\\ 4.5586\\ 1.0273-10\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	$\begin{array}{r} 3.5315\\ 6.7552\\ 29.8423\\ 0.9805\\ 0.0\\ 4.5586\\ 1.0273-10\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	$\begin{array}{r} 3.5315\\ 6.7552\\ 29.8423\\ 0.9805\\ 0.0\\ 4.5586\\ 1.0273-10\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	$149.1453 \\ 53.5103 \\ 1.1361-02 \\ 8.6409 \\ 0.0 \\ 4.5862 \\ 7.6395-05 \\ 3.1213-09 \\ 0.0 \\ 0.0 \\ 0.0 \\ 4.0470-03 \\ 1.2700 \\ 0.0 $	$149.1453 \\ 53.5103 \\ 1.1361-02 \\ 8.6409 \\ 0.0 \\ 4.5862 \\ 7.6395-05 \\ 3.1213-09 \\ 0.0 \\ 0.0 \\ 0.0 \\ 4.0470-03 \\ 1.2700 \\ 0.0 $
TOTAL FLOW:	45 0755	45 0755	45 9755	217 1684	217.1684
KMOL/HR	45.9755	1615 8331	1615.8331	2138.7677	2138.7677
KG/HR	3 3841-02	2 8583-02	1,9688-02	0.1533	7.4669-02
CUM/SEC	5.5041 02	2.0000 02			
TEMP C	40 0000	145.0000	40.0000	40.0000	145.0000
DRES BAR	9,6000	15.4000	16.2000	10.3000	28.5000
VEBAC	1.0000	1.0000	0.9975	1.0000	1.0000
LFRAC	0.0	0.0	2.4378-03	0.0	0.0
SFRAC	0.0	0.0	0.0	0.0	0.0
ENTHALPY:					
J/KMOL	-2.8059+08	-2.7666+08	-2.8086+08	-2.9851+07	-2.6764+07
J/KG	-7.9837+06	-7.8719+06	-7.9915+06	-3.0310+06	-2.7176+06
WATT	-3.5834+06	-3.5333+06	-3.5869+06	-1.8007+06	-1.6145+06
ENTROPY:					
J/KMOL-K	-1525.2264	5401.2695	-6609.4827	9222.0813	9174.0573
J/KG-K	-43.3974	153.6829	-188.0604	936.4012	931.5248
DENSITY:			5		0 0000
KMOL/CUM	0.3773	0.4468	0.6486	0.3934	0.8078
KG/CUM	13.2631	15.7029	22.7977	3.8752	7.9564
AVG MW	35.1455	35.1455	35.1455	9.8484	9.8484

×.

.

.

STREAM ID FROM : TO :	218C H2115 V2117	219 V2117 V2118	220 V2118 E21	224 E21 K2105-1	224A K2105-1 H2118
SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR	MIXED	VAPOR	VAPOR	VAPOR	VAPOR
H2 CO CO2 N2	149.1453 53.5103 1.1361-02 8.6409	149.1453 53.5103 1.1361-02 8.6409	148.2504 53.1893 0.0 8.5891	1.5812-03 52.3228 0.0 7.7067	1.5812-03 52.3228 0.0 7.7067
CH4 C2H6 C3H8 C4H10	4.5862 7.6395-05 3.1213-09 0.0	0.0 4.5862 7.6395-05 3.1213-09 0.0	0.0 4.5586 0.0 0.0 0.0	0.0 6.5505-08 0.0 0.0 0.0	0.0 6.5505-08 0.0 0.0 0.0
C6H12 C6H14 MEA H2O AR	0.0 0.0 4.0470-03 1.2700 0.0	0.0 0.0 4.0328-03 0.3701 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
TOTAL FLOW: KMOL/HR KG/HR CUM/SEC STATE VARIABLES:	217.1684 2138.7677 5.5039-02	216.2685 2122.5559 5.5224-02	214.5876 2102.4483 5.4804-02	60.0311 1681.4545 0.1991	60.0311 1681.4545 8.6447-02
TEMP C PRES BAR VFRAC LFRAC SFRAC	35.0000 28.4000 0.9958 4.1490-03 0.0	35.0000 28.3000 1.0000 0.0 0.0	35.0000 28.3000 1.0000 0.0 0.0	21.3379 2.0500 1.0000 0.0 0.0	100.0000 6.0000 1.0000 0.0 0.0
J/KMOL J/KG WATT ENTROPY:	-3.0196+07 -3.0660+06 -1.8215+06	-2.9122+07 -2.9673+06 -1.7495+06	-2.8734+07 -2.9328+06 -1.7128+06	-9.6533+07 -3.4464+06 -1.6097+06	-9.4239+07 -3.3645+06 -1.5715+06
J/KMOL-K J/KG-K DENSITY:	-380.6202 -38.6478	347.4828 35.4052	375.6344 38.3393	7.5131+04 2682.3135	7.3097+04 2609.6987
KMOL/CUM KG/CUM AVG MW	1.0960 10.7942 9.8484	1.0878 10.6764 9.8144	1.0876 10.6563 9.7976	8.3727-02 2.3451 28.0097	0.1929 5.4029 28.0097

ÿ.

confidential

Simulated design streams

STREAM ID FROM : TO :	224B H2118 K2105-2	224C K2105-2 H2119	224D H2119 CO-SPLIT	225 CO-SPLIT E21	226 CO-SPLIT
SUBSTREAM: MIXED PHASE:	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR
H2 C0 C02	1.5812-03 52.3228 0.0	1.5812-03 52.3228 0.0	1.5812-03 52.3228 0.0	2.5847-04 8.5532 0.0	1.3227-03 43.7696 0.0
N2 02	7.7067 0.0	7.7067	7.7067	1.2598	6.4469 0.0
CH4 C2H6 C3H8	6.5505-08 0.0 0.0	6.5505-08 0.0 0.0	6.5505-08 0.0 0.0	1.0708-08 0.0 0.0	5.4797-08 0.0 0.0
C4H10 C5H12	0.0	0.0	0.0	0.0	0.0
C6H14 MEA H2O	0.0	0.0	0.0	0.0	0.0
AR	0.0	0.0	0.0	0.0	0.0
TOTAL FLOW: KMOL/HR	60.0311	60.0311	60.0311	9.8132	50.2178
KG/HR	1681.4545	1681.4545	1681.4545	274.8673	1406.5871
STATE VARIABLES:	7.2499-02	5.2050 02	1.5505 02		
TEMP C PRES BAR	30.0000	90.0000 9.6000	35.0000 9.4000	9.4000	9.4000
VFRAC	1.0000	1.0000	1.0000	1.0000	1.0000
LFRAC	0.0	0.0	0.0	0.0	0.0
ENTHALPY:				0 (170.07	0 6170.07
J/KMOL J/KG	-9.6303+07 -3.4382+06 -1.6059+06	-9.4546+07 -3.3755+06 -1.5766+06	-9.6178+07 -3.4337+06 -1.6038+06	-9.61/8+07 -3.4337+06 -2.6217+05	-3.4337+06
ENTROPY:	-1.0039+00	-1.5700100	1.0050.00	2.0217.00	1.0110.00
J/KMOL-K	6.7251+04	6.8342+04	6.3645+04	6.3645+04	6.3645+04
J/KG-K DENSITY:	2400.9940	2439.9393	2272.2440	2272.2440	2272.2440
KMOL/CUM	0.2300	0.3167	0.3664	0.3664	0.3664
AVG MW	28.0097	28.0097	28.0097	28.0097	28.0097

 $^{\circ}$

STREAM ID FROM : TO :	227 E21 CO-MIX	228 E21 B1	251 H2106	251B H2106 V2103	253 M2102
SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR	VAPOR	VAPOR	TIÕNID	LIQUID	LIQUID
H2 CO CO2 N2 O2 CH4 C2H6	3.5302 6.7543 0.0 0.9805 0.0 4.5586 0.0	144.7187 2.6645 0.0 1.1614 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0
C3H8 C4H10 C5H12 C6H14 MEA H2O AR	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 343.2639 0.0	0.0 0.0 0.0 0.0 0.0 343.2639	0.0 0.0 0.0 0.0 0.0 24.9791
TOTAL FLOW: KMOL/HR KG/HR CUM/SEC STATE VARIABLES:	15.8237 296.9083 5.4401-02	148.5447 398.9239 0.2822	343.2639 6183.9000 2.4282-03	343.2639 6183.9000 2.6602-03	24.9791 450.0000 1.7670-04
TEMP C PRES BAR VFRAC LFRAC SFRAC ENTHALPY:	17.2162 1.9500 1.0000 0.0 0.0	14.1653 3.5000 1.0000 0.0 0.0	104.0000 27.0000 0.0 1.0000 0.0	180.0000 26.8000 0.0 1.0000 0.0	104.0000 27.0000 0.0 1.0000 0.0
J/KMOL J/KG WATT ENTROPY:	-6.9048+07 -3.6799+06 -3.0350+05	-2.2895+06 -8.5254+05 -9.4472+04	-2.8210+08 -1.5659+07 -2.6899+07	-2.7526+08 -1.5279+07 -2.6246+07	-2.8210+08 -1.5659+07 -1.9574+06
J/KMOL-K J/KG-K DENSITY:	1.8996+04 1012.4158	-8631.7295 -3214.1423	-1.5042+05 -8349.6409	-1.3390+05 -7432.5015	-1.5042+05 -8349.6409
KMOL/CUM KG/CUM AVG MW	8.0798-02 1.5160 18.7634	0.1461 0.3926 2.6855	39.2685 707.4237 18.0150	35.8435 645.7212 18.0150	39.2685 707.4237 18.0150

STREAM ID FROM : TO :	260 H20-MIX2	264 V2107 COND-MIX	265 V2108 COND-MIX	266 COND-MIX	268 V2113 CONDMIX2
SUBSTREAM: MIXED PHASE:	VAPOR	LIQUID	MIXED	LIQUID	LIQUID
H2 CO CO2 N2 O2 CH4 C2H6 C3H8 C4H10 C5H12 C6H14 MEA	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.9116-04 4.1375-05 2.0550-02 6.1456-06 0.0 3.7444-05 9.3157-10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		1.9116-04 4.1375-05 2.0550-02 6.1456-06 0.0 3.7444-05 9.3157-10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	$\begin{array}{c} 8.9701-08\\ 1.0236-07\\ 3.7708-04\\ 1.3683-08\\ 0.0\\ 7.2032-07\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$
H2O AR	102.5090	0.0	0.0	0.0	0.9134
TOTAL FLOW: KMOL/HR KG/HR CUM/SEC	102.5090 1846.7000 5.7348-02	229.5601 4136.0574 1.5381-03	0.0 0.0 0.0	229.5601 4136.0574 1.5384-03	0.9138 16.4728 6.1242-06
STATE VARIABLES: TEMP C PRES BAR VFRAC LFRAC SFRAC	208.0000 18.3000 1.0000 0.0 0.0	40.0000 10.7000 0.0 1.0000 0.0	MISSING 10.4000 MISSING MISSING MISSING	40.1538 3.5000 0.0 1.0000 0.0	40.0000 9.6000 0.0 1.0000 0.0
J/KMOL J/KG WATT	-2.3667+08 -1.3137+07 -6.7391+06	-2.8771+08 -1.5968+07 -1.8346+07	MISSING MISSING MISSING	-2.8771+08 -1.5968+07 -1.8346+07	-2.8774+08 -1.5963+07 -7.3043+04
J/KMOL-K J/KG-K	-5.3384+04 -2963.3323	-1.6654+05 -9243.1010	MISSING MISSING	-1.6648+05 -9240.0219	-1.6648+05 -9235.5050
KMOL/CUM KG/CUM AVG MW	0.4965 8.9449 18.0150	41.4588 746.9772 18.0173	MISSING MISSING MISSING	41.4489 746.7984 18.0173	41.4502 747.1707 18.0257

STREAM ID FROM : TO :	269 V2114 CONDMIX:	270 V2117 2	281 V2105	281A H2108	281B H2109A H2108
SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID
H2 CO CO2 N2 O2 CH4 C2H6 C3H8 C4H10 C5H12 C6H14 MEA H2O	$\begin{array}{c} 1.8952-08\\ 2.1299-08\\ 7.5729-05\\ 2.8517-09\\ 0.0\\ 1.4756-07\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	$\begin{array}{c} 1.8243-06\\ 3.9548-07\\ 8.3739-08\\ 5.8657-08\\ 0.0\\ 3.6903-07\\ 8.8102-12\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 1.4206-05\\ 0.8998 \end{array}$	0.0 0.0 9.5819 0.0 0.0 0.0 0.0 0.0 0.0 0.0 87.1169 775.1928	0.0 0.0 9.2001 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 9.2001 0.0 0.0 0.0 0.0 0.0 0.0 0.0
AR TOTAL FLOW	0.0	0.0	0.0	0.0	0.0
KMOL/HR KG/HR CUM/SEC	0.1120 2.0210 7.5113-07	0.8998 16.2117 6.0054-06	871.8917 1.9708+04 6.0353-03	871.2243 1.9686+04 8.0918-03	871.2243 1.9686+04 8.4725-03
STATE VARIABLES:					
TEMP C PRES BAR VFRAC LFRAC SFRAC	40.0000 16.2000 0.0 1.0000	35.0000 28.3000 0.0 1.0000	40.0000 14.7000 0.0 1.0000	40.0000 14.7000 0.0 1.0000	88.0000 1.7000 0.0 1.0000
ENTHALPY:	0.0	0.0	0.0	0.0	0.0
J/KMOL J/KG WATT ENTROPY:	-2.8775+08 -1.5958+07 -8958.7728	-2.8810+08 -1.5991+07 -7.2014+04	-2.8449+08 -1.2586+07 -6.8900+07	-2.8376+08 -1.2558+07 -6.8671+07	-2.7909+08 -1.2351+07 -6.7541+07
J/KMOL-K J/KG-K DENSITY:	-1.6644+05 -9230.1662	-1.6799+05 -9324.4646	-2.4699+05 -1.0927+04	-2.2427+05 -9925.2547	-2.1026+05 -9305.2783
KMOL/CUM KG/CUM AVG MW	41.4486 747.4247 18.0325	41.6232 749.8700 18.0156	40.1289 907.0601 22.6036	29.9076 675.7787 22.5955	28.5637 645.4138 22.5955

.

STREAM ID FROM : TO :	281C V2106 H2109A	282 V2105 H2109B	282B H2109B V2106	284 CONDMIX2 V2109	285 V2109 V2106
SUBSTREAM: MIXED PHASE:	LIQUID	LIQUID	MIXED	LIQUID	LIQUID
H2	0.0	1.2347-03	1.2347-03	1.0865-07	1.6489-09 7 3046-10
C02	9.2001	40.5346	40.5346	4.5281-04	2.2065-02
N2	0.0	5.3417-05	5.3417-05	1.6535-08	3.9826-11
02	0.0	0.0	0.0	8 6788-07	1.7323-10
C2H6	0.0	1.0253-10	1.0253-10	0.0	0.0
СЗН8	0.0	7.3884-16	7.3884-16	0.0	0.0
C4H10	0.0	0.0	0.0	0.0	0.0
C6H14	0.0	0.0	0.0	0.0	0.0
MEA	87.1128	87.1128	87.1128	0.0	1.3322-05
H20	774.9113	775.1610	0.0	0.0	0.0
TOTAL FLOW:	0.0	0.0	0.0		
KMOL/HR	871.2243	902.8106	902.8106	1.0259	222.2877
KG/HR	1.9686+04	2.1069+04	2.1069+04	18.4939	4005.0882
CUM/SEC STATE VARIABLES.	0.0315-03	0.5955-05	4.1047-02	0.0775-00	1.4000 00
TEMP C	118.0213	68.9435	104.0000	40.1884	40.0000
PRES BAR	1.7000	10.4000	10.4000	1.5000	1.5000
VFRAC	0.0	1 0000	4.5200-02	1.0000	1.0000
SFRAC	0.0	0.0	0.0	0.0	0.0
ENTHALPY:					
J/KMOL	-2.7789+08	-2.8822+08	-2.8116+08	-2.8774+08	-2.8772+08
J/KG	-1.2298+07	-1.2350+07	-1.2047+07 -7.0509+07	-1.5962+07 -8.2001+04	-1.7766+07
ENTROPY :	-0.7251+07	-7.2200+07	-7.0505107	0.2001.01	1.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
J/KMOL-K	-2.0053+05	-2.2534+05	-1.9835+05	-1.6641+05	-1.6652+05
J/KG-K	-8874.7396	-9655.7333	-8499.1980	-9231.1477	-9241.9675
DENSITY:	26 1026	20,0000	C 001E	41 4270	41 4520
KMOL/CUM	36.4936	38.0229	140 5274	746 9790	746.8649
AVG MW	22.5955	23.3374	23.3374	18.0264	18.0175

STREAM ID FROM : TO :	3 H2103 H2104	4 H2104 H2105A	5 H2105A H2105B	6 H2105B H2106	7 H2106
SUBSTREAM: MIXED PHASE:	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR
H2 CO CO2	3.7117-05 1.2567-06 2.3270	3.7117-05 1.2567-06 2.3270	3.7117-05 1.2567-06 2.3270	3.7117-05 1.2567-06 2.3270	3.7117-05 1.2567-06 2.3270
N2 O2 CH4	260.6468 9.2645 7.8087-31	260.6468 9.2645 7.8087-31	260.6468 9.2645 7.8087-31	260.6468 9.2645 7.8087-31	260.6468 9.2645 7.8087-31
C2H6 C3H8 C4H10	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0
C6H12 C6H14 MEA	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0
AR TOTAL FLOW:	3.1215	3.1215	3.1215	3.1215	3.1215
KG/HR CUM/SEC STATE VARIABLES	1.0021+04 5.8412	1.0021+04 5.4002	1.0021+04 4.5950	1.0021+04 3.5573	1.0021+04 2.4016
TEMP C PRES BAR VFRAC	681.5454 1.5000 1.0000	609.4574 1.5000 1.0000	477.8817 1.5000 1.0000	308.3998 1.5000	120.0029 1.5000
LFRAC SFRAC ENTHALPY:	0.0	0.0	0.0	0.0	0.0
J/KMOL J/KG WATT	-5.5236+07 -2.1897+06 -6.0949+06	-5.7744+07 -2.2891+06 -6.3716+06	-6.2209+07 -2.4661+06 -6.8643+06	-6.7745+07 -2.6855+06 -7.4751+06	-7.3661+07 -2.9201+06 -8.1280+06
ENTROPY: J/KMOL-K J/KG-K	2.7019+04 1071.0806	2.4288+04 962.8275	1.8813+04 745.7787	1.0467+04 414.9155	-1814.9320 -71.9468
KMOL/CUM KG/CUM	1.8890-02 0.4765	2.0433-02 0.5154	2.4013-02 0.6057	3.1018-02 0.7824	4.5946-02
AVG III	23.2200	23.2200	25.2260	25.2260	25.2200

STREAM ID FROM : TO :	A SPLIT H2102	B H2102 DRUMMIX	BIN BURNER	C SPLIT H2105A	D H2105A DRUMMIX
SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HB	LIQUID	MIXED	VAPOR	LIQUID	MIXED
H2	0.0	0.0	121.8254	0.0	0.0
CO	0.0	0.0	2.3027	0.0	0.0
C02	0.0	0.0	0.0	0.0	0.0
N2	0.0	0.0	260.6468	0.0	0.0
02	0.0	0.0	71.3772	0.0	0.0
CH4	0.0	0.0	2.4310-02	0.0	0.0
C2H6	0.0	0.0	0.0	0.0	0.0
СЗН8	0.0	0.0	0.0	0.0	0.0
C4H10	0.0	0.0	0.0	0.0	0.0
C5H12	0.0	0.0	0.0	0.0	0.0
C6H14	0.0	0.0	0.0	0.0	0.0
MEA	0.0	0.0	0.0	0.0	0.0
H20	1031.1889	1031.1889	0.0	1061.1022	1061.1022
AR	0.0	0.0	3.1215	0.0	0.0
TOTAL FLOW:					
KMOL/HR	1031.1889	1031.1889	459.2980	1061.1022	1061.1022
KG/HR	1.8577+04	1.8577+04	1.0021+04	1.9116+04	1.9116+04
CUM/SEC	8.5677-03	2.9407-02	1.6619	8.8163-03	3.0260-02
STATE VARIABLES:					
TEMP C	221.0000	221.0000	40.0000	221.0000	221.0000
PRES BAR	24.0094	24.0094	2.0000	24.0094	24.0094
VFRAC	0.0	4.8000-02	1.0000	0.0	4.8000-02
LFRAC	1.0000	0.9520	0.0	1.0000	0.9520
SFRAC	0.0	0.0	0.0	0.0	0.0
ENTHALPY:					
J/KMOL	-2.7130+08	-2.6962+08	-1.3052+05	-2.7130+08	-2.6962+08
J/KG	-1.5059+07	-1.4967+07	-5982.4219	-1.5059+07	-1.4967+07
WATT	-7.7710+07	-7.7232+07	-1.6652+04	-7.9965+07	-7.9472+07
ENTROPY:					
J/KMOL-K	-1.2552+05	-1.2213+05	4700.2516	-1.2552+05	-1.2213+05
J/KG-K	-6967.2642	-6779.5164	215.4359	-6967.2642	-6779.5164
DENSITY:					
KMOL/CUM	33.4325	9.7406	7.6766-02	33.4325	9.7406
KG/CUM	602.2870	175.4783	1.6748	602.2870	175.4783
AVG MW	18.0150	18.0150	21.8174	18.0150	18.0150

14

STREAM ID	E	F	G	H	L10
FROM :	SPLIT	H2105B	SPLIT	H2107	V31
TO :	H2105B	DRUMMIX	H2107	DRUMMIX	MIX2
SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR	FIÓNID	MIXED	LIQUID	MIXED	VAPOR
H2 CO CO2 N2 O2 CH4 C2H6 C3H8 C4H10 C5H12 C6H14 MEA H2O AR	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.2259 1.3294 0.0 0.3848 0.0 1.1418-18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
KMOL/HR	1315.6387	1315.6387	4402.3326	4402.3326	2.9402
KG/HR	2.3701+04	2.3701+04	7.9308+04	7.9308+04	50.4898
CUM/SEC	1.0931-02	3.7518-02	3.6577-02	0.1255	2.5762-03
STATE VARIABLES: TEMP C PRES BAR VFRAC LFRAC SFRAC ENTHALPY.	221.0000 24.0094 0.0 1.0000 0.0	221.0000 24.0094 4.8000-02 0.9520 0.0	221.0000 24.0094 0.0 1.0000 0.0	221.0000 24.0094 4.8000-02 0.9520 0.0	-183.0864 2.3000 1.0000 0.0 0.0
J/KMOL	-2.7130+08	-2.6962+08	-2.7130+08	-2.6962+08	-5.5917+07
J/KG	-1.5059+07	-1.4967+07	-1.5059+07	-1.4967+07	-3.2563+06
WATT	-9.9147+07	-9.8536+07	-3.3176+08	-3.2972+08	-4.5669+04
ENTROPY: J/KMOL-K J/KG-K DENSITY:	-1.2552+05 -6967.2642	-1.2213+05 -6779.5164	-1.2552+05 -6967.2642	-1.2213+05 -6779.5158	8253.5354 480.6349
KMOL/CUM	33.4325	9.7406	33.4325	9.7406	0.3170
KG/CUM	602.2870	175.4783	602.2870	175.4783	5.4440
AVG MW	18.0150	18.0150	18.0150	18.0150	17.1721

•

Simulated design streams

.

STREAM ID FROM : TO :	L11 T24 T22MIX	L13 V47 MIX2	L2 E21 E22	L22 E23A E21	L28 V6 T23
SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HB	LIQUID	MIXED	VAPOR	VAPOR	MIXED
H2 CO CO2 N2 O2 CH4 C2H6 C3H8 C4H10 C5H12 C6H14 MEA H2O	4.1183-04 17.1293 0.0 3.3475 0.0 3.1910-09 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	$\begin{array}{c} 1.6328-15\\ 2.0378\\ 0.0\\ 4.0712-02\\ 0.0\\ 4.5204\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	$148.2504 \\ 53.1893 \\ 0.0 \\ 8.5891 \\ 0.0 \\ 4.5586 \\ 0.0 \\ 0$	144.7187 2.6645 0.0 1.1614 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	$\begin{array}{c} 2.3053\\ 34.6148\\ 0.0\\ 4.0705\\ 0.0\\ 4.5586\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$
AR TOTAL FLOW	0.0	0.0	0.0	0.0	0.0
KMOL/HR KG/HR CUM/SEC	20.4772 573.5680 2.4084-04	6.5990 130.7428 1.0299-04	214.5876 2102.4483 1.8868-02	148.5447 398.9239 8.5078-02	45.5493 1161.3720 3.0026-03
STATE VARIABLES:	1 60 2014	170 0007	157 (000	176 1000	177 2022
TEMP C PRES BAR VFRAC LFRAC SFRAC	-169.3914 7.6000 0.0 1.0000 0.0	2.1500 5.2909-03 0.9947 0.0	28.1000 1.0000 0.0 0.0	-178.1000 3.9000 1.0000 0.0 0.0	5.4700 0.1535 0.8464 0.0
ENTHALPY:	-1 0348+08	-9 9581+07	-3 4366+07	-7 3772+06	-1.0262+08
J/KG WATT	-3.6945+06	-5.0262+06	-3.5076+06 -2.0485+06	-2.7470+06 -3.0440+05	-4.0247+06 -1.2984+06
ENTROPY: J/KMOL-K J/KG-K	-1.8338+04 -654.6788	-1.3264+05 -6694.9005	-2.8241+04 -2882.4528	-3.8018+04 -1.4157+04	-2.9782+04 -1168.0410
DENSITY: KMOL/CUM KG/CUM AVG MW	23.6182 661.5463 28.0099	17.7987 352.6361 19.8124	3.1591 30.9522 9.7976	0.4849 1.3024 2.6855	4.2138 107.4414 25.4970

STREAM ID FROM : TO :	L29 T23 V29	L3 E22 T21	L30 V9 T24	L31 T24 V31	L33 V8 T22
SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HB	VAPOR	VAPOR	MIXED	VAPOR	MIXED
H2 CO CO2 N2 O2 CH4 C2H6 C3H8 C4H10 C5H12 C6H14 MEA H2O AB	$\begin{array}{c} 2.3043\\ 3.3870\\ 0.0\\ 0.5549\\ 0.0\\ 3.8212-02\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	148.2504 53.1893 0.0 8.5891 0.0 4.5586 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.2262 15.9099 0.0 3.3569 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1.2259 1.3294 0.0 0.3848 0.0 1.1418-18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	$\begin{array}{c} 9.8799-04\\ 31.2277\\ 0.0\\ 3.5156\\ 0.0\\ 4.5204\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$
TOTAL FLOW: KMOL/HR	6.2845	214.5876	20.4931	2.9402	39.2648
KG/HR CUM/SEC	115.6755 2.3454-03	2102.4483 1.7354-02	542.1473 8.9800-04	50.4898 7.7472-04	1045.6965 3.9269-03
STATE VARIABLES:					
TEMP C PRES BAR VFRAC LFRAC	-178.8131 5.4000 1.0000 0.0	-164.8000 28.0000 1.0000 0.0	-176.7005 7.8500 0.1341 0.8659	-177.7584 7.6000 1.0000 0.0	-182.1491 2.3830 0.1107 0.8892
SIRAC .	0.0	0.0	0.0	0.0	0.0
J/KMOL J/KG WATT	-6.5993+07 -3.5853+06 -1.1520+05	-3.4585+07 -3.5299+06 -2.0615+06	-9.6519+07 -3.6484+06 -5.4944+05	-5.5918+07 -3.2563+06 -4.5670+04	-1.0828+08 -4.0657+06 -1.1810+06
ENTROPY :	111020.00	2.0010.00	0.1011.00	1.00/0104	1.1010100
J/KMOL-K	8440.6659	-3.0173+04	-2.0389+04	-1127.7300	-3.3430+04
DENSITY	430.3710	-3079.3921	-770.7210	-05.0720	-1255.2710
KMOL/CUM	0 7443	3 4349	6 3301	1 0542	2 7774
KG/CUM	13,7003	33 6539	167 7024	18 10342	73 9697
AVG MW	18.4064	9.7976	26.4550	17.1721	26.6318

¥.

STREAM ID FROM : TO :	L35 E21 SPLIT1	L36 SPLIT1 E22B	L37 E22B V37	L38 SPLIT1 E24	L39 SPLIT1 V39
SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR
H2 CO CO2 N2	2.5847-04 8.5532 0.0 1.2598	4.0322-05 1.3343 0.0 0.1965 0.0	4.0322-05 1.3343 0.0 0.1965 0.0	1.4113-04 4.6700 0.0 0.6878 0.0	7.7025-05 2.5488 0.0 0.3754 0.0
CH4 C2H6 C3H8 C4H10	1.0708-08 0.0 0.0 0.0	1.6705-09 0.0 0.0 0.0	1.6705-09 0.0 0.0 0.0	5.8466-09 0.0 0.0 0.0	3.1910-09 0.0 0.0 0.0
C5H12 C6H14 MEA H2O	0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0 0.0
TOTAL FLOW:	0.0	0.0	0.0	0.0	0.0
KMOL/HR KG/HR	9.8132 274.8673	1.5308 42.8793	1.5308 42.8793	150.0775	2.9243 81.9104 7 4664-04
CUM/SEC	2.5055-05	3.9000-04	5.0009-04	1.3000-03	7.4004-04
TEMD C	-155 1000	-155 1000	-160 8000	-155 1000	-155 1000
DDFC BAD	9 2000	9 2000	9 1000	9 2000	9,2000
VFRAC	1 0000	1 0000	1,0000	1,0000	1.0000
LEBAC	0.0	0.0	0.0	0.0	0.0
SFBAC	0.0	0.0	0.0	0.0	0.0
ENTHALPY:				5.000	
J/KMOL	-1.0205+08	-1.0205+08	-1.0225+08	-1.0205+08	-1.0205+08
J/KG	-3.6434+06	-3.6434+06	-3.6506+06	-3.6434+06	-3.6434+06
WATT	-2.7818+05	-4.3397+04	-4.3482+04	-1.5189+05	-8.2899+04
ENTROPY:					
J/KMOL-K	3.3838+04	3.3838+04	3.2169+04	3.3838+04	3.3838+04
J/KG-K	1208.0928	1208.0928	1148.4985	1208.0928	1208.0928
DENSITY:					
KMOL/CUM	1.0879	1.0879	1.1615	1.0879	1.0879
KG/CUM	30.4738	30.4738	32.5353	30.4738	30.4738
AVG MW	28.0097	28.0097	28.0097	28.0097	28.0097

STREAM ID FROM : TO :	L4 CO2 E23A	L40 V39 T24	L41 E24 V41	L42 V41 T22MIX	L43 V37 T22MIX
SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HB	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR
H2 CO CO2 N2 O2 CH4 C2H6 C3H8 C4H10 C5H12 C6H14 MEA H2O AR	144.7187 2.6645 0.0 1.1614 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	7.7025-052.54880.00.37540.0 $3.1910-090.00.00.00.00.00.00.00.00.00.$	$\begin{array}{r} 1.4113-04\\ 4.6700\\ 0.0\\ 0.6878\\ 0.0\\ 5.8466-09\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	$\begin{array}{c} 1.4113-04\\ 4.6700\\ 0.0\\ 0.6878\\ 0.0\\ 5.8466-09\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	4.0322-05 1.3343 0.0 0.1965 0.0 1.6705-09 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
TOTAL FLOW: KMOL/HR KG/HR CUM/SEC	148.5447 398.9239 8.3025-03	2.9243 81.9104 8.6639-04	5.3580 150.0775 1.3406-03	5.3580 150.0775 4.9807-03	1.5308 42.8793 1.3647-03
STATE VARIABLES: TEMP C	-201 5000	-156 8238	-157 6000	-167 4827	-171 2600
PRES BAR VFRAC LFRAC SFRAC	27.3000 1.0000 0.0 0.0	7.9500 1.0000 0.0 0.0	9.1000 1.0000 0.0 0.0	2.5000 1.0000 0.0 0.0	2.5000 1.0000 0.0 0.0
J/KMOL	-8.1343+06	-1.0205+08	-1.0214+08	-1.0214+08	-1.0225+08
J/KG	-3.0289+06	-3.6434+06	-3.6464+06	-3.6464+06	-3.6506+06
WATT	-3.3564+05	-8.2898+04	-1.5201+05	-1.5201+05	-4.3482+04
ENTROPY:					
J/KMOL-K	-6.2953+04	3.4897+04	3.3193+04	4.2971+04	4.1847+04
DENSITY -	-2.3441+04	1245.8932	1185.0432	1534.14//	1494.0189
KMOL/CUM	4.9698	0.9375	1.1102	0 2988	0 3116
KG/CUM	13.3468	26.2616	31.0968	8.3699	8.7280
AVG MW	2.6855	28.0097	28.0097	28.0097	28.0097

STREAM ID FROM : TO :	L44 T22MIX E25-27	L46 E25-27 T22	L47 T22 V47	L48 MIX2 E21	L49 T22 E21
SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HB	MIXED	LIQUID	TIÕ AID	MIXED	VAPOR
H2 CO CO2 N2	5.9328-04 23.1337 0.0 4.2319	5.9328-04 23.1337 0.0 4.2319	1.6328-15 2.0378 0.0 4.0712-02	3.5302 6.7543 0.0 0.9805	1.5812-03 52.3228 0.0 7.7067
02 CH4 C2H6 C3H8	0.0 1.0708-08 0.0 0.0	0.0 1.0708-08 0.0 0.0	0.0 4.5204 0.0 0.0	0.0 4.5586 0.0 0.0	0.0 6.5505-08 0.0 0.0
C5H12 C6H14 MEA H2O	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
AR	0.0	0.0	0.0	0.0	0.0
TOTAL FLOW:	27 3662	27 3662	6 5990	15,8237	60.0311
KG/HB	766.5249	766.5249	130.7428	296.9083	1681.4545
CIIM/SEC	8.4820-03	2.8213-04	6.7915-05	9.1534-03	5.1031-02
STATE VARIABLES:	011020 00				
TEMP C	-183.2570	-184.5000	-172.4673	-180.6837	-184.1620
PRES BAR	2.5000	2.3250	2.2500	2.1500	2.2500
VFRAC	0.3952	0.0	0.0	0.5971	1.0000
LFRAC	0.6047	1.0000	1.0000	0.4028	0.0
SFRAC	0.0	0.0	0.0	0.0	0.0
ENTHALPY:					
J/KMOL	-1.0315+08	-1.0546+08	-9.9581+07	-7.8128+07	-1.0264+08
J/KG	-3.6826+06	-3.7649+06	-5.0262+06	-4.1638+06	-3.6645+06
WATT	-7.8411+05	-8.0165+05	-1.8254+05	-3.4341+05	-1./110+00
ENTROPY:	0101 0147	0 7700.04	1 2265105	4 7002.04	2 0506+04
J/KMOL-K	-2121.9147	-2.7792+04	-1.3205+05	-4.7083+04	1377 9520
J/KG-K	-15.1558	-992.2272	-0095.2005	-2509.2788	1377.3320
KMOL /CIIM	0 8962	26 9439	26 9907	0 4802	0.3267
KG/CIIM	25 1029	754 6960	534.7511	9.0103	9.1527
AVG MW	28.0099	28.0099	19.8124	18.7634	28.0097
	20.0000				

21

STREAM ID FROM : TO :	L6 T21 V6	L7 V29 MIX2	L8 T23 V8	L9 SPLIT2 V9	LB T21 MIX1
SUBSTREAM: MIXED					
PHASE:	LIQUID	VAPOR	LIQUID	LIQUID	VAPOR
COMPONENTS: KMOL/HR	0 0050	0 0040			
H2 CO	2.3053	2.3043	9.8799-04	1.2262	149.5015
CO2	34.6148	3.3870	31.2277	15.9099	64.7157
N2	0.0	0.0	0.0	0.0	0.0
02	4.0705	0.5549	3.5150	3.3569	14.2542
CH4	1 5596	3 9212-02	1 5204	0.0	0.0 5 045C 10
C2H6	4.5566	5.0212-02	4.5204	0.0	5.2456-13
C3H8	0.0	0.0	0.0	0.0	0.0
C4H10	0.0	0.0	0.0	0.0	0.0
C5H12	0.0	0.0	0.0	0.0	0.0
C6H14	0.0	0.0	0.0	0.0	0.0
MEA	0.0	0.0	0.0	0.0	0.0
H2O	0.0	0.0	0.0	0.0	0.0
AR	0.0	0.0	0.0	0.0	0.0
TOTAL FLOW:		1.11		0.0	0.0
KMOL/HR	45.5493	6.2845	39.2648	20.4931	228,4715
KG/HR	1161.3720	115.6755	1045.6965	542.1473	2513.3874
CUM/SEC	5.1430-04	5.5388-03	4.3456-04	2.3577-04	1.7132-02
STATE VARIABLES:					
TEMP C	-169.6737	-182.2501	-172.1917	-171.5000	-171.2848
PRES BAR	27.3000	2.3000	5.4000	27.3470	27.3000
VFRAC	0.0	1.0000	0.0	0.0	1.0000
LFRAC	1.0000	0.0	1.0000	1.0000	0.0
SFRAC	0.0	0.0	0.0	0.0	0.0
ENTHALPY:	1 0000.00	6 5000.05			
J/KMOL	-1.0262+08	-6.5992+07	-1.0828+08	-9.6519+07	-3.7133+07
	-4.024/+06	-3.5853+06	-4.0657+06	-3.6484+06	-3.3754+06
WATT	-1.2984+06	-1.1520+05	-1.1810+06	-5.4944+05	-2.3566+06
LNIROPI:	2 1 5 1 7 1 0 4	1 5172.04	2 2014.04	0 1504.04	
J/KG-K	-3.1317+04 -1236 1100	2.51/3+04 92/ 2270	-3.3914+04	-2.1/84+04	-2.7210+04
DENSTTY	-1250.1190	024.3370	-12/3.4399	-823.4136	-24/3.441/
KMOL/CUM	24 6015	0 3151	25 0000	21 1116	2 7044
KG/CUM	627 2653	5 8012	668 4296	630 7/75	10 7524
AVG MW	25.4970	18 4064	26 6318	26 4550	11 0000
800300FF - 1737733)		10.1001	20.0010	20.4000	TT.0000

STREAM ID FROM : TO :	LC CO1 CO2	LD CO1 SPLIT2	LE CO2 MIX1	LF MIX1 CO1	LG SPLIT2 T21
SUBSTREAM: MIXED PHASE:	VAPOR	FIGAID	LIQUID	MIXED	LIQUID
COMPONENTS: KMOL/HR	149 3965	4 7826	3,6776	153.1792	3.5563
H2	61 1690	62.0511	58.5043	123.2201	46.1412
CO2	0.0	0.0	0.0	0.0	0.0
N2	16,7122	13.0926	15.5506	29.8049	9.7357
02	0.0	0.0	0.0	0.0	0.0
CH4	0.0	0.0	0.0	5.2456-13	0.0
C246	0.0	0.0	0.0	0.0	0.0
C3H8	0.0	0.0	0.0	0.0	0.0
CAHIO	0.0	0.0	0.0	0.0	0.0
C5H12	0.0	0.0	0.0	0.0	0.0
C6H14	0.0	0.0	0.0	0.0	0.0
MEA	0.0	0.0	0.0	0.0	0.0
H2O	0.0	0.0	0.0	0.0	0.0
AR	0.0	0.0	0.0	0.0	0.0
TOTAL FLOW:				200 0040	E0 4222
KMOL/HR	226.2778	79.9264	77.7327	306.2042	1572 2110
KG/HR	2480.6710	2114.4593	2081.7430	4595.1304	6 0377-04
CUM/SEC	1.6903-02	9.1953-04	7.1/08-04	1.61/0-02	0.0377-04
STATE VARIABLES:		1 71 5000	001 E000	174 0595	-171 5000
TEMP C	-171.5000	-171.5000	-201.5000	27 3000	27 3470
PRES BAR	27.3470	27.3470	27.3000	0 6639	0.0
VFRAC	1.0000	0.0	1 0000	0.0059	1,0000
LFRAC	0.0	1.0000	1.0000	0.0	0.0
SFRAC	0.0	0.0	0.0	0.0	
ENTHALPY:	-2 5707+07	-9 6519+07	-9 5757+07	-5.2015+07	-9.6519+07
J/KMOL	-3.2571+06	-3 6484+06	-3.5756+06	-3.4661+06	-3.6484+06
J/KG	-2 2444+06	-2.1429+06	-2.0676+06	-4.4242+06	-1.5935+06
WATT .	-2.2111100	2.2125.00	2.00.0		
LNIROFI.	-2 8312+04	-2.1784+04	-4.4861+04	-3.0948+04	-2.1784+04
J/KG-K	-2582.4909	-823.4156	-1675.1372	-2062.2539	-823.4156
DENSITY:					
KMOL/CUM	3.7186	24.1446	30.1117	5.2602	24.1446
KG/CUM	40.7669	638.7475	806.4147	78.9395	638.7475
AVG MW	10.9629	26.4550	26.7807	15.0067	26.4550

STREAM ID FROM : TO :	LIQ V2103 SPLIT	MEASUMP V2116	OUT V2118	STM V2103	STMFD DRUMMIX V2103
SUBSTREAM: MIXED					
PHASE:	LIQUID	LIQUID	MIXED	VAPOR	MIXED
H2	0.0	1.6653-07	0.8948	0.0	0.0
CO	0.0	3.6150-08	0.3210	0.0	0.0
CO2	0.0	6.6366-09	1.1361-02	0.0	0.0
N2	0.0	5.3679-09	5.1846-02	0.0	0.0
02	0.0	0.0	0.0	0.0	0.0
CH4	0.0	3.2820-08	2.7517-02	0.0	0.0
C2H6	0.0	0.0	7.6395-05	0.0	0.0
СЗН8	0.0	0.0	3.1213-09	0.0	0.0
C4H10	0.0	0.0	0.0	0.0	0.0
C5H12	0.0	0.0	0.0	0.0	0.0
C6H14	0.0	0.0	0.0	0.0	0.0
MEA	0.0	1.1001-06	4.0328-03	0.0	0.0
H2O	7810.2630	0.1822	0.3701	343.2634	7810.2625
AR	0.0	0.0	0.0	0.0	0.0
TOTAL FLOW:		121-202020202			
KMOL/HR	7810.2630	0.1822	1.6809	343.2634	7810.2625
KG/HR	1.4070+05	3.2823	20.1075	6183.8913	1.4070+05
CUM/SEC	6.4892-02	1.2207-06	3.3726-04	0.1473	0.2227
TEMP C	221 0000				
DDEC DAD	221.0000	40.0000	35.0000	221.0000	221.0000
VEDAC	24.0094	10.3000	28.3000	24.0094	24.0094
VERAC LEDAC	0.0	0.0	0.7805	1.0000	4.8000-02
SEBAC	1.0000	1.0000	0.2194	0.0	0.9520
FNTHALDY.	0.0	0.0	0.0	0.0	0.0
J/KMOL	-2 7120+00	2 0770,00	0 0005.07	0.0010.00	
J/KG	-2.7130+08 -1.5050+07	-2.8/70+08	-8.8685+07	-2.3648+08	-2.6962+08
WATT	-5 0050+07	-1.3970+07	-1.413/+06	-1.312/+0/	-1.4967+07
ENTROPY	-3.0030700	-1.4560+04	-4.1409+04	-2.2548+07	-5.8496+08
T/KMOT-K	-1 2552+05	1 6656105	2 2020.04		
J/KG-K	-1.2352+05	-1.0050+05	-3.7930+04	-5.5051+04	-1.2213+05
DENSITY:	0907.2042	-9243.2471	-31/0./566	-3055.8504	-6//9.5160
KMOL/CUM	33, 4325	41 4507	1 3044	0 6470	0 7400
KG/CUM	602,2870	746 9080	16 5612	11 6550	9.7406
AVG MW	18.0150	18.0152	11 9623	18 0150	10 0150
		-0.0102		10.0100	TO.0T20

.

APPENDIX 5. Most important simulated in and out going actual streams

STREAM	201	205	251	253	260	BIN	281
Comp.							
H ₂	0.0	0.0	0.0	0.0	0.0	125.347	0.0
CÔ	0.0	0.0	0.0	0.0	0.0	2.371	0.0
CO ₂	0.486	0.0	0.0	0.0	0.0	0.0	9.859
N ₂	7.839	0.0	0.0	0.0	0.0	268.204	0.0
0 ₂	0.0	0.0	0.0	0.0	0.0	73.446	0.0
CH₄	44.431	0.0	0.0	0.0	0.0	0.025	0.0
C ₂ H ₆	1.556	0.0	0.0	0.0	0.0	0.0	0.0
C ₃ H ₈	0.204	0.0	0.0	0.0	0.0	0.0	0.0
C_4H_{10}	0.076	0.0	0.0	0.0	0.0	0.0	0.0
C ₅ H ₁₂	0.021	0.0	0.0	0.0	0.0	0.0	0.0
C ₆ H ₁₄	0.028	0.0	0.0	0.0	0.0	0.0	0.0
MEA	0.0	0.0	0.0	0.0	0.0	0.0	89.643
H ₂ O	0.0	155.659	343.264	25.762	105.484	0.0	797.674
AR	0.0	0.0	0.0	0.0	0.0	3.212	0.0
kmol/h	54.641	155.659	343.264	25.762	105.484	472.605	897.176
kg/h	1017.9	2804.2	6183.9	464.1	1900.3	10311.0	20279.0
T (°C)	15.0	220.0	104.0	104.0	208.0	40.0	40.0
P (bar)	19.0	23.2	27.0	27.0	18.3	2.0	14.7

Table A5.1 Most important streams entering the plant

APPENDIX 5. Most important simulated in and out going actual streams

STREAM	226	STM	266	7	140	281A
Comp.						
H ₂	0.001	0.0	0.0	0.0	143.472	0.0
CO	45.024	0.0	0.0	0.0	2.6401	0.0
CO ₂	0.0	0.0	0.021	2.396	0.0	9.450
N ₂	6.632	0.0	0.0	268.204	1.154	0.0
O ₂	0.0	0.0	0.0	9.537	0.0	0.0
CH ₄	0.0	0.0	0.0	0.0	0.0	0.0
C₂H ₆	0.0	0.0	0.0	0.0	0.0	0.0
C₃H ₈	0.0	0.0	0.0	0.0	0.0	0.0
C_4H_{10}	0.0	0.0	0.0	0.0	0.0	0.0
C5H12	0.0	0.0	0.0	0.0	0.0	0.0
C ₆ H ₁₄	0.0	0.0	0.0	0.0	0.0	0.0
MEA	0.0	0.0	0.0	0.0	0.0	89.631
H ₂ O	0.0	343.264	236.238	125.397	0.0	797.674
AR	0.0	0.0	0.0	3.2112	0.0	0.0
kmol/h	51.057	343.264	236.259	408.746	147.267	897.176
kg/h	1446.9	6183.9	4256.8	10311.0	395.5	20279.0
T (°C)	90.0	221.0	40.2	138.5	13.8	40.0
P (bar)	9.6	24.0	3.5	1.5	3.5	14.7

Table A5.2 Most important streams going out the plant

APPENDIX 5. Most important simulated in and out going streams with less N_2

STREAM	201	205	251	253	260	BIN	281
Comp.							
H	0.0	0.0	0.0	0.0	0.0	125.347	0.0
CO	0.0	0.0	0.0	0.0	0.0	2.371	0.0
CO ₂	0.486	0.0	0.0	0.0	0.0	0.0	9.859
N ₂	1.556	0.0	0.0	0.0	0.0	268.204	0.0
0 ₂	0.0	0.0	0.0	0.0	0.0	73.446	0.0
CH₄	44.431	0.0	0.0	0.0	0.0	0.025	0.0
C ₂ H ₆	1.556	0.0	0.0	0.0	0.0	0.0	0.0
C ₃ H ₈	0.204	0.0	0.0	0.0	0.0	0.0	0.0
C ₄ H ₁₀	0.076	0.0	0.0	0.0	0.0	0.0	0.0
C ₅ H ₁₂	0.021	0.0	0.0	0.0	0.0	0.0	0.0
C ₆ H ₁₄	0.028	0.0	0.0	0.0	0.0	0.0	0.0
MEA	0.0	0.0	0.0	0.0	0.0	0.0	89.643
H ₂ O	0.0	155.659	343.264	25.762	105.484	0.0	797.674
AR	0.0	0.0	0.0	0.0	0.0	3.212	0.0
kmol/h	54.641	155.659	343.264	25.762	105.484	472.605	897.176
kg/h	1017.9	2804.2	6183.9	464.1	1900.3	10311.0	20279.0
T (°C)	15.0	220.0	104.0	104.0	208.0	40.0	40.0
P (bar)	19.0	23.2	27.0	27.0	18.3	2.0	14.7

Table A5.3 Most important entering streams (less N_2 simulation)

APPENDIX 5. Most important simulated in and out going streams with less N_2

STREAM	226	STM	266	7	140	281A
Comp.						
$\begin{array}{c} H_2 \\ CO \\ CO_2 \\ N_2 \\ O_2 \\ CH_4 \\ C_2H_6 \\ C_3H_8 \\ C_4H_{10} \\ C_5H_{12} \\ C_6H_{14} \\ MEA \end{array}$	0.001 44.764 0.0 1.279 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.022 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 0.0 2.396 268.204 9.537 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	$ \begin{array}{c} 143.227\\3.154\\0.0\\0.267\\0.0\\0.0\\0.0\\0.0\\0.0\\0.0\\0.0\\0.0\\0.0\\0.$	0.0 0.0 9.205 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
H ₂ O AR	0.0 0.0	343.264 0.0	236.529 0.0	125.397 3.2112	0.0 0.0 0.0	797.674 0.0
kmol/h kg/h T (°C) P (bar)	46.043 1289.7 90.0 9.6	343.264 6183.9 221.0 24.0	236.551 4262.0 40.2 3.5	408.746 10311.0 148.8 1.5	146.648 384.6 15.2 3.5	897.176 20279.0 40.0 14.7

Table A5.4 Most important out going streams (less N₂ simulation)

......

STREAM ID FROM : TO :	1 BURNER H2102	140 B1 [.]	2 H2102 H2103	201 H2-MIX	202 B1 H2-MIX
SUBSTREAM: MIXED PHASE:	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR
H2 CO CO2 N2 O2 CH4 C2H6 C3H8 C4H10 C5H12 C6H14 MEA H2O AR	3.8182-05 1.2933-06 2.3955 268.2040 9.5373 8.0301-31 0.0 0.0 0.0 0.0 0.0 0.0 125.3970 3.2116	117.1113 2.2539 0.0 0.7733 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	$\begin{array}{c} 3.8182-05\\ 1.2933-06\\ 2.3955\\ 268.2040\\ 9.5373\\ 8.0301-31\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 125.3970\\ 3.2116\end{array}$	$\begin{array}{c} 0.0\\ 0.0\\ 14.6080\\ 7.1788\\ 0.0\\ 40.7093\\ 1.4266\\ 0.1848\\ 6.9851-02\\ 1.9404-02\\ 2.4600-02\\ 0.0\\ 0.0\\ 0.0\\ 0.0\end{array}$	48.1150 0.9260 0.0 0.3177 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
TOTAL FLOW: KMOL/HR KG/HR CUM/SEC	408.7456 1.0311+04 8.0465	120.1386 320.8922 0.2279	408.7456 1.0311+04 7.6872	64.2215 1555.7300 2.1459-02	49.3588 131.8382 9.3644-02
STATE VARIABLES:					
TEMP C PRES BAR VFRAC LFRAC SFRAC	1005.0000 1.5000 1.0000 0.0 0.0	13.7301 3.5000 1.0000 0.0 0.0	947.9141 1.5000 1.0000 0.0 0.0	15.0000 19.0000 1.0000 0.0 0.0	13.7301 3.5000 1.0000 0.0 0.0
ENTHALPY:	4 0555.05	0 2020.00	4 5655.07	1 4000100	2 2020:06
J/KMOL	-4.3557+07	-2.3930+06	-4.5655+07	-1.4026+08	-2.3930+06
	-1.7200+00	-7 9858+04	-1.8098+08 -5.1837+06	-2.5022+06	-3.2809+03
WALL .	-4.9455+00	-1.9030+04	-3.103/400	-2.5022+00	5.2005104
T/KMOL-K	3 7540+04	-8630,1778	3.5860+04	-7.4323+04	-8630.1778
J/KG-K	1488.1121	-3231.0463	1421.5486	-3068.0872	-3231.0463
DENSITY:		ವನ್ನು ಮತ್ತು ಬಿಕ್ಕೆಗಳು			
KMOL/CUM	1.4110-02	0.1464	1.4770-02	0.8313	0.1464
KG/CUM	0.3559	0.3910	0.3725	20.1380	0.3910
AVG MW	25.2263	2.6710	25.2263	24.2244	2.6710

A5-33

		***	+		 a transition of annual transition
STREAM ID FROM : TO :	202B H2-MIX H2104	203 H2104 V2101	203B V2101 CO2-MIX	204 V2114 CO2-MIX	204B CO2-MIX H2O-MIX
SUBSTREAM: MIXED PHASE:	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR
COMPONENTS: KMOL/HR					
HZ	48.1150	48.1150	48.1150	4.2859	52.4010
00	0.9260	0.9260	0.9260	8.0093	8.9353
202	14.6080	14.6080	14.6080	35.9402	50.5482
N2	7.4965	7.4965	7.4965	0.9671	8.4636
02	0.0	0.0	0.0	0.0	0.0
CH4	40.7093	40.7093	40.7093	5.9294	46.6388
C2H6	1.4260	1.4266	1.4266	1.5236-10	1.4266
CAHIO	6 0051-02	6 0051 02	0.1848	0.0	0.1848
C5H12	1 0404-02	0.9851-02	0.9851-02	0.0	0.9851-02
CSH12 C6H14	2 4600-02	2.4600-02	1.9404-02	0.0	1.9404-02
MEA	2.4000-02	2.4000-02	2.4000-02	0.0	2.4600-02
H2O	0.0	0.0	0.0	0.0	0.0
120 3D	0.0	0.0	0.0	0.2357	0.2357
TOTAL FLOW.	0.0	0.0	0.0	0.0	0.0
KMOL/HB	113 5803	113 5803	113 5803	55 3678	168 9492
KG/HB	1687 5682	1687 5682	1687 5682	1941 1781	3628 7465
CUM/SEC	3.5311-02	8 5969-02	9 0440-02	2 3763-02	0 1263
STATE VARIABLES:	0.0011 02	0.0000 02	5.0110 02	2.5705 02	0.1200
TEMP C	12,5537	400.0000	350,0000	40,0000	249,0306
PRES BAR	21.0000	20.7000	18,2000	16.2000	16.2000
VFRAC	1.0000	1.0000	1,0000	1.0000	1,0000
LFRAC	0.0	0.0	0.0	0.0	0.0
SFRAC	0.0	0.0	0.0	0.0	0.0
ENTHALPY:					07.0 (2.1) To
J/KMOL	-8.0348+07	-6.5514+07	-6.7641+07	-2.8052+08	-1.3741+08
J/KG	-5.4077+06	-4.4094+06	-4.5525+06	-8.0012+06	-6.3974+06
WATT	-2.5350+06	-2.0670+06	-2.1341+06	-4.3144+06	-6.4485+06
ENTROPY:		8			
J/KMOL-K	-4.7244+04	-1.4902+04	-1.7106+04	-7101.7192	-9427.6211
J/KG-K	-3179.7127	-1002.9696	-1151.2780	-202.5611	-438.9339
DENSITY:		53			
KMOL/CUM	0.8935	0.3670	0.3488	0.6472	0.3714
KG/CUM	13.2755	5.4528	5.1831	22.6910	7.9776
AVG MW	14.8579	14.8579	14.8579	35.0596	21.4784

· 사이 같은 것이 같이 가지 않는다. 것이다.			20		
STREAM ID FROM : TO :	205 H20-MIX	206 H2O-MIX H2103	207 H2103 H2101	208 H2101 H2107	208B H2107 H20-MIX2
SUBSTREAM: MIXED PHASE:	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR
COMPONENTS: RMOL/HR H2 CO CO2 N2 O2 CH4 C2H6 C3H8 C4H10 C5H12 C6H14 MEA H2O	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	52.4010 8.9353 50.5482 8.4636 0.0 46.6388 1.4266 0.1848 6.9851-02 1.9404-02 2.4600-02 0.0 144.1768	52.4010 8.9353 50.5482 8.4636 0.0 46.6388 1.4266 0.1848 6.9851-02 1.9404-02 2.4600-02 0.0 144.1768	170.5384 67.0124 37.0764 8.4636 0.0 5.9652 1.1303-04 5.2530-09 3.3607-13 1.4485-17 7.1454-22 1.2575-30 113.0435	170.5384 67.0124 37.0764 8.4636 0.0 5.9652 1.1303-04 5.2530-09 3.3607-13 1.4485-17 7.1454-22 1.2575-30 113.0435
AR TOTAL FLOW: KMOL/HR KG/HR CUM/SEC	0.0 143.9411 2593.1000 6.4031-02	0.0 312.8894 6221.8465 0.2289	312.8894 6221.8465 0.3636	402.0998 6221.8331 0.9172	402.0998 6221.8331 0.4518
STATE VARIABLES: TEMP C PRES BAR VFRAC LFRAC SFRAC	220.0000 23.2000 1.0000 0.0 0.0	228.9851 15.6000 1.0000 0.0 0.0	487.0000 15.1000 1.0000 0.0 0.0	860.0000 11.5000 1.0000 0.0 0.0	286.1904 11.5000 1.0000 0.0 0.0
ENTHALPY: J/KMOL J/KG WATT ENTROPY:	-2.3647+08 -1.3126+07 -9.4550+06	-1.8298+08 -9.2018+06 -1.5903+07	-1.7251+08 -8.6751+06 -1.4993+07	-9.5110+07 -6.1467+06 -1.0623+07	-1.1556+08 -7.4685+06 -1.2908+07
J/KMOL-K J/KG-K	-5.4783+04 -3040.9421	-2.3071+04 -1160.2344	-6026.3997 -303.0606	3.7849+04 2446.0770	1.2863+04 831.3111
KMOL/CUM KG/CUM AVG MW	0.6244 11.2492 18.0150	0.3796 7.5484 19.8851	0.2389 4.7522 19.8851	0.1217 1.8842 15.4733	0.2471 3.8246 15.4733

.

A5-35

STREAM ID	208C	209	209B	210	210B
FROM :	H20-MIX2	2 M2102	H2110A	V2107	H2111
TO :	M2102	H2110A	V2107	H2111	V2108
-					
SUBSTREAM: MIXED					
PHASE :	VAPOR	VAPOR	MIYED	VADOD	VADOD
COMPONENTS: KMOL/HB		VIII VII	TITLED	VILLOIN	VALOR
H2	170 5384	170 5384	170 5394	170 5202	170 5202
co	67 0124	67 0124	67 0124	67 0124	67 0104
CO2	37 0764	27 0764	27 0764	27 0510	07.0124
N2	0 1626	0 4626	57.0764	37.0518	37.0518
N2 02	0.4030	8.4030	8.4030	8.4636	8.4636
02	0.0	0.0	0.0	0.0	0.0
CH4	5.9652	5.9652	5.9652	5.9651	5.9651
CZH6	1.1303-04	1.1303-04	1.1303-04	1.1303-04	1.1303-04
C3H8	5.2530-09	5.2530-09	5.2530-09	5.2530-09	5.2530-09
C4H10	3.3607-13	3.3607-13	3.3607-13	0.0	0.0
C5H12	1.4485-17	1.4485-17	1.4485-17	0.0	0.0
C6H14	7.1454-22	7.1454-22	7.1454-22	0.0	0.0
MEA	1.2575-30	1.2575-30	1.2575-30	0.0	0.0
H2O	231.8889	269.7185	269.7185	1.6645	1.6645
AR	0.0	0.0	0.0	0.0	0.0
TOTAL FLOW:					
KMOL/HR	520.9452	558.7748	558.7748	290.6959	290,6959
KG/HR	8362.8331	9044.3331	9044.3331	4214.2579	4214.2579
CUM/SEC	0.5839	0.5098	0.3428	0.1970	0.2027
STATE VARIABLES:					
TEMP C	263.3128	167.7082	132.0000	40.0000	40.0000
PRES BAR	11.0000	11.0000	10.7000	10.7000	10,4000
VFRAC	1,0000	1,0000	0 7026	1 0000	1 0000
LFRAC	0.0	0 0	0 2973	0.0	0.0
SFRAC	0.0	0.0	0.2575	0.0	0.0
ENTHALPY:	0.0	0.0	0.0	0.0	0.0
J/KMOL	-1.4319+08	-1 5260+08	-1 6591+08	-7 8103+07	-7 8103+07
J/KG	-8,9198+06	-9.4276+06	-1 0250+07	-5 3937+06	-5 3037+06
WATT	$-2 0721 \pm 07$	-2 3685+07	-2 5752+07	-6 2140+06	-6 2140+06
ENTROPY .	2.0721.07	2.3003407	-2.3732+07	-0.5140+00	-0.3140+00
T/KMOL-K	012 0006	0202 1106	4 0000.04	1 0000.04	1 0506.04
J/KG-K	56 0111	-0393.1100 E10 E416	-4.0026+04	1.0266+04	1.0506+04
DENCTRY.	20.0111	-518.5416	-24/2.8814	708.1352	124.6790
KMOT./CIIM	0 2470	0 2044	0 4500	0 4000	0 0000
KC/CIIM	2 0700	0.3044	0.4527	0.4098	0.3983
AUC MH	3.9/82	4.92/6	7.3282	5.9412	5.7751
AVG MW	10.0531	16.1860	16.1860	14.4971	14.4971

Simulated capacity increase by using CO₂.

A CAR STO TO THE CARD OF THE CARD OF THE CARD OF THE					ala - Shara Matanaka - Circia
STREAM ID FROM :	211 V2108	212 V2105	213 V2106	213B H2112	214 VENTTANK
то .	V2105	V2116	H2112	V2109	
	12200				
SUBSTREAM: MIXED PHASE:	VAPOR	MIXED	VAPOR	MIXED	MIXED
COMPONENTS: KMOL/HR					
H2	170.5382	170.5367	1.4075-03	1.4075-03	0.0
CO	67 0124	67.0112	1.1254-03	1.1254-03	0.0
CO2	37 0518	1 1361-02	37,7641	37.7641	1.7970
	0 1636	0 1636	5 2169-05	5 2169-05	2 5219-06
NZ	8.4030	0.4050	0.0	0.0	0 0
02	0.0	0.0	2 5065 05	2 5065-05	0.0
CH4	5.9651	5.9651	2.5065-05	2.5005-05	0.0
C2H6	1.1303-04	1.1303-04	1.5235-10	1.5255-10	0.0
C3H8	5.2530-09	5.2530-09	0.0	0.0	0.0
C4H10	0.0	0.0	0.0	0.0	0.0
C5H12	0.0	0.0	0.0	0.0	0.0
C6H14	0.0	0.0	0.0	0.0	0.0
MEA	0.0	4.7331-03	6.3647-05	6.3647-05	4.7432-05
H2O	1.6645	1.6962	270.8446	270.8446	7.3508-02
AR	0.0	0.0	0.0	0.0	0.0
TOTAL FLOW:					
KMOL/HR	290.6959	253.6892	308.6114	308.6114	1.8706
KG/HR	4214.2579	2584.9283	6541.3056	6541.3056	80.4149
CUM/SEC	0.2027	0.1788	1.5941	0.1899	8.9584-03
STATE VARIABLES:					
TEMP C	40.0000	40.0419	110.9508	40.0000	40.0000
PRES BAR	10,4000	10.3000	1.7000	1.5000	1.5000
VERAC	1,0000	0.9999	1.0000	0.1272	1.0000
LEBAC	0.0	2.3858-05	0.0	0.8727	2.0498-06
SFRAC	0.0	0.0	0.0	0.0	0.0
ENTHALDY .	0.0	0.0			
T/KMOL	-7 8193+07	-3,2192+07	-2.5768+08	-3.0040+08	-3.8730+08
J/KC	-5 3937+06	-3 1594+06	-1.2157+07	-1.4172+07	-9.0092+06
bia mm	-6 3140+06	-2 2686+06	-2,2090+07	-2.5752+07	-2.0124+05
TNUTDODY .	-0.5140100	2.2000100	2.2050.01	2.0702.07	
T/WOI-V	1 0506+04	1 0685+04	-3 1191+04	-1 4520+05	894.0208
J/KHOL-K	724 6790	1048 6483	-1471 5545	-6850,6006	20.7965
DENCIPY.	124.0190	1040.0400	11/1.0010		201.000
DENSITI:	0 3003	0 3030	5 3776-02	0.4513	5.8003-02
KHOL/COM	5 7751	4 0140	1 1300	9 5665	2,4934
AG/CUM	14 4071	10 1002	21 1050	21 1959	42,9889
AVG MW	14.49/1	10.1032	21.1939	21.1939	12.5005

Simulated capacity increase by using CO_2 .

STREAM ID FROM : TO :	215 V2109 VENTTANI	215B VENTTANI K CO-MIX	216 K CO-MIX K2103-1	216B K2103-1 H2113	216C H2113 V2113
SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR	VAPOR	VAPOR	VAPOR	VAPOR	MIXED
H2 CO CO2 N2 O2 CH4 C2H6 C3H8 C4H10 C5H12 C6H14	1.4076-03 1.1256-03 37.7378 5.2185-05 0.0 2.6190-05 1.5235-10 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.4076-031.1256-0335.94074.9663-050.02.6190-051.5235-100.00.00.00.0	$\begin{array}{r} 4.2860\\ 8.0094\\ 35.9407\\ 0.9671\\ 0.0\\ 5.9293\\ 1.5235-10\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\end{array}$	4.2860 8.0094 35.9407 0.9671 0.0 5.9293 1.5235-10 0.0 0.0 0.0 0.0	4.2860 8.0094 35.9407 0.9671 0.0 5.9293 1.5235-10 0.0 0.0 0.0 0.0
MEA H2O AR	4.7432-05 1.5436 0.0	0.0 1.4701 0.0	0.0 1.4701 0.0	0.0 1.4701 0.0	0.0 1.4701 * 0.0
TOTAL FLOW: KMOL/HR KG/HR CUM/SEC	39.2841 1688.6899 0.1881	37.4135 1608.2749 0.1791	56.6029 1963.4422 0.2660	56.6029 1963.4422 5.6590-02	56.6029 1963.4422 4 1753-02
STATE VARIABLES:	0.1001	0.1/01	0.2000	5.0590-02	4.1755-02
TEMP C PRES BAR VFRAC LFRAC SFRAC ENTHALPY	40.0000 1.5000 1.0000 0.0 0.0	40.0000 1.5000 1.0000 0.0 0.0	33.4351 1.5000 1.0000 0.0 0.0	145.0000 9.6000 1.0000 0.0 0.0	40.0000 9.4000 0.9807 1.9302-02 0.0
J/KMOL	-3.8728+08	-3 8728+08	-2 7955+08	-2 7551+08	-2 9040+09
J/KG WATT	-9.0093+06 -4.2261+06	-9.0093+06 -4.0249+06	-8.0591+06 -4.3955+06	-7.9427+06	-8.0834+06
ENTROPY:				110010100	1.1007700
J/KMOL-K J/KG-K DENSITY:	916.8939 21.3297	917.9625 21.3547	1.2255+04 353.2864	8120.0928 234.0894	-5391.0193 -155.4145
KMOL/CUM	5.8003-02	5.8003-02	5.9089-02	0.2778	0.3765
AVG MW	42.9865	42.9864	2.0496 34.6879	9.6376 34.6879	13.0626 34.6879

Simulated capacity increase by using CO_2 .

)÷ ±)±		
STREAM ID FROM : TO :	216D V2113 K2103-3	216E K2103-3 H2114	216F H2114 V2114	218 V2116 K2104	218B K2104 H2115
SUBSTREAM: MIXED PHASE:	VAPOR	VAPOR	MIXED	VAPOR	VAPOR
H2 CO CO2 N2 CH4 C2H6 C3H8 C4H10 C5H12 C6H14 MEA H2O	$\begin{array}{r} 4.2859\\ 8.0093\\ 35.9403\\ 0.9671\\ 0.0\\ 5.9294\\ 1.5236-10\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	4.2859 8.0093 35.9403 0.9671 0.0 5.9294 1.5236-10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	4.2859 8.0093 35.9403 0.9671 0.0 5.9294 1.5236-10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	170.5367 67.0112 1.1361-02 8.4636 0.0 5.9651 1.1303-04 5.2530-09 0.0 0.0 0.0 4.7318-03 1.4833	170.5367 67.0112 1.1361-02 8.4636 0.0 5.9651 1.1303-04 5.2530-09 0.0 0.0 0.0 4.7318-03 1.4833
AR	0.0	0.0	0.0	0.0	0.0
KMOL/HR KG/HR CUM/SEC	55.5031 1943.6180 4.0851-02	55.5031 1943.6180 3.4504-02	55.5031 1943.6180 2.3764-02	253.4764 2581.0934 0.1789	253.4764 2581.0934 8.7153-02
STATE VARIABLES: TEMP C PRES BAR VFRAC LFRAC SFRAC	40.0000 9.6000 1.0000 0.0 0.0	145.0000 15.4000 1.0000 0.0 0.0	40.0000 16.2000 0.9975 2.4377-03 0.0	40.0000 10.3000 1.0000 0.0 0.0	145.0000 28.5000 1.0000 0.0 0.0
ENTHALPY: J/KMOL J/KG WATT	-2.8026+08 -8.0034+06 -4.3210+06	-2.7633+08 -7.8910+06 -4.2603+06	-2.8054+08 -8.0112+06 -4.3252+06	-3.2018+07 -3.1443+06 -2.2544+06	-2.8928+07 -2.8409+06 -2.0368+06
ENTROPY: J/KMOL-K J/KG-K	-2405.2237 -68.6850	4538.4885 129.6039	-7490.1506 -213.8934	1.0697+04 1050.5261	1.0658+04 1046.6972
DENSITY: KMOL/CUM KG/CUM AVG MW	0.3774 13.2162 35.0181	0.4468 15.6471 35.0181	0.6487 22.7187 35.0181	0.3935 4.0070 10.1827	0.8078 8.2265 10.1827

A5-39

and the second s	Contraction (which is presented as a contraction of the contraction of the				
STREAM ID FROM : TO :	218C ⁺ H2115 V2117	219 V2117 V2118	220 V2118 E21	224 E21 K2105-1	224A K2105-1 H2118
SUBSTREAM: MIXED					
PHASE:	MIXED	VAPOR	VAPOR	VAPOR	VAPOR
COMPONENTS: KMOL/HR					
Н2	170.5367	170.5367	169.5135	2.4996-03	2.4996-03
CO	67.0112	67.0112	66.6092	66.2501	66.2501
C02	1.1361-02	1.1361-02	0.0	0.0	0.0
N2	8.4636	8.4636	8.4128	7.5964	7.5964
02	0.0	0.0	0.0	0.0	0.0
CH4	5.9651	5.9651	5.9293	1.0916-07	1.0916-07
C2H6	1.1303-04	1.1303-04	0.0	0.0	0.0
C3H8	5.2530-09	5.2530-09	0.0	0.0	0.0
C4H10	0.0	0.0	0.0	0.0	0.0
C5H12	0.0	0.0	0.0	0.0	0.0
C6H14	0.0	0.0	0.0	0.0	0.0
MEA	4.7318-03	4.7153-03	0.0	0.0	0.0
H20	1.4833	0.4329	0.0	0.0	0.0
AR	0.0	0.0	0.0	0.0	0.0
TOTAL FLOW:					
KMOL/HR	253.4764	252.4259	250.4649	73.8490	73.8490
KG/HR	2581.0934	2562.1681	2538.2566	2068.4694	2068.4694
CUM/SEC	6.4229-02	6.4446-02	6.3956-02	0.2450	0.1063
STATE VARIABLES:	1000 1000 1000 1000 1000 1000 1000 100				
TEMP C	35.0000	35.0000	35.0000	21.4353	100.0000
PRES BAR	28.4000	28.3000	28.3000	2.0500	6.0000
VFRAC	0.9958	1.0000	1.0000	1.0000	1.0000
LFRAC	4.1497-03	0.0	0.0	0.0	0.0
SFRAC	0.0	0.0	0.0	0.0	0.0
ENTHALPY:			101 10 101 10 101		
J/KMOL	-3.2365+07	-3.1300+07	-3.0918+07	-9.9352+07	-9.7060+07
J/KG	-3.1784+06	-3.0837+06	-3.0508+06	-3.5471+06	-3.4653+06
WATT	-2.2788+06	-2.1947+06	-2.1511+06	-2.0381+06	-1.9911+06
ENTROPY:					
J/KMOL-K	1089.6573	1824.0174	1855.3902	7.6998+04	7.4954+04
J/KG-K	107.0098	179.7029	183.0824	2748.9953	2676.0391
DENSITY:	1 00.00	1 0000			
KROL/COM	1.0962	1.0880	1.0878	8.3700-02	0.1929
	11.1627	11.0436	11.0243	2.3443	5.4029
AVG MW	10.1827	10.1501	10.1341	28.0094	28.0094

confidential

_

Simulated capacity increase by using CO₂.

.

	الالتي حجاجا المح	a a a -	 • • • • • • • • • • • • • 		· · · · · · · · · · · · · · · · · · ·	-
STREAM ID FROM :	224B H2118	224C K2105-2	224D H2119	225 CO-SPLIT	226 CO-SPLIT	
TO :	K2105-2	HZII9	CO-SEDITI	121		
STIRSTOFAM. MTYPD						
PHASE :	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	
COMPONENTS: KMOL/HR						
Н2	2.4996-03	2.4996-03	2.4996-03	4.0861-04	2.0910-03	
CO	66.2501	66.2501	66.2501	10.8299	55.4202	
CO2	0.0	0.0	0.0	0.0	0.0	
N2	7.5964	7.5964	7.5964	1.2417	6.3546	
02	0.0	0.0	0.0	0.0	0.0	
CH4	1.0916-07	1.0916-07	1.0916-07	1.7844-08	9.1314-08	
C2H6	0.0	0.0	0.0	0.0	0.0	
C3H8	0.0	0.0	0.0	0.0	0.0	
C4H10	0.0	0.0	0.0	0.0	0.0	
C5H12	0.0	0.0	0.0	0.0	0.0	
C6H14	0.0	0.0	0.0	0.0	0.0	
MEA	0.0	0.0	0.0	0.0	0.0	
Н2О	0.0	0.0	0.0	0.0	0.0	
AR	0.0	0.0	0.0	0.0	0.0	
TOTAL FLOW:	70 0400	72 0400	72 0400	12 0721	61 7769	
KMOL/HR	73.8490	73.8490	2069 4604	220 1227	1730 3367	
KG/HR	2068.4694	2068.4694	2000.4094	0 1507-02	1 6927-02	
CUM/SEC	8.9185-02	6.4769-02	5.5978-02	9.1507-05	4.0027-02	
STATE VARIABLES:	20 0000	00 0000	25 0000	25 0000	35 0000	
TEMP C	30.0000	90.0000	35.0000	9 4000	9 4000	
PRES BAR	5.8000	9.6000	1 0000	1 0000	1 0000	
VERAC	1.0000	1.0000	1.0000	0.0	0.0	
LFRAC .	0.0	0.0	0.0	0.0	0.0	
SFRAC	0.0	0.0	0.0	0.0	0.0	
ENTHALPI:	_0 0125+07	-0 7368+07	-9 8999+07	-9 8999+07	-9.8999+07	
JINC	-3 5390+06	-3 4762+06	-3.5345+06	-3.5345+06	-3.5345+06	
WATT	-2 0334+06	-1.9974+06	-2.0308+06	-3.3198+05	-1.6989+06	38
FNTROPY .	2.0331.00	1.0071.00	2.00000.00	010200-00		
T/KMOL-K	6 9108+04	7.0199+04	6.5502+04	6.5502+04	6.5502+04	
J/KG-K	2467.3191	2506-2708	2338.5616	2338.5616	2338.5616	
DENSTTY:	21011010101	200012.00		5120213 BF		
KMOT./CUM	0.2300	0.3167	0.3664	0.3664	0.3664	
KG/CUM	6.4424	8.8711	10.2643	10.2643	10.2643	
AVG MW	28.0094	28.0094	28.0094	28.0094	28.0094	
CONTRACTOR CONTRACTOR AND CONTRACTOR						

A5-41

		(1) (4)	14 (A) (A)		(i)
STREAM ID	227	228	251	251B	253
FROM :	E21	E21		H2106	
TO :	CO-MIX	B1	H2106	V2103	M2102
SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR	VAPOR	VAPOR	LIQUID	LIQUID	LIQUID
H2 CO CO2 N2 O2 CH4 C2H6 C3H8 C4H10 C5H12 C6H14 MEA H2O	4.2846 8.0083 0.0 0.9671 0.0 5.9293 0.0 0.0 0.0 0.0 0.0 0.0	165.2264 3.1799 0.0 1.0910 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
AR TOTAL FLOW	0.0	0.0	343.2639 0.0	343.2639 0.0	37.8295 0.0
KMOL/HR	19.1894	169.4974	343.2639	343.2639	37.8295
KG/HR	355.1672	452.7304	6183.9000	6183.9000	681.5000
CUM/SEC	6.6232-02	0.3215	2.4282-03	2.6602-03	2.6760-04
TEMP C	18.3697	13.7301	104.0000	180.0000	104.0000
PRES BAR	1.9500	3.5000	27.0000	26.8000	27.0000
VFRAC	1.0000	1.0000	0.0	0.0	0.0
LFRAC	0.0	0.0	1.0000	1.0000	1.0000
SFRAC	0.0	0.0	0.0	0.0	0.0
J/KMOL	-6.9526+07	-2.3930+06	-2.8210+08	-2.7526+08	-2.8210+08
J/KG	-3.7564+06	-8.9590+05	-1.5659+07	-1.5279+07	-1.5659+07
WATT	-3.7060+05	-1.1267+05	-2.6899+07	-2.6246+07	-2.9644+06
J/KMOL-K J/KG-K DENSITY:	1.6443+04 888.4260	-8630.1778 -3231.0463	-1.5042+05 -8349.6409	-1.3390+05 -7432.5015	-1.5042+05 -8349.6409
KMOL/CUM	8.0481-02	0.1464	39.2685	35.8435	39.2685
KG/CUM	1.4895	0.3910	707.4237	645.7212	707.4237
AVG MW	18.5085	2.6710	18.0150	18.0150	18.0150

11

A5-42

STREAM ID FROM : TO :	260 H20-MIX2	264 V2107 COND-MIX	265 V2108 COND-MIX	266 COND-MIX	268 V2113 CONDMIX2
SUBSTREAM: MIXED PHASE:	VAPOR	LIQUID	MIXED	FIĞAID	LIQUID
H2 CO CO2 N2 O2 CH4 C2H6 C3H8 C4H10 C5H12 C6H14 MEA H2O	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2.1804-04 $5.1676-05$ $2.4515-02$ $6.0036-06$ 0.0 $4.8563-05$ $1.3738-09$ 0.0		$2.1804-04 \\ 5.1676-05 \\ 2.4515-02 \\ 6.0036-06 \\ 0.0 \\ 4.8563-05 \\ 1.3738-09 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 268.0540 \\ 0.0 \\$	1.0852-07 1.2097-07 4.5265-04 1.3453-08 0.0 9.3388-07 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
TOTAL FLOW: KMOL/HR KG/HR CUM/SEC	118.8454 2141.0000 6.6487-02	268.0788 4830.0751 1.7962-03	0.0 0.0 0.0	268.0788 4830.0751 1.7966-03	1.0996 19.8221 7.3693-06
STATE VARIABLES: TEMP C PRES BAR VFRAC LFRAC SFRAC	208.0000 18.3000 1.0000 0.0 0.0	40.0000 10.7000 0.0 1.0000 0.0	MISSING 10.4000 MISSING MISSING MISSING	40.1538 3.5000 0.0 1.0000 0.0	40.0000 9.6000 0.0 1.0000 0.0
ENTHALPY: J/KMOL J/KG WATT ENTROPY:	-2.3667+08 -1.3137+07 -7.8130+06	-2.8771+08 -1.5968+07 -2.1424+07	MISSING MISSING MISSING	-2.8771+08 -1.5968+07 -2.1424+07	-2.8774+08 -1.5963+07 -8.7893+04
J/KMOL-K J/KG-K DENSITY: KMOL/CUM KG/CUM AVG MW	-5.3384+04 -2963.3323 0.4965 8.9449 18.0150	-1.6654+05 -9243.0553 41.4588 746.9784 18.0173	MISSING MISSING MISSING MISSING MISSING	-1.6648+05 -9239.9762 41.4488 746.7996 18.0173	-1.6648+05 -9235.5276 41.4502 747.1700 18.0257
Contraction and a state of the	657 8577 5 975 677 617 617 617 617 1				

Q - 2

STREAM ID FROM : TO :	269 V2114 CONDMIX	270 V2117 2	281 V2105	281A H2108	· 281B H2109A H2108
SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID
H2 CO CO2 N2 O2 CH4 C2H6 C3H8 C4H10 C5H12 C6H14	2.3003-08 2.5254-08 9.1194-05 2.8128-09 0.0 1.9193-07 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2.0866-06 4.9521-07 8.3660-08 5.7450-08 0.0 4.7975-07 1.3018-11 0.0 0.0 0.0 0.0 0.0	0.0 0.0 11.2110 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 10.5143 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 0.0 10.5143 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MEA H2O AR	0.0 0.1352 0.0	1.6526-05 1.0504	101.9269 906.9775	101.9222 906.6546	101.9222 906.6546
TOTAL FLOW: KMOL/HR KG/HR CUM/SEC	0.1353 2.4398 9.0675-07	1.0504 18.9252 7.0106-06	1020.1155 2.3058+04 7.0614-03	1019.0911 2.3022+04 9.4647-03	1019.0911 2.3022+04 9.9099-03
STATE VARIABLES: TEMP C PRES BAR VFRAC LFRAC SFRAC	40.0000 16.2000 0.0 1.0000 0.0	35.0000 28.3000 0.0 1.0000 0.0	40.0000 14.7000 0.0 1.0000 0.0	40.0000 14.7000 0.0 1.0000 0.0	88.0000 1.7000 0.0 1.0000 0.0
ENTHALPY: J/KMOL J/KG WATT	-2.8775+08 -1.5958+07 -1.0815+04	-2.8810+08 -1.5991+07 -8.4067+04	-2.8449+08 -1.2586+07 -8.0614+07	-2.8373+08 -1.2560+07 -8.0318+07	-2.7906+08 -1.2353+07 -7.8996+07
ENTROPY: J/KMOL-K J/KG-K DENSITY:	-1.6644+05 -9230.2033	-1.6799+05 -9324.4639	-2.4699+05 -1.0927+04	-2.2431+05 -9929.6771	-2.1030+05 -9309.5128
KMOL/CUM KG/CUM AVG MW	41.4486 747.4236 18.0325	41.6232 749.8700 18.0156	40.1289 907.0602 22.6036	29.9089 675.6515 22.5902	28.5655 645.3032 22.5902

A5-44

224

STREAM ID FROM : TO :	281C V2106 H2109A	282 V2105 H2109B	282B H2109B V2106	284 CONDMIX2 V2109	285 V2109 V2106
SUBSTREAM: MIXED PHASE:	LIQUID	FIGAID	MIXED	LIQUID	LIQUID
H2 CO CO2 N2 O2 CH4 C2H6 C3H8 C4H10 C5H12 C6H14	0.0 0.0 10.5143 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1.4075-03 1.1254-03 48.2516 5.2169-05 0.0 2.5065-05 1.5235-10 1.2490-15 0.0 0.0 0.0 1.01,9222	1.4075-03 1.1254-03 48.2516 5.2169-05 0.0 2.5065-05 1.5235-10 1.2490-15 0.0 0.0 0.0 101.9222	1.3152-07 $1.4622-07$ $5.4384-04$ $1.6266-08$ 0.0 $1.1258-06$ 0.0	1.8998-099.2232-102.6856-023.9310-110.02.2784-100.00.00.00.00.00.01.6215-05
MEA H2O AR	906.6546 0.0	906.9458 0.0	906.9458 0.0	1.2344 0.0	270.5353
TOTAL FLOW: KMOL/HR KG/HR CUM/SEC	1019.0911 2.3022+04 7.7557-03	1057.1222 2.4688+04 7.7228-03	1057.1222 2.4688+04 4.9501-02	1.2349 22.2619 8.2785-06	270.5622 4874.8776 1.8131-03
STATE VARIABLES: TEMP C PRES BAR VFRAC LFRAC SFRAC	118.0284 1.7000 0.0 1.0000 0.0	68.5646 10.4000 0.0 1.0000 0.0	104.0000 10.4000 4.6068-02 0.9539 0.0	40.1884 1.5000 0.0 1.0000 0.0	40.0000 1.5000 0.0 1.0000 0.0
ENTHALPY: J/KMOL J/KG WATT ENTROPY:	-2.7784+08 -1.2299+07 -7.8651+07	-2.8830+08 -1.2345+07 -8.4659+07	-2.8124+08 -1.2043+07 -8.2584+07	-2.8774+08 -1.5962+07 -9.8708+04	-2.8772+08 -1.5969+07 -2.1624+07
J/KMOL-K J/KG-K DENSITY:	-2.0053+05 -8876.6332	-2.2528+05 -9646.6502	-1.9819+05 -8486.3451	-1.6641+05 -9231.1693	-1.6652+05 -9241.9675
KMOL/CUM KG/CUM AVG MW	36.4995 824.5345 22.5902	38.0232 887.9808 23.3536	5.9320 138.5349 23.3536	41.4379 746.9783 18.0264	41.4520 746.8649 18.0175

					
STREAM ID FROM :	3 H2103	4 H2104	5 H2105A	6 H2105B	7 H2106
то :	H2104	H2105A	H2105B	H2106	
SUBSTREAM: MIXED					
PHASE: COMPONENTS: KMOL/HR	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR
H2	3.8182-05	3.8182-05	3.8182-05	3.8182-05	3.8182-05
CO	1.2933-06	1.2933-06	1.2933-06	1.2933-06	1.2933-06
CO2	2.3955	2.3955	2.3955	2.3955	2.3955
N2 02	268.2040	268.2040	268.2040	268.2040	268.2040
02	9.5373	9.5373	9.5373	9.5373	9.5373
C2H6	0.0301-31	8.0301-31	8.0301-31	8.0301-31	8.0301-31
C3H8	0.0	0.0	0.0	0.0	0.0
C4H10	0.0	0.0	0.0	0.0	. 0.0
C5H12	0.0	0.0	0.0	0.0	0.0
C6H14	0.0	0.0	0.0	0.0	0.0
MEA	0.0	0.0	0.0	0.0	0.0
H20	125.3970	125.3970	125.3970	125.3970	125.3970
AR	3.2116	3.2116	3.2116	3.2116	3.2116
TOTAL FLOW:					
KMOL/HR	408.7456	408.7456	408.7456	408.7456	408.7456
CIM/SEC	6 2001	1.0311+04	1.0311+04	1.0311+04	1.0311+04
STATE VARIABLES:	0.2091	5.5467	4.7415	3.7050	2.5517
TEMP C	725.7996	607 8656	480 0039	315 4779	122 7214
PRES BAR	1,5000	1,5000	1,5000	1 5000	1 5000
VFRAC :	1.0000	1.0000	1.0000	1,0000	1 0000
LFRAC	0.0	0.0	0.0	0.0	0.0
SFRAC	0.0	0.0	0.0	0.0	0.0
ENTHALPY:					
J/KMOL	-5.3673+07	-5.7795+07	-6.2134+07	-6.7514+07	-7.3263+07
U/KG	-2.1276+06	-2.2911+06	-2.4631+06	-2.6763+06	-2.9042+06
FNTDODY .	-6.0940+06	-6.5621+06	-7.0547+06	-7.6656+06	-8.3183+06
T/KMOI-K	2 9617104	0 4007.04	1 0000.04		
J/KG-K	1134 4120	2.422/+04	1.8908+04	1.0855+04	-827.4121
DENSITY:	1134.4139	960.3928	149.5480	430.3124	-32.7995
KMOL/CUM	1.8053-02	2.0470-02	2.3946-02	3.0645-02	4 4496-02
KG/CUM	0.4554	0.5163	0.6040	0.7730	1.1224
AVG MW	25.2263	25.2263	25.2263	25.2263	25.2263
۰.

STREAM ID FROM : TO :	A SPLIT H2102	B H2102 DRUMMIX	BIN BURNER	C SPLIT H2105A	D H2105A DRUMMIX
SUBSTREAM: MIXED PHASE:	LIQUID	MIXED	VAPOR	LIQUID	MIXED
H2 CO CO CO2 N2	0.0 0.0 0.0	0.0 0.0 0.0	125.3472 2.3705 0.0 268.2040	0.0 0.0 0.0	0.0 0.0 0.0 0.0
O2 CH4 C2H6 C3H8 C4H10	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	73.4460 2.4933-02 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
C5H12 C6H14 MEA H2O	0.0 0.0 513.0561	0.0 0.0 0.0 513.0561	0.0 0.0 0.0 0.0 2.2116	0.0 0.0 0.0 1061.1022	0.0 0.0 0.0 1061.1022
AR TOTAL FLOW: KMOL/HR KG/HR	513.0561 9242.7065	513.0561 9242.7065	472.6045 1.0311+04	1061.1022 1.9116+04 8.8163-03	1061.1022 1.9116+04 3.0260-02
CUM/SEC STATE VARIABLES: TEMP C PRES BAR VFRAC	4.2628-03 221.0000 24.0094 0.0	221.0000 24.0094 4.8000-02	40.0000 2.0000 1.0000	221.0000 24.0094 0.0	221.0000 24.0094 4.8000-02
LFRAC SFRAC ENTHALPY:	1.0000 0.0	0.9520 0.0	0.0 0.0 -1 3077+05	1.0000 0.0 -2.7130+08	0.9520 0.0 -2.6962+08
J/KG WATT ENTROPY:	-1.5059+07 -3.8664+07	-1.4967+07 -3.8426+07	-5993.7285	-1.5059+07 -7.9965+07	-1.4967+07 -7.9472+07
J/KMOL-K J/KG-K DENSITY:	-1.2552+05	-1.2213+05	4700.4527 215.4409	-1.2552+05 -6967.2642	-1.2213+05 -6779.5164
KMOL/CUM KG/CUM AVG MW	33.4325 602.2870 18.0150	9.7406 175.4783 18.0150	1.6748 21.8178	602.2870 18.0150	175.4783 18.0150

		2414 ACM 10.3			M2 12 12
STREAM ID FROM :	E SPLIT	F H2105B	G SPLIT	H H2107	L10 V31
10 .	HZT02B	DRUMMIX	H2107	DRUMMIX	MIX2
STIRSTOFAM. MIVED					
PHASE .	TTOUTD	MTYPD	-		
COMPONENTS . KMOT / UP	TIQUID	MIXED	TIQUID	MIXED	VAPOR
H2	0 0	0 0	0.0		5 50.5
CO	0.0	0.0	0.0	0.0	1.4513
CO2	0.0	0.0	0.0	0.0	1.6665
N2	0.0	0.0	0.0	0.0	0.0
02	0.0	0.0	0.0	0.0	0.3796
CH4	0.0	0.0	0.0	0.0	0.0
C246	0.0	0.0	0.0	0.0	2.5452-18
0200	0.0	0.0	0.0	0.0	0.0
CAULO	0.0	0.0	0.0	0.0	0.0
C4H10 C5H12	0.0	0.0	0.0	0.0	0.0
C5H12	0.0	0.0	0.0	0.0	0.0
COH14	0.0	0.0	0.0	0.0	0.0
MEA	0.0	0.0	0.0	0.0	0.0
HZO	1315.6387	1315.6387	4920.4654	4920.4654	0.0
AR	0.0	0.0	0.0	0.0	0.0
TOTAL FLOW:	30				
KMOL/HR	1315.6387	1315.6387	4920.4654	4920.4654	3.4975
KG/HR	2.3701+04	2.3701+04	8.8642+04	8.8642+04	60.2423
CUM/SEC	1.0931-02	3.7518-02	4.0882-02	0.1403	3.0713-03
STATE VARIABLES:					
TEMP C	221.0000	221.0000	221.0000	221.0000	-182.8828
PRES BAR	24.0094	24.0094	24.0094	24.0094	2.3000
VFRAC	0.0	4.8000-02	0.0	4.8000-02	1.0000
LFRAC	1.0000	0.9520	1.0000	0.9520	0.0
SFRAC	0.0	0.0	0.0	0.0	0.0
ENTHALPY:					
J/KMOL	-2.7130+08	-2.6962+08	-2.7130+08	-2.6962+08	-5.8607+07
J/KG	-1.5059+07	-1.4967+07	-1.5059+07	-1.4967+07	-3.4026+06
WATT	-9.9147+07	-9.8536+07	-3.7081+08	-3.6852+08	-5.6940+04
ENTROPY:					0.0010.01
J/KMOL-K	-1.2552+05	-1.2213+05	-1.2552+05	-1.2213+05	1,0236+04
J/KG-K	-6967.2642	-6779.5164	-6967.2642	-6779.5158	594,2923
DENSITY:					
KMOL/CUM	33.4325	9.7406	33.4325	9.7406	0 3163
KG/CUM	602.2870	175:4783	602.2870	175 4783	5 4485
AVG MW	18.0150	18.0150	18.0150	18.0150	17 2240

STREAM ID FROM : TO :	L11 T24 T22MIX	L13 V47 MIX2	L2 E21 E22	L22 E23A E21	L28 V6 T23
SUBSTREAM: MIXED PHASE:	LIQUID	MIXED	VAPOR	VAPOR	MIXED
H2 CO CO2 N2 O2 CH4 C2H6 C3H8 C4H10 C5H12 C6H14 MEA H2O	$\begin{array}{r} 4.0934-04\\ 21.1709\\ 0.0\\ 3.2435\\ 0.0\\ 5.3175-09\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	$\begin{array}{c} 2.5451-15\\ 2.0282\\ 0.0\\ 3.1783-02\\ 0.0\\ 5.8788\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	169.5135 66.6092 0.0 8.4128 0.0 5.9293 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	165.2264 3.1799 0.0 1.0910 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	2.8351 43.8190 0.0 4.0686 0.0 5.9293 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TOTAL FLOW:	0.0	0.0	-		
KMOL/HR	24.4149	7.9388	250.4649	169.4974	56.6521
KG/HR	683.8605	152.0155	2538.2566	452.7304	1442.1882
CUM/SEC	2.8736-04	1.2453-04	2.1890-02	9.7081-02	3.8080-03
STATE VARIABLES:				176 1000	177 0264
TEMP C	-169.2201	-170.9661	-157.6000	-1/6.1000	-1/7.0204
PRES BAR	7.6000	2.1500	28.1000	3.9000	0 1566
VFRAC	0.0	5.2010-03	1.0000	1.0000	0.1500
LFRAC	1.0000	0.9948	0.0	0.0	0.0433
SFRAC	0.0	0.0	0.0	0.0	0.0
ENTHALPY:	1 0 0 0 7 . 0 0	0 7050107	-2 6570+07	-7 4679+06	-1 0445+08
J/KMOL	-1.0687+08	-9.7950+07	-3.6570+07	-2 7050+06	-4 1029+06
J/KG	-3.8156+06	-5.1153+00	-3.6083+06	-2.7959100	-1 6437+06
WATT	-7.2481+05	-2.1600+05	-2.5445+00	-3.5101+05	1.0107.00
ENTROPY:	1 (000)04	1 4100:05	-2 6001+01	-3 7971+04	-2 8932+04
J/KMOL-K	-1.6003+04	-1.4198+05	-2652 9225	-1 4216+04	-1136.5184
J/KG-K	-571.3501	-/414.9039	-2052.0225	1.4210.01	110010101
DENSITY:	22 6000	17 7077	3 1782	0 4849	4.1325
KMOL/COM	25.0009	330 0736	32 2002	1 2954	105.2017
KG/CUM	20 0001	10 1/02	10 1341	2.6710	25.4568
AVG MW	20.0099	13.1405	10.1041	2.0710	

• 5

	a carlo da data da anti-tito da la composición de la composición de la composición de la composición de la comp	1 1 1 4	9.0 8		
STREAM TO	T.29	т.3	T.30	т.31	
FROM .	T23	F22	179	T24	170
TO :	V29	T21	T24	V31	T22
	125			101	166
SUBSTREAM: MIXED					
PHASE:	VAPOR	MIXED	MIXED	VAPOR	MIXED
COMPONENTS: KMOL/HR					
Н2	2.8332	169.5135	1.4516	1.4513	1.8036-03
CO	4.3134	66.6092	19.6102	1.6665	39.5056
C02	0.0	0.0	0.0	0.0	0.0
N2	0.5556	8.4128	3.2531	0.3796	3.5129
02	0.0	0.0	0.0	0.0	0.0
CH4	5.0512-02	5.9293	0.0	2.5452-18	5.8788
C2H6	0.0	0.0	0.0	0.0	0.0
СЗН8	0.0	0.0	0.0	0.0	0.0
C4H10	0.0	0.0	0.0	0.0	0.0
C5H12	0.0	0.0	0.0	0.0	0.0
C6H14	0.0	0.0	0.0	0.0	0.0
MEA	0.0	0.0	0.0	0.0	0.0
H2O	0.0	0.0	0.0	0.0	0.0
AR	0.0	0.0	0.0	0.0	0.0
TOTAL FLOW:					
KMOL/HR	7.7529	250.4649	24.3149	3.4975	48.8992
KG/HR	142.9094	2538.2566	643.3393	60.2423	1299.2787
CUM/SEC	2.8999-03	2.0072-02	1.0574-03	9.2342-04	4.8931-03
STATE VARIABLES:					
TEMP C	-178.6051	-164.8000	-176.6117	-177.5456	-181.9861
PRES BAR	5.4000	28.0000	7.8500	7.6000	2.3830
VFRAC .	1.0000	0.9967	0.1325	1.0000	0.1106
LFRAC	0.0	3.2713-03	0.8674	0.0	0.8894
SFRAC	0.0	0.0	0.0	0.0	0.0
ENTHALPY:					
J/KMOL	-6.7947+07	-3.6808+07	-9.9871+07	-5.8608+07	-1.1007+08
J/KG	-3.6862+06	-3.6320+06	-3.7746+06	-3.4027+06	-4.1426+06
WATT	-1.4633+05	-2.5608+06	-6.7455+05	-5.6940+04	-1.4951+06
ENTROPY:					
J/KMOL-K	9766.8538	-2.8989+04	-1.8197+04	852.7922	-3.2996+04
J/KG-K	529.8614	-2860.4830	-687.7553	49.5117	-1241.8411
DENSITY:					
KMOL/CUM	0.7426	3.4662	6.3874	1.0521	2.7759
KG/CUM	13.6892	35.1278	169.0016	18.1217	73.7585
AVG MW	18.4328	10.1341	26.4585	17.2240	26.5705

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				:57	
STREAM ID FROM : TO :	L35 E21 SPLIT1	L36 SPLIT1 E22B	L37 E22B V37	L38 SPLIT1 E24	L39 SPLIT1 V39
SUBSTREAM: MIXED PHASE:	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR
H2 CO CO2 N2 O2 CH4 C2H6 C3H8 C4H10 C5H12 C6H14 MEA H2O AR	$\begin{array}{r} 4.0861-04\\ 10.8299\\ 0.0\\ 1.2417\\ 0.0\\ 1.7844-08\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	$\begin{array}{c} 6.3744-05\\ 1.6894\\ 0.0\\ 0.1937\\ 0.0\\ 2.7837-09\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	$\begin{array}{c} 6.3744-05\\ 1.6894\\ 0.0\\ 0.1937\\ 0.0\\ 2.7837-09\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	$\begin{array}{r} 2.2310-04\\ 5.9131\\ 0.0\\ 0.6780\\ 0.0\\ 9.7428-09\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	$\begin{array}{c} 1.2177-04\\ 3.2273\\ 0.0\\ 0.3700\\ 0.0\\ 5.3175-09\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$
TOTAL FLOW: KMOL/HR KG/HR CUM/SEC	12.0721 338.1327 3.0805-03	1.8832 52.7487 4.8055-04	1.8832 52.7487 4.5005-04	6.5913 184.6204 1.6819-03	3.5974 100.7635 9.1798-04
STATE VARIABLES: TEMP C PRES BAR VFRAC LFRAC SFRAC	-155.1000 9.2000 1.0000 0.0 0.0	-155.1000 9.2000 1.0000 0.0 0.0	-160.8000 9.1000 1.0000 0.0 0.0	-155.1000 9.2000 1.0000 0.0 0.0	-155.1000 9.2000 1.0000 0.0 0.0
ENTHALPY: J/KMOL J/KG WATT	-1.0487+08 -3.7442+06 -3.5168+05	-1.0487+08 -3.7442+06 -5.4862+04	-1.0508+08 -3.7514+06 -5.4967+04	-1.0487+08 -3.7442+06 -1.9202+05	-1.0487+08 -3.7442+06 -1.0480+05
ENTROPY: J/KMOL-K J/KG-K	3.5689+04 1274.1718	3.5689+04 1274.1718	3.4018+04 1214.5273	3.5689+04 1274.1718	3.5689+04 1274.1718
KMOL/CUM KG/CUM AVG MW	1.0885 30.4907 28.0094	1.0885 30.4907 28.0094	1.1623 32.5573 28.0094	1.0885 30.4907 28.0094	1.0885 30.4907 28.0094

.

STREAM ID FROM : TO :	L4 CO2 E23A	L40 V39 T24	L41 E24 V41	L42 V41 T22MIX	· L43 V37 T22MIX
SUBSTREAM: MIXED PHASE:	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR
H2 CO CO2 N2 O2 CH4 C2H6 C3H8 C4H10 C5H12 C6H14 MEA H2O AR	165.2264 3.1799 0.0 1.0910 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	$\begin{array}{c} 1.2177-04\\ 3.2273\\ 0.0\\ 0.3700\\ 0.0\\ 5.3175-09\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	$\begin{array}{c} 2.2310-04\\ 5.9131\\ 0.0\\ 0.6780\\ 0.0\\ 9.7428-09\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	$\begin{array}{c} 2.2310-04\\ 5.9131\\ 0.0\\ 0.6780\\ 0.0\\ 9.7428-09\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	$\begin{array}{c} 6.3744-05\\ 1.6894\\ 0.0\\ 0.1937\\ 0.0\\ 2.7837-09\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$
TOTAL FLOW: KMOL/HR KG/HR CUM/SEC	169.4974 452.7304 9.4768-03	3.5974 100.7635 1.0652-03	6.5913 184.6204 1.6482-03	6.5913 184.6204 6.1241-03	1.8832 52.7487 1.6779-03
STATE VARIABLES: TEMP C PRES BAR VFRAC LFRAC SFRAC	-201.5000 27.3000 1.0000 0.0 0.0	-156.8294 7.9500 1.0000 0.0 0.0	-157.6000 9.1000 1.0000 0.0 0.0	-167.5142 2.5000 1.0000 0.0 0.0	-171.2942 2.5000 1.0000 0.0 0.0
ENTHALPY: J/KMOL J/KG WATT	-8.2245+06 -3.0792+06 -3.8723+05	-1.0487+08 -3.7442+06 -1.0480+05	-1.0496+08 -3.7473+06 -1.9217+05	-1.0496+08 -3.7473+06 -1.9217+05	-1.0508+08 -3.7514+06 -5.4967+04
J/KMOL-K J/KG-K	-6.2901+04 -2.3549+04	3.6747+04 1311.9515	3.5043+04 1251.1048	4.4817+04 1600.0856	4.3692+04 1559.9079
DENSITY: KMOL/CUM KG/CUM AVG MW	4.9682 13.2701 2.6710	0.9381 26:2757 28.0094	1.1108 31.1154 28.0094	0.2989 8.3739 28.0094	0.3117 8.7328 28.0094

STREAM ID FROM : TO :	L44 T22MIX E25-27	L46 E25-27 T22	L47 T22 V47	L48 MIX2 E21	L49 T22 E21
SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HB	MIXED	LIQUID	LIQUID	MIXED	VAPOR
H2 CO CO2 N2	6.9619-04 28.7735 0.0 4.1152	6.9619-04 28.7735 0.0 4.1152	2.5451-15 2.0282 0.0 3.1783-02	4.2846 8.0083 0.0 0.9671	2.4996-03 66.2501 0.0 7.5964
02 CH4 C2H6 C3H8	0.0 1.7844-08 0.0 0.0	0.0 1.7844-08 0.0 0.0	0.0 5.8788 0.0 0.0	0.0 5.9293 0.0 0.0	0.0 1.0916-07 0.0 0.0
C4H10 C5H12 C6H14 MEA	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0 0.0
H2O AR	0.0	0.0	0.0	0.0	0.0
TOTAL FLOW: KMOL/HR	32.8895	32.8895	7.9388	19.1894	73.8490
KG/HR CUM/SEC	921.2297 1.0336-02	921.2297 3.3895-04	152.0155 8.2147-05	355.1672 1.1266-02	2068.4694 6.2846-02
STATE VARIABLES:					104 0646
TEMP C PRES BAR	-183.1202 2.5000	-184.5000 2.3250	-170.4541 2.2500	-179.5302 2.1500	-184.0646
VFRAC LFRAC	0.4003 0.5996	0.0 1.0000	1.0000	0.5982	0.0
SFRAC ENTHALPY:	0.0	0.0	0.0	0.0	0.0
J/KMOL	-1.0639+08	-1.0874+08	-9.7950+07	-7.8657+07 -4.2498+06	-1.0546+08 -3.7651+06
WATT	-9.7195+05	-9.9341+05	-2.1600+05	-4.1927+05	-2.1634+06
ENTROPY:		parazon a c			
J/KMOL-K	438.0986	-2.5661+04	-1.4199+05	-4.9479+04	4.0485+04
J/KG-K	15.6408	-916.1387	-7415.3313	-2673.3087	1445.4213
DENSITY:	0 8839	26 9535	26.8451	0.4731	0.3264
KG/CUM	24.7581	754.9654	514.0389	8.7567	9.1425
AVG MW	28.0098	28.0098	19.1482	18.5085	28.0094

. . . .

STREAM ID FROM : TO :	16 T21 V6	L7 V29 MIX2	L8 T23 V8	L9 SPLIT2 V9	LB T21 MIX1
SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR	LIQUID	VAPOR	LIQUID	TIÕNID	VAPOR
H2 CO CO2 N2 O2 CH4 C2H6 C3H8 C4H10 C5H12 C6H14 MEA H2O AR	2.8351 43.8190 0.0 4.0686 0.0 5.9293 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	2.8332 4.3134 0.0 0.5556 0.0 5.0512-02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.8036-03 39.5056 0.0 3.5129 0.0 5.8788 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	1.4516 19.6102 0.0 3.2531 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	170.8884 79.6631 0.0 13.7788 0.0 6.0613-13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TOTAL FLOW:				0.0	0.0
KG/HR CUM/SEC	56.6521 1442.1882 6.4231-04	7.7529 142.9094 6.8485-03	48.8992 1299.2787 5.4112-04	24.3149 643.3393 2 7941-04	264.3303 2961.8613
STATE VARIABLES:				21/012 01	1.5014 02
TEMP C PRES BAR VFRAC LFRAC SFRAC	-169.0234 27.3000 0.0 1.0000 0.0	-182.0469 2.3000 1.0000 0.0 0.0	-172.0224 5.4000 0.0 1.0000 0.0	-171.5000 27.3470 0.0 1.0000 0.0	-170.7580 27.3000 1.0000 0.0 0.0
J/KMOL	-1 0445+08	-6 7946+07	-1 1007100	0 0071 07	2 0105.05
J/KG	-4.1029+06	-3.6862+06	-4.1426+06	-3.7746+06	-3.9135+07 -3.4926+06
WATT	-1.6437+06	-1.4633+05	-1.4951+06	-6.7455+05	-2.8735+06
ENTROPY: J/KMOL-K J/KG-K	-3.0682+04	1.6499+04	-3.3479+04	-1.9585+04	-2.5598+04
DENSITY:		000.1100	1200.01//	-/40.2138	-2204.4901
KMOL/CUM	24.5003	0.3144	25.1016	24.1733	3,6945
KG/CUM	623.7030	5.7964	666.9655	639.5910	41.3977
AVG MW	25.4568	18.4328	26.5705	26.4585	11.2051

-

STREAM ID FROM : TO :	LC CO1 CO2	LD CO1 SPLIT2	LE CO2 MIX1	LF MIX1 CO1	LG SPLIT2 T21
SUBSTREAM: MIXED PHASE:	VAPOR	LIQUID	LIQUID	MIXED	LIQUID
H2 CO CO2 N2 O2 CH4 C2H6 C3H8 C4H10 C5H12 C6H14 MEA H2O AP	169.3174 71.9319 0.0 15.4632 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	5.6615 76.4829 0.0 12.6877 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	4.0906 68.7517 0.0 14.3722 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	$174.9790 \\ 148.4148 \\ 0.0 \\ 28.1510 \\ 0.0 \\ 6.0613-13 \\ 0.0 \\ 0.$	4.2099 56.8727 0.0 9.4346 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
TOTAL FLOW:	056 7106	04 0222	07 2145	351 5449	70 5172
KMOL/HR	2789 3300	2509.1236	2336.5923	5298.4536	1865.7843
CUM/SEC	1.9209-02	1.0897-03	8.0462-04	1.8751-02	8.1032-04
STATE VARIABLES:					
TEMP C	-171.5000	-171.5000	-201.5000	-174.3183	-171.5000
PRES BAR	27.3470	27.3470	27.3000	27.3000	27.3470
VFRAC	1.0000	0.0	0.0	0.6687	0.0
LFRAC	0.0	1.0000	1.0000	0.3312	1.0000
SFRAC	0.0	0.0	0.0	0.0	0.0
ENTHALPY:			0 0700.07	5 4166107	0 0071+07
J/KMOL	-3.6794+07	-9.9871+07	-9.9/23+0/	-5.4100+07	-9.9071+07
J/KG	-3.3863+06	-3.7746+06	-3.7222+06	-3.5938+00	-3.7740+00
WATT	-2.6238+06	-2.6308+06	-2.4159+06	-5.2894+00	-1.9505+00
ENTROPY:	0.0500.04	1 0505:04	4 0101104	2 0065+04	-1 9585+04
J/KMOL-K	-2.7578+04	-1.9585+04	-4.2191+04	-1021 0016	-740 2158
J/KG-K	-2538.0718	-740.2158	-13/4.0191	-1921.0010	-/10.2100
DENSITY:	2 71 02	24 1722	20 1000	5 2077	24 1733
KMOL/CUM	3.1123	620 .E010	806 6501	78 4902	639.5910
KG/CUM	40.3300	26 4595	26 7913	15.0719	26.4585
AVG MW	TO.0000	20.4000	20.1515	20.0120	

STREAM ID FROM : TO :	LIQ V2103 SPLIT	MEASUME V2116	OUT V2118	STM V2103	· STMFD DRUMMIX V2103
SUBSTREAM: MIXED					
COMPONENTS · KMOL/HP	LIQUID	LIQUID	MIXED	VAPOR	MIXED
H2	0.0	1.9061-07	1.0232	0.0	0.0
CO	0.0	4.5312-08	0.4020	0.0	0.0
C02	0.0	6.6406-09	1.1361-02	0.0	0.0
N2	0.0	5.2626-09	5.0782-02	0.0	0.0
02	0.0	0.0	0.0	0.0	0.0
CH4	0.0	4.2721-08	3.5791-02	0.0	0.0
C2H6	0.0	0.0	1.1303-04	0.0	0.0
C3H8	0.0	0.0	5.2530-09	0.0	0.0
C4H10	0.0	0.0	0.0	0.0	0.0
C5H12	0.0	0.0	0.0	0.0	0.0
C6H14	0.0	0.0	0.0	0.0	0.0
MEA	0.0	1.2851-06	4.7153-03	0.0	0.0
H2O	7810.2630	0.2128	0.4329	343.2634	7810.2625
AR	0.0	0.0	0.0	0.0	0.0
TOTAL FLOW:					
KMOL/HR	7810.2630	0.2128	1.9609	343.2634	7810.2625
KG/HR	1.4070+05	3.8348	23.9115	6183.8913	1.4070+05
CUM/SEC	6.4892-02	1.4262-06	3.9312-04	0.1473	0.2227
STATE VARIABLES:					
ILMP C	221.0000	40.0000	35.0000	221.0000	221.0000
FRES BAR	24.0094	10.3000	28.3000	24.0094	24.0094
VFRAC	0.0	0.0	0.7800	1.0000	4.8000-02
LFRAC	1.0000	1.0000	0.2199	0.0	0.9520
FNTUATOV.	0.0	0.0	0.0	0.0	0.0
T/KMOT	0 7100.00	0 0770.00			
J/KG	-2.7130+08	-2.8/70+08	-9.0162+07	-2.3648+08	-2.6962+08
WATT	-1.5059+07	-1.5970+07	-7.3940+06	-1.3127+07	-1.4967+07
ENTROPY	-3.0030+08	-1.7012+04	-4.9112+04	-2.2548+07	-5.8496+08
J/KMOT-K	-1 2552+05	1 6656.05	2	-	a. 222.002 - 000
J/KG-K	-6967 2642	-1.0030+05	-3.6902+04	-5.5051+04	-1.2213+05
DENSITY:	-0907.2042	-9243.2469	-3026.2792	-3055.8504	-6779.5160
KMOL/CUM	33 4325	41 4507	1 2050	0 6470	A
KG/CUM	602 2870	746 0000	16 0050	0.6470	9.7406
AVG MW	18 0150	10.5000	10.8938	11.6559	1/5.4781
	10.0150	10.0122	12.1938	18.0150	18.0150

146 147 150 2 201 10.00 147 STREAM ID 146 150 2 201 B3 B5 H2102 FROM : B1 ----TO CO2-MIX **B**3 H2O-MIX H2103 H2-MIX . SUBSTREAM: MIXED PHASE: VAPOR VAPOR VAPOR VAPOR VAPOR COMPONENTS: KMOL/HR 39.6825 3.7117-05 8.9420 5.3075 H2 0.0 0.1120 1.1067-02 CO 0.1000 0.7553 1.2567-06 CO2 1.4746 0.0 0.0 2.3270 0.0 260.6468 0.2763 7.2751 N2 7.3121 7.3121 3.1858-28 0.0 9.2645 02 0.0 0.0 CH4 43.6486 41.1394 0.0 7.8087-31 41.1394 2.0503-03 C2H6 1.4433 0.0 0.0 1.4433 0.0 0.1882 C3H8 3.5404-07 0.1882 0.0 C4H10 1.0303-10 7.0539-02 7.0539-02 0.0 0.0 1.7900-14 1.9958-02 1.9958-02 0.0 C5H12 0.0 3.6504-18 2.3788-02 2.3788-02 C6H14 0.0 0.0 0.0 0.0 1.5541-35 0.0 0.0 MEA 22.0418 24.9791 121.8739 0.0 H20 0.0 0.0 AR 0.0 0.0 0.0 3.1215 TOTAL FLOW: 40.7142 397.2340 50.1715 83.5214 80.5962 KMOL/HR 1387.9667 1387.9652 108.8988 1.0021+04 923.4000 KG/HR 9.5991-02 7.9312-02 7.7149-02 7.3419 1.5351-02 CUM/SEC STATE VARIABLES: 471.1761 500.0000 13.3824 926.8516 15.0000 TEMP C 15.0000 PRES BAR 18.2000 3.5000 1.5000 21.0000 VFRAC 1.0000 1.0000 1.0000 1.0000 1.0000 0.0 LFRAC 0.0 0.0 0.0 0.0 SFRAC 0.0 0.0 0.0 0.0 0.0 ENTHALPY: -9.1835+07 -9.5168+07 -2.3797+06 -4.6430+07 -6.5305+07 J/KMOL -5.5262+06 -5.5262+06 -8.8970+05 -1.8406+06 -3.5483+06 J/KG -2.1306+06 -2.1306+06 -2.6913+04 -5.1232+06 -9.1013+05 WATT ENTROPY: -2.9470+04 -3.3797+04 -8675.6728 3.5222+04 -9.5587+04 J/KMOL-K -1773.3499 -1962.5487 -3243.5914 1396.2718 -5193.5551 J/KG-K DENSITY: 0.1465 1.5029-02 KMOL/CUM 0.2416 0.2822 0.9078 0.3791 16.7091 KG/CUM 4.0164 4.8611 0.3920 18.4048 AVG MW 16.6180 17.2212 2.6747 25.2260

1	140	142	143	144

STREAM ID FROM : TO :	1 BURNER H2102	140 B1	142 V2101 B2	143 B2 B5	144 B2
SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR
H2 CO CO2 N2 O2 CH4 C2H6 C3H8 C4H10 C5H12 C6H14 MEA H2O AP	$\begin{array}{c} 3.7117-05\\ 1.2567-06\\ 2.3270\\ 260.6468\\ 9.2645\\ 7.8087-31\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 121.8739\\ 2.1215\end{array}$	120.4674 2.2930 0.0 0.8390 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	5.3075 0.1120 0.0 7.3121 0.0 41.1394 1.4433 0.1882 7.0539-02 1.9958-02 2.3788-02 0.0 0.0	$\begin{array}{c} 5.3075\\ 0.1120\\ 0.0\\ 7.3121\\ 0.0\\ 41.1394\\ 1.4433\\ 0.1882\\ 7.0539-02\\ 1.9958-02\\ 2.3788-02\\ 0.0\\ 24.9791\\ \end{array}$	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TOTAL FLOW:	5.1215	0.0	0.0	0.0	0.0
KMOL/HR KG/HR CUM/SEC	397.2340 1.0021+04 7.8199	123.5994 330.5929 0 2342	55.6170 937.9652 5.4951-02	80.5962 1387.9652 7.0931-02	24.9791 450.0000
STATE VARIABLES:		0.2012	0.1991 02	1.0331 02	1.1112-02
TEMP C PRES BAR VFRAC LFRAC SFRAC	1005.0000 1.5000 1.0000 0.0 0.0	13.3824 3.5000 1.0000 0.0 0.0	500.0000 18.2000 1.0000 0.0 0.0	430.4931 18.5000 1.0000 0.0 0.0	220.0000 23.2000 1.0000 0.0 0.0
J/KMOL	-4 3561+07	-2 3797+06	-3 6735+07	-9 9639+07	-2 2617+00
J/KG	-1.7268+06	-8.8970+05	-2.1782+06	-5.7278+06	-1.3126+07
WATT	-4.8066+06	-8.1702+04	-5.6753+05	-2.2083+06	-1.6408+06
ENTROPY:				12 12 22 21 12 13	
J/KG-K DENSITY:	- 1488.0866	-8675.6728 -3243.5914	-4.0735+04 -2415.3734	-3.8637+04 -2243.5567	-5.4783+04 -3040.9421
KMOL/CUM KG/CUM	1.4110-02 0.3559	0.1465	0.2811	0.3156	0.6244
AVG MW	25.2260	2.6747	16.8647	17.2212	18.0150

 $\hat{\mathbf{x}}$

5634

•

. .

Capacity increase of 20% by using a pre-reformer and extra CO₂.

202 202B 203 204 204B					
				204	204B
STREAM ID	202	ZUZB	203	V2114	CO2-MTX
FROM :	BI WTY	H2-MIX	W2101	CO2-MTX	H20-MIX
TO :	HZ-MIX	H2104	VZIOI	COZ MIA	1120 11211
SUBSTREAM: MIXED		2-24 E 242			WAROD
PHASE:	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR
COMPONENTS: KMOL/HR					10 0007
Н2	5.3075	5.3075	5.3075	4.0486	12.9907
co	0.1010	0.1120	0.1120	6.0642	6.1643
CO2	0.0	0.0	0.0	25.9516	27.4263
N2	3.6965-02	7.3121	7.3121	1.0047	8.3169
02	0.0	0.0	0.0	0.0	3.1858-28
CH4	0.0	41.1394	41.1394	8.1415	51.7901
C2H6	0.0	1.4433	1.4433	2.3864-10	2.0503-03
C3H8	0.0	0.1882	0.1882	0.0	3.5404-07
C4H10	0.0	7.0539-02	7.0539-02	0.0	1.0303-10
C5H12	0.0	1.9958-02	1.9958-02	0.0	1.7900-14
C6H14	0.0	2.3788-02	2.3788-02	0.0	3.6504-18
MEA	0.0	0.0	0.0	0.0	1.5541-35
820	0.0	0.0	0.0	0.1923	22.2342
AR	0.0	0.0	0.0	0.0	0.0
TOTAL FLOW.					
KMOL/HB	5.4455	55.6170	55.6170	45.4033	128.9248
KC/HR	14.5652	937.9652	937.9652	1482.3828	2870.3495
CUM/SEC	1.0319-02	1.7106-02	5.1478-02	1.9573-02	0.1112
STATE VARIABLES:					
TEMP C	13.3824	14.1760	550.0000	40.0000	331.2364
PRES BAR	3.5000	21.0000	20.7000	16.2000	16.2000
VFRAC	1.0000	1.0000	1.0000	1.0000	1.0000
LFRAC	0.0	0.0	0.0	0.0	0.0
SFRAC	0.0	0.0	0.0	0.0	0.0
ENTHALPY:					
J/KMOL	-2.3797+06	-5.9144+07	-3.3863+07	-2.5414+08	-1.4899+08
J/KG	-8.8970+05	-3.5070+06	-2.0079+06	-7.7838+06	-6.6922+06
WATT	-3599.6273	-9.1373+05	-5.2316+05	-3.2052+06	-5.3358+06
ENTROPY :					
T/KMOT-K	-8675.6728	-8.5949+04	-3.8214+04	-1.3017+04	-1.8187+04
J/KG-K	-3243.5914	-5096.3944	-2265.9007	-398.6928	-816.8994
DENSITY					
KMOL/CIIM	0.1465	0.9031	0.3001	0.6443	0.3218
KG/CIIM	0 3920	15.2312	5.0613	21.0382	7.1649
AVG MW	2.6747	16.8647	16.8647	32.6492	22.2637

,

A5-59

. .

.

205 206 207 208 208B	
205 206 207 208 2088	
CTPEAM TO COS	
FROM . 205 206 207 208 20	8B
H20-MIX H2103 H2101 H2	107
H2O-MIX H2103 H2101 H2107 H2	0-MT
SUBSTREAM. MIVED	
PHASE: WARDE WARDE	
COMPONENTS: KMOL/HP VAPOR VAPOR VAPOR VAPOR VAPOR VAPOR VAPOR	POR
H2 0.0 E0 CEOD	
CO 52.6732 52.6732 170.5304 170	. 530
CO2 0.0 6.9196 6.9196 63.4034 63	403
N2 13.8604 41.2868 41.2868 28.3888 28	.3888
0.0 8.5933 8.5933 8.5933 8.	593
0.0 3.1858-28 3.1858-28 0.0 0.	.0
0.0 51.7901 51.7901 8.2081 8.	208
0.0 $2.0503-03$ $2.0503-03$ $2.1401-04$ 2.140	1-04
0.0 $3.5404-07$ $3.5404-07$ $1.3686-08$ 1.368	6-08
0.0 1.0303-10 1.0303-10 1.2049-12 1.204	9-12
0.0 1.7900-14 1.7900-14 7.1458-17 7.145	8-17
0.0 3.6504-18 3.6504-18 4.8507-21 4.850	7-21
MEA 0.0 1.5541-35 1.5541-35 2.1063-30 2.106	3-30
H20 99.9167 122.1509 122.1509 91.4633 91.	4633
TOTAL FLOW: 0.0 0.0 0.0 0.0 0.0	0
IOTAL FLOW:	
113.7772 283.4162 283.4162 370.5876 370	5876
KG/HR 2410.0000 5389.2484 5389.2484 5389.2355 5389	2355
CUM/SEC 5.1371-02 0.2162 0.3296 0.8454 0	4220
STATE VARIABLES:	1220
TEMP C 220.0000 248.1458 487.0000 860.0000 293.	1850
PRES BAR 23.2000 15.6000 15.1000 11.5000 11	5000
1.0000 1.0000 1.0000 1.0000 1	0000
LFRAC 0.0 0.0 0.0 0.0 0.0	0000
SFRAC 0.0 0.0 0.0 0.0 0.0	0
ENTHALPY:	0
-2.5467+08 -1.7036+08 -1.6066+08 -8.1999+07 -1.019	8+08
-1.2023+07 -8.9589+06 -8.4489+06 -5.6386+06 -7.012	8+06
WATT $-8.0489+06 -1.3412+07 -1.2648+07 -8.4411+06 -1.049$	8+07
ENTROPY:	5107
J/KMOL-K -4.5384+04 -2.2420+04 -6881.3373 3.8598+04 1.431	2+04
J/KG-K -2142.6200 -1179.0385 -361.8840 2654 2028 084	0104
DENSITY:	2019
KMOL/CUM 0.6152 0.3640 0.2388 0.1217 0.4	120
KG/CUM 13.0316 6.9218 4.5417 1.7707 2.4	430
AVG MW 21,1817 19.0153 19.0153 14 5424 14 1	1200

.

7

A5-60

.

			0.94		
STREAM TO	208C	209	209B	210	210B
FROM :	H20-MIX2	M2102	H2110A	V2107	H2111
TO :	M2102	H2110A	V2107	H2111	V2108
SUBSTREAM: MIXED					TADOD
PHASE:	VAPOR	VAPOR	MIXED	VAPOR	VAPOR
COMPONENTS: KMOL/HR	5.8 55.8 8 8			170 5000	170 5202
H2	170.5304	170.5304	170.5304	170.5302	170.5502
CO	63.4034	63.4034	63.4034	63.4033	00.2724
CO2	28.3888	28.3888	28.3888	28.3724	28.5724
N2	8.5933	8.5933	8.5933	8.5933	8.5933
02	0.0	0.0	0.0	0.0	0.0
CH4	8.2081	8.2081	8.2081	8.2081	8.2081
C2H6	2.1401-04	2.1401-04	2.1401-04	2.1401-04	2.1401-04
СЗН8	1.3686-08	1.3686-08	1.3686-08	1.3686-08	1.3686-08
C4H10	1.2049-12	1.2049-12	1.2049-12	0.0	0.0
C5H12	7.1458-17	7.1458-17	7.1458-17	0.0	0.0
C6H14	4.8507-21	4.8507-21	4.8507-21	0.0	0.0
MEA	2.1063-30	2.1063-30	2.1063-30	0.0	0.0
H2O	196.9309	227.4611	227.4611	1.6028	1.6028
AR	0.0	0.0	0.0	0.0	0.0
TOTAL FLOW:				1.000.0000.000	
KMOL/HR	476.0553	506.5854	506.5854	280.7105	280.7105
KG/HR	7289.2355	7839.2355	7839.2355	3769.6748	3769.6748
CUM/SEC	0.5400	0.4799	0.3308	0.1903	0.1958
STATE VARIABLES:					
TEMP C	269.0083	182.8193	132.0000	40.0000	40.0000
PRES BAR	11.0000	11.0000	10.7000	10.7000	10.4000
VFRAC	1.0000	1.0000	0.7482	1.0000	1.0000
LFRAC	0.0	0.0	0.2517	0.0	0.0
SFRAC	0.0	0.0	0.0	0.0	0.0
ENTHALPY:					
J/KMOL	-1.3182+08	-1.4088+08	-1.5283+08	-6.7935+07	-6.7934+07
J/KG	-8.6092+06	-9.1038+06	-9.8765+06	-5.0588+06	-5.0588+06
WATT	-1.7432+07	-1.9824+07	-2.1507+07	-5.2972+06	-5.2972+06
ENTROPY:					
J/KMOL-K	2584.2472	-5638.3418	-3.4038+04	8938.4811	9177.9829
J/KG-K	168.7755	-364.3597	-2199.5920	665.6079	683.4425
DENSITY:					
KMOL/CUM	0.2448	0.2931	0.4252	0.4095	0.3981
KG/CUM	3.7492	4.5368	6.5812	5.5002	5.3465
AVG MW	15.3117	15.4746	15.4746	13.4290	13.4290

208C 209 209B 210 210B

211 212 213 213B 21	.4				
STREAM ID	211	212	213	21 3B	214
FROM :	V2108	V2105	V2106	L213D	
TO :	V2105	V2116	H2112	V2109	VENTTAI
SUBSTREAM: MIXED					
PHASE:	VAPOR	MIXED	VAPOR	MIXED	MIVED
COMPONENTS: KMOL/HR				********	MIXED
H2	170.5302	170.5290	1.2014-03	1,2014-03	2 0 0
CO	63.4033	63.4024	9.0682-04	9.0682-04	, 0.0
C02	28.3724	1.1361-02	27.2665	27.2665	1 2976
N2	8.5933	8.5932	4.5131-05	4.5131-05	2 1817-06
02	0.0	0.0	0.0	0.0	0.0
CH4	8.2081	8.2080	2.8970-05	2.8970-05	0.0
C2H6	2.1401-04	2.1401-04	2.3864-10	2.3864-10	0.0
C3H8	1.3686-08	1.3686-08	0.0	0.0	0.0
C4H10	0.0	0.0	0.0	0.0	0.0
C5H12	0.0	0.0	0.0	0.0	0.0
COH14	0.0	0.0	0.0	0.0	0.0
MEA	0.0	4.7104-03	4.2717-05	4.2717-05	3.2763-05
	1.6028	1.6879	173.8517	173.8517	5.3079-02
TOTAL FLOW	0.0	0.0	0.0	0.0	0.0
TOTAL LTOM:	000 8105				
KC/UD	280.7105	252.4371	201.1205	201.1205	1.3507
CIM /SEC	3769.6748	2523.2971	4331.9718	4331.9718	58.0657
STATE VARIABIES.	0.1958	0.1780	1.0377	0.1370	6.4686-03
TEMP C	40 0000				
PRES BAR	40.0000	40.0419	110.4955	40.0000	40.0000
VFRAC	10.4000	10.3000	1.7000	1.5000	1.5000
LFRAC	1.0000	0.9999	1.0000	0.1410	1.0000
SFRAC	0.0	2.3903-05	0.0	0.8589	2.5078-06
ENTHALPY:	0.0	0.0	0.0	0.0	0.0
J/KMOL	-6 7934+07	-2 1420107	0 5050.00		10.1 (2010) 10.1
J/KG	-5 0588+06	-3.1429+07	-2.59/0+08	-3.0177+08	-3.8730+08
WATT	-5 2972+06	-2 2020-06	-1.205/+0/	-1.4010+07	-9.0092+06
ENTROPY:	-3.2312+00	-2.2039+00	-1.4508+07	-1.6859+07	-1.4531+05
J/KMOL-K	9177 9829	9949 2616	2 0200.04		
J/KG-K	683,4425	205 2160	-3.0380+04	-1.4290+05	894.6224
DENSITY:	00011120	095.2109	-1410.4489	-6634.5413	20.8105
KMOL/CUM	0.3981	0 3030	5 2025 02	0 4000	
KG/CUM	5.3465	3 9379	3.3835-02	0.4077	5.8003-02
AVG MW	13,4290	9 9957	1.1595 21 5201	8.7830	2.4934
	20,1200	5.5551	21.5391	21.5391	42.9888

•

.

215 215B 216 216B 216	5C					
STREAM ID FROM : TO :	215 V2109 VENTTANK	215B VENTTANK CO-MIX	216 CO-MIX K2103-1	216B K2103-1 H2113	216C H2113 V2113	
SUBSTREAM: MIXED PHASE:	VAPOR	VAPOR	VAPOR	VAPOR	MIXED	
H2 CO CO2 N2 O2 CH4 C2H6 C3H8 C4H10 C5H12 C6H14 MEA H2O AR	$\begin{array}{c} 1.2015-03\\ 9.0692-04\\ 27.2496\\ 4.5145-05\\ 0.0\\ 3.0310-05\\ 2.3863-10\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 3.2763-05\\ 1.1146\\ 0.0\\ \end{array}$	$\begin{array}{c} 1.2015-03\\ 9.0692-04\\ 25.9520\\ 4.2964-05\\ 0.0\\ 3.0310-05\\ 2.3863-10\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 1.0615\\ 0.0\\ \end{array}$	$\begin{array}{r} 4.0487\\ 6.0642\\ 25.9520\\ 1.0047\\ 0.0\\ 8.1415\\ 2.3863-10\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 1.0615\\ 0.0\\ \end{array}$	$\begin{array}{r} 4.0487\\ 6.0642\\ 25.9520\\ 1.0047\\ 0.0\\ 8.1415\\ 2.3863-10\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 1.0615\\ 0.0\\ \end{array}$	4.0486 6.0642 25.9520 1.0047 0.0 8.1415 2.3864-10 0.0 0.0 0.0 0.0 0.0 0.0 1.0615 0.0	
TOTAL FLOW: KMOL/HR KG/HR CUM/SEC	28.3664 1219.3680 0.1358	27.0157 1161.3023 0.1293	46.2728 1498.0567 0.2182	46.2728 1498.0567 4.6313-02	46.2728 1498.0566 3.4322-02	
TEMP C PRES BAR VFRAC LFRAC SFRAC	40.0000 1.5000 1.0000 0.0 0.0	40.0000 1.5000 1.0000 0.0 0.0	34.3187 1.5000 1.0000 0.0 0.0	145.0000 9.6000 1.0000 0.0 0.0	40.0000 9.4000 0.9837 1.6265-02 0.0	
ENTHALPY: J/KMOL J/KG WATT	-3.8728+08 -9.0093+06 -3.0516+06	-3.8727+08 -9.0093+06 -2.9063+06	-2.5378+08 -7.8389+06 -3.2620+06	-2.4977+08 -7.7152+06 -3.2105+06	-2.5450+08 -7.8612+06 -3.2713+06	
LNTROPY: J/KMOL-K J/KG-K DENSITY:	918.0661 21.3572	919.1569 21.3826	6580.6246 203.2662	2326.8681 71.8737	-1.0727+04 -331.3505	
KMOL/CUM KG/CUM AVG MW	5.8003-02 2.4933 42.9862	5.8003-02 2.4933 42.9860	5.8891-02 1.9065 32.3744	0.2775 8.9851 32.3744	0.3745 12.1242 32.3744	

.

A5-63

.....

216D 216E 216F 218	218B				
		1658 11 17			
STREAM ID	216D	216E	216F	218	2100
FROM :	V2113	K2103-3	B H2114	V2116	Z10B
TO :	K2103-3	B H2114	V2114	K2104	H2115
SUBSTREAM: MIXED					
PHASE:	VAPOR	VADOD	MTYPD		1222 5 12
COMPONENTS: KMOL/HR		VALOK	MIXED	VAPOR	VAPOR
H2	4.0486	4 0486	1 0196	170 5000	
CO	6.0642	6 0642	6.0642	170.5290	170.529
C02	25.9517	25 9517	25 0517	1 1 2 1 0 2 4	63.402
N2	1.0047	1 0047	1 0047	1.1301-02	1.1361-0
02	0.0	0.0	1.0047	8.5932	8.593
CH4	8,1415	8 1415	0.0	0.0	0.0
C2H6	2.3864-10	2 3864-10	2 2064 10	8.2080	8.2080
СЗН8	0.0	2.5004 10	2.3004-10	2.1401-04	2.1401-04
C4H10	0.0	0.0	0.0	1.3686-08	1.3686-08
C5H12	0.0	0.0	0.0	0.0	0.0
C6H14	0.0	0.0	0.0	0.0	0.0
MEA	0.0	0.0	0.0	0.0	0.0
H20	0.3033	0 3033	0.0	4.7092-03	4.7092-03
AR	0.0	0.0	0.3033	1.4/63	1.4763
TOTAL FLOW:			0.0	0.0	0.0
KMOL/HR	45.5143	45 5143	15 51 42	252 2255	050 0055
KG/HR	1484.3853	1484 3853	1/0/ 2052	252.2255	252.2255
CUM/SEC	3.3583-02	2 8339-02	1 0572 02	2519.4850	2519.4850
STATE VARIABLES:	0.0000 02	2.0339-02	1.9573-02	0.1780	8.6718-02
TEMP C	40.0000	145 0000	40 0000	40 0000	
PRES BAR	9.6000	15,4000	16 2000	40.0000	145.0000
VFRAC	1.0000	1.0000	0 9975	1 0000	28.5000
LFRAC	0.0	0.0	2 4401-03	1.0000	1.0000
SFRAC	0.0	0.0	2.1101-05	0.0	0.0
ENTHALPY:		0.0	0.0	0.0	0.0
J/KMOL	-2.5396+08	-2.5003+08	-2 5422+00	-2 1055.07	0 0156.05
J/KG	-7.7869+06	-7.6666+06	-7 7948+06	-3.1200+06	-2.8156+07
WATT	-3.2108+06	-3.1612+06	-3 2140+06	-2 1000106	-2.8187+06
ENTROPY:			5.2140+00	-2.1090+00	-1.9/2/+06
J/KMOL-K	-8336.0993	-1432 3927	-1 3301+04	0050 0000	
J/KG-K	-255.6023	-43,9201	-410 6002	0950.9903	8944.9214
DENSITY:		10.0201	410.0092	090.8840	895.4755
KMOL/CUM	0.3764	0.4461	0 6450	0 2025	0.0075
KG/CUM	12.2778	14.5500	21 0650	3 0200	0.8079
AVG MW	32,6135	32.6135	32.6135	9.9890	8.0704 9.9890

÷

.

218C 219 220 224 224	A				
	-				
			-		
STREAM ID	218C	219	220	224	224A
FROM :	H2115	V2117	V2118	E21	K2105-1
TO :	V2117	V2118	E21	K2105-1	H2118
SUBSTREAM: MIXED					
PHASE:	MIXED	VAPOR	VAPOR	VAPOR	VAPOR
COMPONENTS: KMOL/HR					
Н2	170.5290	170.5290	169.5058	1.0714-03	1.0714-03
CO	63.4024	63.4024	63.0220	64.3243	64.3243
C02	1.1361-02	1.1361-02	0.0	0.0	0.0
N2	8.5932	8.5932	8.5417	7.6322	7.6322
02	0.0	0.0	0.0	0.0	0.0
CH4	8.2080	8,2080	8.1588	2.0697-02	2.0697-02
C2H6	2.1401-04	2.1401-04	0.0	0.0	0.0
СЗН8	1.3686-08	1.3686-08	0.0	0.0	0.0
C4H10	0.0	0.0	0.0	0.0	0.0
C5H12	0.0	0.0	0.0	0.0	0.0
C6H14	0.0	0.0	0.0	0.0	0.0
MEA	4.7092-03	4,6927-03	0.0	0.0	0.0
H2O	1.4763	0.4310	0.0	0.0	0.0
AR	0.0	0.0	0.0	0.0	0.0
TOTAL FLOW:	57. T. T.			0.0	0.0
KMOL/HR	252.2255	251,1801	249,2284	71,9784	71,9784
KG/HR	2519.4850	2500.6520	2477.1415	2015.8630	2015,8630
CUM/SEC	6.3905-02	6.4121-02	6 3633-02	0 2389	0 1036
STATE VARIABLES:	0.0000 02	0.1121 02	0.0000 02	0.2005	0.1050
TEMP C	35,0000	35,0000	35 0000	21 4699	100 0000
PRES BAR	28,4000	28.3000	28.3000	2.0500	6,0000
VFRAC	0,9958	1.0000	1.0000	1,0000	1 0000
LFRAC	4.1499-03	0.0	0.0	0.0	0.0
SFRAC	0.0	0.0	0.0	0.0	0.0
ENTHALPY:		0.0	0.0	0.0	0.0
J/KMOL	-3.1602+07	-3.0534+07	-3.0150+07	-9 8992+07	-9 6701+07
J/KG	-3.1637+06	-3.0671+06	-3.0335+06	-3.5346+06	-3.4528+06
WATT	-2.2141+06	-2.1305+06	-2.0873+06	-1.9792+06	-1.9334+06
ENTROPY:				2.07.02.00	1.0001.00
J/KMOL-K	-650,1411	77.0194	105 3257	7 6746+04	7 4700+04
J/KG-K	-65 0856	7 7362	10 5969	2740 2019	2667 2242
DENSITY:	00.0000	1.1502	10.0909	2110.2910	2007.2242
KMOL/CUM	1 0963	1 0881	1 0970	8 3600-02	0 1020
KG/CUM	10,9515	10 8330	10 8134	2 3439	5 4023
AVG MW	9,9890	9 9556	0 0303	28 0064	28 0064
	2.2020	5.5550	5.5552	20.0004	20.0004

÷

ł

A5-65

152

224B 224C 224D 225 2	226				
		Q.			
STREAM ID	224B	2240	2240	225	226
FROM :	H2118	K2105-2	H2119	CO-SDI T	
TO :	K2105-2	H2119	CO-SPLI	T E21	
SUBSTREAM. MIVED					
PHASE :	VADOD	177 000	****		States of a state of the
COMPONENTS . KMOT / UD	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR
H2	1 0714 02	1 0714 00	1 001 1 1		
CO		1.0/14-03	1.0/14-03	1.7515-04	8.9630-04
C02	04.3243	04.3243	64.3243	10.5151	53.8092
N2	0.0	0.0	0.0	0.0	0.0
02	7.6322	7.6322	7.6322	1.2476	6.3846
CH4	2 0.07 00	0.0	0.0	0.0	0.0
C2H6	2.0097-02	2.0697-02	2.0697-02	3.3834-03	1.7314-02
C3H8	0.0	0.0	0.0	0.0	0.0
C4H10	0.0	0.0	0.0	0.0	0.0
C5H12	0.0	0.0	0.0	0.0	0.0
C6H14	0.0	0.0	0.0	0.0	0.0
MEA	0.0	0.0	0.0	0.0	0.0
H20	0.0	0.0	0.0	0.0	0.0
AR	0.0	0.0	0.0	0.0	0.0
TOTAL FLOW.	0.0	0.0	0.0	0.0	0.0
KMOL/HR	71 0704	71 0701	01 0001		
KG/HR	2015 0620	2015 0.000	/1.9784	11.7663	60.2121
CUM/SEC	2013.8630	2015.8630	2015.8630	329.5331	1686.3299
STATE VARIABLES.	0.0920-02	0.3128-02	5.4560-02	8.9189-03	4.5641-02
TEMP C	30 0000	00 0000	25 0000		Market Baccol Marcado
PRES BAR	5 9000	90.0000	35.0000	35.0000	35.0000
VFRAC	1 0000	9.6000	9.4000	9.4000	9.4000
LFRAC	1.0000	1.0000	1.0000	1.0000	1.0000
SFRAC	0.0	0.0	0.0	0.0	0.0
ENTHALPY :	0.0	0.0	0.0	0.0	0.0
J/KMOL	-9 8766+07	-9 7000.07	-0.00000	0.0010	
J/KG	-3.5265+06	-3 1620-00	-9.8640+07	-9.8640+07	-9.8640+07
WATT	-1 9747+06	-1 0206:06	-3.5221+06	-3.5221+06	-3.5221+06
ENTROPY :	1.3/11/100	-1.9390+06	-1.9/22+06	-3.2240+05	-1.6498+06
J/KMOL-K	6 8852.04	6 0044.04	6 5045.01	C	
J/KG-K	2458 4652	2/07 /255	0.524/+04	6.5247+04	6.5247+04
DENSITY:	2100.4002	2491.4355	2329.6956	2329.6956	2329.6956
KMOL/CUM	0 2200	0 21 62	0.000		121 - 22-15 March
KG/CUM	6 4410	0.316/	0.3664	0.3664	0.3664
AVG MW	28 0064	0.0/02	10.2632	10.2632	10.2632
	20.0004	28.0064	28.0064	28.0064	28.0064

6

ï

Capacity increase of 20% by using a pre-reformer and extra CO₂.

÷

227 228 251 251B 253	-				
STREAM TD	227	229	251	2510	050
FROM :	F21	E21	251	251B	253
TO :	CO-MTY	D21	H2106	H2106	
	CO-HIX	DI	HZIU6	V2103	M2102
SUBSTREAM: MIXED					
PHASE:	VAPOR	VAPOR	T.TOUTD	T.TOUTD	TTOUTD
COMPONENTS: KMOL/HR	8 19 19 19 19 19 19 19 19 19 19 19 19 19	200.000.0000	22010	112010	TIGOID
H2	4.0474	165.4575	0.0	0 0	0 0
CO	6.0633	3.1493	0.0	0.0	0.0
CO2	0.0	0.0	0.0	0.0	0.0
N2	1.0047	1.1523	0.0	0.0	0.0
02	0.0	0.0	0.0	0.0	0.0
CH4	8.1415	0.0	0.0	0.0	0.0
C2H6	0.0	0.0	0.0	0.0	0.0
C3H8	0.0	0.0	0.0	0.0	0.0
C4H10	0.0	0.0	0.0	0.0	0.0
C5H12	0.0	0.0	0.0	0.0	0.0
C6H14	0.0	0.0	0.0	0.0	0.0
MEA	0.0	0.0	0.0	0.0	0.0
H2O	0.0	0.0	299.7502	299.7502	30.5301
AR	0.0	0.0	0.0	0.0	0.0
TOTAL FLOW:					
KMOL/HR	19.2571	169.7592	299.7502	299.7502	30.5301
KG/HR	336.7543	454.0570	5400.0000	5400.0000	550.0000
CUM/SEC	6.8032-02	0.3216	2.1204-03	2.3230-03	2.1596-04
STATE VARIABLES:	05 0065	10.0004		2020 1222	
DDEC DAD	25.2967	13.3824	104.0000	180.0000	104.0000
VEDAC	1.9500	3.5000	27.0000	26.8000	27.0000
LEPAC	1.0000	1.0000	0.0	0.0	0.0
SFRAC	0.0	0.0	1.0000	1.0000	1.0000
ENTHALPY.	0.0	0.0	0.0	0.0	0.0
J/KMOT.	-6 6502+07	-2 3707+06	2 0210:00	0 7500.00	0 0010.00
J/KG	-3 8029+06	-2.3797+06	-2.8210+08	-2.7526+08	-2.8210+08
WATT	-3 5573+05	-1 1221+05	-2.2490+07	-1.52/9+0/	-1.5659+07
ENTROPY :	5.5575705	-1.1221+05	-2.3489+07	-2.2919+07	-2.3924+06
J/KMOL-K	-1224 6329	-8675 6729	-1 5042+05	1 2200.05	1 5040.05
J/KG-K	-70.0299	-3243 5914	-1.3042403	-1.3390+05	-1.5042+05
DENSITY:		0210.0311	0549.0409	1452.5015	-0349.0409
KMOL/CUM	7.8628-02	0.1465	39 2685	35 8435	30 2605
KG/CUM	1.3749	0.3920	707.4237	645 7212	707 4227
AVG MW	17.4872	2.6747	18.0150	18 0150	18 0150
			10.0100	10.0100	10.0100

•

260 264 265 266 268					
		¥	*1		
STREAM ID	260	264	0.05		
FROM :	200	264	265	266	268
то	H20 MT	V2107	V2108	COND-MI	X V2113
	H20-MIX	COND-MIX	COND-MI	х	CONDMIX
SUBSTREAM: MIXED					
PHASE:	VAPOR	TTOUTD	MIVED	TTOMTS	
COMPONENTS: KMOL/HR		TIGOID	MIXED	LIQUID	LIQUID
H2	0.0	1 0010-04	0.0		
CO	0.0	1.3010-04	0.0	1.9010-04	8.5973-08
CO2	0.0	1 6200 00	0.0	4.2653-05	7.6869-08
N2	0.0	5 3172 06	0.0	1.6399-02	2.7490-04
02	0.0	0.0	0.0	5.3172-06	1.1728-08
CH4	0.0	5 0.0 OF	0.0	0.0	0.0
C2H6	0.0	3.8329-05	0.0	5.8329-05	1.0771-06
C3H8	0.0	2.2/31-09	0.0	2.2731-09	0.0
C4H10	0.0	0.0	0.0	0.0	0.0
C5H12	0.0	0.0	0.0	0.0	0.0
C6H14	0.0	0.0	0.0	0.0	0.0
MEA	0.0	0.0	0.0	0.0	0.0
H20	105.4676	0.0	0.0	0.0	0.0
AR	105.4676	225.8582	0.0	225.8582	0.7582
TOTAL FLOW:	0.0	0.0	0.0	0.0	0.0
KMOL/HR	105 1676	225 0740			
KG/HR	1900 0000	225.8749	0.0	225.8749	0.7584
CUM/SEC	5 9002-02	4009.5000	0.0	4069.5606	13.6712
STATE VARIABLES:	5.9003-02	1.5134-03	0.0	1.5137-03	5.0828-06
TEMP C	208 0000	40 0000	VTOOTVO		
PRES BAR	18 3000	10 7000	MISSING	40.1538	40.0000
VFRAC	1.0000	10.7000	10.4000	3.5000	9.6000
LFRAC	0.0	1 0000	MISSING	0.0	0.0
SFRAC	0.0	1.0000	MISSING	1.0000	1.0000
ENTHALPY:	0.0	0.0	MISSING	0.0	0.0
J/KMOL	-2 3667+08	-2 0770.00	VTOOTUO		
J/KG	-1.3137+07	-1 5060+07	MISSING	-2.8770+08	-2.8774+08
WATT	-6 9336+06	-1.0051.07	MISSING	-1.5969+07	-1.5964+07
ENTROPY:	0.0000000	-1.0031+07	MISSING	-1.8051+07	-6.0623+04
J/KMOL-K	-5.3384+04	-1 6654+05	MEGGENG		
J/KG-K	-2963 3323	-9243 5005	MISSING	-1.6648+05	-1.6649+05
DENSITY:	2000.0020	-9243.5005	MISSING ·	-9240.4213	-9236.6507
KMOL/CUM	0 4965	41 4500	NTOOTHE		
KG/CUM	8 9449	746 0660	MISSING	41.4493	41.4514
AVG MW	18 0150	19 0160	MISSING	746.7875	747.1381
	10.0100	10.0108	MISSING	18.0168	18.0244

A5-68

2.20.20

269 270 281 281A 281E	3				
STREAM ID	269	270	281	281A	281B
FROM :	V2114	V2117		H2108	H2109A
TO :	CONDMIX2		V2105		H2108
SUBSTREAM: MIXED					
PHASE:	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID
COMPONENTS: KMOL/HR			10. 10.00 - 10.00 AND		
H2	2.1641-08	2.0867-06	0.0	0.0	0.0
<u> </u>	1,9067-08	4.6854-07	0.0	0.0	0.0
CO2	6.5917-05	8.3636-08	9.5819	10.6936	10,6936
N2	2,9135-09	5.8329-08	0.0	0.0	0.0
02	0.0	0.0	0.0	0.0	0.0
CH4	2.6321-07	6,6006-07	0.0	0.0	0.0
C2H6	0 0	2 4640-11	0.0	0.0	0.0
C3H8	0.0	0 0	0.0	0.0	0.0
CAHIO	0.0	0.0	0.0	0.0	0.0
C5H12	0.0	0.0	0.0	0.0	0.0
C6H14	0.0	0.0	0.0	0.0	0.0
MEA	0.0	1 6422-05	87,1169	87,1121	87,1121
820	0 1110	1 0453	775 1928	774 8650	774 8650
AD	0.0	0.0	0 0	0 0	0.0
TOTAL FLOW.	0.0	0.0	0.0	0.0	0.0
KMOT /HP	0 1110	1 0453	871 8017	872 6708	872 6708
KC/HP	2 0024	18 8329	1 9708+04	1 9751+04	1 9751+04
CIM/SEC	7 4427-07	6 9764-06	6 0353-03	8 1078-03	8 4903-03
STATE VADIABLES.	1.1127-07	0.9704 00	0.0555 05	0.1070 05	0.4900 00
TEMD C	40 0000	35 0000	40 0000	40 0000	88 0000
DDEC DAD	16 2000	28 3000	14 7000	14 7000	1 7000
VEDAC	10.2000	28.3000	14.7000	14.7000	0.0
LEDAC	1 0000	1 0000	1 0000	1 0000	1 0000
SEDAC	1.0000	0.0	0.0	0.0	0.0
FNTUALDY.	0.0	0.0	0.0	0.0	0.0
T/MOT	-2 0775+00	-2 9910+09	-2 8449+08	-2 8395+08	-2 7928+08
J/RHOL	-2.0113+00	-2.0010+00	-1 2506+07	-1 25/6+07	-1 2340+07
U/KG	-1.5959407	0 2657.04	-1.2300+07	-6.0022+07	-6.7700+07
WAII	-00//.0014	-0.3037+04	-0.0900+07	-0.0032+07	-0.7700+07
LNIROPI:	1 6646+05	-1 6700+05	-2 4600+05	-2 2204+05	-2 0003+05
J/KMOL-K	-1.0040+05	-1.0/99+03	-2.4099+05	-2.2394+05	-2.0993+03
J/KG-K	-9232.0210	-9524.4027	-1.0927+04	-9094.5010	-9215.0551
DENSITI:	41 4505	41 6000	40 1000	20 0001	00 EE10
MOL/COM	41.4505	41.0232	40.1289	29.8981	20.0013
KG/CUM	/4/.3/14	/49.8/00	907.0601	6/6.6661	646.184/
AVG MW	18.0304	18.0156	22.6036	22.6324	22.0324

confidential

Capacity increase of 20% by using a pre-reformer and extra CO₂.

281C 282 282B 284 2	285				
STREAM ID	281C	282	282B	284	295
FROM :	V2106	V2105	H2109B	CONDMIN	205
TO :	H2109A	H2109B	V2106	V2109	V2109 V2106
SUBSTREAM: MIXED					
PHASE:	LIQUID	TTOUTD	MIVED	TTONTO	
COMPONENTS: KMOL/HR	2010	TITOID	MIXED	PICOID	LIQUID
H2	0.0	1 2014-03	1 2014 02	1 0761 07	
CO	0.0	G 0602_0A	1.2014-03	1.0761-07	1.4412-09
CO2	10 6026	9.0002-04	9.0682-04	9.5936-08	6.6044-10
N2	10.0930	57.9429	37.9429	3.4082-04	1.7234-02
02	0.0	4.5131-05	4.5131-05	1.4642-08	3.0222-11
CH4	0.0	0.0	0.0	0.0	0.0
C2H6	0.0	2.8970-05	2.8970-05	1.3403-06	2.3433-10
C3H8	0.0	2.3864-10	2.3864-10	0.0	0.0
C4H10	0.0	2.6699-15	2.6699-15	0.0	0.0
C5H12	0.0	0.0	0.0	0.0	0.0
C6H14	0.0	0.0	0.0	0.0	0.0
MED	0.0	0.0	0.0	0.0	0.0
MEA	87.1121	87.1121	87.1121	0.0	9,9538-06
H20	774.8650	775.1077	775.1077	0.8692	173.6063
AK TOTAL ELOW.	0.0	0.0	0.0	0.0	0.0
TOTAL FLOW:					
KMOL/HR	872.6708	900.1651	900.1651	0.8695	173,6236
KG/HR	1.9751+04	2.0954+04	2.0954+04	15.6737	3128 2775
CUM/SEC	6.6500-03	6.5685-03	3.9219-02	5.8288-06	1 1635-02
STATE VARIABLES:				0.0200 00	1.1033-03
TEMP C	117.9567	69.3631	104.0000	40 1910	40 0000
PRES BAR	1.7000	10.4000	10.4000	1.5000	1 5000
VFRAC	0.0	0.0	4.2005-02	0.0	1.5000
LFRAC	1.0000	1.0000	0.9579	1 0000	1 0000
SFRAC	0.0	0.0	0 0	1.0000	1.0000
ENTHALPY:			0.0	0.0	0.0
J/KMOL	-2.7826+08	-2.8792 ± 0.8	-2 8086+08	-2 0774.00	0 0770.00
J/KG	-1.2295+07	-1.2369+07	-1 2065 \pm 07	-1 5062:07	-2.8/12+08
WATT	-6.7452+07	-7 1994+07	-7 0220107	-1.5963+07	-1.5969+07
ENTROPY:		1.1334107	-1.0220+01	-0.9500+04	-1.3877+07
J/KMOL-K	-2 0057+05	-2 2502.05	1 0005.05		5 1995 G
J/KG-K	-8861 8679	-0705 5000	-1.9895+05	-1.6641+05	-1.6652+05
DENSITY:	0001.0078	-9/05.5860	-8546.7070	-9232.2332	-9241.9675
KMOL/CUM	36 4526	20 0000			
KG/CUM	825 0100	38.06/6	6.3756	41.4389	41.4520
AVG MW	22 6224	886.1483	148.4134	746.9455	746.8649
	22.0324	23.2782	23.2782	18.0251	18.0175

.

34567					
			230	225	12
STREAM ID	3	4	5	6	7
FROM :	H2103	H2104	H2105A	H2105B	H2106
TO :	H2104	H2105A	H2105B	H2106	
CUDOMDEAN ATVED					
SUBSTREAM: MIXED	TADOD	TADOD	VADOD	VADOD	VADOD
PHASE:	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR
COMPONENTS: KMOL/HR	2 7117 05	2 7117 05	2 7117 05	2 7117 05	2 7117-05
HZ	3./11/-05	3.7117-05	3.7117-05	3.7117-05	3.7117-05
CO	1.2567-06	1.2567-06	1.2567-06	1.2567-06	1.2567-06
C02	2.3270	2.3270	2.3270	2.3270	2.3270
N2	260.6468	260.6468	260.6468	260.6468	260.6468
02	9.2645	9.2645	9.2645	9.2645	9.2645
CH4	7.8087-31	7.8087-31	7.8087-31	7.8087-31	7.8087-31
C2H6	0.0	0.0	0.0	0.0	0.0
C3H8	0.0	0.0	0.0	0.0	0.0
C4H10	0.0	0.0	0.0	0.0	0.0
C5H12	0.0	0.0	0.0	0.0	0.0
C6H14	0.0	0.0	0.0	0.0	0.0
MEA	0.0	0.0	0.0	0.0	0.0
H2O	121.8739	121.8739	121.8739	121.8739	121.8739
AR	3.1215	3.1215	3.1215	3.1215	3.1215
TOTAL FLOW:					
KMOL/HR	397.2340	397.2340	397.2340	397.2340	397.2340
KG/HR	1.0021+04	1.0021+04	1.0021+04	1.0021+04	1.0021+04
CUM/SEC	6.1686	5.5515	5.0404	4.2528	3.2719
STATE VARIABLES:					
TEMP C	735.0473	634.1897	550.6559	421.9694	261.8248
PRES BAR	1.5000	1.5000	1.5000	1.5000	1.5000
VFRAC	1.0000	1.0000	1.0000	1.0000	1.0000
LFRAC	0.0	0.0	0.0	0.0	0.0
SFRAC	0.0	0.0	0.0	0.0	0.0
ENTHALPY:					
J/KMOL	-5.3349+07	-5.6889+07	-5.9758+07	-6.4061+07	-6.9227+07
J/KG	-2.1148+06	-2.2552+06	-2.3689+06	-2.5395+06	-2.7443+06
WATT	-5.8867+06	-6.2772+06	-6.5938+06	-7.0687+06	-7.6387+06
ENTROPY:					
J/KMOL-K	2.8943+04	2.5244+04	2.1928+04	1.6250+04	7809.6778
J/KG-K	1147.3298	1000.7259	869.2447	644.1855	309.5883
DENSITY:					
KMOL/CUM	1.7888-02	1.9876-02	2.1892-02	2.5946-02	3.3724-02
KG/CUM	0.4512	0.5013	0.5522	0.6545	0.8507
AVG MW	25.2260	25.2260	25.2260	25.2260	25.2260

.

STREAM ID A B BIN C D FROM : SPLIT H2102 SPLIT H2105A DRUMMIX SUBSTREAM: MIXED PHASE: LIQUID MIXED VAPOR LIQUID MIXED COMPONENTS: KMOL/HR LIQUID MIXED VAPOR LIQUID MIXED CO2 0.0 0.0 2.3027 0.0 0.0 CO2 0.0 0.0 2.3027 0.0 0.0 CO2 0.0 0.0 2.3027 0.0 0.0 CO4 0.0 0.0 2.4310-02 0.0 0.0 C24 0.0 0.0 2.4310-02 0.0 0.0 C3H8 0.0 0.0 0.0 0.0 0.0 0.0 C4H10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 MEA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 H20 681.8751	A B BIN C D				<i>5</i> 2	
STREAM ID A B EIN C D FROM : SPLIT H2102 DRUMMIX BURNER H2105A DRUMMIX SUBSTREAM: MIXED PHASE: LIQUID MIXED VAPOR LIQUID MIXED COMPONENTS: KMOL/HR LIQUID MIXED VAPOR LIQUID MIXED CO2 0.0 0.0 2.3027 0.0 0.0 CO2 0.0 0.0 2.3027 0.0 0.0 0.0 CO2 0.0 0.0 2.3027 0.0 0.0 0.0 CO4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CH4 0.0 0.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
STREAM ID A B BIN C D FROM : SPLIT H2102 SPLIT H2105A DRUMMIX TO : H2102 DRUMMIX BURNER H2105A DRUMMIX SUBSTREAM: MIXED PHASE: LIQUID MIXED VAPOR LIQUID MIXED COMPONENTS: KMOL/HR H2 0.0 0.0 2.3027 0.0 0.0 CO 0.0 0.0 2.3027 0.0 0.0 0.0 CO2 0.0 0.0 2.60.6468 0.0 0.0 C24 0.0 0.0 2.4310-02 0.0 0.0 C2H6 0.0 0.0 0.0 0.0 0.0 0.0 C3H8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C4H10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C5H12 0.0 0.0 0.0 0.0 0				<i>₩</i>		
FROM : SPLIT TO : SPLIT H2102 H2102 DRUMMIX SPLIT EURNER SPLIT H2105A H2105A DRUMMIX SUBSTREAM: MIXED PHASE: LIQUID MIXED VAPOR LIQUID MIXED COMPONENTS: KMOL/HR LIQUID MIXED VAPOR LIQUID MIXED CO2 0.0 0.0 2.3027 0.0 0.0 C2 0.0 0.0 2.00 0.0 0.0 0.0 C2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C2H6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C4H10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 MEA 0.0 0.0	STREAM ID	A	В	BIN	С	Л
TO : H2102 DRUMMIX BURNER H2105A DRUMMIX SUBSTREAM: MIXED PHASE: LIQUID MIXED VAPOR LIQUID MIXED COMPONENTS: KMOL/HR H2 0.0 0.0 2.3027 0.0 0.0 CO 0.0 0.0 2.3027 0.0 0.0 CO2 0.0 0.0 2.3027 0.0 0.0 CO2 0.0 0.0 2.60.64688 0.0 0.0 C2H6 0.0 0.0 0.0 0.0 0.0 0.0 C3H8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C6H14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C6H12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 MCL/HR 681.8751 681.8751 681.8751 681.8751 681.8751 681.8649 KMOL/HR 681.8751 681.8751 681.8751 </td <td>FROM :</td> <td>SPLIT</td> <td>H2102</td> <td></td> <td>SPLTT</td> <td>H2105A</td>	FROM :	SPLIT	H2102		SPLTT	H2105A
SUBSTREAM: MIXED PHASE: LIQUID MIXED VAPOR LIQUID MIXED COMPONENTS: KMOL/HR H2 0.0 0.0 121.8254 0.0 0.0 0.0 CO 0.0 0.0 2.3027 0.0 0.0 CO 0.0 0.0 0.0 0.0 0.0 0.0 CO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CH4	TO :	H2102	DRUMMIX	BURNER	H2105A	DRUMMIX
PHASE: LIQUID MIXED VAPOR LIQUID MIXED COMPONENTS: KMOL/HR 0.0 0.0 121.8254 0.0 0.0 0.0 CO 0.0 0.0 2.3027 0.0 0.0 0.0 CO 0.0 0.0 2.3027 0.0 0.0 0.0 CO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C2 0.0 0.0 0.0 71.3772 0.0 0.0 0.0 C2H6 0.0	SUBSTREAM: MIXED					
COMPONENTS: KMOL/HR Line Line <thline< th=""> <thline< th=""> Line</thline<></thline<>	PHASE:	LIOUID	MIXED	VAPOR	LTOUTD	MIVED
H2 0.0 0.0 121.8254 0.0 0.0 CO 0.0 0.0 2.3027 0.0 0.0 N2 0.0 0.0 2.3027 0.0 0.0 N2 0.0 0.0 2.3027 0.0 0.0 N2 0.0 0.0 2.3027 0.0 0.0 OLD 0.0 0.0 2.3027 0.0 0.0 N2 0.0 0.0 2.60.6468 0.0 0.0 CH4 0.0 0.0 2.4310-02 0.0 0.0 C2H6 0.0 0.0 0.0 0.0 0.0 0.0 C3H8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C4H10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C5H12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 MCA 0.0 0.0 0.0 0.0 <td< td=""><td>COMPONENTS: KMOL/HR</td><td></td><td></td><td>VIII OIX</td><td>DIÃOID</td><td>MIXED</td></td<>	COMPONENTS: KMOL/HR			VIII OIX	DIÃOID	MIXED
CO 0.0 0.0 2.3027 0.0 0.0 CO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 N2 0.0 0.0 0.0 2.3027 0.0 0.0 O2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CH4 0.0 0.0 2.4310-02 0.0 0.0 CH4 0.0 0.0 0.0 0.0 0.0 0.0 CH4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CH4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 MEA 0.0 0.0 0.0 0.0 0.0 0.0 MMCL/HR 681.8751 681.8751 681.8751 681.8649 KMOL/HR 681.8751 681.8751 681.8649 KM	H2	0.0	0.0	121 8254	0 0	0 0
CO2 0.0 0.0 0.0 0.0 0.0 0.0 N2 0.0 0.0 260.6468 0.0 0.0 O2 0.0 0.0 71.3772 0.0 0.0 CH4 0.0 0.0 24310-02 0.0 0.0 C2H6 0.0 0.0 0.0 0.0 0.0 C3H8 0.0 0.0 0.0 0.0 0.0 C4H10 0.0 0.0 0.0 0.0 0.0 C5H12 0.0 0.0 0.0 0.0 0.0 C6H14 0.0 0.0 0.0 0.0 0.0 MEA 0.0 0.0 0.0 0.0 0.0 MCJHR 681.8751 681.8751 681.8751 681.8649 KG/HR 1.2284+04 1.2284+04 1.2284+04 1.2284+04 1.2284+04 CUM/SEC 5.6654-03 1.9445-02 1.6619 5.6654-03 1.9445-02 STATE VARIABLES: <td< td=""><td>CO</td><td>0.0</td><td>0.0</td><td>2 3027</td><td>0.0</td><td>0.0</td></td<>	CO	0.0	0.0	2 3027	0.0	0.0
N2 0.0 0.0 260.6468 0.0 0.0 O2 0.0 0.0 71.3772 0.0 0.0 CH4 0.0 0.0 2.4310-02 0.0 0.0 C2H6 0.0 0.0 0.0 0.0 0.0 0.0 C3H8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C4H10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C5H12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 MEA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 H2O 681.8751 681.8751 681.8751 681.8751 681.8751 681.8649 KG/HR 1.2284+04 1.2284+04 1.0021+04 1.2284+04 1.2284+04 CUM/SEC 5.6654-03 1.9445-02 1.6619 5.6654-03 1.9445-02 STATE VARIABLES: TEMP 21.0000 221.0000 <td< td=""><td>CO2</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td></td<>	CO2	0.0	0.0	0.0	0.0	0.0
O2 0.0 0.0 71.3772 0.0 0.0 CH4 0.0 0.0 71.3772 0.0 0.0 CH4 0.0 0.0 2.4310-02 0.0 0.0 C2H6 0.0 0.0 2.4310-02 0.0 0.0 C2H6 0.0 0.0 0.0 0.0 0.0 0.0 C3H8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C4H10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C5H12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C6H14 0.0 0.0 0.0 0.0 0.0 0.0 MEA 0.0 0.0 0.0 0.0 0.0 0.0 MC KK/HR 681.8751 681.8751 459.2980 681.8751 681.8649 KG/HR 1.2284+04 1.2284+04 1.2284+04 1.2284+04 1.2284+04	N2	0.0	0.0	260 6468	0.0	0.0
CH4 0.0 0.0 2.4310-02 0.0 0.0 C2H6 0.0 0.0 2.4310-02 0.0 0.0 C2H6 0.0 0.0 0.0 0.0 0.0 0.0 C3H8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C4H10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C5H12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C6H14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 MEA 0.0 0.0 0.0 3.1215 0.0 0.0 TOTAL FLOW: K6/HR <th< td=""><td>02</td><td>0.0</td><td>0.0</td><td>71 3772</td><td>0.0</td><td>0.0</td></th<>	02	0.0	0.0	71 3772	0.0	0.0
C2H6 0.0 0.0 0.0 0.0 0.0 C3H8 0.0 0.0 0.0 0.0 0.0 0.0 C4H10 0.0 0.0 0.0 0.0 0.0 0.0 C5H12 0.0 0.0 0.0 0.0 0.0 0.0 C6H14 0.0 0.0 0.0 0.0 0.0 0.0 MEA 0.0 0.0 0.0 0.0 0.0 0.0 MEX 681.8751 681.8751 681.8751 681.8649 1.2284+04 1.2284+04 1.2284+04 1.2284+04 CUM/SEC 5.6554-03 1.9445-02 1.6619 5.6654-03	CH4	0.0	0.0	2 4310-02	0.0	0.0
C3H8 0.0 0.0 0.0 0.0 0.0 0.0 C4H10 0.0 0.0 0.0 0.0 0.0 0.0 C5H12 0.0 0.0 0.0 0.0 0.0 0.0 C6H14 0.0 0.0 0.0 0.0 0.0 0.0 MEA 0.0 0.0 0.0 0.0 0.0 0.0 H2O 681.8751 681.8751 0.0 681.8751 681.8751 681.8751 AR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 TOTAL FLOW: 681.8751 681.8751 681.8751 681.8751 681.8649 KG/HR 1.2284+04 1.2284+04 1.2284+04 1.2284+04 1.2284+04 CUM/SEC 5.6654-03 1.9445-02 1.6619 5.6654-03 1.9445-02 STATE VARIABLES: TEMP 221.0000 221.0000 24.0094 24.0094 24.0094 24.0094 24.0094 24.0094 24.0094 24.0094 24.0094 24.0094 24.0094 24.0094 24.0094 24.0094	C2H6	0.0	0.0	2.4510-02	0.0	0.0
C4H10 0.0 0.0 0.0 0.0 0.0 0.0 C5H12 0.0 0.0 0.0 0.0 0.0 0.0 C6H14 0.0 0.0 0.0 0.0 0.0 0.0 MEA 0.0 0.0 0.0 0.0 0.0 0.0 MEA 0.0 0.0 0.0 0.0 0.0 0.0 MEA 0.0 0.0 0.0 0.0 0.0 0.0 MEX 0.0 0.0 0.0 0.0 0.0 0.0 MOL/HR 681.8751 681.8751 459.2980 681.8751 681.8649 KG/HR 1.2284+04 1.2284+04 1.0021+04 1.2284+04 1.2284+04 CUM/SEC 5.6654-03 1.9445-02 1.6619 5.6654-03 1.9445-02 <td< td=""><td>C3H8</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td></td<>	C3H8	0.0	0.0	0.0	0.0	0.0
C5H12 0.0 0.0 0.0 0.0 0.0 0.0 C6H14 0.0 0.0 0.0 0.0 0.0 0.0 MEA 0.0 0.0 0.0 0.0 0.0 0.0 H2O 681.8751 681.8751 0.0 681.8751 681.8751 681.8751 AR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 TOTAL FLOW: KMOL/HR 681.8751 681.8751 459.2980 681.8751 681.8649 KG/HR 1.2284+04 1.2284+04 1.0021+04 1.2284+04 1.2284+04 CUM/SEC 5.6654-03 1.9445-02 1.6619 5.6654-03 1.9445-02 STATE VARIABLES: TEMP C 221.0000 221.0000 40.0000 221.0000 221.0000 VFRAC 0.0 4.800-02 1.0000 0.9520 0.0 1.0000 0.9520 SFRAC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 J/KMOL -2.7130+08 -2.6962+08 -1.3052+05 -2.7130+08 -2.6962+0	C4H10	0.0	0.0	0.0	0.0	0.0
C6H14 0.0 </td <td>C5H12</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td>	C5H12	0.0	0.0	0.0	0.0	0.0
MEA 0.0 0.0 0.0 0.0 0.0 0.0 H2O 681.8751 681.8751 0.0 681.8751	C6H14	0.0	0.0	0.0	0.0	0.0
H2O 681.8751 681.8751 0.0 681.8751 0.0 681.8751 681.8751 0.0 681.8751	MEA	0.0	0.0	0.0	0.0	0.0
AR 0.0 0.0 3.1215 0.0 0.0 TOTAL FLOW: KMOL/HR 681.8751 681.8751 459.2980 681.8751 681.8649 KG/HR 1.2284+04 1.2284+04 1.0021+04 1.2284+04 1.2284+04 CUM/SEC 5.6654-03 1.9445-02 1.6619 5.6654-03 1.9445-02 STATE VARIABLES: TEMP C 221.0000 221.0000 40.0000 221.0000 221.0000 PRES BAR 24.0094 24.0094 2.0000 24.0094 24.0094 VFRAC 0.0 4.8000-02 1.0000 0.0 4.8000-02 LFRAC 1.0000 0.9520 0.0 1.0000 0.9520 SFRAC 0.0 0.0 0.0 0.0 0.0 0.0 J/KMOL -2.7130+08 -2.6962+08 -1.3052+05 -2.7130+08 -2.6962+08 J/KG -1.5059+07 -1.4967+07 -5982.4219 -1.5059+07 -1.4967+07 WATT -5.1386+07 -5.1070+07 -1.6652+04 -5.1386+07 -5.1069+07 J/KMOL-K -1.2552+05 -1.	H2O	681.8751	681 8751	0.0	601 0751	0.0
TOTAL FLOW: 681.8751 681.8751 459.2980 681.8751 681.8649 KG/HR 1.2284+04 1.2284+04 1.0021+04 1.2284+04 1.2284+04 CUM/SEC 5.6654-03 1.9445-02 1.6619 5.6654-03 1.9445-02 STATE VARIABLES: TEMP C 221.0000 221.0000 40.0000 221.0000 221.0000 PRES BAR 24.0094 24.0094 2.0000 24.0094 24.0094 VFRAC 0.0 4.8000-02 1.0000 0.9520 0.0 1.0000 0.9520 SFRAC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 J/KMOL -2.7130+08 -2.6962+08 -1.3052+05 -2.7130+08 -2.6962+08 J/KG -1.5059+07 -1.4967+07 -5982.4219 -1.5059+07 -1.4967+07 WATT -5.1386+07 -5.1070+07 -1.6652+04 -5.1386+07 -5.1069+07 WATT -1.2552+05 -1.2213+05 4700.2516 -1.2552+05 -1.2213+05 J/KG-K -6967.2642 -6779.5164 4700.2516 -	AR	0.0	0.0	3 1215	001.0751	681.8649
KMOL/HR 681.8751 681.8751 459.2980 681.8751 681.8649 KG/HR 1.2284+04 1.2284+04 1.2284+04 1.2284+04 1.2284+04 CUM/SEC 5.6654-03 1.9445-02 1.6619 5.6654-03 1.9445-02 STATE VARIABLES: TEMP C 221.0000 221.0000 40.0000 221.0000 221.0000 PRES BAR 24.0094 24.0094 2.0000 24.0094 24.0094 VFRAC 0.0 4.8000-02 1.0000 0.0 4.8000-02 LFRAC 1.0000 0.9520 0.0 1.0000 0.9520 SFRAC 0.0 0.0 0.0 0.0 0.0 0.0 J/KMOL -2.7130+08 -2.6962+08 -1.3052+05 -2.7130+08 -2.6962+08 J/KG -1.5059+07 -1.4967+07 -5982.4219 -1.5059+07 -1.4967+07 WATT -5.1386+07 -5.1070+07 -1.6652+04 -5.1386+07 -5.1069+07 J/KMOL-K -1.2552+05 -1.2213+05 4700.2516 -1.2552+05 -1.2213+05 J/KG-K	TOTAL FLOW:		0.0	5.1215	0.0	0.0
KG/HR 1.2284+04 1.2284+04 1.0021+04 1.2284+04 1.2284+04 CUM/SEC STATE VARIABLES: 1.9445-02 1.6619 5.6654-03 1.9445-02 STATE VARIABLES: TEMP C 221.0000 221.0000 40.0000 221.0000 221.0000 VFRAC 0.0 4.8000-02 1.0000 0.0 4.8000-02 1.0000 0.9520 SFRAC 0.0 0.0 0.9520 0.0 1.0000 0.9520 0.0 0.0 0.9520 J/KMOL -2.7130+08 -2.6962+08 -1.3052+05 -2.7130+08 -2.6962+08 -1.3052+05 -2.7130+08 -2.6962+08 WATT -5.1386+07 -5.1070+07 -1.6652+04 -5.1386+07 -5.1069+07 ENTROPY: J/KMOL-K -1.2552+05 -1.2213+05 4700.2516 -1.2552+05 -1.2213+05 J/KG-K -6967.2642 -6779.5164 4700.2516 -1.2552+05 -1.2213+05	KMOL/HR	681.8751	681.8751	459 2980	681 8751	601 0640
CUM/SEC 5.6654-03 1.9445-02 1.6619 5.6654-03 1.9445-02 STATE VARIABLES: TEMP C 221.0000 221.0000 40.0000 221.0000 221.0000 VFRAC 24.0094 24.0094 2.0000 24.0094 24.0094 VFRAC 0.0 4.8000-02 1.0000 0.0 4.8000-02 SFRAC 0.0 0.0 0.0 0.0 0.0 0.9520 STATE VARIABLES: -2.7130+08 -2.6962+08 -1.3052+05 -2.7130+08 -2.6962+08 J/KMOL -2.7130+08 -2.6962+08 -1.3052+05 -2.7130+08 -2.6962+08 J/KG -1.5059+07 -1.4967+07 -5982.4219 -1.5059+07 -1.4967+07 WATT -5.1386+07 -5.1070+07 -1.6652+04 -5.1386+07 -5.1069+07 J/KMOL-K -1.2552+05 -1.2213+05 4700.2516 -1.2552+05 -1.2213+05 J/KG-K -6967.2642 -6779.5164 215.4359 -6967.2642 -6779.5164	KG/HR	1.2284+04	1.2284+04	1.0021+04	1 2284+04	1 2204:04
STATE VARIABLES: 1.0019 5.0034-03 1.9445-02 TEMP C 221.0000 221.0000 40.0000 221.0000 221.0000 PRES BAR 24.0094 24.0094 2.0000 24.0094 24.0094 VFRAC 0.0 4.8000-02 1.0000 0.0 4.8000-02 LFRAC 1.0000 0.9520 0.0 1.0000 0.9520 SFRAC 0.0 0.0 0.0 0.0 0.0 0.0 J/KMOL -2.7130+08 -2.6962+08 -1.3052+05 -2.7130+08 -2.6962+08 J/KG -2.7130+08 -2.6962+08 -1.3052+05 -2.7130+08 -2.6962+08 MATT -5.1386+07 -5.1070+07 -1.6652+04 -5.1386+07 -5.1069+07 ENTROPY: J/KMOL-K -1.2552+05 -1.2213+05 4700.2516 -1.2552+05 -1.2213+05 J/KG-K -6967.2642 -6779.5164 215.4359 -6967.2642 -6779.5164	CUM/SEC	5.6654-03	1.9445-02	1 6619	5 6654-02	1.2284+04
TEMP C 221.0000 221.0000 40.0000 221.0000 221.0000 PRES BAR 24.0094 24.0094 2.0000 24.0094 24.0094 VFRAC 0.0 4.8000-02 1.0000 0.0 4.8000-02 LFRAC 1.0000 0.9520 0.0 1.0000 0.9520 SFRAC 0.0 0.0 0.0 0.0 0.0 0.0 ENTHALPY: J/KMOL -2.7130+08 -2.6962+08 -1.3052+05 -2.7130+08 -2.6962+08 J/KG -2.7130+08 -2.6962+08 -1.3052+05 -2.7130+08 -2.6962+08 WATT -5.1386+07 -5.1070+07 -5982.4219 -1.5059+07 -1.4967+07 WATT -5.1386+07 -5.1070+07 -1.6652+04 -5.1386+07 -5.1069+07 ENTROPY: J/KMOL-K -1.2552+05 -1.2213+05 4700.2516 -1.2552+05 -1.2213+05 J/KG-K -6967.2642 -6779.5164 215.4359 -6967.2642 -6779.5164	STATE VARIABLES:			1.0019	5.0054-05	1.9445-02
PRES BAR 24.0094 24.0094 2.0000 24.0094 24.0094 VFRAC 0.0 4.8000-02 1.0000 0.0 4.8000-02 LFRAC 1.0000 0.9520 0.0 1.0000 0.9520 SFRAC 0.0 0.0 0.0 0.0 0.0 0.0 ENTHALPY: J/KMOL -2.7130+08 -2.6962+08 -1.3052+05 -2.7130+08 -2.6962+08 J/KG -2.7130+08 -2.6962+08 -1.3052+05 -2.7130+08 -2.6962+08 MATT -5.1386+07 -5.1070+07 -5982.4219 -1.5059+07 -1.4967+07 ENTROPY: J/KMOL-K -1.2552+05 -1.2213+05 4700.2516 -1.2552+05 -1.2213+05 J/KG-K -6967.2642 -6779.5164 215.4359 -6967.2642 -6779.5164	TEMP C	221,0000	221 0000	40 0000	221 0000	001 0000
VFRAC 0.0 4.8000-02 1.0000 0.0 4.8000-02 LFRAC 1.0000 0.9520 0.0 1.0000 0.9520 SFRAC 0.0 0.0 0.0 1.0000 0.9520 ENTHALPY: 0.0 0.0 0.0 0.0 0.0 J/KMOL -2.7130+08 -2.6962+08 -1.3052+05 -2.7130+08 -2.6962+08 J/KG -2.7130+08 -2.6962+08 -1.3052+05 -2.7130+08 -2.6962+08 WATT -5.1386+07 -5.1070+07 -5982.4219 -1.5059+07 -1.4967+07 ENTROPY: -5.1386+07 -5.1070+07 -1.6652+04 -5.1386+07 -5.1069+07 J/KMOL-K -1.2552+05 -1.2213+05 4700.2516 -1.2552+05 -1.2213+05 J/KG-K -6967.2642 -6779.5164 215.4359 -6967.2642 -6779.5164	PRES BAR	24.0094	24.0094	2 0000	24 0004	221.0000
LFRAC 1.0000 0.9520 0.0 1.0000 0.9520 SFRAC 0.0 0.0 0.0 1.0000 0.9520 ENTHALPY: 0.0 0.0 0.0 0.0 0.0 0.0 J/KMOL -2.7130+08 -2.6962+08 -1.3052+05 -2.7130+08 -2.6962+08 J/KG -1.5059+07 -1.4967+07 -5982.4219 -1.5059+07 -1.4967+07 WATT -5.1386+07 -5.1070+07 -1.6652+04 -5.1386+07 -5.1069+07 ENTROPY: -1.2552+05 -1.2213+05 4700.2516 -1.2552+05 -1.2213+05 J/KG-K -6967.2642 -6779.5164 215.4359 -6967.2642 -6779.5164	VFRAC	0.0	4.8000-02	1 0000	24.0094	24.0094
SFRAC 0.0 0.0 0.0 0.0 0.0 0.0 ENTHALPY: J/KMOL -2.7130+08 -2.6962+08 -1.3052+05 -2.7130+08 -2.6962+08 J/KG -1.5059+07 -1.4967+07 -5982.4219 -1.5059+07 -1.4967+07 WATT -5.1386+07 -5.1070+07 -1.6652+04 -5.1386+07 -5.1069+07 ENTROPY: J/KMOL-K -1.2552+05 -1.2213+05 4700.2516 -1.2552+05 -1.2213+05 J/KG-K -6967.2642 -6779.5164 215.4359 -6967.2642 -6779.5164	LFRAC	1.0000	0.9520	0.0	1 0000	4.8000-02
ENTHALPY: -2.7130+08 -2.6962+08 -1.3052+05 -2.7130+08 -2.6962+08 J/KG -1.5059+07 -1.4967+07 -5982.4219 -1.5059+07 -1.4967+07 WATT -5.1386+07 -5.1070+07 -1.6652+04 -5.1386+07 -5.1069+07 ENTROPY: -1.2552+05 -1.2213+05 J/KG-K -6967.2642 -6779.5164	SFRAC	0.0	0.0	0.0	1.0000	0.9520
J/KMOL -2.7130+08 -2.6962+08 -1.3052+05 -2.7130+08 -2.6962+08 J/KG -1.5059+07 -1.4967+07 -5982.4219 -1.5059+07 -1.4967+07 WATT -5.1386+07 -5.1070+07 -1.6652+04 -5.1386+07 -5.1069+07 ENTROPY: J/KMOL-K -1.2552+05 -1.2213+05 4700.2516 -1.2552+05 -1.2213+05 J/KG-K -6967.2642 -6779.5164 215.4359 -6967.2642 -6779.5164	ENTHALPY:			0.0	0.0	0.0
J/KG -1.5059+07 -1.4967+07 -5982.4219 -1.5059+07 -1.4967+07 WATT -5.1386+07 -5.1070+07 -1.6652+04 -5.1386+07 -5.1069+07 ENTROPY: J/KMOL-K -1.2552+05 -1.2213+05 4700.2516 -1.2552+05 -1.2213+05 J/KG-K -6967.2642 -6779.5164 215.4359 -6967.2642 -6779.5164	J/KMOL	-2.7130+08	-2.6962+08	-1 3052+05	-2 7130+00	-2 6062100
WATT -5.1386+07 -5.1070+07 -1.6652+04 -5.1386+07 -5.1069+07 ENTROPY: J/KMOL-K -1.2552+05 -1.2213+05 4700.2516 -1.2552+05 -1.2213+05 J/KG-K -6967.2642 -6779.5164 215.4359 -6967.2642 -6779.5164	J/KG	-1.5059+07	-1.4967+07	-5982 4219	-1 5059+07	-2.0902+08
ENTROPY: J/KMOL-K J/KG-K DENSITY. -1.2552+05 -1.2213+05 -6967.2642 -6779.5164 -1.2552+05 -1.2213+05 215.4359 -6967.2642 -6779.5164	WATT	-5.1386+07	-5.1070+07	-1.6652+04	-5 1386+07	-1.490/+0/
J/KMOL-K J/KG-K DENSITY. -1.2552+05 -1.2213+05 -6967.2642 -6779.5164 4700.2516 -1.2552+05 -1.2213+05 215.4359 -6967.2642 -6779.5164	ENTROPY:			1.0002104	3.1300+07	-5.1069+07
J/KG-K -6967.2642 -6779.5164 215.4359 -6967.2642 -6779.5164	J/KMOL-K	-1.2552+05	-1.2213+05	4700 2516	-1 2552+05	-1 2212:05
DENCTORY. 210.1000 0007.2042 -0779.5164	J/KG-K	-6967.2642	-6779.5164	215, 4359	-6967 2642	-1.2213+05
DENSIII:	DENSITY:			-10.1000	0507.2042	-0119.5104
KMOL/CUM 33.4325 9.7406 7.6766-02 33.4325 0.7406	KMOL/CUM	33.4325	9.7406	7 6766-02	33 1335	0 7400
KG/CUM 602.2870 175.4783 1 6748 602 2870 175 4700	KG/CUM	602.2870	175.4783	1 6749	602 2070	9.7406
AVG MW 18.0150 18.0150 21.8174 18.0150 18.0150	AVG MW	18.0150	18.0150	21.8174	18.0150	18 0150

. .

Capacity increase of 20% by using a pre-reformer and extra CO₂.

 \overline{i}

EFGHL10 ---------

1

	. 	8 8 (K)			
STREAM ID FROM : TO :	E SPLIT H2105B	F H2105B DRUMMIX	G SPLIT H2107	H H2107 DRUMMIX	L10 V31 MIX2
SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HB	LIQUID	MIXED	LIQUID	MIXED	VAPOR
H2 CO CO2 N2 O2 CH4 C2H6 C3H8 C4H10 C5H12 C6H14 MEA					1.3802 1.5707 0.0 0.3822 0.0 5.5478-13 0.0 0.0 0.0 0.0 0.0 0.0 0.0
H2O AR	1022.8127	1022.7973	4432.1885	4432.1885	0.0
TOTAL FLOW:					
KMOL/HR KG/HR	1022.8127 1.8426+04	1022.7973 1.8426+04	4432.1885 7.9846+04	4432.1885 7.9846+04	3.3332 57.4859
CUM/SEC	8.4982-03	2.9167-02	3.6825-02	0.1263	2.9257-03
STATE VARIABLES:					
TEMP C PRES BAR VFRAC LFRAC SFRAC	221.0000 24.0094 0.0 1.0000 0.0	221.0000 24.0094 4.8000-02 0.9520 0.0	221.0000 24.0094 0.0 1.0000 0.0	220.9948 24.0094 4.8000-02 0.9520 0.0	-182.9165 2.3000 1.0000 0.0 0.0
ENTHALPY:	2 7120.00	2 6062+00	2 7120+00	2 6062+00	-F 0026+07
J/KG WATT	-2.7130+08 -1.5059+07 -7.7079+07	-2.6962+08 -1.4967+07 -7.6603+07	-2.7130+08 -1.5059+07 -3.3401+08	-2.6963+08 -1.4967+07 -3.3195+08	-3.3646+06 -5.3726+04
ENTROPY: J/KMOL-K	-1.2552+05	-1.2213+05	-1.2552+05	-1.2213+05	9822.3771
DENCINY.	-0907.2042	-0/19.5104	-0907.2042	-0119.3129	309.3337
KMOL/CUM	33.4325	9.7406	33.4325	9.7408	0.3164
AVG MW	18.0150	18.0150	18.0150	18.0150	17.2463

.

-

1 S S S				× .	
L11 L13 L2 L22 L28					
		8 mo	2.10.24	a v	
STREAM ID	L11	L13	L2	L22	L28
FROM :	T24	V47	E21	E23A	V6
то :	T22MIX	MIX2	E22	E21	T23
SUBSTREAM: MIXED					
PHASE:	LIOUID	MIXED	VADOD	VADOD	MTVDD
COMPONENTS: KMOL/HR			VALUK	VAPOR	MIXED
H2	3.3576-04	1.0488-16	169.5058	165 4575	2 6670
CO	20.0260	2.0751-03	63 0220	2 1402	41 4002
C02	0.0	0.0	0.0	0.0	41.4093
N2	3.2569	5.2416-05	8 5417	1 1522	4 1010
02	0.0	0.0	0.0	1.1523	4.1219
CH4	1.0083-03	8.0655	8 1588	0.0	0.0
C2H6	0.0	0.0	0.0	0.0	0.1288
СЗН8	0.0	0.0	0.0	0.0	0.0
C4H10	0.0	0.0	0.0	0.0	0.0
C5H12	0.0	0.0	0.0	0.0	0.0
C6H14	0.0	0.0	0.0	0.0	0.0
MEA	0.0	0.0	0.0	0.0	0.0
H2O	0.0	0.0	0.0	0.0	0.0
AR	0.0	0.0	0.0	0.0	0.0
TOTAL FLOW:			0.0	0.0	0.0
KMOL/HR	23.2844	8.0676	249 2284	169 7502	56 2570
KG/HR	652,1853	129 4550	2477 1415	109.7592	30.35/9
CUM/SEC	2.7401-04	1 3819-04	2 1770-02	434.05/0	1411.6139
STATE VARIABLES:	2.1101-04	1.3019-04	2.1/10-02	9.1230-02	3.5953-03
TEMP C	-169.2568	-151.3295	-157.6000	-176 1000	-176 5220
PRES BAR	7.6000	2.1500	28.1000	3 9000	5 4700
VFRAC	0.0	4.9670-03	1.0000	1 0000	0 1460
LFRAC	1.0000	0.9950	0.0	0.0	0.1402
SFRAC	0.0	0.0	0.0	0.0	0.0538
ENTHALPY:	10 million -		0.0	0.0	0.0
J/KMOL	-1.0609+08	-8,9035+07	-3.5809+07	-7 4449+06	-1 0336+00
J/KG	-3.7878+06	-5.5487+06	-3,6028+06	-2.7834+06	-4 1267+06
WATT	-6.8621+05	-1.9953+05	-2.4791+06	-3.5107+05	-1 6192+06
ENTROPY:				5.5107405	-1.0102400
J/KMOL-K	-1.6536+04	-1.8353+05	-2.8668+04	-3 7003+04	-2 6057104
J/KG-K	-590.3831	-1.1438+04	-2884 3464	-1 4201+04	-3.005/+04
DENSITY:		2.2300.04	2001.3404	-1.4201+04	-1439.5/51
KMOL/CUM	23.6046	16 2173	3 1800	0 4940	1 2540
KG/CUM	661.1542	260.2266	31 6070	1 2072	4.3542
AVG MW	28.0095	16.0461	9 9393	2 6747	109.0621
	0	10.0101	5.5552	2.0/4/	23.04/3

•

L29 L3 L30 L31 L33					
		6 ¥	57		
STREAM ID	L29	L3	L30	L31	L33
FROM :	T23	E22	V9	T24	V8
TO :	V29	T21	T24	V31	T22
SUBSTREAM . MIXED					
PHASE:	VAPOR	MIXED	MTXED	VAPOR	MTXED
COMPONENTS: KMOL/HB					
H2	2,6672	169.5058	1.3805	1.3802	6.1273-04
CO	4.4905	63.0220	18.4633	1.5707	36.9187
CO2	0.0	0.0	0.0	0.0	0.0
N2	0.6224	8.5417	3.2674	0.3822	3.4994
02	0.0	0.0	0.0	0.0	0.0
CH4	7.5965-02	8.1588	0.0	5.5478-13	8.0828
C2H6	0.0	0.0	0.0	0.0	0.0
СЗН8	0.0	0.0	0.0	0.0	0.0
C4H10	0.0	0.0	0.0	0.0	0.0
C5H12	0.0	0.0	0.0	0.0	0.0
C6H14	0.0	0.0	0.0	0.0	0.0
MEA	0.0	0.0	0.0	0.0	0.0
H2O	0.0	0.0	0.0	0.0	0.0
AR	0.0	0.0	0.0	0.0	0.0
TOTAL FLOW:					
KMOL/HR	7.8562	249.2284	23.1112	3.3332	48.5017
KG/HR	149.8133	2477.1415	611.4703	57.4859	1261.8005
CUM/SEC	2.9641-03	1.9781-02	1.0070-03	8.7966-04	4.9050-03
STATE VARIABLES:					
TEMP C	-177.5619	-164.8000	-176.6341	-177.5691	-181.3971
PRES BAR	5.4000	28.0000	7.8500	7.6000	2.3830
VFRAC	1.0000	0.9774	0.1329	1.0000	0.1110
LFRAC	0.0	2.2554-02	0.8670	0.0	0.8889
SFRAC	0.0	0.0	0.0	0.0	0.0
ENTHALPY:	c				
J/KMOL	-6.9862+07	-3.6146+07	-9.9024+07	-5.8027+07	-1.0853+08
J/KG	-3.6636+06	-3.6366+06	-3./42/+06	-3.3646+06	-4.1/19+06
WATT	-1.5246+05	-2.5024+06	-6.35/1+05	-5.3/2/+04	-1.4622+06
ENTROPY:	1 1175.04		1 0745.04	441 0500	4 0 6 7 0 1 0 4
J/KMOL-K	1.11/5+04	-3.1668+04	-1.8/45+04	441.2539	-4.06/8+04
J/KG-K	586.0345	-3186.1100	-708.4910	25.5853	-1563.5849
DENSITY:	0 7360	2 4007	6 2740	1 0505	0 7467
KMOL/COM	14 0207	3.499/	160 6645	10 1520	2./40/
AVC MW	10 0604	0 0202	26 1576	17 2462	26 0155
AVG HW	19.0094	9.9392	20.4370	11.2403	20.0155

÷

L35 L36 L37 L38 L39					
STREAM ID FROM : TO :	L35 E21 SPLIT1	L36 SPLIT1 E22B	L37 E22B V37	L38 SPLIT1 E24	L39 SPLIT1 V39
SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR
H2 CO CO2 N2	1.7515-04 10.5151 0.0 1.2476	2.7323-05 1.6403 0.0 0.1946	2.7323-05 1.6403 0.0 0.1946	9.5631-05 5.7412 0.0 0.6812	5.2194-05 3.1335 0.0 0.3718
CH4 C2H6 C3H8 C4H10	0.0 3.3834-03 0.0 0.0	0.0 5.2782-04 0.0 0.0	0.0 5.2782-04 0.0 0.0	0.0 1.8474-03 0.0 0.0	0.0 1.0083-03 0.0 0.0
C5H12 C6H14 MEA H2O	0.0 0.0 0.0 0.0	0.0	0.0		0.0 0.0 0.0
AR TOTAL FLOW: KMOL/HR	. 0.0	0.0	0.0	0.0	0.0
KG/HR CUM/SEC STATE VARIABLES:	329.5331 3.0025-03	51.4071 4.6839-04	51.4071 4.3866-04	6.4244 179.9250 1.6394-03	3.5063 98.2008 8.9475-04
TEMP C PRES BAR VFRAC LFRAC SFRAC ENTHALPY:	-155.1000 9.2000 1.0000 0.0 0.0	-155.1000 9.2000 1.0000 0.0 0.0	-160.8000 9.1000 1.0000 0.0 0.0	-155.1000 9.2000 1.0000 0.0 0.0	-155.1000 9.2000 1.0000 0.0 0.0
J/KMOL J/KG WATT ENTROPY:	-1.0452+08 -3.7318+06 -3.4160+05	-1.0452+08 -3.7318+06 -5.3290+04	-1.0472+08 -3.7390+06 -5.3392+04	-1.0452+08 -3.7318+06 -1.8651+05	-1.0452+08 -3.7318+06 -1.0180+05
J/KMOL-K J/KG-K DENSITY:	3.5433+04 1265.1585	3.5433+04 1265.1585	3.3762+04 1205.5077	3.5433+04 1265.1585	3.5433+04 1265.1585
KMOL/CUM KG/CUM AVG MW	1.0885 30.4869 28.0064	1.0885 30.4869 28.0064	1.1623 32.5531 28.0064	1.0885 30.4869 28.0064	1.0885 30.4869 28.0064

•

.

L4 L40 L41 L42 L43

80

STREAM ID FROM : TO :	L4 CO2 E23A	L40 V39 T24	L41 E24 V41	L42 V41 T22MIX	L43 V37 T22MIX
SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR
H2 CO CO2 N2 O2 CH4 C2H6 C3H8 C4H10 C5H12 C6H14 MEA H2O AR	165.4575 3.1493 0.0 1.1523 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	5.2194-053.13350.00.37180.01.0083-030.00.00.00.00.00.00.00.00.00	$\begin{array}{c} 9.5631-05\\ 5.7412\\ 0.0\\ 0.6812\\ 0.0\\ 1.8474-03\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	$\begin{array}{c} 9.5631-05\\ 5.7412\\ 0.0\\ 0.6812\\ 0.0\\ 1.8474-03\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	$\begin{array}{c} 2.7323-05\\ 1.6403\\ 0.0\\ 0.1946\\ 0.0\\ 5.2782-04\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$
TOTAL FLOW: KMOL/HR KG/HR CUM/SEC	169.7592 454.0570 9.4906-03	3.5063 98.2008 1.0383-03	6.4244 179.9250 1.6065-03	6.4244 179.9250 5.9692-03	1.8355 51.4071 1.6354-03
STATE VARIABLES: TEMP C PRES BAR VFRAC LFRAC SFRAC FNTHALBY.	-201.5000 27.3000 1.0000 0.0 0.0	-156.8291 7.9500 1.0000 0.0 0.0	-157.6000 9.1000 1.0000 0.0 0.0	-167.5125 2.5000 1.0000 0.0 0.0	-171.2923 2.5000 1.0000 0.0 0.0
J/KMOL J/KG WATT	-8.2016+06 -3.0663+06 -3.8675+05	-1.0451+08 -3.7318+06 -1.0180+05	-1.0460+08 -3.7348+06 -1.8666+05	-1.0460+08 -3.7348+06 -1.8666+05	-1.0472+08 -3.7390+06 -5.3392+04
J/KMOL-K J/KG-K DENSITY:	-6.2914+04 -2.3522+04	3.6491+04 1302.9424	3.4787+04 1242.0889	4.4561+04 1591.1113	4.3436+04 1550.9302
KMOL/CUM KG/CUM AVG MW	4.9686 13.2896 2.6747	0.9380 26.2724 28.0064	1.1108 31.1114 28.0064	0.2989 8.3728 28.0064	0.3117 8.7316 28.0064

.

.

Capacity increase of 20% by using a pre-reformer and extra CO₂.

L44 L46 L47 T.48 T.49					
	1	×			
STREAM ID	T.44	T.4.6	T 47	7.40	
FROM :	T22MTX	E25-27	L4 /	L48	L49
TO :	E25-27	T22	122	MIX2	T22
		166	V47	EZT	E21
SUBSTREAM: MIXED					
PHASE:	MIXED	LTOUTD	TTOTTT	MTYDD	
COMPONENTS: KMOL/HR			TIGOID	MIXED	VAPOR
H2	4.5872-04	4.5872-04	1 0488-14		1 0714 00
CO	27.4076	27.4076	2 0751-03		1.0/14-03
C02	0.0	0.0	0 0	0.0033	64.3243
N2	4.1328	4 1328	5 2416-05	1 0045	0.0
02	0.0	0.0	0.0	1.0047	7.6322
CH4	3.3834-03	3 3834-03	0.0	0.0	0.0
C2H6	0.0	0.0	0.0055	8.1415	2.0697-02
СЗН8	0.0	0.0	0.0	0.0	0.0
C4H10	0.0	0.0	0.0	0.0	0.0
C5H12	0.0	0.0	0.0	0.0	0.0
C6H14	0.0	0.0	0.0	0.0	0.0
MEA	0.0	0.0	0.0	0.0	0.0
H2O	0.0	0.0	0.0	0.0	0.0
AR	0.0	0.0	0.0	0.0	0.0
TOTAL FLOW:		0.0	0.0	0.0	0.0
KMOL/HR	31,5443	31 5443	0 0676	10 0571	
KG/HR	883.5176	883 5176	120 4550	19.25/1	71.9784
CUM/SEC	1.0005-02	3 2511-04	129.4550	336.7543	2015.8630
STATE VARIABLES:	1.0000 02	5.2511-04	8.9359-05	1.2264-02	6.1283-02
TEMP C	-183.1444	-184.5000	-150 6756	170 6000	
PRES BAR	2.5000	2.3250	2 2500	-1/2.0032	-184.0300
VFRAC	0.4043	0.0	0.0	2.1500	2.2500
LFRAC	0.5956	1,0000	1 0000	0.0034	1.0000
SFRAC	0.0	0.0	1.0000	0.3965	0.0
ENTHALPY:		0.0	0.0	0.0	0.0
J/KMOL	-1.0571+08	-1 0808+08	-8 9025+07	7 5045.07	
J/KG	-3.7742+06	-3.8587+06	-5 5487+06	-1.3845+07	-1.0510+08
WATT	-9.2626+05	-9.4702+05	-1 9953+05	-4.3372+06	-3.7527+06
ENTROPY:			1.9933+03	-4.05/1+05	-2.1014+06
J/KMOL-K	235.1010	-2,6093+04	-1 8353+05	-6 5744.04	1 00.00
J/KG-K	8.3938	-931 6042	-1 1439+04	-0.5/44+04	4.0241+04
DENSITY:		201.0012	1.1430+04	-3/39.5362	1436.8414
KMOL/CUM	0.8757	26.9521	25 0700	0 4261	0 00 00
KG/CUM	24.5288	754.8952	402 4194	7 6071	0.3262
AVG MW	28.0087	28 0087	16 0461	1.02/1	9.1372
		20.0007	10.0401	11.48/2	28.0064

e.

×

A5-78

.....

L6 L7 L8 L9 LB					ж.
		N 19			
STREAM ID FROM : TO :	L6 T21 V6	L7 V29 MIX2	L8 T23 V8	L9 SPLIT2 V9	LB T21 MIX1
SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HB	LIQUID	VAPOR	FIÕAID	LIQUID	VAPOR
H2 CO CO2 N2 O2 CH4 C2H6 C3H8 C4H10 C5H12 C6H14 MEA H2O AR	2.6678 41.4093 0.0 4.1219 0.0 8.1588 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	$\begin{array}{c} 2.6672 \\ 4.4905 \\ 0.0 \\ 0.6224 \\ 0.0 \\ 7.5965-02 \\ 0.0 \end{array}$	$\begin{array}{c} 6.1273-04\\ 36.9187\\ 0.0\\ 3.4994\\ 0.0\\ 8.0828\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$	1.3805 18.4633 0.0 3.2674 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	170.841875.15910.013.89570.04.4772-130.00.00.00.00.00.00.00.00.00.
TOTAL FLOW:					
KMOL/HR KG/HR CUM/SEC	56.3579 1411.6139 6.3119-04	7.8562 149.8133 7.0041-03	48.5017 1261.8005 5.3431-04	23.1112 611.4703 2.6565-04	2838.8867 1.9508-02
STATE VARIABLES:	160 0064	101 1001	171 2206	171 5000	171 2117
TEMP C PRES BAR VFRAC LFRAC SFRAC	27.3000 0.0 1.0000 0.0	2.3000 1.0000 0.0 0.0	-171.3306 5.4000 0.0 1.0000 0.0	27.3470 0.0 1.0000 0.0	27.3000 1.0000 0.0 0.0
ENTHALPY: J/KMOL J/KG WATT	-1.0336+08 -4.1267+06 -1.6182+06	-6.9861+07 -3.6635+06 -1.5246+05	-1.0853+08 -4.1719+06 -1.4622+06	-9.9024+07 -3.7427+06 -6.3572+05	-3.7786+07 -3.4592+06 -2.7279+06
ENTROPY: J/KMOL-K J/KG-K	-3.7730+04 -1506.3322	1.7899+04 938.6122	-4.1162+04 -1582.1958	-2.0135+04 -761.0243	-2.6796+04 -2453.1805
DENSITY: KMOL/CUM KG/CUM AVG MW	24.8023 621.2319 25.0473	0.3115 5.9414 19.0694	25.2153 655.9905 26.0155	24.1661 639.3788 26.4576	3.7006 40.4229 10.9231

2

Capacity increase of 20% by using a pre-reformer and extra CO₂.

LC LD LE LF LG					
STREAM ID	LC	TD		· · · ·	
FROM :	CO1		LE	LF	LG
TO	COI	COL	C02	MIXI	SPLIT2
	02	SPLIT2	MIX1	COl	T21
SUBSTREAM: MIXED					
PHASE:	VAPOR	LIOUID	TTOUTD	MIVED	TTOUTD
COMPONENTS: KMOL/HR			278010	MIXED	PICOID
H2	169.5810	5 39/3	4 1005	174 0000	
CO	71 5056	72 0007	4.1235	1/4.9653	4.0038
CO2	11.5056	12.0097	68.3562	143.5153	53.5464
N2	16.0040	0.0	0.0	0.0	0.0
02	10.3949	12.7434	15.2426	29.1384	9.4760
CHA	0.0	0.0	0.0	0.0	0.0
C246	0.0	0.0	0.0	4.4772-13	0.0
0200	0.0	0.0	0.0	0.0	0.0
CSHO	0.0	0.0	0.0	0.0	0 0
C4H10	0.0	0.0	0.0	0.0	0.0
C5H12	0.0	0.0	0.0	0.0	0.0
C6H14	0.0	0.0	0.0	0.0	0.0
MEA	0.0	0.0	0.0	0.0	0.0
H20	0.0	0.0	0.0	0.0	0.0
AR	0.0	0.0	0.0	0.0	0.0
TOTAL FLOW:				0.0	0.0
KMOL/HR	257.4816	90 1375	87 7000	247 6101	CD 0000
KG/HR	2804.0201	2384 8200	2240 0622	547.0191	67.0263
CUM/SEC	1,9258-02	1 0361-03	2349.9032	5188.8500	1//3.3595
STATE VARIABLES:		1.0001-00	0.0929-04	1.8421-02	7.7044-04
TEMP C	-171,5000	-171 5000	-201 5000	174 0004	171 5000
PRES BAR	27.3470	27 3470	27 2000	-174.9624	-171.5000
VFRAC	1 0000	0.0	27.3000	27.3000	27.3470
LFRAC	0.0	1 0000	0.0	0.6661	0.0
SFRAC	0.0	1.0000	1.0000	0.3338	1.0000
ENTHALPY:	0.0	0.0	0.0	0.0	0.0
J/KMOL	-3 6520+07	-9 9024107	0 0714.07		s
J/KG	-3 3535+06	-3.3024+07	-9.8/14+0/	-5.3161+07	-9.9024+07
WATT	-2 6120+06	-3.1421+06	-3.6849+06	-3.5614+06	-3.7427+06
ENTROPY:	2.0120+00	-2.4/94+06	-2.4054+06	-5.1333+06	-1.8437+06
J/KMOL-K	-2 7760.04	0.0105.04			
J/KG-K	-2.1700+04	-2.0135+04	-4.2864+04	-3.0114+04	-2.0135+04
DENSTTY.	-2549.1155	-/61.0243	-1600.0736	-2017.4628	-761.0243
KMOL/CUM	2 7100				
KC/CIIM	3.7139	24.1661	30.1097	5.2419	24.1661
AVC MET	40.4452	639.3788	806.5977	78.2448	639.3788
AVG MW	10.8901	26.4576	26.7886	14.9268	26.4576

•

LIQ MEASUMP OUT STM	STMFD				
STREAM TO	T.TO	MEACIMO	OUT	CUM	COMPD
FROM :	V2103	V2116	V2118	V2103	DDIMMTY
TO :	SPLTT	V2110	V2110	V2103	W2102
ವರ್ಷ ಶ	OLDII				V2105
SUBSTREAM: MIXED					
PHASE:	LIOUID	LIOUID	MIXED	VAPOR	MIXED
COMPONENTS: KMOL/HR					
H2	0.0	1.9042-07	1.0231	0.0	0.0
CO	0.0	4.2828-08	0.3804	0.0	0.0
CO2	0.0	6.6332-09	1.1361-02	0.0	0.0
N2	0.0	5.3378-09	5.1560-02	0.0	0.0
02	0.0	0.0	0.0	0.0	0.0
CH4	0.0	5.8723-08	4,9248-02	0.0	0.0
C2H6	0.0	0.0	2.1401-04	0.0	0.0
СЗН8	0.0	0.0	1.3686-08	0.0	0.0
C4H10	0.0	0.0	0.0	0.0	0.0
C5H12	0.0	0.0	0.0	0.0	0.0
C6H14	0.0	0.0	0.0	0.0	0.0
MEA	0.0	1.2770-06	4.6927-03	0.0	0.0
H2O	6818.7515	0.2116	0.4310	299.6862	6818,6876
AR	0.0	0.0	0.0	0.0	0.0
TOTAL FLOW:					
KMOL/HR	6818.7515	0.2116	1.9516	299.6862	6818,6876
KG/HR	1.2284+05	3.8121	23.5105	5398.8474	1.2284+05
CUM/SEC	5.6654-02	1.4178-06	3.9118-04	0.1286	0.1944
STATE VARIABLES:					
TEMP C	221.0000	40.0000	35.0000	221.0000	221.0000
PRES BAR	24.0094	10.3000	28.3000	24.0094	24.0094
VFRAC	0.0	0.0	0.7799	1.0000	4.7995-02
LFRAC	1.0000	1.0000	0.2200	0.0	0.9520
SFRAC	0.0	0.0	0.0	0.0	0.0
ENTHALPY:					
J/KMOL	-2.7130+08	-2.8770+08	-8.9605+07	-2.3648+08	-2.6962+08
J/KG	-1.5059+07	-1.5970+07	-7.4384+06	-1.3127+07	-1.4967+07
WATT	-5.1386+08	-1.6911+04	-4.8578+04	-1.9686+07	-5.1069+08
ENTROPY:		11			
J/KMOL-K	-1.2552+05	-1.6656+05	-3.8272+04	-5.5051+04	-1.2213+05
J/KG-K	-6967.2642	-9245.2464	-3177.0782	-3055.8504	-6779.5357
DENSITY:					and an an an and the second of MI
KMOL/CUM	33.4325	41.4597	1.3859	0.6470	9.7413
KG/CUM	602.2870	746.9079	16.6950	11.6559	175.4911
AVG MW	18.0150	18,0152	12,0462	18,0150	18 0150

A5-81

٦,

Appendix 6

H-2109 A/B	tube side rich MEA (282)	shel lean (281	l side MEA	
old flows (kg/hr)	21094.7	197	07.9	
new flows (kg/hr)	24688.47	230)58.30	
specific heat (kcal/kg °C)	0.930	0.88		
temperatures in/out (°C)	120/88	72/103		
U, overall heat transfer coeffi	ient (kcal/m ² °C	hr)	615	
ΔT_{im} , log mean temperature d	lifference (°C)		16.5	
_F t, temperature correction fact	tor		0.82	
ΔT_m , true temperature difference (°C) 13.5				
A, old surface installed (m ²) 70.4				

Design of new heat exchangers in the MEA-section.

The following formula has been used to globally estimate the new temperatures using the old unchanged heat exchangers in combination with the new larger flows.

$U^*A^*\Delta T_{lm} = (flow in$	tubes)* C_p *(T	$_1-T_2$)=(flow in	shell)* C_p *(t_2 - t_1)
----------------------------------	-------------------	---------------------	----------------------------------

form. A6.1

Iteration gives:

	rich MEA 120-90		lean l	MEA	
new temperatures (°C)			72-101		
H-2108		tube side cooling water		shell side lean MEA (281)	
old flows (kg/hr)		85593		21958.3	
new flows (kg/hr)		_		23058.30	
specific heat (kcal/kg °C)		0.998		0.905	
temperatures in/out (°C)		25/-		88/40	
U, overall heat transfer coeffient (kcal/m ² °C hr)	700				
--	------				
_F t, temperature correction factor	0.89				
A, old surface installed (m ²)	50				

Formula A6.1 has been used to estimate the new temperatures using the unchanged heat exchanger.

Iteration gives:

	cooling water	lean MEA
new temperatures (°C)	25-30	88-40

With this result comes a new cooling water flow of 200731.98 kg/hr and a cooling water velocity of 0.9 m/s. This velocity exceeds the maximum allowable velocity of 0.5 m/s.

•

The calculation of the maximum flows in the absorber and stripping column.

fig. A6.1

The term K_4 is the function:

$$K_{4} = \frac{42.9(V_{w}^{*})^{2}F_{p}(\frac{\mu_{l}}{\rho_{l}})^{0}.1}{\rho_{v}(\rho_{l}-\rho_{v})}$$

1

 $V_w = gas mass flow-rate per unit column cross sectional area, kg/m²s <math>F_p = packing factor$, characteristic of the size and type of packing $v_1 = liquid$ viscosity, Ns/m² $\rho_l, \rho_v = liquid$ and vapour densities, kg/m³

form. 6.2

$$0.8 = \frac{42.9(vapourflow,kg/s)^2 22(\frac{6.67 \times 10^{-4}}{1076.2})}{(\frac{\pi}{4}0.75^2)^2 5.66(1076.2 - 5.66)}$$

For the absorber $F_{lv} = 0.43$ so $K_4 = 0.8$ at 70% flooding. With the current diameter the absorber has a maximum vapour flow of 7365,63 kg/hr.

So the absorber is at half of its maximum capacity in the current proces.

For the stripper $F_{lv}=0.20$ so $K_4 = 1.9$ With the current diameter and at almost 90% flooding the maximum vapour flow is 5184 kg/hr.

$$1.9=42.9(vapourflow,kg/s)^{2}29(\frac{3.95*10^{-4}}{824,6118})^{0.1}$$

With an actual flow of 4473.6 kg/hr 17% capacity increase is possible but this is at a very high percentage flooding.

	MEA-absorber V-2105	MEA-stripper V-2106
F _{lv}	0.43	0.196
K ₄	0.8	1.9
Max. vapour flow (kg/s)	7365.63	5200
Possible capacity increase (%)	109	16

The new flows in the stripper are the following:

(kg/hr)	KTI 281	New 281
CO ₂	421.7	485
MEA	5321.1	6120
H ₂ O	13965.1	15920
Total mass flow	19707.9	22525

	KTI 212	New 212
H ₂	300.5	326.6
СО	1498.1	1811.32
CO ₂	1380.6	1615,68
N ₂	245.4	225,4
CH₄	69	86,72
H ₂ O	27.9	31,4
Total mass flow	2138.7	4097,12

The new flows in the absorber are the following:

port for Block: V2105 escription:

Stage	LIQUID SIGMAMX	LIQUID RHOMX	VAPOR RHOMX	LIQUID MUMX	VAPOR MUMX	LIQUID MASSFLMX	VAPOR MASSFLMX
	N/M	KG/CUM	KG/CUM	N-SEC/SQM	N-SEC/SQM	KG/SEC	KG/SEC
_1 _3 _4 _5 _6 _7 _8 _9 _10 _11 _12 _13	.0881417 .0881387 .0881346 .0881291 .0881215 .0881113 .0880975 .0880788 .0880536 .0880197 .0879739 .0879122 .0878289	907.0558 907.0505 907.0432 907.0331 907.0194 907.0008 906.9756 906.9414 906.8953 906.8329 906.7486 906.6346 906.4805	3.896868 3.898998 3.901176 3.903423 3.905762 3.908228 3.910861 3.913721 3.916885 3.920458 3.920458 3.924580 3.929437 3.935282	5.65301E-4 5.65281E-4 5.65254E-4 5.65218E-4 5.65168E-4 5.65100E-4 5.65009E-4 5.64886E-4 5.64719E-4 5.64495E-4 5.64192E-4 5.63784E-4 5.63233E-4	1.40398E-5 1.40402E-5 1.40408E-5 1.40415E-5 1.40426E-5 1.40439E-5 1.40458E-5 1.40483E-5 1.40516E-5 1.40561E-5 1.40622E-5 1.40704E-5 1.40814E-5	5.474465 5.474528 5.474614 5.474731 5.474891 5.475106 5.475397 5.475790 5.476321 5.477036 5.478000 5.479300 5.481055	.5948598 .5949079 .5949711 .5950573 .5951746 .5953338 .5955491 .5958402 .5962333 .5967636 .5974787 .5984432 .5997437
_13 _14 _15 _16 _17 _18 _19 _20	.0877165 .0875639 .0873537 .0870436 .0864608 .0847227 .0758731	906.2715 905.9862 905.5866 904.9662 903.6369 899.0018 387.4863	3.942443 3.951346 3.962456 3.975760 3.987306 3.970738 3.839470	5.62489E-4 5.61479E-4 5.60085E-4 5.58016E-4 5.54064E-4 5.42024E-4 4.85324E-4	1.40963E-5 1.41164E-5 1.41441E-5 1.41842E-5 1.42557E-5 1.44553E-5 1.51915E-5	5.483424 5.486629 5.491002 5.497170 5.507290 5.534908 5.854966	.6014981 .6038671 .6070727 .6114449 .6176137 .6277335 .6553509

port for Block: V2106 escription:

Stage	LIQUID SIGMAMX	LIQUID RHOMX	VAPOR RHOMX	LIQUID MUMX	VAPOR MUMX	LIQUID MASSFLMX	VAPOR MASSFLMX
	N/M	KG/CUM	KG/CUM	N-SEC/SQM	N-SEC/SQM	KG/SEC	KG/SEC
$ \begin{array}{c} 1 \\ -2 \\ -3 \\ -5 \\ -7 \\ -7 \\ -9 \\ -11 \\ -12 \\ -14 \\ -16 \\ -17 \\ -17 \\ -17 \\ -17 \end{array} $.0737715 .0705134 .0704665 .0700196 .0639577 .0638935 .0638905 .0639014 .0639156 .0639306 .0639459 .0639459 .0639618 .0639790 .0639985 .0640222 .0640528 .0640698	915.7708 905.5043 904.8457 896.8499 839.4263 838.2835 837.7270 837.3967 837.1726 837.0046 836.8678 836.7483 836.6368 836.5258 836.4078 836.2663 835.8208	1.510871 1.131136 1.128907 1.122500 1.091829 1.053035 1.034668 1.024062 1.017038 1.011891 1.007792 1.004283 1.001081 .9979685 .9947418 .9911574 .9868947	$\begin{array}{c} \hline 4.49126E-4\\ 4.29653E-4\\ 4.29423E-4\\ 4.27446E-4\\ 4.00805E-4\\ 4.00317E-4\\ 4.00252E-4\\ 4.00252E-4\\ 4.00257E-4\\ 4.00357E-4\\ 4.00514E-4\\ 4.00514E-4\\ 4.00600E-4\\ 4.00803E-4\\ 4.00936E-4\\ 4.01110E-4\\ 4.01268E-4\\ \end{array}$	$\begin{array}{c} 1.59247E-5\\ 1.41703E-5\\ 1.41703E-5\\ 1.41566E-5\\ 1.39529E-5\\ 1.39529E-5\\ 1.36796E-5\\ 1.35445E-5\\ 1.35445E-5\\ 1.34647E-5\\ 1.34111E-5\\ 1.33714E-5\\ 1.33714E-5\\ 1.32868E-5\\ 1.32868E-5\\ 1.32621E-5\\ 1.32075E-5\\ 1.31728E-5\\ \end{array}$.9140364 .9317327 1.265030 1.279534 6.710503 6.716703 6.719707 6.721461 6.722644 6.723507 6.724185 6.724760 6.725276 6.725777 6.726311 6.727025 6.732074	.6588332 1.572870 1.590499 1.649576 1.217759 1.240083 1.246283 1.249287 1.251041 1.252224 1.253765 1.254340 1.254340 1.254856 1.255357 1.255890 1.256605

APPENDIX 7

Capacities of the columns

The actual capacities of the columns in the coldbox are estimated with the following equations and diagrams:

$$F_{lg} = \frac{M_l}{M_g} \sqrt{\frac{\rho_g}{\rho_l}}$$
 form. A7.1

With this equation the C_{tr} is determinded from the Fair diagram.

$$U_{g,\max} = C_{tr}, v \sqrt{\frac{\rho_l - \rho_g}{\rho_g}}$$
 form. A7.2

This is the Souders equation which gives the maximum gas velocity of the gas in meter per second.

The C_{tr} is multiplied by the surface tension correction factor (STCF), because of the low liquid surface tension, which gives a deviation from the standard case.

form. A7.3

$$C_{tr,new} = C_{tr} \left(\frac{\sigma}{0.02}\right)^{0.2}$$

$$M_{g,\max} = \rho_g U_{g,\max}(\frac{\pi}{4}d_{col}^2)$$

This	gives	the	maximum	gas	flow	in	kg/s.	

	T 21	T 22	T 23	T 24
F _{lg}	0.15	0.044	1.89	0.44
C _{tr}	0.066	0.070	0.018	0.045
STFC	0.75	0.82	0.82	0.74
U _{g,max} (m/s)	0.201	0.518	0.114	0.154
M _{g,max} (kg/s)	0.938	0.595	0.168	0.572
M _{g,old} (kg/s)	0.500	0.347	0.0164	0.0587
maximum capacity increase (%)	87.5	71.4	925	874.6

form. A7.4

port for Block: T21 escription:

Stage	LIQUID SIGMAMX	LIQUID RHOMX	VAPOR RHOMX	LIQUID MASSFLMX	VAPOR MASSFLMX	LIQUID MUMX	VAPOR MUMX
	N/M	KG/CUM	KG/CUM	KG/SEC	KG/SEC	N-SEC/SQM	N-SEC/SQM
1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 8 9 0 1 1 2 3 4 5 8 9 0 1 1 2 3 4 5 8 9 0 1 1 2 3 4 5 8 9 0 1 1 2 3 4 5 8 9 0 1 1 2 3 4 5 8 9 0 1 1 2 3 4 5 1 2 1 1 2 3 4 5 1 1 1 2 3 4 5 1 1 2 1 1 2 1 1 2 3 4 5 1 1 2 1 1 2 1 1 2 3 4 5 1 1 1 2 3 4 5 1 1 2 1 1 2 3 4 5 1 1 2 1 1 2 1 1 2 3 4 5 1 1 2 1 1 2 1 1 2 3 4 5 1 1 2 1 1 2 3 4 5 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 2 1 1 2 1 1 2 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1	4.79088E-3 4.74532E-3 4.74562E-3 4.74566E-3 4.74663E-3 4.74702E-3 4.74705E-3 4.74688E-3 4.74688E-3 4.74660E-3 4.74660E-3 4.74586E-3 4.74586E-3 4.74545E-3 4.74458E-3 4.74438E-3 4.74486E-3 4.74486E-3 4.74486E-3 4.74486E-3 4.74895E-3 4.74895E-3 4.77106E-3 4.88223E-3 5.41872E-3	652.6718 650.7390 650.5099 650.4575 650.4266 650.3757 650.3522 650.3292 650.3066 650.2842 650.2618 650.2167 650.1921 650.1921 650.1585 650.0796 649.7726 648.2548 639.1665	$\begin{array}{r} 36.66274\\ 37.08353\\ 37.08773\\ 37.06915\\ 37.05930\\ 37.05664\\ 37.05833\\ 37.06253\\ 37.06817\\ 37.07463\\ 37.08155\\ 37.08155\\ 37.08875\\ 37.09608\\ 37.10342\\ 37.11044\\ 37.11560\\ 37.11144\\ 37.06098\\ 36.78384\\ 35.46829 \end{array}$.3054832 .3060007 .3057463 .3055508 .3054394 .3053545 .3053545 .3053454 .3053454 .3053637 .3053757 .3053879 .3053879 .3053867 .3053853 .3052723 .3046550 .3015641 .2870288 .2569722	.4863845 .4992052 .4997225 .4994685 .4992735 .4991625 .4991047 .4990778 .4990686 .4990686 .4990763 .4990864 .4990981 .4991101 .4991101 .4991186 .4991070 .4989939 .4983765 .4952856 .4807500	$\begin{array}{r} \hline 7.35368E-5\\ \hline 7.30601E-5\\ \hline 7.30601E-5\\ \hline 7.30445E-5\\ \hline 7.30584E-5\\ \hline 7.30675E-5\\ \hline 7.30675E-5\\ \hline 7.30654E-5\\ \hline 7.30612E-5\\ \hline 7.30432E-5\\ \hline 7.30433E-5\\ \hline 7.30232E-5\\ \hline 7.30232E-5\\ \hline 7.30232E-5\\ \hline 7.30207E-5\\ \hline 7.30207E-5\\ \hline 7.30207E-5\\ \hline 7.30609E-5\\ \hline 7.32882E-5\\ \hline 7.44282E-5\\ \hline 7.96364E-5\\ \end{array}$	6.35757E-6 6.39620E-6 6.39917E-6 6.39908E-6 6.39901E-6 6.39901E-6 6.39938E-6 6.39938E-6 6.39938E-6 6.39991E-6 6.40020E-6 6.40049E-6 6.40109E-6 6.40139E-6 6.40139E-6 6.40186E-6 6.40186E-6 6.39922E-6 6.38667E-6
-							

•

eport for Block: T22 Description:

Stage	LIQUID SIGMAMX	LIQUID RHOMX	VAPOR RHOMX	LIQUID MASSFLMX	VAPOR MASSFLMX	LIQUID MUMX	VAPOR MUMX
	N/M	KG/CUM	KG/CUM	KG/SEC	KG/SEC	N-SEC/SQM	N-SEC/SQM
1	7.31197E-3	753,2163	9.133204	.1384531	.3470472	1.11930E-4	5.76710E-
-2	7.31579E-3	752,9691	9.126254	.1383641	.3470086	1.11940E-4	5.76724E-+
-3	7.31701E-3	752.8975	9.124261	.1383384	.3469197	1.11943E-4	5.76727E-4
-4	7.31743E-3	752.8748	9.123677	.1383290	.3468940	1.11944E-4	5.76729E-4
-5	7.31777E-3	752.8546	9.123430	.1383139	.3468845	1.11947E-4	5.76732E-6
-6	7.31930E-3	752.7674	9.122880	.1382357	.3468695	1.11965E-4	5.76749E-6
-7	7.32934E-3	752.2568	9.119863	.1377752	.3467912	1.12072E-4	5.76851E-4
-8	7.39643E-3	749.2249	9.102093	.1351342	.3463308	1.12695E-4	5.77455E-(
- ₉	7.80410E-3	732.2524	9.015192	.3522641	.3201784	1.15834E-4	5.80856E-
-10	7.84098E-3	730.5352	8.999117	.3493320	.3202085	1.16066E-4	5.81129E-f
-11	8.31009E-3	711.3594	8.886272	.3199710	.3172764	1.19027E-4	5.84672E-t
_12	.0110806	566.1318	7.894073	.0320555	.2879155	1.26574E-4	6.12208E-6

Report for Block: T23 Description:

Stage	LIQUID	LIQUID	VAPOR	LIQUID	VAPOR	LIQUID	VAPOR
	SIGMAMX	RHOMX	RHOMX	MASSFLMX	MASSFLMX	MUMX	MUMX
	N/M	KG/CUM	KG/CUM	KG/SEC	KG/SEC	N-SEC/SQM	N-SEC/SQI
$ \begin{bmatrix} -1 \\ -2 \\ -3 \\ -4 \end{bmatrix} $	7.62474E-3	714.1853	11.70613	.2417437	.0163610	1.11528E-4	5.77722E
	7.60289E-3	713.7339	11.78829	.2420287	1.13261E-3	1.11296E-4	5.78930E
	7.32268E-3	707.7805	12.89407	.2456082	1.41756E-3	1.08324E-4	5.94174E
	6.33154E-3	682.7448	17.84108	.2406111	4.99709E-3	9.79938E-5	6.46688E

.

eport for Block: T24 Description:

Stage	LIQUID	LIQUID	VAPOR	LIQUID	VAPOR	LIQUID	VAPOR
	SIGMAMX	RHOMX	RHOMX	MASSFLMX	MASSFLMX	MUMX	MUMX
	N/M	KG/CUM	KG/CUM	KG/SEC	KG/SEC	N-SEC/SQM	N-SEC/SQM
$ \begin{bmatrix} 1 \\ 2 \\ $	6.53091E-3	674.5717	26.25645	.1185112	.0377395	8.21173E-5	6.85642E-6
	4.68666E-3	662.1656	29.47594	.1217341	.0553528	7.86710E-5	7.06115E-6
	4.33531E-3	661.2773	29.63363	.1218169	.0585758	7.85070E-5	7.07235E-6
	4.29080E-3	660.8510	29.60289	.1207022	.0586585	<u>7.85221E-5</u>	7.07358E-6
	4.28863E-3	660.8447	29.60244	.1190000	1.70217E-3	7.85228E-5	7.07359E-6

APPENDIX 8. SIMULATION AND RESULTS OF CRYOGENIC METHODS I & II

A8.1. Simulation and results of cryogenic method II on Aspen Plus

Before using Aspen Plus, the patent was first simulated on ChemCad, in order to gain more sufficient specifications to make simulation on Aspen Plus succesful.

On Aspen Plus, only the separating part of the patent was simulated. The reason why the simulation of the heat balance is omitted, is that Aspen Plus does not have a suitable enthalpy routine for simulating multiflow heat exchangers, because of the inaccurateness of the enthalpy calculations (see chapter 12).

Figure A8.1 on the next page shows the adapted flowsheet of the second method. The stream and equipment numbers are not the same as the numbers shown on the flowsheet.

Results

The main streams of this method are listed in Table A8-1 on page A8-35. According to the print-outs the following conclusions can be made:

- About 80% of the N_2 can be removed from the natural gas feed.
- Only 3.3% nitrogen remains in the new feed stream.
- The CH₄-purity of the natural gas feed stream raised from 81.3% to 91.8%.
- Only 0.03 kmol/hr CH_4 leaves the plant with the nitrogen stream (ID 16), which is only 0.068% of the CH_4 -feed stream

Fig. A8.1. Flowsheet of method II simulated on Aspen Plus.

U-O-S BLOCK SECTION

BLOCK: B1 MODEL:	COMPR			
INLET STREAM: OUTLET STREAM: PROPERTY OPTION SET:	1 2 SYSOP3	REDLICH-KWO	NG-SOAVE EQUAT	TION OF STATE
**	** MASS AND	ENERGY BALA	NCE *** OUT	RELATIVE DIFF.
TOTAL BALANCE MOLE (KMOL/HR) MASS (KG/SEC) ENTHALPY (WATT	53 0.2) -0.1	.1084 74843 00652E+07	53.1084 0.274843 -959938.	0. 0. -0.462820E-01
9	*** INP	UT DATA ***		
GAS PHASE CALCULATIO NO FLASH PERFORMED TYPE : POLYTROPIC CI PRESSURE RATIO OUTLET TEMPERATURE MECHANICAL EFFICIEN	ON ENTRIFUGAL C C CY	OMPRESSOR	10	2.40000 03.116 1.00000
	*** RES	ULTS ***		
INDICATED HORSEPOW BRAKE HORSEPOW NET WORK, WATT CALCULATED OUTLET P CALC EFFICIENCY (PO OUTLET VAPOR FRACTI	ER REQUIREME ER REQUIREME RES BAR LYTR/ISENTR) ON	NT WATT NT WATT	46,58 46,58 -46,58	33.9 33.9 33.9 48.0000 0.73510 1.00000
BLOCK: BIO MODEL	CTACE 5			
OUTLETS - 10 30 OUTLETS - 11 27 PROPERTY OPTION SET:	STAGE 2 STAGE 1 STAGE 6 SYSOP3	REDLICH-KWO	NG-SOAVE EQUA	FION OF STATE
*	** MASS ANI	ENERGY BALA	NCE *** OUT	RELATIVE DIFF.
TOTAL BALANCE MOLE (KMOL/HR) MASS (KG/SEC) ENTHALPY (WATT	5. 0.3) -42	46843 373975E-01 2758.6	5.46844 0.373975E-01 -46792.9	-0.592896E-06 -0.587825E-06 0.862164E-01

.

ASPEN PLUS VER: SUN-4 REL: 8.5-4 INST: DELFTUOT 05/02/93 PAGE

U-O-S BLOCK SECTION

BLOCK: B10 MODEL: RADFRAC (CONTINUED)

****** **** INPUT DATA **** ******

**** INPUT PARAMETERS ****

NUMBER OF STAGES	6
ALGORITHM OPTION	STANDARD
ABSORBER OPTION	NO
INITIALIZATION OPTION	STANDARD
HYDRAULIC PARAMETER CALCULATIONS	NO
INSIDE LOOP CONVERGENCE METHOD	BROYDEN
DESIGN SPECIFICATION METHOD	NESTED
MAXIMUM NO. OF OUTSIDE LOOP ITERATIONS	25
MAXIMUM NO. OF INSIDE LOOP ITERATIONS	10
MAXIMUM NUMBER OF FLASH ITERATIONS	50
FLASH TOLERANCE	0.000100000
OUTSIDE LOOP CONVERGENCE TOLERANCE	0.000100000
MOLAR VAPOR DIST / TOTAL DIST	0.0
MOLAR REFLUX RATIO	0.82151
REBOILER DUTY WATT	404.750
**** PROFILES ****	
P-SPEC STAGE 1 PRES, BAR	28.0000

ASPEN PLUS VER: SUN-4	REL: 8.5-4	INST: DELFTUOT 05/	02/93 PAGE 9
	U-O-S BLOCK SEC	CTION .	
BLOCK: B10 MODEL: RAD	FRAC (CONTINUED)		
**	****	Ê.	
**	** RESULTS ****		
**	*****		
TOP STAGE TEMPERATURE	С	-149.4	434
BOTTOM STAGE TEMPERATURE	С	-122.4	473
TOP STAGE LIQUID FLOW	KMOL/HR	5.3	30635
BOTTOM STAGE LIQUID FLOW	KMOL/HR	1.9	96602
BOTTOM STAGE VAPOR FLOW	KMOL/HR	0.0)
MOLAR REFLUX RATIO	KMOL/HK	1.3	51505
MOLAR BOILUP RATIO		0.5	79521
CONDENSER DUTY (W/O SUBC	OOL) WATT	-6,012.9	93
REBOILER DUTY	WATT	1,978.7	72
**** MANIPULATED VARIAB	LES ****		
REBOILER DUTY	WATT	1,978,7	12
MOLAR REFLUX RATIO		1.5	51505
**** DESTON SDECTETON	TONC ++++		
DESIGN SPECIFICAI	TONS		
NO SPEC-TYPE UNIT	SPECIFIED VALUE	CALCULATED VALUE	ABS. ERROR
1 MOLE-FRAC	0.30000	0.30000	0.10055E-08
2 MOLE-FRAC	0.50000E-01	0.50000E-01	-0.58788E-09
**** MAXIMUM FINAL RELA	TIVE ERRORS ***	*	
DEW POINT	0.44439E-	05 STAGE= 2	
BUBBLE POINT	0.72003E-	05 STAGE= 3	
COMPONENT MASS BALANCE	0.36807E-	06 STAGE= 1 COMP=	•N2
ENERGY BALANCE	0.34618E-	04 STAGE= 2	
**** ₽₽∩₽ТТ₽С ****	ā.		

.

.

STAGE	TEMPERATURE	PRESSURE	ENTHALPY J/KMOL	HEAT DUTY
	С	BAR	LIQUID VAPOR	WATT
1	-149.43	28.000	-0.12691E+08 -0.81658E+07	-6012.9298
2	-146.92	28.200	-0.18742E+08 -0.10234E+08	
3	-141.95	28.400	-0.30973E+08 -0.14435E+08	
4	-133.81	28.600	-0.47611E+08 -0.22233E+08	
5	-130.25	28.800	-0.53083E+08 -0.26087E+08	
6	-122.47	29.000	-0.63074E+08 -0.35963E+08	1978.7217

S. .

ASPEN 1	PLUS VEI	R: SUN	-4 1	REL:	8.5-4		INST:	DELFTU	OT 05/02/	93 PAGE
				U- 0	-S BLC	OCK SEC	TION			
BLOCK:	B10	MODE	L: RADFI	RAC	(CONT)	NUED)			s.	
STAGE	FLOW FLOW F	RATE HR	P	1.10	F	EED RA	ATE IR		PRODU	JCT RATE DL/HR
1 5. 2 5. 3 4.	.306 .730 .386	0. 8.809 7.482		1.	7512	VAPOR		MIXED	LIQUID 3.502	VAPOR 24
4 3. 5 3. 6 1.	600 529 966	6.138 1.699 1.563	.6	5043	3-01	3.65	21		1 966	0
			****	v	DDODT				1.900	50
STAGE	CH4		C2H6	X-	-PROFI N2	मह	(****	CO2	
1	.50000E	-01 .	61921E-	13	.9497	5	.25	016E-03	.13923E-1	.1
2	.28207	•	15372E- 41403E-	11	.8731	6	.318	890E-03	.23382E-1	.0
4	.49628		10701E-	08	.5033	9	.304	352E-03	.42158E-0	19
5	.56775		15966E-	80	.4319	1	.345	559E-03	.98664E-0	8
0	.69969	•	27739E-	08	.3000	0	.311	L88E-03	.16888E-0	7
			****	Y-	PROFI	LE		****		
STAGE	CH4	01	C2H6		N2	12-16 50	C	02	C02	
2	.20907E	-01 .	33152E- 61921E-	14 13	.9789	5	.194	66E-03	.10775E-1	2
3	.10861		11932E-	11	.8910	9	.250	281E-03	.13923E-1	1
4	.21586		29609E-	10	.7838	1	.331	.55E-03	.30176E-0	9
5	.26828	•	49054E-	10	.7313	5	.365	22E-03	.45067E-0	9
U	.40102		T1003E-	09	.59779	9	.387	99E-03	.10365E-0	8
0.000			****	K-	VALUES	5		****		
STAGE 1	CH4		C2H6	0.1	N2		0	2	C02	
2	.39518	•	40281E-	01	1 087	7	.778	12	.77383E-0	1
3	.38503		28815E-	01	1.2418	3	. 831	77	.59543E-0.	1
4	.43495		27669E-0	01	1.5571	_	.979	42	.41418E-0	1
5	.47254	•	30724E-0	01	1.6933	3	1.05	68	.45678E-0	ī
v	.57429	•	41822R-(JT	1.9926)	1.24	40	.61374E-01	1
BLOCK:	B12	MODEL	: FSPLI	r -						
INLET	STREAM:		11							
OUTLET	STREAMS:		13		29	l.				
FROFE	VII OPTION	SET:	SYSOE	3	REDI	ICH-KW	ONG-	SOAVE EQ	QUATION OF	STATE
		*:	** MASS	ANI	D ENER	GY BAL	ANCE	***		
TOTAT	DATANOS				IN			OUT	RELAT	IVE DIFF
MC	DALANCE	IR)		2	50240		~	50040		
MA	SS (KG/SEC	:)		0.2	266724	E-01	3	.50242 2667245-	.01	0.
EN	THALPY (WA	TT)	-12	2347.0		-12	2347.0	UT.	0.
			***	INPU	JT DAT	A ***				17 CM 17 1

•

A8-6

ASPEN PLUS VER: SUN-	-4 REL:	8.5-4	INST: DELFTUOT	05/02/93 PAGE 11
	U-0-	-S BLOCK SE	CTION	9
BLOCK: B12 MODEI	: FSPLIT (C	CONTINUED)		
FRACTION OF FLOW		STRM=13	FRAC=	0.50000
	*** RE	SULTS ***		
STREAM= 13 29	SPLIT=	0.5	0000 KEY=	0
BLOCK: B13 MODEI	: HEATER			
INLET STREAM: OUTLET STREAM: PROPERTY OPTION SET:	13 14 SYSOP3	REDLICH-	KWONG-SOAVE EQI	JATION OF STATE
* TOTAL BALANCE	** MASS AN	D ENERGY B IN	ALANCE *** OUT	RELATIVE DIFF.
MOLE (KMOL/HR) MASS (KG/SEC) ENTHALPY (WATT))	.75121 133362E-01 173.52	1.75121 0.133362E-(-6221.28	0. 01 0.130076E-15 0.767771E-02
TWO PHASE PV FT.	*** INP	UT DATA *	**	
SPECIFIED PRESSURE VAPOR FRACTION MAXIMUM NO. ITERATIO CONVERGENCE TOLERANC	NS E	BAR		27.0000 0.0 30 0.000100000
OUTLET TEMPERATURE OUTLET PRESSURE HEAT DUTY VAPOR FRACTION	*** RE C BAR WATT	SULTS ***		-150.24 27.000 -47.765 0.

.

V-L PHASE EQUILIBRIUM :

.

COMP	F(T)	V(T)	¥ (*)	
CH4	0 50000 - 01		I(I)	K(1)
0011	0.50000E-01	0.50000E-01	0.19645E-01	0.39291
C2H6	0.56346E-13	0.56346E-13	0.24485E-14	0.43453E-01
N2	0.94975	0.94975	0 98016	1 0321
02	0.25016E-03	0 250165-03	0 101040 02	1.0521
CO2	0 11 6405 11	0.25010E-05	0.19104E-03	0.76370
002	0.11648E-11	0.11648E-11	0.74908E-13	0.64310E-01

A8-7

ASPEN PLUS VER: SUN-4	REL: 8	.5-4 INS	ST: DELFTUOT	05/02/93	PAGE 12
	U-0-S	BLOCK SECT	ION		
BLOCK: B14 MODEL:	HEATER		2 4 3:		
INLET STREAM: OUTLET STREAM: PROPERTY OPTION SET:	14 15 SYSOP3	REDLICH-KWC	DNG-SOAVE EQU	ATION OF S	TATE
TOTAL BALANCE	* MASS AND	ENERGY BALA IN	NCE *** OUT	RELATI	VE DIFF.
MOLE (KMOL/HR) MASS (KG/SEC) ENTHALPY (WATT)	1. 0.11 -622	75121 33362E-01 21.28	1.75121 0.133362E-0 -6221.28	1-0.337	0. 0. 016E-06
TWO PHASE PQ FLAS SPECIFIED PRESSURE SPECIFIED HEAT DUTY	*** INPU SH I	f data *** Bar Vatt		2.33000	
MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE	5			30 0.000100	000
	*** RESU	JLTS ***			
OUTLET TEMPERATURE OUTLET PRESSURE VAPOR FRACTION	BAR			-186.68 2.3300 0.52882	
V-L PHASE EQUILIBRIUM					
COMP F CH4 0. C2H6 0. N2 0. O2 0. CO2 0.	C(I) 50000E-01 56346E-13 94975 25016E-03 11648E-11	X(I) 0.10102 0.11958E- 0.89861 0.37405E- 0.24719E-	Y(I) 0.45441 12 0.28990 0.99532 03 0.13978 11 0.13122	LE-02 0 DE-17 0 BE-03 0 PE-15 0	K(I) .44984E-(.24242E-(1.1077 .37370 .53083E-(
BLOCK: B15 MODEL:	RADFRAC				
INLETS - 15 S 26 S	TAGE 4				
OUTLETS - 16 S 28 S	TAGE 1 TAGE 5	ž			
PROPERTY OPTION SET:	SYSOP3	REDLICH-KWO	NG-SOAVE EOUA	TION OF ST	TATE

۲

1.50000

ASPEN PLUS VER: SUN-4 REL: 8.5-4 INST: DELFTUOT 05/02/93 PAGE 13 U-O-S BLOCK SECTION BLOCK: B15 MODEL: RADFRAC (CONTINUED) *** MASS AND ENERGY BALANCE *** IN OUT BELATIVE DIFE

TOTAL BALANCE				Derrard Derr.
MOLE (KMOL/HR)		16.3147	16.3147	0.217761E-15
MASS (KG/SEC)		0.939035E-01	0.939035E-01	0.591151E-15
ENTHALPY (WATT)	-264610.	-257924.	-0.252700E-01

**** INPUT PARAMETERS ****

NUMBER OF STAGES	5
ALGORITHM OPTION	STANDARD
ABSORBER OPTION	NO
INITIALIZATION OPTION	STANDARD
HYDRAULIC PARAMETER CALCULATIONS	NO
INSIDE LOOP CONVERGENCE METHOD	BROYDEN
DESIGN SPECIFICATION METHOD	NESTED
MAXIMUM NO. OF OUTSIDE LOOP ITERATIONS	25
MAXIMUM NO. OF INSIDE LOOP ITERATIONS	10
MAXIMUM NUMBER OF FLASH ITERATIONS	50
FLASH TOLERANCE	0.000100000
OUTSIDE LOOP CONVERGENCE TOLERANCE	0.000100000

**** COL-SPECS ****

MOLAR VAPOR DIST / TOTAL DIST	1.00000
MOLAR REFLUX RATIO	0.42481
REBOILER DUTY WA	T 13,097.5

**** PROFILES ****

P-SPEC	STAGE	1	PRES,	BAR	

ASPEN PI	LUS VER:	SUN-4 RI	EL:	8.5-4	INST:	DELFT	JOT	05/02	2/93	PAGE 1
		τ	J-0-	-S BLOCK SI	ECTION	I				
BLOCK:	B15 M	ODEL: RADFRA	AC	(CONTINUED))			8.	¥1	
		****	****	*******	**					
		****	RE	ESULTS ***	**					
TOP S BOTTO TOP S BOTTO BOTTO MOLAF CONDE REBOI	TAGE TEMPE M STAGE TE TAGE LIQUI M STAGE LIG TAGE VAPOR M STAGE VA REFLUX RA BOILUP RA NSER DUTY LER DUTY	RATURE MPERATURE D FLOW QUID FLOW FLOW POR FLOW TIO IIO (W/O SUBCOOI	.)	C C KMOL/HR KMOL/HR KMOL/HR KMOL/HR WATT WATT			-8, 15,	190.71 154.18 4.75 10.22 6.09 6.12 0.78 0.59 854.12 541.1	7 544 04 426 364 031 916	
****	MANIPULATI	ED VARIABLES	0	****						
REBOI MOLAR	LER DUTY REFLUX RAT	FIO		WATT			15,	541.1 0.78	031	
****	DESIGN SH	PECIFICATION	S	****						
NO SPEC 1 MOLE 2 MOLE	-TYPE U -FRAC -FRAC	JNIT SP 0 0	ECI .30 .99	FIED VALUE 000E-01 500	CA1 0 0	LCULATE .29982E .99500	D V2 -01	ALUE	ABS. 0.18 0.97	ERROR 348E-04 7063E-07
****	MAXIMUM FI	INAL RELATIV	E E	RRORS **	**					
DEW P BUBBL COMPO ENERG	OINT E POINT NENT MASS E Y BALANCE	BALANCE		0.86568E 0.26321E 0.92157E 0.41431E	-04 9 -03 9 -08 9 -04 9	STAGE= STAGE= STAGE= STAGE=	5 2 2 (3	COMP=CH	44	t.
****	PROFILES	****								
						-				
STAGE TEL C	MPERATURE	PRESSURE BAR		EN J/I LIQUID	THALPY KMOL V	APOR		HEAT WATI	DUTY	
1 -19 2 -18 3 -17 4 -16	0.72 1.79 7.95 7.79	1.5000 1.7500 2.0000 2.2500	-(-(-(0.23072E+0 0.62149E+0 0.67550E+0 0.79425E+0	8 -0.6 8 -0.9 8 -0.1 8 -0.2	7438E+(8671E+(1770E+(3268E+()7)7)8)8	-8854.	1177	
5 -154	1.18	2.5000	-(0.86829E+0	8 -0.5	7933E+0	8	.1554	1+05	

10

		0.011000001	0001.11//
1.7500	-0.62149E+08	-0.98671E+07	
2.0000	-0.67550E+08	-0.11770E+08	
2.2500	-0.79425E+08	-0.23268E+08	
2.5000	-0.86829E+08	-0.57933E+08	.15541+05

A8-10

•

ASPEN	PLUS	VER: S	UN-4	REL:	8.5-4	INST:	DELFTUO	r 05/02/93	PAGE 15
				U-C	-S BLOCK	SECTION	T.		
BLOCK	: B15	MÒ	DEL: RA	DFRAC	(CONTINU	ED)		•	
STAGE	FL(KI	OW RATE			FEE KM	D RATE OL/HR		PRODUCT KMOL/	RATE HR
1 4 2 1 3 1 4 1	LIQUID 4.755 16.30 16.00 16.34	6.0 8.3 7.8 6.5	POR 94 54 34 99	12. 0.	0681 8206	APOR 2.4953 0.9305	MIXED	LIQUID	6.0942
5 1	10.22	6.1	.24					10.2204	
STAC	GE (1 .14)	CH4 065	** C2 .2271	** X 2H6 18E-11	-PROFILE N2 .85894	.41	**** 02 .507E-03	CO2 .14428E-10	
	2 .639 3 .709 4 .869 5 .969	900 973 648 971	.2231 .2274 .2229 .3559	L6E-07 44E-07 91E-07 97E-07	.36060 .28969 .13292 .29982E	.39 .58 .59 -01 .30	0702E-03 096E-03 0102E-03 0834E-03	.95132E-07 .96958E-07 .95095E-07 .15174E-06	
STAC	GE (CH4	** C2	** ¥ 2Н6	-PROFILE N2	1.4	**** 02 242E-03	CO2	
	2 .49 3 .75 4 .23 5 .69	421E-01 870E-01 142 420	.5984 .1216 .7023 .8440	9E-12 7E-11 33E-11 00E-10	.95032 .92365 .76760 .30474	.26 .47 .97	2422-03 155E-03 2989E-03 2771E-03 0628E-02	.39305E-11 .78221E-11 .44141E-10 .54755E-09	
			**	** K	-VALUES		****		
STAC	GE (1 1 .34) 2 .773 3 .100 4 .26 5 .71	CH4 534E-01 344E-01 691 707 582	C2 .8883 .2685 .5355 .3150 .2370	2H6 38E-05 50E-04 52E-04 01E-03 00E-02	N2 1.1584 2.6346 3.1875 5.7748 10.165	.34 .65 .82 1.6 3.4	02 310 855 593 543 469	CO2 .18871E-04 .41351E-04 .80764E-04 .46411E-03 .36067E-02	Ð
BLOCK	: B16	MC	DEL: MI	XER					
INLE	ET STREA	AMS: EAM:	1	L7 31	18		28		
PROP	PERTY O	PTION S	ET: S	SYSOP3	REDLI	CH-KWONG	-SOAVE EQ	QUATION OF S	TATE
			***	MASS A	ND ENERG	Y BALANC	E *** OUT	RELATI	VE DIFF.
TO	TAL BAL MOLE (KI MASS (KO ENTHAL	ANCE MOL/HR G/SEC PY (WATT))	0 -0	47.0146 .227521 .114290E	07 –0	47.0146 .227521 .114290E-	+07 -0.353	0. 0. 128E-05

.

A8-11

confidential ASPEN PLUS VER: SUN-4 REL: 8.5-4 INST: DELFTUOT 05/02/93 PAGE U-O-S BLOCK SECTION BLOCK: B16 MODEL: MIXER (CONTINUED) *** INPUT DATA *** TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 OUTLET PRESSURE BAR 15.0000 BLOCK: B17 MODEL: FSPLIT INLET STREAM: 19 OUTLET STREAMS: 20 22 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE *** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF TOTAL BALANCE

 MOLE (KMOL/HR)
 16.2548
 16.2548

 MASS (KG/SEC)
 0.901189E-01
 0.901189E-01

 ENTHALPY (WATT)
 -274641.
 -274641.

 Ο. 0. -274641. 0.211941E-15 *** INPUT DATA *** FRACTION OF FLOW STRM=20 FRAC= 0.22500 *** RESULTS *** STREAM= 20 SPLIT= 0.22500 KEY= 0 22 0.77500 0 BLOCK: B18 MODEL: PUMP INLET STREAM: 20 OUTLET STREAM: 21 21 OUTLET STREAM: PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE *** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF TOTAL BALANCE
 MOLE (KMOL/HR)
 3.65733
 3.65733
 0.

 MASS (KG/SEC)
 0.202767E-01
 0.202767E-01
 0.171105E-15

 ENTHALPY (WATT)
 -61794.3
 -61775.6
 -0.302297E-03

			confidential	
ASPEN PLUS VER: SUN-4	REL: 8.5-4	INST: DELFTUOT	05/02/93 PAG	E 17
	U-O-S BLOCK	SECTION		
BLOCK: B18 MODEL:	PUMP (CONTINUED)			
OUTLET PRESSURE (BAR DRIVER EFFICIENCY	*** INPUT DATA)	***	32.5000 1.00000	
FLASH SPECIFICATIONS: LIQUID PHASE CALCULAT NO FLASH PERFORMED	ION			
MAXIMUM NUMBER OF ITE TOLERANCE	CRATIONS		30 0.000100000	
	*** RESULTS *	**		
VOLUMETRIC FLOW RATE PRESSURE CHANGE (BAR FLUID POWER (WATT BRAKE POWER (WATT ELECTRICITY (WATT PUMP EFFICIENCY USED NET WORK (WATT)	(CUM/SEC))))		0.552301-04 1.00000 5.52301 18.6804 18.6804 0.29566 -18.6804	e *
BLOCK: B2 MODEL:	HEATER			
INLET STREAM: OUTLET STREAM: PROPERTY OPTION SET:	2 3 SYSOP3 REDLIC	H-KWONG-SOAVE EQ	UATION OF STATE	
***	MASS AND ENERGY IN	BALANCE *** OUT	RELATIVE DI	FF.
MOLE (KMOL/HR) MASS (KG/SEC) ENTHALPY (WATT)	53.1084 0.274843 -959938.	53.1084 0.274843 -0.109029E+	0. 0. 07 0.119558	
TWO PHASE TP FLAS	*** INPUT DATA	***		
SPECIFIED TEMPERATURE SPECIFIED PRESSURE MAXIMUM NO. ITERATIONS	C BAR		-80.0000 47.5000	
CONVERGENCE TOLERANCE	50		0.000100000	

ASPEN PLUS VER:	SUN-4	REI	: 8.	5-4	IN	ST: D	ELFTUOT	05/	02/93	PAGE	18
		U-	0-S	BLOCK	SECT:	ION	e				
BLOCK: B2 M	ODEL:	HEATER	(CON	TINUE	ED)						
OUTLET TEMPERATUR OUTLET PRESSURE HEAT DUTY VAPOR FRACTION	RE	*** C BAR WATT	RESU	ULTS	***			-8 4 -0.1	0.000 7.500 13035E 90064	+06	
V-L PHASE EQUILIE	BRIUM	:									
COMP CH4 C2H6 C3H8 C4H10 C5H12 C6H14 N2 O2 C02 BLOCK: B20 MC	F 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	C(I) 81305 28492E- 37152E- 13931E- 39148E- 50257E- 14344 11769E- 88991E- HEATER	01 02 03 03 03 03	X(0.7 0.1 0.2 0.1 0.3 0.5 0.5 0.6 0.2	I) 6520 0314 4988E- 2269E- 7888E- 0001E- 7286E- 9774E- 8251E-	01 02 02 01 04 01	Y(I) 0.8183 0.2023 0.1368 0.1933 0.1667 0.6382 0.1529 0.1229 0.6764	33 57E-01 83E-02 15E-03 73E-04 26E-05 94 97E-03 41E-02		K(I) 1.069 .1963 .5475 .1574 .4400 .1276 2.6700 1.762 .23942	4 9 4E-(1E-(0 3E-(0 5 2
INLET STREAM: OUTLET STREAM: PROPERTY OPTION S	ET:	22 23 SYSOP3	1	REDLI	CH-KWO	NG-SC	DAVE EQU	JATION	OF ST	TATE	
TOTAL BALANCE MOLE (KMOL/HR MASS (KG/SEC ENTHALPY (WATT	***))	MASS A	12.9 .698	ENERGY IN 5975 3421E- 347.	Y BALA	NCE 12. 0.69 -212	*** OUT .5975 98421E-0 2847.	R	ELATIV 0.1987 0.1337	VE DIE 0. 702E-1 706E-0	F.
TWO PHASE PQ SPECIFIED PRESSUR SPECIFIED HEAT DU MAXIMUM NO. ITERA CONVERGENCE TOLER	FLASI E TY TIONS ANCE	NI *** H	IPUT BF WF	DATA AR ATT	***			28.5 0.0 30 0.0	000 001000	00	

4

ASPEN PLUS VER: SUN-4	REL: 8.	.5-4 INST	: DELFTUOT	05/02/93	PAGE 19
	U-0-S	BLOCK SECTIO	N		
BLOCK: B20 MODEL:	HEATER (CON	NTINUED)		95	
OUTLET TEMPERATURE OUTLET PRESSURE VAPOR FRACTION	*** RESU C BAR	JLTS ***		-123.60 28.500 0.59809	E-01
V-L PHASE EQUILIBRIUM	:				
COMP1CH40C2H60N20O20CO20	F(I) .67294 .28447E-07 .32683 .23561E-03 .12047E-06	X(I) 0.69115 0.30183E-0 0.30861 0.23241E-0 0.12768E-0	Y(I) 0.3865 7 0.1165 0.6131 3 0.2859 6 0.7264	8 0E-08 3 1E-03 7E-08	K(I) 0.55931 0.38600E-01 1.9867 1.2302 0.56900E-01
BLOCK: B21 MODEL:	MIXER				
INLET STREAMS: OUTLET STREAM: PROPERTY OPTION SET:	23 24 SYSOP3	27 REDLICH-KWON	IG-SOAVE EQU	ATION OF	STATE
**	* MASS AND	ENERGY BALAN IN	ICE *** OUT	RELAT	IVE DIFF.
TOTAL BALANCE MOLE (KMOL/HR) MASS (KG/SEC) ENTHALPY (WATT	14 0.80 -24	.5635 05673E-01 7293.	14.5635 0.805673E-0 -247293.	1 -0.68 0.14	0. 39004E-15 17643E-05
TWO PHASE FLA MAXIMUM NO. ITERATION CONVERGENCE TOLERANCE OUTLET PRESSURE BAR	*** INPU SH S	F DATA ***		30 0.00010 28.5000	00000
BLOCK: B22 MODEL:	HEATER				
INLET STREAM: OUTLET STREAM: PROPERTY OPTION SET:	24 25 SYSOP3	REDLICH-KWON	IG-SOAVE EQU	ATION OF	STATE

.

A8-15

						confidentia	ıl
ASPEN PLUS VER: S	UN-4 R	EL: 8	3.5-4	INST:	DELFTUOT	05/02/93	PAGE 2
		U-0-5	BLOCK S	ECTION			
BLOCK: B22 MO	DEL: HEATE	R (CC	NTINUED)			٠	
TOTAL BALANCE	*** MAS	S AND	ENERGY I	BALANCE	*** OUT	RELAT	IVE DIFF
MOLE (KMOL/HR MASS (KG/SEC ENTHALPY (WATT))	14 0.8 -24	.5635 05673E-0: 7293.	1 1 0. -2	4.5635 805673E-01 58390.	0.429	0. 0. 9436E-01
דשה סאזכב הס	***	INPU	T DATA	***			
SPECIFIED TEMPERAT SPECIFIED PRESSURI MAXIMUM NO. ITERAT	FLASH FURE E FIONS	(1	C BAR		-10	61.150 28.0000	
CONVERGENCE TOLERA	ANCE					0.000100	000
OUTLET TEMPERATURE OUTLET PRESSURE HEAT DUTY VAPOR FRACTION	*** C BAR WATT	RESU	JLTS ***	r		-161.15 28.000 -11096. 0.	
V-L PHASE EQUILIBR	IUM :						
COMP CH4 C2H6 N2 O2 CO2	F(I) 0.67655 0.24981E 0.32321 0.24590E 0.10649E	-07 -03 -06	X(I) 0.6765 0.2498 0.3232 0.2459 0.1064	5 1E-07 1 0E-03 9E-06	Y(I) 0.19999 0.81017E 0.79978 0.23810E 0.38900E	-10 0. -03 0. -09 0.	K(I) 90044E- 95570E- 76429 29802 10843E-
BLOCK: B23 MOD	EL: HEATER						
INLET STREAM: OUTLET STREAM: PROPERTY OPTION SE	25 26 T: SYSOP:	3	REDLICH-1	KWONG-S	OAVE EOUAT	TON OF ST	አጥድ
TOTAL BALANCE	*** MASS	AND 1	ENERGY BZ IN	ALANCE	*** OUT	RELATIV	E DIFF.
MOLE (KMOL/HR) MASS (KG/SEC) ENTHALPY (WATT)	14.5 0.805 -258	5635 5673E-01 390.	14. 0.80 -258	.5635)5673E-01 3389.	-0.2467	0. 0. 74E-05

.

ASPEN PLUS VER: SUN-4	REL: 8.5-4	INST: DELFTUOT	05/02/93 PAGE 21
	U-O-S BLOCK SH	ECTION	
BLOCK: B23 MODEL: 1	HEATER (CONTINUED)	3	a•1:
	*** INPUT DATA	***	
TWO PHASE PQ FLASS SPECIFIED PRESSURE SPECIFIED HEAT DUTY MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE	H BAR WATT	3	2.00000 0.0 30 0.000100000
OUTLET TEMPERATURE (OUTLET PRESSURE) VAPOR FRACTION	*** RESULTS **; C BAR	ł	-174.92 2.0000 0.15871
V-L PHASE EQUILIBRIUM	:		
COMP F CH4 0.0 C2H6 0.1 N2 0.1 O2 0.1 CO2 0.1	(I) X(I) 57655 0.7823 24981E-07 0.2963 32321 0.2173 24590E-03 0.2432 10649E-06 0.1265	Y(I) 36 0.1156 32-07 0.2783 39 0.8841 222-03 0.2601 582-06 0.1745	K(I) 4 0.14780 8E-11 0.93738E-04 0 4.0671 4E-03 1.0696 8E-10 0.13791E-03
BLOCK: B24 MODEL: N	PUMP		
INLET STREAM: OUTLET STREAM: PROPERTY OPTION SET:	29 30 SYSOP3 REDLICH-	-KWONG-SOAVE EQU	ATION OF STATE
***	MASS AND ENERGY E IN	BALANCE *** OUT	RELATIVE DIFF.
MOLE (KMOL/HR) MASS (KG/SEC) ENTHALPY (WATT)	1.75121 0.133362E-01 -6173.52	1.75121 0.133362E-0 -6168.38	0. 1 0.130076E-15 -0.832438E-03
OUTLET PRESSURE (BAR DRIVER EFFICIENCY	*** INPUT DATA *)	***)	28.5000 1.00000
FLASH SPECIFICATIONS: LIQUID PHASE CALCULAT NO FLASH PERFORMED MAXIMUM NUMBER OF ITER TOLEBANCE	ION RATIONS		30

•

ASPEN P	LUS · VE	R: SUN-4	REL:	8.5-4	INST:	DELFTUOT	·05/02/93	PAGE
			U-0-	-S BLOCK S	SECTION			
BLOCK:	B24	MODEL:	PUMP (CO	NTINUED)				
VOLUN PRESS FLUII BRAKN ELECT PUMP NET W	METRIC F SURE CHA D POWER E POWER IRICITY EFFICIE WORK (WA	LOW RATE NGE (BAR (WATT (WATT (WATT NCY USED TT)	*** RI (CUM/SEC)))	SULTS **	**		0.303778- 0.50000 1.51889 5.13732 5.13732 0.29566 -5.13732	-04
BLOCK:	в3	MODEL:	FLASH2					
INLET OUTLET OUTLET PROPEF	STREAM: VAPOR LIQUID TY OPTIC	STREAM: STREAM: ON SET:	3 4 17 SYSOP3	REDLICH	-KWONG-	SOAVE EQU	ATION OF S	TATE
TOTAI	BALANC	***	* MASS AN	D ENERGY IN	BALANCE	*** OUT	RELATI	VE DIFF
MC MA EN	DLE (KMOL) SS (KG/SI THALPY (1	/HR) EC) WATT)	5 0. -0.	3.1084 274843 109029E+0	5 0. 7 -0.	3.1084 274843 109029E+0	0.163	0. 440E-08 0.
TWO SPECIF SPECIF MAXIMU CONVER	PHASE TED TEMP TED PRES M NO. IT GENCE TO	TP FLAS PERATURE SSURE TERATIONS DLERANCE	*** INP H C BAR	UT DATA	***	2	-80.0000 47.5000 30 0.000100	000

•

ASPEN PLUS	VER: SUN-	-4 RE	L: 8.	5-4	INST:	DELFTUO	T 05/02/	93 PAGE	23
		U	-0-S	BLOCK	SECTION	R			
BLOCK: B3	MODEI	: FLASH2	(CON	TINUED)		U		
OUTLET TEME OUTLET PRES HEAT DUTY VAPOR FRACT	PERATURE SSURE	*** C BAR WATT	RESU	LTS *	**		-80.0 47.5 0.900	00 00 0. 64	
V-L PHASE E	QUILIBRIU	M:							
COMP CH4 C2H6 C3H8 C4H10 C5H12 C6H14 N2 O2 CO2		F(I) 0.81305 0.28492E 0.37152E 0.13931E 0.39148E 0.50257E 0.14344 0.11769E 0.88991E	-01 -02 -02 -03 -03 -03 -03	X(I 0.76 0.10 0.24 0.12 0.37 0.50 0.57 0.69 0.28) 520 314 988E-01 269E-01 888E-02 001E-02 286E-01 774E-04 251E-01	Y(I) 0.818 0.202 0.136 0.193 0.193 0.168 0.638 0.152 0.122 0.676) 333 257E-01 683E-02 315E-03 673E-04 326E-05 294 297E-03 541E-02	K(I) 1.0694 0.19639 0.54754E 0.1574IE 0.44000E 0.12763E 2.6700 1.7625 0.23942	E-01 E-01 E-02 E-02
BLOCK: B4	MODEL	: HEATER							
INLET STREA OUTLET STRE PROPERTY OP	M: AM: TION SET:	4 5 SYSOP3	8 F	REDLIC	H-KWONG	-SOAVE EÇ	QUATION OF	STATE	
TOTAL BALA MOLE (KM MASS (KG ENTHALP	* OL/HR) /SEC) Y(WATT	** MASS)	AND E 1 47.8 0.244 -9522	ENERGY IN 3314 431 223.	BALANCI 0	E *** OUT 47.8314 .244431 995184.	-0.1 0.4	0. 0. 13552E-15 31686E-01	•
TWO PHAS SPECIFIED P VAPOR FRACT MAXIMUM NO. CONVERGENCE	E PV FL RESSURE ION ITERATIO TOLERANCI	***] ASH NS E	NPUT BA	DATA IR	***		47.0000 0.0 500 0.0001	.00000	

.

ASPEN PLUS	VER: SUN-4	REL	: 8.5-4	INST:	DELFTUOT	05/02/93	PAGE 24
		U-0	O-S BLOC	K SECTION	T		
BLOCK: B4	MODEL:	HEATER	(CONTINU	ED)		2 *	
		***]	RESULTS	***	1		
OUTLET TEMP OUTLET PRES HEAT DUTY VAPOR FRACT	ERATURE SURE ION	C BAR WATT				-92.387 47.000 -42961. 0.	
V-L PHASE E	QUILIBRIUM	:					
COMP	F	(I)	X	(I)	Y(I)		K(T)
CH4 C2H6	0.	81833	0.8	1833	0.7490	2 ().91540
C3H8	0.	13683E-0	12 0.2	2683E-02	0.6274	8E-02 (.30979
C4H10	0.	19315E-0	0.1	9315E-03	0.1122	6E-03 (2E-04 ().13292
C5H12	0.	16673E-0	0.1	6673E-04	0.4116	5E-06 (24692E-
C6H14	0.	63826E-0	0.6	3826E-05	0.6751	0E-07 C	.10579E-
NZ O2	0.1	15294	0.1	5294	0.2418	4	1.5814
CO2	0.	1229/E-0	3 0.1	2297E-03	0.1564	4E-03	1.2722
	0.1	010415-0	2 0.0	7641E-02	0.2509	0E-02 0	.37095
BLOCK: B5	MODEL: 1	HEATER					
INLET STREAM	1:	5					
OUTLET STREA	M:	6					
PROPERTY OPI	ION SET:	SYSOP3	REDLI	CH-KWONG-	SOAVE EQUA	ATION OF S	TATE
	***	MASS A	ND ENERG	Y BALANCE	***		
TOTAL BALAN	CE		IN		OUT	RELATI	VE DIFF.
MOLE (KMC	L/HR)	5	47.8314	1	7 0214		•
MASS (KG/	SEC)	0	.244431	0.	244431		0.
ENTHALPY	(WATT)	-9	995184.	-9	95184.	0.105	0. 697E-06
		*** TNI	גייינים	***		10 (1965/659793	7.15.130.00 - 50.5
TWO PHASE	PQ FLASH	l	PUT DATA	A A A			
SPECIFIED PR	ESSURE	50	BAR			32 9000	
SPECIFIED HE	AT DUTY		· WATT			0.0	
MAXIMUM NO.	ITERATIONS	4		a		30	
CONVERGENCE	TOLERANCE					0.0001000	000

ASPEN PLUS	VER: SUN-4	REL: 8	.5-4	INST:	DELFTUOT	05/02/93	B PAGE 2	25
		U-0-S	BLOCK SI	ECTION				
BLOCK: B5	MODEL:	HEATER (CO	NTINUED)					
OUTLET TEM OUTLET PRES VAPOR FRAC	PERATURE SSURE FION	*** RES C BAR	ULTS ***	ł		-102.07 32.900 0.31399		
V-L PHASE H	EQUILIBRIUM	:						
COMP CH4 C2H6 C3H8 C4H10 C5H12 C6H14 N2 O2 CO2	E 0. 0. 0. 0. 0. 0. 0. 0. 0.	<pre>(I) 81833 20257E-01 13683E-02 19315E-03 16673E-04 63826E-05 15294 12297E-03 67641E-02</pre>	X(I) 0.8554 0.2818 0.1976 0.2810 0.2429 0.9303 0.1047 0.1029 0.9252	0 2E-01 3E-02 4E-03 5E-04 3E-05 7 9E-03 0E-02	Y(I) 0.73732 0.29414 0.39947 0.11432 0.18769 0.13947 0.25820 0.16663 0.13283	E-02 E-04 E-05 E-07 E-08 E-03 E-02	K(I) 0.86198 0.10437 0.20212E 0.40676E 0.77248E 0.14991E 2.4646 1.6179 0.14357	-01 -02 -03 -03
BLOCK: B6	MODEL:	RADFRAC						
INLETS - OUTLETS - PROPERTY OP	- 6 S 21 S - 7 S 18 S TION SET:	TAGE 8 TAGE 2 TAGE 1 TAGE 10 SYSOP3	REDLICH-	KWONG-S	SOAVE EQUA	TION OF	STATE	
TOTAL BALA MOLE (KM MASS (KG ENTHALP	NCE IOL/HR) SEC) Y(WATT)	MASS AND 51. 0.26 -0.10	ENERGY B IN 4887 54707 5696E+07	ALANCE 51 0.2 -0.1	*** OUT L.4892 264710 L04888E+07	RELAT -0.87 -0.97 -0.76	IVE DIFF 3958E-05 7278E-05 4883E-02	

.

.

ASPEN PLUS VER: SUN-4 REL: 8.5-4 INST: DELFTUOT 05/02/93 PAGE

ř.

U-O-S BLOCK SECTION

84

BLOCK: B6 MODEL: RADFRAC (CONTINUED)

****** **** INPUT DATA **** *****

**** INPUT PARAMETERS ****

NUMBER OF STAGES	10
ALGORITHM OPTION	STANDARD
ABSORBER OPTION	NO
INITIALIZATION OPTION	STANDARD
HYDRAULIC PARAMETER CALCULATIONS	NO
INSIDE LOOP CONVERGENCE METHOD	BROYDEN
DESIGN SPECIFICATION METHOD	NESTED
MAXIMUM NO. OF OUTSIDE LOOP ITERATIONS	25
MAXIMUM NO. OF INSIDE LOOP ITERATIONS	10
MAXIMUM NUMBER OF FLASH ITERATIONS	50
FLASH TOLERANCE	0.000100000
OUTSIDE LOOP CONVERGENCE TOLERANCE	0.000100000
MOLAR VAPOR DIST / TOTAL DIST MOLAR REFLUX RATIO	1.00000

REBOILER DUTY 1.02800 WATT 35,463.9 **** PROFILES ****

P-SPEC	STAGE	1	PRES,	BAR	32.0000

ASPEN	PLUS	VER: SI	JN-4	REL:	8.5-4	INS	C: DELFTUOT	05/02	2/93	PAGE	27	
				U-C	-S BLOC	K SECTI	N					
BLOCK	с: вб	MOI	DEL: RADE	FRAC	(CONTIN	UED)		*				
			***	****	******	****						
0			***	* R	ESULTS	****						
			***	****	******	****						
TC	P STAGE	TEMPER	ATURE		С			-109.92	26			
BC	TTOM ST	AGE TEM	PERATURE		С			-94.20	057			
TC	P STAGE	LIQUID	FLOW		KMOL/	HR		20.53	308			
BC	TTOM ST	AGE LIQU	JID FLOW		KMOL/	HR		31.51	172			
TC	P STAGE	VAPOR 1	FLOW		KMOL/	HR		19.97	716			
BC	TTOM ST	AGE VAP	OR FLOW		KMOL/	HR		27.83	142			
MC	LAR REF	LUX RAT	IO					1.02	2800			
MC	LAR BOI	LUP RAT	IO					0.88	3251			
CC	NDENSER	DUTY (I	W/O SUBCO	DOL)	WATT		-25,	,351.0				
RE	BOILER	DUTY			WATT		33,	,441.8				
فد بلد بلد					بالد بالد بالد				3			
***	* MAN	TPULATE) VARIABI	JES	* * * *							
RE	BOILER	DUTY			WATT		33,	,441.8				
***	* DE	SIGN SPI	ECIFICATI	IONS	****							
NO S	SPEC-TYP	E UI	TIN	SPEC	IFIED V	ALUE	CALCULATED	VALUE	ABS.	ERRO	OR	
1 M	IOLE-FRA	С		0.3	0000E-0	1	0.30000E-03	1	-0.31	455E	-08	

•

**** MAXIMUM FINAL RELATIVE ERRORS ****

DEW POINT	0.20609E-06	STAGE=	1	
BUBBLE POINT	0.12126E-05	STAGE=	1	
COMPONENT MASS BALANCE	0.31919E-07	STAGE=	2	COMP=N2
ENERGY BALANCE	0.10821E-05	STAGE=	2	

**** PROFILES ****

	ENTHALPY								
TEMPERATURE	PRESSURE	J/KI	HEAT DUTY						
с	BAR	LIQUID	VAPOR	WATT					
-109.93	32.000	-0.72023E+08	-0.52372E+08	25351+05					
-105.35	32.111	-0.75863E+08	-0.60080E+08						
-103.28	32.222	-0.77461E+08	-0.63619E+08						
-102.30	32.444	-0.78090E+08	-0.65069E+08						
-102.10	32.556	-0.78263E+08	-0.65195E+08						
-101.76	32.667	-0.78848E+08	-0.65268E+08						
-99.623	32.778	-0.81729E+08	-0.67412E+08						
-97.224	32.889	-0.83475E+08	-0.71552E+08						
-94.206	33.000	-0.86619E+08	-0.75584E+08	.33442+05					
	TEMPERATURE C -109.93 -105.35 -103.28 -102.30 -102.10 -101.76 -99.623 -97.224 -94.206	TEMPERATURE CPRESSURE BAR-109.9332.000-105.3532.111-103.2832.222-102.3032.444-102.1032.556-101.7632.667-99.62332.778-97.22432.889-94.20633.000	TEMPERATURE CPRESSURE BARJ/KI LIQUID-109.9332.000-0.72023E+08-105.3532.111-0.75863E+08-103.2832.222-0.77461E+08-102.3032.444-0.78090E+08-102.1032.556-0.78263E+08-101.7632.667-0.78848E+08-99.62332.778-0.81729E+08-97.22432.889-0.83475E+08-94.20633.000-0.86619E+08	TEMPERATURE CPRESSURE BARJ/KMOL LIQUID-109.9332.000-0.72023E+08-0.52372E+08-105.3532.111-0.75863E+08-0.60080E+08-103.2832.222-0.77461E+08-0.63619E+08-102.3032.444-0.78090E+08-0.65069E+08-102.1032.556-0.78263E+08-0.65195E+08-101.7632.667-0.78848E+08-0.65268E+08-99.62332.778-0.81729E+08-0.67412E+08-97.22432.889-0.83475E+08-0.71552E+08-94.20633.000-0.86619E+08-0.75584E+08					

A8-23

					jiiioii	
ASPEN P	LUS VER:	SUN-4 REI	: 8.5-4	INST: DELFTU	OT 05/02/93	PAGE 28
		U-	O-S BLOCK SE	CTION		
BLOCK:	B6 M0	ODEL: RADFRAC	(CONTINUED)	*		
STAGE 1 20. 2 24	FLOW RATH KMOL/HR IQUID VI 53 19	APOR LI .97	FEED R KMOL/ QUID VAPO	ATE HR R MIXED	PRODUC: KMOL, LIQUID	I RATE /HR VAPOR 19.9720
3 25 5 25 6 25 7 24	40 41 .69 41 .59 42 .67 41	.28 .92 .01	15.0	897		
8 58. 9 59	49 25.	.90 32	.7416			
10 31.	52 27.	81			31.5171	
STAGE 1 2 3 5 6 7 8 9 10 STAGE 1 2 3 5 6 7 8 9 10	CH4 .82420 .87698 .89916 .90720 .90674 .90299 .89971 .92159 .92653 N2 .17562 .12288 .10071 .92374E-01 .91777E-01 .90832E-01 .75040E-01 .52132E-01 .30000E-01	**** C2H6 .27081E-06 .13878E-05 .71541E-05 .17364E-03 .84370E-03 .41196E-02 .17754E-01 .18472E-01 .30742E-01 .30742E-01 .30742E-01 .30742E-01 .30742E-03 .13562E-03 .10288E-03 .10288E-03 .10134E-03 .10023E-03 .93591E-04 .79906E-04 .59104E-04	X-PROFILE C3H8 .38504E-12 .91424E-11 .21996E-09 .11280E-06 .24984E-05 .55979E-04 .11354E-02 .11362E-02 .20766E-02 X-PROFILE CO2 .82063E-06 .31218E-05 .11760E-04 .15126E-03 .53509E-03 .19031E-02 .60932E-02 .64194E-02 .10265E-01	**** C4H10 .13900E-17 .15543E-15 .17006E-13 .17233E-09 .16814E-07 .16700E-05 .15848E-03 .15682E-03 .29314E-03 ****	C5H12 .20492E-23 .11576E-20 .61049E-18 .13683E-12 .62182E-10 .28943E-07 .13644E-04 .13463E-04 .25303E-04	C6H14 .14844E-2 .41825E-2 .10486E-2 .50618E-1 .10573E-1 .22742E-0 .52201E-0 .51474E-0 .96864E-0
STAGE 1 2 3 5 6 7 8 9 10	CH4 .62095 .72398 .77118 .79027 .79150 .79093 .81452 .86837 .91598	**** Y C2H6 .23424E-07 .14883E-06 .84809E-06 .21695E-04 .10621E-03 .51523E-03 .22217E-02 .25800E-02 .45688E-02	-PROFILE C3H8 .61143E-14 .19820E-12 .55319E-11 .30772E-08 .68990E-07 .15257E-05 .30350E-04 .35784E-04 .70627E-04	**** C4H10 .42169E-20 .70666E-18 .93996E-16 .10625E-11 .10540E-09 .10268E-07 .93735E-06 .11518E-05 .23586E-05	C5H12 .11118E-26 .10393E-23 .70008E-21 .18027E-15 .83689E-13 .37972E-10 .16912E-07 .21901E-07 .45867E-07	C6H14 .14646E-3: .75250E-2: .25294E-2: .14439E-1: .30959E-1: .64566E-1: .13792E-08 .18842E-08 .40250E-08

 \sim

A8-24

1.00

ASPEN P	LUS VER:	SUN-4 R	EL: 8.5-4	INST: DELFTUC	DT 05/02/93	PAGE 29
			U-O-S BLOCK SE	CTION		
BLOCK:	B6 1	MODEL: RADFR	AC (CONTINUED)		1.62	
STAGE 1 2 3 5 6 7 8 9 10	N2 .37881 .27581 .22864 .20952 .20814 .20807 .18203 .12766 .77210E-0	**** O2 .24439E- .20665E- .17939E- .16094E- .15860E- .15780E- .15356E- .13388E- 01 .10348E-	Y-PROFILE CO2 03 .99703E-07 03 .46514E-06 03 .19255E-05 03 .25996E-04 03 .92555E-04 03 .32680E-03 03 .10434E-02 03 .12189E-02 03 .20614E-02	****		2
STAGE 1 2 3 5 6 7 8 9 10	CH4 .75339 .82554 .85767 .87111 .87291 .87591 .90531 .94226 .98862	**** C2H6 .86494E-0 .10724 .11855 .12494 .12589 .12507 .12514 .13967 .14862	K-VALUES C3H8 01 .15879E-01 .21679E-01 .25149E-01 .27280E-01 .27614E-01 .27255E-01 .26731E-01 .31494E-01 .34011E-01	**** C4H10 .30337E-02 .45466E-02 .55271E-02 .61656E-02 .62687E-02 .61484E-02 .59147E-02 .73443E-02 .80462E-02	C5H12 .54254E-03 .89779E-03 .11468E-02 .13175E-02 .13459E-02 .13120E-02 .12395E-02 .16268E-02 .18127E-02	C6H14 .98667E-04 .17992E-03 .24122E-03 .28526E-03 .29281E-03 .26422E-03 .36606E-03 .41553E-03
STAGE 1 2 3 5 6 7 8 9 10	N2 2.1569 2.2445 2.2703 2.2681 2.2679 2.2907 2.4258 2.4488 2.5737	**** O2 1.4382 1.5237 1.5563 1.5644 1.5650 1.5743 1.6408 1.6755 1.7508	K-VALUES CO2 .12149 .14900 .16373 .17186 .17297 .17171 .17124 .18988 .20081	***	i i i i i i i i i i i i i i i i i i i	
BLOCK:	B7 M	ODEL: HEATER				
INLET OUTLET PROPER	STREAM: STREAM: TY OPTION	7 8 SET: SYSOP	3 REDLICH-K	WONG-SOAVE EQ	QUATION OF STA	ATE
TOTAL MO MA EN	BALANCE LE (KMOL/HR SS (KG/SEC THALPY (WAT:	*** MASS)) I)	AND ENERGY BA IN 19.9720 0.114180 -290546.	LANCE *** OUT 19.9720 0.114180 -311231.	RELATIVE 0 0.66462	DIFF.

•

A8-25

]+ [42]

confidential ASPEN PLUS VER: SUN-4 REL: 8.5-4 INST: DELFTUOT 05/02/93 PAGE U-O-S BLOCK SECTION BLOCK: B7 MODEL: HEATER (CONTINUED) *** INPUT DATA *** TWO PHASE TP FLASH SPECIFIED TEMPERATURE C -121.407SPECIFIED PRESSURE BAR 31.5000 MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 OUTLET TEMPERATURE *** RESULTS *** C -121.41 BAR 31.500 HEAT DUTY WATT -20685. VAPOR FRACTION 0.18612 V-L PHASE EQUILIBRIUM : F(I)X(I)Y(I)K(I)0.620950.672940.393620.584920.23426E-070.28447E-070.14672E-080.51575E-0.13582E-130.16659E-130.12802E-150.76848E-0.378810.326830.606101.85450.24439E-030.23561E-030.28280E-031.20030.99715E-070.12047E-060.89327E-080.74146E-COMP CH4 C2H6 C3H8 N2 02 CO2 BLOCK: B8 MODEL: FLASH2 INLET STREAM: 8 OUTLET VAPOR STREAM: 9 OUTLET LIQUID STREAM: 19 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE *** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE (KMOL/HR) MASS (KG/SEC) ENTHALPY (WATT) 19.972019.97200.1141800.114180-311231.-311231. 0.135192E-13 0.291703E-13 0.114180 -0.147749E-13 *** INPUT DATA *** TWO PHASE TP FLASH SPECIFIED TEMPERATURE C -121.407 SPECIFIED PRESSURE BAR 31.5000 MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000
ASPEN PLUS VER: SUN-4	REL: 8.5-4 INS	T: DELFTUOT 05/0	2/93 PAGE 31
	U-O-S BLOCK SECTI	ON	
BLOCK: B8 MODEL:	FLASH2 (CONTINUED)		
OUTLET TEMPERATURE OUTLET PRESSURE HEAT DUTY VAPOR FRACTION	*** RESULTS *** C BAR WATT	-12: 31 0.18	1.41 .500 0. 8612
V-L PHASE EQUILIBRIUM	:		
COMP 1 CH4 0 C2H6 0 C3H8 0 N2 0 C02 0 C02 0	F(I) X(I) .62095 0.67294 .23426E-07 0.28447E-0 .13582E-13 0.16659E-1 .37881 0.32683 .24439E-03 0.23561E-0 .99715E-07 0.12047E-0	Y(I) 0.39362 07 0.14672E-08 13 0.12802E-15 0.60610 03 0.28280E-03 06 0.89327E-08	K(I) 0.58492 0.51575E-01 0.76848E-02 1.8545 1.2003 0.74146E-01
BLOCK: B9 MODEL:	HEATER		
INLET STREAM: OUTLET STREAM: PROPERTY OPTION SET:	9 10 SYSOP3 REDLICH-KWON	IG-SOAVE EQUATION	OF STATE
TOTAL BALANCE	MASS AND ENERGY BALAN IN	ICE *** OUT RE	LATIVE DIFF.
MASS (KG/SEC) ENTHALPY (WATT)	3.71722 0.240613E-01 -36590.2	3.71722 0.240613E-01 -36590.2 -0	0. 0. .135820E-06
TWO PHASE PQ FLAS SPECIFIED PRESSURE SPECIFIED HEAT DUTY MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE	*** INPUT DATA *** H BAR WATT	28.900 0.0 30 0.000	00 0100000

.

ASPEN PLUS	VER: SUN-4	REI	3: 8.5-4	INST:	DELFTUOT	05/02/93	PAGE	32
		U-	-0-S BLOC	K SECTION				
BLOCK: B9	MODEL:	HEATER	(CONTINU	ED)				
OUTLET TE OUTLET PR VAPOR FRA	MPERATURE ESSURE CTION	*** C BAR	RESULTS	***		-123.24 28.900 0.98304		
V-L PHASE	EQUILIBRIUM	:						
COMP CH4		'(I) 39362	x	(I) 58957	Y(I)	1	K(I)	É:

0.14672E-08 $0.25969E-07$ $0.10444E-08$ $0.40219E-0$ $N2$ 0.60610 0.31020 0.61121 1.9704 $O2$ $0.28280E-03$ $0.23112E-03$ $0.28369E-03$ 1.2274 $CO2$ $0.89327E-08$ $0.11902E-06$ $0.70333E-08$ $0.59003E$	CH4	0.39362	0.68957	0.38851	K(I)
	C2H6	0.14672E-08	0.25969E-07	0.10444E-08	0.56340
	N2	0.60610	0.31020	0.61121	0.40219E-0
	O2	0.28280E-03	0.23112E-03	0.28369E-03	1.9704
	CO2	0.89327E-08	0.11902E-06	0.70333E-08	1.2274

ASPEN PLUS VER: SU	N-4 REL	: 8.5-4	INST: DELF	TUOT 05/02	/93 PAGE 33
		STREAM SEC	TION		
1 10 11 13 14	2			2	
STREAM ID FROM : TO :	1 B1	10 B9 B10	11 B10 B12	13 B12 B13	14 B13 B14
SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR	VAPOR	MIXED	LIQUID	LIQUID	LIQUID
CH4 C2H6 C3H8 C4H10 C5H12 C6H14 N2 O2 CO2 TOTAL FLOW: KMOL/HR	43.1797 1.5131 0.1973 7.3985-02 2.0791-02 2.6691-02 7.6178 6.2502-03 0.4726 53.1083	1.4631 5.4537-09 0.0 0.0 0.0 2.2530 1.0512-03 3.3205-08 3.7172	0.1751 1.9735-13 0.0 0.0 0.0 3.3264 8.7617-04 4.0795-12 3.5024	8.7561-02 9.8674-14 0.0 0.0 0.0 1.6632 4.3809-04 2.0398-12 1.7512	$\begin{array}{r} 8.7561-02\\ 9.8674-14\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 1.6632\\ 4.3809-04\\ 2.0398-12\\ 1.7512\\ 1.7512\end{array}$
KG/SEC CUM/SEC	0.2748 1.7079-02	2.4061-02 2.9622-04	2.6672-02 6.0756-05	1.3336-02 3.0378-05	1.3336-02 2.9597-05
STATE VARIABLES: TEMP C PRES BAR VFRAC LFRAC SFRAC	15.0000 20.0000 1.0000 0.0 0.0	-123.2436 28.9000 0.9830 1.6961-02 0.0	-149.4342 28.0000 0.0 1.0000 0.0	-149.4342 28.0000 0.0 1.0000 0.0	-150.2351 27.0000 0.0 1.0000 0.0
J/KMOL J/KG WATT	-6.8228+07 -3.6622+06 -1.0065+06	-3.5436+07 -1.5207+06 -3.6590+04	-1.2691+07 -4.6291+05 -1.2347+04	-1.2691+07 -4.6291+05 -6173.5184	-1.2789+07 -4.6650+05 -6221.2836
J/KMOL-K J/KG-K DENSITY:	-9.4159+04 -5054.0421	-8.1977+04 -3517.9462	-8.3488+04 -3045.2735	-8.3488+04 -3045.2745	-8.4234+04 -3072.4847
KMOL/CUM KG/CUM AVG MW	0.8637 16.0920 18.6304	3.4857 81.2270 23.3025	16.0132 439.0113 27.4154	16.0132 439.0116 27.4154	16.4359 450.5983 27.4154

•

A8-29

.

)

ASPEN PLUS VER: SU	UN-4 REL	: 8.5-4	INST: DELF	TUOT 05/02	/93 PAGE
		STREAM SEC	TION		
15 16 17 18 19				₩ 27	
STREAM ID FROM : TO :	15 B14 B15	16 B15	17 B3 B16	18 B6 B16	19 B8 B17
SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR	MIXED	VAPOR	LIQUID	LIQUID	TIÕNID
CH4 C2H6 C3H8 C4H10 C5H12	8.7561-02 9.8674-14 0.0 0.0	2.9604-02 1.2303-16 0.0 0.0	4.0379 0.5442 0.1318 6.4746-02	29.2015 0.9689 6.5447-02 9.2388-03	10.938 4.6240-0 0.0 0.0
C6H14 N2 O2 CO2	0.0 1.6632 4.3809-04 2.0398-12	0.0 6.0637 8.6794-04 1.6600-15	2.6386-02 0.3023 3.6819-04 0.1490	3.0529-04 0.9455 1.8628-03 0.3235	0.0 5.312 3.8297-0 1.9583-0
TOTAL FLOW: KMOL/HR KG/SEC CUM/SEC STATE VARIABLES:	1.7512 1.3336-02 7.4602-04	6.0942 4.7324-02 7.3438-03	5.2769 3.0412-02 8.7516-05	31.5171 0.1505 5.3491-04	16.2548 9.0119-02 2.4547-04
TEMP C PRES BAR VFRAC LFRAC SFRAC	-186.6798 2.3300 0.5288 0.4711 0.0	-190.7165 1.5000 1.0000 0.0 0.0	-80.0000 47.5000 0.0 1.0000 0.0	-94.2056 33.0000 0.0 1.0000 0.0	-121.4070 31.5000 0.0 1.0000 0.0
ENTHALPY: J/KMOL J/KG WATT ENTROPY:	-1.2789+07 -4.6650+05 -6221.2815	-6.7438+06 -2.4123+05 -1.1416+04	-9.4191+07 -4.5399+06 -1.3807+05	-8.6619+07 -5.0377+06 -7.5833+05	-6.0826+07 -3.0475+06 -2.7464+05
J/KMOL-K J/KG-K DENSITY: KMOL/CUM	-7.7101+04 -2812.3125	-4.1539+04 -1485.9117	-1.6793+05 -8093.9812	-1.5548+05 -9042.4387	-1.3217+05
KG/CUM	17.8765	6.4441	347.5005	281.4105	367.1320

.

ASPEN PLUS VER: SU	N-4 REL	8.5-4	INST: DELF	TUOT 05/02,	/93 PAGE 35
		STREAM SEC	FION	ï	
2 20 21 22 23					
STREAM ID FROM : TO :	2 B1 B2	20 B17 B18	21 B18 B6	22 B17 B20	23 B20 B21
SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HB	VAPOR	LIQUID	LIQUID	FIĞAID	MIXED
CH4 C2H6 C3H8 C4H10 C5H12 C6H14 N2 O2 CO2 TOTAL FLOW:	43.1797 1.5131 0.1973 7.3985-02 2.0791-02 2.6691-02 7.6178 6.2502-03 0.4726	$\begin{array}{c} 2.4611\\ 1.0404-07\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 1.1953\\ 8.6169-04\\ 4.4062-07\end{array}$	2.4611 1.0404-07 0.0 0.0 0.0 0.0 1.1953 8.6169-04 4.4062-07	$\begin{array}{r} 8.4773\\ 3.5836-07\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 4.1172\\ 2.9680-03\\ 1.5177-06\\ 12.5874\end{array}$	$\begin{array}{r} 8.4773 \\ 3.5836-07 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 4.1172 \\ 2.9680-03 \\ 1.5177-06 \\ 12.5974 \end{array}$
KG/SEC CUM/SEC	0.2748 9.4941-03	2.0277-02 5.5230-05	2.0277-02 5.5295-05	6.9842-02 1.9024-04	6.9842-02 2.3405-04
STATE VARIABLES: TEMP C PRES BAR VFRAC LFRAC SFRAC	103.1160 48.0000 1.0000 0.0 0.0	-121.4070 31.5000 0.0 1.0000 0.0	-121.1247 32.5000 0.0 1.0000 0.0	-121.4070 31.5000 0.0 1.0000 0.0	-123.6012 28.5000 5.9809-02 0.9401 0.0
J/KMOL J/KG WATT ENTROPY:	-6.5070+07 -3.4927+06 -9.5994+05	-6.0826+07 -3.0475+06 -6.1794+04	-6.0807+07 -3.0466+06 -6.1776+04	-6.0826+07 -3.0475+06 -2.1285+05	-6.0826+07 -3.0475+06 -2.1285+05
J/KMOL-K J/KG-K DENSITY:	-9.1728+04 -4923.5423	-1.3217+05 -6622.1546	-1.3209+05 -6617.8835	-1.3217+05 -6622.1546	-1.3205+05 -6616.1550
KMOL/CUM KG/CUM AVG MW	1.5538 28.9486 18.6304	18.3944 367.1320 .19.9588	18.3727 366.6996 19.9588	18.3944 367.1320 19.9588	14.9508 298.4019 19.9588

.

÷

A8-31

ASPEN PLUS VER: SU	JN-4 REL	: 8.5-4	INST: DELF	TUOT 05/02	/93 PAGE
		STREAM SEC	TION		
24 25 26 27 28				•	
STREAM ID	24	25	26	27	28
FROM :	B21	B22	B23	B10	B15
TO :	B22	B23	B15	B21	B16
SUBSTREAM: MIXED					
PHASE:	MIXED	LIQUID	MIXED	LIQUID	LIOUID
COMPONENTS: KMOL/HR					
CH4	9.8529	9.8529	9.8529	1.3756	9,9108
C2H6	3.6382-07	3.6382-07	3.6382-07	5.4536-09	3.6382-01
СЗН8	0.0	0.0	0.0	0.0	0.0
C4H10	0.0	0.0	0.0	0.0	0.0
C5H12	0.0	0.0	0.0	0.0	0.0
C6H14	0.0	0.0	0.0	0.0	0.0
N2	4.7070	4.7070	4.7070	0.5898	0.3064
02	3.5812-03	3.5812-03	3.5812-03	6.1317-04	3.1514-03
C02	1.5509-06	1.5509-06	1.5509-06	3.3202-08	1.5509-06
TOTAL FLOW:					2.0005 00
KMOL/HR	14.5635	14.5635	14.5635	1,9660	10,2204
KG/SEC	8.0567-02	8.0567-02	8.0567-02	1.0725-02	4.6579-02
CUM/SEC	2.6405-04	1.5676-04	2.6239-03	2.8824-05	1.1170-04
STATE VARIABLES:					
TEMP C	-123.5024	-161.1500	-174.9204	-122.4728	-154.1806
PRES BAR	28.5000	28.0000	2.0000	29.0000	2.5000
VFRAC	5.3068-02	0.0	0.1587	0.0	0.0
LFRAC	0.9469	1.0000	0.8412	1.0000	1.0000
SFRAC	0.0	0.0	0.0	0.0	0.0
ENTHALPY:					154453759
J/KMOL	-6.1129+07	-6.3872+07	-6.3872+07	-6.3074+07	-8.6829+07
J/KG	-3.0694+06	-3.2071+06	-3.2071+06	-3.2117+06	-5.2922+06
WATT	-2.4729+05	-2.5839+05	-2.5839+05	-3.4446+04	-2.4651+05
ENTROPY:					
J/KMOL-K	-1.3253+05	-1.5330+05	-1.5159+05	-1.3565+05	-1.8135+05
J/KG-K	-6654.7664	-7697.5162	-7611.7420	-6907.0263	-1.1053+04
DENSITY:					
KMOL/CUM	15.3204	25.8057	1.5417	18.9467	25.4167
KG/CUM	305.1171	513.9386	30.7056	372.0937	417.0070
AVG MW	19,9157.	19,9157	19 9157	19 6389	16 4069

ASPEN PLUS VER: SUN	I-4 REL:	8.5-4	INST: DELFI	UOT 05/02/	'93 PAGE 37
		STREAM SECT	ION	148	
29 3 30 31 4					
STREAM ID FROM : TO :	29 B12 B24	3 B2 B3	30 B24 B10	31 B16	4 B3 B4
SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HB	LIQUID	MIXED	LIQUID	MIXED	VAPOR
COMPONENTS: KHOL/HK C2H6 C3H8 C4H10 C5H12 C6H14 N2 O2 CO2	$\begin{array}{r} 8.7561-02\\ 9.8674-14\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 1.6632\\ 4.3809-04\\ 2.0398-12\end{array}$	43.1797 1.5131 0.1973 7.3985-02 2.0791-02 2.6691-02 7.6178 6.2502-03 0.4726	$\begin{array}{r} 8.7561-02\\ 9.8674-14\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 1.6632\\ 4.3809-04\\ 2.0398-12\end{array}$	43.1503 1.5131 0.1973 7.3984-02 2.0791-02 2.6691-02 1.5542 5.3823-03 0.4726	$\begin{array}{r} 39.1417\\ 0.9689\\ 6.5447-02\\ 9.2388-03\\ 7.9749-04\\ 3.0529-04\\ 7.3155\\ 5.8820-03\\ 0.3235\end{array}$
TOTAL FLOW: KMOL/HR KG/SEC CUM/SEC	1.7512 1.3336-02 3.0378-05	53.1083 0.2748 2.6732-03	1.7512 1.3336-02 3.0411-05	47.0145 0.2275 2.0317-03	47.8314 0.2444 2.5857-03
STATE VARIABLES: TEMP C PRES BAR VFRAC LFRAC SFRAC	-149.4342 28.0000 0.0 1.0000 0.0	-80.0000 47.5000 0.9006 9.9362-02 0.0	-149.2685 28.5000 0.0 1.0000 0.0	-115.8763 15.0000 0.1677 0.8323 0.0	-80.0000 47.5000 1.0000 0.0 0.0
ENTHALPY: J/KMOL J/KG WATT	-1.2691+07 -4.6291+05 -6173.5184	-7.3906+07 -3.9670+06 -1.0903+06	-1.2680+07 -4.6253+05 -6168.3793	-8.7514+07 -5.0233+06 -1.1429+06	-7.1668+07 -3.8957+06 -9.5222+05
J/KMOL-K J/KG-K DENSITY:	-8.3488+04 -3045.2745	-1.2531+05 -6725.8631	-8.3427+04 -3043.0718	-1.6065+05 -9221.0652	-1.2060+05 -6555.6428
KMOL/CUM KG/CUM AVG MW	16.0132 439.0116 27.4154	5.5185 102.8126 18.6304	15.9955 438.5270 27.4154	6.4280 111.9870 17.4217	5.1384 94.5309 18.3969

ŝ

ASPEN PLUS VER: S	UN-4 REI	3: 8.5-4	INST: DELF	'TUOT 05/02	2/93 PAGE
		STREAM SEC	TION		
5 6 7 8 9					
STREAM ID	5	6	7	8	9
FROM :	B4	B5	B6	B7	B8
TO :	В5	В6	В7	B8	B9
SUBSTREAM: MIXED			224.4		
COMPONENTS: KMOL/HR	LIQUID	MIXED	VAPOR	MIXED	VAPOR
CH4	39.1417	39.1417	12.4016	12.4016	1.4631
0200	0.9689	0.9689	4.6786-07	4.6786-07	5.4537-09
CARLO	6.544/-02	6.5447-02	2.7126-13	2.7126-13	0.0
CANTO	9.2388-03	9.2388-03	1.9514-19	1.9514-19	0.0
COHIZ	7.9749-04	7.9749-04	5.3779-26	5.3779-26	0.0
COH14	3.0529-04	3.0529-04	7.4010-32	7.4010-32	0.0
NZ	7.3155	7.3155	7.5655	7.5655	2.2530
02	5.8820-03	5.8820-03	4.8810-03	4.8810-03	1.0512-03
COZ	0.3235	0.3235	1.9915-06	1.9915-06	3.3205-08
TOTAL FLOW:					
KMOL/HR	47.8314	47.8314	19.9720	19.9720	3.7172
KG/SEC	0.2444	0.2444	0.1141	0.1141	2.4061-02
CUM/SEC	9.6303-04	1.6785-03	1.5088-03	5.1430-04	2.6883-04
TEMD C	02 2067	100 0710	100 0000	101 1000	
DDEC DAD	-92.3007	-102.0710	-109.9262	-121.4070	-121.4070
VEDAC	47.0000	32.9000	32.0000	31.5000	31.5000
TEDAC	0.0	0.3139	1.0000	0.1861	1.0000
LIKAC	1.0000	0.6860	0.0	0.8138	0.0
DIKAL	0.0	0.0	0.0	0.0	0.0
ENTRALET:	7 4002+07	7 4000+07	E 0020102		
J/KC	-1.4902+07	-1.4902+07	-5.23/2+0/	-5.6100+07	-3.5436+07
WATT	-0.0518+05	-4.0/14+00	-2.5440+00	-2.7258+06	-1.5207+06
ENTROPY .	-9.9010+00	-3.3210-02	-2.9055+05	-3.1123+05	-3.6590+04
T/KMOTK	-1 2706+05	1 2710+05	0 0077.04	1 0000.05	
J/KG-K	-7409 2351	-1.3/19+03	-9.93/1+04	-1.2292+05	-8.2448+04
DENSITY:	-1499.2001	-/43/.3401	-4828.0301	-59/2.2015	-3538.1620
KMOL/CUM	13 7965	7 0155	2 6760	. 10 7070	2 0400
KG/CUM	253 8137	145 6224	3.0/03	10.7870	3.8408
AVC MW	19 3969	10 2060	15.0/52	222.0102	89.5024
	TO.2202	10.2202	20.5812	20.5812	23.3025

•

COMPONENTS [kmol/hr]	STREAM ID 1	STREAM ID 31
CH₄	43.1797	43.1503
C ₂ H ₆	1.5131	1.5131
C ₃ H ₈	0.1973	0.1973
C ₄ H ₁₀	7.3985-02	7.3984-02
C ₅ H ₁₂	2.0791-02	2.0791-02
C ₆ H ₁₄	2.6691-02	2.6691-02
N ₂	7.6178	1.5542
O ₂	6.2502-03	5.3823-03
CO ₂	0.4726	0.4726
Total flow [kmol/hr]	53.1083	47.0145
Temperature [°C]	15.00	-115.8763
Pressure [bar]	20.00	15.00
Phase	VAPOR	MIXED

Table A8-1. Main streams of cryogenic method II.

A8.2. Simulation and results of cryogenic method I on Aspen Plus

Cryogenic method I was simulated on Aspen Plus. The stream and equipment numbers are not the same as the numbers on the flowsheet shown in figure 8.1. The numbers used in this appendix are the numbers used in the Aspen Plus simulation.

The most important streams are printed in table A8.2 on the next page. Stream 1 in this table is the feed stream of the plant. Streams 8 and 23 are the nitrogen-poor and the nitrogen-rich flow respectively. The flowsheet of Aspen Plus is shown in figure A8.2 on page A8-38. Further all results of the Aspen Plus simulation are shown on the following pages.

Block B9 and B10 are respectivily the reboiler and the condensor of the column. Block B19 is the condensor in the middle of the column. Block B21 is defined in the simulating, but it works as a compressor. Defining this block as compressor gave some simulation problems.

Results

The simulation of method I gave the following results:

- 81.6 mol % N_2 is removed from the feed
- the new feed stream contains 3.2 mol % N₂
- the purity of CH_4 in the feed stream goes from 81.3 % to 91.7 %
- 2.5 kmol CH₄ leaves the process in stream 23 (this is 5.8 % of the total CH₄ flow)

COMPONENTS [kmol/hr]	STREAM ID 1	STREAM ID 8	STREAM ID 23
CH ₄	43.29	40.7839	2.5059
C ₂ H ₆	1.517	1.5170	7.3088-18
C ₃ H ₈	0.198	0.1980	6.2150-33
C ₄ H ₁₀	7.4-02	7.4-02	0.0
C ₅ H ₁₂	2.1-02	2.1-02	0.0
C ₆ H ₁₄	2.67-02	2.67-02	0.0
N ₂	7.62	1.4030	6.2169
0 ₂	6.0-03	3.3911-03	2.6089-03
CO ₂	0.47	0.47	1.0341-15
Total flow [kmol/hr]	53.223	44.4971	8.7255
Temperature [°C]	15.00	18.0845	15.00
Pressure [bar]	54.00	5.7688	2.00
Phase	VAPOR	VAPOR	VAPOR

Table A8.2. Main streams of cryogenic method I.

Fig. A8.2. Flowsheet of method I simulated on Aspen Plus.

A8-38

BLOCK: B2	MODEL: MHEATX	
HOT SIDE:	INLET STREAM	OUTLET STREAM
	1	2
COLD SIDE:	INLET STREAM 7 22A	OUTLET STREAM 8 23
PROPERTIES FO PROPERTY OPTI	DR STREAM 1 ION SET: SYSOP3	REDLICH-KWONG-SOAVE EQUATION OF STATE
PROPERTIES FO PROPERTY OPTI	DR STREAM 22A ION SET: SYSOP3	REDLICH-KWONG-SOAVE EQUATION OF STATE
PROPERTIES FO PROPERTY OPTI	OR STREAM 7 ION SET: SYSOP3	REDLICH-KWONG-SOAVE EQUATION OF STATE
MOMAT DATAN	*** MASS	AND ENERGY BALANCE *** IN OUT RELATIVE DIFF.
MOLE (KMO) MASS (KG/I ENTHALPY	L/HR) HR) (WATT) -	106.445106.4450.1982.601982.600.0.216216E+07-0.216216E+070.529260E-07
	*** I	NPUT DATA ***
SPECIFICATION TWO PHASE SPECIFIED TEN PRESSURE DRO	NS FOR STREAM 1 TP FLASH MPERATURE CHANGE P	: C -120.000 BAR 0.0 500
CONVERGENCE	TOLERANCE	0.000100000

BLOCK: B	2 MODEL: M	HEATX (CONTIN	NUED)		
SPECIFI ONE SPECIFI PRESSUR MAXIMUM CONVERG	CATIONS FOR STRE PHASE TP FLASH ED TEMPERATURE C E DROP NO. ITERATIONS ENCE TOLERANCE	AM 22A : SPECIFIED HANGE C BAR	PHASE IS	VAPOR	125.000 0.0 500 0.000100000
SPECIFI ONE MAXIMUM CONVERG	CATIONS FOR STRE PHASE FLASH NO. ITERATIONS ENCE TOLERANCE	AM 7 : SPECIFIED	PHASE IS	VAPOR	500 0.000100000
		*** RESULTS	***		
INLET STREAM	OUTLET TEMPERATURE C	OUTLET PRESSURE BAR	OUTLET VAPOR FI	RAC DU' WA'	TY TT
1 22A 7	-105.00 15.000 18.085	54.000 2.0000 5.7688	0. 1.0000 1.0000	1 93 0.1	4099E+06 18.0 3168E+06
1 > 15.0				-105.0	-> 0
22A > -110.0				15.0	-> 0
< 18.1	 			7 < -135.0	 0

BLOCK: B3	MODEL: MHEATX	
HOT SIDE:	INLET STREAM	OUTLET STREAM
	10	11
COLD SIDE:	INLET STREAM	OUTLET STREAM
	13 19	14 200
PROPERTIES FOR PROPERTY OPT	OR STREAM 10 ION SET: SYSOP3	REDLICH-KWONG-SOAVE EQUATION OF STATE
PROPERTIES F PROPERTY OPT	OR STREAM 19 ION SET: SYSOP3	REDLICH-KWONG-SOAVE EQUATION OF STATE
PROPERTIES FOR PROPERTY OPT	OR STREAM 13 ION SET: SYSOP3	REDLICH-KWONG-SOAVE EQUATION OF STATE
	*** MASS	AND ENERGY BALANCE *** IN OUT RELATIVE DIFF.
TOTAL BALAN MOLE (KMO MASS (KG/ ENTHALPY	CE L/HR) HR) (WATT)	18.613718.61370.387.077387.0770296630296630.0.463637E-09
	*** I	NPUT DATA ***
SPECIFICATIO	NS FOR STREAM 10	· ·

SPECIFICATIONS FOR STREAM TO	•	
TWO PHASE TP FLASH		
SPECIFIED TEMPERATURE CHANGE	С	-7.00000
PRESSURE DROP	BAR	0.0
MAXIMUM NO. ITERATIONS		500
CONVERGENCE TOLERANCE		0.000100000

BLOCK: B	3 MODEL: M	HEATX (CONTI	NUED)		
SPECIFI TWO SPECIFI PRESSUR MAXIMUM CONVERG	CATIONS FOR STRE PHASE TP FLASH ED TEMPERATURE C E DROP NO. ITERATIONS ENCE TOLERANCE	AM 19 : HANGE C BAR		30.0 0.0 500 0.0	0000
SPECIFI TWO MAXIMUM CONVERG	CATIONS FOR STRE PHASE FLASH NO. ITERATIONS ENCE TOLERANCE	AM 13 :		500 0.0	000100000
		*** RESULTS	***		
INLET STREAM	OUTLET TEMPERATURE C	OUTLET PRESSURE BAR	OUTLET VAPOR FRAC	DUTY WATT	
10 19 13	-110.07 -99.855 -112.14	28.000 27.500 2.0000	0. 1.0000 0.98979	-777.92 3334.5 -2556.6	
	 I			-	
10 > -103.1	1		-	> -110.1	
19 > -129.9				> -99.9	
< -112.1	 			13 < -63.4	

BLOCK: B4	MODEL: MHEATX			
HOT SIDE:	INLET STREAM	OUTLET STREAM		a
	9	10		
COLD SIDE:	INLET STREAM	OUTLET STREAM		
	14 22	15 22A		
PROPERTIES F PROPERTY OPT	OR STREAM 9 CION SET: SYSOP	3 REDLICH-KWON	IG-SOAVE EQUATIC	ON OF STATE
PROPERTIES F PROPERTY OPT	OR STREAM 22 CION SET: SYSOP	3 REDLICH-KWON	IG-SOAVE EQUATIC	ON OF STATE
PROPERTIES F PROPERTY OPT	OR STREAM 14 MION SET: SYSOP	3 REDLICH-KWON	IG-SOAVE EQUATIC	ON OF STATE
	*** MASS	AND ENERGY BALAN IN	ICE *** OUT	RELATIVE DIFF.
MOLE (KMC MASS (KG/ ENTHALPY	OL/HR) /HR) (WATT)	18.6137 387.077 -295256.	18.6137 387.077 -295256.	0. 0. 0.451046E-08
	***	INPUT DATA ***		
SPECIFICATIO TWO PHASE	ONS FOR STREAM 9 TP FLASH	1		
SPECIFIED TE PRESSURE DRO	IMPERATURE CHANGE	C BAR	-3. 0.	50000 0
MAXIMUM NO. CONVERGENCE	ITERATIONS TOLERANCE		500 0.	000100000

BLOCK: B4	MODEL: M	HEATX (CONTI	NUED)		
SPECIFICA	TIONS FOR STRE	AM 22 :			
TWO PF SPECIFIEL PRESSURE MAXIMUM N CONVERGEN	HASE TP FLASH D TEMPERATURE C DROP NO. ITERATIONS NCE TOLERANCE	HANGE C BAR		10.0000 0.0 500 0.000100000	
SPECIFICATIONS FOR STREAM 14:TWOPHASEFLASHMAXIMUM NO. ITERATIONS500CONVERGENCE TOLERANCE0.000100000					
		*** RESULTS	***		
INLET STREAM	OUTLET TEMPERATURE C	OUTLET PRESSURE BAR	OUTLET VAPOR FRAC	DUTY WATT	
9 22 14	-103.07 -110.00 -116.72	28.000 2.0000 2.0000	0. 1.0000 0.98513	-429.62 748.15 -318.53	

BLOCK:	в1		M	ODEL:	RADFR	AC
INLET	rs	_	4		STAGE	16
			18	:	STAGE	19
			MID		STAGE	10
OUTLE	ETS	-	19	:	STAGE	1
			5	:	STAGE	20

BLOCK: B1 MODEL: RADFRAC (CONTINUED) PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE *** MASS AND ENERGY BALANCE *** OUT RELATIVE DIFF. IN TOTAL BALANCE
 MOLE (KMOL/HR)
 58.1668
 58.1668
 0.131838E-05

 MASS (KG/HR)
 1077.62
 1077.62
 0.128652E-05

 ENTHALPY (WATT)
 -0.130696E+07
 -0.126896E+07
 -0.290763E-01
 ****** **** INPUT DATA **** ***** **** INPUT PARAMETERS **** 20 NUMBER OF STAGES STANDARD ALGORITHM OPTION NO ABSORBER OPTION STANDARD INITIALIZATION OPTION NO HYDRAULIC PARAMETER CALCULATIONS INSIDE LOOP CONVERGENCE METHOD BROYDEN DESIGN SPECIFICATION METHOD NESTED MAXIMUM NO. OF OUTSIDE LOOP ITERATIONS 25 MAXIMUM NO. OF INSIDE LOOP ITERATIONS 10 MAXIMUM NUMBER OF FLASH ITERATIONS 50 0.000100000 FLASH TOLERANCE 0.000100000 OUTSIDE LOOP CONVERGENCE TOLERANCE **** COL-SPECS **** MOLAR VAPOR DIST / TOTAL DIST 1.00000 CONDENSER DUTY (W/O SUBCOOL) -10,000.0 WATT REBOILER DUTY WATT 48,000.0 **** PROFILES **** P-SPEC STAGE 1 PRES, BAR 27.5000 1 TEMP, C -140.000 TEMP-EST STAGE 20 -100.000

BLOCK: B1 MODEL: RADFRAC (CONTINUED)

.

**** RESULTS ****

TOP STAGE TEMPERATURE	С	-129.855
BOTTOM STAGE TEMPERATURE	с	-99.5663
TOP STAGE LIQUID FLOW	KMOL/HR	7.09941
BOTTOM STAGE LIQUID FLOW	KMOL/HR	49.4413
TOP STAGE VAPOR FLOW	KMOL/HR	8.72550
BOTTOM STAGE VAPOR FLOW	KMOL/HR	34.1620
MOLAR REFLUX RATIO		0.81364
MOLAR BOILUP RATIO		0.69096
CONDENSER DUTY (W/O SUBCOOL)	WATT	-10,000.0
REBOILER DUTY	WATT	48,000.0

**** MAXIMUM FINAL RELATIVE ERRORS ****

DEW POINT	0.39666E-06	STAGE = 17	
BUBBLE POINT	0.15760E-05	STAGE= 1	
COMPONENT MASS BALANCE	0.31802E-05	STAGE= 18	COMP=C3H8
ENERGY BALANCE	0.16001E-05	STAGE= 18	

**** PROFILES ****.

STAGE	C TEMPERATURE	PRESSURE BAR	ENTH J/KN LIQUID	IALPY IOL VAPOR	HEAT DUTY WATT
1 2 3 4 9	-129.85 -122.05 -119.39 -118.61	27.500 27.526 27.553 27.579 27.711	-0.55925E+08 -0.65604E+08 -0.68338E+08 -0.69077E+08 -0.69297E+08	-0.27438E+08 -0.37943E+08 -0.41975E+08 -0.43180E+08 -0.43661E+08	10000+05
10	-118.19	27.737	-0.69284E+08	-0.43665E+08	-4114.8801
11	-116.20	27.763	-0.71136E+08	-0.46879E+08	
15	-115.14	27.868	-0.72296E+08	-0.48348E+08	
16	-114.19	27.895	-0.75567E+08	-0.48209E+08	
17	-110.24	27.921	-0.78641E+08	-0.55041E+08	
18	-106.08	27.947	-0.81824E+08	-0.62530E+08	
19	-103.10	27.974	-0.83960E+08	-0.68167E+08	.48000+05
20	-99.566	28.000	-0.87555E+08	-0.73699E+08	

STAGE	FLOW RATE		FEEI	D RATE		PRODUCT	RATE
	KMOL/HR		KMO	OL/HR		KMOL/	HR
LI	IQUID VAP	OR LIC	QUID VA	APOR	MIXED	LIQUID	VAPOR
1 7.0	99 8.72	5	2				8.7255
2 6.8	392 15.8	2					
3 6.8	391 15.6	2					
4 6.8	399 15.6	2					
9 6.9	15.6	5					
10 9.8	339 15.6	5					
11 9.8	376 18.5	6					
15 9 6	34 18 6	1					
16 80	33 10.0	6 53	2227				
17 91	66 25 0	3 33.	2221				
10 01.	20 37.0	6		1 7077			
10 02.	60 32.0	0 0	1462	4.1911			
19 03.	.00	0.	1405			40 4410	
20 49.	.44 34.1	6				49.4412	
		**** }	-PROFILE		****		
STAGE	CO2	N2	02		CH4	C2H6	C3H8
T	.28392E-14	.39630	.27270E-	-03 .60	0343	.30099E-16	.23713E-30
2	.23121E-13	.26825	.22047E-	-03 .7.	3153	.35671E-15	.22652E-28
3	.15616E-12	.23158	.19241E-	-03 .70	6823	.35348E-14	.17699E-26
4	.10090E-11	.22161	.18076E-	-03 .7	7821	.33554E-13	.13073E-24
9	.10362E-07	.21848	.17421E-	-03 .78	8135	.23529E-08	.24924E-15
10	.65340E-07	.21861	.17424E-	-03 .78	8122	.21773E-07	.17685E-13
11	.44759E-06	.19356	.16051E-	-03 .80	0628	.21807E-06	.13050E-11
15	.84628E-03	.18208	.14869E-	-03 .83	1502	.18682E-02	.30687E-04
16	.60938E-02	.17052	.14377E-	-03 .79	9984	.19422E-01	.24745E-02
17	.60840E-02	.12811	.13904E-	-03 .84	4243	.19307E-01	.24383E-02
18	.65877E-02	.86742E-01	.12267E-	-03 .88	8169	.20853E-01	.25208E-02
19	.68450E-02	.58520E-01	.10541E-	-03 .90	0871	21539E-01	.26619E-02
20	.10562E-01	.31532E-01	.76209E-	-04 .9	1655	.34092E-01	44497E-02
				••••••	2000	.010022 01	
		**** X	-PROFILE		****		
STAGE	C4H10	C5H12	C6H14	4			
1	.11184E-43	.11568E-57	.77387E-	-71			
2	.83900E-41	.74753E-54	.42004E-	-66			
3	.49260E-38	.35933E-50	.16126E-	-61			
4	.26924E-35	.15816E-46	.55776E-	-57			
9	10862E-21	20546E-28	20664E-	-34		37	
10	56217E-19	84326E-25	65656E-	-30			
11	201105-16	332248-21	102285-	-25			
15	155058-05	55107E-07	00550E-	_00			
15	.13303E-03	.35107E-07	.905565-	-08			
17	.921/36-03	201435-03	.33239E-	-03			
10	.90/02E-03	.25/21E-03	.32698E-	-03			
10	.9084/E-03	.25563E-03	.32459E-	-03			
19	.98548E-03	.27919E-03	.35487E-	-03			
20	.16630E-02	.47194E-03	.60004E-	-03			

A8-47

.87691E-02

.11817E-01

.14639E-01

.16727E-01

.62319E-01

.76849E-01

.89159E-01

.98885E-01

17

18

19

20

.89443E-01 2.6784

2.8101

2.8901

3.0947

.10949

.12628

.13869

BLOCK: B1 MODEL: RADFRAC (CONTINUED)

		****	V_DDOFTTF	* * * *		
STAGE 1 2 3 4 9 10 11 15 16 17 18 19 20	CO2 .11852E-15 .13391E-14 .10269E-13 .68973E-13 .72585E-09 .45865E-08 .34629E-07 .68212E-04 .44407E-03 .54418E-03 .72125E-03 .86438E-03 .14649E-02	N2 .71250 .57064 .51645 .50029 .49389 .49384 .45075 .43132 .43417 .34312 .24375 .16913 .97580E-01	29900E-03 .28720E-03 .26435E-03 .25197E-03 .24379E-03 .24377E-03 .24377E-03 .23288E-03 .21961E-03 .22013E-03 .21428E-03 .19186E-03 .14768E-03	CH4 .28720 .42907 .48328 .49946 .50587 .50592 .54902 .56829 .56417 .65488 .75368 .82785 .89736	C2H6 .83764E-18 .13965E-16 .15788E-15 .15602E-14 .11228E-09 .10414E-08 .11539E-07 .10331E-03 .98031E-03 .12032E-02 .16025E-02 .19204E-02 .33712E-02	C3H8 .71229E-33 .10677E-30 .99969E-29 .78099E-27 .15488E-17 .11032E-15 .93729E-14 .23425E-06 .16103E-04 .21382E-04 .29789E-04 .38967E-04 .74429E-04
STAGE 1 2 3 4 9 10 11 15 16 17 18 19 20	C4H10 .38374E-47 .50193E-44 .37025E-41 .21736E-38 .92400E-25 .48079E-22 .29794E-19 .17144E-08 .81362E-06 .11739E-05 .17262E-05 .24715E-05 .49054E-05	**** C5H12 .41010E-62 .51897E-58 .32988E-54 .15856E-50 .22002E-32 .90938E-29 .44691E-25 .81523E-11 .28917E-07 .45639E-07 .72961E-07 .11249E-06 .23113E-06	Y-PROFILE C6H14 .29080E-76 .34718E-71 .18536E-66 .71157E-62 .28541E-39 .91462E-35 .34797E-30 .18350E-12 .47519E-08 .81839E-08 .14282E-07 .23536E-07 .50088E-07	***		20
STAGE 1 2 3 4 9 10 11 15 16	CO2 .41743E-01 .57918E-01 .65762E-01 .68356E-01 .70047E-01 .70195E-01 .77369E-01 .80601E-01 .72873E-01	**** P N2 1.7979 2.1273 2.2301 2.2575 2.2606 2.2590 2.3288 2.3688 2.3688 2.5462	<pre>C-VALUES</pre>	**** CH4 .47595 .58654 .62909 .64180 .64743 .64760 .68093 .69726 .70535	C2H6 .27829E-01 .39149E-01 .44666E-01 .46499E-01 .47721E-01 .47830E-01 .52916E-01 .55297E-01 .50474E-01	C3H8 .30037E-02 .47136E-02 .56482E-02 .59744E-02 .62138E-02 .62379E-02 .71826E-02 .76335E-02 .65075E-02

.77737

.85482

.91102

.97906

1.6376

1.7468

1.8201

1.9378

D	TO	CV	PI	P
в	ЪŪ	LD.	D.	

MODEL: RADFRAC (CONTINUED)

	20	****	K-VALUES	
STAGE	C4H10	C5H12	C6H14	
1	.34312E-03	.35452E-04	.37576E-05	
2	.59825E-03	.69425E-04	.82654E-05	
3	.75163E-03	.91806E-04	.11495E-04	
4	.80734E-03	.10025E-03	.12758E-04	
9	.85064E-03	.10709E-03	.13812E-04	
10	.85524E-03	.10784E-03	.13931E-04	
11	.10235E-02	.13452E-03	.18096E-04	
15	.11057E-02	.14793E-03	.20263E-04	
16	.88268E-03	.11060E-03	.14296E-04	
17	.12942E-02	.17744E-03	.25028E-04	
18	.19001E-02	.28541E-03	.44000E-04	
19	.25079E-02	.40292E-03	.66322E-04	
20	.29497E-02	.48975E-03	.83475E-04	

***** HYDRAULIC PARAMETERS *****

*** DEFINITIONS ***

FLOW PARAM = (ML/MV)*SQRT(RHOV/RHOL) QR = QV*SQRT(RHOV/(RHOL-RHOV)) WHERE: ML IS THE MASS FLOW OF LIQUID FROM THE STAGE MV IS THE MASS FLOW OF VAPOR TO THE STAGE RHOL IS THE MASS DENSITY OF LIQUID FROM THE STAGE RHOV IS THE MASS DENSITY OF VAPOR TO THE STAGE QV IS THE VOLUMETRIC FLOW RATE OF VAPOR TO THE STAGE

	MASS F	LOW	VOLUN	AE FLOW	DENS	ITY
	KG/HR		COM	SEC	KG/C	OM
STAGE	LIQUID FROM	VAPOR TO	LIQUID FROM	VAPOR TO	LIQUID FROM	VAPOR TO
1	147.60	362.05	0.10053E-03	0.13814E-02	407.87	72.799
2	132.72	347.16	0.99822E-04	0.13854E-02	369.33	69.606
3	129.67	344.11	0.10099E-03	0.13899E-02	356.68	68.771
4	129.00	343.45	0.10150E-03	0.13907E-02	353.03	68.599
9	129.30	343.74	0.10225E-03	0.13859E-02	351.27	68.897
10	183.62	398.06	0.14523E-03	0.16588E-02	351.19	66.656
11	181.35	395.79	0.14729E-03	0.16652E-02	342.01	66.024
15	176.06	390.50	0.14412E-03	0.16722E-02	339.34	64.868
16	1500.1	723.28	0.11702E-02	0.33123E-02	356.09	60.657
17	1483.2	706.32	0.12173E-02	0.34756E-02	338.44	56.451
18	1456.8	679.98	0.12568E-02	0.36895E-02	322.00	51.195
19	1454.3	591.14	0.13014E-02	0.32576E-02	310.41	50.407
20	863.18	591.14	0.77289E-03	0.32576E-02	310.23	50.407

2

19

GLITSCH

BLOCK: B1 MODEL: RADFRAC (CONTINUED)

STAGE	VISCOSITY N-SEC/SQM LIQUID FROM VAPOR TO	SURFACE TENSION N/M LIQUID FROM	FLOW PARAM	QR CUM/SEC
1 2 3 4 9 10 11 15 16 17 18 19 20	0.53785E-04 0.97746E-05 0.51695E-04 0.96473E-05 0.50622E-04 0.96104E-05 0.50274E-04 0.96025E-05 0.50004E-04 0.96156E-05 0.49975E-04 0.95074E-05 0.49088E-04 0.94743E-05 0.48911E-04 0.94903E-05 0.52459E-04 0.92400E-05 0.50270E-04 0.89465E-05 0.48240E-04 0.86754E-05 0.46760E-04 0.84854E-05 0.47201E-04 0.84854E-05	0.39674E-02 0.38635E-02 0.37277E-02 0.36792E-02 0.36450E-02 0.36418E-02 0.35058E-02 0.34757E-02 0.39383E-02 0.35748E-02 0.31911E-02 0.28887E-02	0.17224 0.16597 0.16547 0.16558 0.16659 0.20096 0.20132 0.19712 0.85601 0.85761 0.85761 0.85428 0.99139	0.64392E-03 0.66765E-03 0.67931E-03 0.68298E-03 0.68457E-03 0.80289E-03 0.81446E-03 0.81293E-03 0.15008E-02 0.15551E-02 0.16042E-02 0.14343E-02
		01201000 02	0.00000	0.14348E-02

************************************* ***** TRAY SIZING CALCULATIONS ***** ************************************

***** *** SECTION 1 *** ******

STARTING STAGE NUMBER ENDING STAGE NUMBER FLOODING CALCULATION METHOD

DESIGN PARAMETERS

PEAK CAPACITY FACTOR SYSTEM FOAMING FACTOR FLOODING FACTOR MINIMUM COLUMN DIAMETER MINIMUM DC AREA/COLUMN AREA HOLE AREA/ACTIVE AREA	METER	1.00000 1.00000 0.80000 0.30480 0.100000 0.12000
TRAY SPECIFICATIONS		
TRAY TYPE NUMBER OF PASSES TRAY SPACING	METER	SIEVE 1 0.60960

BLOCK: B1 MODEL: RADFRAC (CONTINUED)

***** SIZING RESULTS @ STAGE WITH MAXIMUM DIAMETER *****

STAGE WITH MAXIMUM DIAMETER		19
COLUMN DIAMETER	METER	0.26078
DC AREA/COLUMN AREA		0.32316
DOWNCOMER VELOCITY	M/SEC	0.075395
WEIR LENGTH	METER	0.25023

**** SIZING PROFILES ****

STAGE	DIAMETER METER	TOTAL AREA SOM	ACTIVE AREA SQM	SIDE DC AREA SQM
2	0.11276	0.99863E-02	0.75198E-02	0.12332E-02
3	0.11387	0.10183E-01	0.76372E-02	0.12729E-02
4	0.11424	0.10250E-01	0.76758E-02	0.12872E-02
5	0.11437	0.10274E-01	0.76882E-02	0.12926E-02
6	0.11443	0.10284E-01	0.76930E-02	0.12954E-02
7	0.11447	0.10291E-01	0.76957E-02	0.12975E-02
8	0.11450	0.10297E-01	0.76979E-02	0.12995E-02
9	0.11453	0.10303E-01	0.76999E-02	0.13013E-02
10	0.12727	0.12721E-01	0.90384E-02	0.18414E-02
11	0.12841	0.12950E-01	0.91574E-02	0.18962E-02
12	0.12881	0.13032E-01	0.91990E-02	0.19164E-02
13	0.12895	0.13060E-01	0.92126E-02	0.19238E-02
14	0.12891	0.13051E-01	0.92082E-02	0.19214E-02
15	0.12782	0.12833E-01	0.91114E-02	0.18605E-02
16	0.24884	0.48632E-01	0.19509E-01	0.14561E-01
17	0.25516	0.51134E-01	0.20124E-01	0.15504E-01
18	0.26042	0.53265E-01	0.20597E-01	0.16334E-01
19	0.26078	0.53414E-01	0.18890E-01	0.17261E-01

BLOCK: B10 MODEL: HEATER

INLET STREAM:		12				
PROPERTY OPTION	SET:	SYSOP3	REDLICH-KWONG-SOAVE	EQUATION	OF	STATE

	***	MASS	AND	ENERGY IN	BALANCE	*** OUT	RELATIVE	DIFF.
TOTAL BALANCE MOLE (KMOL/HR) MASS (KG/HR) ENTHALPY (WATT)		4.9 86 -12	94413 .3177 1453.	4. 86 -10	.94413 5.3177)9453.	0 0 -0.98803	6E-01

BLOCK: B10 MOD	DEL: HEATER (CONT	INUED)		
TWO PHASE PQ SPECIFIED PRESSURE SPECIFIED HEAT DUT MAXIMUM NO. ITERAT CONVERGENCE TOLERA	*** INPUT FLASH C BA Y WA CIONS NCE	DATA *** LR LTT	2.0000 12,000.0 30 0.0001	.00000
OUTLET TEMPERATURE OUTLET PRESSURE VAPOR FRACTION	*** RESUL C BAR	TS ***	-63.40 2.000 0.9994	9 0 6
V-L PHASE EQUILIBR COMP CO2 N2 O2 CH4 C2H6 C3H8 C4H10 C5H12 C6H14	F(I) 0.10562E-01 0.31532E-01 0.76209E-04 0.91655 0.34092E-01 0.44497E-02 0.16630E-02 0.47194E-03 0.60004E-03	X(I) 0.53645E-02 0.15768E-03 0.94360E-06 0.27068E-01 0.20986E-01 0.24429E-01 0.75446E-01 0.15478 0.69177	Y(I) 0.10565E-01 0.31549E-01 0.76249E-04 0.91703 0.34099E-01 0.44390E-02 0.16233E-02 0.38883E-03 0.22777E-03	K(I) 1.9695 200.09 80.807 33.879 1.6248 0.18171 0.21516E-01 0.25121E-02 0.32925E-03
BLOCK: B13 MOD INLET STREAM: OUTLET STREAM: PROPERTY OPTION SE	EL: COMPR 200 21 T: SYSOP3 R	EDLICH-KWONG-SO2	AVE EQUATION OF	STATE
TOTAL BALANCE MOLE (KMOL/HR) MASS (KG/HR) ENTHALPY (WATT	*** MASS AND E II 8.72 214.) -6316 *** INPUT	NERGY BALANCE * N C 550 8.72 441 214. 7.8 -6711 DATA ***	2550 2550 441 5.9 0.5	TIVE DIFF. 0. 0. 88259E-01
GAS PHASE CALCULA NO FLASH PERFORME TYPE : ISENTROPIC PRESSURE RATIO ISENTROPIC EFFICI MECHANICAL EFFICI	TION D TURBINE ENCY ENCY	ž	0.0730 0.7200 1.0000	0 0 0

BLOCK: B13 MODEL: COMPR (CONTINUED)

*** RESULTS ***

-3,948.15 INDICATED HORSEPOWER REQUIREMENT WATT -3,948.15 BRAKE HORSEPOWER REQUIREMENT WATT NET WORK, WATT 3,948.15 -5,483.55 ISENTROPIC HORSEPOWER REQUIREMENT WATT 2.00750 CALCULATED OUTLET PRES BAR -174.215 CALCULATED OUTLET TEMP C -193.632 ISENTROPIC TEMPERATURE C 1.00000 OUTLET VAPOR FRACTION BLOCK: B15 MODEL: HEATER

INLET STREAM: 6 OUTLET STREAM: 7 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

	***	MASS	AND ENERGY	BALANCE *** OUT	RELATIVE DIFF.
TOTAL BALANCE MOLE (KMOL/HR) MASS (KG/HR)			44.4971 776.859	44.4971 776.859	0. 0.
ENTHALPY (WATT)		-0.108221E+0	7 -0.108221E+07	-0.360261E-07

*** INPUT DATA ***

TWO PHASE TQ FLASH SPECIFIED TEMPERATURE SPECIFIED HEAT DUTY MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE

C WATT -135.000 0.0 30 0.000100000

BLOCK: B15 MODEL:	HEATER (CONTINUED)	
OUTLET TEMPERATURE OUTLET PRESSURE VAPOR FRACTION	*** RESULTS *** C BAR	-135.00 5.7688 0.36771
V-L PHASE EQUILIBRIUM	:	
COMP H CO2 0 N2 0 CH4 0 C2H6 0 C3H8 0 C4H10 0 C5H12 0 C6H14 0 BLOCK: B16 MODEL:	F(I) X(I) .10562E-01 0.16554E-01 .31532E-01 0.79240E-02 .76209E-04 0.38588E-04 .91655 0.91053 .34092E-01 0.53589E-01 .44497E-02 0.70362E-02 .16630E-02 0.26302E-02 .47194E-03 0.74640E-03 .60004E-03 0.94900E-03 HEATER 11 11	Y(I) K(I) 0.26045E-03 0.15734E-01 0.72126E-01 9.1021 0.14090E-03 3.6514 0.92690 1.0180 0.56654E-03 0.10572E-01 0.22948E-05 0.32614E-03 0.29294E-07 0.11138E-04 0.24551E-09 0.32892E-06 0.10216E-10 0.10766E-07
OUTLET STREAM: PROPERTY OPTION SET:	12 SYSOP3 REDLICH-KWONG-SOA	VE EQUATION OF STATE
*** TOTAL BALANCE MOLE (KMOL/HR) MASS (KG/HR) ENTHALPY (WATT)	MASS AND ENERGY BALANCE * IN C 4.94413 4.94 86.3177 86.3 -1214531214	*** RELATIVE DIFF. 413 0. 8177 0. 53. -0.466853E-07
TWO PHASE PQ FLAS SPECIFIED PRESSURE SPECIFIED HEAT DUTY MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE	*** INPUT DATA *** CH BAR WATT	2.00000 0.0 30 0.00100000

BLOCK: B16 MODEL:	HEATER (CONTINUED)	
OUTLET TEMPERATURE OUTLET PRESSURE VAPOR FRACTION	*** RESULTS *** C BAR	-152.31 2.0000 0.36162
V-L PHASE EQUILIBRIUM	1	
COMP F CO2 0. N2 0. O2 0. CH4 0. C2H6 0. C3H8 0. C4H10 0. C5H12 0. C6H14 0. BLOCK: B17 MODEL:	Y(I) X(I) 10562E-01 0.16506E-01 31532E-01 0.50818E-02 76209E-04 0.31878E-04 91655 0.91382 34092E-01 0.53311E-01 44497E-02 0.69702E-02 16630E-02 0.26051E-02 47194E-03 0.73928E-03 60004E-03 0.93994E-03	Y(I) K(I) 0.71132E-04 0.43096E-02 0.78224E-01 15.393 0.15447E-03 4.8456 0.92139 1.0083 0.16485E-03 0.30922E-02 0.27192E-06 0.39012E-04 0.14760E-08 0.56660E-06 0.49679E-11 0.67199E-08 0.87963E-13 0.93583E-10
INLET STREAM: OUTLET STREAM: PROPERTY OPTION SET:	3 4 SYSOP3 REDLICH-KWONG-SOA	VE EQUATION OF STATE
*** TOTAL BALANCE MOLE (KMOL/HR) MASS (KG/HR)	MASS AND ENERGY BALANCE * IN 0 53.2227 53.2 991.302 991.	** UT RELATIVE DIFF. 227 0. 302 0.
ENTHALPY (WATT)	-0.119070E+07 -0.119 *** INPUT DATA ***	070E+07 0.122882E-06
SPECIFIED PRESSURE SPECIFIED HEAT DUTY MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE	BAR WATT	28.0000 0.0 150 0.000100000

*

A8-55

BLOCK: B17 MODEL	:	HEATER (CC	NTINU	ED)					
OUTLET TEMPERATURE OUTLET PRESSURE VAPOR FRACTION		*** RES C BAR	ULTS	***				-135.80 28.000 0	D D
V-L PHASE EQUILIBRIU	M								
COMP CO2 N2 O2 CH4 C2H6 C3H8 C4H10 C5H12 C6H14 BLOCK: B18 MODEL	F 0 0 0 0 0	(I) 88308E-02 14317 11273E-03 81337 28503E-01 37202E-02 13904E-02 39457E-03 50167E-03 FSPLIT	X 0. 0. 0. 0. 0. 0. 0.	(I) 88308E- 14317 11273E- 81337 28503E- 37202E- 13904E- 39457E- 50167E-	-02 -03 -01 -02 -02 -03 -03	Y(0.2 0.4 0.1 0.5 0.6 0.7 0.2 0.5 0.7	I) 3944E 7321 7807E 2570 6524E 3466E 5142E 9492E 0384E	-03 -03 -05 -06 -08 -09	K(I) 0.14917E-01 1.8157 0.86786 0.35524 0.12844E-01 0.10878E-02 0.99702E-04 0.83217E-05 0.77512E-06
INLET STREAM: OUTLET STREAMS: PROPERTY OPTION SET:		5 6 SYSOP3	9 REDL	ICH-KWC	DNG-SO	AVE 1	EQUAT	ION OF	STATE
*	**	MASS AND	ENER IN	GY BAL	ANCE	*** OUT		RELAT	TIVE DIFF.
TOTAL BALANCE MOLE (KMOL/HR) MASS (KG/HR) ENTHALPY (WATT)	49 86 -0.1	.4413 3.177 20245	E+07	49. 863 -0.12	4413 .177 0245	E+07		0. 0. 0.
FRACTION OF FLOW		*** INPU S	T DAT	A ***	FRAC	=		0.9000	00
		*** RES	ULTS	***					
STREAM= 6 9		SPLIT=		0.9000	00 00	KEY=	0 0		

÷,

BLOCK: B19 MODE	EL: HEATER				
INLET STREAM: OUTLET STREAM: OUTLET HEAT STREAM: PROPERTY OPTION SET	21 22 : MID I: SYSOP3	REDLIC	-KWONG-SOAVE E	QUATION OF S	TATE
	*** MASS	AND ENERGY	BALANCE ***		
		IN	OUT	RELATIV	VE DIFF.
TOTAL BALANCE		8 72550	8.72550		0.
MASS (KC/HB)		214.441	214.441		Ο.
ENTHALPY (WATT)	-67115.9	-67115.9	0.216	818E-15
	***]	INPUT DATA	***		
TWO PHASE TP	FLASH				
SPECIFIED TEMPERAT	URE	С		-120.000	
SPECIFIED PRESSURE		BAR		2.00000	
MAXIMUM NO. ITERAT CONVERGENCE TOLERA	IONS NCE			0.000100	000
	***	RESULTS *	**		
OUTLET TEMPERATURE	С			-120.00	
OUTLET PRESSURE	BAR			2.0000	
HEAT DUTY	WATT			4114.8	
VAPOR FRACTION				1.0000	
V-L PHASE EQUILIBR	IUM :				
COMP	F(I)	X(I) Y (I)	K(I)
N2	0.71250	0.51	936 0.7	1250	17.232
02	0.29900E	-03 0.26	697E-03 0.2	9900E-03	9 0474
CH4	0.28720	0.48	038 0.2	8720	9.04/4
BLOCK: B20 MOD	EL: HEATER				
INLET STREAM:	17				
OUTLET STREAM:	17A		U PRIONC CONVE	FOUTATION OF 9	TATE
PROPERTY OPTION SE	T: SYSOP	3 REDLIC	H-KWONG-SOAVE	EQUATION OF 5	11111
	*** MASS	AND ENERGY IN	BALANCE *** OUT	RELATI	IVE DIFF.
TOTAL BALANCE		4 04412	1 0//13		0.
MOLE (KMOL/HR)		86.3177	86.3177		0.
ENTHALPY (WATT)	-102771.	-106120.	0.315	5597E-01
and a second a line a		some men har her teller til som attendet til			

.

BLOCK: B20 MODEL:	HEATER (CONTINUED)	
TWO PHASE TP FLAS SPECIFIED TEMPERATURE PRESSURE DROP MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE	C BAR	20.0000 0.0 30 0.000100000
	*** RESILTS ***	
OUTLET TEMPERATURE OUTLET PRESSURE HEAT DUTY VAPOR FRACTION	C BAR WATT	20.000 28.500 -3349.1 1.0000
V-L PHASE EQUILIBRIUM	5	
COMP F CO2 0. N2 0. O2 0. CH4 0. C2H6 0. C3H8 0. C4H10 0. C5H12 0. C6H14 0. BLOCK: B21 MODEL:	(I) X(I) 10562E-01 0.15453E-01 31532E-01 0.22066E-01 76209E-04 0.59481E-04 91655 0.87061 34092E-01 0.64950E-01 44497E-02 0.11412E-01 16630E-02 0.66148E-02 47194E-03 0.29329E-02 60004E-03 0.59004E-02	Y(I) K(I) 0.10562E-01 2.6225 0.31532E-01 4.9435 0.76209E-04 4.4068 0.91655 3.7314 0.34092E-01 2.3021 0.44497E-02 1.5833 0.16630E-02 1.0931 0.47194E-03 0.75275 0.60004E-03 0.51630
INLET STREAM: OUTLET STREAM: PROPERTY OPTION SET:	16 17 SYSOP3 REDLICH-KWONG-SOM	AVE EQUATION OF STATE
*** TOTAL BALANCE	MASS AND ENERGY BALANCE IN	*** OUT RELATIVE DIFF.
MOLE (KMOL/HR) MASS (KG/HR) ENTHALPY (WATT)	4.94413 4.94 86.3177 86.3 -1063071027	4413 0. 3177 0. 771. -0.332650E-01
	*** INPUT DATA ***	
SPECIFIED TEMPERATURE SPECIFIED PRESSURE MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE	C BAR	80.0000 28.5000 30 0.000100000

BLOCK: B21 MODEL:	HEATER (CON	TINUED)		
OUTLET TEMPERATURE OUTLET PRESSURE HEAT DUTY VAPOR FRACTION	*** RESU C BAR WATT	JLTS ***		80.000 28.500 3536.3 1.0000
V-L PHASE EQUILIBRIUM	:			
COMP I CO2 0 N2 0 O2 0 CH4 0 C2H6 0 C3H8 0 C4H10 0 C5H12 0 C6H14 0	F(I) 10562E-01 31532E-01 76209E-04 91655 34092E-01 44497E-02 16630E-02 47194E-03 60004E-03	X(I) 0.13622E-01 0.23812E-01 0.63865E-04 0.88024 0.51552E-01 0.12974E-01 0.13403E-01 0.16043E-02 0.27289E-02	Y(I) 0.10562E 0.31532E 0.76209E 0.91655 0.34092E 0.44497E 0.16630E 0.47194E 0.60004E	K(I) -01 4.4383 -01 7.2088 -04 6.4840 5.7685 -01 4.0815 -02 3.1739 -02 2.4767 -03 1.9447 -03 1.5297
BLOCK: B5 MODEL:	HEATX			
HOT SIDE: INLET STREAM: OUTLET STREAM: PROPERTY OPTION SET:	17A 18 SYSOP3	REDLICH-KWONG	-SOAVE EQUAT	ION OF STATE
INLET STREAM: OUTLET STREAM: PROPERTY OPTION SET:	15 16 SYSOP3	REDLICH-KWONG	G-SOAVE EQUAT	ION OF STATE
**	* MASS AND	ENERGY BALANC	CE *** OUT	RELATIVE DIFF.
TOTAL BALANCE MOLE (KMOL/HR) MASS (KG/HR) ENTHALPY (WATT	9.8 172) –218	88825 2.635 8448	9.88826 172.635 -218448.	-0.558420E-06 -0.380306E-06 0.691928E-06
BIACH CDECC BOD HOM C	TDP.	r data ***		((#))-
TWO PHASE FLA MAXIMUM NO. ITERATION CONVERGENCE TOLERANCE	SH		з	0 0.000100000

•

15

FLASH SPECS FOR COLD TWO PHASE FL MAXIMUM NO. ITERATIO CONVERGENCE TOLERANC	SIDE: ASH NS E	30 0.000100000
COUNTERCURRENT HEA COLD STREAM OUTLET HOT STREAM PRESSURE COLD STREAM PRESSUR	I EXCHANGER WITH SPECIFIED COLI IEMPERATURE (C) DROP (BAR) E DROP (BAR)	OUTLET TEMPERATURE 2.00000 1.50000 0.0
HEAT TRANSFER COEFF	ICIENTS (WATT/SQM-K):	
HOT STREAM PHASE LIQUID BOILING LIQUID VAPOR LIQUID BOILING LIQUID VAPOR LIQUID BOILING LIQUID VAPOR	COLD STREAM PHASE LIQUID LIQUID BOILING LIQUID BOILING LIQUID BOILING LIQUID VAPOR VAPOR VAPOR	850.000 850.000 850.000 850.000 850.000 850.000 850.000 850.000
	*** RESULTS ***	
HOT STREAM INLET TE HOT STREAM OUTLET T COLD STREAM INLET T COLD STREAM OUTLET EXCHANGER HEAT DUTY HEAT TRANSFER AREA	MPERATURE (C) EMPERATURE (C) EMPERATURE (C) TEMPERATURE (C) (WATT) (SQM)	20.0000 -79.8053 -116.718 2.00000 6,021.03 0.27696

BLOCK: B5 MODEL: HEATX (CONTINUED)

BLOCK: B5 MODEL: HEATX (CONTINUED)

AREA CALCULATION RESULTS:

SECTIC 1 2 3	ON CONDITIONS (HOT-COLD) V-B B-V V-B	AREA (SQM 0.14 0.0 0.12) 972 2725	HEAD (WAD 2,71 -1 3,31	F DUTY FT) 19.20 11.6519 13.48	
SECTIO	N TEMPERATUR HOT STREAM (C)	E LEAVING	SECTION COLD ST (C	REAM)		
1 2 3	-29.717 -29.504 -79.805	9 8 3	2. -54. -54.	00000 8480 6177		
17A > 20.0	VAP	-29.71	BOIL	-29.5	VAP	18 > -79.8
16	BOIL	 	VAP	-54 61	BOIL	 15 <
2.0						
BLOCK: 1	B9 MODEL:	HEATER				
INLET S OUTLET PROPERS	STREAM: STREAM: IY OPTION SET:	2 3 SYSOP3	REDLICH	I-KWONG-	SOAVE EQUATIO	ON OF STATE
	**	* MASS A	AND ENERGY IN	BALANCE	*** OUT	RELATIVE DIFF
TOTAL MO MA EN	BALANCE LE (KMOL/HR) SS (KG/HR) THALPY (WATT) –(53.2227 991.302 0.115869E+0	5 9 07 -0.	3.2227 91.302 119070E+07	0. 0. 0.268826E-01
ТWO	PHASE PO FLA	*** II SH	NPUT DATA	***		
SPECIF	IED PRESSURE IED HEAT DUTY	~	BAR WATT		-32,000	.0000 .0
CONVER	M NO. ITERATION GENCE TOLERANCE	5			0	.000100000

BLOCK: B9 MODEL: HEATER (CONTINUED)

	***	RESULTS	***	
OUTLET TEMPERATURE	С			-136.23
OUTLET PRESSURE	BAR			54.000
VAPOR FRACTION				Ο.

V-L PHASE EQUILIBRIUM :

COMP	F(I)	X(I)	Y(I)	K(I)
CO2	0.88308E-02	0.88308E-02	0.25583E-03	0.86622E-02
N2	0.14317	0.14317	0.46231	0.98334
02	0.11273E-03	0.11273E-03	0.17133E-03	0.46192
CH4	0.81337	0.81337	0.53647	0.19954
C2H6	0.28503E-01	0.28503E-01	0.77945E-03	0.81502E-02
СЗН8	0.37202E-02	0.37202E-02	0.98983E-05	0.78333E-03
C4H10	0.13904E-02	0.13904E-02	0.38949E-06	0.81491E-04
C5H12	0.39457E-03	0.39457E-03	0.10718E-07	0.78025E-05
C6H14	0.50167E-03	0.50167E-03	0.14999E-08	0.84790E-06
a 2

1 10 11 12 13

STREAM ID FROM : TO :	1 B2	10 B4 B3	11 B3 B16	12 B16 B10	13 B10 B3
SUBSTREAM: MIXED PHASE:	VAPOR	FIGNID	LIQUID	MIXED	MIXED
CO2	0.4700	5.2222-02	5.2222-02	5.2222-02	5.2222-02
N2	7.6200	0.1559	0.1559	0.1559	0.1559
02	6.0000-03	3.7678-04	3.7678-04	3.7678-04	3.7678-04
CH4	43.2900	4.5315	4.5315	4.5315	4.5315
C2H6	1.5170	0.1685	0.1685	0.1685	0.1685
СЗН8	0.1980	2.2000-02	2.2000-02	2.2000-02	2.2000-02
C4H10	7.4000-02	8.2222-03	8.2222-03	8.2222-03	8.2222-03
C5H12	2.1000-02	2.3333-03	2.3333-03	2.3333-03	2.3333-03
C6H14	2.6700-02	2.9667-03	2.9667-03	2.9667-03	2.9667-03
TOTAL FLOW:					
KMOL/HR	53.2227	4.9441	4.9441	4.9441	4.9441
KG/HR	991.3019	86.3177	86.3177	86.3177	86.3177
CUM/SEC	6.0091-03	7.4045-05	6.9072-05	2.4058-03	1.1823-02
STATE VARIABLES:					
TEMP C	15.0000	-103.0662	-110.0662	-152.3090	-63.4090
PRES BAR	54.0000	28.0000	28.0000	2.0000	2.0000
VFRAC	1.0000	0.0	0.0	0.3616	0.9994
LFRAC	0.0	1.0000	1.0000	0.6383	5.3832-04
SFRAC	0.0	0.0	0.0	0.0	0.0
ENTHALPY:					
J/KMOL	-6.8837+07	-8.7868+07	-8.8434+07	-8.8434+07	-7.9697+07
J/KG	-3.6959+06	-5.0329+06	-5.0654+06	-5.0654+06	-4.5649+06
WATT	-1.0177+06	-1.2068+05	-1.2145+05	-1.2145+05	-1.0945+05
ENTROPY:					
J/KMOL-K	-1.0411+05	-1.6176+05	-1.6516+05	-1.6063+05	-9.6987+04
J/KG-K	-5589.8717	-9265.1222	-9459.8357	-9200.4041	-5555.2636
DENSITY:				947 - 1150-5170 SI	2 2 2 2 2 2 2
KMOL/CUM	2.4603	18.5476	19.8832	0.5708	0.1161
KG/CUM	45.8244	323.8169	347.1337	9.9665	2.0279
AVG MW	18.6255	17.4586	17.4586	17.4586	17.4586

~

14 15 16 17 17A

STREAM ID FROM : TO :	14 B3 B4	15 B4 B5	16 B5 B21	17 B21 B20	17A B20 B5
SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HB	MIXED	MIXED	VAPOR	VAPOR	VAPOR
CO2	5.2222-02	5.2222-02	5.2222-02	5.2222-02	5.2222-02
N2	0.1559	0.1559	0.1559	0.1559	0.1559
02	3.7678-04	3.7678-04	3.7678-04	3.7678-04	3.7678-04
CH4	4.5315	4.5315	4.5315	4.5315	4.5315
C2H6	0.1685	0.1685	0.1685	0.1685	0.1685
C3H8	2.2000-02	2.2000-02	2.2000-02	2.2000-02	2.2000-02
C4H10	8.2222-03	8.2222-03	8.2222-03	8.2222-03	8.2222-03
C5H12	2.3333-03	2.3333-03	2.3333-03	2.3333-03	2.3333-03
C6H14	2.9667-03	2.9667-03	2.9667-03	2.9667-03	2.9667-03
TOTAL FLOW:					
KMOL/HR	4.9441	4.9441	4.9441	4.9441	4.9441
KG/HR	86.3177	86.3177	86.3177	86.3177	86.3177
CUM/SEC	8.8695-03	8.5600-03	1.5633-02	1.3862-03	1.1130-03
STATE VARIABLES:					
TEMP C	-112.1358	-116.7183	2.0000	80.0000	20.0000
PRES BAR	2.0000	2.0000	2.0000	28.5000	28.5000
VFRAC	0.9897	0.9851	1.0000	1.0000	1.0000
LFRAC	1.0210-02	1.4872-02	0.0	0.0	0.0
SFRAC	0.0	0.0	0.0	0.0	0.0
ENTHALPY:					
J/KMOL	-8.1558+07	-8.1790+07	-7.7406+07	-7.4831+07	-7.7270+07
J/KG	-4.6715+06	-4.6848+06	-4.4337+06	-4.2862+06	-4.4259+06
WATT	-1.1201+05	-1.1233+05	-1.0631+05	-1.0277+05	-1.0612+05
ENTROPY:	•				
J/KMOL-K	-1.0714+05	-1.0860+05	-8.7480+04	-1.0106+05	-1.0862+05
J/KG-K	-6136.9183	-6220.6520	-5010.6757	-5788.4810	-6221.6141
DENSITY:					
KMOL/CUM	0.1548	0.1604	8.7853-02	0.9907	1.2339
KG/CUM	2.7033	2.8010	1.5338	17.2970	21.5432
AVG MW	17.4586	17.4586	17.4586	17.4586	17.4586

5

18 19 2 200 21

STREAM ID	18	19	2	200	21
FROM :	B5	Bl	B2	B3	B13
TO :	Bl	B3	В9	B13	B19
SUBSTREAM: MIXED					
PHASE:	MIXED	VAPOR	LIQUID	VAPOR	VAPOR
COMPONENTS: KMOL/HR					
C02	5.2222-02	1.0341-15	0.4700	1.0341-15	1.0341-15
N2	0.1558	6.2169	7.6200	6.2169	6.2169
02	3.7678-04	2.6089-03	6.0000-03	2.6089-03	2.6089-03
CH4	4.5315	2.5059	43.2900	2.5059	2.5059
C2H6	0.1685	7.3088-18	1.5170	7.3088-18	7.3088-18
СЗН8	2.2000-02	6.2150-33	0.1980	6.2150-33	6.2150-33
C4H10	8.2222-03	0.0	7.4000-02	0.0	0.0
C5H12	2.3333-03	0.0	2.1000-02	0.0	0.0
C6H14	2.9667-03	0.0	2.6700-02	0.0	0.0
TOTAL FLOW:					
KMOL/HR	4.9441	8.7255	53.2227	8.7255	8.7255
KG/HR	86.3177	214.4412	991.3019	214.4412	214.4412
CUM/SEC	6.0795-04	7.1321-04	7.9051-04	1.0851-03	9.4043-03
STATE VARIABLES:					
TEMP C	-79.8052	-129.8547	-105.0000	-99.8547	-174.2148
PRES BAR	27.0000	27.5000	54.0000	27.5000	2.0075
VFRAC	0.9697	1.0000	0.0	1.0000	1.0000
LFRAC	3.0212-02	0.0	1.0000	0.0	0.0
SFRAC	0.0	0.0	0.0	0.0	0.0
ENTHALPY:					
J/KMOL	-8.1654+07	-2.7438+07	-7.8374+07	-2.6062+07	-2.7691+07
J/KG	-4.6770+06	-1.1164+06	-4.2079+06	-1.0604+06	-1.1267+06
WATT	-1.1214+05	-6.6502+04	-1.1587+06	-6.3168+04	-6.7116+04
ENTROPY:					
J/KMOL-K	-1.2682+05	-7.3989+04	-1.4997+05	-6.5218 + 04	-5.8085+04
J/KG-K	-7263.8423	-3010.5654	-8051.6661	-2653.6850	-2363.4266
DENSITY:					
KMOL/CUM	2.2590	3.3983	18.7020	2.2336	0.2577
KG/CUM	39.4392	83.5195	348.3353	54.8945	6.3340
AVG MW	17.4586	24.5763	18.6255	24.5763	24.5763

· ·

22	22A	23	3	4

STREAM ID FROM : TO :	22 B19 B4	22A B4 B2	23 B2	3 B9 B17	4 B17 B1
SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HB	VAPOR	VAPOR	VAPOR	LIQUID	LIQUID
CO2	1.0341-15	1.0341-15	1.0341-15	0.4700	0.4700
N2	6.2169	6.2169	6.2169	7.6200	7.6200
02	2.6089-03	2.6089-03	2.6089-03	6.0000-03	6.0000-03
CH4	2.5059	2.5059	2.5059	43.2900	43.2900
C2H6	7.3088-18	7.3088-18	7.3088-18	1.5170	1.5170
СЗН8	6.2150-33	6.2150-33	6.2150-33	0.1980	0.1980
C4H10	0.0	0.0	0.0	7.4000-02	7.4000-02
C5H12	0.0	0.0	0.0	2.1000-02	2.1000-02
C6H14	0.0	0.0	0.0	2.6700-02	2.6700-02
TOTAL FLOW:					
KMOL/HR	8.7255	8.7255	8.7255	53.2227	53.2227
KG/HR	214.4412	214.4412	214.4412	991.3019	991.3019
CUM/SEC	1.5198-02	1.6236-02	2.9011-02	6.2850-04	6.4006-04
STATE VARIABLES:					
TEMP C	-120.0000	-110.0000	15.0000	-136.2263	-135.7970
PRES BAR	2.0000	2.0000	2.0000	54.0000	28.0000
VFRAC	1.0000	1.0000	1.0000	0.0	0.0
LFRAC	0.0	0.0	0.0	1.0000	1.0000
SFRAC	0.0	0.0	0.0	0.0	0.0
ENTHALPY:			12012020	0.50.50.5	
J/KMOL	-2.5993+07	-2.5685+07	-2.1840+07	-8.0539+07	-8.0539+07
J/KG	-1.0577+06	-1.0451+06	-8.8866+05	-4.3241+06	-4.3241+06
WATT	-6.3001+04	-6.2253+04	-5.2935+04	-1.1907+06	-1.1907+06
ENTROPY:					
J/KMOL-K	-4.4354+04	-4.2401+04	-2.4910+04	-1.6415+05	-1.6333+05
J/KG-K	-1804.7275	-1725.2827	-1013.5797	-8812.9866	-8769.3321
DENSITY:					
KMOL/CUM	0.1594	0.1492	8.3547-02	23.5228	23.0978
KG/CUM	3.9193	3.6689	2.0532	438.1255	430.2106
AVG MW	24.5763	24.5763	24.5763	18,6255	18,6255
	2000-000 100-000 100 000 000 000 000 000				

56789

STREAM ID FROM : TO :	5 B1 B18	6 B18 B15	7 B15 B2	8 B2	9 B18 B4
SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR	LIQUID	LIQUID	MIXED	VAPOR	LIQUID
CO2	0.5222	0.4700	0.4700	0.4700	5.2222-02
N2	1.5589	1.4030	1.4030	1.4030	0.1559
02	3.7678-03	3.3911-03	3.3911-03	3.3911-03	3.7678-04
CH4	45.3155	40.7839	40.7839	40.7839	4.5315
C2H6	1.6855	1.5170	1.5170	1.5170	0.1685
СЗН8	0.2200	0.1980	0.1980	0.1980	2.2000-02
C4H10	8.2222-02	7.4000-02	7.4000-02	7.4000-02	8.2222-03
C5H12	2.3333-02	2.1000-02	2.1000-02	2.1000-02	2.3333-03
C6H14	2.9667-02	2.6700-02	2.6700-02	2.6700-02	2.9667-03
TOTAL FLOW:					
KMOL/HR	49.4412	44.4971	44.4971	44.4971	4.9441
KG/HR	863.1770	776.8593	776.8593	776.8593	86.3177
CUM/SEC	7.7289-04	6.9560-04	8.4152-03	5.1299-02	7.7289-05
STATE VARIABLES:	00 5000	00 5000	125 0000		
TEMP C	-99.5662	-99.5662	-135.0000	18.0845	-99.5662
PRES BAR	28.0000	28.0000	5.7688	5.7688	28.0000
VERAC	0.0	0.0	0.3677	1.0000	0.0
LFRAC	1.0000	1.0000	0.6322	0.0	1.0000
DIRAC	0.0	0.0	0.0	0.0	0.0
ENTRALPI:	0 7555,07	0 7555107	0 7555.07	7	0 9555.09
J/KOL	-8.7555+07	-8.7555+07	-8./555+0/	-7.6902+07	-8./555+0/
07 KG WATT	-1 2025+06	-1.0022+06	-5.0150+06	-4.4048+06	-5.0150+06
ENTROPY .	-1.2025+00	-1.0022+00	-1.0822+06	-9.5053+05	-1.2025+05
I/KMOL-K	-1 5994+05	-1 5994+05	-1 5697+05	-0 1120+01	-1 5004+05
J/KG-K	-9160 8578	-9160 8578	-8085 3131	-5400 2696	-1.5994+05
DENSITY:	5100.0070	5100.0570	0900.0101	-3409.2000	-9100.0570
KMOL/CUM	17 7692	17 7692	1 4699	0 2400	17 7602
KG/CUM	310.2261	310,2261	25 6433	4 2066	310 2261
AVG MW	17.4586	17.4586	17 4586	17 4596	17 4596
and a second	11.1000	11.1000	11.4000	11.1000	11.1300

MID

STREAM		MTD
FROM	:	B19
TO		Bl
CLASS	:	HEAT
STREAM	ATTRIBUTES:	
Q	WATT	-4114.8363

APPENDIX 9

The factors and coefficients for the investment cost calculation of the design process

The dimension of C_i is $10^3 \times US$ \$. The last column of the tables is the PCE.

Table A	49.1.	The	furnace.
---------	-------	-----	----------

Code	F _m	F _p	Ft	Q (kW)	C _{fuo}	C _{fu}
H-2101	1.6	1	1.5	4170	335.8	857.5

Table A9.2. The pressure vessels.

Code	F _m	F _p	l (m)	d (m)	a	b	C _{pvo}	C _{pv}
V-2101	1	1.4	4.10	0.66	1500	1100	3.81	5.67
V-2102	1	1.4	3.60	1.00	1500	1100	5.46	8.14
V-2103	1	1.4	3.40	1.05	890	705	3.47	5.17
V-2104	3.7	1	5.24	0.70	1294	1141	4.91	19.33
V-2107	3.7	1.2	2.55	0.65	1500	1100	2.68	12.67
V-2108	3.7	1.2	2.30	0.61	1500	1100	2.34	11.05
V-2109	3.7	1	2.60	0.51	1500	1100	2.07	8.15
V-2110	1	1	4.80	2.00	1500	1100	14.53	15.47
V-2111	1	1	1.20	0.70	1500	1100	1.91	2.03
V-2112	1	1.4	3.60	1.00	1500	1100	5.46	8.14
V-2113	3.7	1.2	1.85	0.45	1500	1100	1.47	6.94
V-2114	3.7	1.2	1.85	0.35	1500	1100	1.11	5.26
V-2115	1	1.2	4.50	0.66	1500	1100	4.09	5.22
V-2116	1	1.2	2.35	0.61	1500	1100	2.37	3.03
V-2117	1	1.6	2.35	0.51	1500	1100	1.94	3.30
V-2119	1	1.2	2.00	0.41	1500	1100	1.37	1.76

Table A9.3. The columns without internals.

Code	F _m	F _p	l (m)	d (m)	a	b	C _{pvo}	C _{pv}
V-2105	1	1.2	21.56	0.76	1294	1141	18.86	24.09
V-2106	2.3	1.1	19.90	0.90	1294	1141	21.37	57.55
V-2118	1	1.6	4.48	1.10	1500	1100	7.13	12.14
T-21	3.7	1.6	14.70	0.80	1294	1141	14.13	89.03
T-22	3.7	1.2	10.54	0.40	1294	1141	4.86	22.97
T-23	3.7	1.2	6.02	0.40	1294	1141	2.98	14.07
T-24	3.7	1.2	5.55	0.40	1294	1141	2.78	13.14

Code	N _{tr}	F _{nt}	F _m	F _{tt}	d (m)	Cur	C _{int}
V-2105	1	3	1	1	0.76	0.16	0.50
V-2106	4	2.5	1.7	1	0.90	0.18	3.28
V-2118	1	3	1	1	1.10	0.22	0.70
T-21	20	1	1.7	1	0.80	0.16	5.91
T-22	25	1	1.7	2.9	0.40	0.10	13.44
T-23	11	1.5	1.7	2.9	0.40	0.10	8.87
T-24	11	1.5	1.7	2.9	0.40	0.10	8.87

Table A9.4. The trays.

Table A9.5. The packings.

Code	V _{packing} (m ³)	C _{po}	N _{db}	C _{do}	C _{pd}	
V-2105	6.0	15.00	3	4.10	19.10	
V-2106	5.7	14.18	3	5.70	19.88	

 $V_{packing}$ is the volume of the packing, C_{po} is the price of the packing (Pall rings), N_{db} the number of distributors, C_{do} the price of the distibutors and C_{pd} the total price.

Table A9.6. The compressors.

Code	F _m	P (kW)	a	b	C _{como}	C _{com}
K-2103	1	200	6.628	0.968	76.57	102.60
K-2104	1	300	6.628	0.968	113.40	151.90
K-2105	1	140	6.628	0.968	54.21	72.62

Table A9.7. The drivers.

Code	Ft	F _{red}	C _{emo}	C _{em}	
K-2103	1.4	1	11.91	19.23	
K-2104	1.4	1	16.54	26.70	
K-2105	1.4	1	8.77	14.16	

Code	F _t	F _p	A (m ²)	a	b	Cheo	C _{be}
H-2102	0.8	1.25	4.6	7.085	0.656	3.23	3.43
H-2103	0.8	1.1	22.7	6.587	0.9955	16.24	15.21
H-2104	0.8	1.25	9.1	6.587	0.9955	6.54	6.96
H-2105	0.8	1.25	9.1	7.085	0.656	5.08	5.41
H-2106	0.8	1.3	18.2	7.085	0.656	8.01	8.87
H-2107	1	1.3	23.9	7.085	0.656	9.58	13.25
H-2108	0.85	1	50.0	7.085	0.656	15.54	14.06
H-2109A	0.85	1.1	35.2	7.085	0.656	12.35	12.29
H-2109B	0.85	1.1	35.2	6.587	0.9955	25.14	25.01
H-2110	0.85	1.1	83.3	6.587	0.9955	59.25	58.96
H-2111	0.85	1.1	51.0	6.587	0.9955	36.36	36.18
H-2112	0.85	1	28.4	6.587	0.9955	20.30	18.36
H-2113	0.8	1.1	14.9	7.085	0.656	7.02	6.58
H-2114	0.85	1.1	9.3	7.085	0.656	5.16	5.13
H-2115	0.85	1.3	15.5	7.085	0.656	7.21	8.48
H-2116	0.85	1.25	6.5	7.085	0.656	4.08	4.61
H-2117	0.85	1.1	7.5	7.085	0.656	4.48	4.46
H-2118	0.8	1.1	16.8	7.085	0.656	7.60	7.12
H-2119	0.8	1.1	7.2	7.085	0.656	4.36	4.08
H-2120	0.85	1	6.6	7.085	0.656	4.12	3.72
E-21	0.8	1.3	10.0*	7.439	0.8861	13.09	14.48
E-22	1.4	1.3	18.0	7.439	0.8861	22.03	42.66
E-23L	1.4	1.3	62.2	8.6063	0.601	65.42	126.69
E-23U	1.4	1.3	116.7	8.6063	0.601	95.49	184.92
E-24	1.4	1.1	4.3	7.439	0.8861	6.19	10.15
E-25	1.4	1.1	4.3	7.439	0.8861	6.19	10.15
E-27	1.4	1.1	4.3	7.439	0.8861	6.19	10.15

Table A9.8. The heat exchangers.

* The transfer area of the heat exchanger E-21 is an estimation.

APPENDIX 10

H₂-PSA design

The basic parameters for the design of the H₂-PSA system are in following table:

Table A10.1 : Basic data for H₂-PSA system

Feedgas (ChemCad)	adsorbent (zeolite 5A)	PSA system
$\omega_{o} = 0.68 \text{ kg/s}$	$D_{p} = 0.016 m$	$P_{ads} = 27 \text{ bar}$
$\rho_{o} = 17.1 \text{ kg/m}^{3}$	$\varepsilon = 0.42$	$P_{des} = 1 \text{ bar}$
$\mu = 1.416 * 10^{-5}$	$\rho_{a} = 786 \text{ kg/m}^{3}$	$t_c = 600 \text{ sec}$

With the equations 10.4...10.7 and the basic data above, the minimal column diameter is calculated:

 $v_s(max) = 1.02 \text{ m/s}$ A(min) = 0.082 m₂ d(min) = 0.32 m

Table A10.2 : PSA-feedgas

component	feedgas (mol/s)
H ₂	27.17
CO ₂	11.83
N₂ CH₄	4.76 0.513

According to the adsorption- and desorption pressure, cycle time (table A10.1) and the amount of adsorbed component in equilibrium, the column height is determined with equation 10.8. Taking a column diameter greater than the minimum diameter thinking about the pressure drop ($A = 0.65 m_2$, d = 0.90 m) the length of the H₂-PSA beds is:

L = 1.6 m

With equation 10.9 the pressure drop over these beds is:

 $\delta P = 0.12$ bar

An estimation of the practical work of compression is made by calculating the energy necessary for compressing (efficiency = 0.75) the feed from desorption pressure to adsorption pressure: $P_{total} = 1.0 \text{ MW}$

A10-1

CO-VSA design

The basic parameters for the design of the CO-VSA system are in following table:

Feedgas (ChemCad)	adsorbent (CO-selective)	VSA system
$ \begin{aligned} \omega_{o} &= 1.14 \text{ kg/s} \\ \rho_{o} &= 11.78 \text{ kg/m}^{3} \\ \mu &= 1.597 * 10^{-5} \end{aligned} $	$D_{p} = 0.016 m$ $\epsilon = 0.42$ $\rho_{a} = 800 \text{ kg/m}^{3}$	$P_{ads} = 1$ bar $P_{des} = 0.04$ bar $t_c = 600$ sec

Table A10.3 : basic data for CO-VSA system

With the equations 10.4 .. 10.7 and the basic data above, the minimal column diameter is calculated:

 $v_s(max) = 0.88 m/s$ A(min) = 0.12 m₂ d(min) = 0.37 m

Table A10.4 : CO-VSA feedgas

component	feedgas (mol/s)
$\begin{array}{c} H_2\\ CO\\ CO_2\\ N_2\\ CH_4 \end{array}$	27.17 16.00 11.83 4.76 0.513

According to the adsorption- and desorption pressure, cycle time (table A10.3) and the amount of adsorbed component in equilibrium, the column height is determined with equation 10.8. Taking a column diameter greater than the minimum diameter thinking about the pressure drop ($A = 0.5 m_2$, d = 0.80 m) the length of the CO-VSA beds is:

L = 1.37 m

With equation 10.9 the pressure drop over these beds and the total pressure drop are:

 $\delta P = 0.11 \text{ bar}$ $\delta P_{\text{total}} = \delta P_{\text{psa}} + \delta P_{\text{vsa}} = 0.23 \text{ bar}$

An estimation of the practical work of vacuum treatment is made by calculating the energy necessary (efficiency = 0.75) to change the feed from adsorption pressure to desorption pressure:

$$P_{total} = 0.3 \text{ MW}$$

CO-VSA and H₂-PSA investment cost

Table A10.5: H ₂ PSA equipment	cost(PC	E)
---	---------	----

investment cost for H ₂ PSA	prices in fl. (Webci)	
5 columns (d=0.90, L=1.6) 18 valves (pneumatic) compressor (1 MW ,acc.Olujić) controlsystem (64*in/output) Zeolite 5A (22 m ³)	175000 54000 600000 168000 120000	
Purchased Cost Equipment(PCE):	1117000	

Table A10.6: H₂-PSA system investment cost

H ₂ -PSA system	f _a	f _b	PCE	PPC	FC
	3.25	1.45	1.12*106	3.63*10 ⁶	5.26*10 ⁶

Table A10.7 : CO-VSA equipment cost(PCE)

investment cost for CO VSA	prices in fl. (Webci)	
5 columns (d=0.8, L=1.40)	185000	
18 valves (pneumatic)	54000	
vacuum-pump (0.3 MW)	314000	
controlsystem (64*in/output)	168000	
CO-selective adsorbent (20 m ³)	156000	
Purchased Cost Equipment(PCE):	877000	

Table A10.8: CO-VSA system investment cost

CO-VSA system	f _a	f _b	PCE	PPC	FC
	3.25	1.45	877000	2.85*106	4.13*10 ⁶

		Process type	
Item	Fluids	Fluids- solids	Solids
1. MAJOR EQUIPMENT, TOTAL PURCHASE			
COST	PCE	PCE	PCE
f_1 Equipment erection	0-4	0.45	0-50
f ₂ Piping	0-70	0.45	0-20
f_3 Instrumentation	0-20	015	0.10
f. Electrical	0-10	0.10	0-10
f. Buildings, process	0-15	0.10	0-05
*f. Utilities	0-50	0.45	0-25
*f7 Storages	0-15	0.20	0.25
*f. Site development	0.05	0-05	0-05
"f, Ancillary buildings	0-15	0.20	0-30
2. TOTAL PHYSICAL PLANT COST (PPC) $PPC = PCE(1 + f_1, \dots, + f_n)$			
= PCE ×	3-40	3-15	2.80
fin Design and Engineering	0-30	0.25	0-20
f11 Contractor's fee	0-05	0.05	0-05
f_{12} Contingency	0-10	0-10	0.10
$= PPC \times$	1-45	1-40	1-35

* Omitted for minor extensions or additions to existing sites.

Fig A10.1 : factor for factoring method

	Table A10.9	: H, PSA	A + CO VSA	equipment	cost(PCE)
--	-------------	----------	------------	-----------	-----------

investment cost for $H_2 PSA + CO VSA$	prices in fl. (Webci)	
5 columns (d=0.8, L=1.40)	175000	
5 columns (d=0.90, L=1.6)	185000	
36 valves (pneumatic)	108000	
compressor (1 MW, acc.Olujić)	600000	
vacuumpump (0.3 MW)	314000	
controlsystem (64*in/output)	168000	
CO selective adsorbent (20 m ³)	156000	
Zeolite 5A (22 m ³)	120000	
Purchased Cost Equipment(PCE):	1826000	

Table A10.10 : H₂-PSA + CO VSA system investment cost

H ₂ -PSA system	fa	f _b	PCE	PPC	FC
	3.25	1.45	1.83*106	5.93*10 ⁶	8.61*10 ⁶

COSORB[®] cost calculations

Requirements	Steam-natural gas reformer CO ₂ recycle
CO [kg/h]	1500
COSORB unit investment [MM \$]	7.3
Feed required [kmol/hr] dry	989.2
Utilities	
Power (kWh)	1,102
Steam (M kg/h)	9.9
Cooling Water (M kg/h)	140
Toluene (kg/h)	20

Table A10.11 : Investment, feedgas, and utility requirements

Costs	Steam-natural gas reformer CO ₂ recycle
Utilities & Chemicals Power @ 4.5 ¢/kWh Steam @ 9.0 \$/Mkg Cooling Water @ 15 ¢/gal Toluene @ 1.50 \$/gal Catalyst & Chemicals	¢/kg CO 1.06 0.95 0.06 0.08 0.10
Total Variable Cost	2.25
Fixed cost Operating manpower Maintenace @ 8% investment/yr Insurance & Taxes Depreciation @ 10 yr Straight life Total Fixed Cost	0.22 0.73 0.18 0.93
Investment Cost at 30% of investment yr	2.80
Total Recovery Cost	7.11

Table A10.12 : CO Recovery costs

PROGRAM COSORBER [© I. Ketelaars, 1993];

Uses Crt, Iwan, Iwan2, Dos, IwanScr;

CONST

Nmax = 400;		
R = 8.314E-2;		{ bar*M3/kmol*K }
TcCO = 132.9;	TcCH4 = 190.6;	
TcCO2 = 304.2;	TcN2 = 126.2;	
TcH2 = 33.2;	TcAr = 150.8;	
TcTol = 591.7;		{ K }
PcCO = 35.0;	PcCH4 = 46.0;	
PcCO2 = 73.8;	PcN2 = 33.9;	
PcH2 = 13.0;	PcAr = 48.7;	
PcTol = 41.1;		{ Bar }
MCuAlCl4 = 232.3;	Mtol = 92.14;	
MCO = 28.01;	MCH4 = 16.04;	
MH2 = 2.016;	MN2 = 28.01;	
MCO2 = 44.01;	MAr = 39.948;	{ kg/kmol }

VAR

x1, x2, y1, y2, Value, komma, it : Byte; : Word; a, Teller1, Teller2, Step, N k1, k2, k3, k4, h, Z, Ze, at, Eff, Kog, hg_a, Gb, GN2, GCO1, PTol, GCH4, GH2, GAr, GCO2, LCu, aw, xCu, P, dp, Tgest, Enh, Sig_l, F, Hv1, Hv0, Ro_l, Lab_g, Visc_l, sigc, Visc_Tol, Ro_g, Visc_g, Keq, corr, kg_CO, kl_CO, Hos, Hv, Dg_CO, He, Le, Dl_CO, Dg_Tol, Dg, kg_Tol, TlTemp, YTol2, L2, Tg2, Tl2, yCO2, TotError, KeyError, yN2, yCH4, yAr, yH2, Mavr_g, CpTol, CpCO2, CpCO, CpH2, CpCH4, CpN2, Cpb, CpAr, Mavr_l, Prm, Trm, : Real; Tcm, Pcm, epsy, epst, epsg : ARRAY[0..1] OF REAL; Y : ARRAY[1..8] OF Byte; iri YCO, YTol, Tg, Tl, XCO, XTol, YCOe, YTole, L, G, Ra, Lo, : ARRAY[0..Nmax] OF REAL; Cpg, Cpq, yb Open, Initer, siap, First, NoInput, SaveProf, Nooit : Boolean;

```
PROCEDURE Get_Fract; { - } { Gas fraction of component i }
      BEGIN
       yN2 := GN2/G[i];
       yAr := GAr/G[i];
       yCH4 := GCH4/G[i];
       yH2 := GH2/G[i];
       yCO2 := GCO2/G[i];
       yb[i] := Gb/G[i];
     END;
PROCEDURE Get_Mavrg; { kg/kmol } { Average MolWeight of Gas }
    BEGIN
             yN2 + yCH4 + yAr + yH2 + yCO2;
     vb[i] :=
     Mavr_g := yN2*MN2 + yCH4*MCH4 + YCO[i]*yb[i]*MCO + yAr*MAr +
             yH2*MH2 + yCO2*MCO2 + yTol[i]*yb[i]*Mtol;
    END:
PROCEDURE Get Mavrl; { kg/kmol } { Average MolWeight of Liquid }
    BEGIN
     Mavr_l := (XCO[i]/Lo[i])*MCuAlCl4 + XTol[i]*MTol + XCO[i]*MCO;
   END:
PROCEDURE Get_Critical; { K, bar } { Critical Temperature and pressure }
   BEGIN
     Tcm := TcCO*YCO[i]*yb[i] + TcCH4*yCH4 + TcN2*yN2 + TcH2*yH2 +
             TcAr*yAr + TcCO2*yCO2; \{K\}
     Pcm := PcCo*YCO[i]*yb[i] + PcCH4*yCH4 + PcN2*yN2 + PcH2*yH2 + PcAr*yAr
             + PcCO2*yCO2; { Bar }
     Trm := Tg[i]/Tcm; Prm := P/Pcm;
   END;
PROCEDURE Get_Rol; { kg/m3 } { Liquid Density }
   BEGIN
     Ro_1 := 1000*((1.5562/(Ra[i]+1) + 0.8810) - (0.0002614/(Ra[i]+1)))
         + 0.0009207)*(T1[i] - 273.15) - Lo[i]*0.06/Ra[i]);
   END:
```

```
PROCEDURE Get Rog: { kg/ m3 } { Gas Density }
     VAR V1, V2, aRK, bRK : Real;
     BEGIN
      Get_Critical;
     { Redlich & Kwong Equation }
        aRK := (0.42748*R*R*Raise(Tcm,2.5))/Pcm;
        bRK := (0.08664*R*Tcm)/Pcm;
        V2 := R*Tg[i]/P;
        REPEAT
         V1 := V2;
         V2 := R^{Tg[i]/P} + bRK - (aRK^{(V1-bRK))}/(Raise(Tg[i], 0.5)^{*})
             P*V1*(V1+bRK));
        UNTIL Abs(V2-V1) < 1E-6;
        Ro_g := Mavr_g/V2
     END:
PROCEDURE Get Viscl; { mNs/M2 = cp } { Liquid Viscosity }
    CONST
          C2 = -5.08093E-2; D2 = 12.2693E-2;
          E2 = -6.78159E-2; F2 = -9.6315E-2;
          G2 = 8.026396E-2;
     VAR A2, B2 : Real;
    BEGIN
      A2 := -4.122269 - 2.34034 \times EXP(C2 \times Raise(Ra[i],3) + D2 \times Raise(Ra[i],2) + E2 \times Ra[i]);
      B2 := 1051.795 + 2026.852 \times EXP(F2 \times Raise(Ra[i], 2) + G2 \times Ra[i]);
      Visc_1 := EXP(A2 + B2/T1[i]);
    END;
PROCEDURE Get Viscg; { mNs/M2 = cp } { Gas Viscosity }
     BEGIN
      Visc_g := 0.0172 + (Tg[i] - Tg[0]) * 1E-4;
     END:
```

PROCEDURE Get DgCO; { m2/s } { Gas Diffusivity of CO } BEGIN $Dg_CO := (1.013E-7*Raise(Tg[i], 1.75)*$ Raise((1/MCO+1/Mavr_g),0.5))/ (P*Raise(Raise(18.9,1/3) + Raise(10.5,1/3),2));END; PROCEDURE Get DICO; { m2/s } { Liquid Diffusivity of CO } BEGIN Dl_CO := (1.173E-13*Raise(Mavr_l,0.5)*Tl[i])/ (Visc_l*Raise(0.0307,0.6)); END; **PROCEDURE** Get DgTol; { m2/s } { Gas Diffusitivity of Toluene } BEGIN $Dg_{Tol} := (1.013E-7*Raise(Tg[i], 1.75)*$ Raise((1/MTol+1/Mavr_g),0.5))/ (P*Raise(Raise(18.9,1/3) + Raise(10.5,1/3),2));END;

PROCEDURE Get CPg; { kJ/kmol*K } { Specific heat of gas } FUNCTION Cp(a,b,c,d : Real) : Real; BEGIN Cp := a + b*Tg[i] + c*Raise(Tg[i],2) + d*Raise(Tg[i],3);END: BEGIN CpCo := Cp(30.869, -1.285E-2, 2.789E-5, -1.271E-8);CpTol := Cp(-24.355, 5.124E-1, -2.765E-4, 4.911E-8);CpH2 := Cp(27.143, 9.273E-3, -1.38E-5, 7.645E-9);CpCH4 := Cp(19.251, 5.212E-2, 1.197E-5, -1.131E-8);CpN2 := Cp(31.15, -1.356E-2, 2.679E-5, -1.168E-8);CpAr := Cp(20.804, -3.211E-5, 5.166E-8, 0);:= yN2*CpN2/yb[i] + yH2*CpH2/yb[i] + yAr*CpAr/yb[i] +CpB vCH4*CpCH4/vb[i]; Cpg[i] := (CpB*yb[i] + YCO[i]*yb[i]*CpCO + YTol[i]*yb[i]*CpTol)*0.986;END: PROCEDURE Get Cpl; { KJ/Kmol*K} { Specific heat of liquid } BEGIN Cpq[i] := ((36.6809*(Ra[i]-1) + 65.2886)/(92.14*(Ra[i]-1) + 324.48) + $0.000637*(T1[i] - 273.15) + 0.0263*Lo[i])*Mavr_1*4.183;$ END: **PROCEDURE Get aw;** { M2/M3 } { Wetted interfacial area } VAR Lster : REAL; BEGIN Lster := L[i]*Mavr_l/F; $\{ kg/s*M2 \}$ aw := at*(1 - EXP(-1.45* Raise(sigc/sig_1,0.75)* Raise(Lster/(at*Visc_l*1E-3),0.1)* Raise(Raise(Lster,2)*at/(Raise(Ro_1,2)*9.831),-0.05)* Raise(Raise(Lster,2)/(Ro_l*sig_l*1E-3*at),0.2))); END;

```
PROCEDURE Get Sigl; { mN/M = Dyne/cm = mJ/M2 } { Liquid Surfase Tension }
   BEGIN
     Sig_1 := 30.62 + 3.075/Ra[i] +
         (-0.1103 + 0.1267/Ra[i])*(Tl[i]-273.15);
    END;
PROCEDURE Get Labg; { kW/m*K } { Coefficient of heat conductivity }
   BEGIN
     Lab_g := (Visc_g^*(Cpg[i]/Mavr_g + 10.4/Mavr_g))/1000;
   END;
PROCEDURE Get kgCO; { kmol/m2*s*bar }
               { Mass-transfer coefficient CO in vapor phase }
   BEGIN
     kg_CO := 5.23*at*
         Raise((G[i]*Mavr_g/F)/(at*Visc_g*1E-3),0.7)*
         Raise(Visc_g*1E-3/(Ro_g*Dg_CO),1/3)*
         Raise(at*dp,-2)*Dg_CO/(R*Tg[i]);
   END;
PROCEDURE Get klCO; { kmol/m2*s*(kmol/m3) = m/sm-2 }
               { Mass-transfer coefficient CO in vapor phase }
   BEGIN
     kl CO := 0.0051*
         Raise(((L[i]*Mavr_l/F)/(aw*Visc_l*1E-3)),2/3)*
         Raise(Visc_1*1E-3/(Ro_1*D1_CO),-1/2)*
         Raise(at*dp,0.4)*Raise(Ro_1/(Visc_1*1E-3*9.8319),-1/3);
   END;
PROCEDURE Get Kog; { 1/sm-2 }
              { Overall Mass-transfer coefficient CO of gas }
   BEGIN
     Kog := eff/(1/kg_CO + He/(kl_CO*Enh));
   END;
```

```
PROCEDURE Get kgTol;
                  \{ m/sm-2 \}
              { Mass-transfer coefficient Toluene in vapor phase }
   BEGIN
    kg_Tol := kg_CO*Raise((Dg_Tol/Dg_CO),0.5);
   END:
PROCEDURE Get hga; { KJ/Kmol/K } { heat transfer coefficient of gas }
   BEGIN
     corr := Gb*(CpCO*(YCO[i+1] - YCO[i]) + CpTol*(YTol[i+1] - YTol[i]));
     Le := Lab_g*Mavr_g/(Ro_g*Cpg[i]*Dg_CO);
     hg_a := Kg_CO*at*Cpg[i]*Raise(Le,2/3);
     hg_a := -corr/(1 - Exp(corr/hg_a));
   END:
PROCEDURE Get Keq; { m3/kmol } { Equilibrium constant }
   BEGIN
     Keq := 74*EXP(-67*(1/Tl[i] - 3E-3));
   END:
PROCEDURE Get Enh; { - } { Enhancement factor }
   BEGIN
     Enh := 1 + (Keq*(LCu/L[i])/(1 + Keq*(YCOe[i]*yb[i])));
   END;
PROCEDURE Get Henry; { bar*m3/kmol } { Henry's Law constant }
    REGIN
     He := 5.8e-3*(EXP(14.3686 - (530.22/(Tl[i]-13.15)))*1E-5*133.32);
   END:
PROCEDURE Get YCOe; { - } { Equilibrium fraction of CO in gas phase }
    BEGIN
     YCOe[i] := He*XCO[i]/(P*yb[i]);
    END:
```

PROCEDURE Get_YTole; { - } { Equilibrium fraction of Toluene in gas phase }

CONST D6 = -0.056757; E6 = -0.0011087; F6 = 23.00;G6 = -7000.0;

VAR CF, Pc, Ps : REAL;

BEGIN

CF := EXP((D6 + E6*(T1[i]-293.15))*Raise(Ra[i]-1,2)); Pc := EXP(F6 + G6/T1[i]); Ps := (Ptol*1E5/133.32)*(Ra[i]-CF)/Ra[i] + Pc*CF/Ra[i]; YTole[i] := 2.15*Ps*XTol[i]*133.32*1E-5/(P*yb[i]);END;

```
PROCEDURE Get Enthalpie; { KJ/Kmol }
```

{ Latent heat of evaporation or condensation } { Heat of reaction (include heat of solution) }

CONST

ANTAtol = 16.0137; ANTBtol = 3096.52; ANTCtol = -53.67;

VAR dz, hv1, hv2 : REAL;

BEGIN

Hos := 78.3E3; Ptol := 133.32E-5*EXP(ANTAtol - ANTBtol/(Tl[i] + ANTCtol)); dz := Raise(1-(Ptol/PcTol)/Raise(Tg[i]/TcTol,3),0.5); Hv := 8.5*ANTBtol*Raise(Tg[i],2)*dz/Raise(Tg[i] + ANTCtol,2); END;

PROCEDURE Get_RaLo; { - } { Ratio Tol/Cu & Ratio CO/Cu } BEGIN Ra[i] := (L[i]*XTol[i])/LCu; { Ratio Tol/Cu } Lo[i] := (L[i]*XCO[i])/LCu; { Ratio CO/Cu } END;

PROCEDURE Get FysData;

BEGIN Get RaLo; { Ratio Tol/Cu } { Ratio CO/Cu } { Liquid fraction CO } Get_Fract; { Liquid fraction Tol } { Gas fraction CO } { Gas fraction Tol } Gas fraction Inert } { Average MolWeight of Gas } Get_Mavrg; { Gas Viscosity } Get_Viscg; { Gas Density } Get_Rog; { Gas Diffusivity of CO } Get_DgCO; { Average MolWeight of Liquid } Get Mavrl; { Liquid Viscosity } Get_Viscl; { Liquid Density } Get_Rol; { Liquid Diffusivity of CO } Get_DlCO; { Liquid Surfase Tension } Get_Sigl; Get_aw; { Wetted interfacial area } { Henry''s Law constant } Get_Henry; Equilibrium constant } Get_Keq; £ { Latent heat of evaporation or condensation } Get_Enthalpie; { Heat of reaction (include heat of solution) } Get_YCOe; { Equilibrium fraction of CO in gas phase } { Equilibrium fraction of Toluene in gas phase } Get_YTole; { Enhancement factor } Get_Enh; Get_kgCO; { Mass-transfer coefficient CO in vapor phase } { Mass-transfer coefficient CO in liquid phase } Get_klCO; Get_Kog; { Overall Mass-transfer coefficient CO of gas } { Gas Diffusitivity of Toluene } Get_DgTol; { Mass-transfer coefficient Toluene in vapor phase } Get_kgTol; { Specific heat of gas } Get_Cpg; { Specific heat of liquid } Get_Cpl; { Coefficient of heat conductivity } Get_Labg; Y[0] := YCO[i];

END;

```
PROCEDURE SetValue: { Change iteration key value }
    BEGIN
      Case Value OF
      1: BEGIN
          IF Abs((G[N] - G[N-1])/G[N]) < epsg THEN Set_Key_Value(2) ELSE
          G[N] := (Abs(G[N-1]+G[N]))/2;
        END:
      2: BEGIN
         IF Abs((Tg[N] - Tg[N-1])/Tg[N]) < epst THEN
          BEGIN
           IF Abs((G[N] - G[N-1])/G[N]) < epsg THEN Set_Key_Value(3) ELSE
           Set_Key_Value(1);
          END ELSE Tg[N] := (Abs(Tg[N] + Tg[N-1]))/2;
        END:
      3: BEGIN
          IF Abs((YCO[N] - YCO[N-1])/YCO[N]) < epsy THEN
          BEGIN
           IF Abs((G[N] - G[N-1])/G[N]) < epsg THEN
           BEGIN
             IF Abs((Tg[N] - Tg[N-1])/Tg[N]) < epst THEN EndCalculations
               ELSE Set_Key_Value(2);
           END ELSE Set_Key_Value(1);
          END ELSE YCO[N] := (Abs(YCO[N] + YCO[N-1]))/2;
        END;
     END:
    END;
```

PROCEDURE MasBalance; BEGIN

```
{ Inert Bal } G[i+1] := Gb*(YTol[i+1] + 1 + YCO[i+1]);
{ Flow Bal } L[i+1] := G[i+1] + L[i] - G[i];
{ CO Bal } XCO[i+1] := (Gb*(YCO[i+1] - YCO[i]) + L[i]*XCO[i])/L[i+1];
{ Tol Bal } XTol[i+1] := (Gb*(YTol[i+1] - YTol[i]) + L[i]*XTol[i])/L[i+1];
```

END;

PROCEDURE RungeKutta;

FUNCTION FunctionRK(V : REAL) : REAL;

BEGIN CASE a OF

- 1 : FunctionRK := (-Kog*at*P*F*(V-YCOe[i]))/Gb;
- 2 : FunctionRK := (-kg_Tol*at*P*F*(V-YTole[i]))/Gb;
- 3 : FunctionRK := (-hg_a*F*(V-Tl[i])/(Gb*Cpg[i]/yb[i]));

END;

END; { FunctionRK }

BEGIN

CASE a OF

1..3 : BEGIN

k1 := h*FunctionRK(Y[0]); Writeln('k1 = ',k1); k2 := h*FunctionRK(Y[0] + k1/2); Writeln('k2 = ',k2); k3 := h*FunctionRK(Y[0] + k2/2); Writeln('k3 = ',k3); k4 := h*FunctionRK(Y[0] + k3); Writeln('k4 = ',k4); Writeln;

Y[1] := Y[0] + (1/6)*(k1 + 2*k2 + 2*k3 + k4);

END;

```
\begin{array}{rl} 4 & : Y[1] := & (Y[0]*L[i] + (G[i+1]*Cpg[i]*Tg[i+1] - G[i]*cpg[i]*Tg[i] + \\ & Hos*Gb*(YCO[i+1] - YCO[i]) + \\ & Hv*Gb*(YTol[i+1] - YTol[i]))/Cpq[i])/L[i+1]; \end{array}
```

END; END; {RungeKutta} PROCEDURE Equation1; BEGIN YCO[i+1] := Y[1]; a := 2; Y[0] := YTol[i]; END;

PROCEDURE Equation2; BEGIN YTol[i+1] := Y[1]; Get_hga; a := 3; Y[0] := Tg[i]; END;

PROCEDURE Equation3; BEGIN Tg[i+1] := Y[1]; a := 4; Y[0] := Tl[i]; END;

PROCEDURE Equation4; BEGIN

Tl[i+1] := Y[1]; a := 1; END; PROCEDURE InitMasBal; { kmol/s } BEGIN

 $\{ FlowBal \} L[0] := L[N] + G[0] - G[N]; \\ \{ CO Bal \} XCO[0] := (L[N]*XCO[N] + Gb*(YCO[0] - YCO[N]))/L[0]; \\ \{ Inert Bal \} YTol[N] := G[N]/Gb - YCO[N] - 1; \\ \{ Tol Bal \} XTol[0] := (L[N]*XTol[N] + Gb*(YTol[0] - YTol[N]))/L[0];$

i := N: Get Fract: Get_RaLo; Get_Mavrl; Get_Mavrg; Get_Cpl; Get_Cpg; Get_Enthalpie; Hv1 := Hv;i := 0;Get_Fract; Get_RaLo; Get_Mavrl; Get_Mavrg; Get_Cpg; Get_Enthalpie; Hv0 := Hv;END:

PROCEDURE InitHeatBalance; BEGIN TlTemp := Tg[0]; REPEAT Tl[0] := (TlTemp + Tl[0])/2; Get_Cpl; Get_Enthalpie;

 $\{ \text{ Heat Bal} \} \text{ TITemp} := (G[0]*Cpg[0]*Tg[0] - G[N]*Cpg[N]*Tg[N] + \\ L[N]*Cpq[N]*Tl[N] - (YTol[N]*Hv1 - YTol[0]*Hv0)*Gb - \\ (YCO[N] - YCO[0])*Gb*Hos)/(L[0]*Cpq[0]);$

UNTIL Abs(TlTemp - Tl[0]) < 1E-3; END;

A10-18

PROCEDURE Init;

BEGIN F := 0.7; { m2 } Z := 0;{ m } Ze := 8;{ m } a := 1; { - } h := 0.04;{ m } P := 25; { Bar } dp := 0.038;{ m } sigc := 75; $\{ mN/M \}$ at := 130; { m2/m3 } { GasStream } Tg[0] := 40 + 273.15;YTol[0] := 0;{ yTol/yInert } GN2 := 67.23/3600; { Kmol/s } GCH4 := 1.22/3600; { Kmol/s } GH2 := 174.58/3600; { Kmol/s } GAr := 0.91/3600; { Kmol/s } GCO2 := 0; GCO1 := 35.37/3600; { Kmol/s } Gb := GN2 + GCH4 + GH2 + GAr; { Kmol/s } G[0] := GCO1 + Gb;{ Kmol/s } YCO[0] := GCO1/Gb;{ - }

{ LiquidStream }

XCu $\{Top\} := 0.2774;$	{ - }
L[N] := 204.28/3600;	{ Kmol/s }
LCu := L[N]*XCu;	{ Kmol/s }
XCO[N] := 0.0028;	{ - }
TI[N] := 40 + 273.15;	{ K }
XTol[N] := 1 - XCu - XCO[N];	{ - }

{ Guesses }

G[N] := 240.82/3600; { = ong Gb } { Kmol/s } YCO[N] := 0.00024; { yCO/yInert } Tg[N] := 43 + 273.15; { K } END;

A10-19

```
PROCEDURE CalculateTower;
   BEGIN
     REPEAT
       InitMasBal;
       InitHeatBalance;
       REPEAT
         Get_FysData; { at Height i in the Tower }
         RungeKutta; Equation1;
         RungeKutta; Equation2;
         MasBalance;
         RungeKutta; Equation3;
         RungeKutta; Equation4;
         i := i + 1;
         Z := Z + h;
         IF KeyPressed THEN Key;
       UNTIL (i = N-1) OR (ch = 'y');
       IF ch ⇔ 'y' THEN
       BEGIN
         Get_Fract;
         SetValue;
       END;
     UNTIL siap;
   END; { CalculateTower }
```

BEGIN { HoofdProgramma } Init; REPEAT CalculateTower; UNTIL Nooit; END. { Simulation }

APPENDIX 12. WORKING WITH ASPEN PLUS.

Creating an input file with ModelManager.

First you have to start ModelManager; the procedure to do this depends on the hostcomputer which is used. When this is done ModelManager displays a field on which the flowsheet is to be drawn; on the right of the screen a menu is displayed containing all models to be chosen from. These models are given below along with a description.

Model	Description
FEED	Incoming material-, heat- or work-stream
PROD	Outgoing material-, heat- or work-stream
MIXER	Mixes two or more streams
FSPLIT	Splits a stream into two or more of the same composition
SEP	Splits a stream into two with specified composition
SEP2	Same as SEP, but with specified T & P
HEATER	Simple heater or cooler
FLASH2	Two phase flash
FLASH3	Three phase flash
HEATX	Heatexchanger
MHEATX	Multistream heatexchanger
DSTWU	Shortcut distillation; Win-Underwood-Gilliland method
DISTL	Shortcut distillation; Edmister method
SCFRAC	Shortcut distillation for complex situation
RADFRAC	Rigorous distillation column
MULTIFRAC	Interlinked multistage fractionation units
RATEFRAC	Rate-based non-equilibrium distillation
ABSORBR	Rigorous absorber/stripper
EXTRACT	Liquid-liquid
RSTOIC	Stoichiometric reactor
RYIELD	Reactor with given yield distribution
REQUIL	Reactor with chemical/thermodynamic equilibrium
RGIBBS	Reactor which minimizes Gibbs energy

	<u> </u>
Block Unit	Description
RCSTR	Continuous stirred tank reactor
RPLUG	Plug-flow reactor
RBATCH	Batch or fed-batch reactor
PUMP	Pump
COMPR	Compressor or turbine/expander
MCOMPR	Multistage compressor or turbine
MULT	Multiplies a stream by a given factor
DUPL	Duplicates a stream any number of times
CLCHNG	Changes stream class
SSPLIT	Substream-splitter
CRUSHER	Crusher
SCREEN	Solids/solids separator
FABFL	Fabric filter
CYCLONE	Cyclone
VSCRUB	Venturi scrubber
ESP	Electrostatic precipitator
НҮСҮС	Hydrocyclone
CFUGE	Centrifuge filter
FILTEC	Continuous rotary vacuum filter
SWASH	Single stage solids washer
CCD	Countercurrent decanter / multistage solids washer
USER	User-defined block
USER2	Same as USER

On top of the screen there are a number of pull-down menus which represent the basic functions of Aspen; these are FILE (opening or creating files), FLOWSHEET (mainly options on how to display the flowsheet), MODIFY (renaming blocks and streams etc.), VIEW (zoom in/out on the flowsheet), FORMS (entering and reviewing all input and results), RUN (generating input files and running the simulation), PFD (generating process flow diagrams), SETTINGS (settings for the program, e.g. autosave-level).

To create a new file, open the file menu and select new. Then select the models to be used on the flowsheet from the model menu on the right of the screen, by clicking on it with the left mouse button. Put it on the right place in the flowsheet and click the left button again to place it there; interconnecting the blocks by streams is done by selecting the block (clicking on it with the left button) and then pressing the right button to display the menu of in- and outlet streams. You choose the desired stream, and click the left mouse-button on the block where the stream is to go to or come from. When all this is done, open the forms-menu and select 'next input'; Aspen then asks for all required data regarding the blocks and streams and gives a prompt when sufficient data is entered. Then open the run-menu and select 'generate' to create an Aspen input file; after this, 'submit' runs the simulation. If all results are read into ModelManager open 'forms' to display the results.

On the following pages you will find an example of in Aspen input file.

DESCRIPTION "

This is the flowsheet used by the G-group feb. 1993 to simulate the GE-Plastics CO-plant II "

DATABANKS ASPENPCD

PROP-SOURCES ASPENPCD

COMPONENTS

H2 H2 H2 / CO CO CO / CO2 CO2 CO2 / N2 N2 N2 / O2 O2 O2 / CH4 CH4 CH4 / C2H6 C2H6 C2H6 / C3H8 C3H8 C3H8 / C4H10 C4H10-1 C4H10 / C5H12 C5H12-1 C5H12 / C6H14 C6H14-1 C6H14 / MEA C2H7NO MEA / H2O H2O H2O / AR AR AR

FLOWSHEET S

BLOCK H2-MIX IN=201 202 OUT=202B BLOCK H2104 IN=3 202B OUT=4 203 BLOCK V2101 IN=203 OUT=142 BLOCK CO2-MIX IN=204 146 OUT=204B BLOCK H20-MIX IN=204B 205 150 OUT=206 BLOCK H2103 IN=2 206 OUT=3 207 BLOCK H2101 IN=207 OUT=208 BLOCK H2107 IN=208 G OUT=208B H BLOCK H20-MIX2 IN=208B 260 OUT=208C BLOCK M2102 IN=208C 253 OUT=209 BLOCK H2102 IN=1 A OUT=2 B BLOCK H2105A IN=4 C OUT=5 D BLOCK H2105B IN=5 E OUT=6 F BLOCK H2106 IN=6 251 OUT=7 251B BLOCK DRUMMIX IN=B D F H OUT=STMFD BLOCK V2103 IN=STMFD 251B OUT=STM LIQ BLOCK SPLIT IN=LIQ OUT=A C E G BLOCK BURNER IN=BIN OUT=1 BLOCK B1 IN=228 OUT=140 202 150

FLOWSHEET SI

BLOCK H2110A IN=209 OUT=209B BLOCK V2107 IN=209B OUT=210 264 BLOCK H2111 IN=210 OUT=210B BLOCK V2108 IN=210B OUT=211 265

BLOCK COND-MIX IN=264 265 OUT=266 BLOCK V2105 IN=281 211 OUT=212 282 BLOCK V2106 IN=285 282B OUT=213 281C BLOCK H2108 IN=281B OUT=281A BLOCK H2109A IN=281C OUT=281B BLOCK H2109B IN=282 OUT=282B FLOWSHEET SII BLOCK V2116 IN=212 OUT=218 MEASUMP BLOCK K2104 IN=218 OUT=218B BLOCK H2115 IN=218B OUT=218C BLOCK V2117 IN=218C OUT=219 270 BLOCK V2118 IN=219 OUT=220 OUT FLOWSHEET SIII BLOCK H2112 IN=213 OUT=213B BLOCK V2109 IN=213B 284 OUT=215 285 BLOCK VENTTANK IN=215 OUT=215B 214 BLOCK CO-MIX IN=215B 227 OUT=216 BLOCK K2103-1 IN=216 OUT=216B BLOCK H2113 IN=216B OUT=216C BLOCK V2113 IN=216C OUT=216D 268 BLOCK K2103-3 IN=216D OUT=216E BLOCK H2114 IN=216E OUT=216F BLOCK V2114 IN=216F OUT=204 269 BLOCK CONDMIX2 IN=269 268 OUT=284 FLOWSHEET SIIII BLOCK E21 IN=220 L22 L49 L48 225 OUT=L35 L2 224 228 & 227 BLOCK SPLIT1 IN=L35 OUT=L38 L36 L39 BLOCK E24 IN=L38 OUT=L41 BLOCK V41 IN=L41 OUT=L42 BLOCK T22MIX IN=L42 L43 L11 OUT=L44 BLOCK E22B IN=L36 OUT=L37 BLOCK V37 IN=L37 OUT=L43 BLOCK V39 IN=L39 OUT=L40 BLOCK T24 IN=L40 L30 OUT=L31 L11 BLOCK E22 IN=L2 OUT=L3 BLOCK T21 IN=L3 LG OUT=LB L6 BLOCK CO1 IN=LF OUT=LC LD BLOCK MIX1 IN=LB LE OUT=LF BLOCK CO2 IN=LC OUT=L4 LE BLOCK E23A IN=L4 OUT=L22 BLOCK T23 IN=L28 OUT=L29 L8 BLOCK V6 IN=L6 OUT=L28 BLOCK V8 IN=L8 OUT=L33 BLOCK T22 IN=L33 L46 OUT=L49 L47 BLOCK MIX2 IN=L13 L7 L10 OUT=L48 BLOCK V47 IN=L47 OUT=L13 BLOCK E25-27 IN=L44 OUT=L46 BLOCK V29 IN=L29 OUT=L7 BLOCK V31 IN=L31 OUT=L10 BLOCK SPLIT2 IN=LD OUT=L9 LG BLOCK V9 IN=L9 OUT=L30

FLOWSHEET SIIII BLOCK K2105-1 IN=224 OUT=224A BLOCK H2118 IN=224A OUT=224B BLOCK K2105-2 IN=224B OUT=224C BLOCK CO-SPLIT IN=224D OUT=226 225 BLOCK H2119 IN=224C OUT=224D BLOCK B2 IN=142 144 OUT=143 BLOCK B3 IN=147 OUT=146 BLOCK B5 IN=143 OUT=147 PROPERTIES SYSOP3 PROPERTIES AMINES STREAM 144 SUBSTREAM MIXED TEMP=220 PRES=23.2 MASS-FLOW H20 450 STREAM 201 SUBSTREAM MIXED TEMP=15 PRES=21 MASS-FLOW CO 0.31 / N2 203.8 / CH4 660 / C2H6 43.4 / & C3H8 8.3 / C4H10 4.1 / C5H12 1.44 / C6H14 2.05 STREAM 202 SUBSTREAM MIXED TEMP=120 PRES=21.8 MASS-FLOW H2 10.7 / CO 2.5 / N2 2.2 STREAM 205 SUBSTREAM MIXED TEMP=220 PRES=23.2 MASS-FLOW CO2 610 / H2O 1800 STREAM 227 SUBSTREAM MIXED TEMP=31 PRES=2.0 NPHASE=1 MASS-FLOW H2 5.8 / CO 197.3 / N2 29.4 / CH4 68.6 STREAM 251 SUBSTREAM MIXED TEMP=104 PRES=27 MASS-FLOW H20 5400 STREAM 253 SUBSTREAM MIXED TEMP=104 PRES=27 MASS-FLOW H20 550 STREAM 260 SUBSTREAM MIXED TEMP=208 PRES=18.3 MASS-FLOW H20 1900 STREAM 281 SUBSTREAM MIXED TEMP=40 PRES=14.7 NPHASE=1 PHASE=L MASS-FLOW CO2 390 / MEA 4921.1 / H2O 12915 STREAM BIN SUBSTREAM MIXED TEMP=40 PRES=2 NPHASE=1 MASS-FLOW H2 245.6 / CO 64.5 / N2 7301.5 / O2 2284 / & CH4 0.39 / AR 124.7

BLOCK B2 MIXER PARAM PRES=18.5

BLOCK CO-MIX MIXER PARAM PRES=1.5 NPHASE=1

BLOCK CO2-MIX MIXER PARAM PRES=16.2

BLOCK COND-MIX MIXER PARAM PRES=3.5 NPHASE=1 PHASE=L

BLOCK CONDMIX2 MIXER PARAM PRES=1.5 NPHASE=1 PHASE=L

BLOCK DRUMMIX MIXER PARAM PRES=0

BLOCK H2-MIX MIXER PARAM PRES=21

> BLOCK H20-MIX2 MIXER PARAM PRES=11

BLOCK H2O-MIX MIXER PARAM PRES=15.6 BLOCK-OPTION FREE-WATER=NO

BLOCK M2102 MIXER PARAM PRES=11

BLOCK MIX1 MIXER PARAM PRES=0

BLOCK MIX2 MIXER PARAM PRES=0

BLOCK T22MIX MIXER PARAM PRES=0

BLOCK B1 FSPLIT MASS-FLOW 202 10.7 1 / 150 80 2 DEF-KEY KEYNO=1 SUBSTREAM=MIXED COMPS=H2 DEF-KEY KEYNO=2 SUBSTREAM=MIXED COMPS=H2

BLOCK CO-SPLIT FSPLIT FRAC 225 0.16347

BLOCK SPLIT FSPLIT PARAM PRES=0 FRAC A 0.10 / C 0.10 / G 0.65

BLOCK SPLIT1 FSPLIT FRAC L38 0.546 / L36 0.156

BLOCK SPLIT2 FSPLIT FRAC L9 0.2564
BLOCK V2118 SEP FRAC STREAM=220 SUBSTREAM=MIXED COMPS=H2 CO CO2 N2 O2 & CH4 C2H6 C3H8 C4H10 C5H12 C6H14 MEA H2O AR FRACS= & 0.994 0.994 0 0.994 0 0.994 0 0 0 0 0 0 0 0 . BLOCK VENTTANK SEP FRAC STREAM=214 SUBSTREAM=MIXED COMPS=H2 CO CO2 N2 O2 & CH4 C2H6 C3H8 C4H10 C5H12 C6H14 MEA H20 FRACS=0 0 & 0.04761905 0.04832633 0 0 0 0 0 0 0 1 0.04761950 BLOCK B5 HEATER PARAM TEMP=500 PRES=18.2 BLOCK E22 HEATER PARAM PRES=-0.1 DELT=-7.2 BLOCK E22B HEATER PARAM PRES=-0.1 DELT=-5.7 BLOCK E23A HEATER PARAM TEMP=-176.1 PRES=3.9 BLOCK E24 HEATER PARAM PRES=-0.1 DELT=-2.5 BLOCK E25-27 HEATER PARAM TEMP=-184.5 PRES=-0.175 NPHASE=1 PHASE=L BLOCK H2108 HEATER

PARAM TEMP=40 PRES=14.7 NPHASE=1 PHASE=L

BLOCK H2109A HEATER PARAM TEMP=88 PRES=0 NPHASE=1 PHASE=L

BLOCK H2109B HEATER PARAM TEMP=104 PRES=0

BLOCK H2110A HEATER PARAM TEMP=132 PRES=10.7

BLOCK H2111 HEATER PARAM TEMP=40 PRES=10.4

BLOCK H2112 HEATER PARAM TEMP=40 PRES=1.5

BLOCK H2113 HEATER PARAM TEMP=40 PRES=-0.2

BLOCK H2114 HEATER PARAM TEMP=40 PRES=16.2

BLOCK H2115 HEATER PARAM TEMP=35 PRES=-0.1

confidential

BLOCK H2118 HEATER PARAM TEMP=30 PRES=-0.2 BLOCK H2119 HEATER PARAM TEMP=35 PRES=-0.2 BLOCK V2101 HEATER PARAM TEMP=500 PRES=18.2 BLOCK-OPTION FREE-WATER=NO BLOCK V29 HEATER PARAM PRES=-3.1 DUTY=0 BLOCK V31 HEATER PARAM PRES=-5.3 DUTY=0 BLOCK V37 HEATER PARAM PRES=-6.6 DUTY=0 BLOCK V39 HEATER PARAM PRES=-1.25 DUTY=0 BLOCK V41 HEATER PARAM PRES=-6.6 DUTY=0 BLOCK V47 HEATER PARAM PRES=-0.1 DUTY=0 BLOCK V6 HEATER PARAM PRES=-21.83 DUTY=0 BLOCK V8 HEATER PARAM PRES=-3.017 DUTY=0 BLOCK V9 HEATER PARAM PRES=-19.497 DUTY=0 BLOCK CO1 FLASH2 PARAM TEMP=-171.5 PRES=27.347 BLOCK CO2 FLASH2

PARAM TEMP=-201.5 PRES=27.3

BLOCK V2103 FLASH2 PARAM TEMP=221 VFRAC=0.0421

BLOCK V2107 FLASH2 PARAM TEMP=40 PRES=10.7

BLOCK V2108 FLASH2 PARAM TEMP=40 PRES=10.4

BLOCK V2109 FLASH2 PARAM TEMP=40 PRES=1.5

BLOCK V2113 FLASH2 PARAM TEMP=40 PRES=9.6

BLOCK V2114 FLASH2 PARAM TEMP=40 PRES=16.2

BLOCK V2116 FLASH2 PARAM TEMP=40 PRES=10.3

BLOCK V2117 FLASH2 PARAM TEMP=35 PRES=28.3

BLOCK H2102 HEATX PARAM VFRAC-COLD=0.048 FEEDS HOT=1 COLD=A PRODUCTS HOT=2 COLD=B HEAT-TR-COEF U=97.2 <KCAL/HR-SQM-K>

BLOCK H2103 HEATX PARAM T-COLD=487 TYPE=COCURRENT PRES-COLD=-0.5 FEEDS HOT=2 COLD=206 PRODUCTS HOT=3 COLD=207 HEAT-TR-COEF U=63.2 <KCAL/HR-SQM-K>

BLOCK H2104 HEATX PARAM T-COLD=550 TYPE=COCURRENT PRES-COLD=-0.3 FEEDS HOT=3 COLD=202B PRODUCTS HOT=4 COLD=203 HEAT-TR-COEF U=54.7 <KCAL/HR-SQM-K>

BLOCK H2105A HEATX PARAM VFRAC-COLD=0.048 FEEDS HOT=4 COLD=C PRODUCTS HOT=5 COLD=D HEAT-TR-COEF U=152 <KCAL/HR-SQM-K>

BLOCK H2105B HEATX PARAM VFRAC-COLD=0.048 FEEDS HOT=5 COLD=E PRODUCTS HOT=6 COLD=F HEAT-TR-COEF U=250 <KCAL/HR-SQM-K>

BLOCK H2106 HEATX PARAM T-COLD=180 PRES-COLD=-0.2 FEEDS HOT=6 COLD=251 PRODUCTS HOT=7 COLD=251B HEAT-TR-COEF U=258 <KCAL/HR-SOM-K>

BLOCK H2107 HEATX PARAM VFRAC-COLD=0.048 FEEDS HOT=208 COLD=G

PRODUCTS HOT=208B COLD=H HEAT-TR-COEF U=275 <KCAL/HR-SQM-K> ٠. BLOCK E21 MHEATX HOT-SIDE IN=220 OUT=L2 DELT=-192.6 PRES=-0.2 MAXIT=250 COLD-SIDE IN=L22 OUT=228 PRES=-0.4 MAXIT=250 COLD-SIDE IN=L49 OUT=224 DELT=205.5 PRES=-0.2 MAXIT=250 COLD-SIDE IN=L48 OUT=227 DELT=197.9 PRES=-0.2 MAXIT=250 HOT-SIDE IN=225 OUT=L35 DELT=-190.1 PRES=-0.2 MAXIT=250 BLOCK T21 RADFRAC PARAM NSTAGE=20 FEEDS L3 21 / LG 1 ON-STAGE PRODUCTS LB 1 V / L6 20 L P-SPEC 1 27.3 COL-SPECS Q1=0 QN=0 MASS-RDV=1 T-EST 1 -173.6 / 20 -172 BLOCK T22 RADFRAC PARAM NSTAGE=12 FEEDS L33 9 / L46 1 PRODUCTS L49 1 V / L47 12 L P-SPEC 1 2.25 COL-SPECS Q1=0 MASS-RDV=1 MOLE-BR=5.7 BLOCK T23 RADFRAC PARAM NSTAGE=4 FEEDS L28 1 PRODUCTS L8 4 L / L29 1 V P-SPEC 1 5.4 COL-SPECS Q1=-6000 MASS-RDV=1 MOLE-RR=6.55 BLOCK T24 RADFRAC PARAM NSTAGE=5 FEEDS L40 6 / L30 1 PRODUCTS L11 5 L / L31 1 V P-SPEC 1 7.6 COL-SPECS QN=0 MASS-RDV=1 MASS-RR=10.35496 BLOCK V2105 RADFRAC PARAM NSTAGE=20 EFF=MURPHREE FEEDS 281 1 ON-STAGE / 211 20 ON-STAGE PRODUCTS 212 1 V / 282 20 L P-SPEC 1 10.3 / 20 10.4 COL-SPECS Q1=0 QN=0 MASS-RDV=1 COMP-EFF 10 CO2 0.2 T-EST 1 40 / 20 72 SPEC 1 MASS-FLOW 0.5 PHASE=V COMPS=CO2 STREAMS=212 VARY 1 MURPHREE 0 0.5 STAGE1=1 STAGE2=20 COMPS=CO2 PROPERTIES AMINES

BLOCK V2106 RADFRAC PARAM NSTAGE=18 FEEDS 285 1 / 282B 5 PRODUCTS 213 1 V / 281C 18 L P-SPEC 1 1.7 COL-SPECS Q1=0 QN=2.85E6 MASS-RDV=1 T-EST 16 120 / 1 102 SPEC 1 MASS-FLOW 1250 PHASE=V COMPS=CO2 STREAMS=213 VARY 1 ON 1E4 1E8 PROPERTIES AMINES BLOCK B3 RGIBBS PARAM TEMP=450 PRES=15 BLOCK BURNER RGIBBS PARAM TEMP=1005 PRES=-0.5 NPHASE=1 MAXIT=100 BLOCK H2101 RGIBBS PARAM TEMP=860 PRES=11.5 NREAC=9 STOIC 1 CH4 -1 / H2O -1 / CO 1 / H2 3 STOIC 2 H2 -1 / CO2 -1 / CO 1 / H2O 1 STOIC 3 C2H6 -1 / H2 -1 / CH4 2 STOIC 4 C3H8 -1 / H2 -2 / CH4 3 STOIC 5 C4H10 -1 / H2 -3 / CH4 4 STOIC 6 C5H12 -1 / H2 -4 / CH4 5 STOIC 7 C6H14 -1 / H2 -5 / CH4 6 . STOIC 8 02 -1 / CO -2 / CO2 2 STOIC 9 N2 -1 / C4H10 -1 / H2O -2 / MEA 2 TAPP-SPEC 1 -20 / 8 -860 / 9 2000 BLOCK K2103-1 COMPR PARAM TYPE=POLYTROPIC PRES=9.6 TEMP=145 BLOCK K2103-3 COMPR PARAM TYPE=POLYTROPIC PRES=15.4 TEMP=145 BLOCK K2104 COMPR PARAM TYPE=POLYTROPIC PRES=28.5 TEMP=145 BLOCK K2105-1 COMPR PARAM TYPE=POLYTROPIC PRES=6 TEMP=100 BLOCK K2105-2 COMPR PARAM TYPE=POLYTROPIC PRES=9.6 TEMP=90 DESIGN-SPEC PRE DEFINE PRE BLOCK-VAR BLOCK=B3 VARIABLE=QCALC SENTENCE=PARAM SPEC "PRE" TO "0" TOL-SPEC "0.1" VARY BLOCK-VAR BLOCK=B3 VARIABLE=TEMP SENTENCE=PARAM LIMITS "250" "800" CONV-OPTIONS WEGSTEIN MAXIT=150

.

