Splitting Context-Free Grammars
to Optimize Program Synthesis”

Dennis Heijmans
Supervisors: Sebastijan Dumanci¢, Reuben Gardos Reid
EEMCS, Delft University of Technology, The Netherlands

Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 23, 2022

Abstract

Program synthesis is the task of generating a program that
suffices the intent of a user based on a set of input-output
examples. Searching over the set of all possible programs
becomes intractable very quickly. Therefore, divide and
conquer techniques have become popular within the field, but
have mainly been applied on the set of examples. However,
this paper focuses on applying the strategy on the problem’s
context-free grammar by splitting it into subgrammars.

Our new technique first splits the grammar by making a
dependency graph showing how all rules relate the different
types of symbols. Afterwards, there is an exploration and
exploitation phase where different sets of subgrammars will
be given a score and get allocated an amount of enumerations
to generate programs based on that score.

The new technique is implemented as an iterator in Herb.jl
which is a program synthesis framework. The iterator is then
benchmarked against a plain BFS iterator using 100 string-
manipulation problems. The grammar splitting strategy needs
on average more enumerations to find a program solving all
examples compared to the BFS iterator. However, running the
different grammars from the iterator in parallel could allow
the iterator to find a solution from one of the grammars ear-
lier.

Introduction

Program Synthesis [3] is considered the holy grail within
the field of Computer Science. It is the task of automatically
creating a program in an underlying language that satisfies
the user intent expressed in the form of some specification.
More specifically, the synthesis process consists of a search
over the space of all possible programs within a given lan-
guage with the aim of finding a program that satisfies a set
of input-output examples.

Take for example the following list of inputs that has to
be mapped to a list of outputs:

[1,2,3] — [2,4,8]

“An electronic version of this thesis is available at https://
repository.tudelft.nl/

The job of a program synthesizer would then be to enu-
merate a lot of different programs from a context-free gram-
mar to find one that solves all three examples. A possi-
ble solution covering all the examples in this case could be
flx) =2%.

As these search spaces tend to be extremely big if not in-
finitely large, finding solutions quickly becomes intractable.
Therefore, clever techniques have been developed to make
synthesizing programs more feasible.

Multiple divide and conquer techniques [1, 2] have been
developed already to cut down the search space. However,
trying to apply this dividing strategy on the context-free
grammar of a problem has not been done before. Therefore,
a research question from this knowledge gap arises:

How can an arbitrary context-free grammar be split in
subgrammars that can make the synthesis of programs
more efficient?

To tackle this research question a couple of sub questions
need to be answered first:

* How can a context-free grammar be split into smaller
subsets?

* How to learn a program from a set of subgrammars?

* How to determine which subgrammars to combine to find
a solution?

In this paper a new program synthesis technique using
subgrammars will be explained. It will use a divide and con-
quer strategy as it is based around the idea of splitting and
combining grammars. The goal is to optimize the amount of
program enumerations it takes to synthesize a solutions to a
program synthesis problem.

Background

EUSolver [1] already uses divide and conquer but applies
this idea on splitting the set of examples. It generates pred-
icates from the problems context-free grammar and uses a
decision tree to group the examples by these predicates. Af-
terwards, single programs that solve smaller groups can be

combined using a structure of if-statements. There also exist
another strategy that uses decision trees, but combines this
also with machine learning and constraint-driven search [2].

Methodology

This section outlines a solver for addressing program syn-
thesis problems while making use of subgrammars. A prob-
lem presented to this solver must include a collection of
input-output examples along a context-free grammar to con-
struct programs from. Initially, the solver will split the
context-free grammar into multiple subgrammars. Subse-
quently, it explores and evaluates various combinations of
these subgrammars. Finally, the grammars are exploited
based on their scores. Throughout this section, an example
will be used to clarify each step thoroughly.

Splitting Grammar

Every program synthesis problem provides us with a set of
examples together with a context-free grammar. This gram-
mar contains a set of rules for constructing a valid program.
Consider the grammar from figure 1. Its rules can be used
to construct simple Boolean and arithmetic expressions. The
starting symbol for this grammar is Element, as it will be
the root node for all abstract syntax trees generated from this
grammar.

1. Element — Number

2. Element — Bool

3. Number — 1 /23|«

4. Number — Number + Number

5. Bool - Number = Number

6. Number — if Bool then Number else Number
7. Bool — if Bool then Bool else Bool

Figure 1: Simple context-free grammar

In many cases, not all rules are needed to generate a
program that solves the set of examples from the problem.
Therefore, it might be helpful to generate programs from
several subsets of these rules rather than from all rules at
once.

To generate these so-called subgrammars, we must split
our initial context-free grammar. Since we cannot determine
in advance which rules are required to produce a program
that meets all examples, every rule from the initial grammar
should appear in at least one of the subgrammars. Addition-
ally, a subgrammar is only meaningful if all its rules can be
used to generate a valid program. For that reason, all rules
should be reachable from the starting symbol and all non-
terminals in these rules should be substitutable such that no
non-terminals are left behind.

To establish these meaningful subgrammars, we will con-
struct a dependency graph of our initial grammar. In this
graph, each symbol from the grammar is represented by a
node, and the edges between them show how the rules con-
nect these symbols. For instance, in figure 2, rule number
6 has the symbol Number on its left-hand side and gener-
ates a string containing the Boolean and Number symbol.

Number

Figure 2: Dependency graph

Consequently, the graph has an edge from Number point-
ing to both Number and Boolean. All edges that represent
terminal rules point to Null, as they do not depend on any
non-terminals.

Once we have a dependency graph finished, for every rule
in the initial grammar we will generate the smallest possible
grammar in which that rule is contained. We use breadth-first
search to identify the shortest path from the starting symbol
to Null passing through the desired rule. For example, to
create a grammar that includes rule number 6, we need to
include rule 1 to reach this rule from the starting symbol, and
rules 3 and 5 to replace all its non-terminals with terminals.

1./1,3]

2.2,5,3]

3.1,

L4s — (145, [1,6,53], [27,5,5]
5.02,5,3]

6./1,6,5,3]

7.12,7,5,3]

Figure 3: Pruning subgrammars

Since the dependency graph in our example has seven
edges, we end up with the seven subgrammars. Some of
these grammars are subsets of others. Checking all of these
would lead to executing the same programs multiple times.
Therefore, we disregard any subgrammar that is a proper
subset or duplicate of another. For our example, this step
is shown in figure 3. Finally, to visualize the subgrammars
left after this pruning step, figure 4 shows a Venn diagram of
these grammars.

Exploring Subgrammars

Now that we have broken our initial grammar down into its
core subgrammars, we need to determine which sets of sub-
grammars are most promising for synthesizing our program.
Since our solver does not know the meaning of the rules
from each subgrammar, we will treat them equally during
this exploration process. It is very unlikely that only one
subgrammar will be able to synthesize a program satisfy-
ing the full problem, especially when working with larger
grammars rather than our small example. Therefore, we will
first look over all possible combinations of n grammars and

Gy

Figure 4: Venn diagram of subgrammars

assign each combination a score from 0 to 1. The value of n
will be parameter for our solver and must be chosen by the
user.

In our example, with only three subgrammars, we will se-
lect n = 2 to illustrate the process. There are (g) = 3 dif-
ferent combinations of two grammars possible from our set
of three grammars. This means we will have to explore the
grammars G U Go, G1 U G3, and G U G3.

To assign all combinations of grammars a meaningful
score, we need a metric that effectively represents the impor-
tance of the grammars. For that reason, we will enumerate
a fixed number of programs from each grammar and check
what the highest percentage of examples is that a program
generated by it can cover. It is possible that a program solv-
ing all examples will be already found during this phase of
exploration. In that case, there is no need to explore further,
and we have solved our problem.

Exploiting Subgrammars

After having assigned a score to all candidate grammars,
we proceed by using the remaining enumerations to exploit
them accordingly. Each grammar receives a fraction of enu-
merations based on its score divided by the sum of all scores.
For example, if one grammar has a score of 0.7, and the
other two grammars have scores of 0.3 and 0.6, we allocate
m = 43.75% of our enumerations to this grammar.
This final step of the process concludes when a solution is
found, or the solver has run for the maximum number of
enumerations.

Experimental Setup and Results

To test the performance of our program iterator, the com-
plete methodology is implemented in HerbSearch.jl'. This
is part of Herb.jl> which is a program synthesis library writ-
ten in Julia. HerbSearch.jl includes a substantial number of

Uhttps://github.com/Herb- Al/HerbSearch.jl
*https://herb-ai.github.io/

search procedure implementations for the program synthe-
sis framework. The most relevant for our purposes is the
BFSIterator. It is the most basic iterator and therefore
a good baseline to compare against. It provides abstract syn-
tax trees from a problem’s grammar in increasing order of
size. In our experiment, we also employ it as a subiterator
for our GrammarSplittingIterator during the ex-
ploration and exploitation phases.

In addition to search implementations, HerbBench-
marks.jl® provides a collection of benchmarks for testing the
two iterators. We utilize the PBE SLIA Track 2019 from the
SyGuS (Syntax-Guided Synthesis) competition, which in-
cludes 100 string-manipulation problems, each with a set of
examples and a context-free grammar.

Start — String

St?“l’ng — I/ ///// " /7/ //:/// n_n
String — concat(String, String)

String — replace(String, String, String)
String — at(String, Int)

String — toString(Int)

String — if Bool then String else String
String — substring(String, Int, Int)

Int »1/0]-1

Int — Int + Int

Int — Int - Int

Int — length(String)

Int — tolnteger(String)

Int — if Bool then Int else Int

Int — indexOf(String, String, Int)
Bool — true | false

Bool — Int = Int

Bool — prefixOf(String, String)

Bool — suffizOf(String, String)

Bool — contains(String, String)

Figure 5: String-manipulation grammar from PBE SLIA
Track 2019

The 100 grammars from these benchmarks have 27 rules
on average and each grammar consistently splits into either
8 or 9 subgrammars using our methodology. Figure 5 depicts
one of these benchmarks, with its dependency graph shown
in figure 7. One of its subgrammars, highlighted in blue in
this graph, is displayed in Figure 6.

When running a problem on one of the iterators, a single
example is left out to verify that the synthesized program
is not overfitting the given examples. If the synthesized pro-
gram does not solve this left-out example, the problem is not
considered solved.

During the exploration phase, it is not uncommon for a
subgrammar to fail to tackle even a single example. There-
fore, the user can provide a set of metric functions for vari-

*https://github.com/Herb- AL/HerbBenchmarks.jl

Start — String

String — x ["= 0N
String — if Bool then String else String
Bool — prefizOf(String, String)

Bool — suffixOf(String, String)

Bool — contains(String, String)

Figure 6: Subgrammar splitted from string-manipulation
grammar

ous example output types to assign partial points based on
the proximity of a program value to the example output,
allowing to more quickly estimate a grammar’s relevance.
Since 76% of the problems have examples with string out-
puts, our iterator will use an edit distance metric to compare
example output with the synthesized program’s evaluation
result. Given that the strings being compared might vary in
length, we use the Levenshtein distance [4], which is sym-
metric and ranges from O to max(|x|, |y|). This distance is
mapped to a range from 0 to 1, where a score of 0 indicates
completely different strings and a score of 1 indicates iden-
tical strings.

For the 13 problems with integer outputs, we use the the
function compare(x,y) ﬁ to give more partial
points the closer the return values are to the outputs from
the examples. The last 11 problems all of type Boolean will
not be given partial points.

Figure 7: Dependency graph of string-manipulation gram-
mar with one of its subgrammars highlighted in blue

Both iterators are allowed a maximum of 10 mil-
lion program enumerations per problem. We chose n =
3, because the BFSIterator rarely uses rules from
more than three different subgrammars generated by our
GrammarSplittingIterator. This results in either
(g) = 56 or (Z) = 84 different combinations of three
subgrammars that must be explored and exploited, still al-

lowing a significant number of enumerations per subgram-

40 R
37%
&%
- 30 [29% |
L 25% 25%
Ie)
2] 21%
2 201 19% N
,G_E) 16%
E
=9
10 - N
O I I I T
10k 100k 1M 10M
Maximum number of iterations
D BES Iterator

D Grammar Splitting Iterator

Figure 8: Performance on PBE SLIA Track 2019

mar. Given that scores during the evaluation phase seem to
converge quickly and our exploitation time is very valuable,
only 5% of the enumerations are used for exploration and the
remaining 95% for exploitation. There is no definitive right
or wrong when it comes to choosing these values. These val-
ues may not be optimal either but testing them across small
problem sets indicates they perform best among the consid-
ered options. The optimal combination of values also de-
pends on the specific situation, so they are parameters for
the user.

Figure 8 shows the percentage of examples solved by
both iterators for different amounts of iterations allocated
per problem. With the highest experimented amount of 10
million iterations, the BESIterator was able to solve 37
problems, whereas the GrammarSplittingIterator
only solved 29 problems. For all 28 problems that
were solved by both iterators, the two solutions
have the same program size but the solutions from
GrammarSplittingIterator needed on average 7.3
times more iterations to be generated. The average size
of the grammars that solved these 28 problems with the
GrammarSplittingIterator were on average of
size 15. Finally, it took the Raspberry Pi 5* on which the
experiment was run only a little over a second to split all
100 context-free grammars.

Discussion

There were 19 cases where the problem was al-
ready solved in the exploration phase. Only two of
these solutions required fewer iterations with the
GrammarSplittingIterator than with the
BFSIterator. This is presumably because our iter-
ator must check multiple grammars and most likely does

*https://www.raspberrypi.com/products/raspberry-pi- 5/

not check the one containing the solution first. The other 8
problems that were mutually solved, were solved in the ex-
ploitation phase by the GrammarSplittingIterator.
In one instance, our iterator was particularly fortunate and
selected the correct subgrammar first, generating the same
solution as the BFSIterator in just 808,145 iterations
compared to 2,072,958 iterations. It appears that all eight
problems would have been solved faster if the correct
grammar had been chosen first, taking on average less than
a third of the iterations needed by the BFSIterator.
This is why running the subgrammars in parallel in both
the exploration and exploitation could be beneficial for our
iterator.

When it comes to program size, it is not immediately ob-
vious why our iterator does not generate solutions that have
a bigger program size. Because larger grammars often allow
for smaller programs, while we are working with smaller
grammars. Therefore, this might not be the case when run-
ning on another set of benchmarks.

Responsible Research

It is important for the integrity of the research that the exper-
iment is reproducible. Although, in this case it was executed
on a Raspberry Pi 5, it should not matter on which device
it is run as we only looked at the number of iterations that
the iterators took and not the actual speed in seconds. The
iterators themselves, including the benchmarks, are all open
source and can be run with the exact same settings as we de-
scriped in the experimental setup section. The Levenshtein
distance implementation used in the exploration phases of
the experiment is from StringDistances.jI’.

Conclusion

First of all, an algorithm to split context-free grammars
was successfully developped. It makes use of a dependency
graph to group rules that can be combined to create pro-
grams. Secondly, different sets of combinations of the sub-
grammars generated by splitting were tried after one an-
other to find a solution from one of them that would take
less iterations than by enumerating from the original gram-
mar. Grammars were allocated enumerations based on their
performance during exploration. Unfortunately, our own im-
plemented iterator was performing slightly worse than the
BFSIterator and all these efforts were not yet enough
to make the synthesis of programs for our benchmarks more
efficient by reducing iterations.

Future Work

Although the worse performance, enumerating from the sub-
grammars in parallel could potentially allow us to find a so-
lution in one of the subgrammars more quickly than BFS.
Therefore, parallelizing the iterator would be part of future
work that can be done to improve the strategy. On top of that,
one could experiment with different merging strategies. For
example, let the iterator run on a set of subgrammars for a
while and afterwards merge the most successful grammar

>https://github.com/matthieugomez/StringDistances.jl/

with all the others and repeat this step with now a smaller
set with slightly more powerful grammars. However, when
we do only slight additions to the subgrammars, most of
the programs generated by it were also already composable
from the previous grammar. Therefore, also a grammar con-
straint must be implemented that forces a program to contain
at least a unique rule from both grammars that are merged.

References

[1] Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa.
Scaling Enumerative Program Synthesis via Divide and
Conquer. In Axel Legay and Tiziana Margaria, editors,
Tools and Algorithms for the Construction and Analy-
sis of Systems, volume 10205, pages 319-336. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2017. ISBN
978-3-662-54576-8 978-3-662-54577-5. doi: 10.1007/
978-3-662-54577-5_18. URL https://link.springer.com/
10.1007/978-3-662-54577-5_18. Series Title: Lecture
Notes in Computer Science.

[2] Andrew Cropper. Learning Logic Programs Though Di-
vide, Constrain, and Conquer. Proceedings of the AAAI
Conference on Artificial Intelligence, 36(6):6446-6453,
June 2022. ISSN 2374-3468, 2159-5399. doi: 10.1609/
aaai.v3616.20596. URL https://ojs.aaai.org/index.php/
AAAlT/article/view/20596.

[3] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh.
Program synthesis. Number 4.2017, 1-2 in Foundations
and trends in programming languages. Now Publishers,
Hanover, MA Delft, 2017. ISBN 978-1-68083-292-1.

[4] Gonzalo Navarro. A guided tour to approximate
string matching. ACM Computing Surveys, 33(1):31—
88, March 2001. ISSN 0360-0300, 1557-7341. doi:
10.1145/375360.375365. URL https://dl.acm.org/doi/
10.1145/375360.375365.

