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Abstract

Chudak and Shmoys have proposed an (1 + 2/e)-approximation algorithm to the 1-level unca-
pacitated facility location problem. In this thesis, this approximation algorithm is first extended
to the 2-level problem. We prove that under a specific assumption on the structure of the solu-
tion of the LP-relaxation, a solution of the 2-level problem can be transformed to an equivalent
solution of the 1-level problem. The assumption made is that all positive values that occur in
a connected component are equal. Then, the algorithm of Chudak and Shmoys can be applied
on the new obtained solution. Thereafter, we show in a similar way that a valid extension of
the Chudak and Shmoys to the k-level uncapacitated facility location problem exists under this
assumption.

For the 1, 2 and 3-level uncapacitated facility location problem, 10,000 small and large problem
instances are generated at random and the LP-relaxation is solved. The percentage of fractional
solutions that satisfy the assumption made in this thesis decreases when the size of the problem
instances increases. However, all the solution to these problem instances have a structure in
which all positive values in a connected component have the same denominator.
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Chapter 1

Introduction

The uncapacitated facility location problem is one of the most studied problems in the field of
operations research (Mirchandani and Francis (1990)). In the uncapacitated facility location
problem it has to be determined at which locations facilities should be opened to serve a set
of given clients. The locations i at which facilities can be built, and the cost of building a
facility at a given location, fi, are also given. Furthermore, each client j has to be assigned to
one facility. When client j is assigned to facility i, a cost of cij is incurred. The objective of
the uncapacitated facility location problem is now to find an allocation in which the costs are
minimized.

1.1 Formulation of the 1-level uncapacitated facility location
problem

Let D be the set of demand points and F the set of all potential facility locations. Furthermore,
let N = F ∪ D, n = |N |, where it is assumed that the sets F and D are disjoint. The cost of
setting up a facility at location i is fi. cij is the cost of shipping between points i, j ∈ N . In
practice, possible facility locations may be at places where a client is located. Then, a dummy
possible facility location is introduced at the same place as the client is located and the service
cost between this client and the dummy location equals 0. In this way the sets of possible facility
locations and clients can always be made disjoint. It is assumed that:

• fi > 0 for each i ∈ F ;

• cij ≥ 0 for each i, j ∈ N ;

• cij = cji for each i, j ∈ N (service costs are symmetric);

• cik ≤ cij + cjk for each i, j, k ∈ N (service costs satisfy the triangle inequality).

Notice that the costs are only assumed to be positive (fixed facility cost) or nonnegative (service
cost), but that they do not have to be integer. Problems in which the triangle inequality is
satisfied are called metric problems. Thus, the considered facility location problem in this
section is the metric 1-level uncapacitated facility location problem.

Let yi be equal to 1 if facility i ∈ F is open and 0 otherwise. Furthermore, let xij be equal to 1
if client j is assigned to facility i and 0 otherwise. The integer programming formulation of the
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1-level uncapacitated facility location problem is now given by:

z∗IP = min
∑
i∈F

fiyi +
∑
i∈F

∑
j∈D

cijxij (1.1)

subject to ∑
i∈F

xij = 1, ∀j ∈ D (1.2)

xij ≤yi, ∀i ∈ F , ∀j ∈ D (1.3)
xij ∈ B, ∀i ∈ F , ∀j ∈ D (1.4)
yi ∈ B, ∀i ∈ F . (1.5)

In this formulation, the objective function (1.1) is to minimize the total cost needed to serve
the demand of all clients. The total cost can be divided in the facility cost and the service cost.
The facility cost consists of all costs related to the opening of facilities at certain locations and
the service cost consists of all costs related to the transportation of the demand from the open
facilities to the clients. Constraints (1.2) ensure that the total demand of each client j ∈ D is
satisfied by exactly one facility location. Furthermore, constraints (1.3) make sure that clients
can only be served from open facility locations. Finally, constraints (1.4) and (1.5) ensure that
the variables of the problem are binary, such that a facility location is fully opened or not and
clients are fully allocated to a facility location or not.

1.2 Extension to the 2-level uncapacitated facility location pro-
blem

The 2-level uncapacitated facility location problem is a natural extension of the 1-level unca-
pacitated facility location problem. The formulation of the 2-level facility location problem can
be derived from the formulation of the k-level facility location problem given in Aardal et al.
(1999). The following formulation is then obtained. Let D be the set of demand points and
F = F1 ∪ F2 the set of all potential facility locations. F l is the set of all possible locations for
the facilities of level l, l = 1, 2. It is assumed that the sets F1 and F2 are disjoint. Furthermore,
let N = F ∪ D, n = |N |, where it is assumed that the sets F and D are disjoint. The cost
of setting up a facility at location i is fi. cqr is the cost of shipping between points q, r ∈ N .
Again, the sets of possible facility locations at the first and second level and the sets of possible
facility locations and clients can always be made disjoint by introducing dummy locations as is
explained in the previous section. It is assumed that:

• fi > 0 for each i ∈ F ;

• cqr ≥ 0 for each q, r ∈ N ;

• cqr = crq for each q, r ∈ N (service costs are symmetric);

• cqs ≤ cqr + crs for each q, r, s ∈ N (service costs satisfy the triangle inequality).

A path p ∈ P is defined as a sequence of two facilities (i1, i2) , with i1 ∈ F1 and i2 ∈ F2. Each
client j ∈ D must be assigned to exactly one path p ∈ P. The total service cost incurred by
assigning client j to path (i1, i2) is equal to cpj = ci1,i2 + ci2,j .
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Let yil be equal to 1 if facility il ∈ F l is open at level l, l = 1, 2 and 0 otherwise. Furthermore,
let xpj be equal to 1 if client j is assigned to path p and 0 otherwise. The integer programming
formulation of the 2-level uncapacitated facility location problem is now given by:

z∗IP = min
2∑

l=1

∑
il∈F l

filyil +
∑
p∈P

∑
j∈D

cpjxpj (1.6)

subject to ∑
p∈P

xpj = 1, ∀j ∈ D (1.7)

∑
p:p3il

xpj − yil ≤ 0, ∀il ∈ F l, l = 1, 2, ∀j ∈ D (1.8)

xpj ∈B, ∀p ∈ P, ∀j ∈ D (1.9)

yil ∈B, ∀il ∈ F l, l = 1, 2. (1.10)

Again, the objective (1.6) of the model is to minimize the total cost, where the cost consists of
facility and service cost. The costs can be calculated in a similar way as in the 1-level problem,
only both levels of facilities have to be considered now and service costs are also incurred by
transporting the demand between two facilities of different levels. Furthermore, the constraints
of the 2-level problem are very similar to those of the 1-level problem. Constraints (1.7) ensure
that each client is served by exactly one path, constraints (1.8) make sure that both facilities of
each used path are opened and constraints (1.9) and (1.10) ensure that the variables are binary.

1.3 Complexity

The uncapacitated facility location problem is NP-hard, which means that no algorithm exists
that is guaranteed to find the optimal solution of the problem in polynomial time, unless P =
NP . Therefore, it is useful to develop an approximation algorithm that quickly finds high-
quality feasible solutions (Hochbaum (1997)). A ρ-approximation algorithm for a minimization
problem is a polynomial-time algorithm that is guaranteed to find a feasible solution to the
considered problem with an objective value that is within a factor ρ of the optimum value. We
refer to ρ as the approximation guarantee.

1.4 LP-relaxation and duality

Here we give two definitions that are used frequently in the subsequent chapters. For more
details on these topics we refer to Chvátal (1983) and Wolsey (1998).

Consider the following integer programming formulation:

z∗IP = min cT x
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subject to

Ax ≥ b

x ≥ 0

x ∈Zn

In this formulation c and x are n×1 vectors, b and y are m×1 vectors and A is an m×n matrix.
The linear programming relaxation (LP-relaxation) of the original integer formulation can be
obtained by relaxing the integrality constraints x ∈ Zn. The linear programming relaxation is
then given by:

z∗LP = min cT x

subject to

Ax ≥b

x ≥0

The optimal value of the objective function z∗LP satisfies z∗LP ≤ z∗IP . This problem in original
form is called the primal problem. The dual of the problem is then given by:

z∗D = max bT y

subject to

AT y ≤c

y ≥0

Now, we can introduce the duality theorem:

Theorem 1.1 If the primal problem has an optimal solution x∗, then the dual problem has an
optimal solution y∗ such that

z∗IP = cT x∗ = bT y∗ = z∗D.

1.5 Problem definition

In this thesis, approximation algorithms for the uncapacitated facility location problem are con-
sidered. As will be seen in the next chapter, much research on approximation algorithms for
the 1-level problem has been performed. However, for higher level facility location problems less
approximation algorithms are known. Furthermore, the current algorithms for the 2-level pro-
blem seem too simplistic (see for example Aardal et al. (1999)) or decompose the problem into a
sequence of 1-level problems (see for example Zhang (2006)). Therefore, in this thesis we try to
develop a more elaborate algorithm that works directly on the 2-level problem. In Chudak and
Shmoys (2003) a (1 + 2/e)-approximation algorithm for the metric 1-level uncapacitated facility
location problem is developed. Furthermore, some useful properties are derived and proved. In
this thesis we investigate whether we can extend the algorithm of Chudak and Shmoys (2003),
possibly under some assumptions, to the multi-level uncapacitated facility location problem. In
particular we show that the Chudak-Shmoys algorithm can be extended to the k-level uncapac-
itated facility location problem, when all variables xpj , which are larger than 0 in the optimal
LP-solution, are equal.
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1.6 Structure

The remaining chapters of this thesis are organized in the following way. Chapter 2 gives an
review on the most important literature concerning approximation algorithms of the uncapaci-
tated facility location problem. Thereafter, the (1+2/e)-approximation algorithm for the 1-level
uncapacitated facility location problem proposed in Chudak and Shmoys (2003) is discussed in
Chapter 3. In Chapter 4, an extension of the (1 + 2/e)-approximation algorithm to the 2-level
problem is discussed. In this chapter, we first discuss an extension to the 2-level uncapacitated
facility location problem under different assumptions on the structure of the optimal solutions of
the LP-relaxations. Thereafter, the extension to higher level problems is discussed. Next, some
computational results are given in Chapter 5. Thereafter, in Chapter 6 some conclusions will
be formulated. Finally, in Chapter 7 a discussion will be given on the extended approximation
algorithm.
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Chapter 2

Literature review

In this chapter an overview of the most important literature on approximation algorithms for
the uncapacitated facility location problem is given. First, literature on the one-level facility
location problem is discussed. Thereafter, also literature on higher level problems is reviewed.

2.1 The 1-level uncapacitated facility location problem

Hochbaum (1982) provides heuristic algorithms with approximation guarantees for three impor-
tant hard problems. One of the considered problems is the discrete fixed cost median problem,
which is also known as the simple plant location problem or 1-level uncapacitated facility lo-
cation problem. The author uses the set covering problem to obtain a log |D|-approximation
algorithm for the one-level facility location problem, with |D| the number of clients. The service
costs do not have to satisfy the triangle inequality for this algorithm.

In the algorithm described by Hochbaum (1982), the approximation guarantee depends on the
number of clients included in the problem. If, however, the connection costs are required to
satisfy the triangle inequality, then constant-factor approximation algorithms have been found.
In Shmoys et al. (1997), the first constant-factor approximation algorithm for the metric unca-
pacitated facility location problem is presented. This algorithm is based on solving the linear
programming relaxation of the integer uncapacitated facility location problem and rounding the
obtained fractional solution to integer values. The algorithm consists of two steps. In the first
step a filtering technique is used to obtain a new fractional solution. The filtering technique is
used to ensure that the new solution satisfies certain requirements that are useful in rounding
the solution. In this new solution, a client j is only allocated to a (partially opened) facility i if
the service cost cij is not too high. In the second step of the algorithm, the fractional solution
obtained in the first step will then be rounded to a near-optimal integer solution. First, Shmoys
et al. (1997) describe a 4-approximation algorithm for the problem. Then, the filtering technique
is improved to obtain an algorithm with a better performance guarantee. This new algorithm
has an approximation guarantee of 3.16 for the one-level metric uncapacitated facility location
problem.

After the publication of the 3.16-approximation algorithm in Shmoys et al. (1997), many im-
provements have been made, see for example Chudak (1998), Charikar and Guha (1999), Sviri-
denko (2002). In Chudak and Shmoys (2003), first, again, a 4-approximation algorithm for the
one-level uncapacitated facility location problem is described. Next, this algorithm is improved
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to a (1 + 2/e) ≈ 1.736-approximation algorithm. This algorithm will be discussed in more detail
in Chapter 3. Thereafter again numerous improvements are made (examples are Mahdian et al.
(2006), Charikar and Guha (2005), Byrka and Aardal (2010)).

The best known approximation algorithm for the metric uncapacitated facility location problem
is described in Li (2011). The approximation guarantee is obtained by combining two bifactor
approximation algorithms. A bifactor approximation algorithm for the uncapacitated facility
location problem is an algorithm that produces a solution for which the total cost is bounded
by λfF

∗ + λcC
∗, where F ∗ and C∗ are the facility and connection cost of an optimal solution

and λf and λc are the two approximation factors. Then, it is proved that the approximation
guarantee of the algorithm is 1.488. This result is already very close to the lower bound of 1.463
obtained in Guha and Khuller (1998).

2.2 The k-level uncapacitated facility location problem

In Aardal et al. (1999) a 3-approximation algorithm for the k-level facility location problem
is derived. In this algorithm, an optimal solution of the linear programming relaxation of the
k-level problem is used in a randomized rounding procedure. In this procedure, a sequence of
facilities that partially service a client is opened at random, where the probability equals the
fraction of the demand served by this sequence in an optimal solution of the linear programming
relaxation. This results in an algorithm with expected costs at most 3 times the optimal costs.
Finally, a derandomization technique is provided that can be used to obtain a 3-approximation
algorithm for the k-level uncapacitated facility location problem.

Zhang (2006) proposes an algorithm that combines a randomized rounding technique with a
dual fitting technique to obtain a better approximation algorithm for the 2-level uncapacitated
facility location problem. Both these techniques have been used earlier to solve facility location
problems, but they are never combined before. In this way, an approximation algorithm of 1.77
is obtained.
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Chapter 3

The (1 + 2/e)-approximation
algorithm by Chudak and Shmoys

In Chudak and Shmoys (2003) a (1+2/e)-approximation algorithm for the 1-level uncapacitated
facility location problem is given. The main idea of this algorithm will be described in this
chapter. The definitions, lemmas, corollaries and theorems described in this chapter are all
from Chudak and Shmoys. Here, the lemmas, corollaries and theorems are described and some
intuition is provided. For the technical proofs we refer to Chudak and Shmoys.

First, the linear programming relaxation and its dual formulation of the 1-level uncapacitated
facility location problem are given. The integer programming formulation of the problem is
already given in the introduction as formulation (1.1)-(1.5). The linear programming relaxation
of the 1-level facility location problem can now be obtained by relaxing the constraints that
xij ∈ B for each i ∈ F , j ∈ D and yi ∈ B for each i ∈ F . Relaxing the first constraints would
result in: 0 ≤ xij ≤ 1 for each i ∈ F , j ∈ D. However, constraints (1.2) already ensure that
xij ≤ 1 for each i ∈ F , j ∈ D. Therefore, the relaxed constraints will become xij ≥ 0 for each
i ∈ F , j ∈ D. Similarly, when relaxing the second constraints, we would obtain 0 ≤ yi ≤ 1 for
each i ∈ F . However, note that constraints (1.3) already make sure that yi ≥ 0 for each i ∈ F ,
because xij ≥ 0 for each i ∈ F , j ∈ D. Furthermore, costs are related to yi in a linear way in
the objective function with fi > 0 for all i ∈ F . This will ensure that the value of yi will be as
small as possible. Furthermore, yi only occurs in constraints (1.3). The largest value that xij

can take equals 1, so yi will never have to take values larger than 1 to satify these constraints.
Thus, yi will always be less than or equal to 1 in an optimal solution, so this does not have to be
required explicitly. Therefore, the constraints concerning yi can be left out. To summarize, we
obtain the following formulation for the linear programming relaxation of the 1-level problem:

z∗LP = min
∑
i∈F

fiyi +
∑
i∈F

∑
j∈D

cijxij (3.1)
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subject to ∑
i∈F

xij = 1, ∀j ∈ D (3.2)

xij ≤yi, ∀i ∈ F , ∀j ∈ D (3.3)
xij ≥ 0, ∀i ∈ F , ∀j ∈ D (3.4)

(3.5)

Given a feasible fractional solution (x, y) , the fractional facility and service cost are defined as
respectively Cf :=

∑
i∈F fiyi and Cj :=

∑
i∈F

∑
j∈D cijxij .

Let vj and wij be the dual variables corresponding to the primal constraints (3.2) and (3.3).
The dual problem corresponding to the linear programming relaxation is given by:

z∗LP = max
∑
j∈D

vj (3.6)

subject to

vj − wij ≤cij ∀i ∈ F , ∀j ∈ D (3.7)∑
j∈D

wij ≤ fi ∀i ∈ F (3.8)

wij ≥ 0 ∀i ∈ F , ∀j ∈ D. (3.9)

Now, introduce the following definitions:

Definition 3.1 If (x, y) is a feasible solution to the linear programming relaxation and j ∈ D is
any demand point, the neighborhood of j, N(j), is the set of facilities that fractionally service
j, that is N(j) = {i ∈ F : xij > 0} .
Note that the following fact is a simple consequence of Definition 3.1:

Fact 3.2 For each demand point j ∈ D it has to hold that
∑

i∈N(j) xij = 1.

Definition 3.3 Suppose that (x, y) is a feasible solution to the linear programming relaxation,
and let gj ≥ 0 for each j ∈ D. Then (x, y) is g-close if xij > 0 implies that cij ≤ gj (j ∈ D, i ∈
F).

Notice that if (x, y) is g-close and j ∈ D is a demand point, then all neighbors N(j) of j, are
inside the ball of radius gj centered at j. Thus, the service cost from each facility that fractionally
service j to j can be bounded by gj . In Figure 3.1, the neighborhoods of two clients j and k are
shown. The clients are shown by a circle and the facility locations by a square. A line between a
client and a facility location denotes that the client is (partially) serviced by the facility location
in the optimal LP-solution. The bounds on the service cost are also illustrated in the figure.
Facility locations i2 and i3 both partially service clients j and k, so these facility locations are
both in the neighborhood of j and k. Client j is further partially serviced by facility location
i1, which indicates that i1 is also in the neighborhood of j. Finally, facility locations i4 and i5
partially service client k and thus are part of the neighborhood of k.

Now, consider constraints (3.7) of the dual problem. Due to complementary slackness it has
to hold that v∗j − w∗ij = cij when xij > 0. Combining this with constraints (3.9) gives us the
following lemma.
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j k

i2

i3

i1

i4

i5

N(j) N(k)

≤ gj

≤ gj

≤ gj

≤ gk

≤ gk

≤ gk

≤ gk

Figure 3.1: Example of the neighborhood structure of two clients j and k.

Lemma 3.4 If (x∗, y∗) is an optimal solution to the primal linear programming relaxation and
(v∗, w∗) is an optimal solution to the dual problem, then (x∗, y∗) is v∗-close.

Definition 3.5 A feasible solution (x, y) to the linear programming relaxation is complete if
xij > 0 implies that xij = yi for every i ∈ F , j ∈ D.
It can now be shown that the optimal solution (x∗, y∗) of the linear programming relaxation
is “almost” complete, which means that for each demand point j ∈ D for at most one facility
i ∈ N(j) it may hold that x∗ij < y∗i . Using this observation, the solution to the linear programming
relaxation can be made complete for an equivalent instance of the problem. This is described in
the following lemma.

Lemma 3.6 Suppose that (x, y) is a feasible solution to the linear programming relaxation for a
given instance of the uncapacitated facility location problem I. Then we can find, in polynomial
time, an equivalent instance Ĩ and a complete feasible solution (x̃, ỹ) to its linear programming
relaxation with the same fractional facility and service costs as (x, y) . The new instance Ĩ differs
only by replacing each facility location by at most |D|+1 copies of the same location; furthermore,
if (x, y) is g-close, then so is (x̃, ỹ) .

Now, suppose that we have an optimal solution (x∗, y∗) to the primal LP-relaxation and an
optimal solution (v∗, w∗) to the dual problem. We assume that the fractional service cost of j
of this optimal solution is Cj =

∑
i∈F cijx

∗
ij . Then, perform the following clustering algorithm:

1. Initialize the set of unallocated clients S = D and the set of cluster centers C = ∅.
2. Repeat the following as long as S 6= ∅.

(a) Choose j◦ ∈ S with the smallest v∗j + Cj value, where j ∈ S.
(b) Create a new cluster Q “centered” at j◦ and add j◦ to the set of cluster centers:
C = C ∪ j◦.

(c) Add all unassigned clients k that share at least one neighbor with j◦ to cluster Q,
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that is Q = {k ∈ S : N(k) ∩N(j◦) 6= ∅} .
(d) Remove the clients allocated to cluster Q from the set of unallocated clients, so set
S = S −Q.

In Figure 3.2, a cluster centered at client j◦ is illustrated. Again, clients are denoted by circles
and facility locations by squares. Lines indicate that a facility location (partially) service a client
in the optimal LP-solution. From the figure, it can be seen that client j◦ is partially serviced
by facility locations i2 and i3. These facility locations also partially service clients k1, k2 and k3.
Therefore, these clients are also part of cluster Q that has its center at client j◦. However, client
l is only serviced by facility location i1. Since this location is not in the neighborhood of client
j◦, client l does not belong to cluster Q as can be seen in the figure.

j◦

Q

k2

k3

k1l

i3

i2

i1

Figure 3.2: Example of a cluster centered at client j◦.

Next, we can divide the facility locations into two different groups.

Definition 3.7 The set of central facility locations L is the set of facility locations that
are in the neighborhood of some cluster center, that is L = ∪j∈CN(j); the remaining set of facility
locations R = F − L are noncentral facility locations.

In Figure 3.3 the sets of central and noncentral facility locations are shown. Clients j◦ and m◦ are
the centers of the two clusters in the figure. Only facility location i4 is not in the neighborhood
of one of the cluster centers. Therefore, i4 is the only facility location in the set of noncentral
facilities. All other facility locations are in the set of central facility locations.

Now, facilities can be opened and demand points allocated to the open facilities as follows. First,
exactly one facility per cluster is opened in the following way. Neighboring facility i ∈ N(j) is
opened at random with probability x∗ij , (notice that x∗ij = y∗i since the solution is complete),
independently for each center j ∈ C. Next, each noncentral facility i ∈ R is opened independently
with probability y∗i . Finally, each demand point j ∈ D is assigned to its closest open facility
i ∈ F . Using this algorithm, we can find the expected total facility and service cost as is defined
in the following lemmas and corollaries.

Lemma 3.8 For each facility location i ∈ F , the probability that a facility at location i is open
is y∗i .
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j◦k2

k3

k1

i3

i2

i1
m◦

n1

i4

i5

i6

N (j◦)

N (m◦)

R

L

Figure 3.3: Example of the sets of central and noncentral facility locations.

Using this lemma, the expected total facility cost can be found by summing the expected facility
cost per facility. This will lead to the following corollary.

Corollary 3.9 The expected total facility cost is
∑

i∈F fiy
∗
i .

The expected service cost of a demand point can be determined in the following way. Consider
a demand point k ∈ D. Then, two situations can occur: at least one neighboring facility of k is
opened or all neighboring facilities of k are closed. In the first case the expected service cost of
k is equal to Ck =

∑
i∈N(k) cikx

∗
ik. In the second case, we first determine the probability that all

neighboring facilities of k are closed. For notational simplicity suppose that N(k) = {1, . . . , d} .
When each cluster center in C shares at most one neighbour with k, each neighbor i ∈ N(k) is
opened with probability y∗i = x∗ik independently. Thus, the probability q that all facilities in
N(k) are closed is q =

∏d
i=1 (1− y∗i ) =

∏d
i=1 (1− x∗ik) . Now, we can use Fact 3.2 together with

the fact that 1− x ≤ e−x for x > 0 to obtain:

q =
d∏

i=1

(1− x∗ik) ≤
d∏

i=1

e−x∗ik = e−
∑d

i=1 x∗ik =
1
e
.

When a cluster center in C can share more than one neighbor with k, the events of opening
facilities in N(k) are no longer independent for two neighboring facilities of k that are neighbors
of the same cluster center. However, if one of the two facilities is closed, the probability that
the other is opened incereases, thus the dependencies are favorable for the analysis. Thus, the
probability that all neighboring facilities of k are closed is at most 1

e . Assume now that demand
point k belongs to the cluster centered at j◦. Since exactly one facility in each cluster is opened,
j◦ always has a neighboring facility i◦ that is opened. Now, select a facility l ∈ N(k) ∩ N(j◦).
The expected service cost of the open facility i◦ (ci◦k) to k can now be bounded by

ci◦k ≤ ci◦j◦ + cj◦l + clk.

It is known that ci◦j◦ ≤ v∗j◦ , cj◦l ≤ v∗j◦ and clk ≤ v∗k (see Figure 3.4). Furthermore, the expected
service cost between i◦ and j◦ or between j◦ and l (cj◦l) is at most Cj◦ . Thus, the expected
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service cost between i◦ and k is at most

ci◦k ≤ v∗j◦ + Cj◦ + v∗k.

Since in the clustering step the client with smallest v∗j +Cj value is chosen, it is also known that

v∗j◦ + Cj◦ ≤ v∗k + Ck.

Thus, the expected service cost between i◦ and k is at most

ci◦k ≤ v∗k + Ck + v∗k = Ck + 2v∗k.

The expected service cost for demand point k can now be determined by combining the two
possibilities. In the first case, an expected cost of Ck is incurred and in the second case an
expected cost of Ck + 2v∗k is incurred. Thus, always at least an expected cost of Ck is incurred.
When all neigboring facilities of k are closed, which happens with probability at most 1

e , an
additional expected cost of 2v∗k is incurred. This results in a total expected service cost for
demand point k of at most Ck + 2

ev
∗
k.

k

l

j◦

i◦

≤ v∗k

≤ Cj ◦

≤ v∗j◦

k

l

j◦

i◦

≤ v∗k

≤ v∗j◦

≤ Cj◦

N (k)

N (j◦)

N (k)

N (j◦)

Figure 3.4: Bounding the service cost of k.

Lemma 3.10 For each demand point k ∈ D, the expected service cost of k is at most Ck + 2
ev
∗
k,

with Ck =
∑

i∈F cikx
∗
ik.

The expected total service cost can be found by summing the expected service costs per demand
point.

Corollary 3.11 The expected total service cost is at most
∑

k∈D Ck + 2
ez
∗
LP .

Next, the expected total costs can be found by combining Corollaries 3.9 and 3.11.

Theorem 3.12 There is a polynomial-time randomized algorithm that finds a feasible solution
to the uncapacitated facility location problem with expected cost at most (1 + 2

e )z∗LP .
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Finally, a derandomization method is proposed that derandomize the algorithm in such a way
that the total costs are less than or equal to the expected total costs. This derandomization
method completes the proof of the following theorem:

Theorem 3.13 There is a polynomial-time algorithm that rounds an optimal solution to the
linear programming relaxation to a feasible integer solution whose value is within (1 + 2/e) ≈
1.736 of the optimal value of the linear programming relaxation.
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Chapter 4

Extension of the
(1 + 2/e)-approximation algorithm

In Chudak and Shmoys (2003) some useful properties are derived for the 1-level uncapacitated
facility location problem. A natural question is whether these properties can be extended to the
2-level (and probably even to the k-level) facility location problem.

In Chudak and Shmoys (2003), first the 4-approximation algorithm, first introduced by Shmoys
et al. (1997), for the 1-level uncapacitated facility location problem is presented. Furthermore,
the authors introduce some useful properties of the 1-level problem. In Aardal et al. (1999) the
ideas behind the 4-approximation algorithm are used to design a 3-approximation algorithm for
the k-level facility location problem, with k ≥ 1. Here, we investigate first how to extend the
properties described in Chapter 3 to the 2-level facility location problem. Thereafter, we inves-
tigate whether these properties can also be extended to higher level facility location problems.

4.1 Extension to the 2-level facility location problem

Again, we first introduce the linear programming relaxation and its dual formulation of the
2-level uncapacitated facility location problem. The integer programming formulation of the 2-
level uncapacitated facility location problem is given in Chapter 1. Now, the linear programming
relaxation of the problem can be obtained in a similar way as for the 1-level problem. The
constraints that have to be relaxed are again xpj ∈ {0, 1} for each p ∈ P, j ∈ D and yil ∈ {0, 1}
for each il ∈ F l, l = 1, 2. When these constraints are relaxed, we allow the variables xpj and
yil to take values between 0 and 1. However, as already seen for the 1-level problem in Chapter
3, constraints (4.2) will ensure that xpj ≤ 1 for each p ∈ P, j ∈ D and for yil ∈ {0, 1}, the
objective function in combination with constraints (4.3) will make sure that yil ≤ 1 for each
il ∈ F l, l = 1, 2 (since the sum

∑
p:p3il

xpj is bounded above by 1 by constraints (4.2)) and
constraints (4.3) ensure that yil ≥ 0 for each il ∈ F l, l = 1, 2. In this way, we obtain the
following formulation:

z∗LP = min
2∑

l=1

∑
il∈F l

filyil +
∑
p∈P

∑
j∈D

cpjxpj (4.1)
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subject to ∑
p∈P

xpj =1, ∀j ∈ D (4.2)

∑
p:p3il

xpj − yil ≤0, ∀j ∈ D, ∀il ∈ F l, l = 1, 2 (4.3)

xpj ≥0, ∀p ∈ P, ∀j ∈ D (4.4)
(4.5)

Given a feasible fractional solution (x, y) , the fractional facility and service cost are defined as
respectively Cf :=

∑2
l=1

∑
il∈F l filyil

and Cj :=
∑

p∈P
∑

j∈D cpjxpj .

Let vj and wil,j be the dual variables corresponding to the primal constraints (4.2) and (4.3).
The dual problem corresponding to the linear programming relaxation is given by

z∗LP = max
∑
j∈D

vj (4.6)

subject to

vj −
∑
il∈p

wil,j ≤cpj ∀p ∈ P, ∀j ∈ D (4.7)

∑
j∈D

wil,j ≤ fil ∀il ∈ F l, l = 1, 2 (4.8)

wil,j ≥ 0 ∀j ∈ D, ∀il ∈ F l, l = 1, 2 (4.9)

Before we propose an extension of the method desribed in Chudak and Shmoys (2003), an
assumption on the structure of the solution of the LP-relaxation is made. Therefore, the algo-
rithmic result will only be valid for cases in which the structure of the LP-relaxation solution
corresponds to the assumed structure. A solution of the linear programming relaxation of the
2-level facility location problem consists of one or more connected components. In a connected
component, each facility and client can be reached from every other facility and client in the
same component using only paths including clients, ignoring directions, for which x∗pj > 0 where
(x∗, y∗) is the optimal solution of the LP-relaxation. On the other hand, a facility or client that
lies in another connected component cannot be reached using only paths including clients for
which x∗pj > 0. In Figure 4.1 an example of a solution with three connected components A, B
and C is given. In this figure, the facility locations at level 1 are denoted with a cross, the
facilities at level 2 with a square and the clients with a circle. In Figure 4.2 an example of a
fractional solution to a problem is given. The facilities and clients are denoted in the same way
as in Figure 4.1. The solution given in Figure 4.2 consists of two connected components. All
variables in the right connected component take the value 0 or 1. However, in the left connected
component, fractional values occur in the solution. Note that the connections between facilities
a1 and b1 and between a1 and b2 are both part of two paths that both are used with fraction 1

2 .
Thus, these connections are used twice in the solution.

In the solution of the linear programming relaxation of the 2-level facility location problem, the
x∗pj variables can take different values. However, it is assumed that for all paths and clients
that belong to the same connected component, the value of the corresponding x∗pj variables with
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A

B

C

Figure 4.1: Example of a solution with three connected components.

1
1 1

1

1
2

1
2

1
2

1
2

1
2

1
2

a1 a2

b1
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Figure 4.2: Example of a fractional solution that consists of two connected components.

x∗pj > 0 are equal. Thus, the following assumption on the solution of the LP-relaxation of the
2-level problem is introduced:

Assumption 4.1 If x∗pj is noninteger for at least one path p and client j in a connected com-

ponent, then x∗pj =
{
r
0

for all p ∈ P and j ∈ D that belong to the same connected component

and with r ∈ Q a constant between 0 and 1.

The value of r is thus the same within a connected component, but can differ between compo-
nents. In the computations we will investigate how realistic this assumption is. The following
lemma can be used to extend the algorithm for the 1-level facility location problem proposed in
Chudak and Shmoys (2003) to the 2-level problem.

Lemma 4.2 For each connected component, the value of r is of the form 1
b with b ∈ N.

Proof: First, the LP-relaxation solution of integer connected components, or in other words
connected components for which r = 1 are already optimal, so these solutions do not have to
be changed. In this case, r is indeed of the form 1

b with b = 1 ∈ N. Furthermore, assume for
fractional components that r = a

b with a, b ∈ N, a 6= 1, gcd(a, b) = 1 with gcd(a, b) the greatest
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common divisor of a and b. The solution of the LP-relaxation has to satisfy∑
p∈P

xpj = q · a
b

= 1

for each client j, with q =
∑

p∈P Ix∗pj>0 ∈ N and Ix>0 the indicator function that takes the value
1 when x > 0 and 0 otherwise. Thus, it has to hold that qa = b or q = b

a . It is already known
that gcd(a, b) = 1, so b is not a multiple of a. Therefore, q = b

a /∈ N when a 6= 1. However, this
leads to a contradiction, so a has to be equal to 1 and r is of the form 1

b with b ∈ N.

Next, we will introduce a lemma that states that an optimal solution of the linear programming
relaxation of the 2-level uncapacitated facility location problem satisfying Assumption 4.1 can
be transformed into a complete solution of the linear programming relaxation of a related 1-level
uncapacitated facility location problem. Using this lemma, we can thus use the properties found
for the 1-level uncapacitated facility location problem described in Chapter 3.

Lemma 4.3 Suppose that (x, y) is a feasible solution to the linear programming relaxation for a
given instance of the 2-level uncapacitated facility location problem I that satisfies Assumption
4.1. Then we can find, in polynomial time, an equivalent instance Ĩ and a complete feasible
solution (x̃, ỹ) to the linear programming relaxation of the 1-level uncapacitated facility location
problem with the same fractional facility and service costs as (x, y) .

Proof: First, we describe an algorithm that transforms the solution (x, y) of the 2-level problem
to a complete feasible solution (x̃, ỹ) of the 1-level problem. Then, we show that the fractional
facility and service cost does not change when performing the algorithm. Finally, we show that
the algorithm can be executed in polynomial time.

The following algorithm can be used to transform a feasible solution (x, y) of th LP-relaxation
of the 2-level uncapacitated facility location problem to a complete feasible solution (x̃, ỹ) of the
LP-relaxation of the 1-level uncapacitated facility location problem. The steps in the algorithm
will be explained below.

1. Initialize a feasible LP-solution to the 2-level problem (x̂, ŷ) = (x, y) .

2. Repeat the following as long as not all connected components are considered:

(a) Consider a connected component in which x̂pj = 1
b for all p ∈ P, j ∈ D for which

x̂pj > 0 with b ∈ N>0.

(b) Repeat the following as long as at least one facility i ∈ F1 that is part of the connected
component exists for which ŷi >

1
b :

i. Select a facility i ∈ F1 for which ŷi >
1
b .

ii. Create a new facility ic, c ∈ N>0 which is an exact copy of facility i. This means
that facilities i and ic have the same fixed and service cost. c will take the smallest
possible value, which means that c will equal 1 if no copy of facility i is yet made,
while it will equal 2 if one copy is already made, etcetera. Add facility ic to the
sets of facilities F1 and F .

iii. Determine which client(s) j ∈ D force facility i to open with ŷi >
1
b .

iv. Repeat the following until all clients j from Step 2(b)iii are considered:

A. Select a client j ∈ D that forces ŷi to be larger than 1
b . If this step is already

performed at least once in this iteration and client j is connected to a path
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(
i, l
)

for a facility l at level 2 for which it holds that there exists a client j in
such a way that x̂(ic,l)j > 0, then this path is selected. Set x̂(ic,l)j = 1

b and
x̂(il)j = 0. Otherwise, select a path (i, l) ∈ P for which x̂(i,l)j > 0. Add the

path (ic, l) to the set of paths P and set x̂(ic,l)j = 1
b and x̂(i,l)j = 0.

B. Remove client j from the set of clients that force facility i to open with
ŷ1 >

1
b .

v. Set ŷic = 1
b and ŷi = ŷi − 1

b .

(c) Repeat the following as long as at least one facility i ∈ F2 that is part of the connected
component exists for which ŷi >

1
b :

i. Select a facility i ∈ F2 for which ŷi >
1
b .

ii. Create a new facility ic, c ∈ N>0 which is an exact copy of facility i in the same
ways as in step 2(b)ii. Add the new facility ic to the sets of facilities F2 and F .

iii. Determine which client(s) j ∈ D force facility i to open with ŷi >
1
b .

iv. Repeat the following until all clients j from Step 2(c)iii are considered:

A. Select a client j ∈ D that forces ŷi to be larger than 1
b . If this step is already

performed at least once in this iteration and client j is connected to a path(
l, i
)

for a facility l at level 1 for which it holds that there exists a client j in
such a way that x̂(l,ic)j > 0, then this path is selected. Set x̂(l,ic)j = 1

b and
x̂(l,i)j = 0. Otherwise, select a path (l, i) ∈ P for which x̂(l,i)j > 0. Add the

path (l, ic) to the set of paths P and set x̂(l,ic)j = 1
b and x̂(l,i)j = 0.

B. Remove client j from the set of clients that force facility i to open with
ŷ1 >

1
b .

v. Set ŷic = 1
b and ŷi = ŷi − 1

b .

3. Repeat the following until all paths and clients are considered:

(a) Select a path p ∈ P for which x̂pj > 0 for at least one client j.

(b) Create a new “superfacility” s that consists of the two facilities i1 ∈ F1, i2 ∈ F2

that are part of path p (p = (i1, i2)). The fixed cost of the “superfacility” equals
the sum of the fixed cost of facilities i1 and i2. For each client j, the service cost
from “superfacility” s to client j equals the sum of the service cost from facility i1 to
facility i2 and the service cost from facility i2 to client j.

(c) Set x̃sj = x̂pj and ỹs = ŷi1 = ŷi2 .

First, note that a solution (x, y) that satisfies Assumption 4.1 does not have to be complete.
For example, the solution shown in Figure 4.2 is a solution that satisfies Assumption 4.1, but
is not complete. The solution consists of two connected components. In the left component
only values of 1

2 and in the right component only 1, so the assumption is satisfied. However,
the probability that a facility will be opened does not equal xpj for each facility on path p,
because clients c1 and c2 receive fraction 1

2 from facility a1 using path (a1, b1) and fraction 1
2

from facility a1 using path (a1, b2) . Thus, clients c1 and c2 receive all demand from facility a1,
which indicates that facility a1 is opened with 1 in stead of 1

2 , so the solution is not complete.
In general, a feasible solution to the LP-relaxation of the 2-level uncapacitated facility location
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problem that satisfies Assumption 4.1 can violate the completeness in two ways. First, it can
happen that for a certain facility i1 ∈ F1 more paths p = (i1, i2) ∈ P exist for which xpj = 1

b
for a certain client j ∈ D. Then, client j receives 2

b or even more (dependening on how many
paths that include facility i1 are connected to client j) of its demand from facility i1 and thus is
facility i1 not opened with fraction 1

b but with fraction 2
b or more. Second, for a certain facility

i2 ∈ F2 more paths p = (i1, i2) ∈ P exist for which xpj = 1
b for a certain client j. Then, client j

receives 2
b or even more (dependening on how many paths that include facility i2 are connected

to client j) of its demand from facility i2 and thus is facility i2 not opened with fraction 1
b but

with fraction 2
b or more.

Steps 2b and 2c ensure that a complete solution is obtained. The complete solution is called
(x̂, ŷ) . In Step 2b the case in which one or more facilities at level 1 exist for which ŷi >

1
b is

considered and in Step 2c the case in which facilities at level 2 exist for which ŷi >
1
b . The

idea of Steps 2b and 2c is the same, but they are separated to gain some intuition behind the
algorithm. First a facility i for which ŷi >

1
b is selected in Steps 2(b)i and 2(c)i. Then, in Steps

2(b)ii and 2(c)ii, an exact copy ic of facility i is made, which means that the fixed and service
cost of facilities i and ic are equal. In this way, the fractional facility and service cost will not
change when facility ic is included somewhere in the solution instead of facility i. In Steps 2(b)iv
and 2(c)iv a client j is selected that receives more than 1

b of its demand from facility i and thus
forces ŷi to be larger than 1

b . For each client, exactly one value x̂pj is changed to ensure that the
client receives at most 1

b of its demand from the new facility ic. In Steps 2(b)ivB and 2(c)ivB
client j is connected to a new path (ic, l) or (l, ic) respectively. When this is done for each client
that forces facility i to open with a fraction higher than 1

b , facility ic is opened with fraction 1
b ,

since each client is connected to a path including facility ic with fraction 1
b or 0 and at least one

client is connected to a path that includes ic, because otherwise facility ic would not have been
created. Therefore, in Steps 2(b)v and 2(c)v facility ic is opened with fraction 1

b . Furthermore,
for each client that forces facility i to open with a fraction more than 1

b , exactly 1
b of its demand

is reallocated to facility ic in stead of i. Therefore, for all those clients, the fraction of demand
that is delivered from facility i is lowered by 1

b . Thus, the fraction of facility i that is opened
can also be lowered with 1

b . In the solution obtained after Step 2b, the solution is complete with
respect to the first level. Step 2c ensures that the solution is complete with respect to the second
level. Since Step 2c does not change anything at level 1, the solution obtained after this step is
complete with respect to both levels. The conditions in Steps 2(b)ivA and 2(c)ivA make sure
that no unnecessarily additional paths are added to the solution. Without these conditions, a
connected component can be splitted in more connected components in the transformed 1-level
solution. However, it then becomes possible that two “superfacilities” that occur in two different
connected components have a facility at one of the two levels in common. Since each connected
component will contain at least one cluster, it will become possible that a facility will be opened
twice in the algorithm or, even worse, that two facilities at a certain level will be opened, while
in practice one facility would satisfy. This can only happen when two or more clients are both
connected to two or more same paths. If for one of the clients the first path is reallocated to
the copied facility and for the other client the second path is reallocated to the copied facility,
the interdependence between the facilities disappears. However, the conditions in Steps 2(b)ivA
and 2(c)ivA ensure that this cannot happen.

In Figure 4.3 the complete solution obtained with the algorithm when the initial solution is as
in Figure 4.2 is given. In this figure, a copy a1

1 of facility a1 is made, because facility is opened
with 1 instead of 1

2 in the initial solution. Then, one of paths (a1, b1) and (a1, b2) has to be
selected, since these paths satisfy xpj > 0. In this case, path (a1, b2) is selected. Then, thise
path is removed from the solution and replaced by path

(
a1

1, b2
)
. As a result, both facilities a1
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and a1
1 are opened with fraction 1

2 and we have obtained a complete solution. The paths (a1, b1)
and

(
a1

1, b2
)

are again used twice in the solution.
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Figure 4.3: Complete solution obtained by copying facility locations.

Thus after Step 2 of the algorithm, a feasible complete solution (x̂, ŷ) is obtained with the
same fractional facility and service cost as the original solution (x, y) . Then, Step 2a transforms
the complete solution (x̂, ŷ) of the 2-level problem to an equivalent solution (x̃, ỹ) of the 1-
level problem. Since the solution obtained after Step 2 is complete, a path can be seen as a
“superfacility”. The probability that a client is connected to a “superfacility” is x̂pj , where p is
the path that is transformed to “superfacility” and j the client. Next, costs have to be assigned
to the “superfacilities” in such a way that the fractional facility and service costs do not change
compared to the original costs. A natural idea is to include the cost related to the previous
path in the cost of the new “superfacility”. Then, one possibility is to add the fixed costs of
both facilities that are part of the path together with the service cost between these facilities to
obtain the cost of the “superfacility”. However, consider the example shown in Figure 4.4. The
paths (a1, b1) ,

(
a1

1, b2
)

and (a2, b3) are transformed to “superfacilities” s1, s2 and s3 respectively.
Now, for example, the service cost of path (a1, b1) is included in “superfacility” s1. From Figure
4.2 we can observe that the service cost of this path is incurred with fraction 1

2 by client c1 and
with fraction 1

2 by client c2. In total, the service cost is thus incurred with factor 1. However,
“superfacility” s1 is only opened with fraction 1

2 in the transformed solution. Thus, the service
cost then have to be included with factor 2 in the “superfacility”. However, when more clients
are connected to the “superfacility” this factor has to be adapted. Thus, this method will not
work. Therefore, we propose another method in which only the fixed costs of the facilities
are added to obtain the fixed cost of the “superfacility”. The service cost of the path that is
transformed to “superfacility” is added to the service cost of the client to the “superfacility”. In
this way, all service costs that are incurred from the facility at level 1 to the client are included
in the service cost from the “superfacility” to the client and are thus multiplied by the correct
factor. The fixed cost are also incurred in the right way, because both facilities are open with
the same fraction as the “superfacility”.
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c1 c2 c3 c4 c5

Figure 4.4: Transformed solution to the 1-level problem.

When the conditions in Steps 2(b)ivA and 2(c)ivA are not implied, then it would also be possible
to construct the complete solution in Figure 4.5. Transforming this solution will result in the
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solution shown in Figure 4.6. In this solution, “superfacility” s1 consists of facilities a1 and b1,
s2 of facilities a1

1 and b2, s3 of a1 and b2 and s4 of a1
1 and b1. The left connected component in

the solution shown in Figures 4.2 and 4.5 is now split into two different connected components.
After clustering either s1 or s2 will be opened. The same holds for s3 or s4. Comparing the
possibilities show that always three of the four facilities a1, a

1
1, b1 and b2 are opened. When

facilities a1, b1 and b2 are opened too many costs are incurred, because both facilities b1 and b2
are opened with only 1

2 in the optimal solution to the LP-relaxation.
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Figure 4.5: Complete solution obtained by copying facility locations without conditions.
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Figure 4.6: Transformed solution obtained by copying facility locations without conditions.

Finally, it has to be shown that this procedure runs in polynomial time. This can be checked
by determining the maximum number of copies of facilities that have to be made. Because it
is assumed that all paths that are used in a connected component of the optimal solution of
the linear program are used with the same fraction, it can be seen that this fraction is at least

1
|D||F1||F2| (as |D||F1||F2| is an upper bound on the number of possible paths in a 2-level facility
location problem). Therefore, for each facility at most |D||F1||F2| copies have to be made to
obtain a complete solution in which all paths and facilities are used with the same fraction.
The total number of facilities is |F1| + |F2| = |F|, so at most |D||F1||F2||F| ≤ n4 iterations
are needed to obtain a complete solution. Therefore, the procedure that constructs a complete
solution can be performed in polynomial time.

Using the same approach as in Chudak and Shmoys (2003) it can now be shown that the optimal
value of the linear programming relaxation is within a factor of 1 + 2

e ≈ 1.736 of the optimal
cost.

Theorem 4.4 When Assumption 4.1 is satisfied, the (1+2/e)-approximation algorithm of Chu-
dak and Shmoys (2003) can be extended to the 2-level uncapacitated facility location problem.

Proof: We have already shown that a feasible solution of the transformed 1-level problem can
be found that is within (1 + 2/e) of the optimal solution. Now, it still has to be shown that
this solution can be extracted to a feasible solution to the 2-level problem, that the costs do not
change when extracting this solution and that the algorithm runs in polynomial time for the
2-level problem.
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First, note that we have obtained an integer solution of the transformed 1-level problem. In
this solution, all facilities at level 1 are “superfacilities”, which consists of a facility i1 at level
1 and a facility i2 at level 2 of the 2-level problem. Furthermore, the path (i1, i2) is included
in the “superfacility”. Now, we can extract the transformed 1-level solution by extracting the
“superfacilities”. Thus, each facility at level 1 of the transformed problem is extracted into two
facilities (facility i1 at level 1 and facility i2 at level 2) and the path (i1, i2) . If the “superfacility”
is opened, both facilities i1 and i2 are also opened. Furthermore, if the demand of client j is
delivered from the “superfacility”, this demand will now be delivered using the path (i1, i2) . In
this way, we obtain an integer (feasible) solution to the original 2-level problem.

Next, we show that the costs of the new solution to the 2-level problem equals that of the
solution to the transformed 1-level problem. If a “superfacility” is opened in the transformed
1-level problem, fixed cost will be incurred. These fixed cost equals the sum of the fixed cost
of facilities i1 and i2 that are included in the “superfacility”. Thus, the cost of opening the
“superfacility” is fi1 + fi2 . After extracting the solution, both facilities i1 and i2 are opened. In
the extracted solution the fixed cost equals also fi1 +fi2 . Furthermore, in the transformed 1-level
problem, the service cost incurred when transporting the demand of a client j to a superfacility
s is csj . This service cost consists of the sum of the service cost from facility i1 to facility i2
(where facilities i1 and i2 are again part of “superfacility” s) and the service cost from facility i2
to client j. Thus, csj = ci1i2 + ci2j . In the extracted 2-level problem, service costs are incurred
when transporting the demand from facility i1 to facility i2 and from facility i2 to client j. Thus,
in the extracted 2-level problem the service cost equals also ci1i2 + ci2j . Since both the facility
and service cost do not change when extracting the transformed 1-level problem to the original
2-level problem, the total cost also remain the same.

Finally, we have to show that the algorithm can be executed in polynomial time. Thereto, first
note that the ellipsoid algorithm can be used to solve the dual linear program in polynomial
time since the dual has a polynomial number of variables (Aardal et al. (1999)). Furthermore,
it can be assumed that the algorithm finds a basic optimal solution of the primal linear problem
in polynomial time (Aardal et al. (1999)). We have already seen that the time needed to
construct a complete solution of the linear programming problem is polynomial. Thereafter, we
have obtained a solution to an equivalent instance of the 1-level uncapacitated facility location
problem and thus the same methods as in Chudak and Shmoys (2003) can be used. Because
the algorithm of Chudak and Shmoys (2003) is a polynomial time algorithm, these methods also
run in polynomial time.

4.2 Extension to higher level facility location problems

In this section, we investigate whether the extension to the 2-level facility location problem de-
veloped in the previous section can be further extended to higher level facility location problems.
Therefore, we first introduce the linear programming relaxation and its dual problem for the
k-level uncapacitated facility location problem as given in Aardal et al. (1999). In the k-level
problem, a path p ∈ P is defined as a sequence of k facilities p = (i1, i2, . . . , ik) with il ∈ F l.

zLP = min
k∑

l=1

∑
il∈F l

filyil +
∑
p∈P

∑
j∈D

cpjxpj (4.10)
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subject to ∑
p∈P

xpj =1, ∀j ∈ D (4.11)

∑
p:p3il

xpj − yil ≤0, ∀j ∈ D, ∀il ∈ F l, l = 1, 2, . . . , k (4.12)

xpj ≥0, ∀p ∈ P, ∀j ∈ D (4.13)
(4.14)

Again, we define the fractional facility and service cost given a feasible fractional solution (x, y)
as respectively Cf :=

∑2
l=1

∑
il∈F l filyil

and Cj :=
∑

p∈P
∑

j∈D cpjxpj .

Let vj and wil,j be the dual variables corresponding to the primal constraints (4.11) and (4.12).
The dual problem corresponding to the linear programming relaxation is given by

zLP = max
∑
j∈D

vj (4.15)

subject to

vj −
∑
il∈p

wil,j ≤cpj ∀p ∈ P, ∀j ∈ D (4.16)

∑
j∈D

wil,j ≤ fil ∀il ∈ F l, l = 1, 2, . . . , k (4.17)

wil,j ≥ 0 ∀j ∈ D, ∀il ∈ F l, l = 1, 2, . . . , k (4.18)

We assume that the optimal solution of the LP-relaxation of the k-level uncapacitated facility
location problem satisfies Assumption 4.1. Then, Lemma 4.2 is still valid for the k-level problem,
because its proof does not depend on the number of levels considered in the problem. Next, we
prove that Lemma 4.3 can be extended to the k-level problem.

Lemma 4.5 Suppose that (x, y) is a feasible solution to the linear programming relaxation for a
given instance of the k-level uncapacitated facility location problem I that satisfies Assumption
4.1. Then we can find, in polynomial time, an equivalent instance Ĩ and a complete feasible
solution (x̃, ỹ) to the linear programming relaxation of the 1-level uncapacitated facility location
problem with the same fractional facility and service costs as (x, y) .

Proof: We can use the algorithm proposed in the proof of Lemma 4.3 to proof this lemma. In the
algorithm in the previous section, only facilities at level 1 and level 2 are considered. However,
the idea in the corresponding steps of the algorithm (Steps 2b and 2c) is exactly the same. For
the other levels, a similar step can be included in the algorithm without changing the results.
Furthermore, a path can again be seen as a “superfacility” when the solution is complete. Thus,
using the algorithm described in the proof of Lemma 4.3 (extended with additional steps for the
other levels) a feasible complete solution to the 1-level uncapacitated facility location problem
with the same fractional facility and service costs can be obtained.

Finally, it has to be shown that this procedure runs in polynomial time. This can again be
checked by determining the maximum number of copies of facilities that have to be made.
Because it is assumed that all paths that are used in a connected component of the optimal
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solution of the linear program are used with the same fraction, it can be seen that this fraction
is at least 1

|D||F1||F2|·...·|Fk| (as |D||F1||F2| · . . . · |Fk| is an upper bound on the number of possible
paths in a k-level facility location problem). Therefore, for each facility at most |D||F1||F2| ·
. . . · |Fk| copies have to be made to obtain a complete solution in which all paths and facilities
are used with the same fraction. The total number of facilities is |F1|+ |F2|+ . . .+ |Fk| = |F|,
so at most |D||F1||F2| · . . . · |Fk||F| ≤ nk+2 iterations are needed to obtain a complete solution.
Therefore, the procedure that constructs a complete solution can be performed in polynomial
time.

Using the same approach as in Chudak and Shmoys (2003) it can now be shown that the optimal
value of the linear programming relaxation is within a factor of 1 + 2

e ≈ 1.736 of the optimal
cost.

Theorem 4.6 When Assumption 4.1 is satisfied, the (1+2/e)-approximation algorithm of Chu-
dak and Shmoys (2003) can be extended to the k-level uncapacitated facility location problem.

The proof that the algorithm runs in polynomial time for the k-level problem is similar to that
of the 2-level problem.
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Chapter 5

Computational results

In this chapter, we present some results on the number of times that the solution of the LP-
relaxation of the k-level uncapacitated facility location problem satisfies a certain structure.
In the previous chapter we showed that the (1 + 2/e)-approximation algorithm for the 1-level
uncapacitated facility location problem of Chudak and Shmoys (2003) can be extended to the
k-level problem when all values of x∗pj , which are larger than 0 in a connected component, are
equal. A natural question is whether this assumption can be extended in such a way that all
values of x∗pj that are larger than 0 have the same denominator. In Chapter 7 this question will
be further discussed. In this chapter, we will already investigate the occurance of such solutions.

We distinguish between integer solutions (integer), fractional solutions that satisfy Assumption
4.1 (assumption), fractional solutions in which all values of x∗pj for which x∗pj > 0 have equal
denominator z with z < n, but that do not satisfy Assumption 4.1 (equal denominator) and all
other solutions (other). In solutions that satisfy Assumption 4.1 only one value larger than 0 can
be taken in a connected component, so for example only 1

2 or 1
3 . Examples of equal denominator

solutions are solutions in which only the values 1
2 and 1 appear in a connected component, or

only 1
3 ,

2
3 and 1 (1 is seen as 2

2 and 3
3 respectively in these cases). Furthermore, connected

components in which both values of 1
4 and 1

2 occur, are also included in this structure because
1
2 = 2

4 . Notice, that in this way every two fractions 1
p and 1

q can be written as fractions with equal
denominator, because 1

p = q
pq and 1

q = p
pq . However, when the value of pq becomes larger than n,

the solution does not satisfy the equal denominator structure anymore and will be categorized
in the structure with other solutions.

5.1 Results for 1-level uncapacitated facility location problems

In this section, we determine how many times the solution of the LP-relaxation satisfies a certain
structure. A comparison is made between small and large examples. Each small example consists
of 5 facilities and 10 clients, where each large example consists of 25 facilities and 100 clients.
In Table 5.1, for each structure the percentage of solutions of the LP-relaxation that satisfies
this structure is given. Furthermore, the average duality gap is given for the small and large
instances. The duality gap is calculated as zIP−zLP

zIP
×100%. The duality gap is only calculated for

noninteger solutions (since the duality gap will be 0 for integer solutions) and averaged over the
solutions for which the duality gap is calculated. Since the average duality gap for the different
structures are almost the same, only the average over all fractional solutions is given. As can be
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seen from the table, for small instances almost all problem instances result in an integer solution
of the linear programming relaxation. Notice that an integer solution of the LP-relaxation means
that the solution is optimal according to the integer uncapacitated facility location problem.
However, when the problem instances increase, the number of integer solutions decrease. For
small problems, almost 35% of the fractional solutions satisfy Assumption 4.1. When the size
of the problems increase, this percentage drops to almost 29%. Furthermore, the table shows
that all problem instances give a solution that satisfy the equal denominator structure (since
solutions that are integer or satisfy Assumption 4.1 also satisfy the equal denominator structure).
Remarkably, the average duality gap is larger for small problem instances than for large instances.
An explanation for this observation can be that in large instances it is more probable that the
solution of the LP-relaxation is almost integer (with only a few fractional values). Then, the
integer optimal solution differs only a little from the optimal fractional solution, because only
the variables with fractional values have to be changed. Thus, the duality gap is small for these
problem instances.

Table 5.1: Percentage of solutions that satisfy a structure for the 1-level problem

Structure Small Large
Integer 96.8 54.8
Assumption 1.1 13.1
Equal denominator 2.1 32.1
Other 0.0 0.0
Average duality gap 8.3 0.5

5.2 Results for 2-level uncapacitated facility location problems

First, 10, 000 small examples with 3 facilities at level 1, 5 facilities at level 2 and 10 clients are
generated and solved. Thereafter, 10,000 large examples with 15 facilities at level 1, 25 at level
2 and 200 clients are generated and solved. In Table 5.2 the percentage of solutions that satisfy
a certain structure and the average duality gaps are given.

Table 5.2: Percentage of solutions that satisfy a structure for the 2-level problem

Structure Small Large
Integer 98.2 63.0
Assumption 1.3 2.3
Equal denominator 0.5 34.7
Other 0.0 0.0
Average duality gap 13.9 0.8

Table 5.2 shows that for small instances almost all solutions to the linear programming relaxation
are integer (98.2%). However, when the size of the instances increase, the probability that the
LP-relaxation gives an integer solution decreases to almost 63%. This is a similar observation
as for the 1-level problem. Now, more than 72% of the fractional solutions of small instances
satisfy the assumption made in this thesis. After increasing the size of the problem instances
this percentage drops to only 6%. However, again all solutions satisfy the equal denominator
structure. The duality gaps for both small and large instances are increased compared to the
1-level problem. The gap for the small instances is still higher than that of large instances
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5.3 Results for 3-level uncapacitated facility location problems

For the 3-level uncapacitated facility location problem, again 10,000 small and large instances
are randomly generated and the LP-relaxation is solved. This time 2 facilities at the first level,
3 at the second, 5 at the third level and 10 clients are generated in the small problem instances.
For the large instances, 10 facilities at level 1, 15 at level 2, 25 at level 3 and 200 clients are
generated. The results are given in Table 5.3. Again, the small instances give almost always
integer and thus optimal results. When the problem instances are increased, the number of
optimal solutions again decrease. The other observations are also similar to the 1 and 2-level
problems: the percentage of fractional solutions that satisfy Assumption 4.1 decreases when the
problem size increases, all solutions satisfy the equal denominator structure and the average
duality gap is larger for small problem instances than for large instances. Again, the duality
gaps are increased compared to the 2-level problem.

Table 5.3: Percentage of solutions that satisfy a structure for the 3-level problem

Structure Small Large
Integer 98.4 60.2
Assumption 1.3 3.0
Equal denominator 3.0 36.8
Other 0.0 0.0
Average duality gap 15.2 1.4

5.4 Evaluation

For small problem instances, almost all solutions of the linear programming relaxation are in-
teger. However, when a noninteger solution is obtained, the duality gap between the optimal
integer solution and the optimal solution of the LP-relaxation is relatively high and increases
with the number of included levels. For large problem instances the number of times a noninte-
ger solution is obtained increases, but the duality gap decreases compared to the small problems.
The average duality gap still increases when the number of included levels increases, but for low
levels, the LP-relaxation gives a good estimate of the optimal integer solution.

The percentage of fractional solutions that satisfy the assumption made in this thesis is more
than 30% for small problems with 1, 2 and 3 levels. However, when the problem size increases,
this percentage drops to less than 10% for the 2 and 3-level problems. Since all solutions satisfy
the equal denominator structure, it would be very useful to investigate whether the (1 + 2/e)-
approximation algorithm has also a valid extension for solutions that satisfy this structure.
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Chapter 6

Conclusion

In Chudak and Shmoys (2003) a (1+2/e)-approximation algorithm for the 1-level uncapacitated
facility location problem is provided. In this thesis, we try to extend this algorithm to an
approximation algorithm for higher level uncapacitated facility location problems. Thereto,
an assumption on the structure of the linear programming relaxation of the facility location
problem is made. We assumed that all variables xpj that are larger than 0 have the same
value in a connected component. We proved that under this assumption, the solution of the
LP-relaxation of the k-level uncapacitated facility location problem can be transformed into a
solution of a 1-level uncapacitated facility location problem. Furthermore, we proved that this
transformation can be done in polynomial time. Therefore, the algorithm of Chudak and Shmoys
(2003) can be extended to a (1 + 2/e)-approximation algorithm for the k-level uncapacitated
facility location problem under this assumption.

Furthermore, we investigated how many times solutions of the LP-relaxation satisfied certain
structure requirements for 1,2 and 3-level facility location problems. We distinguished between
integer solutions, fractional solutions that satisfy Assumption 4.1, fractional solutions for which
all values of x∗pj > 0 have equal denominator z with z < n, but do not satisfy Assumption 4.1,
and all other solutions. For small problems almost all instances resulted in an integer solution
of the linear programming relaxation. For large problems, the number of integer solutions
decreased. Furthermore, the number of fractional solutions that satisfy Assumption 4.1 also
decrease when the size of the instances increases. However, all solutions of the LP-relaxation
satisfied the structure with equal denominators. Thus, the approximation algorithm developed
in this thesis is mostly useful for uncapacitated facility location problems with only a few levels.

The average duality gap, the relative difference of the LP-relaxation compared to the optimal
integer solution, is very small for large problem instances. Thus, for large instances the solution
to the linear programming relaxation is a good estimate of the optimal integer solution. However,
the average duality gap increases when the number of considered levels in the facility location
problem increases. For small problems the average duality gap is larger. Furthermore, it also
increases when the number of included levels increases.
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Chapter 7

Discussion

In this thesis, we extended the (1 + 2/e)-algorithm for the 1-level uncapacitated facility location
problem as described in Chudak and Shmoys (2003) to the k-level problem under an assumption
on the structure of the optimal solution to the LP-relaxation. More precisely, in Chapter 4
we developed an approximation algorithm for the k-level problem with the same performance
garantuee as for the 1-level under the assumption that all variables x∗pj for which x∗pj > 0 within
a connected component of the optimal solution of the linear programming relaxation, have equal
value. In Chapter 5, we presented some computational results on the fraction of LP-solutions
that satisfy this assumption for different level uncapacitated facility location problem. Because
all generated problems for the 1,2 and 3-level uncapacitated facility location problems satisfy the
equal denominator structure, it would be very useful, especially for higher level facility location
problems, to develop an approximation algorithm that is also valid for this kind of solutions.
This will be discussed in this chapter.

The assumption made in this thesis is used in the proof of Lemmas 4.3 and 4.5. The assumption
provides for every facility location an upper bound on the number of copies that have to be
made to obtain a complete solution. This upper bound is needed to prove that the algorithm
can be performed in polynomial time. This suggests that the approximation algorithm is still
valid for solutions of the linear programming relaxation that does not satisfy Assumption 4.1 if
for every facility location an upper bound on the number of copies needed to obtain a complete
solution can be determined and the sum of all upper bounds is polynomial in n.

First, we consider the solutions for which all variables in a connected component have the same
denominator, but that do no satisfy Assumption 4.1. We can adjust this type of solutions in
such a way that it satisfies Assumption 4.1. Thereto, we have to make copies of the paths for
which the variables are larger than the minimum value of a variable in the same connected
component. A copy of a path consists of a copy of each facility that is part of the path.

Consider an instance for which the solution to the LP-relaxation contains only variables with the
same denominator, which is less than or equal to n, in a connected component. First, notice that
connected component for which all values of x∗pj > 0 are the same, already satisfy Assumption
4.1 and do not have to be changed. Next, consider a connected component for which different
values of x∗pj exist. Since the solution of the LP-relaxation satisfies the equal denominator
structure, all these values of x∗pj are of the form t

z with t = 0, 1, . . . , z for a certain z ≤ n. We
want to obtain an equivalent solution in which all values of x∗pj > 0 are equal. The most logical
value that all these x∗pj will take in the equivalent solution is 1

z . Thus all combinations of paths
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and clients for which x∗pj = 1
z do not have to be changed. Consider a combination of path and

client (p, j) for which x∗pj = t
z with t = 2, 3, . . . , z. Then, we make t − 1 copies of the path p

(p1, p2, . . . , pt−1) and reallocate 1
z to all the combinations of a copied path pu, u = 1, . . . , t − 1

and client j. A copy of a path contains a copy of all facilities that are part of the path. The
facility and service costs of a copied facility are the same as that of the original facility. In this
way, we have created t paths with x∗pj = 1

z in stead of the original path with x∗pj = t
z without

changing the costs of the optimal LP-solution. This can be repeated for each combination of
path p and client j for which x∗pj >

1
z . This method seems effective at a first sight, but some

problems can occur. For example, a connected component of the k-level problem can be split
into more connected components in the transformed 1-level problem. Then, the performance
guarantee of (1 + 2/e) cannot be given anymore, because clusters can also become smaller in
this case. Since only one facility per cluster is opened, smaller clusters (and thus more clusters)
result in higher facility costs. Due to time constraints, we did not succeed in answering these
questions.

However, we can already prove that the algorithm described above is a polynomial time algo-
rithm. First, note that the number of possible combinations between a path and a client is
|F1||F2||D| ≤ n · n · n = n3. Furthermore, for each combination of a path and a client at most
z ≤ n copies of the path have to be made. Each copy of a path contains of a copy of all facilities
of the path, so in the 2-level problem, 2 copies have to be made. The total number of copies that
have to be made can thus be bounded by 2 · n · n3 = 2n4(≤ n5). This expression is polynomial
in n, so the above algorithm is a polynomial time algorithm. Since the algorithm is polynomial
and (almost) all solutions of the 1, 2 and 3-level problems satisfy this structure, it would be very
useful to investigate whether this proof can be finished.
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