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Summary

The oil industry is a high risk high reward venture. The capital and operating expenses runs
into tens of millions of dollars with oil production being the primary source of revenue. During
the initial development phase of the field, few wells are completed. Data collection during this
period verifies assumptions made during the modelling phase and forms the basis for future
development. History matching can play a significant role in these plans since it can determine
uncertainties in future production.

History matching algorithms must be able to make an accurate estimates of uncertainty in
future production while being computationally light. Towards this end, a number of history
matching methods have been developed with emphasis being on the ensemble Kalman filter
(EnKF) in recent times. While the variants of the EnKF seek to improve different aspects of
the method, few have been successful in addressing all of these concerns.

The Distributed Gauss Newton (DGN) was developed with the same goal- accurate uncertainty
prediction at low computational cost. It is not a variant of the EnKF but uses a sensitivity
matrix determined through linear regression which decreases the computational load compared
to existing gradient based techniques. In their tests, the authors report superior performance
of the DGN compared to a Gauss-Newton scheme. This thesis aims to provide a detailed
understanding of the method and its dependencies. This is followed up with a comparison of
the DGN with an EnKF variant known as the ES-MDA.
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Chapter 1

Introduction

1.1 Background

Figure 1.1: Relation between reservoir parameters and production parameters

With reservoir simulation, the reservoir parameters can be transformed into production param-
eters while the reverse is true with history matching. Hence simulation can be thought of as a
forward problem while history matching is an inverse problem. In history matching, reservoir
properties at each grid cell are variables with production parameters being the given data. Due
to the complex relationship between the variables and the data, a direct relationship does not
exist whereby the data can be used to determine the variables. Hence, history matching is
done using a combination of reservoir simulation and variable updating schemes. There exist
different configurations of reservoir properties that result in the same/similar production data
making this an under-determined problem.

The reservoir parameters are properties that are populated in the grid cells and are subject
to regional geology. This is usually an amalgamation of different lithologies which are het-
erogeneous, i.e., parameters vary in different directions. The properties of the subsurface are
observed at discrete intervals (well locations) and interpolation techniques are used populate
properties in the grid cells (for reservoir simulation). High costs limit extensive data collection
while interpolation with limited data can give rise to errors in simulation results. Thus, there
is an uncertainty in reservoir parameters used.

These parameters include permeability and porosity in the grid cells, oil-water-gas contacts,
fault transmissibility, aquifer size and strength and so on. History matching can be used to
tune these parameters to match measurements. The measurements are production parameters
in the field such as bottom hole pressures and fractional flux rates. It will have some errors
associated with it since no recording device is error-free. These are assumed to be Gaussian with
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2 CHAPTER 1. INTRODUCTION

zero mean and some variance. Further, the measurements are assumed to be independent.

History matching is not an end. It is a means to appraise uncertainty in the field. Prior
to producing the field, uncertainty quantification is performed with limited data leading to a
production plan. Having produced from the field for a duration, more data is now available.
This is incorporated into the uncertainty study through history matching techniques to obtain
a better forecast of future production. The initial models used before forecasting form the prior
data set while history matching generates models that sample a ‘posterior’ distribution based
on minimization of an objective function (under Gaussian assumptions).

1.2 Literature review

The history matching problem can be phrased as determination of model parameters conditional
to the recorded measurements [Oliver et al., 2008]. Bayes’ theorem can then be used to relate
the different conditional probabilities to determine the distribution of these parameters- called
the posterior. Most of these parameters are approximated to be Gaussian resulting in the
posterior having a form-

p(m|dobs) = a ∗ e−f (1.1)

where,
p is probability
m contains the model parameters
dobs is the observed data
a is some constant
f is the objective function defined in Equation 2.1

f contains the sum of squares of differences between simulated data (of the models being history
matched) and measurements. This is referred as data mismatch. While using more data
decreases the effect of measurement errors, it also increases the value of the objective function
causing a possible underestimation of uncertainty. This pitfall in bayesian history matching
could be offset by modifying the covariance matrix associated with the data to ensure that the
data mismatch does not inflate with increasing amounts of data used [Vink et al., 2015].

In Equation 1.1 models that minimize f sample the posterior distribution. One way of deter-
mining the model parameter space is to use a large number of models. If a sufficiently large set
of models is used, then the entire posterior distribution could be identified. This is the premise
behind the use of Monte Carlo methods. The Markov Chain Monte Carlo (MCMC) is a subset
of this method and is used in history matching. It allows for complete sampling of the posterior
distribution. However, it requires the use of an extremely large number of models and is not
computationally feasible for practical problems. A variation, known as the RML may be used
instead. Its advantage lies in the fact that it requires fewer models to determine a posterior
that almost approximates the MCMC. However, the ensemble (set of models) size required is
still large enough to make this method unattractive. Nevertheless, both these methods may be
used for bench marking of other history matching techniques [Oliver and Chen, 2011]

Gradual deformation [Roggero et al., 1998] is a possible alternative to the Monte Carlo/RML
approach owing to reduced computational requirements. The premise is to modify (deform)
the prior model in steps so that the newly generated model continues to honor well data. With
sufficient deformations, these models sample the true posterior distribution. A characteristic of
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the algorithm is the updating of model parameters which occurs along random directions. After
the first few iterations when the objective function has decreased, the probability of finding an
update (that minimizes the objective) in a random direction decreases. This in turn makes the
algorithm inefficient [Liu and Oliver, 2004].

Gradient based techniques could be an alternative since they can be used to determine an
optimal search direction for updates. These methods usually require the computation of the
sensitivity of observed data to the model parameters. Gauss-Newton steps can then be used
to minimize an ‘objective function’ which contains the data mismatch term. However, the
determination of gradients is often a tedious task.

Gao et alḋeveloped the Distributed Gauss Newton (DGN) method where the gradient calcu-
lation is straightforward. In this method, the sensitivity of the measurements to the model
parameters is computed for all the prior models used through linear regression. This is then
used to calculate the gradients of the objective function using a Gauss-Newton scheme. The
use of linear regression alleviates the cost of gradient computations. In [Gao et al., 2016a], they
compare the DGN with a Gauss Newton scheme developed in prior research [Gao et al., 2016b]
reporting the superior performance of the former. In [Gao et al., 2016c], using a toy model, the
authors compare the posterior distribution generated by the DGN with that of the MCMC,
making a tentative claim that the DGN is more efficient.

Among gradient free techniques, one that has become popular in recent times is based on the
Ensemble Kalman Filter (EnKF). Introduced in the 1990’s in meteorology and oceanography,
it is a sequential data assimilation filter which can update multiple models simultaneously. It
was introduced in the petroleum industry in 2001 and has since gained popularity especially
in history matching. It is attractive since a single computation is sufficient to update a large
number of models (forward runs of the models are still required). Various forms of the EnKF
have been introduced since with the common aim of improving the posterior sampling of the
EnKF vis-à-vis the MCMC. This includes forms which are iterative- have better performance
when the model parameters are non-Gaussian, smoothers- the data assimilation step is modi-
fied resulting in a non-sequential filter or hybridized schemes- combination of the EnKF with
the MCMC or RML. Of these, a variation of the smoother known as the ensemble smoother
with multiple data assimilation (ES-MDA) has been very successful in estimating the posterior
distribution [Emerick and Reynolds, 2013b].

Uncertainty quantification is the integral part of history matching. This may be characterized
on the basis of differences in the model parameters, or the simulated measurements in a fore-
cast period. Fenwick and Baycky describe this among other things through the use of metric
space methods [Fenwick and Batycky, 2011]. This technique involves analysis by clustering the
posterior models in a lower dimensional space.

1.3 Research objectives

The aim of this thesis is twofold- to understand the working of the DGN and later compare
it with ensemble based methods on counts of computational efficiency and sampling of the
posterior. Towards this end, tests are carried on the implemented code to understand its
working. This implementation is based on [Gao et al., 2016a]. For comparison, the ES-MDA
is chosen. This is because of its success in characterizing the posterior distribution while being
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computationally feasible [Emerick and Reynolds, 2013b].

1.4 Report structure

Chapter 2 provides a theoretical background of the concepts used in the thesis. This is followed
by an analysis of the workflow used in the DGN in Chapter 3. Chapter 4 deals with experiments
done using the implemented code. The code is first verified through the use of toy problems
following which synthetic reservoir model testing is carried out to identify dependencies. This
is followed up by comparisons with the ES-MDA on counts of computational time and posterior
variability (through metric space methods). The chapter ends with a comparison of the methods
on a benchmarking study by [Emerick and Reynolds, 2013b]. Conclusions based on these tests
are made in Chapter 5 which is followed by possible avenues for research based on the results
obtained thus far.



Chapter 2

Theoretical concepts

2.1 History matching problem

The reservoir parameters estimated through history matching are referred to as model param-
eters. The reservoir models used during the process are evaluated based on data mismatch.
This value is large prior to the process and is often quite small at the end. Being an under
determined problem, there exists more than one reservoir model that has a sufficiently low
mismatch. While it is desirable to find all possible reservoir models with low mismatch values,
this is not computationally feasible. To limit the size of the solution space regularization terms
can be used.

f(x) =
1

2
{(x− xprior)

TCM
−1(x− xprior]) + [g(x)− dobs]

TCD
−1[g(x)− dobs]

T } (2.1)

where
x is a model parameter
xprior is the mean of the prior of the parameter
CM is the covariance of the parameters
dobs is the measured data
CD is the covariance of the measured data
g(x) is the simulated data

The objective function is defined in Equation 2.1. If Np parameters and Nd observations are
considered, then x and xprior are vectors of size 1×Np, CM is a matrix of Np ×Np, g(x) and
dobs are 1 × Nd and CD is Nd × Nd respectively. The first part of the equation is called the
model error while the latter part is the data error. Data error is the mismatch that history
matching aims at diminishing while model error is the regularization used. Here, it limits the
solution space by controlling the 2-norm distance of an update from the prior.

History matching can thus be considered a minimization problem as the aim is to reduce mis-
match between observed and simulated data. Since multiple solutions are present, this is a
multi-modal problem. There are two methods of determining these solutions. One method is
to repeatedly perform minimization by starting from different locations in the model space. In
this way, the local minima closest to each starting point can be found. The other method is
to simultaneously minimise from different locations. While the former is easy to implement, it

5



6 CHAPTER 2. THEORETICAL CONCEPTS

is computationally intensive. As a result, latter methods are preferred for the history match-
ing.

2.2 Matching strategies

Section 2.1 introduces the history matching problem. Strategies used to reduce the data mis-
match may be derivative based or derivative-free. The derivatives referred to are of the objective
function with respect to the model parameters.

Derivative based methods, as the name suggests, use the derivative of the objective function
to determine updates to the reservoir model. The objective function has the same form as
defined in Equation 2.1. The derivatives of the objective function are shown in Equation 2.2-
2.3. These are derived in Appendix A. The reader is referred to [Oliver et al., 2008] for further
reading.

In these expressions, J = ∇g is the sensitivity of the simulated data to model parameters. It
is known as the local sensitivity or the Jacobian. ∇f and H are the first and second order
derivatives of the objective function. H is usually referred to as the Hessian.

∇f = (x− xprior)
TCM

−1 + JTCD
−1[g(x)− dobs] (2.2)

H = CM
−1 + J′TCD

−1[g(x)− dobs] + JTCD
−1J, J′ = ∇J (2.3)

Derivative based methods use these to determine update in model parameters. One such com-
monly used technique is the Newton-Rhapson scheme where the update is shown in Equation
2.4. A potential problem in using this method in history matching is the severe computation
cost necessary to accurately capture the derivative of the Jacobian. This led to use of the
Gauss-Newton method where the second term in the Hessian definition was neglected resulting
in Equation 2.5 [Oliver et al., 2008]. This neglected term tends to zero as the mismatch between
simulated and observed data approaches zero making this an acceptable approximation.

xupdate = xold −H−1∇f (2.4)

H = CM
−1 + JTCD

−1J (2.5)

Derivative free methods do not require the computation of gradients which decreases compu-
tational requirements. The ensemble Kalman filter (EnKF) falls in this category and has been
in focus the past decade. The filter consists of an update step and a forecast step and data
assimilation takes place one at a time. These are detailed in Section 2.3. In the forecast step,
the initial guess of the model parameters is used to propagate the model forward in time so as
to determine the simulated data. In the update step, the Kalman gain is calculated using this
simulated data which is then used to update the model parameters. After the update step, the
new forecast parameter is the analysed parameter of the previous update step while the same
is true for the covariance of the model parameters. In this manner, the forecast and update
step follow each other till defined convergence criteria are satisfied.

The DGN is a derivative based method because it uses derivatives to update the model param-
eters. It is different from traditional gradient based methods in that the gradient used at the
start is an approximation and hence is not computationally taxing. The DGN is contrasted
with a variation of the EnKF which is a derivative free method.
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2.3 Ensemble smoother with multiple data assimilation (ES-
MDA)

The ensemble smoother differs from the EnKF in the way data is assimilated. The underlying
theory is the same for both methods. Since the EnKF is quite popular, we start with this
method. It consists of a forecast and an update step shown below. It is a sequential data
assimilation technique, i.e., data can be incorporated as it becomes available. This is attractive
since the reservoir history prior to the data (to be assimilated) does not have to be simulated
again. The reader is referred to [Aanonsen et al., 2009] and [Oliver and Chen, 2011] which
provide insights into the evolution of the EnKF. [Evensen, 2003] gives a detailed discussion on
implementation of the filter.

Forecast step
G(xf , t+ δt) = G(xf , t) (2.6)

where,
xf is the forecast model parameter
δt is the length of a time step

Update Step
K = PfG

T (GPfG
T + R)−1

xa = xf + K[d− g(x)]

Pa = (I−KG)Pf

(2.7)

where,
K is the Kalman gain
Pf is the covariance of the model parameters used in the forecast step
G is the operator that relates the model parameters to data
R is the covariance of the perturbations applied to the observed data
xa is the updated model parameter
d is the measured data
Pa is the covariance of the updated model parameters
I is an identity matrix of appropriate size

G is defined to be an operator relating the simulated data to the model parameters. But
reservoir simulation being a complex non-linear process makes it impossible to determine such
an operator. Hence the definition of the covariances are simplified such that it is not necessary
to define G. In the update equation, the operator, G is linear which is not true in this case.
Thus, the operator is linearised and the model parameters augmented. In the remainder of the
section, G refers to the linearised operator.

Consider that the ensemble of the augmented model parameters A = m[x1x2 . . .xn] where xi
refer to a vector of parameters that belong to one model and m is the number of ensemble
equivalents added to augment the model parameters. In such a case, the perturbation in the
ensemble can be defined as

A′ = A−A (2.8)

The covariance of the forecast model parameters is shown below. Here, N refers to the ensemble
size.

Pf =
A′A′T

N − 1
(2.9)
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From the definition of the EnKF, perturbations need to be added to the measurements. R
represents the covariance of this ensemble of perturbations. If γ the ensemble of perturbations,
then

R =
γγT

N − 1
(2.10)

When applied to the Kalman gain expression, we get

K =
A′A′T

N − 1
GT (G

A′A′T

N − 1
GT +

γγT

N − 1
)−1

= A′A′
T
GT (GA′A′

T
GT + γγT )−1

= A′(GA′)T [(GA′)(GA′)T + γγT ]−1 (2.11)

Similarly, the covariance at the update step becomes

Pa = (I−KG)Pf

=
1

N − 1
(I−KG)A′A′

T

=
1

N − 1
[A′A′

T −K(GA′)A′
T

] (2.12)

Since G is an operator relating the model parameters and the observations and A′ is the
ensemble of model parameter anomalies, the product GA′ is the ensemble of simulated data
anomalies. Equations 2.11-2.12 are then used in Equation 2.7 to ease implementation.

The EnKF is a sequential data assimilation filter implying the measurements are used one at
a time. This means there is a forecast and an update step that accompanies each assimilated
measurement. If, on the other hand, all the measurements are assimilated together, that is
there is just a single update step present, then the filter is known as a smoother. The ensemble
smoother, thus, is not a sequential data assimilation filter. However, it is similar to the EnKF
in that it follows the same methodology. The advantage of the smoother is that it does not
require simulation restarts that may be necessary in geo-modelling workflows.

Ensemble smoother with multiple data assimilation, as the name suggests, comprises repeated
assimilation of the same set of data. Since the main difference between the schemes lies in
data assimilation, the equations shown above can be used to implement the smoother. Another
difference between the schemes is in the covariance matrix for the observations. Equation 2.11
indicates that the data covariance has an inverse relation to the Kalman gain and consequently
the model parameters. Increasing this will reduce the magnitude of updates. [Rommelse, 2009]
noted that having a large magnitude for the update can result in poor predictions of parameters
of state. He proposed increasing the covariance matrix to mitigate this while also deriving
the requisite number of times the data assimilation needs to be repeated to find the ‘correct’
states. He worked with a single measurement whereas typical history matching involves more.
[Emerick and Reynolds, 2012] extended this approach, testing it with synthetic as well as actual
reservoir models. They show that when multiple data assimilations are performed with the
same data set, the coefficients used to inflate the covariance of measurements satisfy Equation
2.13.

nα∑
i

1

αi
= 1 (2.13)
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where,
α is the inflation factor
i is a counter for number of assimilations
nα is the number of assimilations

In the ES-MDA, the number of data assimilations need to be decided prior to history matching
and the associated inflation factors (α) calculated. The process is iterative and proceeds till
completion of all data assimilation steps. Since all the data is assimilated simultaneously,
there is no need to calculate the analysed covariance matrix. The forecast is then repeated
for the updated model parameters to find the new updates. In this manner, the forecasting
and updating steps iterate till all data assimilation steps are complete. This is shown in the
algorithm below.

Algorithm 1 ES-MDA

1: for i = 1, 2, ...na do
2: Forecast for the entire history match period-
3: G(xf , t+ δt) = G(xf , t)
4: Update model parameters-
5: K = A′(GA′)T [(GA′)(GA′)T + αiγγ

T ]−1

6: xa = xf + K[d− g(x)]
7: end for

2.4 The Distributed Gauss Newton method

This method of history matching was recently proposed by Gao et al., [Gao et al., 2016a].
The authors claim that the DGN is superior to traditional history matching methods from a
computational perspective while also providing a better sampling of the posterior distribution.
The method used for comparison by the authors was a Gauss Newton algorithm with direct
pattern search. The computational gain stems from the reduced number of reservoir simulations
that need to be performed. Using a toy problem, they showed that the DGN required 3.6 times
fewer reservoir simulations to determine the posterior. When applied to a synthetic facies based
reservoir model, they report the DGN required 157 times fewer simulations. This motivates
this study of the DGN.

Similar to the ensemble approach, the DGN also makes use of an ensemble of reservoir models.
This ensemble incorporates prior data available on the reservoir. In order to generate solutions
1 that span the solution space 2, it is preferable to distribute the initial ensemble over the entire
range of its parameters (i.e., permeability). The workflow used in the DGN is shown in Figure
2.1.

The DGN is a gradient based technique since it uses the derivatives of the objective function
to determine an update to the model parameters. It is a Gauss Newton scheme in that the
approximated Hessian is used. An advantage of the DGN is in the ease with which the sensitivity
matrix and consequently gradient and Hessian are determined (uses linear regression). The
objective function is constructed at discrete points using the model error and the data error.

1reservoir configuration that fits the production data
2set of all configurations that fit the production data
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However, its functional form is unknown. Furthermore, its shape depends on the type of
parameters being optimized [Oliver et al., 2008]. Hence, the objective function is approximated
with different local models at different locations.

An ensemble member is a collection of values for each model parameter. In this sense, the
ensemble can be considered a collection of points in Np dimensional space. To construct the
local model, derivatives are calculated at each of these points. Here, a quadratic model is
used. Provided the model approximates the objective function well, minimizing the former is
equivalent to minimization of the latter. [Gao et al., 2016a] choose a trust region strategy for
this purpose while three different methods are tested in this thesis.

The goodness of fit between the objective and its approximation is not known till the objective
function is evaluated for the update. If deemed sufficient, the update is accepted and a quadratic
model is constructed at the accepted update to generate the next update. Otherwise, a new
model is constructed at the original point to generate a different update. In this manner, local
models are constructed at all ensemble members till they satisfy some convergence criteria.

Generate initial base cases 

Simulate the (initial/updated) models forward in history match period 

Evaluate models using an objective function 

Determine local sensitivity for each base case to construct local model 

Add to training data set 

Minimize local models to generate parameter updates 

  If iteration>1 
Evaluate fit between approximated and actual 

objective function to accept/reject update 

Evaluate convergence criteria 

Finish simulation 

Yes 

No 

Figure 2.1: Workflow used by the DGN

2.5 Parameter based changes

The DGN uses linear regression to calculate the local sensitivity matrix. For a linear system
to have a unique solution, the number of variables being solved for needs to equal the number
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of available equations. In the synthetic reservoir model used in this thesis, there are 441
parameters which correspond to permeability in the 441 grid cells. In practice, reservoir models
have hundreds of thousands of grid cells; if grid cell permeability is used for history matching,
the number of equations required would be just as large meaning the ensemble will be similarly
sized.

Given a set of parameters that need to be tuned, the ensemble size may be restricted by solving
an under-determined linear system or by transforming the parameters to a different model
space. The former may be achieved using the pseudo inverse while the latter is implemented
through the use of principal component analysis.

2.5.1 Strategy 1: Pseudo-inverse

The More-Penrose definition allows for the determination of inverse for matrices in situations
where one does not exist, i.e., the matrix has zero determinant or has a non-square shape. In
the context of local sensitivity determination, having an insufficient ensemble size, i.e., more
model parameters than ensemble members means a non-square coefficient matrix. Thus, in
Equation 3.1, the actual inverse is replaced by the pseudo inverse. The matrix A+ is said to be
the Moore-Penrose pseudo inverse of A if it satisfies the following properties.

A = AA+A

A+ = A+AA+

AA+ = (AA+)T

A+A = (A+A)T

(2.14)

The generalized solution to a linear system of the form AJ = b where A is the coefficient
matrix, J is the vector of variables and b is the vector of constants is shown in 2.15. When the
coefficient matrix is not square, the inverse A+ cannot be found through regular means and
hence the pseudo-inverse is employed. Properties of the pseudo inverse can then be used to
show that the resulting solution is the least norm solution to the system [Planitz, 1979]. In the
DGN, sensitivity estimates are made for all ensemble members. If this becomes close to zero, no
further improvement is possible in the vicinity of the member and it is said to have converged
to a local minimum. In this sense, using the least norm solution can aid in convergence.

J = A+b+ (I −A+A)w (2.15)

where,
w is an arbitrary vector

In Matlab, the pseudo-inverse implementation is built into the function pinv where it is found
through singular value decomposition. The coefficient matrix is decomposed to give singular
value matrix and the left and right singular vectors (shown below). In the singular value matrix,
the non-zero elements are replaced by their reciprocal with the result being the inverse of the
matrix transposed.

[U,S,V] = svd(A)

S+ = 1./S (for non zero elements)

A+T = US+VT
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Figure 2.2: A random scatter of points in 2-D space. Image taken from wikipedia.org

where
. represents element wise operation

2.5.2 Strategy 2: Principal component analysis

Consider a large scatter of points as shown in Figure 2.2. Principal component analysis (PCA)
can be used to correlate these points. Being in two dimensions, PCA calculates two orthogonal
directions which characterizes these points. If these points were to exist in an Np dimensional
space, PCA would yield Np orthogonal directions. Further, it also determines the relative
impact of these directions in characterizing the data set in the form of singular values.

Now, consider the history matching problem. There exist multiple combinations of the model
parameters that can minimize the objective function in Equation 2.1. Based on information
gathered from well log, analogue studies, etc., multiple prior reservoir models are built. The
parameters in these models are then tuned to provide history matched results. The start of
this section mentioned the need to have an ensemble that is as large as the number of model
parameters being tuned, in the DGN. Using PCA, some directions that characterize the data
can be ignored based on their relative importance. Using the remaining directions, the existing
data set can be transformed into a lower dimensional model space. With the decrease in model
parameters, the ensemble size needed also decreases.

In this thesis, PCA was performed through singular value decomposition. Equation 2.16 shows
the matrices formed through this process. If K contains the model parameters and each instance
of a parameter is stored along a column then u is square matrix such that each column represents
a direction of variability in the data set. These columns are also known as basis vectors. The
number of model parameters desired in the lower dimensional space equals the number of basis
vectors used for transforming the data set. Equation 2.17 shows the transformation of the data
set.

[U,A,V] = svd(Kanomaly); Kanomaly = K−K (2.16)

where,
K is the permeability data set
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the overline refers to the mean value

Knew = K + Kanomaly,new

Kanomaly,new =
n∑
i=1

αiUi
(2.17)

where,
α is a matrix of scalars containing PCA coefficients
U contains the basis vectors

The α used is given by Equation 2.18. In Equation 2.17, if a portion of the basis vectors are
used, the permeability will be transformed to a lower dimensional space. However, if all the
basis vectors are used, it ensures Kanomaly,new = Kanomaly, i.e., the new permeability field
will be the same as the original one. Equation 2.19 proves this. The substitution in the second
line comes from Equation 2.18. The last line is a result of taking the dot product of orthogonal
vectors. The result is a diagonal matrix containing the value of the required multipliers.

α =
n∑
i=1

Ki ·Ui (2.18)

Knew = K +
n∑
i=1

αiUi

= K +
n∑
i=1

(
n∑
j=1

Kanomaly ·Uj) ·Ui

= K +
n∑
i=1

n∑
j=1

Kanomaly · (Uj ·Yi)

=

{
K + Kanomaly if Ui = Uj

0 if Ui 6= Uj

=

Koriginal if Ui = Uj

0 if Ui 6= Uj

(2.19)

The final point to be discussed is the required number of parameters in the reduced model
space such that it can model the original space accurately. This is done by using the retained
variance parameter which in turn depends on the energy content of the reduced space. This is
calculated as

retained variance =

∑p
i λi∑Np
i λi

(2.20)

where,
λi is the ith eigenvalue
Np is the number of parameters
p is the dimension of the reduced model space

They are related to the singular values (ai) as

λi =
a2i

Np − 1
(2.21)
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where,
ai is the ith singular value

2.6 Optimization strategy

Optimization here refers to minimization of the quadratic approximation of the objective func-
tion. In their study, Gao et al [Gao et al., 2016b] compare line search and trust region methods
to hybridize their pattern search algorithm (HJ-DPS) and conclude that trust region schemes
are more robust when used with inaccurate gradients. Since the DGN uses linear regression to
estimate its gradients, they are not exact and hence trust region methods were preferred.

The objective function f(x) is approximated with a quadratic model. If a perturbation h were
to be introduced at x, then Taylor series can be used to determine this approximation. To
ensure it is quadratic, higher order terms (>2) are neglected.

f(x+ h) = f(x) + h
∂f

∂x
+ h2

∂2f

∂x2
+O(h3) (2.22)

There are two classes of methods that can be used to solve this problem. Line search algorithms
are one type where the update to the model parameters are assumed to lie along a certain
direction and a choice of step length results in finding the most appropriate update. These
may be further classified based on whether the search direction is the steepest descent or the
Newton direction. The other class of methods are trust region based where the update to the
model is determined based on the goodness of fit between the approximated model and the true
objective function.

2.6.1 Line search- Steepest descent

As the name suggests, the updates are chosen to lie along the steepest descent direction.

xn+1 = xn + αp (2.23)

where,
x is a vector of model parameters
p is a search direction
α is the step length along the search direction

If f is the objective and ∇f its gradient, then the steepest descent direction is −∇f . While
it can determine local minima in smooth problems, implementation in non-smooth problems
can result in convergence difficulties. This can be offset by including Hessian information in
the search direction leading to Newton schemes. However, these were not explored in this
thesis.

2.6.2 Trust region schemes

Two variations of the trust region scheme were used- the dog leg and conjugate gradient method.
The former was used in a majority of tests done on the DGN. These methods differ in the way
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the update is generated. The premise of the trust region is that an update be selected such
that approximated model can be minimized within the trust region. The update is then used
to determine the actual value of the objective function and these are compared. If the actual
decrease in objective is at least a fraction of the predicted decrease, the update is accepted. De-
pending on the value of the ratio, the size of the trust region is increased. However, if this ratio
is less than a user defined threshold, the update is rejected and the trust region shrunk. This
process of generating updates, comparing ratios and updating trust region sizes (if necessary)
is repeated till some convergence criteria are fulfilled. For a more detailed treatment of the
methods, the reader is advised to refer [Wright and Nocedal, 1999],[Conn et al., 2000].

Dog-leg algorithm

This method uses 2 different search directions to find the optimum. Initially the steepest descent
direction is followed after which it is modified to be closer to the Newton direction. These form
what is known as the dog leg path. This can be represented as-

s =

{
τsU 0 ≤ τ ≤ 1

sU + (τ − 1)(sH − sU) 1 ≤ τ ≤ 2
(2.24)

where,
s is the search direction
τ is a some constant to be determined

sU, sH are along the steepest descent and Newton directions respectively and are defined
as

sU = − gTg

gTHg
g (2.25)

sH = −H−1g (2.26)

where,
g is the gradient of the objective function
H is the Hessian matrix

It is thus clear that the search direction lies somewhere within the space spanned by sU, sH.
This form can be used only if the Hessian matrix is positive semidefinite. Since this cannot be
guaranteed in the DGN, the search space is modified to [g, (H + αI)−1g]. The second term is
a modification of the Newton direction such that the Hessian becomes positive definite. α is a
scalar that is used to ensure this transformation.

The trust region implementation in Matlab uses the dog leg strategy. Since the DGN has
update schemes for the trust region size and the model updates, it is only required that the
Matlab implementation minimize the approximated objective function. This was ensured by
setting a trust region size limitation and specifying a single iteration count for fmincon after
setting it up to use a trust region algorithm.

Steihaug-Toint algorithm

The conjugate gradient method forms the basis for the Steihaug -Toint algorithm. The premise
behind the method is that there exist a set of orthonormal directions along which such mini-
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mization can be carried out. In its basic form, it can be used to solve linear systems Ax = b.
This can be posed as a quadratic minimization problem of the form

1

2
xTAx− bx (2.27)

This is because minimizing requires determining x that causes the first order derivative to vanish
which is the solution to the linear system. If the Hessian information is incorporated, this is
known as the conjugate gradient Newton scheme. This scheme minimizes the quadratic

1

2
xTHx + gTx (2.28)

The difference between the quadratic forms in Equations 2.27 and 2.28 is the use of Hessian
information. Since this method is to be used within bounds, curvature information is included
in the stopping criteria. This algorithm can deal with non-positive definite Hessian matrices
in the conjugate gradient method [Steihaug, 1983]. This stems from the termination criteria
that are used. Since a negative definite Hessian means that function is decreasing, the current
search point is projected on the trust region boundary along its current direction. If, during
determination of the updates, the update over shoots the trust region boundary, it is projected
back on the boundary along the same direction. From an implementation perspective, the
following pseudo-code was used.

Algorithm 2 Steihaug-Toint algorithm for solving trust region
methods

1: z0 = 0, r0 = ∇f , d0 = −∇f
2: if ||r0||2 < ε then
3: p = 0
4: end if
5: for j=1,2,3... do
6: if dTj−1Bdj−1 ≤ 0 then
7: p = arg min

p
{q(p) | p = zj + τdj−1, ||p||2 = 4}

8: end for
9: end if

10: αj = rT r
dTj−1Bdj−1

11: zj = zj−1 + αdj−1
12: if then||zj ||2 > 4
13: p = arg min

p
{q(p) | p = zj−1 + τdj−1, ||p||2 = 4}

14: end for
15: end if
16: rj = rj−1 + αjBdj−1
17: if then||rj ||2 < ε
18: p = zj
19:

20: end for
21: end if

22: β =
rTj rj

rTj−1rj−1

23: dj = −rj + βjdj−1
24: end for
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2.7 Uncertainty characterization

One aim in this thesis is to quantify uncertainty in the production so as to differentiate results
of the DGN with those of ES-MDA. This means the posterior parameter ensemble needs to be
compared. One way to do this is through differences of the tuning parameters with the ‘truth
model’ and following up with statistics such as mean and standard deviation to understand the
spread.

Multi-dimensional scaling (MDS) can also be used for this characterization. It is a form of
parameter reduction scheme that preserves relative position of the ensemble as it is translated
to a lower space. While PCA is also a parameter reduction scheme, it transforms the ensemble
such that they lie along directions of maximum variance- which is not the aim here. With the
preserved distances, a scatter plot of the ensemble can be made which gives the relative spatial
positioning of the ensemble. If the posterior from DGN and ES-MDA are plotted on the same
graph, then clustering can be used as a measure of variability.

MDS uses a measure known as dissimilarity to transform the ensemble. The dissimilarity is
formed using the posterior permeability ensemble. It is a matrix that contains the pairwise
2-norm distances of the ensemble from the truth. These distances have no physical meaning
and hence non-metric MDS is used. The transformation is such that the distances between the
ensemble are preserved. This is ensured through the use of a stress condition, defined as-

stress =

√∑
(f(x)− d)2∑

d2
(2.29)

where,
f(x) is the transformed dissimilarity
d is the original dissimilarity

Simply put, Equation 2.29 compares original dissimilarity matrix to the transformed one. A
lower stress indicates that the dissimilarity is better preserved. Kruskal (1992) indicates some
guidelines which are shown in Table 2.1. The mdscale function in Matlab is used to perform
MDS in this thesis.

Table 2.1: Relation between stress and goodness of fit

Stress Fit

20 poor

10 fair

5 good

2.5 excellent

0 perfect
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Chapter 3

The DGN- An exposition

An attractive feature of the DGN is the reduced number of function evaluations (simulation
jobs) that need to be performed to find a maximum a priori (MAP) estimate [Gao et al., 2016a].
The MAP represents the mode of the posterior distribution. It can then be used to reconstruct
the posterior distribution using the model covariance matrix. They believe this could be a
result of information sharing between the base cases during iterations of the DGN. To reach a
MAP estimate, good quality 1 updates to the model parameters are necessary. This depends
on the accuracy of the estimated local model as well as the method used to minimize it. The
local model, in turn, is constructed using the gradient and Hessian of the objective function;
both of which depend on the local sensitivity. Data sharing has an influence on the quality
of this estimate. Tracking back far enough, the local sensitivity appears to play a significant
role in determination of MAP estimates. Hence, this chapter begins with an analysis of the
sensitivity determination and the associated role played by data sharing. This is followed by
other aspects of the DGN, in the order in which they are used if one were to step through the
work flow shown in Figure 2.1.

3.1 Calculating local sensitivity

Local sensitivity or Jacobian represents the rate of change of the simulated data with model
parameters. The DGN uses linear regression to calculate it. This adds a minimum value
constraint to the ensemble size which can be dealt with using methods described in Section
2.5.

The sensitivity calculation is shown in Equation 3.1. By definition, J contains as many rows
as number of tuned parameters (Np) and as many columns as measurements (used in history
matching). To obtain a unique J, the number of rows it contains must equal the the number of
rows in A. Since A consists of differences in model parameters, the minimum number of models
required is (Np + 1). In the interest of reducing required computational power, the ensemble
size used is not significantly larger than this minimum. This would mean that other ensemble
members are used in the sensitivity calculation for any given member.

AJ = B (3.1)

1Quality refers to match between objective function and its approximation. Good quality updates imply
better approximation

19



20 CHAPTER 3. THE DGN- AN EXPOSITION

Table 3.1: Gradient comparison at x = 1

x gradient
4y
4x

dy
dx

2 3 2

3 4 2

4 5 2

5 6 2

J = [J1J2J3 . . .JNp ]T (3.2)

B = [dy1dy2 . . .dyNp ]T (3.3)

A =

 dx11 · · · dx1Np
...

. . .
...

dxNp,1 · · · dxNp,Np

 (3.4)

dxij = xij − x dyi = yi − y (3.5)

where
i, j are counters that cycle through the equations and the parameters respectively.
xi,1→Np results in yi.
yi may be a row vector such as [yi1, yi2 . . . yi,Nd ].

Say the ensemble is size is the minimum required value, i.e., (Np + 1). In the system formed
by Equation 3.1, this is true if and only if the inverse of the coefficient matrix, A, exists.
This requires that A be square and non-singular. The restriction on the ensemble size ensures
‘squareness’ of the coefficient matrix. Non-singularity is achieved only if its rows are non-
degenerate, i.e., no row can be expressed as a linear combination of other rows. To ensure the
second condition, it is necessary to increase the minimum ensemble size. Testing on a synthetic
reservoir model indicates an extra 30 ensemble members are sufficient.

Thus, an ensemble size larger than the number of tuned parameters is available. Since regression
is used to determine the local sensitivity, using ensemble members that are closer can increase
accuracy of estimation. As an analogy, consider the function y = x2 for which gradients are
being estimated at x = 1. Since there is just a single parameter, x, only one point is required
for estimation. Consider finite difference gradients being estimated at x = 1 with a set of
points x1 = 2, 5 with increments of 1. When compared with the actual gradient at the point,
2x, Table 3.1 shows that finite difference gradients become more accurate as the distance from
x = 1 decreases. The same is true in the local sensitivity estimation as well.

Having established the need for selecting models based on their distance for sensitivity determi-
nation, the next step is to weed out degenerate rows (if any). This was done by applying Gauss
elimination to the coefficient matrix. In the absence of degenerate rows, this gives a coefficient
matrix of the form shown in Equation 3.6. If say rows 2 and 3 are degenerate, then the third
row will comprise of only zeros. The first np non-zero rows of this transformed coefficient matrix
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are taken to form the linear system and will yield a unique solution for local sensitivity.

Agauss =


1 a12 a13 · · · a1,Np
0 1 a13 · · · a2n
...

...
. . .

...

0 0 · · · ann

 (3.6)

where,
aij are some scalars

At the start of the DGN, the initial ensemble comprises the only available samples in the model
parameter space for which the measured data are evaluated. Using the sensitivity determined
above, say the intermediate steps leading to determination of updates have been carried out.
These are then evaluated through reservoir simulation (for comparison of the approximated
and actual objective function). Now, the sampled region of the model space has increased. If
a selection of models based on distances (2-norm) is done in this ‘sampled space’ for use in
Equation 3.1, a more accurate sensitivity could be found. Since the updates are determined
through an approximate model which is ultimately dependent on this sensitivity, better quality
updates can be generated.

Effectively, this means that updates of one model can be used to find the sensitivity of another
one. In this manner, data sharing is achieved in the DGN. A storage variable known as the
‘training data set’ is used for this purpose. To prevent loss of data (sampled region of the model
parameter space), it contains all the models and their updates regardless of whether or not the
update was successful. The information stored is relevant to operations within the DGN such
as objective function determination and sensitivity calculation. Thus, it includes values of the
model parameters and the simulated data corresponding to measurements.

3.2 Determining updates

Having calculated the sensitivity, the next step is to construct a local model to approximate
the objective function. The model chosen is a second order polynomial function obtained by
truncating higher order terms in the Taylor series expansion. This model is then minimized to
determine updates through methods in 2.6.

Let x be the vector of parameters that characterizes the local model with ∇f ,H representing
the gradient and Hessian of the objective function respectively. Then the change in model pa-
rameters, 4x can be expressed Equation 3.7. The condition in the equation is a constraint that
is algorithm dependent. If line search algorithms are used, then the constraint is a maximum
step length that can be taken along the search direction. If trust region methods are used, then
it could be a 2-norm condition that keeps the update within ball shaped bounds.

4x = arg min
x

xTHx +∇fTx, x ∈ xvalid (3.7)

Consider line search algorithms. From Section 2.6, the updated model parameters can be
expressed as Equation 2.23. The steepest descent technique is based on the first order derivative
and moving against the direction of maximum change in objective function. This means the
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first term in Equation 3.7 is ignored. α is a step length which determines the magnitude of
update. In trust region methods, both the dog-leg and Steihaug-Toint algorithm are used. The
former was implemented using Matlab functions while the latter was programmed using the
described pseudo code. The choice of algorithm used at this stage has a significant impact on
the quality of updates that found.

3.3 Convergence criteria

This step evaluates termination criteria necessary to stop the DGN. [Gao et al., 2016a] indicate
three possible criteria. They suggest the second criteria may not be suitable owing to numerical
noise and propose the use of the third instead. This could be because the gradient is formed
using local sensitivity which in turn is calculated with linear regression. The use of regression
implies the sensitivity may not be accurate which would make the gradient an unreliable con-
dition. The third condition is easier to evaluate. Further, if the step size taken is sufficiently
small, the resulting change in objective function as a result will be negligible. The first and
third criteria are used for termination of the DGN in this thesis.

1. Decrease in objective function between successive iterations is lower than a threshold
value

2. Normalized norm of gradient is less than a threshold

3. Step size is lower than a threshold

It is necessary to ensure that the conditions used are satisfied at the same time. If the local
model used does not sufficiently match the actual objective function, then the update may
be rejected leading to no change in objective function. This model would then be considered
converged when there is still room for improvement.

3.4 Quality of updates

The updates generated in the previous iteration of the DGN are simulated using the forward
model are evaluated in this step. The approximated objective function for the updated model
is compared with the objective function using the ratio ρ.

ρ =
fi,k − fi,k+1

fi,k − qi,k
(3.8)

where,
subscripts i, k refer to the ith ensemble member at the kth iteration
f is the objective function
q is the estimate from the quadratic minimization

Because comparison of values are made across iterations, the necessary notations are defined.
The subscript k represents value in the kth iteration. f, q denote the objective function and
its approximation respectively. Say, model parameters in the kth iteration are used to find
fk, then its approximation qk is determined in the same iteration to generate updated model
parameters. These model updates are evaluated in the (k+1)th iteration where ρk+1 is calculated
to determine quality of updates.
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qk will always be less than or equal to fk. This is because the update is generated conditional
to obtaining a decrease in the approximation. If fk+1 < fk, the updated model parameters are
successful in decreasing the objective function and the update can be accepted (ρ > 0). If, on
the other hand, ρ < 0, the update is rejected. In either case, there is a need to modify associated
values in preparation for the subsequent iteration. This is defined in Equation 3.9.

if ρ(i,k) > ηv and ||si|| > 0.54(i,k)

{
x(i,k+1) = x(i,k) + si

4(i,k+1) = γe4(i,k)

if ρ(i,k) > ηs or ρ(i,k) > ηv and si 6 4(i,k)

{
x(i,k+1) = x(i,k) + si

4(i,k+1) = 4(i,k)

else

{
x(i,k+1) = x(i,k)

4(i,k+1) = 4(i,k)

(3.9)

In Equation 3.9, i refers to an ensemble member, 4 is size of the trust region for the ith model
in the kth iteration. s refers to the magnitude of update. γe is the increase in trust region
size in case a feasible point is found. ηv,ηs are constants to judge the quality of the update.
Typically, ηs = 0 meaning the update is accepted as long as both qk and fk+1 predict a decrease
in objective. However, to enforce a more stringent update criterion, ηs may be a set to a small
positive number.

Once the model parameters are updated, the local sensitivity is determined for these new
models and the sections covered thus far in this chapter repeat till the convergence criteria are
satisfied.
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Chapter 4

Experiments

The previous chapter details the steps followed in the DGN. In this chapter, testing of the
workflow is carried out. First, it is necessary to ensure the implemented workflow is correct.
This is done through tests on toy models. The verified workflow is then tested on a synthetic
reservoir model. Since the goal is to implement the DGN for history matching, a form of
sensitivity analysis is done on the parameters of the DGN to determine their impact on results.
Further, parameter reduction schemes discussed in Section 2.5 are implemented to understand
how they affect results. With the optimal settings determined in the sensitivity study, different
optimization schemes (for update generation) are tested. Armed with a good algorithm and
optimal settings, the benchmark study [Emerick and Reynolds, 2013b] is approached. This
study considers a non-linear history matching problem and analyses different history matching
methods such as the MCMC (Markov Chain Monte Carlo), RML (Randomized Maximum
Likelihood), EnKF and some of its variants. Using the problem stated here, the DGN is tested
and its results added. This is the order of discussion in the chapter.

4.1 Toy Problems

The history matching objective function consists of the model term and the data term. A few dif-
ferent toy models are used for this purpose. First is the problem referenced in [Gao et al., 2016a]
followed by the two forms of the Rosenbrock function. Since these models verify functioning of
the implemented workflow, the objective function used is simplified- the use of prior informa-
tion, which is a form of regularization, is ignored. Regularization reduces the possible solutions
that can be found. Since the solutions for the toy problems are finite and known, this is unnec-
essary. The absence of prior information simplifies Equations 2.1, 2.2 and 2.5 where the terms
containing the prior are omitted. In the absence of prior information, the initial ensemble is
assumed to be uniformly distributed in the model space.

CD contains information on measurement errors. In the objective function, it acts as a form
of weighting between the data error and model error. Without prior information, there is no
need for such a weight and hence CD is assumed to be an identity matrix (of appropriate size).
This reduces the objective function to a simple sum of squares.

Note: The toy problems have few parameters and can be visualized in a co-ordinate system.
Hence, the ensemble members are referred to as points.

25
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4.1.1 Toy Problem from literature

[Gao et al., 2016a] used a sinusoidal time dependent function of two model parameters to test
the ability of DGN to determine multiple optima. It was chosen for this thesis so that a reference
is available with which results can be compared. Thus, the same parameter settings are used
where possible.
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Figure 4.1: Results of testing the DGN on a toy problem. The intersection of the blue dashed
lines represent local minima. The points in red are the initial ensemble. The arrows indicate

how the ensemble members move over the iterations. The colored ellipses are used for
description.

The functional form of the model is shown in Equation 4.1. At any time t, there exist multiple
points in the parameter space with the same function value. With one point as reference, the
DGN attempts to find all these other points.

m(x, t) = 2sin2(πx1)sin(t) + 6cos2(πx2)cos(t) (4.1)

where,
x1, x2 are parameters in the space [0, 2]× [0, 2]
t ∈ [0, 10] represents time

Within this space, the reference point was defined as [k1± 0.25, k2± 0.2] where k1, k2 ∈ I. This
identifies a set of 16 points with identical function value. Using one of these as reference, the
DGN is used to find the remaining ones. The function value defined at the reference point is
the observed data used for comparison. The goal is to minimize the objective function defined
below. f = 0 at the 16 points defined above and are the local minima the DGN attempts to
find.

f =
∑

[m(x, t)−m(xobs, t)]
2

where,
x is a model for which the objective function is evaluated
xobs is the reference point.
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Table 4.1: Compares results between documented results and those of the workflow. A total
of 16 minima exist

Ensemble size Iterations Number of minima found

literature work flow

10 10 7 7

20 12 9 9

40 8 15 13

60 9 16 16

A number of tests are performed with varying ensemble sizes. With an ensemble size of 60, most
of the models converged by the 9th iteration. At this stage, a majority of the models had an ob-
jective function value less than 10−4. These results match those reported in [Gao et al., 2016a]
(Table 4.1).

To illustrate the trajectory towards local minima, an ensemble of 10 members is used. Figure 4.1
illustrates this. Since this is a 2-variable problem, two nearby points are needed for sensitivity
calculations. The two points (red squares) denoted by the outer two orange ellipses are the
closest to the point denoted by the central orange ellipse. The update is the black square
denoted by the blue ellipse. In the next iteration, the two closest points for the blue ellipse are
the lower two orange ellipses. These determine the next update shown by the pink square that
lies due north east.

Figure 4.2 shows the results of the simulation when the ensemble size is varied. It can be
observed that with increasing size, the ensemble is able to better span the parameter space
resulting in the determination of more local minima.

4.1.2 Rosenbrock functions

Results from the previous toy problem indicate a successful implementation of the DGN since
the results found match those reported by [Gao et al., 2016a]. To ensure this, two more tests
are done- based on the Rosenbrock function. The first test is done on the two variable form
while the other uses the three variable form. While the former is done to verify the workflow,
the latter is done to test working of a more generic form of the implementation. The functional
form of the Rosenbrock function used is shown below.

f(x1, x2) = (1− x1)2 + 100(x2 − x21)2

f(x1, x2, x3) = (1− x1)2 + (1− x2)2 + 100(x2 − x21)2 + 100(x3 − x22)2

The parameters were defined as x1, x2 ∈ [−2, 2] for the two parameter case and x1, x2, x3
∈ [−1, 1] for the three parameter case. The smaller size for the latter case stems from the
shape of the iso-surface in the parameter space. Using a larger parameter range does not affect
results.

The Rosenbrock function has one global minimum in both cases. The aim is not to find
this point. Instead, an arbitrary point is chosen in the parameter space (which is not the
global minimum) as reference. The work flow uses this reference to find all other points in the
parameter space where the Rosenbrock function takes an identical function value. The nature
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Figure 4.2: Comparison of results when ensemble size is varied. From top left, clockwise, the
ensemble size are 8, 16, 64, 32.

of the function results in this being an exercise in identifying iso-lines (in 2-D) and iso-surfaces
(in 3-D).

The objective function defined in Section 4.1.1 is used. The reference points are xref =
[0.01,−0.69] in 2-D and xref = [0.1515, 0.3737, 0.0505] in 3-D. In two dimensions, the Rosen-
brock function comprises rings of varying function value (Figure 4.3). Moving along the ring
keeps the function value constant while cutting across it results in variation of function value.
For this test, a point in the ring is chosen and DGN determines all other points on the ring.

The number of minima that exist is much larger than in the previous toy problem. In order
to be capable of identifying as many as possible, the spatial distribution of the initial ensemble
becomes important. Figures 4.4-4.5 shows the difference when individual variables (that form
a distribution) are combined against one with uniform spatial distribution.

In both cases, the red points represent the initial ensemble while the black unfilled circles are
the minima. More minima are found when the spatial distribution is uniform. Thus, a better
spread in initial distribution of the ensemble can aid in determining more minima. If multiple
reference points are chosen such that they lie on different rings, then an image similar to Figure
4.3 can be found.

In three dimensions, the rings (in 2-D) gain depth resulting in a surface. The surface may be
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Figure 4.3: Contour plot of the bi-variable Rosenbrock function in the defined parameter space
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Figure 4.4: Initial (red) and converged (black) ensemble are compared. The curves formed by
the converged ensemble are iso-lines. The initial ensemble is grid based.
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Figure 4.5: Initial (red) and converged (black) ensemble are compared. The curves formed by
the converged ensemble are iso-lines. The initial ensemble is formed as a combination of

uniform distributions

open or closed depending on the location of the reference point. To adequately visualize this
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surface, sufficient sample points are required. Hence, an ensemble of 10000 points were used.
To determine whether the solution obtained was correct, a package known as Sliceomatic (from
Matlab File Exchange) was used. The surfaces generated by the DGN and using the external
package are compared in Figure 4.6. It can be observed that the surfaces are quite similar
validating the DGN implementation.
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Figure 4.6: The cluster of points in blue on the left inset form the 3-D surface captured by the
DGN. The blue surface in the right inset is the actual 3-D surface generated using Sliceomatic.

4.1.3 Location of initial ensemble

During testing with the toy model, it was observed that the spread of the initial ensemble had an
impact on the number of minima found. To identify if the initial spread of the ensemble had an
effect, it was necessary to have a uniform distribution of the ensemble in the parameter space.
The ensemble was initially created using a uniform distribution function for each parameter
separately and then combining the two parameters to form the ensemble.

X =


x11 x12 · · · x1Np
x21 x22 · · · x2Np

...
...

. . .
...

xNe1 xNe2 · · · xNeNp

 (4.2)

Consider the matrix, X. The columns correspond to the parameters while the rows represent
the starting points. Say each parameter forms a uniform distribution within its limits and the
parameters are individually uniformly distributed. Let the ensemble size be Ne. Therefore
Ne ×Np variables are combined to form Ne points. Each of the Ne points contain a value for
each of the Np parameters. While each of these Np are uniformly distributed, it was found that
the spatial distribution of the Ne points (formed by combination of Np parameters) was not
always uniform.

To obtain consistent spatially uniform ensembles, a grid-like distribution of the points with
perturbations was considered. The scatter of the initial ensemble for both cases is shown in
4.7 (The image shows the initial ensemble of the toy problem discussed in Section 4.1.1. It
is used for illustrative purposes). Using a grid based distribution can generate a consistently
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Figure 4.7: Distribution of models in the initial ensemble. The dots are generated by
combining the uniform distributions created for each variable. The stars are created by

introducing perturbations in a square gridding

even spread across the parameter space while a combined distribution can result in clustering.
Figures 4.4-4.5 indicate the impact of this on results.

The latter distribution of the initial ensemble was successful at finding minima that were close
to the starting points. This demonstrates that the location of a model in the parameter space
does not hinder its ability to converge to an optimum.

4.2 2-D Synthetic reservoir model

Once the implementation of the DGN was verified with the toy problems, a synthetic reservoir
model was chosen for testing. The forward modeling was done using MRST [Lie, 2014] while
the EnKF [Leeuwenburgh, 2013] package was used to prepare data for use in MRST. The model
is a 5-spot incompressible reservoir with one injector in the centre of the field and 4 producers
at the corners. The reservoir was discretized uniformly into square grids blocks with 21 cells
a side. This results in a total of 441 cells. The reservoir is simulated for 14 years with a
time step of half a year. A constant bottom hole pressure of 300 bar is maintained in the
producing wells while the injector has a constant water injection rate of 150 m3/day. The
history matched data could be pressure in the injector, flux rates or water cut in the producing
wells. The parameters being tuned are the permeability in the grid cells. Figure 4.8 shows the
permeability distribution of the ‘truth’ case in the 5-spot model.

The full form of the objective function defined in Equation 2.1 is used. The cross co-variance
matrix CM is found using the parameter matrix x. CD is a diagonal matrix containing the
variances of the observed data.

This section starts with a sensitivity study of the parameters that could affect results of the
DGN. The pseudo-inverse was used in the tests to reduce the ensemble size. This is followed
by tests that employ principal component analysis which leads to why different optimization
schemes were considered.
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Figure 4.8: Permeability distribution in the truth model. It also shows the reservoir shape
and well locations.

4.2.1 Parameter sensitivity

Preliminary testing of the model showed that some parameters used in the work flow may have
an impact on the results. To understand which settings provide the best results, a series of tests
were performed. Only one parameter was modified per test. To make comparisons, a standard
model was defined. Here, the prior is chosen to be the mean of the starting ensemble and the
initial trust region size was set to 0.6. Further, data (for history matching) were collected only
once (at the end of the history match period, i.e., at 14 years). For these tests, only water cut
measurements was used in history matching. Table 4.2 contains a list of documented tests for
this part.

• Weights were added to the components of the objective function

• The initial trust region size was modified

• The size of the parameter space was adjusted

• The choice of prior used was changed

• The number of assimilated data was increased

• Perturbations were added to the observations

To expedite the rate at which tests are performed, it was necessary to limit the ensemble size.
This can be achieved through the use of methods discussed in Section 2.5. For the sensitivity
study, pseudo inverse was adopted to reduce the ensemble size. The aim was to use the optimal
parameters found in the study in a full rank scheme, i.e., an ensemble size larger than number
of tuned parameters, to determine their effectiveness.

The results obtained from tests during the sensitivity study were such that using objective
function plots do not add sufficient information. So, tables are used to quantify improvements
in the objective function. The numbers in the first row (improvement) are the improvement



4.2. 2-D SYNTHETIC RESERVOIR MODEL 33

Table 4.2: List of pseudo inverse experiments

Test code inital trust # of data weights- model error, scaling

size data error scaling

Base case

t base 0.6 1 1,1 1

Effect of weights

t simp1 0.6 1 0.2,0.8 1

t simp2 0.6 1 0.01,0.99 1

t numb 0.6 1 1/Np, 1/Nd 1

Effect of prior

t prbasecase525 0.6 1 1,1 1

Movement of ensemble

t trust 2 1 1,1 1

t scale 0.6 1 1,1 4

Number of observations

t obs4 0.6 4 1,1 1

t obs14 0.6 14 1,1 1

t obs28 0.6 28 1,1 1

Perturbation of data

t pert 0.6 1 1,1 1

Full rank tests

t full 2 28 1,1 1

(with respect to initial value) in the function being compared in %. The numbers in the
rows corresponding to the iterations indicate the number of ensemble members that show an
improvement (rounded to upper 10%) corresponding to the respective column. In the interest
of brevity only the results at the 20th iteration are shown in these tables. Iteration 20 is used
since improvements in the objective function become negligibly small after this. A more detailed
table can be found in Appendix B.

Effect of weighting on the objective function

Preliminary tests showed that the reduction in data error was much smaller than in model
error. Weights were added to the model error and data error in a effort to increase the effect
of the latter. Initial testing was done with simple weights (multiplication factors) followed by
ones that used the number of parameters involved, i.e., the model error was weighted with the
inverse of the number of parameters tuned while the data error was weighted with the inverse
of the number of observations used.

Two sets of simple weights were used. In the first, the model weight was set at 0.1 with the
data weight at 0.9. Next, the effect of the model error was further suppressed by decreasing
its weight to 0.01 while that for the data error was increased to 0.99. This was followed by
weighting with number of parameters/data used.

From Table 4.3, it can be seen that weighting the objective function has an adverse effect on
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the results. When the number of data is used as weights, it was observed that increasing the
observed data count resulted in better solutions as long as the model weight and the data
weight were comparable. This indicates weights do not improve the history matching in the
DGN.

Table 4.3: Objective function improvement, iteration 20
Weighted vs Base case

Improvement 10 20 30 40 50 60 70 80 90 100

t simp1 168 21 9 2 0 0 0 0 0 0

t simp2 9 20 31 40 45 24 16 8 2 5

t numb 167 22 9 2 0 0 0 0 0 0

t base 0 0 0 0 4 13 34 90 43 16

Movement of ensemble

This test deals with movement of the ensemble members (in the parameter space) towards the
prior, in other words, it looks at the magnitude of update. This can be accelerated by increasing
the size of the trust region (creates opportunities for finding an optimal point farther away from
its initial location) or by decreasing the range of the parameter space. Increasing trust region
size for a given parameter range and decreasing the parameter range for a given trust region
size were explored.

The parameter range was reduced by using a scaling factor. Prior to scaling, the range is
−0.87→ 2.62. With a scaling factor of 4, this is reduced to −0.21→ .65. The increased value
of the initial trust region is 2. From Table 4.4, it can be seen that there is comparable decrease
in objective function in both methods with respect to the base case. Thus, the improvement in
the data mismatch is now compared. It should be noted that base cases that show an increase
in data error are not listed in the table. Table 4.4 indicates that the scaling parameters test
actually results in an increase in data error for a majority of the base cases. While decrease
in objective function is the primary aim, it should be not be at the cost of increase in data
data error. Hence, scaling of parameters is rejected. The test t trust performs better than
t base in terms of model error decrease. This means increasing initial trust region size allows
for determining updates that are farther from the initial position thus accelerating rate of
convergence. Since both tests have comparable decrease in data error, increasing trust region
size is considered a superior method.

Effect of perturbations on data

Data perturbation has its roots in the formulation [Burgers et al., 1998] of the ensemble Kalman
Filter. In the DGN, there are no definitions that require perturbation of the measured data.
However, these measurements are not error-free and hence using these directly may not accu-
rately sample the posterior distribution. Using perturbed measurements, on the other hand,
allows for generating reservoir models with data that span the range of possible values the
measurements can take. So, perturbations were added to the data.



4.2. 2-D SYNTHETIC RESERVOIR MODEL 35

Table 4.4: Objective function and components’ improvement, iteration 20
Base case vs Increased trust region size vs Smaller parameter range

Improvement 10 20 30 40 50 60 70 80 90 100

Objective function

t base 0 0 0 0 4 13 34 90 43 16

t scale 0 0 1 1 2 26 53 75 30 12

t trust 0 0 0 0 1 7 31 96 52 13

Data error

t base 46 49 22 30 10 3 2 1 2 3

t scale 16 2 1 0 0 0 0 0 0 0

t trust 55 48 22 29 11 4 5 0 0 1

Model error

t base 0 0 0 0 0 0 2 10 73 115

t trust 0 0 0 0 0 0 1 0 59 140

The perturbation had a mean value of zero and a standard deviation that equals its error which
is 0.1 for water cut measurements. The size of this modified data was such that each set of
perturbed observations correspond to an ensemble member. The results obtained as a result
are compared with the base case scenario in Table 4.5.

Table 4.5: Objective function improvement, iteration 20
Perturbed observations vs base case

Improvement 10 20 30 40 50 60 70 80 90 100

t pert 0 0 0 0 6 8 42 83 44 17

t base 0 0 0 0 4 13 34 90 43 16

Effect of prior

In the test thus far, the prior used was the mean of the initial ensemble. Reduction of objective
function includes reducing model error and this means the ensemble moves towards the prior. It
was believed that using a prior that resembles a reservoir model may improve results. Further, if
the prior could be chosen as the initial ensemble itself, then the history matched models that are
found will necessarily be as diverse as the initial ensemble resulting in a better characterization
of uncertainty. Table 4.6 shows the level of history matching when different priors are used.
It can be seen that using an ensemble member as prior provides superior results- both model
error and data error reductions are higher. When the initial ensemble was used as the prior,
model error at the start is zero. To find updates, the model needs to move from its initial
position. The resulting increase in model error has to be offset by a decrease in data error for
the update to be accepted. Testing showed that this rarely happened. Allowing for a successful
first iteration implies a non-zero model error in subsequent iterations and consequently scope
for improvement of the data error. So, the objective function was artificially increased by a
factor of 10 in the first iteration and allowed to iterate. While the results found in this manner
indicated some improvement, they were not as successful as test t prbasecase525. This can be
observed in the table.
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Table 4.6: Objective function and data error improvement, iteration 20
Perturbed observations vs base case

Improvement 10 20 30 40 50 60 70 80 90 100

Objective function

t prmean 0 0 0 0 4 13 34 90 43 16

t prbasecase525 0 0 0 0 0 0 0 8 98 94

t prinit 139 31 21 3 3 2 1 0 0 0

Data error

t base 46 49 22 30 10 3 2 1 2 3

t prbasecase525 38 40 26 29 22 7 3 3 2 2

t prinit 73 40 25 29 11 3 1 2 0 0

Effect of number of observations

The base case used for testing involved only the use of one observation time, i.e., data from
the four wells at the end of the history match period. The main use of history matching in
the field is to predict and plan for future production. At this stage, a fair amount of data is
usually available. Due to the non-linear relationship between model parameters and the data,
an increase in amount of data does not imply an increase in information, i.e., history matching
may not be improved. Tests in this section were aimed at understanding the impact of increase
in data on the DGN.

Four different data observation times are compared with a gradual increase in frequency of
observation. The first test records data at the 14th year (base case) followed by an increase in
frequency to every 3.5 years, every year and every half a year. The results are shown in Table
4.7. The reduction in objective function and data error becomes pronounced with increasing
observation times. The opposite in true in case of model error. This indicates that the reduction
in data error becomes more important with increasing observations. Test t obs28 breaks from
this trend. There is no certain theory for why this takes place.

Summary

Based on the simulations thus far, the following observations are made.

• Weighting does not improve convergence rate

• Scaling parameters increases rate at which ensemble approaches prior and has a significant
impact on the model error but does little to improve data error.

• Increasing trust region allows for faster convergence rates. It provides some decrease in
data error.

• Introducing perturbations in data results in a decrease in data error.

• Increase in number of observations significantly decreases objective function.
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Table 4.7: Objective function and components improvement, iteration 20
Increasing observation times compared

Improvement 10 20 30 40 50 60 70 80 90 100

Objective function

t base 0 0 0 0 4 13 34 90 43 16

t obs4 0 0 0 11 10 38 40 47 41 13

t obs14 4 18 33 15 4 3 1 1 19 102

t obs28 35 38 33 8 3 0 0 2 6 75

Data error

t base 46 49 22 30 10 3 2 1 2 3

t obs4 25 29 31 37 29 20 16 7 3 0

t obs14 27 34 12 2 2 3 0 6 29 84

t obs28 56 42 15 4 1 0 1 1 7 73

Model error

t base 0 0 0 0 0 0 2 10 73 115

t obs4 0 0 0 0 0 2 9 17 83 89

t obs14 0 1 2 13 18 22 16 5 11 112

t obs28 15 20 9 28 25 18 1 1 7 76

Table 4.8: Objective function improvement, iter 20
Full rank test

Improvement 10 20 30 40 50 60 70 80 90 100

t full 260 154 46 15 12 5 4 2 2 0

4.2.2 Full rank test

The sensitivity study showed that increasing the number of observations and the trust region
size can be used to accelerate decrease in objective function. So the next test is to incorporate
these parameters into a full rank test, i.e., ensemble size larger than number of tuned parameters.
Since the tuned parameter is permeability in grid cells, there are 441 such parameters and so
an ensemble of 500 members is used. The results are shown in Table 4.8. It was observed that
the results obtained were not as successful as when the pseudo inverse was used. At this stage,
there was only one plausible reason- the local sensitivity calculation using the pseudo inverse
was flawed. The linear system solving for sensitivity was made under-determined to reduce
ensemble size. The least norm solution that was found as a result does not sufficiently resemble
the true solution leading to poor update generation. The next step was to apply a different
parameter reduction scheme- principal components analysis (PCA). During testing of PCA, a
trend in results was observed that indicated that the above hypothesis could be incorrect.

4.2.3 Principal Component Analysis

Another form of decreasing the ensemble size is through the implementation of PCA. This
results in transformation of the model parameter space. In this problem, the tuned parameter
is permeability in each of the grid blocks (441 grids in the field) and consequently the model
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space has 441 dimensions. Using PCA, it is possible to reduce the model space to a single
dimension. Singular value decomposition (SVD) was used for this purpose.

PCA finds 441 orthonormal variance maximizing direction vectors along which the model pa-
rameters lie. These direction vectors were used to reconstruct the original ensemble through
linear combination and hence are referred to as basis vectors. If fewer (< 441) basis vectors
are used to generate an ensemble, then the new model space is smaller. However, the effect of
un-included directions are lost leading to a loss of information.

An initial permeability data set is available for the reservoir model. The log permeability of
this set had a mean value of 1 with a standard deviation of 0.3 and was not conditioned to
well data. To have an accurate estimate of the covariance matrix for PCA using SVD, it is
necessary to centre the data set. This involves subtracting the mean from it. The basis vectors
thus found are stored in u while corresponding the singular values are stored in a (Equation
2.16).

Testing showed that different basis vectors have different effects on the observations, i.e., the
first basis vector had a greater effect on bottom hole pressures while the second one influenced
the water cut and so on. Hence, the first 5 basis vectors are used during initial testing.

Preliminary test

• The first 5 basis vectors were used to create the ensemble

• A single observation time was used, i.e., at 14 years

• Three types of observations were used for history matching, i.e., total flow rate and water
cut at producing wells and bottom hole pressure at injector

• An ensemble size of 20 was used

• Mean of the ensemble was used as prior

Figure 4.9 shows the decrease in normalized objective function with iterations followed by its
contributing terms. It can be seen that the contribution from the model error is insignificant in
comparison to the data error. The reduction in objective, is thus, primarily a result of decrease
in data error. This can also be seen in the production profiles where a clustering of grey lines
(ensemble) around the red (‘truth’) takes place. Figure 4.10 show the prior and posterior water
cut profiles in the producing wells. Pressure and flux profiles can be found in Appendix-C.
This indicates that history matching is successful. These profiles were taken at the end of 30
DGN iterations. To increase the rate of convergence, the size of the initial trust region was
increased from 0.2 to 0.4. The production charts at 15 DGN iterations for the latter case are
marginally better than the the former at 30 DGN iterations. Similarly, when the number of
data assimilated was increased, the level of history matching (at 15 DGN iterations) improved.
The new frequency of data collection was once every half a year. The objective function curves
show a significant improvement (Figure 4.12). The posterior water cut profiles in the above
two cases are compared in Figure 4.11. The pressure and flux rate comparisons can be found in
Appendix-C. This indicates that decreasing data collection intervals and increasing trust region
size improve history matching in the DGN, which is consistent with results from the pseudo
inverse tests.
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Figure 4.9: Decrease in normalized objective function and its components over iterations
when 5 PCA coefficients are used.
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Figure 4.10: Water cut profiles before and after history matching (30 DGN iterations) in the
producing wells. The figures on the left are the prior while the right correspond to the

posterior.
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Figure 4.11: Water cut profiles after history matching (15 DGN iterations) in the producing
wells. The figures on the left are obtained when using a larger initial trust region while the

right correspond to increased (28) observation times.
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one on the right is the result of using 28 observation times. The insets in each figure are
magnified slices of corresponding parts.

Table 4.9: Variation in retained variance with size of reduced parameter space

Number of PCA multipliers Retained variance (in %)

5 47.65

15 73.74

50 87.57

157 95.42

223 97.41

309 98.97

Number of PCA coefficients

In the previous test, only the first 5 basis vectors were used out of the available 441. While
PCA allows for parameter space reduction, it is necessary to use sufficient parameters to ensure
the reduced space sufficiently describes the original problem. This can be done by calculating
the retained variance in the reduced model space with Equation 2.20. For this problem, Table
4.9 shows the correspondence between number of coefficients and retained variance.

[Gao et al., 2016a] used the PCA to reduce the model space in a facies based history matching
problem but do not mention the retained variance parameter. This is true in most cases
where PCA was used in history matching. They simply state that the reduced space chosen
retains characteristics of the original problem. Yadav [Yadav et al., 2006] employs PCA to
history match a fluvial depositional environment and uses 99% retained variance. In a patent
by Sclumberger where reduced model space methods based on the PCA were implemented,
a value of 75% retained variance was used. In other fields such as image processing, where
parameter reduction methods are used, the size of the reduced space is determined such that
99% of the variance is retained. In the absence of clear guidelines on the required value of
retained variance, multiple tests were performed with increasing number of basis vectors (or
PCA coefficients or PCA multipliers). To ensure best results are obtained, the data acquisition
was made frequent (to once every half a year) and the initial trust region size was increased to
0.4.
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Table 4.10: Objective function and data error improvement, iteration 8
Dog-leg vs Steihaug-Toint

Improvement 10 20 30 40 50 60 70 80 90 100

Objective function- 157 PCA multipliers

Dog-leg 64 47 34 22 12 6 10 5 0 0

Steihaug-Toint 2 1 1 1 3 2 7 11 25 147

(prior=mean of ensemble)

Steihaug-Toint 2 0 1 0 1 2 0 4 14 176

(prior=initial ensemble)

These tests were done with the multipliers listed in Table 4.9. It was seen that increasing the
size of the model space has an adverse impact on the ability of the DGN to produce results.
This can be observed in the normalized objective function curves (Figure 4.13). From the plots
it can be observed that the number of stagnating base cases increases with increasing number
of PCA coefficients. This is similar to the results obtained in the full rank test where most of
the base cases were stagnating. This indicated that there could be some other underlying factor
causing this. To confirm this, a simulation was made within the PCA framework which used
the pseudo inverse. The results obtained are comparable with and without its use. This negates
the hypothesis in the previous section where it was thought the use of pseudo-inverse could be
the reason for poor reductions in objective function when a shift was made from pseudo inverse
to full rank tests. Thus, the pseudo inverse remains a viable option to reduce ensemble size.

4.2.4 Choice of algorithm

Thus far, updates in all the tests were obtained using the trust region implementation from the
optimization toolbox in Mablab. This was the part of the workflow that remained untouched
since the start. So, a shift was made to a different trust region solver. This was the Steihaug-
Toint conjugate gradient algorithm referred to in Section 2.6. This was developed by Steihaug
and Toint in 1983 where it was described. The theory in Nocedal and Wright provides a
background to understand the method while also detailing the algorithm. [Conn et al., 2000]
also provides a commentary on the method. The new trust region solver was verified using a
Rosenbrock-like minimization problem. Appendix D shows the ability of the solver to find global
optima and follows up with a comparison between this solver and the one in Matlab.

With the new trust region solver, the above tests were repeated. Table 4.10 shows the im-
provement in objective function and data error for the two algorithms. As a comparison, the
objective function curve is shown for both algorithms (Figure 4.14) when 157 PCA coefficients
were used. DGN parameter sensitivity showed that using the initial ensemble as prior gave
poor improvements in objective function. With the new solver, this is no longer the case and
using the initial ensemble as prior provides comparable reduction in objective function (to using
mean of the initial ensemble as prior). This can be seen in the table below.

Even with the new solver, it was observed that the number of stagnating base cases (although
fewer) increased with increasing PCA multipliers. For these stagnating base cases, the trust
region size is modified to understand its behavior. It was observed that at larger trust region
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Figure 4.13: Variation in objective function over iterations. The figures, from top, correspond
to 15, 157 and 223 PCA co-efficients.
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Figure 4.14: Comparing results of the DGN when different trust region methods are used.
The image to the left corresponds to the dog-leg algorithm while the one on the right is for

the Steihaug-Toint algorithm

Figure 4.15: The contours with smaller minor axes are poorly scaled in comparison to the
ones with larger minor axes. Image taken from Nocedal and Wright

sizes, the updates generated were poor, i.e., the approximated objective function does not
sufficiently match the actual objective. As the trust region size decreases, the approximation
improves; however, this is not sufficient to generate updates. One possible reason for this is
that the model is ‘stuck’ in a valley of the objective function (Figure 4.15). The later part of
Appendix D indicates why this hypothesis could be true.

In optimization, valleys in objective function can be seen in cases where the parameters being
updated/tuned are significantly different in magnitude. This is also true if the function is
locally more sensitive to changes in value of one parameter over another. These valleys may
be visualized as contours with thin ellipsoidal sections (Figure 4.15), i.e., parameter changes
in one direction affect the objective more than other directions. In such cases, preconditioners
can be used to reparametrize the model space for update generation such that more spherical
contours are formed. This improves the quadratic model approximation and hence provides
better updates. Some preliminary testing has been done with preconditioners such as the
incomplete modified Cholesky factorization and diagonal of the Hessian matrix. It was seen
that the magnitude of update becomes very small as a result of the preconditioning resulting
in increased number of DGN iterations that are necessary. This may be overcome by selecting
a suitably large trust region size. However detailed investigations were not carried out.
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Since the solution to the problem appears to lie in the type of solver used to generate updates,
a simple steepest descent algorithm was also tested. Preliminary testing indicated that no
acceptable updates were generated and hence further testing was stopped.

4.2.5 Comparison with ES-MDA

Now that an implementation of the DGN is obtained, the next step is to compare the results
of the DGN with those of ES-MDA. The new trust region solver was used for this purpose.
The ES-MDA was simulated with the EnKF package in MRST using the same (reduced space)
permeability set as the DGN. The comparison is with respect to number of reservoir simula-
tions required and variability in posterior. While convergence criteria controls the number of
simulations used in the DGN, it is fixed for the ES-MDA. Metric space methods are used for
posterior variability contrasting.

For the comparison study, the PCA test with 157 coefficients is used. Here, the prior is chosen
to be the initial ensemble and data collection takes place at intervals of half a year. An initial
trust region size of 3 is used.

Computational comparisons

In the ES-MDA, the number of iterations of the smoother is fixed at the start of history
matching. Here, 4 iterations were used along with an ensemble size of 200. Thus, the number
of function evaluations (reservoir simulations) used in the ES-MDA is 4 × 200. Oliver and
Reynolds postulate that models that sample the posterior distribution have a maximum value
of normalized objective function defined in Equation 4.3. In light of stringent values used
for convergence criteria in the DGN, this value is used instead. Thus, a model is considered
converged if its normalized objective function value is lower than the limit defined in Equation
4.3. The DGN uses 800 function evaluations during the 5th iteration. At this point, only 115
of the 200 base cases have converged. This value reaches 158 at 8 iterations and a maximum of
167 with the remaining base cases ‘stagnating’ at high objective function values. For purposes
of comparison 8 iterations of the DGN are considered. Thus the DGN uses 1085 function
evaluations against the 800 in the ES-MDA. Flux profiles of the posterior are shown in Figure
4.17. Clearly, the ES-MDA provides a better history match compared to the DGN while also
requiring fewer function evaluations.

ON ≤ 1 + 5

√
2

Nd
(4.3)

where,
ON is the normalized objective function
Nd is the number of observed data

Variability in posterior

A good history matched distribution should match data well in the history match period and
have sufficient variability during the forecast period. In this case, this means that the pos-
terior permeability fields should be quite different. This comparison is made through multi
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Figure 4.16: Scaled distances of the models

Table 4.11: Error statistics of the tuning parameters

Permeability (log K)

Mean Standard deviation

Prior 0.9952 0.4232

DGN posterior 1.0149 0.3102

ES-MDA posterior 1.0191 0.2168

dimensional scaling (MDS). Non-metric MDS is employed on the posterior permeability fields
to obtain 2D scatter plots that show the relative distances of the models from each other. Figure
4.16 indicates more clustering of the models obtained from the ES-MDA than the DGN. Table
4.11 shows the statistics of the posterior ensembles from both methods. It can be seen that
both the DGN and ES-MDA have similar values of mean permeability with the former having
a larger standard deviation. This implies that the former has less variability in the posterior
and hence a poorer estimate of uncertainty in this case.

As a comparison, the mean permeability field is shown for both methods and compared with
the truth (Figure 4.18). It can be observed that ES-MDA mean and DGN mean have high
permeability streaks near P2 (producing well 2). In the DGN, a higher than average perme-
ability streak forms along the NE-SW direction near P3 with reduction in permeability at wells
I1 and P1. The ES-MDA mean solution has more distinct features compared to that of the
DGN. It also resembles the truth to a larger extent. This is indicative of a large part of the
ensemble having similar features (to the ‘truth’). This in turn could be looked at as a reduction
in posterior variability which is in line with inferences from the MDS plot and the statistics
table.

The next step is to determine if the posterior distributions from the DGN and ES-MDA are
correct. This can be done using comparison with the MCMC or RML, both of which were not
done for this test. Since these are computationally intensive, an existing study was chosen where
the ES-MDA is studied and the DGN results for that test compared. This is done using the
uncertainty quantification study by [Emerick and Reynolds, 2013b]. The next section details
the model used in that study and the corresponding results from the DGN.
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Figure 4.17: Flux profiles after history matching (15 DGN iterations) in the producing wells.
The figures on the left are obtained using the DGN while the right corresponds ES-MDA.

4.3 1-D synthetic reservoir model

This model was taken from the uncertainty quantification [Emerick and Reynolds, 2013b] study.
In their study, they used a 1-D synthetic compressible reservoir model consisting of 31 grid cells.
The data collected for history matching was pressure at the middle grid cell while the parameter
being matched was water cut at the producing wells. The reservoir had one producing well at
cell 31 and an injector at cell 1. Both wells had specified bottom hole pressures with the injector
and producer pressures being 4000 psi and 3000 psi respectively. Pressure data was collected
at intervals of 30 days during a history match period of 360 days while the forecast period was
750 days. The observed data was perturbed with noise of zero mean and standard deviation of
1 psi. A total of 10 sets of prior models were available.

The authors made the simulator they used available along with measurements used for history
matching and the model covariance matrix. The prior models were split into 10 ensembles of
100 models each. These were incorporated in the DGN to determine the posterior distribution.
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Figure 4.18: Comparing permeability fields. The top one is the truth model while the middle
one is the mean value for the DGN posterior while the last corresponds to the mean of the

ES-MDA posterior



50 CHAPTER 4. EXPERIMENTS

0 5 10 15 20
100

200

300

400

500

600

700

800

900

1000

Iterations

Number of simulating models over iterations

Figure 4.19: Number of simulating models over iterations

In the DGN, the prior was chosen to be the mean of the initial ensemble. The initial trust
region size used is 2. The convergence criteria in the DGN were relaxed such that the minimum
required objective function improvement for a non-converged base case is 0.01 and the minimum
trust region size used is 0.01.

The ES-MDA test for this reservoir used 10 data assimilation steps and hence a total of 10000
function evaluations were needed for all 1000 models. In the DGN, simulation was stopped at
20 iterations. At this point, only a 100 of the original 1000 models were unconverged. Figure
4.19 shows the number of running models over iterations. At the 10th iteration, the DGN
has performed 500 fewer function evaluations. Using results from either the 10th or the 11th

iteration of the DGN will allow for comparisons at similar computational costs. Further, Figure
4.20 indicates no significant improvement in the normalized objective function after the 11th

iteration and so this is used.

The plot shows the base cases with normalized objective function (ON ) in the 25th to 75th

percentile in the blue box while the outlier points are shown as a red plus. Outliers are base
cases with ON that is less than 2 percentile or greater than 98 percentile. Significant reduction
in value can be seen in the first few iterations for a number of base cases. Neither the higher
valued outliers nor the 75th percentile boundary change in value after the 5th iteration. This
means that of the 1000 reservoir models being simulated, at least a quarter of them are poorly
matched and ‘stagnate’.

In their uncertainty estimation study, Emerick and Reynolds compare a number of different
history matching techniques (including the ES-MDA) which are bench marked against the
MCMC. Their results show that the ES-MDA solution matches the MCMC results quite well.
This means that the ES-MDA provides a fairly accurate sampling of the posterior. This thesis
uses the graphs in their work and adds the results of the DGN to it to form a comparison. With
the choice of results taken from the DGN, differences in posterior can be compared for both
methods at roughly the same simulation cost. The posterior distribution is estimated by objec-
tive function decrease and permeability plots for the reservoir while uncertainty quantification
is done using water production curves.

Figure 4.21 compares the normalized objective function plots for different methods. It can be
observed that the RML and the MCMC have bounds that almost overlap at a low objective
function value. The ES-MDA (below blue arrow) performs better when minimizing the objec-



4.3. 1-D SYNTHETIC RESERVOIR MODEL 51

10
0

10
1

10
2

10
3

10
4

10
5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iterations

 Normalized objective function variation

Figure 4.20: Objective function improvement over iterations. The box corresponds to the 25th
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Figure 4.21: Comparison of normalized objective function. The box plot with the arrow
corresponds to ES-MDA. Image taken from [Emerick and Reynolds, 2013b].
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Figure 4.22: Water production forecast for the DGN (grey) is overlaid with the ES-MDA
(blue) for comparison. The line in red is the true production. The grey lines correspond to
25th, 75th and 98th percentile while the blue are the 2nd and 98th percentile. Image adapted

from [Emerick and Reynolds, 2013b].
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Figure 4.23: Grid cell permeability for the DGN (grey) is overlaid with the ES-MDA (blue)
for comparison. The line in red is the true production. The grey lines correspond to

2nd, 25th, 75th and 98th percentile while the blue are the 2nd and 98th percentile. Image
adapted from [Emerick and Reynolds, 2013b].

tive compared to the DGN-median objective of DGN is 5 times that of ES-MDA. Figure 4.22
compares water production in forecast period. The 2nd, 25th, 75thand100th percentile of water
production is shown. In this case, the first curve lies on the x-axis. The blue lines represent
the 2nd and 98th percentile of water production in ES-MDA. The line in red is the true wa-
ter production. The ES-MDA results are enclosed within the DGN curves. This means the
DGN forecasts a larger range of uncertainty; however the ES-MDA is more accurate. Thus,
the DGN seems to sample the posterior, albeit with larger variation than is necessary. The
same notations are used in plotting the permeability field. Again, the DGN posterior perme-
ability encompasses the ES-MDA permeability distribution (Figure 4.23). However, the DGN
predictions are markedly different from the actual posterior. Since a lot of low permeability
grids exist in the DGN posterior, this could explain the underestimation of water production in
the field (note the low position of the 25th percentile water production curve). Based on these
graphs, it can be said that the ES-MDA provides better results than the DGN.



Chapter 5

Conclusions

The objectives of this thesis were twofold, both of which were achieved. First was to develop an
implementation of the DGN for use in reservoir history matching. The other was to compare
it with an ensemble based method, the ES-MDA.

An attractive feature in the DGN is the ease with which the sensitivity matrix is determined.
Since this involves the use of linear regression, it would be necessary to have a minimum
ensemble size to find a unique value of local sensitivity. Since this lower limit can become very
large in practice, parameter reduction schemes were tested. The pseudo-inverse and PCA were
methods of choice; testing showed both methods to be feasible.

In the DGN implementation, the magnitude of update plays in important role in sampling the
posterior distribution. If the objective function is considered a hypersurface, the then posterior

would be be represented by local minima that have an upper limit, 1+5
√

2
Nd

. If a large update

magnitude is chosen then basin jumping1 causing some local minima to be missed occurs.

The ability of the DGN to find local minima depends on its update generation scheme for
model parameters, i.e., the quadratic model minimization scheme. This thesis predominantly
uses trust region methods for this purpose since preliminary testing with the steepest descent
algorithm showed little success. It shows that very different results can be obtained when
the same algorithm is used; the dog-leg method becomes unsuitable as the size of the model
parameter space increases. While the same is true with the conjugate gradient based solver, it
performs better than the former.

The DGN and ES-MDA were compared with two different tests. In the first, a 5-spot model was
used where it was observed the DGN had a more varied posterior distribution. In the second
test, the results of a benchmarking study were used for the ES-MDA. The study showed that
the posterior distribution from the ES-MDA approximately matches the MCMC. On the other
hand, the posterior from the DGN did not provide as good a match. While the first test showed
that the DGN provides a more varied posterior, the second indicates this may not accurately
sample the true posterior. The results of the second test should be treated with some caution
since I believe there may be scope to improve the trust region scheme currently in use. From
a computational perspective, both tests show the ES-MDA require fewer simulation runs to
produce comparable if not better results than the DGN.

1local minima that are farther away are found rather than closer ones
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Chapter 6

Scope for future work

Based on the results of this thesis, the following are possible avenues for future work.

1. The trust region scheme (using the Steihaug-Toint algorithm) performs unconstrained
minimization. Implementing bounds on parameter values can allow for more sophisticated
tests.

2. This scheme can be improved to yield better results. It is believed that the contours of
the objective function are ellipsoidal and hence a ball-shaped trust region would be ill-
suited. Preconditioning can transform the parameters such that contours of the objective
function become spherical. This should solve the issue of stagnating base cases.

3. The posterior distribution determined will change based on the prior. Different choices
of prior were investigated in this work. It is believed that it may not be possible to
characterize the posterior using MCMC if the initial ensemble is used as prior. If sufficient
validation can be found to show the DGN and MCMC sample the same posterior for a
prior mean and variance, then the DGN posterior for the different choice of prior may be
deemed correct.

4. [Vink et al., 2015] cite possible pitfalls in posterior determination that arise due to over-
estimation of the objective function when a large amount of data is assimilated in history
matching. Their recommendations have not been incorporated into this work. This could
done to improve posterior sampling by the DGN.

5. The DGN scheme was devised for efficient sampling of the posterior distribution in history
matching problems. This is done through minimization of an objective function to find
multiple local minima. The DGN, can thus be considered an optimization scheme. Hence,
a possible line of research could be benchmarking in a generic optimization context.
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Appendix A

Deriving the objective function
gradients

The derivative for an expression of the form ∇(AB) is ∇(A)B +∇(BT )AT . For expressions
of the form xTAx and ytAy where y = function(x),

f = xTAx

∇f = ∇(xT )Ax +∇(xTAT )(xT )T

= Ax + ATx

= 2Ax (if A is symmetric) (A.1)

f = ytAy, y = function(x)

∇f = ∇(yT )Ay +∇(yTAT )(yT )T

= JTAy + JTATy where J = ∇y

= 2JTAy (if A is symmetric) (A.2)

Equations A.1 and A.2 are applied to determine the first (Equation 2.2) and second (Equation
2.3) order derivatives of the objective function. In these expressions, J = ∇g, xprior and dobs
are constants. Further, J is known as the local sensitivity or the Jacobian while the second
order derivative H is the Hessian.

∇f =
1

2
{2(x− xprior)

TCM
−1 + 2[g(x)− dobs]

TCD
−1}

= (x− xprior)
TCM

−1 + JTCD
−1[g(x)− dobs] (A.3)

H = ∇(∇f)

= ∇((x− xprior)
TCM

−1 + JTCD
−1[g(x)− dobs])

= CM
−1 +∇(JT )CD

−1[g(x)− dobs] +∇(CD
−1[g(x)− dobs])

T (JT )
T

= CM
−1 + J′TCD

−1[g(x)− dobs] + JTCD
−1J, J′ = ∇J (A.4)
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Appendix B

Expanded results of the pseudo
inverse tests

Table B.1: Objective function improvement
Weighted vs Base case

Improvement 10 20 30 40 50 60 70 80 90 100

Weighted- simple 0.01 model error, 0.99 data error

Iter 0 200 0 0 0 0 0 0 0 0 0

Iter 1 168 21 9 2 0 0 0 0 0 0

Iter 2 168 21 9 2 0 0 0 0 0 0

Iter 20 168 21 9 2 0 0 0 0 0 0

Weighted- simple 0.2 model error, 0.8 data error

Iter 0 200 0 0 0 0 0 0 0 0 0

Iter 1 32 105 52 11 0 0 0 0 0 0

Iter 2 9 31 72 59 19 10 0 0 0 0

Iter 8 9 20 31 40 45 24 17 8 4 2

Iter 20 9 20 31 40 45 24 16 8 2 5

Weighted- with number of data (0.002 model error and 0.25 data error)

Iter 0 200 0 0 0 0 0 0 0 0 0

Iter 1 167 22 9 2 0 0 0 0 0 0

Iter 2 167 22 9 2 0 0 0 0 0 0

Iter 20 167 22 9 2 0 0 0 0 0 0

Base-case

Iter 0 200 0 0 0 0 0 0 0 0 0

Iter 1 0 0 50 141 9 0 0 0 0 0

Iter 2 0 0 1 20 77 83 5 13 1 0

Iter 8 0 0 0 0 4 13 34 90 45 14

Iter 20 0 0 0 0 4 13 34 90 43 16
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Table B.2: Objective function improvement
Smaller parameter range vs Increased trust size vs Base case

Improvement 10 20 30 40 50 60 70 80 90 100

Base-case

Iter 0 200 0 0 0 0 0 0 0 0 0

Iter 1 0 0 50 141 9 0 0 0 0 0

Iter 2 0 0 1 20 77 83 5 13 1 0

Iter 8 0 0 0 0 4 13 34 90 45 14

Iter 20 0 0 0 0 4 13 34 90 43 16

Scaled parameters

Iter 0 200 0 0 0 0 0 0 0 0 0

Iter 1 0 0 2 31 60 87 20 0 0 0

Iter 2 0 0 1 6 3 30 54 84 20 2

Iter 8 0 0 1 1 2 26 53 75 30 12

Iter 20 0 0 1 1 2 26 53 75 30 12

Increased trust region size

Iter 0 200 0 0 0 0 0 0 0 0 0

Iter 1 0 0 0 6 9 15 79 74 17 0

Iter 2 0 0 0 0 2 10 52 93 39 4

Iter 8 0 0 0 0 1 7 31 97 52 12

Iter 20 0 0 0 0 1 7 31 96 52 13

Table B.3: Data error improvement
Increased trust region size vs Smaller parameter range

Improvement 10 20 30 40 50 60 70 80 90 100

Scaled parameters

Iter 0 200 0 0 0 0 0 0 0 0 0

Iter 1 21 4 0 0 0 0 0 0 0 0

Iter 2 13 0 0 0 0 0 0 0 0 0

Iter 8 16 2 1 0 0 0 0 0 0 0

Iter 20 16 2 1 0 0 0 0 0 0 0

Increased trust region size

Iter 0 200 0 0 0 0 0 0 0 0 0

Iter 1 82 39 28 18 7 1 2 0 0 0

Iter 2 73 43 24 17 9 3 0 0 0 0

Iter 8 55 49 22 29 11 3 5 0 1 0

Iter 20 55 48 22 29 11 4 5 0 0 1
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Table B.4: Objective function improvement
Perturbed observations vs base case

Improvement 10 20 30 40 50 60 70 80 90 100

Perturbed observations

Iter 0 200 0 0 0 0 0 0 0 0 0

Iter 1 0 0 51 141 8 0 0 0 0 0

Iter 2 0 0 0 20 77 81 7 13 2 0

Iter 8 0 0 0 0 4 13 39 76 56 12

Iter 20 13 0 0 0 4 13 39 75 53 16

Base-case

Iter 0 200 0 0 0 0 0 0 0 0 0

Iter 1 0 0 50 141 9 0 0 0 0 0

Iter 2 0 0 1 20 77 83 5 13 1 0

Iter 8 0 0 0 0 4 13 34 90 45 14

Iter 20 0 0 0 0 4 13 34 90 43 16

Table B.5: Objective function improvement
Choice of prior

Improvement 10 20 30 40 50 60 70 80 90 100

Prior- mean of initial ensemble (base case)

Iter 0 200 0 0 0 0 0 0 0 0 0

Iter 1 0 0 50 141 9 0 0 0 0 0

Iter 2 0 0 1 20 77 83 5 13 1 0

Iter 8 0 0 0 0 4 13 34 90 45 14

Iter 20 0 0 0 0 4 13 34 90 43 16

Prior- Ensemble #525

Iter 0 200 0 0 0 0 0 0 0 0 0

Iter 1 0 0 38 162 0 0 0 0 0 0

Iter 2 0 0 0 0 21 7 160 12 0 0

Iter 8 0 0 0 0 0 0 0 8 99 93

Iter 20 0 0 0 0 0 0 0 8 98 94
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Table B.6: Objective function improvement
Increasing observation times compared

Improvement 10 20 30 40 50 60 70 80 90 100

Base-case

Iter 0 200 0 0 0 0 0 0 0 0 0

Iter 1 0 0 50 141 9 0 0 0 0 0

Iter 2 0 0 1 20 77 83 5 13 1 0

Iter 8 0 0 0 0 4 13 34 90 45 14

Iter 20 0 0 0 0 4 13 34 90 43 16

4-observation times

Iter 0 200 0 0 0 0 0 0 0 0 0

Iter 1 0 15 135 48 2 0 0 0 0 0

Iter 2 0 0 16 81 71 23 1 8 0 0

Iter 8 0 0 0 11 10 39 46 52 37 5

Iter 20 0 0 0 11 10 38 40 47 41 13

14-observation times

Iter 0 200 0 0 0 0 0 0 0 0 0

Iter 1 36 130 27 7 0 0 0 0 0 0

Iter 2 4 47 96 34 13 5 0 1 0 0

Iter 8 4 18 33 15 5 21 34 26 33 11

Iter 20 4 18 33 15 4 3 1 1 19 102

Table B.7: Data error improvement
Increasing observation times compared

Improvement 10 20 30 40 50 60 70 80 90 100

Base-case

Iter 0 200 0 0 0 0 0 0 0 0 0

Iter 1 148 18 2 0 0 0 0 0 0 0

Iter 2 125 22 17 3 1 0 0 0 0 0

Iter 8 44 49 22 35 8 3 2 2 1 0

Iter 20 46 49 22 30 10 3 2 1 2 3

4-observation times

Iter 0 200 0 0 0 0 0 0 0 0 0

Iter 1 159 36 2 0 0 0 0 0 0 0

Iter 2 99 82 13 3 0 0 0 0 0 0

Iter 8 25 29 34 50 31 22 4 2 0 0

Iter 20 25 29 31 37 29 20 16 7 3 0

14-observation times

Iter 0 200 0 0 0 0 0 0 0 0 0

Iter 1 149 50 0 0 0 0 0 0 0 0

Iter 2 59 112 24 4 0 0 0 0 0 0

Iter 8 27 34 12 7 17 31 19 26 24 2

Iter 20 27 34 12 2 2 3 0 6 29 84
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Table B.8: Model error improvement
Increasing observation times compared

Improvement 10 20 30 40 50 60 70 80 90 100

Base-case

Iter 0 200 0 0 0 0 0 0 0 0 0

Iter 1 0 0 0 92 108 0 0 0 0 0

Iter 2 0 0 0 0 3 69 113 6 9 0

Iter 8 0 0 0 0 0 0 2 10 74 114

Iter 20 0 0 0 0 0 0 2 10 73 115

4-observation times

Iter 0 200 0 0 0 0 0 0 0 0 0

Iter 1 0 0 1 160 39 0 0 0 0 0

Iter 2 0 0 0 0 12 142 37 6 3 0

Iter 8 0 0 0 0 0 2 9 17 95 77

Iter 20 0 0 0 0 0 2 9 17 83 89

14-observation times

Iter 0 200 0 0 0 0 0 0 0 0 0

Iter 1 0 17 146 34 3 0 0 0 0 0

Iter 2 0 1 2 55 107 29 5 1 0 0

Iter 8 0 1 2 13 18 23 17 37 60 29

Iter 20 0 1 2 13 18 22 16 5 11 112
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Appendix C

Flux-pressure profiles-PCA tests
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Figure C.1: Pressure profiles before and after history matching (30 DGN iterations) in the
injection well. The figures on the left are the prior while the right correspond to the posterior.
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Figure C.2: Pressure profiles after history matching (15 DGN iterations) in the injector. The
left insets are obtained when using a larger initial trust region while the right correspond to

increased (28) observation times.
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Figure C.3: Flux profiles before and after history matching (30 DGN iterations) in the
producing wells. The figures on the left are the prior while the right correspond to the

posterior.
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Figure C.4: Flux profiles after history matching (15 DGN iterations) in the producing wells.
The figures on the left are obtained when using a larger initial trust region while the right

correspond to increased (28) observation times.
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Appendix D

Steihaug-Toint algorithm for trust
region solving

The implementation of this algorithm is tested on the 2-D Rosenbrock function. This is a
popular test for optimization algorithms because of the valley within which the global optimum
lies. For the two variable case, the global minimum lies at (1,1).

The contour of the function within the valley (Figure D.1) causes the algorithm to take a
number of iterations before finding the global minimum. The starting point is taken at (0,0)
with an initial trust region size of 2. Table D.1 shows the movement of the initial point
towards the minimum. The algorithm took a total of 21 iterations to converge. In this case,
convergence was defined to be the determination of a local minimum. When this occurs, the
update ratio, ρ becomes infinite since no new update can be found that improves the objective.
As a comparison, the dog leg implementation of Matlab is also used with the same settings.
Clearly, the dog leg algorithm fails to determine the global minima. However, if the trust region
size updating is done within Matlab, the global minimum is found after 16 iterations. It should
also be noted that the toy model results shown earlier were done by pairing the trust region
update scheme (introduced in Section 3.4) with Matlab’s dog leg solver. This could mean that
the trust region size updating scheme used by Matlab is more robust for its dog-leg solver
compared to the one used here.

While the new trust region solver is an improvement over the dog-leg algorithm, the issue of
stagnating base cases continued to occur when large number of PCA coefficients are used. A
stagnating base case is the result of an inability to updates in the immediate neighborhood that
minimize the quadratic model.

From a diagnostic perspective, this occurs as non-improvement in objective function and an
update ratio that is a small positive number (< 0.01) or negative. This results in a shrinking
trust region size. If the update ratio becomes larger, then the model approximation improves.
More often than not, this is not the case. One possible reason for this is that the model is
present in a valley of the objective function.

A similar trend in update ratio was seen when the DGN was used to determine the global
minimum 1 of the Rosenbrock function. The base cases move from their initial locations into

1lies in a narrow valley
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Figure D.1: Contour plot of the valley of the 2D Rosenbrock function

Table D.1: Determining global minimum of the Rosenbrock function

Iteration Steihaug algorithm Dog-leg algorithm

x1 x2 Function value x1 x2 Function value

1 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000

2 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000

3 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000

4 0.0625 0.0000 0.8804 0.0884 0.0000 0.8371

5 0.1803 0.0418 0.6804 0.0884 0.0000 0.8371

6 0.1803 0.0418 0.6804 0.2181 0.0128 0.7319

7 0.2465 0.0489 0.5819 0.2181 0.0128 0.7319

8 0.3532 0.1140 0.4300 0.2181 0.0128 0.7319

9 0.5522 0.2653 0.3574 0.2181 0.0128 0.7319

10 0.6024 0.3604 0.1587 0.2181 0.0128 0.7319

11 0.6024 0.3604 0.1587 0.2181 0.0128 0.7319

12 0.6800 0.4583 0.1041 0.2181 0.0128 0.7319

13 0.8262 0.6611 0.0766 0.2181 0.0128 0.7319

14 0.8590 0.7367 0.0200 0.2181 0.0128 0.7319

15 0.8590 0.7367 0.0200 0.2181 0.0128 0.7319

16 0.9214 0.8450 0.0078 0.2181 0.0128 0.7319

17 0.9648 0.9290 0.0016 0.2181 0.0128 0.7319

18 0.9904 0.9802 0.0001 0.2181 0.0128 0.7319

19 0.9989 0.9977 0.0000 0.2181 0.0128 0.7319

20 1.0000 1.0000 0.0000 0.2181 0.0128 0.7319

21 1.0000 1.0000 0.0000 0.2181 0.0128 0.7319
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Figure D.2: Countours plots overlain with ensembles. The points in green represent the initial
ensemble while those in red are the updated ensemble taken from the DGN after 50 iterations.
The contour on the left corresponds to the Rosenbrock function while the one to the right is

Beale’s function

the valley after which there is little to no further improvement. This causes the update ratio
to shrink, becoming smaller till no update is found. When this happens, the update ratio takes
a 0

0 form making it undefined. This has also been observed when the DGN was tested with
Beale’s function and the eggholder function. Figure D.2 shows the ensemble overlapped on the
function curves. Once the ensemble enters the valley, there is little improvement in objective
and the points remain within.

Finally, to verify that the update ratio does become undefined in the synthetic reservoir model,
a test on the 1-D reservoir model was simulated to over 50 iterations. Over 36 base cases
had an undefined update ratio at 50 iterations with the number increasing to 45 at 90 it-
erations. When the objective function value for the ensemble is compared with the limit

1 + 5
√

2
Nd

[Oliver et al., 2008], 55 ensemble members have a lower value. Since the ensem-

ble size is 100 (=45+55), this hypothesis, that models are trapped in regions of local minima
could be true.
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Appendix E

Erratum

1. Grammatical improvements and minor changes to the text to improve reading experience.

2. Fixed inconsistencies in notation, i.e., Hessian referred to by B and H, partial boldfacing
of some vectors and matrices

3. Added references to the ES-MDA theory

4. Reformatting of the iterative form of the ES-MDA and pseudo code for the Steihaug-Toint
algorithm

5. Added missing test result for model errors when initial ensemble is used as prior

6. Formatting improvement for Appendix B- C

7. Renamed appendix C to reflect its content.
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