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Summary

As satellite systems become more and more complex and interact with each other in space, close proximity
operation becomes an important aspect of many satellite missions. Simultaneously, systems are becoming
increasingly autonomous, for example in rendezvous and docking operations. This poses harsh requirements
for the guidance, navigation and control systems on-board of satellites, and especially on satellite navigation
filters which estimate the state of the satellite and of other systems and objects that it is interacting with, often
based on information input from visual sensors. The commonly used Extended Kalman Filter (EKF) performs
well but is not necessarily ideally suited for these emerging challenges, which is why the viability of potential
filter alternatives in close-proximity satellite operations was studied.

The project was conducted in cooperation with DLR Oberpfaffenhofen in Germany, where currently an
EKF is used in close-proximity satellite operations. This filter serves as a baseline for performance testing
conducted throughout the project. Potential filter alternatives were identified based on an extensive back-
ground study and the mission needs for close-proximity satellite operation. Furthermore, the purpose of
the project is to identify and document concrete mismatches between the different testing methods used to
serve as a reference in future projects. From the background study two filters, the Extended Kalman Filter
with intermediate smoothing step (EKFS) and the Unscented Kalman Filter (UKF) were selected based on a
qualitative performance trade-off that focussed on the expected performance under the demands of close-
proximity operation in space. The filters were judged based on the available documentation. For the selected
filters, as well as for the EKF currently used by DLR, performance criteria were formulated, with a focus on
the accuracy of satellite state parameter estimation and filter convergence speed. To collect test data, two
approaches were taken: a newly developed simulation test assessing the theoretical performance of the fil-
ters in different test scenarios; and a hardware-in-the-loop test in the EPOS 2.0 facility in Oberpfaffenhofen
where approaches using two physical satellite models can be performed. The latter test is used to identify
problems in the filter performance that have not been found using the simulation test and to validate the
filters for more representative real-world performance.

An analysis of the test results from the simulation performance test have shown that the EKFS and the
UKEF can outperform the EKF in the convergence speed and the estimation of some, but not all satellite state
parameters. However, it was also identified that the UKF using its current implementation struggles to assess
the attitude of the satellite state accurately. Apart from the attitude estimation from the UKF the filters were
considered verified and were implemented in the hardware test facility. The hardware test could not confirm
the previously seen performance consistently and both filters showed state estimation divergence at close-
proximity of the satellites. Thus, their performance could not be validated and they cannot yet under the
current implementation be called viable filter alternatives to the EKE This is due to the fact that sudden state
estimation divergence is potentially catastrophic, especially at close distances of the satellites. In addition,
differences in the quality of the measurements between the tests of the different filters highlighted potential
problems in the comparability of test results. It was concluded that the UKF is the more promising alterna-
tive filter for the future since it showed better performance in the hardware test prior to divergence than the
EKF and outperformed the EKFS in all hardware tests. In addition it converged the fastest of the three filters.
Further studies need to be performed to correct implementation problems, however. Possible approaches for
validating the suggested approaches are presented. Different test approaches should also be taken to make
the hardware tests more representative and the simulation test should be updated to be more reflective of
real world conditions.

Several observations on the challenges in moving from simulation to hardware testing were identified and
are presented. Primarily, challenges were found to arise from the faulty selection of test cases for compara-
bility, the neglect of certain inputs observed in hardware testing with previously unpredicted effects in the
simulation test and the continuous change of inputs in the real world which were modelled constant in the
simulation test.
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Project introduction and definition

This chapter introduces the research project and the outline of the report. In addition, it gives an overview
over visual navigation filtering in satellite applications that is based on the literature study presented in [29]
and outlines the project approach.

First, the project introduction and the report outline are given in 1.1. This is followed by a general overview
over navigation filtering in space applications in 1.2, describing the need for such systems, different types
of approaches and examples of applications of visual navigation systems. Afterwards a breakdown of the
different physical and functional aspects of visual navigation systems in satellites is given in 1.3. Finally, the
navigation filters that are currently used or could be used for state estimation purposes in these systems are
presented in 1.4. Based on this, the technical management and the research questions are defined in 1.6 and
1.7, followed by the research objective in 1.8.

1.1. Introduction to the research project

Since the early days of satellite operations in space, satellite systems have had the need to accurately deter-
mine their state with respect to other systems or bodies in orbit in order to interact with them or avoid them
and perform the purpose of their mission. Nowadays, systems are increasingly becoming more complex and
rely on the operation of multiple satellites with each other in close proximity. In order to do so, many of these
systems are equipped with visual sensor systems, such as cameras, to identify other objects early on and be
able to react accordingly. However, this also requires a more and more accurate assessment of the state of the
other body (target) with respect to the satellite itself. In order to perform this estimation of the state, navi-
gation filters are applied. Navigation filters take sensory inputs and an original estimation of the state of the
target as well as its expected dynamic behaviour to predict and update the state estimate and thus allow the
satellite to get a better and better understanding of the relative position.

Navigation filters have been developed and improved for many decades since the early days of space explo-
ration. The Kalman Filter (KF) and Extended Kalman Filter (EKF) are well established and well understood fil-
ters that deliver good performance under a multitude of circumstances. However, both filters are designed for
linear systems or, in the case of the EKEF linearise non-linear systems to perform state estimations. Further-
more, more accurate filters have been developed in the past. Nevertheless, the EKF is still an often applied
filter option, for example by DLR in Oberpfaffenhofen. However, as demands for more accurate and faster
filters grows due to the more stringent requirements posed by close-proximity satellite operations there is
growing reason to determine how viable other filter alternatives are for such operations.

The purpose of this report, which was created as part of a master project conducted in cooperation with
TU Delft and DLR Oberpfaffenhofen, is to present the identification, development and testing of potentially
viable filter alternatives to an established EKE After selecting and trading off multiple filter alternatives from
a wider pool of satellite navigation filters, a small selection on promising filters is implemented. Afterwards,
the filters are tested in an existing GNC structure using a newly designed testing approach, and the sub-
sequent comparative assessment of these filters to determine which is most suited for the requirements in
close-proximity, real-world, real-time operation is performed. The filter alternatives are assessed based on
their performance with respect to identified criteria relevant for such applications, focussing in particular on
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the accuracy of the estimate and the timeliness with which the filter can deliver the state estimation. Results
from both simulation testing and hardware-in-the-loop testing are taken into account for judging the filter
performance. All filters are implemented into a wider GNC framework at DLR Oberpfaffenhofen to allow
for testing in the same facilities and using the same filter functionalities. In addition, the research serves to
identify and highlight the concrete challenges when moving from a simulation testing stage to a hardware-
in-the-loop testing stage. While this may seem straightforward, there are always mismatches between such
testing approaches which can greatly affect the filter quality perception, depending on what type of test is
used. The outcome can thus be considered a direction for future work to improve the move from theoretical
phases and simulation stages to actual implementation and hardware testing.

The structure of the report is presented below. The remainder of this chapter gives a general overview over
visual navigation and navigation filters in satellite applications. It presents an outline of the technical man-
agement, explaining the research question, objective and focus as well as the methodology for the project.
This is followed by an assessment of the existing systems and their required and performed alterations at the
start of the project and subsequently identified requirements for the development of further filter options in
Chapter 2. Based on the knowledge of the existing system and development specifications, the viable filter al-
ternatives are shown and traded off, from which two filter options for further implementation are identified.
The trade off and the technical description of the new filter options is shown in Chapter 3. Chapter 4 and
Chapter 5 show the test approach and test results of the filter performance in the simulation performance
test and the hardware-in-the-loop test, respectively. The latter also explains the correlation of the test results,
and the project results are qualified and interpreted. Furthermore, the research questions are addressed. The
report ends with recommendations for future research presented and the presentation of the conclusions
from the project in Chapter 6.

1.2. Navigation filtering in satellite applications

A brief overview of the need for visual navigation in satellite systems and the different approaches and appli-
cations is given in this section.

1.2.1. The need for visual satellite navigation systems

Visual navigation is used in many different applications for a multitude of reasons, for example for observ-
ing the surroundings, building maps or databases of elements in the environment of an object, for assessing
the position and attitude (pose) of objects relative to oneself or for determining safe paths through the envi-
ronment and interacting with other objects.[7][34] Since this report deals with satellite navigation, the object
performing the visual navigation tasks and collecting the data will simple be referred to as "the satellite" in
the following.

Visual navigation has been used in satellite applications for many years to allow for performing complex
missions. Examples include the demonstration of rendezvous and docking capabilities of the Japanese En-
gineering Test Satellite 7 in 1997 and 1998, the use in orbital docking manoeuvres in GEO and interaction
with, and landing on, celestial bodies. Over the years, visual navigation has been established as an important
element of operations in space.[25][24][30][27]

Visual navigations are essential for satellite operations for multiple reasons. Satellite operate in an un-
structured environment. This means that the environment is not known upfront and there are not necessar-
ily constant points of reference that a satellite can use to orientate itself or place other objects in a frame of
reference. This means that a satellite not only needs to identify its environment and its own position in that
environment, but it also needs to identify other objects and its position relative to these objects constantly as
the surroundings are changing.[11]

Since satellites are in orbit they cannot constantly be accessed or communicated with. Thus, satellites need
to be able to operate autonomously for certain periods throughout an orbit to react to changing environ-
ments. Visual navigation systems have several advantages for autonomous navigation and space operations
in particular.

They are very well suited for unknown environments since they allow to identify the environment without
prior knowledge and identify objects to interact with or to avoid. Furthermore, visual navigation systems can
track objects across time, which is crucial for systems in space that operate at high relative velocities in order
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to avoid potential crashes. Autonomous navigation is also highly reliant on tracking objects and assessing
threats since human interference is not possible.[11][18][22]

Another great advantage for satellite operations is the great versatility of the systems. Modern visual navi-
gation systems allow for reacting to different types of scenarios in space, but since they operate using visual
sensors they are often also capable to perform other mission relevant operations and tasks, such as collecting
imagery for observation on Earth.

Since satellites encounter a multitude of unforeseeable scenarios in space, especially when multiple satellites
operate in close-proximity (as is the case for rendezvous and docking or distributed systems), this great ver-
satility of the systems furthermore allows for a wider range of navigation tasks that can be performed. Visual
navigation systems are designed for object observation, tracking, monitoring, and can even be used for safe
path building through the environment, map building and as a basis for reacting to different requirements.[25] [4]

All the aspects considered above highlight the need for well performing visual navigation systems in satel-
lite systems, particularly in autonomous systems. However, the demands for safe operation of satellites and
increasingly difficult mission requirements also require research and development in areas related to visual
navigation, such as hardware developments in sensors and hardware used for computational tasks (for ex-
ample reducing system size, power usage and increasing computational capabilities) and developments in
software (making systems more efficient, increasing accuracy and adding system capabilities). These devel-
opments go hand in hand with changing mission types and environments, which is why different approaches
have been developed to best be able to operate satellites autonomously in space using visual navigation sys-
tems.

1.2.2. Different approaches to visual satellite navigation
This section explains some of the approaches found in visual navigation systems that are used in satellite
applications. They can be used to categorise visual navigation.

Autonomous and non-autonomous visual navigation:

As was mentioned above, satellites can usually not always be reached and interacted with from a ground
station on Earth. Thus, a decision needs to be made whether the navigation of the satellite is performed au-
tonomously or non-autonomously. Autonomous systems operate without input from an operator and, more
importantly, without data review before the system reacts on incoming information. This requires systems
to be trained up to react correctly to incoming information or be able to dynamically learn about changing
requirements and adapt to them.

Advances in autonomous visual navigation systems usually require advances in hardware capabilities as
well, since such systems are computationally more demanding than others for efficient data assessment.
Also, improvements in sensor technologies and image processing are crucial for better navigation. How-
ever, autonomous systems can also be faster and more responsive since no data packaging, sending, review
and reaction to the data is necessary, and the satellite can thus be safer and more responsive in changing
environments.[7][1][3][13]

Relative and absolute navigation:

Visual navigation can, as almost all navigation methods, be categorised as either relative or absolute, or a
combination of the two. Relative navigation refers to the process of determining and tracking the position
and attitude of a satellite with respect to other objects in the surrounding environment. Since the focus is on
the interplay of the objects in the immediate neighbourhood of the satellite, this can help to safely navigate
a fast changing environment and be highly reactive. This approach can be combined well with landmark
tracking.[7]

While relative navigation only requires a rough knowledge of the position or type of objects around the satel-
lite, absolute navigation is usually based on the knowledge of maps of the surroundings. Here, the satellite
position and attitude is determined within a wider reference frame.

Most commonly, an integrated navigation method is used, combining the two approaches. This has several
advantages over using the individual techniques. Relative navigation on its own relies on object path estima-
tion and propagation, which is inherently prone to errors. The subsequent error accumulation over time can
be counteracted by resetting the satellite and object state estimations using absolute positioning within a ref-
erence frame at intervals. This can be done through terrain identification, GPS or celestial navigation. Other
approaches that combine multiple sensor inputs and are less dependent on resetting from a wider absolute
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navigation approach are for example presented by Andert et al in [2]. Research in these areas is ongoing,
aiming to reduce system demands, accumulated error and increase accuracy and computation speed.[28]

Simultaneous Localisation And Mapping (SLAM):
SLAM is a visual navigation approach in which a map of the environment is built. Simultaneously the satel-
lite (or system) is positioned within this map. This approach thus combines relative and absolute navigation
as described above. If a map is already fully or partially available this technique can be sped up. Based on
available information, a state prediction is performed. Simultaneously, image processing extracts landmark
features from collected imagery and feeds it into the system to update the predicted state to a corrected state,
which is used as the predicted state in the next system iteration. This approach is often called V-SLAM, or
visual SLAM, since it combines the conventional SLAM approach with visual odometry. In visual odometry,
the state of a satellite is estimated based on optical flow and feature matching which is required to extract
landmark information in dynamic environments.[7][1]

1.2.3. Functional structure
From the discussion above as well as from literature, two aspects that are crucial for visual satellite navigation
can be extracted.

Image processing: Image processing is performed to extract information from collected images. This can
be done on individual images or a sequence of images, usually referred to as optical flow, in order to extract
information on dynamic behaviour in the surroundings of the satellite. The image processing unit usually re-
ceives data directly from the sensors, such as cameras and optical depth measurement devices. After the data
is processed it is passed to the state estimation system. Image processing can be a highly computationally de-
manding process and may lead to measurements being passed to the remaining system with a delay.[19][17]

State estimator: State estimators, or navigation filters, perform the state prediction and correction tasks.
The state estimation is based on an existing estimate of the system state within an environment (relative
or absolute) and the information from the image processing unit. It is passed to the wider GNC system to
perform course correction tasks or interact with the environment as required.[4][3]

1.2.4. Different applications for visual satellite navigation
Before expanding on the structure of the navigation system, this section highlights a couple of examples of
visual navigation uses in satellite applications.

Applications of visual navigation systems in satellite operation are shaped by the mission and system re-
quirements. While the lack of objects and atmospheric disturbances in space improved image quality, which
is great for visual sensor data collection and thus lends itself to visual navigation systems, the inaccessibility
of space also demands for highly autonomous and reactive systems. This makes systems more complex, es-
pecially since they are often applied in scenarios where multiple objects, other satellites and even formations
are visually tracked.

While visual satellite navigation applications have been used in the past, many modern systems benefit
from new developments.[11] Maintenance, refuelling, restocking de-orbiting missions greatly benefit from
versatile navigation systems and visual observation. The engagement with space debris, which may have un-
known attributes, shapes, poses and velocities is another field that deserves more and more attention where
visual navigation systems can be applied.

Rendezvous and docking operations have been performed by Mokuno et al. in 1998 and 1999, where the
Japanese Engineering Test Satellite 7 performed multiple successful approach and docking operations based
on visual navigation. Multiple sensors and cameras were used during the mission.[24]

Since this early success, other developments have taken place. Bennighoff et al. suggest the distribution of
the approach into distinct phases, from a far range rendezvous (more than 500 metres distance between satel-
lite and object) where mono cameras are used, to mid and close-range, where more mono or stereo cameras
are used. The foundation for this idea is the fact that 3-dimensional feature assessment at a large distance
is near impossible since the observed object is a mere dot in the collected image. Thus, there is no need for
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stereo cameras. At close operation, Bennighoff et al. suggest the use of an illumination system to highlight
3-D features on the target even further.[4][3]

Moving further out into space, Wen et al. suggest an autonomous R-Bar approach for geostationary satellites
based on visual navigation. Their research shows the potential of an approach from a distance of several
kilometres and addresses several problems that are encountered when using visual navigation over long dis-
tances, such as losing line of sight at minor deviations of sensor orientation.[30]

Even further away from Earth, Polle et al. and Cui et al. present autonomous visual navigation systems that
can be used in interplanetary missions, for example for cruise, approach and landing. They focus on the iden-
tification of feature points on or around the target celestial bodies which can be referenced with stored maps
and images. Such systems can provide accurate pose estimation with simple passive visual sensors.[25][9]

The examples above show that there are multiple use cases and thus multiple challenges for the onboard
navigation systems. The project at hand is concerned with in-orbit close proximity satellite operations.

1.3. The onboard navigation structure

Having identified use cases and having discussed general visual navigation systems, this section gives a more
detailed overview over the system architecture. A high level breakdown of the visual navigation system is
shown in Figure 1.1.

The breakdown of the visual navigation sensor is done according to the different physical aspects of the sys-

[ Visual Navigation ]
[ Functional breakdown ] [ System components and activities ]
Tasks Working Functions Sensors Processing Mavigation algorithm
principles

Figure 1.1: Breakdown of components of visual navigation systems (high level)

State estimator /
tems. The functional aspects have been discussed previously.

Each visual navigation system consists of a sensor system which extracts visual information from the envi-
ronment, an image processing system and a state estimator (or filter).

The sensor system acquires an image, sends it to the image processing unit which processes the information
and transfers it to the navigation filter, which returns a state estimate to the other systems. There are some
minor alterations to this architecture in some applications, such as the pipeline architecture Boluda presents
in [6], where, depending on the scenario, different image processing algorithms can be used. This shows that
some of the subsystems can be decoupled.

Figure 1.2 shows an example of a system architecture as presented by Boluda in [6]. Cameras serve as sen-
sors, multiple image processing units can be selected, and the navigation filter is represented via an algorithm
result, which is the filter estimation outcome.

Sensors: Sensors in navigation systems are distinguished by either being proprioceptive (measuring in-
ternal states) or exteroceptive (measuring the conditions around the spacecraft). For visual navigation sys-
tems, the latter are more relevant since they measure the states of objects around the satellite and can thus
place the satellite relative to these objects. Proprioceptive sensors may be used to propagate the spacecraft
state internally. To evaluate this estimate an outside measurement is, however, always required.

The exteroceptive sensors can again be categorised by being either active or passive. Active systems, such
as Laser Detection and Ranging (LADAR), Radio Detection and Ranging (RADAR) and Laser Image Detection
and Ranging (LIDAR) actively emit energy and capture the reflections. These systems are heavy and expen-
sive but offer insights on objects in any direction around the satellite. Passive systems, such as monocular
cameras and stereo cameras just capture energy that is reflected off of an objects surface. They are simpler
and cheaper than active systems. Monocular cameras are well suited for far-range application where the
identification of 3-dimensional features is not crucial yet, whereas stereo cameras (or binocular cameras)
are better for object feature tracking and are thus applied more in close-proximity operation where detailed
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Figure 1.2: Example of a pipeline system architecture presented by Boluda in [6]

object features are crucial to identify. Star trackers are another popular passive sensor type often applied in
satellite systems. They are also particularly suited for far range rendezvous scenarios where an object needs
to be placed in a reference frame based on its position among celestial bodies in the background.[1][9]

Image processing units: Drawing data from collected images is a functional aspect of the navigation sys-
tem for which the physical architecture is usually highly purpose built. System platforms and hardware and
software requirements are presented by multiple authors.[6][15][8][16][33][32][14][20]

While accurate image processing is an essential part of visual navigation already it is still the focus of much
research. The challenge in image processing is often the identification and tracking of features across one or
a series of images. Hereby, it can be distinguished between a reconstruction based approach where the entire
3-D environment is recreated, or an active perception based approach, where only information relevant to
the current satellite pose is obtained. The latter is computationally less extensive and usually relies on optical
flow across multiple collected images, making it suitable for close-proximity satellite operation. The optical
flow is translated into 3 directional velocities and 3 rotational velocities.

Since extracting such information from images is difficult and computationally demanding, many researchers
have focussed on improving image processing techniques and algorithms. Examples include identifying ge-
ometrical features and prioritising them in tracking (see research by Kundur in [19]), modelling the human
vision by using low resolution peripheral view and a focussed central view (Jung in [17]) or assessing the dif-
ference in image entropy levels to track changes (Wang in [28]).

As can be seen, many different approaches to image processing are available.

State estimator - the navigation filter: Navigation filters are essential to predict and update the state
based on a propagation model and incoming processed measurement information. They feed back the best
estimate of the current system state of either the satellite itself or a target (depending on what state is assessed
by the system) to the remainder of the GNC system. There are different types of navigation filters, from fairly
simple linear filters to highly complex non-linear filters with state space sampling steps. In conventional
satellites operation, the most prominent filters have long been the Kalman Filter and the Extended Kalman
Filter. However, the development is shifting to more purpose selected filters. This is due to growing demands
on the filters as mission requirements become more difficult to meet. Especially for close-proximity satellite
operations, there are needs for highly accurate and fast updating filters since a state estimation offset or
a delay in estimation update could lead to failure and potential loss of the mission. Remaining problems
such as propagation errors, faulty measurements and data unavailability need to be accounted for as well.
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Different types of satellite navigation filters are discussed in the following.[1]

1.4. Current state and viable alternatives in navigation filtering

Many different filtering techniques for visual navigation systems are available and are being researched. Con-
ducting a more extensive literature study performed in [29] it was found that navigation filters on a high
level can be distinguished by being either linear or non-linear estimators. This means that the propagation
method uses linear propagation or not, which is essential when estimating non-linear systems. A linear esti-
mator used on a non-linear system accumulates error. Figure 1.3 shows this breakdown. The linear filtering
methods have, in space applications, long been dominated by the Kalman Filter, which remains to be one
of the most widely used state estimators. Zhe [35] presents the non-linear filters as either finite (where an
exact solution can be found, which is assumed to not be the case in the satellite navigation discussed here)
or general. Another added category of filters is the linearising filter, which estimates non-linear systems by
linearising them and using linear estimators. The most prominent example is the Extended Kalman Filter
(EKF), which is applied by DLR Oberpfaffenhofen for state estimation.[4][3]

General non-linear state estimation methods require a numerical approximation method to determine state
estimations since no exact solution is found. State estimations are extracted based on their likelihood from a
pool of possible states, or state space. Many different approximation methods are possible that result in dif-
ferent filters. Prominent examples are the Unscented Kalman Filter (UKF), the Single Value Decomposition
Filter (SVDKF) and numerous different particle filters.
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Figure 1.3: Breakdown of different filter options

In space applications, usually non-linear filters are required for higher estimation accuracy. However, this
usually comes with higher complexity and thus higher system demands as well as longer computation times.
The challenge of identifying and testing different filters for a given scenario is addressed in the research
project at hand.

1.5. Research goal

As was seen in the previous section, many different navigation filters are available for visual satellite naviga-
tion systems. Not all of them may be suitable for close-proximity operation though, which has strict perfor-
mance requirements for state estimation and the need for computational resources. The conventional EKF is
the most widely established navigation filter for such satellite operations, but, since itis linearising non-linear
systems, there may be other filters available that are more suited for close-proximity satellite operation.
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The aim of the research project at hand is to identify, implement and test potential filter alternatives that
could be more suited to this kind of satellite operation and assess their performance in comparison with the
EKE This aims to collect quantitative performance parameters which allows for a meaningful filter compari-
son. The filters are tested in simulation tests for their theoretical performance and in a hardware-in-the-loop
test where the filters are tested under conditions representing real-world applications more accurately. This
allows to address another goal of the research: The identification and highlight of concrete mismatches be-
tween simulation and hardware implementation of filters. While this may seem straightforward, the research
through hardware testing is important since it highlights issues in filter application that are not captured by
simulation testing alone. The research can thus be used by future projects to improve their respective theory
application and testing processes.

1.6. Technical management of the research project

In the previous sections the background of navigation filtering in general and for satellite applications in par-
ticular was explained. Based on previous developments in this field as well as ongoing research, questions
were defines as well as aim and objective for the research project described in this thesis report.

These are presented in the following.

The research questions, as well as aim and objective, were defined in line with the research goal presented
in Section 1.5. Thus, they all serve to determine viable alternatives to the Extended Kalman Filter, which has
become an industry standard. By presenting new filter options and their respective advantages and disad-
vantages, insight into potential alternatives or improvements can be gained.

The project benefits from a collaboration of the master student with DLR Oberpfaffenhofen. DLR operates
with an existing Extended Kalman Filter and the student is able to implement and trial new filter alternatives
in the hardware-in-the-loop facility, and compare the new filters to the real-life existing one. Test data is thus
relevant as it is generated in comparison to a working real filter.

1.7. Research questions

The research question is defined as a main question from which two sub-questions are derived, each with its
own set of sub-sub-questions. Answering each question aids to structure and perform the research project.
The main question for the research project is:

What are 2-3 alternative filtering methods for established navigation filters for visual navigation systems
in close proximity space system operations, and how do they perform?

This research question is chosen following the assessment of the state of satellite navigation filtering pre-
sented earlier. A focus is set on 2-3 navigation filter methods in order to limit the scope of the project and
enable one student to perform the required research within the time frame of a master thesis. The focus to
answer this question is set on identifying potential filter alternatives through theoretical performance in sim-
ulation as well as implementation of the filters in a hardware in the loop facility and subsequent testing. In
order to address these aspects of the project better, the research question is broken down into sub-questions
as shown below.

1.7.1. Sub-question 1: Narrowing down filter options
The first sub-question is presented below:

Based on their theoretical performance assessed from simulation, what are 2-3 viable filtering technique
alternatives for established navigation filters in visual navigation systems for close proximity space opera-
tions?

Based on the working principle and current application of navigation filters in satellite operations, as
well as ongoing developments and new filtering approaches, a multitude of potential filter alternatives were
identified in preparation for the research project (see [29]). Since fully developing and testing all these fil-
ter alternatives is deemed too work intensive for the research project at hand, an initial selection is made.
This selection of filters is then fully developed and assessed through simulation to determine their respec-
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tive performance and to identify whether they can reasonably be trialled in hardware tests. The following
sub-sub-questions are posed to aid in answering this first sub-question.

Question 1.1

Question 1.2

Question 1.3

Question 1.4

Question 1.5

Question 1.6

Question 1.7

What are the 5 most promising options for EKF alternatives judging from most recent publications and
applications?

How does the currently used EKF work at DLR according to DLR literature and experts, and why was
this navigation filter chosen over others?

For simulating the performance of navigation filters, what system model should be used?

What are useful performance parameters that can be used to narrow the selection of alternatives down
to 2 - 3 alternative filters?

What are DLR navigation filter development specs, including expected and required inputs and out-
puts?

How do the original individual navigation filter alternatives perform against the chosen performance
parameters in the chosen performance simulation?

Based on their theoretical performance in simulated scenarios, which 2-3 navigation filter alternatives
are the most viable for close proximity space operations?

Having determined the simulated performance of the selected filter options, hardware testing can pro-
ceed.

1.7.2. Sub-question 2: Determining the quality of filters
The second sub-question is presented below:

Based on performance experiments through implementation and testing in a hardware test-facility, how
do the remaining 2-3 navigation filter alternatives perform compared to the established EKF in different mis-
sion scenarios, and which are proposed as viable alternatives?

This sub-question is focused on determining the comparable performance of the different filter options
with respect to each other and to the baseline filter. Furthermore, the answers to the sub-sub-questions
shown below enable a performance assessment in different scenarios. Answering this question and its sub-
questions thus also allows to answer the overall research question and to give recommendations on further
filter development and application.

The sub-sub-questions are:

Question 2.1  What are the hardware test facilities for satellite navigation filters at DLR, and how are they used?

Question 2.2  What are the performance criteria for navigation filters that need to be tested based on literature review,
expert input and mission performance requirements, as well as test possibilities?

Question 2.3 How can the chosen performance criteria be tested in the available test facilities?

Question 2.4 How can the simulated performance be validated and verified through hardware experiments?

Question 2.5 How do the hardware experiments need to be set up, following documentation and experts?

Question 2.6  Based on the mission and literature on navigation filter performance, and expert assessment, what are
assessment criteria for comparing navigation filters?

Question 2.7 What are strengths and weaknesses of the navigation filters considered?

Question 2.8 How do the individual tested navigation filters perform compared to the current EKF in the comparison
categories that are assessed?

Question 2.9 What applications are the individual navigation filters most suited and least suited for?

At the end of the research project at hand all these questions should be answered.
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1.8. Objective and focus of the research project

The objective and the focus of the research project are defined in order to allow for a structured approach to
answering the research questions. The research project is scheduled for 10 months, of which 3 months have
been spent in preparation as a theoretical study of the subject matter. This report is focussed on the devel-
opment, implementation and testing phase that is conducted in cooperation with DLR Oberpfaffenhofen in
order to answer the research question.

1.8.1. Research objective

The research objective for the research project at hand is to determine the viability of 2-3 possible naviga-
tion filter alternatives for close proximity satellite operations to the currently often used Extended Kalman
Filter (EKF). Hereby, the EKF currently used by DLR Oberpfaffenhofen serves as a baseline filter for the per-
formance comparison. The assessment of viability is conducted by identifying, designing, implementing,
testing and comparing different navigation filters in both simulated performance test environments as well
as in a hardware-in-the-loop facility. The judgement of a filters performance is conducted by considering
multiple performance parameters.

In addition, the objective is to identify and highlight the concrete differences between simulation and hard-
ware implementation and testing. While the transition from simulation to hardware testing seems straight-
forward, there are clear mismatches between the two approaches. The necessity for this research arises from
the fact that future research projects can benefit from knowing the challenges of such a transition upfront
and improve simulation and the assessment of their theoretical performance.

The increased demand for distributed space systems and more and more small satellites has led to a de-
mand in autonomous satellites that can navigate cluttered environments autonomously, since satellite oper-
ation through constant operator-control is not practical. Navigation filters are an important element of the
autonomous navigation system structure. The research performed in this project is thus aimed at suggesting
better filters for such operations, as well as serve as a baseline for further filter development in the future.

1.8.2. Research focus

As was already mentioned, the project is focused on satellite to satellite and satellite to third body operations
in close proximity. Hereby, however, the quality of the filter is heavily influenced by the quality of sensory
inputs, meaning that a filter will be able to deliver more and more accurate pose estimations if sensors can
yield better measurements. The distance to target has a more significant effect on the latter. Nevertheless, the
focus of the research is close-proximity operation of satellites using visual navigation systems. Such systems
are suited for highly autonomous systems that perform precise tasks. They thus require a high level of accu-
racy and speed to ensure safe and purposeful operations. Navigation filters should therefore be designed to
be fast, efficient, and results need to be easily interpretable by the system computer.

Simultaneously, the research focusses on identifying the challenges in the transition from software to
hardware testing. This is a crucial step in any research project that attempts to draw meaningful conclusions
on the real-world behaviour of a system from simulation tests, or for research projects that attempt to val-
idate theoretical results in hardware facilities. The transition from a theoretical model to a hardware based
testing approach or a real-world application may be considered straightforward. However, since any simu-
lation is a simplification, factors that only occur in real life are neglected in simulation and may affect the
performance of a system in an unexpected manor. Thus, an identification of these unobserved mismatches
between simulation and hardware testing is important to qualify the quality of the simulation and improve
it in future projects, to assess the performance differences between different tests, and to prepare a system
better for real-life application before moving into further testing stages.

1.9. Project Methodology

Based on the research questions and objective, this section describes the approach to answer the research
questions presented in the previous sections, how the project is set up and how success of filter identification
and implementation is assessed in excess of the answering the research questions.
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1.9.1. Addressing the research questions and objective
In order to answer the research questions in a satisfactory manor, several steps are taken before work on filters
starts:

* Identify success criteria: The project is considered a success if all research questions can be answered,
since this should allow for both insight into the development, implementation and testing process, as
well as for the wider scientific community to benefit from the project at hand. This is why the research
questions were determined extensively before the start of the project execution phase.

¢ Identify status quo: The project can only be approached and research questions can only be answered
once an extensive understanding of the current status quo is gathered. This primarily includes the
satellite navigation filter environment at DLR within which the main part of the development, imple-
mentation and testing of filter alternatives takes place. The work performed in the literature study
before the start of this part of the project is used as a reference.

* Determine project structure: The project structure has been determined in advance as part of the
literature study and is presented here again for reference.[29]

¢ Determine filter performance criteria: Since many of the research questions rely on the qualitative
and quantitative assessment of different navigation filters a set of performance criteria is defined. This
allows for a transparent performance assessment to enable the judgment of the filters.

1.9.2. Key stakeholders and key criteria

Key stakeholders were identified in preparation for this project and it was found that DLR and TU Delft are
the key stakeholders that can affect project success. Their key criteria for the project success are investigated
here:

¢ DLR: DLR aims to identify the viability of navigation filter alternatives for its existing Extended Kalman
Filter for application in close proximity operation. The criteria is to clearly assess the potential of filter
alternatives in close proximity satellite operation and identify how much better or worse the state esti-
mation approach of a filter alternative is. This intent started the project, which is why it is covered by
the research questions.

e TU Delft: TU Delft is the university under which this project is performed. TU Delft primarily has
scientific and quality expectations for the project. A clear systems engineering project approach should
be taken and the scientific reasoning behind design decisions and project decisions should be shown.
To address this criterion, a strict systems engineering approach is followed and the project reporting
and presentation are conducted following the TU Delft quality guidelines.

The key criteria identified above are both covered by answering the research questions and by following a
consistent systems engineering approach. Thus, no extra steps need to be taken that are not covered in this
report.

1.9.3. Structure of the research project

The research project contains a literature study and the research itself. The literature study terminated in the
report seen in [29]. The document at hand details the research performed to answer the research questions.
In order to answer the research questions, a project work flow and breakdown are followed, which can be
seen in Figures 1.4 and 1.5.

Project work flow

Breakdown of the project

The research is performed in distinct phases: A filter development stage, a filter testing stage and a fil-
ter assessment stage are the decisive steps in the research activities. They are preceded and followed by a
research phase and a comparison phase, as shown in Figure 1.5. This section discusses the different steps



12 1. Project introduction and definition

|dentify development
specs

|dentify navigation filter
working principles

Marrow down filter
selection

Assess DLR navigation
filter implementation

|dentify potentially viable
navigation filter
alternatives

Check filter
requirements

o | Determine performance
"|parameters

Perform test/
collect data

Implement filter Aszsess performance
selection in simulated test

P
'
| -
H Lal
i
'
'

h 4

Identify testing scenarios

b A

I

FPrepare testing

s

Reiterate filters as
required

Perform data
backup

Correct for Analyse output performance
outliers against criteria

Visualise resulis

Determine next
steps /
recommendations

Recommend
navigation filters

Azzess filter
performance

Figure 1.4: Project flow diagram

taken in preparation, development, testing, filter assessment and comparison and why the individual steps
are taken in the context of answering the research question.

1.9.4. Development stage

The development stage is the phase in filter development where different filter options are selected for coding
and are implemented in the DLR navigation filter environment. This is performed for each new filter option,
or filter-mode, separately. A filter mode is developed in parallel with its unit test and is thus ensured to be
functional with the wider gnc system from the start.

Verification and validation

Verification and validation are crucial in the development of filters. Verification ensures the compliance
with requirements, whereas validation shows that the filter accomplishes the intended task and is in fact
ready for a mission or a specific operation.

Since the filter development is in the early stages of the development phase, verification is still in the
qualification phase. In order to ensure proper filter operation from the early points in the filter development,
verification efforts are undertaken early on in the form of system level tests. Unit tests are performed on all
functions in a filter, ensuring that the individual components compute the correct results based on given in-
puts. These unit tests are implemented in the GNC system and are developed and executed whenever the
system is compiled and built. Once all the individual functions of a filter are sure to work and compute the
correct results, the unit tests are expanded to determine intermediate results of a filter execution correctly,
given certain inputs. This includes the check of intermediate results of the correct interaction of if state-
ments. Finally, the entire filter iteration functionality is checked given a specific set of inputs. Thus, the code
is verified through system level tests and analysis.

However, this only checks the filter internal functionalities and verifies the filter working. Next, validation
efforts are performed in the form of mission scenario tests. These are implemented as a simulation perfor-
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Figure 1.5: Project flow diagram

mance test, testing the filter state estimation given a simulated set of inputs and scenarios, and a hardware-
in-the-loop test, where real sensor information is fed to the filters which in this case are implemented in the
wider GNC system.

The purpose of verification and validation efforts is to show the correct working and the fulfilling of the
purpose of the product, in this case the filter. As will be discussed later, the purpose of the hardware-in-
the-loop test is not to fully confirm the test results of the simulation performance test (both systems operate
differently, which is why generating the exact same results would not be possible), but to validate the filter
performance in a test closer to mission scenarios.

The verification and validation efforts are described in more detail throughout the report. The simulation
and hardware-in-the-loop tests are described in Section 1.9.5, Chapter 4 and Chapter 5. The unit tests that
are used in all filters are described in further detail in Section 2.1.8.

1.9.5. Performance testing stage

Once filter modes are developed, they are tested for their performance relative to the baseline filter. This is
required in order to be able to answer the research question and achieve the research objective, as it can only
be determined through testing whether a new filter mode is a viable alternative to the established system.
It is also part of the verification and validation efforts described above. Performance testing is conducted
through two means: A simulated performance test, in which an target orbit is simulated through propagation
and an erroneous measurement is deducted and fed to the filter; and a hardware-in-the-loop test, in which
the navigation filter is fed into the DLR gnc system and is used in tests in the EPOS2.0 facility. In the latter, the
filter is fed by real sensor inputs gained from test runs in the facility in real time.
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1.9.6. Simulated performance test

Simulation testing for the filter mode performance is developed especially for the purposes of this project. It
is developed as an application that is written into the gnc repository which only works with a selected filter
mode. It does not require the wider gnc system but only depends on the filter itself. It simulates a target satel-
lite and a servicer satellites in their own respective orbits. Measurements are generated by propagating the
orbits and determining the measurements including white noise that are then fed to the filter, which in return
determines a state estimate of the target. By comparing the "real" propagated target and the estimated target
state the performance of the filter can be determined independently of the remaining gnc system. More de-
tail on this is given in Chapter 4.

Simulated performance tests were chosen as an approach for multiple reasons before performing hard-
ware tests. These can be split into practical reasons, for example the availability of resources, and project
critical reasons, such as the ability to test filters parallelly.

¢ Simulation tests are most importantly used since the input parameters can be easily controlled (which
is not possible in hardware-in-the-loop tests to the same extent) and since it is possible to run filters
parallelly. This means that filters can be tested under the same conditions and a fair comparison of the
output performance is possible. Thus, simulation tests can be used both as a sense check as well as a
reliable performance comparison. The hardware tests are thus used more for validation purposes.

¢ Simulation tests allow for a fast assessment of the output quality of a state estimation from a filter
mode: Hardware tests take a lot of time and resources. Thus, it is critical to be certain that filters can
deliver results close to the expected accuracy and speed to not either slow down the testing process or
potentially damage the hardware. Furthermore, simulation tests can be performed in the development
stage already and swiftly, and are thus the preferred means to improve filter performance if the quality
of the filter output is not satisfying.

¢ Simulation tests are resource independent: Simulation tests can be performed easily without having to
access testing facilities and can thus be performed at any time. This is particularly important since the
hardware-in-the-loop facility is not always ready for testing or is used by different projects. As long as
the simulation test delivers representative data it can be used to work on and judge new filters.

¢ Simulation tests are a cost-free sense check for filter performance: Performing a sense check before
implementing new filters in a hardware environment is crucial to ensure the general working of the
filter. Diverging state estimates would be unacceptable for a hardware test run.

¢ The simulation test allows for testing the filter independent of the wider gnc system, allowing for faster
and more efficient fault identification than in a full hardware test. This also means that tests can eas-
ily be performed without having to first develop a full interface with the wider gnc system, such as
telecommands for filter changes.

¢ Simulation tests allow for a fast prioritisation of which filters to test under which conditions in the
hardware facility.

1.9.7. Hardware-in-the-loop facility test
Hardware performance tests are conducted using the EPOS2.0 facility, in which an approach of a servicer
satellite to a responsive or non-responsive target can be tested.[4][3]

The servicer features multiple optical sensors that can be used to collect measurements during the ap-
proach. Thus, the gnc system is fed with real data that contains real noise, both from sensors and from the
actual position of the robots standing in for the satellites. This also means that the system works based on
real satellite positions rather than the propagated orbits that are used in the simulation test. This has the
advantage that the system is therefore independent of a faulty propagation model when it determines the
actual servicer position.

The hardware test is needed to validate the working of the overall gnc system. For the filters they are im-
portant since it is the closest testing approach to real mission application in terms of data feed and resulting
state estimate output. The advantages over the simulation test are:
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¢ Generally, the hardware test is performed to assess the performance of filters in conditions that cannot
easily be modelled or caught in a simulation test. Thus, the test includes more practical elements such
as realistic noise, sensory inputs, and in the case of the EPOS 2.0 facility the use of far more complex
orbital models.

¢ The test is performed in real time with real data flows to and from the filter and actually moving satellite
models. This truly tests the filter in a real time environment rather than just on simulated orbits. This
is also the reason why performing the simulation test first is critical to avoid malfunction and damage
due to diverging filter results.

¢ The test works with actual sensor inputs and actual satellite model positions rather than using the same
propagation that is used in the filter to propagate the orbit position. The estimated filter performance
may thus be inferior, but also more realistic than the simulation test results.

¢ The test is used to validate the working of the filter in the wider gnc system.

1.9.8. Performance criteria for assessing filter performance

The performance criteria for comparatively assessing navigation filter performance result from the need for
numerically assessing the different filters based on their test performance.

Several aspects are of importance when comparatively assessing the quality of satellite navigation filters. In
the early project stage, when no tests have been performed yet but filters are chosen for implementation, a
qualitative comparison is needed, whereas later in the project, when filters have been tested in simulation
and hardware tests, a quantitative comparison is possible.

The relevant assessment criteria are listed below. They are deduced from decision trees which split the
relevant parameters of navigation performance. The criteria are assigned rating factors by using an analytical
hierarchy process. The process is performed until a consistency ratio < 10% is achieved.

Each criterion is graded with a rating factor between 1 (low importance) and 5 (high importance). This can
later be used to trade-off the different filters.

1.9.9. Qualitative comparison
The trade-off tree for determining the different qualitative criteria can be seen in Figure 1.6.

Qualitative filter assessment
[ Be " eﬂt ]

¢ v ¢
Readiness for Real-time Applicability in Applicability in
implementation Novelty of approach applicability space applications visual navigation

Figure 1.6: Decision tree used to determine qualitative filter trade-off criteria

The two main factors for assessing the filters without actually having numbers available for a rating are
the ability to realise the filters as well as the expected benefit from realising the filters. This answers the two
questions: can it be built?; and: what is the expected benefit of building it?

To answer the question whether a filter could be implemented, two factors are considered as primarily impor-
tant. Firstly, it is checked whether the research on a filter is at a stage where the filter can be implemented. If
the filter is only in a development stage and not working yet, it would be very difficult to realise. Secondly, the
novelty of the approach in navigation systems is assessed. This is assessed through the availability of relevant
documentation and a documented track-record of working filters. If this cannot be shown it is assumed more
likely that the filter does not work or is very difficult and time-consuming to implement. However, novelty of
a concept can also be a benefit since it is a more interesting concept if it has not been shown before.

To assess the expected benefit, it is determined which factors are deciding whether a filter is suited for the
intended application in satellite navigation. Three distinct factors can be deduced from stakeholder criteria
and from the project objective. The filter should be suited for real-time applicability, for visual navigation
and for space applications. Ideally, the filter should have a proven record in some or all of these areas, except



16 1. Project introduction and definition

for space application (see below).

The AHP matrix for the qualitative criteria comparison has a consistency ratio is 5.6%. Below, a more de-
tailed description of the criteria can be found.

Readiness to use in real-time application: Rating factor 5
Real-time applicability is key for each considered filter, since satellite navigation systems for close proxim-
ity operations need to be highly reactive and operate autonomously. There is a high danger of impact when
operating two satellites close to each other, in particular at high relative velocities. Therefore, real-time ap-
plicability is crucial for a potential navigation filter alternative to the existing system.
Since satellite navigation filters are only relevant for the project at hand if they can perform in real-time ap-
plication, this criterion is critical for project success and is thus rated highly.

Ease of implementation: Rating factor 2

In order to allow for the student to implement multiple filters over the course of the projects, filters that are
more easily implemented with otherwise similar performance are prioritised over filters that are unneces-
sarily complex with little added benefit. This allows for an increased focus on test development and test
performance, and for the development of further filter options.

While ease of implementation is decisive for the extra work spent in the development phase, it is not overly
important for the success and relevance of the project outcome and is thus ranked lower than the other cri-
teria.

Past use in space applications: Rating factor 4
If a filter has a longstanding, proven track record in space applications there is a reduced interest and less
added scientific benefit in implementing and testing it, as compared to a potential new filter option that,
while promising new benefits, has few applications in existing satellite navigation systems. This criterion en-
sures that the benefit of the project is of scientific relevance and adds value to the wider scientific body.
Since it is important to work with filters that are not overly exposed to space applications in order to add new
insights to the scientific body dealing with satellite navigation, this criterion is ranked with high importance.

Novelty of approach: Rating factor 2
This criterion is an extension of the previous criterion and includes filters that are more recent, interesting
developments which have seen little application.
This criterion is not as relevant as the others since a filter that has not been applied in space yet but is other-
wise a well understood filter can still be interesting for the scientific community.

Readiness to use in visual navigation systems: Rating factor 4
It is important that all filters work well in a visual navigation system. This can either be shown through past
applications of such a filter in visual navigation systems (whether in space applications or not is neglected in
this criterion) or through documentation that reliably discusses the potential of the filter in visual navigation
systems.
Since the project specifically aims at testing filters in a visual navigation system, this criterion is rated highly.

1.9.10. Quantitative comparison

Once test data has been collected on the estimated state of a satellite resulting from the individual filter op-
tions, the performance of the filters needs to be compared numerically. While there is much documentation
on the performance assessment of individual filters, it is usually either performed qualitatively or rudimen-
tary based on plotted graphs that show conversion characteristics. However, the goal of the project at hand
is to determine clear numerical performance parameters for the individual filters to be able to assign perfor-
mance values and compare these values. Determining numerical performance parameters for each filter is
discussed later in Chapters 4 through ?2. The criteria by which filters are assessed are discussed below.

The breakdown of performance criteria discussed below is visualised in Figure 1.7. To determine the
different relevant criteria, the navigation performance in satellite operations is broken down into general
performance that would be applicable in any satellite operation, and close proximity operation, which is the
focus of this project. General navigation is affected by two main factors: The accuracy of the navigation (how
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Figure 1.7: Breakdown of quantitative performance criteria

close is a filter estimate to the true state) and the stability of the navigation (how close does an estimate stay
to the true state given time and disturbances). The accuracy can be further broken down into overall accuracy
(a combination of several parameters) and the parameter specific accuracy, where each estimated parameter
is compared to its true parameter equivalent. Both overall and parameter specific accuracy can be assessed
through the deviation of the estimate from the true state at any given point in time as well as through the
quality of the convergence, meaning how close the estimate gets to a true state over a long period of time
when convergence is reached. Furthermore, accuracy can be assessed through observing potential bias in
the estimates.

The stability of the navigation is assessed through the robustness over time (how far does an estimate fluctu-
ate away from the true state) and the robustness as a response to outliers.

Close-range specific navigation is characterised by two aspects that are crucial for this type of operation.

Firstly, the timeliness of the estimation from the filter is important for the quality of the navigation. Since
satellites operate closely to each other, a long estimate delay could cause catastrophic failure, for example
through crashes. Thus, the update time of the filter is assessed, meaning how long it takes to determine a new
state estimate. Furthermore, the time to convergence is assessed, since in close operations it is crucial that
the filter converges as quickly as possible to the true state.
Secondly, the performance of a filter with a change of distance to the target is assessed. This is crucial since
incoming measurements, especially in visual navigation, may be distorted with slowly decreasing or increas-
ing distance to target. If a satellite is far from the target satellite it will observe the target as little more than a
couple of dots. As the satellite moves closer it will measure more and more detail. However, due to resolution
limitations, the perceived edges and details of the target may not update significantly at every measurement
step as perceived details move from one pixel to the next in the measured image. Thus, a significant mea-
surement update may only occur every couple of measurements that are incoming. The filter still needs to
be able to cope with this effect. This is both a data processing and filter performance issue.

Having determined the filter criteria for quantitative assessment, rating factors are applied using an AHP
matrix. The consistency ratio for the matrix below is 5.0%.

Accuracy: Rating factor 5
This criterion assesses how accurately the filter can estimate the true state of the satellite under investigation.
It is measured through the deviation of the estimate from the true target.
This criterion is considered the most important since it is critical in close proximity operation.

Time to settle: Rating factor 3
Since the project aims at finding a filter alternative that can quickly converge the state estimate to the true
state, it is important to determine how quickly after a starting point the estimate settles. This goes hand in
hand with a stabilization of the oscillation of the estimate around the target. A faster settling time is beneficial
since in real time application there may be problems if a filter estimates a wrong state for too long.
In close proximity operations, the estimate should settle around the true state quickly to avoid any threat to
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the systems. However, it is expected that the estimate will have settled by the time systems are close together,
which is why this is not rated higher.

Stability of the estimate: Rating factor 4
Once the filter estimate has converged to the true state it should estimate the true state as accurately as
possible throughout the remainder of the operation. The occurrence of extreme outliers as well as extreme
fluctuations after convergence would be considered poor filter performance.
Stability is crucial for close-proximity satellite operation since fluctuation or even divergence of the estimated
target state could lead to catastrophic failures.

Bias: Rating factor 2
A filter should deviate to the true target state and not have a clear offset or bias in any of the assessed param-
eters.
Bias is important to recognise and be aware off. If this isn't captured an corrected for it could lead to colli-
sions in close-proximity operation. However, it is expected that this is identified during testing and can be
corrected for before a real-life mission.

Computational complexity and requirement of resources: Rating factor 3

Since the filters should be designed for implementation in autonomous satellite systems with limited re-
sources, filters that require fewer resources and compute the state estimate faster are considered superior to
filters that take longer to compute an estimate and require more resources.

This is not quite as important as the accuracy of the estimate since it is expected that with increasing system
size and improvement of computational capabilities this will be less of a problem. However, designing for
systems nowadays, it needs to be considered that resources on board are limited and new filters shouldn’t
exceed the available capabilities.

1.10. Identifying simulation and hardware testing mismatches

Throughout the project, differences in implementation and approach, as well as expected and unexpected
mismatches between the simulation testing approach and the hardware testing approach are documented.
Furthermore, differences in test performances are collected from both tests. This information is used to high-
light concrete mismatches between the two approaches and identify general means to improve the move
from simulation to hardware testing stages in other research projects in the future. Furthermore, this shows
what effects and issues are not captured by a simulation test in comparison to more realistic applications.

It is postulated how these effects arise and it is argued based on theoretical knowledge why the presented
approaches to counter these effects may work to validate the postulates.

1.11. Conclusions from project methodology

This chapter details the approach that is taken to answer the research questions. As was presented, a filter
alternative identification, development, testing and assessment needs to take place to identify the viability of
potential alternatives to the EKF in close-proximity satellite operations.

Now that the criteria for the project success and the criteria for the filter performance assessment are
clarified, the next step is to assess the current state and working principle of the EKF used at DLR at the
start of the project. This is crucial since this existing filter serves as a baseline for both the development
of new filters as well as for the comparative assessment. Furthermore, since the newly implemented filters
need to work just as well with the wider DLR GNC system as the existing filter does, the inputs, outputs and
specific filter functionalities need to be understood and translated into the filter alternatives when they are
implemented.



Existing system and development
requirements

Having discussed the approach to the project in Chapter 1, this chapter describes the working principles
principle and implementation of the EKF used by DLR at the beginning of the research project which serves
as a baseline for both the development and the assessment of the filters that are newly implemented.
Furthermore, an initial filter restructuring is described that is performed before the development of new fil-
ters.

After having assessed the current state of the filter and the required restructuring, general development re-
quirements for further filter development are named in Section 2.4.

2.1. Study of baseline filter

The navigation filter described in this section was developed by DLR. It is an Extended Kalman Filter with
several adjustments, for example a functionality that the filter can incorporate delayed measurements, as
described by Benninghoff et al. in [4] and [3]. The filter is an industry standard and was chosen since it yields
good performance at little computational effort.

2.1.1. Functional breakdown (high level)

On a high level, the navigation filter is part of the GNC system. It is fed by data from the system and feeds
back the updated state estimate. This is shown in Figure 2.1, taken from [26], where it is shown that images
are collected by LiDAR, CCD camera or PMD camera and are processed. The processed information is fed
to the filter, which updates the state and passes it to the guidance system and the controller, which send the
control force and the guidance to the attitude and orbital control system (AOCS) of the satellite system. This
then relays the current state of the servicer, or chaser, satellite to the filter for the next iteration.

2.1.2. The DLR navigation filter system setup

The filter under consideration is part of the RICADOS project, which features a dedicated GNC system. The
navigation filter is a sub-section of the wider gnc system, which, in its entirety, controls the satellite pose and
motion.

The gnc system is developed by a team of researchers in a dedicated git repository for easy cooperation. The
gnc libraries include image processing, navigation and control. The filter is a subsidiary of the navigation
aspect of the project.

The filter and the system dynamic models are part of the navigation. In further detail, the filter directory
includes the sensor classes (Bitmasks), state containers and state samplers, the covariance class and the filter
itself. In summary, the filter directory includes all functionalities required only for the filter update.

2.1.3. Filter interfaces and communication
In the context of the wider gnc system the filter and its functionalities, such as the covariance class, are con-
nected to the gnc system purely through the filter class. The filter class accepts inputs from the gnc system

19
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Figure 2.1: High level filter integration in GNC system, Figure from [26]

and outputs a state estimate of the target state. In order to do so, the filter class pulls information and func-
tionalities from the other classes stored in the filter directory.

Inputs

In order to perform a state estimation the filter requires inputs collected by other subsystems. Furthermore,
it relies on functionalities stored in external classes as was discussed before. Each of these classes is stored in
the filter class as a private member, thus allowing the filter class to access the specific functionalities. This is
shown in Figure 2.2.
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Figure 2.2: High level filter inputs and iteration approach

The functional inputs required for a state estimation update are:

¢ activeSensors This input is a bitmask that defines the currently active sensor system. This could, for
example, be a ccd or pmd camera system. In the development stage of the gnc system a sensor dummy
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is also used to generate sensor inputs. The input allows the filter to adjust to the data quality from
different sensors and to adjust the computational process in case of more than one sensor type being
active (sensor fusion).

* measurements This input is a measurement container that stores the measurements of the latest sen-
sor update. It is fed to the filter for updating the state estimate. The measurement container also in-
cludes timestamps for the measurements, which allows the filter to exclude invalid measurements, for
example if they were generated too far in the past or if they have timestamps in the future.

* stateServicer This input defines the (known) state of the servicer satellite. It is primarily used for up-
dating the filter internal time stamp to the current system time step. The state is given in the ECI frame.

» massTarget This input defines the mass of the target satellite. This is required for propagating the
estimated state of the target. It is assumed that the mass of the target satellite is known.

e inertiaTarget This input is a 3 x 3 matrix that contains the inertia information for the target satellite.
Just like the target mass it is required for state propagation.

¢ massServicer This is the mass of the servicer satellite, a known parameters, that is used for the propa-
gation of the state of the servicer. Orbit and attitude are propagated.

* inertiaServicer This input is another 3 x 3 matrix that contains inertia information, this time for the
servicer satellite. It is used for servicer state propagation.

Outputs

The primary output of the filter is the estimation of the current state of the target satellite. However, the other
private member parameters of the filter can be accessed through get-functions, which return the private
members outside of the state update loop. This is both required in unit tests and for performance assessment
of the filter.

These include:

* Filter covariance matrix

e Filter internal time

¢ Sensors used by filters in current iteration

¢ Filter state prediction (in case the state update is not performed)
¢ Other intermediate results that are used primarily in unit tests
The filter state estimation contains the following parameters:

* Position of the target in x, y and z, given in ECI

* Velocity of the target in x, y and z, given in ECI

¢ Quaternion inx, y, z and s, used for target attitude determination

¢ Spin rate of the targetin x, yand z

2.1.4. Orbital model

In the following discussion, the propagation methods used in all filters are presented. The orbit model used
by DLR is a classic two body model using Kepler orbits for the two simulated satellite orbits, in which only the
respective satellite and Earth are included as relevant factors. The influences of other bodies, such as sun and
moon, are neglected, meaning that the Kepler orbits are used in its simplified form, the unperturbed Kepler
orbits. All orbits are computed and estimated in an ECI coordinate frame.
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2.1.5. Baseline filter working principle

The filter used as baseline filter in this project was developed by DLR Oberpfaffenhofen. It is a conventional
Extended Kalman Filter as described in [3], with the added benefit that it can take delayed measurements
into account and correct for them [4].

The filter is executed by calling the member function runFilterEstimation() with the inputs described
above. runFilterEstimation() was later renamed computeFilterEstimate() and made into a state output func-
tion rather than a void function to more accurately describe the computation process and directly yield the
most important output.

To start the filter, the state of the servicer (S-S) input and the current estimated state of the target (S-E)
yielded from the previous iteration are saved in ringbuffers for further use. Then, they are used to determine
the filter time time_ and time step dt_. Underscores in the following discussion refer to filter attributes, such
as time and time step. The time is taken from the state of the servicer directly, whereas the timestep is the
difference between the previous time (stored in the estimation of the target state) and the new time stored
in the state of the servicer satellite. Here, the underscore refers to the member of the filter class, meaning
that the attribute is stored for future reference. This is important for the iterative nature of the filter, so that
updates can be performed based on the relevance of the time stamp.

time_=times_gs (2.1)

dt_=times_g—times_g (2.2)

If the time difference between the two iterations is large enough, the previous state of the target, stored in
the state estimation, is propagated. Both the orbit and the attitude, both stored in the state class, are propa-
gated.

Orbit propagation: The state includes information on position, velocity and acceleration, each stored
in a three dimensional vector. Their propagation is shown in Equations 2.4, 2.5 and 2.7, respectively. Here,
the subscript new refers to the newly propagated state, old refers to the previous state at the previous time.
Pos is the position part of the state vector, in 3 dimensions, v refers to the velocity, and a is accelerations.
The subscript orbital refers to conditions in orbit, so for example the acceleration (Equation 2.6) or change
in acceleration (Equation 2.8) experienced in orbit by the satellite. F is external force acting on the satellite,
and Mmyqarger is the mass of the target satellite. The acceleration calculation is based on the formulation of
gravitational forces experienced by the satellite as shown in Equation 2.3.

-Gmymg 4
— 7

2
"

myi = 2.3)

In the following, d ¢ is the orbit propagation step, which is set by the filter operator (default 0.004 seconds).

POSpew = P0sgig +dt * Dyig (2.4)
Unew = Uoia + At * orpiral (2.5)
dorbital = _P 3 Posoiqg+ Flmarget (2.6)
0So1a

Gnew = Gola + At * Aorpital 2.7

5 % - Poso1qa-Uola
Aorbital =~ 55— * | Uold = 3 T pos? . Posoa (2.8)
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Attitude propagation: The state also stores the attitude information of a satellite, more specifically the
attitude (as a quaternion) and the attitude rate w (as a 3 dimensional vector). The estimated attitude and at-
titude rate of the target satellite are propagated as shown in [4]. For this, the quaternion differential equation
is used, as presented in [31].

Initially, the quaternion is transformed into vector form, denoted as §,;;. Furthermore, the old attitude
information is used to generate a new derivative of the quaternion, ¢,;;, which is then again turned into
vector form. )

Garr =0.5% Q- Gary (2.9
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Eiatt—new = ﬁatt—old +dt* autt (2.11)

This 4 dimensional vector is then transformed back into quaternion form.

The attitude rate is propagated using the old attitude rate i0,;4, the inertia of the target Ir4rger (3 X3
matrix) and a torque T acting on the target (3 dimensional vector). The torque is assumed 0 by default in all
3 dimensions.

The new attitude rate derivative doti;¢, is determined by solving 2.12.

Imrget * L_bnew =T- woldx(lmrget * Wold) (2.12)
The new attitude rate wy,,, can then be computed using 2.13.
Whew = Wold + At * Whew (2.13)

Having found the newly predicted state parameters, position, velocity, acceleration, attitude and attitude rate,
as well as the new time for the current iteration from the input state of the servicer, the new predicted state
(P-S) of the target satellite is determined.

Next, the covariance for the current iteration is determined, based on the predicted target state, the inertia of
the target, and the filters update time step d ¢_. First, the state dynamics matrix F, a 16 x 16 matrix, is updated.
The covariance matrix P is then predicted using 2.14, where Q is the covariance matrix of the state error.

P=Q+Fx%Pyy*FT (2.14)

Thereafter, the sensor information is used to determine whether the propagation is the only step that can be
taken or whether a full filter update is possible. If the update ensues the covariance is fully updated first.

For this, the measurement matrix H is set first. It is a 16 column matrix with a dynamic amount of rows
increasing in steps of 7 rows, depending on the amount of active sensors. For 1 sensor active it has 7 rows, for
2 sensors active it has 14 rows. The "basic" form of H shown in Equation 2.15 is repeating for each sensor.

1.0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 O
0 1.0 0 O 0 O O O O 0 0 0 0 0 0 O
0 0 1.0 0 0 0 0 0 O 0 0 0 0 0 0 O
H=< 0 0 0 0 0 00 O 10 O 0 0 0 0 0 O (2.15)
0 0 0 0000 0O O 10 O 0 0 0 0 O
0 0 0 0 0 0 0 0 O 0 1.0 0 0 O0 O O
0 0 0 0 0 0 0 0 O 0 0 1.0 0 0 0 O

Similarly, the covariance matrix of the measurement R is set depending on the amount and type of sensors
that are active. Next, the gain matrix K is determined using equations 2.16 through 2.18

K=Py + P} (2.16)
Pyz = Ppredicted * H" 2.17)
P,, =R+ H=* Py, (2.18)

Having updated H and K, the new state covariance matrix can be determined from equation 2.19.
pP= (Identitywxm—K*H) *Ppredicted (2.19)

Finally, the new state vector is determined for the target satellite. The equation that is used is shown
below:
Xnew = Xpredicted + K* ¢ (2.20)

Here, { represents the measurement residuum, the parameter that determines the difference between the
actual and predicted measurement. The measurement residuum is computed from the measurement in an
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ECI frame and the predicted measurement. The latter is determined using 2.21, 2.22 and . The outputis a7
dimensional vector that scales with the amount of sensors being active. This makes sense since The width of
K also scales up with the number of sensors.

-

((1-3)=zgc1(1=3) — Zpredictea(1 —3) 2.21)

{@4=7)=+zpci(d—7) ~ Zpredicread—7) (2.22)

To determine the predicted measurement, a 7 dimensional vector is generated. It is extended by its own
length by the amount of sensors active (1 sensor active: 7 dimensional vector, 2 sensors active: 14 dimensional
vector).

If the measurement has no delay, the measurement prediction is computed from the H-matrix shown in
Equation 2.15 and from the predicted target state X,reqicred, if there is a delay in the measurement the state
vector of the target at the time of the measurement is used instead. These inputs are used as in 2.23.

Zpredicted = H * Xpredicted (2.23)

Thus, all parameters for a state update have been determined. The iteration can start new, with xye;
computed in Equation 2.20 being the new estimated state of the target satellite, Xosimared-

2.1.6. Existing filter code structure

The initial code for the extended Kalman Filter used is not structured into particular sections but rather writ-
ten as one long loop generating an estimation of the target satellite state based on the incoming inputs at
each time step. In between, there are distinct decision points that either continue or stop the current itera-
tion, depending on the inputs and intermediate results. At such points, the current state estimation is given
out as an output. These decision points are:

« If the time difference between the previous iteration and the current iteration is less than 0.00001 sec-
onds the previous state estimation is returned

¢ If the measurements are old, in the future, or insufficient and don’t match sensor information the pre-
dicted state rather than the updated state estimation is returned

While this code structure works well for one single type of filter, it does not scale well if functionalities are
changed or if certain aspects of the filter are expanded into other filter modes. For example, since function-
alities of the filter are not split up into separate sections an alteration of code requires a repetition of all test
cases in the filter unit test rather than just an update of the affected part of code. This makes the unit tests
prone to errors. Additionally, the code is not easily legible and doesn’t allow for fast navigation. The original
code breakdown structure at the start of the project is shown in Figure 2.3. Black arrows indicate decision
points, green boxes indicate primary outputs (if on the left side they come from the previous iteration) and
red boxes indicate system inputs from the wider GNC system.

A split into different sub-functions that, combined, make up the functionality of computing a new state
estimate mitigates this problem.

2.1.7. Update of filter-internal code structure

In order to make the used filter more easily readable and decouple separate aspects of the filter to facilitate
alterations and improve sustainability, the functionality to compute the state estimate of the target satellite
(function computeStateEstimate()) is is broken down into three distinct functions.

Preparing the current filter iteration
The filter is prepared for a new iteration by running the command runFilterPreparation which takes the cur-
rent state of the servicer as input and stores it together with the latest state estimation. In addition, the time
stamp is extracted from the state of the servicer and compared to the time stored in the latest state estima-
tion. The difference is used as time difference between the current and the previous iteration.

Predicting the state of the target and the covariance
The prediction of the state of the target is performed using the function runFilterPrediction, which takes the
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mass and inertia parameters of the target as input. The class member storing the predicted state is set to the
current estimated state. Thereafter, the orbit and the attitude stored in the state is propagated, following the
dynamic model of the system, and the covariance is predicted. This results in a predicted state for the target
and a predicted covariance. In case of faulty, non matching measurements and sensor data these can be used
as outputs for the iteration at hand.

Updating the state estimation

Having found a prediction for the new state estimate, an update based on the measurements needs to be per-
formed. However, this is only done if both the sensor and measurement information is correct. These checks
as well as the state update (if inputs are accepted) are performed in function runFilterPropagation. First, the
sensor information used by the filter is updated to the latest input. Then, based on the measurement and
sensor information, it is checked whether the measurements are correctly initialized and can be used. Then
itis checked whether the information can be used for state propagation. If not, the predicted state is returned
(see above).

If the update through the filter can be executed, the covariance is updated. Thereafter, the measurement
is predicted, transferred to ECI and the measurement residuum is computed. The state prediction from the
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previous function is then used with the Kalman Gain and the residuum to determine the new state estimation

of the target.

The new code breakdown is shown in Figure 2.4. The black arrows indicate potential exit points, depend-
ing on the decision points explained above, at which a state estimate can be returned. These are usually if
statements in the code that are also implemented in all subsequently developed filters to maintain the gen-
eral structure and purpose of the state estimation update. Furthermore, they are tested in filter unit tests to
verify the filter working principle on a system level. The blue boxes indicate parameters that are determined

throughout the iteration and may be used in subsequent steps.
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2.1.8. Filter unit tests and quality control

This section describes the efforts taken to show the correct working of the filters and the validation of it per-
forming its intended purpose that are used throughout filter development. All methods presented hereunder
are used on the original EKF as well as on all subsequently developed filters.

General filter unit tests
Each aspect in the DLR GNC system, whether application or functionality, has its own dedicated unit test that
checks the functions in the header and the cpp file. Hereby, the focus lies on the following points:

¢ Do all functions accept and return the correct inputs and outputs; this is tested via dedicated functions
to set and retrieve the relevant parameters

* Is the overall input and output to the application or functionality correct and does it make sense?

* Are all if statements and causalities tested and assessed for correct throughput, and do operations pro-
ceed and stop as expected based on their computational performance?

In order to satisfy these, unit tests are fed with different input parameters to assess the performance of the
application or functionality to be tested.

The unit test for the filter is focused on the overall performance of the filter (if it is fed with the correct
input, does it return the correct output, if it is fed with faulty data does it stop the estimation process) and
the correct working of the filter sub-functions, namely filter preparation, state and covariance prediction and
state and covariance correction.

The testing framework that is applied is the BOOST framework, a collection of C++ libraries.

Test compute filter estimate

Initially, the basic_filter class creator is tested by creating a filter without input and checking its default pa-
rameters against the expected ones. Thereafter, a test of the set and get functions for the state estimation is
performed by first generating a random state and then setting the state of the filter to the random state. Then
the filter state is retrieved using the getState() function and the state is compared to the random state that
was used for initialisation.

The computeFilterEstimate function of the basic_filter class is the primary function that returns the state es-
timate. Initially, the filter was simply implemented as one large script and was tested as such, as discussed
above, with all tests discussed in the following applied to one large function. After breaking down the filter
into separate functions, these could be tested independently, meaning that the test could be rewritten and
shortened.

The computeFilterEstimate function executes the functions runFilterPreparation(), runFilterPrediction(),
and runFilterCorrection() and checks whether the timestamp on the incoming information is correct as such
that the filter should perform a state estimation. Thus, the function only needs to be tested for three distinct
cases: The filter propagates the state only and does not perform correction based on the incoming measure-
ments (this is the case in the initialisation of the filter); the filter state estimate remains unchanged due to no
time difference between incoming information (this avoids that the filter estimates twice at the same time
step); The filter updates the state as required (this is tested using the sensor dummy as data source but could
also be performed with other data sources); the impact of the input from different data sources is tested in
the test for the filter correction (see below).

All subsequent tests for filter functions are performed by defining two separate basic_filters, filter_1 and
filter_2. They are run by letting filter_1 run through the function as it would in the normal filter application,
and by running the relevant computations separately and explicitly for filter_2. Thus, by only running the
right relevant computations for filter 2 and comparing the outputs of filter_1 and filter_2, for every decision
point in a filter function it can be determined whether it performs correctly.

Test filter preparation

The key class member set in the runFilterPreparation() function is the time difference between the time of
the new state of the servicer and the time of the state estimation from a previous iteration. Thus, two states
are generated, one for the estimate and one for the servicer, and a known time for either is implemented.
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The filters are initialised with these inputs. runFilterPreparation() is executed for filter_1. Thereafter, the
estimated state of the target is retrieved from filter_2 and compared to the state of the servicer. The time
difference is calculated and compared to the retrieved time difference from filter_1. It is crucial that the time
differences match since otherwise the filter may propagate the state estimate when it shouldn’t.

Test filter prediction

The state prediction and the predicted covariance matrix are the elements of the runFilterPrediction() func-
tion which need to be tested. Again, a random state for target and servicer with distinct times (as such that the
filter would execute) are generated and used to initialise both filters. Measurements and active sensors are set
for the filters, and both filters run the function runFilterPreparation(), to ensure that the starting conditions
for the following test match. Next, filter_1 executes runFilterPrediction() predicted target state is retrieved.
For comparison, the state estimation of the target is drawn from filter_2 and propagated separately to become
the state prediction of the target at that timestep. Thereafter, the states are compared. The covariance can
be extracted from filter_1 and compared to the predicted covariance based on the new state prediction (the
function covariance.predictCovariance() is already tested in the covariance unit test).

Test filter correction

The function runFilterCorrection() is the most complex filter function and thus requires the most test cases
in unit testing. Several distinct cases are performed, for all of which the setup is the same. Just as in the pre-
vious test case states are generated and used to initialise the filters. In addition masses and inertias for the
target and the servicers are generated, measurements and active sensors are set. Afterwards, each test case
goes through the same routine: The time of the servicer state is updated and both filter_1 and filter_2 execute
runFilterPreparation() and runFilterPrediction(). Then only filter_1 executes runFilterCorrection(), while the
indivdiual steps of runFilterCorrection() are performed separately and independently for filter_2. Afterwards,
the resulting state estimations for the target state are compared.

The cases that are tested result from the different possible conditions that can occur. They differ by
whether the state is solely propagated or corrected and which filters are used. The test cases are listed be-
low:

¢ Case 1: Propagation only due to non-existent prior measurement

* Case 2: Update state using sensor dummy: at the second time step, previous measurements are avail-
able, so the filter should update (correct) the state estimation in the runFilterCorrection() step

* Case 3: Update state using the CCD camera: It is tested whether the filter can change to a different sen-
sor type based on the given information input on active sensors, and whether the update is performed
correctly

* Case 4: Update state using the PMD cam: this is the same approach as in case 3 but for a different
sensor type

¢ Case 5: Update the state using a merger of CCD and PMD camera (sensor fusion): This is similar to the
previous tests, but here it is tested whether the filter can correctly deal with both sensor inputs at the
same time

¢ Case 6: no new PMD measurement is supplied, only the CCD measurement should be used for an up-
date of the state estimate: This is tested for by only updating the timestamp for the CCD measurement;
it needs to be tested to be sure that even in sensor fusion mode no outdated measurements are used
that could disturb the estimation

¢ Case 7: No new PMD measurement and faulty time stamp on the CCD measurement (in the future), so
the state estimate for the target should only be propagated: This is similar to the case 6, with the added
twist that now also the CCD measurement is faulty, so the filter should go back to propagation only

These test cases cover all filter functionalities for state estimation. Sub-functionalities such as covariance
class specific functions are tested in separate unit tests that were generated before the start of this research
project. Covering them all would exceed the scope of this report. The test cases discussed here are applied
for all filter modes to be developed as appropriate.
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Quality control

Quality control and continuity during the development of new functionalities in the GNC system is ensured
through several steps taken by all developers.

Whenever a new branch is developed and compiled it needs to pass not only its own unit tests, but all other
unit tests are run in parallel. As such it is avoided that new functionalities or changes to existing code affect
other aspects of the GNC system negatively before merging the changes into the main branch. Errors are thus
caught early.

In addition, a review process is in place in which each branch is reviewed separately by another developer
who was not involved in the writing of the code. This ensures that code is legible and clear, which facilitates
understanding code even for new team members since documentation and structure are kept consistent.
This also ensures that merger problems, such as conflicting changes, are caught early and by multiple devel-
opers.

Furthermore, regular hardware tests in the hardware-in-the-loop test facility EPOS2.0 make sure that the
GNC delivers the desired results and performance. The system has the ability to reset to an earlier (working)
version in case something does go wrong, so there is always a functioning version at hand for testing is need
be.

Since when developing new filter modes it is crucial to be able to retrieve performance figures faster than
only when running hardware tests, a new performance test is developed specifically for filters. This is impor-
tant for the following reasons:

¢ A filter yielding unrealistic results could pass a unit test but may require an emergency shutoff in the
hardware facility if results stand to damage machinery; a simulation test allows for mitigating this risk
and testing filter performance in a safe environment

¢ Asimulation performance test can quickly give information on how realistic filter results are and whether
results are converging or diverging

e Many different scenarios and input conditions can be tested very quickly, which can help to identify
possible problems early

For these reasons it was concluded that in addition to the hardware tests simulation tests would be added to
the project.

2.2. Filter alterations: utility functions and filter modes

In order to be able to develop further filter modes and integrate them effectively into the existing gnc system,
several alterations are undertaken with regard to the existing filter structure.

At the start of the research project only one filter exists, the currently applied extended Kalman Filter. The
filter was developed as a single large C++ application, with a header and cpp file. Since it was deemed not
practical to write large filter mode files for the development of further filter modes, it was decided that the ex-
isting filter would be split down into filter modes and filter utilities. The filter utilities would include functions
used by most or every filter mode and thus serve as a pool of functions that the different filter modes to be
developed could draw from as need arises. As such, repeating the same code in every filter mode is avoided
and a better overview over the code can be gained. Furthermore, alterations to such filter utility functions
only need to be applied in one place, the filter utility function itself, in order to affect all filter modes that
utilise them, saving time and avoiding continuity errors. This makes the development of further filter modes
considerably easier.

From the existing filter, the following functionalities are outsourced to general filter utility functions:

* Get measurement vector ECI: converts measurements from the servicer body frame to ECI, returns a
7-D measurement vector in the ECI coordinate frame; the function is used in generating the measure-
ment residuum

¢ Get measurement prediction; computes the measurement prediction; the function is used in the state
update step and returns a 7-D measurement vector containing the predicted measurement

* Getsingle measurement prediction: this function is used as an intermediate helper functionin Getmeasurementpredictio
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¢ Get measurement residuum: computes the measurement residuum used in the filter update step and
returns meas_residuum stored as a measurement vector

¢ Get measurement residuum sub: this function is used as an intermediate helper function during the
determination of the measurement residuum

» Setused sensor: this function sets the sensors used by the filter based on the active sensor that is passed
through from overhead filter class, which in turn gets sensors set via telecommands. It returns a bit-
mask with the used sensor information. The function is applied in all filters and each filter has its
own member function that calls setusedsensors, since it is crucial that the private member of each fil-
termode which describes the used sensors can be targeted specifically. Thus each filter mode has a
setusedsensor function that sets its specific used sensors using the filterutility function.

» Execute filter update: This functions checks whether the sensor inputs are satisfying to perform a full
filter update or whether to only propagate the state estimate. This function was outsourced to the filter
utilities when more filter modes were implemented in order to avoid repeating unit tests specifically
for this function in every single unit test for each filter mode.

Having outsourced the filter functions that are to be used by all filter modes, a sub-directory is opened in
the filter directory of the gnc repository. In this sub-directory, the existing EKF is included as a baseline filter
(in the form of header and cpp files called basic_filter). As is shown in Figure 2.5, the overarching filter then
draws the critical information from the filter mode basic_filter, where all relevant filter calculations are per-
formed. The basic_filter filter mode in turn uses functions saved under the filter_utility directory to perform
these calculations. This setup has the following advantages:

¢ New filter modes can be implemented in the same way as the currently used basic_filter in the fil-
ter_mode directory

¢ New filter modes can all draw from the same pool of filter functions in filter_utilities and thus avoid
continuity errors

* Since the overarching, already existing filter file in the filter directory pulls the relevant information
from the filter mode it is told to use, the wider interaction of the filter with the gnc system is not affected;
the only change is internally contained in the filter and the filter modes

¢ In order to change the used filter mode, the overarching filter simply needs to be told what filter mode to
select and draw data from; this can be done via a simple telecommand or by using a local configuration
file that is specified in test runs. Before every test run, the configuration file containing the right filter
is selected.

This setup lends itself to add more filters in an easy and fast way, and the selected filter mode can quickly
be changed for another one. If it becomes apparent during the development of new filter modes that func-
tionalities are repeating in multiple filters these can be added to the filterutilities directory, avoiding the rep-
etition of code.

2.3. Expanding filter options

This chapter described the setup and functionalities as well as initial changes to the existing EKF used by DLR
at the start of the project. The detailed computation steps were explained and the setup within the wider GNC
system was outlined.

Having described the filter setup and restructure, the next step is to determine the approach for develop-
ing more filter modes that can be viable alternatives for the existing EKE
In order to allow for a comparison between the different filter modes and to test them using the same testing
conditions and environments they are structured similarly and integrated in the DLR GNC system as well.
This is explained in the next chapters.
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2.4. Considerations for navigation filter development

Having explained the background to navigation filtering in satellite applications and the existing Extended
Kalman Filter that is used as a baseline for this project, this section briefly summarises and expands on the
themes that need to be considered for further filter development.

2.4.1. Requirements on interfaces

To be integrated in the wider GNC system and to be successfully tested, all filter modes that are implemented
as a potential alternative to the existing EKF should be able to incorporate the same inputs and outputs as
the EKE This means that they estimate a target satellite state that has the same dimension and parameters.
Furthermore, all new filters need to process the same measurement information and sensor information, and
should be able to output the same intermediate information as the existing filter. This is controlled via the
overarching filter class, which, for example, has functionalities extracting and setting parameters such as the
active sensor information, covariance and time information for each filter mode. Controlling each filter mode
using the same interfaces with the overarching filter class that the existing EKF is already using allows for only
adjusting the new filter modes and this overarching class rather than adjusting the wider GNC functions.

A big advantage of this approach is that new filter modes can easily be added and the filter structure can be
standardised.

All new filters should have a functionality equivalent to the computeFilterEstimate function of the original
EKF which only returns the latest state estimate based on the input parameters. The inputs should match the
EKE

Furthermore, an important requirement is to be able to switch between filter modes for testing purposes.
To do so, the overarching filter class needs to be provided an input parameter indicating which filter mode to
execute (meaning which filter mode computes an estimate). This can be done via configuration files used for
GNC initialisation.

2.4.2. Technical requirements
Only few technical requirements can be defined clearly at this point. They are primarily based on the general
performance expectations for navigation filters as a whole.

Generally, the state estimation performance of new filter modes should match or exceed the performance
of the existing EKE However, since the new filter modes need to be implemented and tested first, and their
performance may be worse (which wouldn’t defeat the purpose of the project), the following more general
requirement is stated:

¢ State estimate converges from any realistic initialisation state provided measurements of the target
state: This means that the state estimate of any given new filter mode converges to the state of the
target satellite. The initial state given to the filter mode as an original estimate is hereby irrelevant.

» The filter should be able to perform a state estimation based on realistic filter inputs: Throughout a
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close-proximity satellite operation the inputs passed to the navigation filter by the GNC system vary
across time. Especially the measurement information quality will change and include occurrences of
outliers, delayed measurements and changing update frequencies. New filter modes should react to
these realistic input conditions that could be expected throughout a real mission in space in a way
comparable to the EKE meaning that outliers and delayed measurements do not cause instantaneous
filter estimate divergence.

Filter modes should allow the GNC system to perform autonomously in the same way the EKF allows
it to at the start of the project. This means that the same test procedures can be performed as for the
EKF using the new filter modes. No additional human interaction should be required that exceeds the
current standard to run the filter modes.

The filter modes should be able to perform a filter iteration step at a frequency of around 10 Hz. This
matches the current EKF frequency and should not be exceeded greatly since otherwise a stable per-
formance in the test facility may not be ensured any more.

2.4.3. Development requirements
Throughout the filter development and implementation, several requirements need to be fulfilled. They are
presented here.

¢ The filter modes should be structured similarly (preparation, prediction, update steps) to ensure easy

comparability

« Allfilters need to include progression checks similar to the EKF that check whether, based on the quality

of the incoming information, a new filter iteration is performed, and whether this iteration is a full
iteration or just contains a state prediction step

« All filter functionalities need to have a dedicated unit test that checks the correct working of the indi-

vidual function under different input conditions, the same way as described for the original filter in
Chapter 2.

« All filter modes need to be included and tested in a simulation performance test and show state esti-

mation convergence from different starting conditions and under realistic input conditions before they
are used in hardware tests to ensure safe operation of hardware facilities
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Having determined the structure and working principle of the existing navigation filter and wider implemen-
tation in the GNC system, as well as the resulting requirements on the filter development and filter perfor-
mance in previous chapters, this chapter describes the potentially viable navigation filter concepts to the
existing EKE First, the viable alternatives found in literature are described, followed by a qualitative compar-
ison of the different options to decide on the best filter concepts for development and implementation with
subsequent testing. Then, the selected most promising filter alternatives are developed.

3.1. Viable filter alternatives for currently used filter

As was discussed previously, a wide variety of navigation filters has been developed over the past decades.
Many of them are used in real-life applications, some of which have specifically been developed for certain
applications, while others are rather theoretical with no real world hardware application. Several potential fil-
ter alternatives were chosen for a qualitative comparison as viable alternatives for the EKF in close-proximity
satellite operations. They were chosen from a pool of possible alternatives described in [29]

The 6 filters presented in this section were chosen based on several requirements presented below. The
filters were selected based on their expected or documented performance in these categories. For the full
filter decision process the reader is referred to [29].

Visual navigation filter requirements
Throughout an extensive literature study presented in [29], several reoccurring criteria were found that de-
termine whether a navigation filter performs well. These were presented in Chapter 1.

Criteria for close-proximity space operation

In addition to the normal requirements for visual navigation systems, space environments and specifically
applications in close-proximity operation set challenges that need to be overcome. The autonomy of a sys-
tem is important since systems are difficult to access. This requires navigation filters to operate fast using
relatively few resources, since system resources may be limited. Close-proximity operation requires state
estimates from visual navigation filters to be highly accurate. This is crucial since high relative velocities be-
tween a target and a chaser object could lead to dramatic true state to estimated state offsets if a filter executes
too slowly or doesn’t provide a high accuracy.

The different mission needs also play a role, as a satellite navigation filter estimating multiple states at once
has different requirements than a satellite estimating a single state. For the purpose of this selection process
a single target was imagined.

Filters are purely selected based on their documented or expected performance given the challenges and
criteria presented above. No quantitative comparison is possible at this point, which is why a multitude of
filters from different areas of the design space are chosen. Based on the design space for filtering presented
in [29], filter options from both the "linearising" and "nonlinear" branch are chosen. From nonlinear estima-
tion methods several filters are chosen that feature different numerical approximation methods. The chosen

33
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filters are shown below.

3.1.1. EKF with smoothing

The conventional EKF uses linearisation to approximate nonlinear systems and uses simple steps for state
prediction. The Extended Kalman Filter with smoothing (EKFS) presented by He et al. offers an alternative
to the EKF that is similar in its setup, apart from the fact that it uses different Taylor series explosion points
and Jacobian matrix calculation points. By using a preliminary state prediction and update, and recalculating
these points based on this preliminary update He et al. have shown improved performance over the original
EKF in [13].

This filter mode was chosen as it was seen as a viable alternative and promising performance parameters in
real-time applications, in particular in space environments. The increased computational complexity should
not be extreme enough to limit the application dramatically.

3.1.2. Unscented Kalman Filter

The EKF propagates the mean of a range of possible states. In a non-linear system, the state space may
propagate differently than the mean of the state space, thus resulting in a misrepresentation of the potential
states by its mean after an iteration step. The Unscented Kalman Filter (UKF) aims to address this issue by
propagating multiple possible states, or sigma points, of the state space and thus representing the possible
state distribution. The output state estimation, or most likely state, is the weighted mean of this state space
after an iteration step.

Choi et al. could show improved accuracy over the EKF using this method in [8]. This method was chosen for
its potential performance improvement. However, it remains to be seen whether the increased computational
demands exceed the EKF as such that the filter is impractical to apply. Nevertheless, Theil et al. already
showed real-time application and implementation in space environments in [27].

3.1.3. Ensemble Kalman Filter

The Ensemble Kalman Filter (EnKF) as presented by Evensen in [12] was selected initially since it offers an
interesting alternative to the EKF in navigation application. The filter has thus far primarily been used in
areas like data management, phase transition tracking and environmental assessment but few examples of
navigation applications are known. Nevertheless, Yousif et al. mention this as an opportunity for the filter,
which has potential for real-life real-time applications.[34]

The EnKF works in a similar way as the UKF and aims to address the issue of error introduction through
linearisation and neglecting of third-order moments encountered in the EKE It does so by assessing the pos-
sible state space represented by state vectors that are collected in ensemble clouds (similar to the UKFs sigma
points) but differs from the UKF through the use of heuristically chosen ensemble members.

To make this filter work the distribution is Gaussian and around 100 ensemble members are sufficient to
propagate a state. The filter is initialised using randomly chosen conditions and is corrected once measure-
ments are available. Miller et al. have showed the improved performance of the EnKF over the EKF particu-
larly in highly non-linear systems.[23] However, the greatly increased computational effort may be a limiting
factor for this filter in autonomous real-time application.

3.1.4. Rao-Blackwellization Particle Filter

Particle Filters, also referred to as bootstrap filters or Monte Carlo filters, use a stochastic sampling approach
to estimate state propagation in analytically intractable systems. They are thus highly suitable for non-linear
systems. These filters allow for multi-modal tracking and have often been applied in target-tracking, posi-
tioning and navigation tasks that are complex and require re-localisation. Particle filters can be understood
as a continuation of the UKF and the EnKE Possible states are drawn directly from the state space at every
time step of the iteration with non-Gaussian distributions, which means that more points are required than
for the UKF and the EnKF but, with increased sample size, more accurate state estimates are possible.
Applying the particle filter is requires knowing a state vector, its likelihood, the sample size and the system
dynamics. Multiple samples are drawn from the state space and their respective weights are allocated based
on the available measurement. Iteration commences and particles are selected based on their weights, re-
sulting in a newly unweighted set of particles, which is used for re-sampling to predict a state. A detailed
mathematical description of the sampling approach and propagation method is shown in [35].

While some real-life navigation applications could show superior performance especially in convergence
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speed and accuracy over EKF and UKE the Particle Filters are severely limited by their highly extensive com-
putational demands. This makes PFs more suitable for long sampling intervals, which may not be possible
in autonomous close-proximity satellite operation. Furthermore, PFs are dependent on the chosen sampling
approach. For the PF at hand, the Rao-Blackwellization sampling method was chosen, which has been shown
to have reduced computational times compared to other filters and has found some, if limited, application
in real-life localisation, map-building and autonomous robot navigation. However, these examples are usu-
ally in highly complex environments that requires tracking of a multitude of landmarks, which exceeds the
demands of state propagation and estimation.

3.1.5. Mixture Kalman Filter

Mixture Kalman Filters are a combination of RBPFs and EKFs using resampling and rejection methods. They
can be adjusted to be applied in non-linear systems, as was presented by Chen and Liu in [20]. This filter can
be seen as an extension of the RBPF that has been adjusted more for real-time application which makes it ap-
plicable in navigation tasks. However, the complex sampling approach is still computationally demanding.
The filter is in very early stages of development and has not found wide-spread application yet. Neverthe-
less, it is a promising alternative for the EKF in navigation tasks, in particular in larger systems with more
resources.

3.2. Filter selection for further study

In order to be able to implement and test filters in the existing GNC system within the given time for the
project, the filter selection shown above is narrowed down further. This is done since it is decided that only
2 - 3 filters are realistic to be implemented and tested properly within the given time, and will still allow for
answering the research question. The original plan to implement and test all potential filter alternatives had
to be changed since it was not deemed realistic to perform these tasks within the given time frame. The
selection criteria for narrowing down the selection are qualitative since no consistent test data is available yet
that would allow the quantitative comparison of each filter. The same criteria that were shown in chapter 1
are used. The rating of each filter in each category based on the available documentation is shown below.

3.2.1. Qualitative filter rating
The filter rating by category is shown and reasoned below. Filters are rated from 1 (poor expected perfor-
mance) to 10 (outstanding expected performance).

Readiness to use in real-time application
EKFS: Rating 8: The EKFS can show proven examples in real-time application and is expected to have
computational requirements that do not exceed the EKF by much.

UKEF: Rating 6; Some examples of real-time applications are available. This filter is expected to perform
better than the EnKF and the RBPF since these require the processing of more state space representation
points. However, the computation time is expected to be longer than for the EKFS.

EnKF: Rating 4; A large amount of state space members need to be tracked, causing increased compu-
tational effort which could be a problem for real-time application. Not many examples of applications in
real-time real-world autonomous systems are available.

RBPF: Rating 5; This filter has already been used for real-world and real-time application, however, not
under as stringent requirements as are present in close-proximity satellite operation. The filter is expected to
perform better than other particle filters but not as well as EKFS and UKF due to a highly increased number
of data points to track and propagate.

MKEF: Rating 8; The MKF was specifically designed for real time application and is thus expected to per-
form well. However, little real-time real-world application could be observed yet.
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Ease of implementation

EKFS: Rating 7; Since the EKFS implementation is expected to essentially require an adjustment to the
already existing EKF through the calculation of an intermediate smoothing state and the new calculation and
explosion points of jacobian matrix and Taylor series expansion it is expected to be easy compared to the
other filters.

UKEF: Rating 6; The UKF is well documented and has found numerous applications. It is slightly more
complex than the original EKF since it requires the determination of the sigma points and their individual
propagation.

EnKF: Rating 5; The EnKF is similar to the UKF but has found less use cases and real-world applications
are thus less documented. The Gaussian sampling from the state space should be comparable in implemen-
tation effort as the UKE

RBPF: Rating 5; The same reasoning applies for the RBPF as for the EnKE

MKEF: Rating 4; The MKF has found very little real-world application and is thus expected to be the most
tricky to implement. Furthermore, the parallel implementation of multiple Kalman Filters is expected to pro-
vide additional difficulty.

Use in space applications

EKFS: Rating 8; The EKFS has a proven track-record of applications in space systems. It runs fast and pro-
vides accurate results and is thus suitable for navigation filtering ins satellite systems. Since the filter requires
little resource in addition to the EKF the filter is expected to work well in autonomous systems as well.

UKE: Rating 5; Theil et al. have already hinted at implementation in space applications in autonomous
systems ([27]) but further applications need to be seen. It is more complex than the EKF and EKFS and may
thus not work quite as well.

EnKF: Rating 2; No shown track record in space applications and only little real-world and real-time ap-
plications make the EnKF an uncertain filter for space applications. Furthermore, the high computational
complexity may require a large systems and hinder autonomy.

RBPF: Rating 3; While the filter is similarly complex as the EnKF it has a couple of real applications and
has been used in autonomous systems. Still it may not be suitable for small system autonomy and the re-
quirements for close-proximity operation.

MKE: Rating 1; There is no substantial track record of real-world application and the applicability for
space applications cannot be assessed. It is expected that the high computational complexity (despite being
designed for real-time application) would counteract an application in an autonomous space system.

Novelty of approach
EKFS: Rating: 3; the EKFS has been applied in a few systems and its application, while new for the pur-
pose at hand, is not novel in itself or even the field of satellite operation.

UKEF: Rating 5; While the UKF has been applied in a few systems and the application in space systems has
been discussed the approach is not as common for real-world real-time space applications as for example
the EKF and EKFS.

EnKF: Rating 7; The EnKF would be a novel approach in the area of satellite operation and real-time visual
navigation. Little other documentation is available.

RBPF: Rating 6; The same reasoning as for the EnKF applies to the RBPE However, this filter has found
application in more examples found in documentation and is thus ranked slightly lower.
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Table 3.1: Assessment of filter options by qualitative scoring

Criterion EKFS | UKF | EnKF | RBPF | MKF
Real time use [5] 8 6 4 5 8
Implementation [2] 7 6 5 5 4
Use in space [4] 8 5 2 3 1
Novelty [2] 3 5 7 6 8
Visual systems [4] 5 7 6 8 5
Final rating 112 100 76 91 88

MKE: Rating 8; The MKF would certainly be a novel filter approach in the field of autonomous satellite
operation. It has been envisioned for use cases like the one at hand, but the fact that it is still in early stages
give it an interesting advantage over the other filters.

Accuracy in visual navigation system

All filters can be, and have been, used in visual navigation. Differences arise primarily from computa-
tional complexity and accuracy of estimation, since these are the deciding criteria in close-proximity visual
navigation of satellite systems.

EKFS: Rating: 5; The EKFS has shortened computational times compared to the other filters and is ex-
pected to outperform the EKF in accuracy of estimation. While the latter aspect may not be quite as good as
for the other filters it is ranked highly for the expected combination of speed and accuracy.

UKEF: Rating 7; The UKF has found application in visual navigation systems and delivers very accurate
results, more so than the EKFS, but it features increased computational complexity.

EnKF: Rating 6; Similar to the UKE the EnKF is expected to deliver very accurate results, but at far longer
computation times than the UKE

RBPF: Rating 8; The RBPF would be expected to deliver the most accurate state estimation if given the
longest computation times. Since the project at hand requires a balance between speed and accuracy though
the RBPF is rated with an 8 instead of a 10.

MKE: Rating 5; Little can be said about the application of the MKF in visual navigation systems. From the
documentation it is expected that it performs well.

3.2.2. Qualitative filter comparison and trade-off
The criteria rating of the different filter options is summarised in Table 3.1.

The trade-off shows that the EKFS and the UKF are the two filter options that are most suitable for imple-
mentation and testing given the project scope and requirements. This is not surprising since they have both
been used in other systems and are thus well documented. They are expected to deliver results superior to the
EKF with the least added computational complexity and are thus suitable for real-time application. As a third
option, the RBPF could be implemented which would be a more novel and certainly more complex approach
which would beat the other filter options through expected improvements in state estimation accuracy.

This trade-off was repeated by using an Analytical Hierarchy approach to cover multiple selection meth-
ods. The results are shown in Table 3.2. While the order of filter outcome is the same it can be seen that the
UKF and the RBPF are closer together.

Two trade-off methods have shown that the best filters to start implementing and testing are the Extended
Kalman Filter with Smoothing step and the Unscented Kalman Filter.
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Table 3.2: Assessment of filter options using analytical hierarchy process

Criterion EKFS | UKF | EnKF | RBPF | MKF | AHP Consistency
Real time use [5] 41.2 15.2 7.7 10.2 25.6 2.1%
Implementation [2] | 43.8 27 11.1 11.1 7.1 1.6%
Use in space [4] 47.6 20.9 10.5 14 7 2.4
Novelty [2] 6.2 11.5 29.6 21.9 30.8 5%
Visual systems [4] 8.9 22.2 19.5 35.5 13.9 2.8%
Final rating 532 | 325.4 | 239.9 315 | 2874 NA

3.3. Development of viable filter alternatives

Having selected new filter modes for implementation and testing, this chapter explains the working principle,
mathematical and functional breakdown of the new filter modes.

First, the Extended Kalman Filter with smoothing step is explained in 3.4, where the structure and calculation
for a filter iteration are outlined. The same is then presented for the Unscented Kalman Filter in 3.5.

3.4. Extended Kalman Filter with smoothing

The Extended Kalman Filter with smoothing was implemented following the documentation presented by He
etal. in [13].

The conventional EKE as is also applied by DLR Oberpfaffenhofen, is a suitable and well-understood filtering
technique for linear and simple non-linear systems. The filter works similarly to the Kalman Filter by can deal
with non-linear systems through a linearisation approach. However, due to this linearisation, estimate errors
can accumulate the more non-linear a system becomes. Furthermore, the uses the same point (or state) as
calculation point of the Jacobian matrix and as the explosion point for the Taylor series. Thus, propagated
and updated state estimates carry on errors from the approximates of these points. The EKFS tackles these
problems by introducing and intermediate state computation (a smoothing state) which is used to determine
more suitable Jacobian matrix calculation points and Taylor series explosion points. The smoothing state is
determined based on an initial state update. Based on a combination of this smoothing state and the original
state estimate of the respective iteration step, the new calculation point and explosion point are computed.
The computation is described in the following.

3.4.1. Technical description
The following description of computation follows He et al.[13]

To determine the first state estimation and update, the EKFS algorithm follows the normal EKF algorithm.
The dynamics matrix F is formulated as shown in Equation 3.1. The superscript 0 indicates that this is a pre-
liminary parameter before the recalculation of the Jacobian calculation point and the Taylor series explosion
point.

F,, e =0f(x)/0x 3.1)

Here, x = X}, meaning that the dynamics equation is found based on the state estimation resulting from the
previous iteration step.
Having determined the dynamics matrix, the covariance matrix prediction can be computed, as shown in
Equation 3.2.
0 _50 0 T
Prok = FeorxPeElpq ) +Q (3.2)

Here, Q depicts the noise covariance matrix. Following from this, the gain matrix can be determined through
Equation 3.3, where R is the measurement noise matrix.

0 _po 0 T, 0 pO 0 \T -1
Kk+1 - Pk+1\k(Hk+1) (Hk+lpk+1\k(Hk+1) +R) (3'3)

Next, the state prediction for the current iteration step is determined, see Equation 3.4.
x2+1|k = f(Xk) (3.4)

Having determined the state prediction and the gain matrix, the first state update can be performed to
determine the first preliminary state estimation, as shown in Equation 3.5. Again, this is only a preliminary
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state update.
0

k1 :x2+1|k+KI(c)+l[zk+1_h(xgﬂlk)] (3.5)
This concludes the first step of the Extended Kalman Filter with smoothing, the determination of a prelim-
inary state estimation. As can be seen, it is in principal the same as the normal EKE The additional benefit
arises from the determination of new explosion and calculation points and the repeated application of EKF
theory, as is showcased in the following.

Determining the smoothing state
Having determined the approximated target state via the same algorithm as used in the EKE a new starting
point for the iteration, the smoothing value, is computed, using Equation 3.6.

Rt = R+ PeCFy 0T (PR ™ By = X) 3.6)

This smoothing value is now used to compute the new Jacobian matrix calculation point to be used in the sec-
ond phase using the EKF algorithm. First, this point is determined, which forms the main difference to the
normal extended Kalman filter, where it is assumed that the Jacobian matrix calculation point and the linear
explosion point are the same. In the original algorithm by He et al., the measurement matrix is also updated
via a new measurement matrix calculation point, however, with the filter at hand, this step can be omitted
since the measurement matrix is only dependent on the state vector dimension, which does not change.

Repetition of EKF algorithm
The new Jacobian matrix calculation point is computed as presented in Equation 3.7.

Xj-calc = (£k+£k|k+l)/2 3.7)

Having determined this new calculation point, a similar algorithm to the normal EKF is applied to incorporate
the changes, starting with the recalculation of the dynamics matrix, shown in Equation 3.8.

F/(C)+l,k = af(x)/(‘ixb‘::x]—calc (3.8)

The new measurement matrix is the same as the old one, since the dimension of the relevant state vector does
not change through the EKF smoothing step, as was discussed above.

Hgy1 = Hy (3.9)

+1
Again, the covariance matrix prediction is determined, using the new dynamics matrix, as shown in Equa-
tion 3.10.
T
Pri1ik = Frv 1,k P (Frr,i)” +Q (3.10)

The gain matrix is also determined the same way as before (Equation 3.11).
K,y = Prsak(Hes) T (Hior Prsai(Hi) ' + R (3.11)

The new computation of the state prediction (Equation 3.12) incorporates the effect of having chosen the
smoothing state as the new linear explosion point by using the new dynamics matrix in combination with the
old and new explosion point.

Frr1ik = f Erikr1) + Frrnk Bk — Zrje1) (3.12)

As before, the state update is computed, as presented in Equation 3.13. In the algorithm presented by
He et al. there is an intermediate step in which the measurement prediction is adjusted by the difference
of the measurement equation h(x) applied to the preliminary state update and the measurement matrix H
multiplied with the preliminary state update. However, as was explained before, in the filter at hand the
measurement equation k(x) is simply equivalent to a matrix multiplication of H with the state x. This extra
term is thus omitted.

R+1 = Xps11k + Kis1 12541 — Hir1 X114 (3.13)

Finally, the covariance matrix is updated as in the normal EKF (Equation 3.14).
Pk+1 = (I_Kk+1Hk+1)Pk+1|k (3.14)

The next iteration can then be started based on the new state estimate X;; and the new covariance matrix
Pys1.
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3.4.2. Functional breakdown

Following the implementation of the EKF used by DLR, several decision points are featured in the EKFS. They
are essentially the same decision points as in the EKE Generally, a state prediction and subsequent update
are only performed when more time than 0.0005 seconds have passed. This is to ensure that a substantial
state update can be performed, and to make sure that no faulty states of the servicer satellite (for example
with wrong time stamps) are used to initialise a new state update. The time stamp that is used as a check is
extracted from the servicer state. If the time difference to the time of the last state estimation is less than the
time threshold the current state estimate is returned to the GNC system.

After the first preliminary state prediction step, a measurement compliance check is performed. The
check is implemented through a functionality used by DLR on all satellite navigation filters. At this decision
point, it is checked whether the measurement used currently by the filter has been initialised in a previous
iteration step, which is critical to perform a measurement prediction. If this is not the case, the state predic-
tion is returned instead of a new state update.

Filter Update step 2
EKFS

covariance

. ol preliminary
update covariance SrETEEE
used sensors
gain matrix
measurement matrix
state prediction | measurements
v v v | |

o measurement o measurement | preliminary state

o prediction i residuum ~ estimation

Smoothing step

dynamics matrix original covariance predicted covariance

———» smoothing state

jacobian calculation
point
predicted state original state

estimate

etermine smoothin:
state

preliminary state
estimate

h 4

Figure 3.1: EKFS structure in addition to EKF structure

This decision point structure matches the EKE However, the EKFS performs another step as was explained
before, where a preliminary state estimate and a preliminary covariance matrix are used to find new explo-
sion and calculation points. Figure 3.1 shows the differences of the EKFS to the EKE starting from point "Filter
update step 2". Before, all steps are the same as in the EKF (compare Figure 2.4).

After the smoothing step, the EKFS essentially repeats the same approach as the EKE using the smoothing
state as shown in the equations above. At this point, the decision points from the original EKF algorithm are
skipped since it is already clarified that a prediction and update step are performed.

3.5. Unscented Kalman Filter

As was described before, the main difference between the conventional EKF and the UKF is that the EKF sim-
plifies the distribution of possible states into one state estimate for propagation, the mean of the distribution
cloud. By doing so, the distribution of potential states, or state space, which changes over the propagation will
not actually be adjusted in the EKFE, and the possibility distribution summarized by the mean (or state esti-
mate) in the EKF may differ dramatically from the true state. The UKF addresses this by propagating multiple
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possible states, the sigma points, which represent the distribution of the state space, and then summarising
them into a mean after the propagation. This preserves the actual distribution of possible states and reduces
the propagation error, in particular over multiple iterations.

3.5.1. Technical description

The UKF is initialized with the same known parameters as all the other states, meaning a state estimation of
vector size n and a covariance matrix of size nxn at a time step k. Furthermore, the process noise matrix Q,
size nxn is available.

First, the sigma vectors at time k are determined and stored in a nx(2n + 1) matrix. The mean vector is
taken directly from the state vector, as shown in Equation 3.15. The remaining 2n sigma vectors are computed
following Equation 3.16 (for all sigma vectors i = 1,...,,n) and Equation 3.17 (for all sigma vectors i = n+
1,...,2n). A lower triangular Cholesky factorisation is used to calculate the matrix square root, following the
documentation of Choi et al. and Wan and Van der Merwe.[8][10]

Ko,k = Xk (3.15)

Fori=1,..,n
Kk =X+ (\/ (n+) (P + Qk)) (3.16)
Fori=n+1,...,2n

Kik=Xp— (\/(n+/l)(Pk+Qk)) (3.17)

In the equations above, A is the composite scaling parameter. It is a constant parameter that determines how
far the sigma vectors are spread around the mean. A is calculated as shown in Equation 3.18, where alpha
and « are constants, and 7 is the state dimension.

/I:az(n+1<)—n (3.18)

Computing the sigma vectors this way ensures an even distribution about the mean of the state space while
simultaneously preserving the distribution which allows to propagate it. This is represented in Figure 3.2
where the propagation of the state space is shown. Starting from the same state estimation for the EKF and the
UKE the EKF simply propagates the state estimate. However, the state estimate is simply the representation
of a space of possible states, which the UKF models through the sigma vectors. By propagating the sigma
vectors, the UKF preserves a more accurate representation of the state space and thus draws a more accurate
state estimate at the next iteration step in the form of a weighted mean of the propagated sigma vectors (red
dot).

As explained above, each sigma vector is propagated separately using the same algorithm as in the other

Propagation of state / sigma vectors
via non-linear function

Propagated state space
Estimated state (EKF)

State space Estimated state space mean (UKF)
Estimated state

Figure 3.2: The UKF propagates a representation of the state space in form of the sigma vectors (black dots) which leads to a more
accurate state estimate (mean of the state space) than for the EKF

filters (see Equation 3.19). This ensures that the propagated sigma vectors represent the actual propagated
state distribution.

Kik+1 = f(Kix k) (3.19)
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Each vector in the matrix x ;1 then represents a propagated sigma vector, meaning that k. ; represents the
overall propagated distribution. The weighted mean of this distribution therefore is the propagated most
likely state, so the state prediction from step k to step k+ 1 can be found from the weighted sample mean of
the columns of k1. The same accounts for the predicted covariance, for which different weights are used.
The weights for the state calculation (w?®) and for the covariance prediction (w°) are determined as shown
in Equation 3.20 through 3.22. Here, « is the same factor as before and f is a term adjusting the weights for
higher order effects. It has been found to be ideally equal to 2.[8]

wy=Al(n+A) (3.20)
wi=Al(n+A)+(1-a*+p) (3.21)

Fori=1,...,2n
w!=wf=1/2(n+1) (3.22)

Having found the weights, the state prediction is determined via Equation 3.23.

2n

Rex1lk = ) WiKi ke (3.23)
i=0

Similarly, the predicted covariance matrix is populated using the sigma vectors and the covariance weights.
Each combination of propagated sigma vector and state prediction yields a covariance matrix. The weighted
average of all these individual covariance matrices then results in the predicted covariance matrix (Equation

3.24)
2n

5 5 T
Pisrje = D W5 (K g1 — Rkr116) Ki 1 — R+ 11k) (3.24)
i=0
The predicted measurement vector is computed in a similar way as the state prediction. The measure-
ment prediction from each sigma vector is determined and the weighted average of the result yields the mea-
surement prediction (see Equations 3.25 and 3.26, respectively).

Incorporating measurement delay functionalities in the UKF

Aswas described before, all filters need to have the ability to incorporate delayed measurements for measure-
ment prediction. This is due to the fact that in a realistic system environment the filter update and measure-
ment update time may differ. Additionally, the image processing may take longer than a filter iteration step,
meaning that the time stamp of a measurement input to a filter may not coincide with the current time step.
Conventionally, this is fixed by saving a state estimate in a state buffer and, in case of a delayed measure-
ment, extracting the state estimate from the past that corresponds to the measurement at hand. However,
this does not work as such in the UKE since not all sigma vectors from all timesteps in the past are saved. This
would require too many resources. On the flipside, if all measurement predictions for a delayed measure-
ments are based on the same state estimate the update step does not function. Thus, it was decided to only
save and extract the single state estimates and reconstruct the corresponding sigma vectors using Equations
3.15 through 3.17 when they are needed to base the measurement prediction on. Minor errors are expected
due to the use of the latest covariance matrix in the recalculation of the measurement updates. These errors
are assumed small enough to be neglected at this stage.

Cikr1 = K ke1) (3.25)
2n

Zevrk = ) (i (3.26)
1=0

The predicted output covariance is then populated similarly to the predicted covariance matrix, but us-
ing the measurement prediction of the sigma vectors and the measurement prediction vector instead of the
propagated sigma vectors and the state prediction vector, as seen in Equation 3.27.

2n
PP =Y Wi — 2o kst — Zrai) (3.27)
i=0
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The innovation covariance matrix P'" is found using Equation 3.28 with a combination of the predicted
output matrix PYY and the measurement noise matrix R.
vv _ pyy
Py =P+ Ren (3.28)

In order to assess the difference between the state prediction and the measurement prediction, the cross
correlation matrix P*Y is computed using Equation 3.29.

2n
P =Y Wik ket — R Cierr — 2 (3.29)
i=0

Finally, the new gain matrix is determined from Equation 3.30.
Ken =P (P! (3.30)

As was the case in the previous filters, now that the state prediction, the covariance prediction and the gain is
known, the state and the covariance can be updated using Equation 3.31 and 3.32 ,respectively.

X1 = i1k + K1 [2r41 = Zier11ed (3.31)
Piev1 = Pppri— Kt (P} + Rie DKL (3.32)

Now that a new state estimation and covariance for the following time step have been found the next filter
update can commence.

Throughout the filter update of the UKF it can be seen that it is in parts similar to the conventional EKE
One of the differences is the use of multiple sigma vectors representing the state space rather than just a single
estimation of the most accurate state. Furthermore, the update process differs since it does not involve the
computation of a Jacobian matrix which makes the implementation more suitable to higher order non-linear
systems.

Weighted average of sigma vectors to determine the new state estimate

Aswas explained in this section, the UKF relies on the propagation and update of sigma vectors. The weighted
average of the propagated sigma vectors eventually yields the new state estimate. The satellite state used by
DLR and in all the following chapters contains the position, the velocity, the attitude and the attitude rate.
The attitude is given in quaternions rather than Euler Angles. Since quaternions feature a more complex
interplay than Euler Angles and are inherently linked taking a weighted average of the quaternions in multiple
sigma vectors may not yield an accurate representation of the true mean state of the state distribution. This
potential problem was only realised after finishing the research for this report and could not be explored
further any more, but should be noted for future tests and implementation.

3.5.2. Functional breakdown

The structure of the UKF is more similar to the conventional EKF rather than the EKFS, in that it features a
prediction and an update step without an intermediate smoothing step. In the same way as for the other two
tested filters, a propagation check is performed based on the time difference between the incoming servicer
satellite state and the latest state estimation (omitted in Figure 3.3), followed by a measurement initialisation
check after the prediction step.

The breakdown of the filter functions can be seen in Figure 3.3. The same colour coding as in previous break-
downs is used.
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Filter performance simulation testing

After having developed two potential EKF alternatives as described in Chapter 3, filters need to be tested in
order to collect data on their performance. As was discussed in Chapter 1, two distinct testing methods, a
simulation performance test and a hardware-in-the-loop test, are applied. This chapter explains the simula-
tion performance testing approach, the test outcomes and the rating of the test data against the performance
criteria.

The reasoning why a simulation test is performed before the hardware-in-the-loop facility testing was
outlined in Section 1.9.5.

4.1. Performance criteria for filter assessment

The selected and developed filter modes can be tested in a simulation performance test before the hardware
test. In order to judge the filter modes, several criteria are developed. Since the filters can be fed with simu-
lated input data, a quantitative comparison is possible based on the numerical output of the individual filter
modes given the same input conditions are fed to each filter. The criteria for quantitatively assessing filter
mode performances were presented in section 1.9.10 and are repeated here for convenience:

¢ Accuracy: determines how close the state estimate is to the true state (simulated true state in the sim-
ulation performance test)

¢ Time to settle: determines how fast the oscillations of the estimate around the true state converge
¢ Stability of the estimate: determines how close the estimate is to the target converges to the true state
* Bias: determines whether a parameter of the state estimate is consistently offset from the true value

¢ Computational complexity and requirement of resources: determines how much time it takes to run a
filter per iteration

The new filter modes, EKFS and UKE can be judged against the original EKF by comparing their respective
performances. Hereby, the following rating criteria will be applied:

* Very poor performance (-): A filter performs 20 + % worse than the original EKF in a given parameter
¢ Poor performance (-): A filter performs 5% to 20% worse than the original EKF in a given parameter

¢ Neutral performance (0): A filter performs within a bound of +5% of the original EKF in a given param-
eter; this bound is set since it is assumed that any performance difference of less than 5% is dependent
on the test conditions and not all possible test cases can be assessed

* Good performance (+): A filter performs within 5% to 20% better than the original EKF in a given pa-
rameter

» Excellent performance (++): A filter performs more than 20% better than the original filter in a given
parameter

In the eventual rating process, each (-) is scored as (-2), each (-) is scored as (-1), each (+) as (+1) and each
(++) as (+2).

45
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4.2, The simulation performance test

The simulation performance test is performed by simulating the pose of two satellites, a target satellite and a
servicer satellite (or chaser). Their states are propagated parallelly, so that a relative orientation and distance
between the two can be concluded at any given iteration step. Furthermore, the state of the target is not only
simulated via propagation but is also estimated from the position of the servicer satellite using the satellite
navigation filters EKE EKFS and UKEF at every iteration step. The satellite navigation filters are fed with the
estimates from their respective previous iteration and simulated faulty measurements based on the relative
"true" simulated position of the two satellites. Thus, all filters are supplied with the same measurements and
servicer satellite positions, but their target state estimates can diverge over time, allowing for a fair compari-
son between the filters as long as they are initialised with the same parameters.

The orbits of target and chaser are Kepler orbits, and the orbital model is a classic two body model consist-
ing of Earth and the individual satellites. Influences from other bodies, such as sun and moon, are neglected,
as well as force inputs. This means the satellites propagate idly. The target and servicer orbits are both com-
puted (and estimated by the filter) in the ECI coordinate frame.

The update process of the simulation performance test is visualised in Figure 4.1. Here it can be seen that
from one time step to the next, the "true" states are propagated and the filter is updated each time, resulting
in a new state estimation.
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Figure 4.1: Simulation test high level overview

4.2.1. Initialisation of performance test
Several parameters are fed to the filter to start a test run, which were mentioned in the description of the
different test cases. They are described more detailed here.

State simulation: In order to initialise the simulation performance test, the state of the target satellite and
the servicer satellite is simulated. This yields the "true" state for both satellites. These states are propagated
through an orbital simulation model and will continuously be used as reference over the course of the simu-
lation performance test to determine the measurements of the target state by the servicer satellite. After the
test, the true target state is compared to the estimated target state resulting from the filter to determine the
performance quality.

Initial target state estimate: The original state estimate of the target satellite needs to be simulated and
fed to the filter to initialise the iterative process. The state estimate is usually chosen close to the true state,
but can also lie far away, depending on the test case.
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Satellite to satellite state difference: The filter is initialised using an original state estimate for the target
satellite which is chosen with a set difference to the true state. Thus, two "true" satellite states are available,
together with a measurement and an original state estimate of the target state. This is enough input for the
satellite navigation filter to determine a state estimate for the next time step. By propagating the "true" states,
the same inputs are found at the next time step. The difference between the satellite states determines the
distance, relative velocities and spin rates, and thus serves to put the satellites either close together or far
from each other.

Measurement error simulation: The measurement of the target state by the servicer satellite is performed
using an available model from DLR. In this model, white noise is added to the measurement to simulate a
measurement error. The magnitude of this error can be chosen.

Measurement outlier simulation: Outliers can be turned on or off for a test run. They are simulated by
defining a measurement outlier and a specific iteration step at which they should occur. At this step, the out-
lier measurement replaces the normal measurement and thus offsets the filter.

Measurement update frequency simulation: Conventionally it is assumed that the for each iteration step
of the filter a new measurement is available. However, this may not be the case. If a filter iteration step is 0.1
seconds but a sensor requires 0.5 seconds, the filter has to reuse the same measurement or purely rely on
propagation for 5 iteration steps until a new measurement is available. The performance test is built as such
that the update step for the filter iteration and the measurement can be set independently. If the update step
for the measurement is longer the performance test does not generate new measurements until a new mea-
surement is "allowed" based on its iteration time. This can be used to either simulate a measurement update
delay or to simulate aliasing effects, since the measurements will come in more stepwise and less smoothly
than the filter performs iterations.

Measurement delay simulation: It was observed in the past that real-life, real-time image processing can
delay the input of a measurement into a filter by a substantial amount of time (up to several seconds). To sim-
ulate this, the simulation performance test is initialised with a set delay time of either 0 seconds (no delay,
measurements are passed straight to the filter), or any number of seconds. In the latter case, the measure-
ment is passed to a buffer that has the size of the ratio between the measurement delay and the filter update
interval. Thus the buffer is passed a new measurement at every filter iteration. Once the buffer is full, the
oldest measurement of the buffer is passed to the filter.

4.3. Test cases used in simulation test

In order to compare the different filter modes in a meaningful way, different test cases need to be developed.
These help to ensure that the filters are tested under the same conditions and that a relevant range of test sce-
narios is covered. This is important since a filter mode may perform better than a second one in one test case,
but may not perform well or even poorer in another one. Furthermore, different test cases should ensure that
realistic conditions are assessed as may be encountered by filters in real missions. This is crucial since filter
modes need to be judged on the quality of performance in scenarios that are relevant for them, rather than
scenarios that they would never encounter. There is no point in performing well under completely unrealistic
conditions.

Since the simulation performance test propagates the target and servicer satellite states idly, the initial-
isation conditions of the test are decisive for a test case scenario. By breaking down the different possible
inputs test cases are defined. As was discussed before, test cases should reflect realistic satellite conditions
that could similarly be encountered in a real mission. In addition to this, it is also interesting to use test cases
that could be modelled in a similar way in the EPOS 2.0 facility to be able to compare filter modes. This helps
to judge the quality of the simulation performance test.

The breakdown of the parameters defining test cases is shown in Figure 4.2. On the high level, the rudimen-
tary parameters that define a test run in the simulation test are identified. The states of target and servicer
satellite are decisive. Furthermore, the number of iterations in a test run and the update interval (time be-
tween separate iterations) affect the test at this level. They need to be set in the beginning of a test run. Finally,
the type of measurement that is fed to the filter modes will affect the performance and thus needs to be con-
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Figure 4.2: Breakdown of test case options, variable parameters (green) and constant parameters (yellow) across test runs

sidered for test cases. This includes the occurrence of outliers, the magnitude of noise, measurement delays
and measurement update intervals.

One level further down, the starting conditions are differentiated for the target and servicer, the masses
and inertia values of the satellites, and the used sensors. Since the target is only observed by the servicer and
propagates unobstructed its starting state is kept the same for all test cases and can be fixed in the beginning
to realistically represent a satellite pose in orbit. Once it is fixed it is irrelevant for the differences between test
cases. The servicer state also needs to be realistic for a satellite in orbit and can be chosen either far from or
close to the target satellite. This distinction is made to identify differences in filter performance when a filter
mode estimates a target state under different conditions which will greatly affect the relative measurement
quality. Furthermore, the distinction is interesting since the EPOS 2.0 facility can only simulate relative states
less than 20 metres apart.

Moving on to the update interval, a distinction can be made between the update interval of the filter and the
update interval of the measurement. The update times of filter and measurement can differ. In real-world
operation, it was observed that the filter usually updates faster than the measurement. This means that mul-
tiple consecutive filter iterations may be supplied with the same measurement. DLR has implemented a
functionality in their navigation filter that ensures to neglect outdated measurements and, in these cases,
simply propagate the state estimate. To simulate this, filter and measurement update step times can be al-
tered. Secondly, it was observed that sensor images can show aliasing effects, where sharp corners are sensed
due to the image resolution, which are not actually there. As an example, a slow moving abject that is ob-
served may be assumed to be in one position since it overlaps with the same pixel for several measurements
and then suddenly "jumps" to the next row of pixels, which offsets the estimated position. This effect is com-
mon in signal processing and can be simulated by "withholding" measurements for several filter iterations.
In addition to the update interval, measurements can also be delayed due to image processing times. This
means that a filter is always fed a slightly outdated measurement. This effect is incorporated in the simula-
tion performance test by setting a delay time at initialisation. A ratio of the delay time divided by the filter
update time is computed and rounded to the next integer, which is used to initialise a buffer of the size of this
integer. The buffer is filled with the new measurement at every filter iteration. Once it is full it returns the
oldest measurement and feeds it to the filter. Thus, a delayed measurement is simulated.

Measurement noise can be altered for a test case by setting the amount of noise and the time of occurrence
of noise. This is used to simulate measurement outliers.

Having identified the possible differences between test cases, test cases can be designed to identify the
performance of the filter modes under the changing conditions. This is done by adjusting one or more of the
parameters mentioned above.

16 different test cases were defined for the simulation performance test. The different test cases are pre-
sented in Table 4.1.

In the following, the test case initialisation parameters are explained:
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Table 4.1: Test cases for simulation test - initialisation

Test case | Range to target | Outlier Filter dt [sec] | Measurement dt [sec] | Measurement delay
[sec]

1 1000 m - 1.0 1.0 -

2 1000 m - 0.1 0.1 -

3 1000 m - 0.1 0.5 -

4 14 m - 1.0 1.0 -

5 14 m - 0.1 0.1 -

6 14 m - 0.1 0.5 -

7 1000 m Large 0.1 0.1 -

8 14 m Large 0.1 0.1 -

9 14 m - 0.1 0.1 0.5
10 14 m - 0.1 0.5 0.5
11 14 m - 0.1 0.3 0.5
12 14 m - 0.1 0.1 0.3
13 14 m - 0.1 0.5 0.3
14 14 m - 0.1 0.3 0.3
15 14 m Small 0.1 0.1 -

16 14 m Small (10) | 0.1 0.1 -

Range: The range parameter sets the relative position of the servicer satellite with respect to the target.
The servicer position is based on the fixed target position. In close operating condition, the distance is set to
14 metres in x direction behind the target satellite. In far operating condition, it is set to 1000 metres behind
the target in x, y and z direction.

These two ranges were chosen to identify the accuracy in close and far operation, especially given that mea-
surement accuracy changes with distance to target.

Measurement outliers: Measurement outliers are either large or small. They are chosen to reflect either
slight offsets or great disturbances to identify whether filters can resettle the estimate around the true target
states. Outliers are generated like normal measurements. However, they are not based on the true target state
but rather on an intentionally faulty target.

Large measurement outliers are implemented after 100 iterations. The faulty target state has a height of 7e6
m, ascension of 0.7 pi and inclination of 0.8 pi.

Small outliers occur after 1500 iterations. They are based on a target state which is derived from the true tar-
get state but has an offset to the true state of 1 metre in x, y and z direction.

The small outliers occur later in the test run since their smaller offset may be hidden in the filter estimate error
fluctuation early on in the test run. The amount of offset in the small outlier case was chosen based on ex-
pert advice. The large outlier offset was generated with random orbital parameters once and fixed afterwards.

Filter update time: From real-world experience it is known that the navigation filter run at around 10 Hz,
whereas the measurement update interval can lie anywhere between 0.1 and 4 seconds. Thus, these param-
eters are altered across the different test cases.

Measurement delay: The measurement delay is varied in test cases 7 through 12 to identify whether there
are accumulation errors between the same or different measurement update times and delays.

4.3.1. Structure of performance test

This section outlines the practical setup of the simulation performance test. The process-flow is shown in
Figure 4.3. After the definition of the test cases (see Section 4.3) and the resulting definition of inputs required
to perform the filter iteration, the simulation test can be started. All filter modes that are tested are initialised
using the estimated target state, the original noisy measurement from the true target and servicer satellite
states, the active sensors and the update time difference. Based on these inputs at time t, each filter mode
separately determines a new state estimate for time t+1. This state estimate is passed to a logging function for
each filter. Furthermore, the time it took the filter mode to compute the new state estimate is logged, as well
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Figure 4.3: Update structure of filters in the simulation test

as the covariance matrix at t+1. Then, the true states are propagated using the same orbit propagation model
that is used in the filters. At the new time step, it is checked whether a new measurement should be passed
to the filter modes, based on the measurement and filter update interval time. Then the iteration is repeated
and the new results are logged.

All tests are run for 3000 iterations.

4.4. Setup of analytical assessment

The outputs of the performance test are logged in csv files, one for the each filters state estimate and covari-
ance, respectively, and one file for the iteration time log. These csv files are then read into a Python tool that
was specifically designed for this purpose.

The Python tool utilises the pandas library to read csv files and store the content in data frames. Thus,
each logged parameter can be accessed.

4.4.1. Data read-out
For each logged parameter, the data is read into data frames and then analysed.

State estimates: The state estimate logger in the performance test logs both the state estimate and the
true target state in the same file, meaning that for each filter both these states are logged side by side and
can be read out in Python as such. This facilitates the analysis greatly since no matter whether test cases are
changed or not, the corresponding true state to the state estimate is available and is read out at the same
time.

After read-out, states are stored in data frames which allows to compare individual parameters or overall de-
viations of the respective estimate from its corresponding true state.

Covariances: Covariance matrices do not have a corresponding "true" covariance and are thus read out
separately. The assessment is thus not possible with a true reference covariance but only becomes meaning-
ful in comparison with the other filters.

Time log: The time log stores the amount of time a filter runs to determine a new state estimate at each
iteration step. The log file contains the information for all filters for a specific test case. The read out of this
file thus allows for a direct filter comparison.
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4.4.2. Working principle of performance assessment
The performance assessment is broken down into several stages. A code sample is shown in Appendix A.

Read-in and data frame extension:

In this first stage, the filter output data is read from csv files into pandas data frames. Each filter output is
read into a separate frame. Since this initial data read-out contains the estimated and true state parameters
but not the deviation of the estimate from the true parameter the data is modified using the functions pos-
DataFrame(df), velDataFrame(df), quatDataFrame(df) and rateDataFrame(df). These functions all follow
the same principle. They add new columns to the data frame to store the difference between the parame-
ters, 3 columns for x, y and z position in posDataFrame, 3 columns for x, y and z velocity in velDataFrame, 4
columns for quarternions x, y, z and s in quatDataFrame and 3 columns for the spin rate differences in x, y
and z in rateDateFrame. Equation 4.1 shows an example for the position error computation using the data
frame structure. In addition, posDataFrame and velDataFrame add another column for the absolute position
and velocity error (combination of error in %, y and z direction), respectively, as shown in Equation 4.2.

dflx—position—error]l=dflestimated —x— position] —df[true—x— position]
dfly—position—error|=dflestimated —y— position]| —df[true—y—position] (4.1)

dflz—position—error]=dflestimated —z— position]l —df[true—z— position]

— 2 2 2
abserr = \ Xerr t Yerr + Zerr (4.2)

Since it was deemed that quarternions were not always suitable for visualisation purposes another func-
tion was implemented that adds 3 columns with the attitude error in Euler angles in x, y and z orientation,
which are computed based on the quarternion error computed before.

The thus found errors in the filter parameter estimation can be used for filter performance assessment.

High level performance assessment:
For a high level performance assessment the total error and mean error by state parameter is determined for
every filter. For an assessment of position and velocity the total accumulated error of the absolute error over
the entire test run is determined. Based on the total error, a high level computation of the improvement of
the new filter modes over the original EKF is performed, as in Equation 4.3, where error represents the error
of a state parameter estimate, i is the filter test iteration number and i;.s; is the total number of iterations in
a test run.

itest
lee(v) errorfiiterMode

% —improvement—to—EKF=(1- )-100 (4.3)

Yl errorgkr

New testing approach for numerical comparison:
Filter performance assessment is usually discussed when new filters are developed. However, filter perfor-
mance comparison seldom advances beyond a simple comparison of high level accuracy assessments and
a comparison to an arbitrary baseline. Thus, a new filter assessment approach was developed to be able to
compare filters fairly and using mathematically determined performance parameters.

This new performance assessment allows to judge the convergence of the filter numerically. It was ob-

served that usually when a filter estimate converges towards the true state it doesn’t do so smoothly but it
fluctuates towards and around the true state. This fluctuation is reflected in a fluctuation of estimate errors
as well, meaning that the estimate error increases and decreases, and thus, over the course of the test runs,
forms local maxima (or highpoints). This can be used to determine mathematically when convergence is
reached.
It was defined that for an estimate to be converged it needs to stop continuously approaching the true state
but rather needs to have started fluctuating around the true state. The point where convergence is said to
start thus splits the test run into a section before convergence, and a tail-section where the estimate is con-
verged.
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To determine the onset of convergence, the parameter error at each iteration step is determined, as was
shown above. Next, it is assessed for each iteration step whether a there is a local error maximum. Each local
maximum throughout the test run is saved in a new data frame. Out of the list of local maxima the first low lo-
cal maximum is determined, meaning that both the local maximum before and after have higher error values.
This first low local maximum is called the boundary point, the point at which the error is already converged.
To identify the quality of the convergence, the maximum error occurring in the test run in the section after
the boundary point is found. This value is then compared to the local maxima before the boundary point.
The latest local maximum that is higher than this value occurring in the test run is set to be the convergence
point. It marks the start of convergence.

Several parameters can be deduced from this approach: The time to convergence (time it takes to reach the
convergence point), the quality of convergence (maximum error occurring after the boundary point) and the
absolute error before and after convergence. In addition, for filter comparison, it can be assessed how long it
takes a certain filter to converge to within the same convergence bounds as another filter. Lastly, if no high-
points can be determined it can be concluded that either no convergence is reached or that the filter instantly
converges smoothly towards the target, in which case the test duration needs to be increased.

The performance improvement of the error in the tail section, the time to convergence or any other parame-
ter of the new filters to the original EKF can then be determined using Equation 4.3 by replacing the sums in
the second part by the parameters under investigation.

4.5. Simulation performance test outcomes

This section shows the results from the simulation performance test. For most position estimation errors, the
errors are shown for as the absolute errors (see Equation 4.2) in blue, for the error in x position estimation in
yellow, for the y position in green and for the z position in red. The data is presented in metre deviation from
the true state across time of the test run. The absolute error in blue is always positive. The velocity estimation
error is presented in the same way as the position error, given in metres per second deviation from the target
state.

The attitude error is shown for the quaternion components for the error in x estimation (blue), y estimation
(yellow), z estimation (green) and s estimation (red). The spin rate is shown as radians per second deviation
from target state, around the x axis of the target (blue), the y axis of the target (yellow) and the z axis of the
target (green).

4.5.1. Comparison setup and baseline filter performance

In all 16 test cases the filter estimates converged towards the simulated true target state. However, the filter
performance differs greatly by test case and by filter. For the following discussion, several test cases were
eventually excluded:

* Test cases 1 and 4: It was observed that filters can (and in reality would) always run at around 10 Hz.
Since the 1 Hz filter update test cases thus didn't seem representative anymore they are mitigated.

* Test cases 7 and 8: Despite the fact that all filters could recover from large outliers, the great offset in
the estimate that they caused would not serve well for a comparison with the overall filter performance.
Figure 4.4 illustrates this, where the response of the EKF to a large outlier can be seen. After discussion
with filter experts it was deemed highly unlikely that such an outlier would ever occur. Even if this was
the case the filters could recover. For a comparison this test case is not of interest, however.

Adjustment of tail section assessment

Throughout the data assessment it was found that the new testing approach for numerical assessment
presented in 4.4.2 is not suitable for all filter test cases. This is due to the fact that, especially in test cases 9
through 14, there can be early fluctuations of highpoints which causes the algorithm to register an onset of
convergence very early on in the test run when estimation errors are still high. While this would indicate a fast
time to convergence, which would be favourable, it could also result in very high convergence errors being
recorded, which would downgrade the performance. This was primarily observed for the new filters, which
seem to not be able to deal with delayed measurements and withheld measurements as well as the original
EKE Thus, the new assessment approach explained above was primarily used to assess the convergence time
and quality of the original EKF and then assess how long it takes the EKFS and UKEF to reach and stay within
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Figure 4.4: Position estimation error response of EKF to large outlier occurrence

the same convergence bounds.

In order to still be able to exclude the swing in period for all filters and fairly compare the performance once
a filter estimate is close to the true state the first 10 seconds of every test run were excluded for part of the
assessment. 10 seconds were chosen since it was observed that after 10 seconds all filters were swung in
(exception: test case 7 and 8). Test results for which this was done are marked as "shortened" in the following.

Baseline filter performance

The EKF used by DLR at the start of the project is used as a baseline. Its position estimation (absolute
position error) performance parameters for each test case are presented in Table 4.2, where an (s) in the
header row stands for a shortened data set without swing-in.

Several insights can be gained from the data presented in Table 4.2. Firstly, as was mentioned before,
the error in test cases 1, 4, 7 and 8 is considerably higher than in the other test cases. This is due to slower
convergence due to slower updates (test case 1 and 4) and the large error offset due to measurement outliers
(test case 7 and 8). Furthermore, it can be seen that the mean error after the 10 second swing-in period is
dramatically reduced for all test cases except for the large outliers, since in test case 7 and 8 the large outliers
occur right at 10 seconds into the test run, raising the average error in the tail section. In test cases 1 and 4 the
error does not lower as much comparatively as in the other cases since the slower convergence means that
the filter estimate is still swinging towards the true state.

Test cases 2 and 3, and 5 and 6 show very similar performance. The difference in the test cases lies in the
distance between target and servicer satellite. The key performance change is the time it takes to reach con-
vergence in test case 6 compared to test case 3. However, it was found that this is due to an anomaly where
the algorithm registers an early lowpoint in the local maxima. Thus, this convergence point is reached early
but still features a high error. Apart from this there does not seem to be a significant performance difference
between far and close range test cases.

The difference between test cases 9, 10 and 11, and 12, 13 and 14, respectively, lies in the measurement
delay time. As can be seen, the error in the former three test cases, where the measurement delay time is 0.5
seconds, is larger than in the latter 3 cases, where the delay time is 0.3 seconds. This makes sense since more
recent delays should lead to better estimates. Furthermore, it can be seen that the relative error distribution
between the three test cases in each of the two groups is roughly the same. Case 9 and 12 have the lowest rela-
tive error in their respective group, followed by cases 11 and 14, and lastly 10 and 13. This was to be expected
since the main difference is the measurement update time. Thus it can be seen that longer measurement
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Table 4.2: EKF position estimation performance in simulation test

Test case | Total error [m] | Mean error [m] | Mean error (s) [m] | Median error (s) [m] | Time to

convergence
[sec]

1 61656.6 m 20.552 m 10.757 m 0.175m 162's

2 9964.9 m 3.322m 0.103 m 0.092 m 8.5s

3 14989.7 m 4997 m 0.321m 0.283m 8s

4 61795.3 m 20.598 m 10.781 m 0.182m 148 s

5 10162.3 m 3.387 m 0.104 m 0.092 m 8.5s

6 14993.0 m 4998 m 0.224 m 0.204 m 2.5s

7 3851293.2 m 1283.764 m 1323.785 m 0.095 m 25.6s

8 3851484.5m 1283.828 m 1323.785 m 0.096 m 25.6s

9 19880.3 m 6.64 m 0.176 m 0.108 m 1255

10 26140.9 m 8.731m 0.403 m 0.242m 17 s

11 23015.3 m 7.687 m 0.279m 0.176 m 3s

12 14701.3 m 4907 m 0.126 m 0.095 m 14.2s

13 20349.4 m 6.792 m 0.284 m 0.223m 125s

14 17609.9 m 5.878 m 0.208 m 0.167 m 7.8s

15 10149.2 m 3.383m 0.101m 0.087 m 8.5s

16 10182.7 m 3.394m 0.112m 0.094 m 8.5s

update times cause worse estimates, whether combined with delayed measurements or not.

Figure 4.5 shows the estimation error in the position estimate of the EKF in test case 9. It can be seen that
the estimate smoothly converges towards the true state (0, since the error is plotted). However, since this is a
highly zoomed out view, no details can be made out. A more detailed view of the entire test run (300 seconds,
or 3000 iterations) of the position error response of test case 9 is shown in Figure 4.6. The position error from
the EKF estimate of test case 10 is shown in Figure 4.7. The difference in average error is clearly visible be-
tween test case 9 and 10.
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Figure 4.5: Position estimation error response of EKF with measurement delay time of 0.5 seconds, test case 9; view focused on the first
16 seconds of the test run

Again, there seems to be an anomaly of time to convergence in test case 11. However, observing the
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Figure 4.6: Position estimation error response of EKF with measurement delay time of 0.5 seconds, test case 9
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Figure 4.7: Position estimation error response of EKF with measurement delay time of 0.5 seconds, test case 10

position estimate error in Figure 4.8, no difference in the estimate error can be identified. It is assumed
that the anomaly originates in the assessment algorithm determining an early convergence point and thus
registering high tail section errors. Test case 11 has a measurement update time difference of 0.5 seconds.
These anomalies seem to be more likely when the measurement update time is longer. This would make
sense since the estimate is more likely to be thrown off by new measurements coming in after a couple of
iterations of pure propagation. This would require further investigation.

From the performance of cases 15 and 16 it can be seen that the small measurement outliers have hardly
any effect on the performance when comparing these cases with test case 5. The slight improvement in case
15 is attributed to the slightly smaller outlier (observe lack of error spike in Figure 4.9 as response to the outlier
as compared to Figure 4.10 which shows the response in test case 16) as well as rounding. This shows that
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Figure 4.8: Position estimation error response of EKF with measurement delay time of 0.5 seconds, test case 11

a small measurement outlier of 1 or 10 metres has no discernible effect on the test run or the overall filter
performance.
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Figure 4.9: Position estimation error response of EKF to small outlier, test case 15; only a small deviation in the estimated error can be
observed around 150 seconds into the test run

Remaining state parameter performance
The other state parameters are assessed the same way as the position estimate. Since the main focus lies
on the position estimate, they are discussed more briefly here.

The average error of the estimated state parameters excluding the swing in period across all test cases
(excluding 1, 4, 7 and 8) are shown in Table 4.3. It can be seen that the attitude angle estimation error and
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Figure 4.10: Position estimation error response of EKF to medium outlier, test case 16; a larger error spike can be observed at the occur-
rence of the outlier at 150 seconds into the test run

Table 4.3: EKF remaining state parameter performance, test cases excluding 1, 4, 7 and 8

Parameter Mean error
Velocity 0.105m/s
Attitude anglex | 0.083 deg
Attitude angley | 0.083 deg
Attitude anglez | 0.086 deg

Rate x axis 0.008 rad/s
Rate y axis 0.009 rad/s
Rate z axis 0.012rad/s

the spin rate estimation error are very low. Contrary to the other filter modes (see below), the quality of per-
formance of the EKF actually drops slightly when only focusing on test cases 9 through 14, the test cases that
were deemed a more "realistic” representation of real-life conditions due to the implementation of measure-
ment delays. This is discussed further in Chapter 22.

The velocity estimation accuracy strongly resembles the position estimation accuracy in its fluctuation
behaviour, which is not surprising due to the stepwise linear relation between the two parameters. From a
comparison of Figure 4.11 with 4.5 the similarity between the two errors of the estimated parameters can be
seen.

The quaternions that indicate the performance in the attitude estimation were converted to Euler angles
in the performance assessment for more convenient representation in the comparison. Nevertheless, the
quaternion error of test case 11 is shown in Figure 4.12.

While the quaternions almost immediately after the start of the test run settle and fluctuate around the tar-
get attitude, there are several outliers. It is postulated that phase shifts could offset the error of spin rate and
attitude in such an instantaneous manor as can be observed in Figure 4.12. This occurs in all filter modes
and was attributed to the data analysis approach rather than to errors in the filters. The instantaneous occur-
rences of such errors where corrected for the same way as outliers by neglecting them for further assessment.

The estimation spin rate error, shown in Figure 4.13 for test case 12, is overall very small and fluctuates
about the target state without extraordinary outliers or deviations. This is representative of the other test
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Figure 4.11: Velocity estimation error of EKF estimate in test case 9; very similar performance to position estimate
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Figure 4.12: Quaternion estimation error of EKE test case 11; occasional instantaneous outliers are partly attributed to phase shifts
between actual and estimated state

cases.

4.5.2. Comparison of EKFS and UKF performance to EKF

This section presents the performance of EKFS and UKF in comparison with the original EKE The individual
performance values are not presented here, but rather the quantitative improvement or worsening of the
filter performance with respect to the EKE

EKFS performance compared to EKF
The position estimation performance of the EKFS with respect to the EKF is shown in Table 4.4. The total
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Figure 4.13: Spin rate estimation error of EKE test case 12; small error fluctuating about the target state

error column is not needed since the % improvement would be the same as for the mean error. The table
shows the parameter improvement (positive value) or worsening (negative value). Several insights can be
gained. Firstly, the EKFS outperforms the EKF in position estimation by an average of 4.6% excluding test
cases 1, 4, 7 and 8 for the reasons mentioned before. This increases to an average improvement of 6% in the
shortened case without swing in period, showing that the converged estimate of the EKFS is more accurate
than the EKE also in comparison to its own swing in period. However, the median does not on average drop
closer to the true state (worsens by 2%), meaning that while the average of the tail section error distribution
lowers, this does not represent all points in the distribution.

The biggest improvement can be seen in the shortening of the time to reach the same convergence limit as
the EKE The EKFS on average converges 16.6% faster to within the same bounds as the EKE meaning that if
the same accuracy as for the EKF should be achieved faster the EKFS would be superior.

Figure 4.14 shows the absolute position error of all three filter modes in test case 9 for the first 30 seconds
of the test run. It can clearly be seen that the EKFS and UKEF error in position estimation is lower than for the
EKE The convergence range of the EKF is reached faster as a result.

The other state parameters are assessed the same way as the position. The average improvement relative
to the EKF are shown in Table 4.5. From this data assessment it is clear that the EKFS only outperforms the
EKF in the estimation of position and velocity, not in the estimation of attitude and spin rate. This is not
only the case in a few select test cases but across the entirety of the tested spectrum. The possible theoretical
origins of this observation, which are rooted in the approach to taking averages of quaternions, are discussed
further down.

Nevertheless, it is necessary to mention that the position and velocity estimation improve when using the
EKEFS, as was expected based on the documentation of the EKFS and the theoretical background.

The poorer performance may also be due to the propagation method in the simulation test matching the
propagation in the EKE Thus, the intermediate smoothing step in the EKFS may actually introduce errors in
the simulation test while it would improve the performance in real-life conditions.

The absolute velocity error for all three filter modes is shown in Figure 4.15. Compared to Filter 4.14
it can be observed that the relative distribution of the velocity error matches the position error, which was
expected since the position linearly relates to the velocity, which, especially when the filter estimates have
not converged yet, means that the trend in both graphs is the same. Once filters have converged, however,
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Table 4.4: EKFS simulation test position estimation performance compared to EKF

Figure 4.14: Absolute position estimation error of EKE EKFS and UKE test case 9

Table 4.5: EKFS remaining state parameter performance compared to EKF

Parameter Mean error improvement [%]
Velocity 9.7 %
Attitude angle x -16.2 %
Attitude angle y -14.7 %
Attitude angle z -16.8 %
Rate x axis -19.3 %
Rate y axis -21.7 %
Rate z axis -31.7%

Test case Mean error Mean error Median error Time to conv.

improvement [%] improvement (s) (%] | improvement (s) [%] improvement [%]
1 50.1 % 73.3 % 12.7 % 48.1 %
2 0% 0% 0 % -1.2%
3 6.0 % 0. % -1.2% 26.3 %
4 50.1 % 73.3% 13.0 % 42.6 %
5 0% 0% 0% -1.2%
6 6.1 % 1.7 % -1.3% 68.0 %
7 0% 0% 0 % -0.4 %
8 0% 0% 0 % -0.4 %
9 7.8 % 179 % -2.1% 18.4 %
10 4.4 % 14.6 % -3.7% 18.8 %
11 6.8 % 15.2 % -3.1% 6.7 %
12 9.7 % 8.4 % -5.2% 21.1%
13 7.1% 8.1% -3.3% 20.0 %
14 8.4 % 6.7 % -4.2 % 24.4%
15 0% 0% 0% -1.2%
16 0% 0% 0% -1.2%
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this will not be the same anymore, since different filters will estimate velocities around the true target state
differently and thus cause more or fewer fluctuations of the position estimate error, depending on how far off
the velocity estimate is.
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Figure 4.15: Absolute velocity estimation error of EKE EKFS and UKE test case 9; the relative error distribution is the same as for the
position, as expected

Figure 4.16 shows the estimation error of the quaternion from the EKFS for test case 11, the same test
case as in Figure 4.12 where the EKF performance is shown. As can be seen, the error is again small apart
from obvious instantaneous error spikes. The distribution of these spikes is similar, suggesting that the filters
estimate a wrong quaternion at similar intervals or that the simulation test delivers wrong true states to which
the quaternion estimates are compared. Apart from these spikes, the EKFS estimates the quaternions on
average slightly worse than the EKE Again, this is discussed in more detail below.

The spin rate estimation performed by the EKFS, show representatively for test case 12 in Figure 4.17, was
analysed to be slightly worse than for the EKE Comparing the figure with Figure 4.13 it can be seen that the
EKFS estimate fluctuates about the target the same way as the estimate of the EKE with the difference that the
fluctuation arches have higher maxima throughout the entire test run. This explains the poorer performance.

UKEF performance compared to EKF

The UKFs performance improvement to the EKF is shown in Table 4.6. From the data presented above
it can be seen that the UKF performs better than the EKF and even the EKFS in the position estimate error,
in particular in the test cases where delayed measurements are used (9 through 14), as was already seen in
Figure 4.14. However, the relative improvement to the tail section is not as great as in the case of the EKFS,
meaning that the improvement is more evenly split over the swing-in period and the tail section.
This general behaviour matches the expectation for the UKE Since the propagation of individual sigma vec-
tors should theoretically result in more accurate state estimations in a non-linear system, it is not surprising
that the estimation is better and the convergence faster, since it is expected that at each iteration step a more
accurate result can be achieved than for the other filters. Thus, faster convergence is expected.

Furthermore, the median error does not improve significantly over all test cases and even worsens in
some. Lastly, the time to convergence to within the same convergence bounds as in case of the EKF improves
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Figure 4.16: Quaternion estimation error of EKFS, test case 11; as with the EKE, outliers or phase shifts cause error spikes to an otherwise
accurate estimate
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Figure 4.17: Spin rate estimation error of EKFS, test case 12; larger fluctuations than for the EKF estimate are observed and cause a larger
error on average throughout the test run

over the more complex test cases with delayed measurements but significantly worsens in the test cases with
the same filter and measurement update frequencies. This is primarily attributed to a couple of outliers
in these test cases, since the median in all of these test cases is significantly lower than the mean position
estimate error. Registering outliers in the UKF position estimate error that are beyond the position error
of the converged section in the EKF would thus delay the time at which the UKF estimate is considered to
be converged within the same bounds as the EKE An example can be seen in test case 5, shown in Figure
4.18, illustrates this. A late outlier can be seen after 260 seconds into the run, delaying the registered time to
converge to within the EKF’s convergence limit substantially.
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Table 4.6: UKF simulation test performance compared to EKF

Test case Mean error Mean error Median error Time to conv.
improvement [%] improvement (s) [%] | improvement (s) [%] improvement [%]

1 48.0 % 55.9 % 7.4 % NA %
2 -3.9% -131.0% -25.0% -2687.1 %
3 2.6 % -15.0 % -1.0% 22.5%
4 40.3 % 41.2 % -14.8 % -1912.8 %
5 -3.1% -107.2 % -14.2 % -3031.8 %
6 3.6% -1.0 % 0.1% 68.0 %
7 0% 0% -332% 6.3 %
8 0% 0% -15.5% -867.2 %
9 194 % 16.0 % 1.3% 15.2%
10 19.2 % 19.1% 0.2% 153 %
11 20.1 % 18.5% 4.7 % 56.7 %
12 13.5% 55% -1.2% 17.6 %
13 13.7 % 9.9 % 4.3 % 16.0 %
14 13.3% 6.7 % 25% 21.8%
15 -1.7% -62.2 % -18.9 % 18.8 %
16 -4.4 % -140.8 % -11.8% -2901.2 %
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Figure 4.18: Position estimation error of the UKF in test case 5 shows a small position outlier late in the test run, delaying the perceived
time to convergence

For the relevant test cases presented earlier (excluding 1, 4, 7 and 8) the average position estimation im-
proves by 7.7%. In the tail section alone, however, this estimation worsens by 31.8% in comparison to the
EKE which, however, is only due to the test cases with the same filter and measurement update times (see
the example of test case 5 above, where outliers disturb the estimate). Only focusing on the cases where mea-
surement and filter update times are different the UKF outperforms the EKF by 12.6% in the tail section. The
median error in the tail section lies 4.9% further away from the true target position than in the case of the EKE
Only excluding test cases 1, 4, 7 and 8 from the assessment the time to converge to the same limits as the EKF
is on average 6.97 times as long as for the EKE However, only focusing on test case 9 through 14, the UKF
outperforms the EKF in this time by 23.8%. The example of test case 12, shown in Figure 4.19, illustrates this,
where no obvious late outlier can be observed. This performs both the overall error performance as well as
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Table 4.7: UKF remaining state parameter performance compared to EKF

Parameter Mean error improvement [%]
Velocity -20.8 %
Attitude angle x -1114.2 %
Attitude angle 'y -1646.0 %
Attitude angle z -1041.7 %
Rate x axis 14.4 %
Rate y axis -24.5%
Rate z axis -27.1%

the time to convergence with respect to the EKF convergence limit.
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Figure 4.19: Position estimation error of the UKF in test case 12 does not show the small position outlier observed in test case 5, improving
the performance compared to the EKF

This leads to two conclusions about the UKE It can estimate the position of the target more accurately
on average than the EKF and the EKFS, but it features occasional outliers and has a wider spread around the
target than the EKE Also, the UKF performs considerably better when filter update times and measurement
update times differ.

Since the UKEF is the only tested filter that propagates multiple possible points and since the simulation
test only propagates the average of a possible state distribution, their propagation methods differ consider-
ably more than for the EKF and the simulation performance test. Theoretically, this can explain the perfor-
mance difference, especially in cases where measurement disturbances are not as great as when measure-
ments only occur every couple of iterations and cause considerable estimation changes.

It is thus concluded that a different propagation method is needed for the simulation performance test than
the one that is used in any of the filters.

Again the remaining state parameters are compared to the EKF performance as before. The performance
comparison can be seen in Table 4.7.

Similar to the EKFS, the UKF cannot match the performance of the EKF in the estimation of the attitude
and spin rate. In addition, the velocity estimation is also slightly worse. However, this is again purely due to
the test cases where the filter and measurement update times match. In the other test cases the UKF performs
23.6% better than the EKE An example is shown in Figure 4.20
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Figure 4.20: Comparative velocity estimation error of all filter modes for test case 13; the UKF outperforms both other filter modes in test
cases 9 through 14

The most obvious difference in the performance of EKF and UKEF is the decrease in UKF attitude esti-
mation accuracy. This has several reasons: the EKF estimates the attitude very accurately (average error of
0.08deg in x and y and 0.09deg in z). Comparatively, a fine but not as good performance by the UKF is re-
garded as very poor (1 deg average error in x, 1.5deg error in y and 1deg error in z).

Additionally, several test cases show that after several seconds into the test run the UKF attitude estimation
diverges from the simulated target attitude and estimated target spin rates. This is where the more com-
plicated behaviour of quaternions may have an effect on the performance. The UKF propagation is based
on weighted state averages. Since quaternions show their own behaviour and cannot simple be assessed by
taking an average of all the individual quaternions, the UKF approach may not work with the kind of state
under investigation. Further research is required to assess this behaviour since it was identified too late in
the project to address it properly.
This behaviour is showcased for test case 11 and 12 in Figures 4.21 and 4.22, respectively. For test case 11, it
can be seen that the quaternions seem to fluctuate around the target quickly after the start of the test run,
which registers increased average errors across the test run. Test case 12 shows a behaviour similar to the one
observed for EKF and EKFS (compare with Figures 4.12 and 4.16). This proves that in this case, this is not an
issue related to delayed measurements but it occurs across test cases from all categories.

This was not expected. However, it was found out after the research phase that taking the weighted average
of quaternions may not work the way it was intended.

The problem of computing average quaternions:

The problem that arises in the UKF (and potentially also in the EKFS when the smoothing state is computed
from the average of two states) can be explained theoretically. Since this was only discovered after the test-
ing phase ended it is not implemented in this project. The intention of the UKF is not to take the average
quaternion but to compute an average attitude. The quaternion used for showing an attitude can be imag-
ined to contain both information on the orthogonal rotation as well as on the orientation of the axis of ro-
tation. Taking the average of this information for multiple quaternions does not maintain the orthogonality
of one quaternion and the result does not represent the average attitude information. Thus, as described in
[21], different approaches are required to determine the quaternion that represents the average quaternion.
Therefore, the approach taken for the UKF of simply taking the average of a state vector does not truly rep-
resent the average attitude of the different state vectors and a different approach needs to be taken. This
problem could be fixed in future problems by consulting [21] for example.
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Figure 4.21: Quaternion error estimate of UKE test case 11; large error fluctuations start briefly after the beginning of the test run
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Figure 4.22: Quaternion error estimate of UKE test case 12; similar performance as for EKF and UKE no large error fluctuations

Since the EKFS also includes a step where the average of two state vectors is computed (to find the smoothing
step), this may also be a problem here. However, it is not yet determined why the problem does not seem to

be as grave.

It remains to be investigated as well why these problems do not occur consistently across all test cases.

Shortcomings of the unit test approach for verification and validation:
It can be said that the performance of the position and velocity estimation works well for all filters and is
verified and validated, as expected based on the performance of the filters in their individual unit tests. Within
the bounds of the simulation test, the performance for these parameters is also validated, as it could be shown
that the position and velocity estimation performs as required when estimating a simulated target satellite
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state. However, this verification and validation based on the simulation performance test is not possible
for the attitude estimation of the UKE This highlights a wider problem with the verification and validation
method: the verification is primarily performed based on the performance of the individual filter functions in
their respective unit tests (where all filter functionalities work and are thus verified), and the unit tests that test
the interaction of the individual functionalities to check that the states are computed correctly using specific
inputs. All these tests are passed for all state parameters, which suggest that the filters are fully verified.
The simulation performance test was used as another verification to show that the state estimation works
given propagating inputs, and as a validation for the filter performance. However, as was seen, the UKF
attitude estimation does not work when performing filter updates over a multitude of subsequent iterations
and can thus not be validated. A more stringent approach for verification in the unit tests, however, could
have captured this earlier since the problem of non-orthogonality of the result of averaged quaternions and
longer testing over multiple test runs could have captured this in the verification step already.

4.5.3. Assessment of computational resources

The simulation performance test is run step wise, updating the filter time and the measurement time by 0.1
seconds at every iteration step and passing the same input information to each filter mode. This enables
to assess the computational requirements of each filter via the time it takes to run a filter iteration when
executing all filters on the same system (as was done). The average time to execute a filter for all test cases is
presented below. Furthermore, the runtime increase is presented in Table 4.8. All filters can be executed easily

Table 4.8: Execution time of filters in simulation test

Parameter EKF EKFS UKF
Avg execution time 6.99e-5 | 8.89e-5 | 22.2e-9
% of EKF execution time - 127 % 318 %

at 10 Hz on a conventional desktop computer. As can be seen, the execution time of the EKFS only increases
by 27% compared to the EKE while the UKF time increases by 218%. This, however, is not surprising since
the UKF needs to propagate all sigma points and thus computation time is expected to increase. As long as
filters can be run at 10 Hz using the relevant system this shouldn’t be a concern. Nevertheless, this insight
also shows that fewer resources could potentially be freed up for other applications in a system using the new
filters, in case that other applications or capabilities should be added to the system. This needs to be kept in
mind throughout a system design process.

4.6. Judging simulated filter performance against performance criteria
Having collected performance parameters from the different test cases, the performance of the individual
filters can be judged against the quantitative criteria presented in Section 1.9.10.

It was seen for the UKF that the performance in the cases with delayed measurements is generally better.
Furthermore, it was determined that the performance in such test cases is more representative of real-world
scenarios. Past tests and real-world applications have shown that such test cases are more realistic since
image processing and other intermediate steps delay measurement input to the filter. This is why the com-
parison of the performances in test cases 9 through 14 is considered when judging the performance of the
filters against the criteria. For these test cases, the comparative performance of the EKFS and the UKF from
the simulation test with respect to the EKF is shown in Table 4.9.

Table 4.9: Filter alternatives - performance in test cases with measurement delays

Parameter EKFS UKF
Position mean error | 11.8 % 12.6 %
Velocity mean error | 144% | 23.6%

Attitude error x -207% | -757 %
Attitude error y -18.4% | -1176 %
Attitude error z 21.8% | -727%

Following the performance criteria rating defined in Section 4.1, each filter is rated whether it performs
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Table 4.10: Rating of filters against performance criteria based on simulation test results

| Criterion | Weight | EKF score | EKFSscore | UKF score

Accuracy 5 0 +1 +1
Time to settle 3 0 +1 +2
Stability 4 0 0 0
Bias 2 0 0 0
Complexity 3 0 -2 -2
Overall NA 0 +2 +5

better or worse than the EKE The underlying data is the test results data from the simulation performance
test using the representative test case results shown in Table 4.9.
The filter modes are rated in each category as follows:

Accuracy: The position estimate, velocity estimate and the average of the attitude estimates are each
rated. The rounded average of the three ratings is taken for the accuracy parameter.

Time to settle: For the simulation performance test the average percentage time improvement of the new
filters to arrive within the same convergence boundary as the EKF is rated.

Stability: No differences could be observed in the simulation performance test cases, including the test
cases featuring outliers.

Bias: No bias was observed in the filters.

Complexity: A clear difference in run time could be seen in the simulation performance test, where run
times for the filter alternatives went up as expected.

The scoring of the filters is shown in Table 4.10.

From the filter performance scoring it can be seen that the UKF slightly outperforms both the EKF and the
EKEFS. The positive rating in estimation accuracy despite the quaternion problems observed during the test
data analysis stems from the positive rating in both position and velocity assessment. It is seen that the rating
criteria may thus not yield a fully fair and representative judging of the filters since a medium improvement
in two parameters can outweigh the very poor performance in another parameter.

4.7. Conclusions from analytical performance assessment
From the results presented in this chapter several conclusions can be drawn.

A simulation performance test was designed that aims to reflect real-life testing conditions by propagat-
ing simulated true satellite states and supplying navigation filters with information to estimate the state of a
target position. The purpose of this test was twofold: to demonstrate that the filters estimate the state of the
target satellite and to show the quality of the state estimation of a filter in comparison with other filters.
Thus, the simulation performance test can be used to verify the filter working (it shows that a state is esti-
mated that has the expected outcomes and it can incorporate the relevant inputs) and to validate the per-
formance in a simple simulated mission scenario. The verification for the individual filter functionalities is
concluded since all filters deliver the expected output parameters and the separate filter functionalities have
been shown to work. Nevertheless, the deviation of the UKF attitude estimation highlights a problem in the
wider verification approach: the verification methods applied throughout development cannot be used to
assess the proper working of the filter functionalities over a large number of iterations. This problem was
identified too late in the research phase of the project to address it and correct for it.

The validation could not entirely be concluded since the UKF shows problems in the estimation of the at-
titude parameters, which means that it cannot be used for missions that rely on the accurate estimation of
the attitude. These problems could be explained theoretically through the fact that it is not possible to simply
take weighted averages of a quaternion, as was done in the UKF for many state vectors and in an intermediate
step in the EKFS. This was only realised after the research phase was finished and is thus not implemented in
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this project. Nevertheless, both newly implemented filters are taken forward into the hardware-in-the-loop
test, which is used as a further validation test under more realistic mission testing conditions. This is done
since it should yield more insight on the quality of the estimation on the other state parameters. Also, this
should deliver further insights on filter performance when using real-life sensor inputs and verify the simu-
lation testing performance. Furthermore, it will show whether the UKF quaternion estimation deviation is a
filter problem or a simulation testing problem.

In addition to these conclusions on the verification and validation of the filters, several conclusions of the
performance in the simulation test can be drawn.
The simulation performance test itself was shown to work well and 16 test cases were simulated of which 12
were used for data assessment. The EKFS and UKF outperform the original EKF in the position estimate. The
EKEFS also performs better in the velocity estimation. Both new filter modes perform poorly in the estimation
of the attitude and spin rate. Especially the UKF lacks behind the other two filters.

The UKF performs considerably better than the EKF in test cases where the measurement is delayed or
withheld. The performance drops comparatively when the update frequencies match. This was concluded
not to be a problem since in real-life missions measurements would always be delayed when passed to the
filters due to image processing steps taking time. Thus, these test cases were also used as primary sources of
data for the eventual judging of filter performance.

The newly designed assessment method where the convergence is determined mathematically works well
for certain test cases but could not be applied across all test cases in a meaningful way. However, when de-
termining the quality of convergence for the EKF and when this convergence was achieved in a test run, it
could be seen that the new filter modes reach the convergence bounds of the EKF considerably faster. The
only exception were the test cases of the UKF where update frequencies of filter and measurements match.
It was thus concluded that the new filter modes have faster performance to within more accurate bounds.
This assessment was primarily performed for the position estimation since it was deemed the most critical
parameter for close proximity operation without docking.

Since both the EKFS and the UKEF use slightly different propagation methods than the EKE and since the
EKF shares its propagation method with the simulation performance test it was concluded that a different
method than in any of the filters should be applied in the simulation performance test. This would allows for
a fairer comparison and may yield more representative data. However, developing a new orbital propagation
method was beyond the scope of this project and is left for future research.






Hardware-in-the-loop test and results

Having tested that the filter modes return sensible results and converge when given simulated inputs that
represent real-life conditions they can be implemented in a hardware-in-the-loop testing facility to confirm
their performance and investigate how they perform with real sensor inputs. The facility used is the EPOS 2.0
facility at DLR Oberpfaffenhofen.

This chapter explains the need for hardware-in-the-loop testing and the EPOS 2.0 testing facility (5.1).
Thereafter, the filter implementation and test setup is outlined in 5.2. The test execution and results are
explained in 5.3 and 5.4. Having found the test results, the filters are judged against the performance criteria
in a similar way to the results from the simulation test, shown in 5.5. At this point, when both tests have been
discussed and judged, the differences in testing and possible improvements in future projects are presented
in 5.6, followed by a more detailed discussion of the observations and correlations, and lack thereof, of the
results from both tests in 5.7. The insights from hardware testing are briefly summarised in 5.8, after which
the research questions are addressed in 5.9. Finally, the value of the results of the project is discussed in 5.10.

5.1. Background for EPOS 2.0 simulator testing

The simulation test is performed an all 3 filter modes throughout their development and implementation
phases. It is performed before the hardware-in-the-loop test. The need for a simulation performance test has
been discussed in Section 1.9.6.

The European Proximity Operations Simulator (EPOS) 2.0 facility is a ground based robotic testing facil-

ity. It was designed to perform close proximity (0 - 25 metre approach) late stage approach simulation for two
spacecraft, which are represented by two KUKA robots. The facility is primarily used for testing in rendezvous
and docking scenarios.
The robots (KUKA KR100HA and KR240) are mounted on a rail facing each other. The KR100HA (servicer)
can move in a straight line on the rail towards the other robot or away from it. A satellite mock-up on the
stationary KR240 (target) can be moved up, down and sideways and spin around its axis, which simulates
movement in plane, pitch and yaw, and, from the perspective of the servicer represents approach conditions
and fly-arounds. These scenarios are captured by sensors mounted on a board on the servicer robot, such as
cameras. The facility is seen in Figures 5.1 and 5.2, where the view from the servicer to the target, and from
the target to the servicer can be seen, respectively.

The great advantage of the EPOS 2.0 facility is that simulations can be combined with real-world sensor
inputs. While it is impossible to represent orbital dynamics fully realistic on Earth, these can be simulated
with satisfying accuracy and passed to the robots which can then move relative to each other based on the
orbital parameters that they are given. This is based on a simulation model of orbital parameters. The orbital
model is a classic two body model and the satellites are simulated with unperturbed Kepler orbits. Influences
from sun, moon, solar radiation pressure and other factors were not modelled in the EPOS 2.0 test series
performed as part of this project. Nevertheless, the facility has the capability to run more complex models
including further factors.

71
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Figure 5.2: EPOS 2.0 facility, view from the target towards the servicer

On the other side, sensory inputs that are gained in satellite operation are very difficult to simulate accurately.
However, since real sensors can be equipped in the facility this information can be gathered from actual sen-
sors and can be combined with the orbital simulation model.

Sensor information is not passed directly to the robots but, in order to represent satellite operation in
space more accurately, the telemetry is passed to a sensor interface and data acquisition system from where it
is passed into the GNC system and image processing system. This represents the ground system in a normal
satellite operation. It is visualised in the image from Benninghoff et al. (Source:[4]) in Figure 5.3. Image
processing is performed (which takes time and causes measurement delays, as was mentioned before) and
the information is passed to the navigation filters. The output from the orbital model and the GNC outputs
are then passed on to the EPOS control system where facility monitoring and the dynamic motion simulation
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take place. The ground system can send commands to the servicer satellite to perform movements, otherwise
the robots operate idly based on the inputs they get from the EPOS control system.
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Figure 5.3: Representation of system architecture; left: actual satellite communication concept; right: representation of system in EPOS
2.0 facility; Source: [4]

Using the hardware-in-the-loop facility for verification and validation:

As was discussed before, the EPOS 2.0 facility tests should be used to validate the working of the filters, ideally
in a similar way as the simulation test does in Chapter 4. However, upon closer inspection it becomes obvi-
ous that there are several essential differences between the facility and the simulation performance test that
cannot be easily overcome. The EPOS 2.0 facility uses a different orbital model and a different initialisation
approach than the simulation performance test. Furthermore, it uses real measurement inputs which cannot
be fed to the simulation performance test since the measurements are linked to the actual satellite positions.
While the actual satellite positions could be extracted and fed to the filter, the satellites are, when fully oper-
ational, controlled by the filter that is currently running as well as by a human controller. This requires two
things for future use of the simulation performance test: The extraction of the real life data and force inputs
from the EPOS 2.0 facility, as well as a re-structuring of the simulation performance test to not only adjust the
propagation model used but to also access the real-life data passed from the hardware facility. This is beyond
the scope of the project at hand.

Nevertheless, the EPOS 2.0 facility test results should indicate similar trends as were observed in the simula-
tion performance test. They may not deliver exactly the same numerical results but can be used to confirm
general behaviour of the filters observed earlier.

5.2. Test setup for filter testing

This section describes the EPOS 2.0 test run initialisation and the scenarios tested in the facility. Furthermore,
the data handling and test execution plans are explained.

5.2.1. Facility setup and filter implementation

The EPOS 2.0 facility is initialised by setting up the robots and the orbital model.[3] The GNC system is started
using a configuration file used to initialise the relevant parameters. For the purpose of testing several filters
the type of filter mode was included in this configuration file.

The filter hierarchy in the GNC system is structured as such that there is an overarching filter class. This
class has access to all the different filter modes and can pass informations such as the active sensors, the
measurement, the time and the servicer satellite state to the different filter modes. In return, it can extract
the filter outputs from each filter separately.
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Thus, when a filter mode is specified in the GNC configuration file this filter mode information is passed
down to the filter class which in return passes the GNC system information to the relevant filter mode and
extracts the required output information from the filter mode.

The system was set up in such a way since it allows to keep the addition of new filter modes fully decoupled
from the wider GNC system. This means that when a new filter mode is added the only thing that needs to be
adjusted is the filter class so that it can pass and extract information. All other unit tests and GNC functional-
ities remain unchanged.

The disadvantage of this approach is that currently filter modes cannot be changed mid-test-run. This is
due to the fact that all filters would need to run in parallel and perform their own state estimation or be ini-
tialised at every iteration step with the full available estimation information from the currently running filter
mode to allow for a smooth transition. This is not practical for it would highly increase the computational
effort and since it was decided that it is highly unlikely in this early stage of testing that filter modes would
be changed in the middle of a test run. However, this is a functionality that may become more relevant in the
future as more specialised filter modes are implemented.

5.2.2. Data flow to the filter in EPOS 2.0

The primary difference between the simulation performance test and the hardware-in-the-loop test is that
the filter is supplied with real sensory inputs in the latter. Figure 5.4 shows the data flow in the GNC system
in more detail than before. The filter is supplied with the pose of the target satellite (position and attitude in
quaternions) from either a PMD camera (3D imagery) or one of three 2D cameras. The imagery from these
cameras is first assessed in an image processing step. The relevant information on position and attitude of
the target is extracted and fed to the filter using a measurement vector in the chaser (servicer satellite) frame.
The measurement vector is a 7D vector of which the first 3 entries are the position parameters in x, y and z,
and the latter 4 parameters are the quaternions.

The filter performs the state estimation and, as was explained before, passes the state to the guidance
system and the controller. In addition to the cameras, the EPOS 2.0 facility has the ability to feed the filter
with simulated measurement data from a sensor dummy. This sensor dummy generates the same type of
information as is extracted from the images taken by real sensors and passes it directly to the filter.

An example of the images collected by the sensors is shown in Figure 5.5. The target is seen in white
from multiple distances. From one image, two parameters can be extracted currently by image processing
algorithms: the position of the target and the attitude of the target. The state estimation from the filter is
overlayed with the target in purple. The resolution of the camera as well as the shape and reflections on the
target highlight could affect the accuracy of the extracted information at different distances. The information
is extracted using a model-based visual tracking algorithm, meaning that the system uses the knowledge of
the geometrical parameters of the target satellite model to identify edges. This was done since it was identified
that this approach works best under the challenging lighting conditions both in space and in the EPOS 2.0
facility.[5]

5.2.3. Scenarios tested for filter performance assessment

Since the EPOS facility is controlled by people and features real sensor noise, and since not all filters are run
in parallel, each test run in the facility will be different. Thus, each filter output will differ and include errors
and variations. To account for this, a similar test approach was followed each time. Nevertheless, there are
still substantial differences in the way tests were performed which may have affected test results and thus
perceived performance.

Each test is started by moving the robots (satellites) to a relative distance of 15 metres. At this first hold
point, the filters are initialised and it is waited for them to stabilise, based on information from the sensor
dummy. The filter input is then switched to use real visual sensor information for state estimation. Thereafter,
the servicer satellite is moved to a hold point at 6 metres from the target with a velocity of 0.02 metres per
second in closed loop. After holding and observing the filter performance at 6 metres the servicer is moved
to a distance of 4 metres at a velocity of 0.01 metres per second.
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Figure 5.4: Representation of the information flow within the gnc system as it works in the EPOS 2.0 facility, provided by DLR
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Figure 5.5: Black and white image of target satellite, overlayed by filter state estimate (purple), provided by DLR, DLR (CC BY3.0)

5.2.4. Data handling

In order to judge the performance of filter modes, their performance throughout the test is observed and
anomalies are noted. Additionally, performance data is collected to more accurately and numerically judge
them.

Data collected during testing
The criteria by which the performance of a filter is judged were explained before in 1.9.10. In order to assess
the performance of a filter the following information needs to be collected:

¢ Estimated state: The estimated state shows the filters estimate of the target state. It is the primary filter
output that is passed to the GNC system.

» True target state: The true target state needs to be logged to judge how correct the estimation is. The
difference between estimated target state and true target state yields the estimation error.

* Measurement: The measurement collected by the sensors on the servicer is collected to judge whether
the information that is passed to the filter improves or worsens the estimate.

Other parameters such as the covariance could not be logged. This functionality would need to be added in
the future. However, the state estimation accuracy is the most important aspect for assessment, which is why
the other filter performance information is considered secondary and can be omitted for fulfilling the scope
of this project.

Data storage and management

All data is logged in sql files and saved in the EPOS 2.0 control system. A separate collection of data files
is generated for each test run. They are transferred via memory stick for further assessment and are later
converted into csv files for read-out. The relevant files, their structure and content is explained below.

Navigation Output Logfile
The file saved as navOutLog contains the filter state estimate information and the true servicer satellite infor-
mation for every filter iteration step. They are ordered by filter time, the logged time of iteration execution.
Since the filter runs at 10 Hz there is a new state estimate available at every 0.1 seconds throughout the run.
All information is given in an ECI reference frame.
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Sensor Dummy Input Logfile

The file saved as sdInLog contains the input information to the sensor dummy. This is the true position of
the target satellite and the servicer satellite (chaser) in the orbital model. The information is given in an ECI
reference frame. The states are not logged regularly as was the case with the filters but they are logged follow-
ing their own timing. Thus, the filter log-time and the true log-time may not match and require interpolation.
Furthermore, the true spin rate of the target is not logged (it is set to 0 as a default). This was only realised
after testing was finished and could not be compensated for anymore, which is why the following analysis
only assesses the quality of the estimation of the other state parameters.

Camera Logfile

The file campeOutlog saves camera data collects whenever the camera is running. Sensor output information
is collected whenever it is available and thus does not match the time stamps of the filter iterations. From
the visual sensors, only information on position and attitude is available. All information is given in a body
reference frame centred at the servicer satellite. Position information is given in the x, y and z coordinates of
the body frame. The attitude is given in quaternions.

The camera logfile needs to be stored since it can be used to identify potential camera - target misalignments.
Such offsets can be a source of error in the state estimation, if, for example, a state prediction actually gets
worsened in its update step due to a faulty measurement.

5.2.5. Data assessment
Data assessment is performed in a similar way as in the simulation performance test by reading the data from
csv files into data frames in a dedicated python script. The following section describes the data manipulation.

Correlation of true state to filter time

As was mentioned before, the true position of the target time is not logged at the same intervals as the
filter estimates. To account for this, the two data frames containing the estimation information (navOutLog)
and the true state (sdInLog) are read into an extrapolation function. The data frame containing the estimation
information is appended columns to include all true state parameters. The function then loops through the
entirety of the estimation data frame (d fes). At every iteration step, the filter time information is extracted
(tr1,). Parallelly, the algorithm propagates through the data frame with the true states (d f;,y.), starting at the
first time step, and selects two consecutive time steps (f;arger—1 and fgrger—2). The algorithm then checks
whether the filter time is larger than the higher target time, and, if so, selects the next consecutive target
times, as can be seen in Equation 5.1.

while tturget72 <= tf][:

imrget"‘ =1 5.1)
ttarget—l = dftrue[imrget; t]

trarget-2 = A ftruelitarger + 1, 1]

Once t:arger—2 is larger than the filter time it is checked whether the filter time lies between the two target
times (see Equation 5.2). This is necessary to assess since target time iteration steps may be small enough to
not contain a filter update at all.

if trarger—1 < tr1r and trarger—2 > tryg (5.2)

Once it is confirmed that a filter update step lies between the two true target state update steps, the true
position is extrapolated to find a corresponding true position at each filter update step. This is done by first
extracting the true state parameter at f;4rget-1 (Plow) and at frarger—2 (Phign). Then the corresponding ex-
trapolated true state parameter py . at tr;, is found using Equation 5.3 and is added to the estimation data

frame.

tflt - ttarget—l
Ptrue = Plow + * (Phigh — Plow) (5.3)
ttarget—Z - tmrget—l

Thus, a corresponding true state at every filter iteration step can be found.
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Estimation error assessment

In the same way as in the simulation performance test the estimation error can be assessed for every state
parameter now that the true state and the filter estimate are available at every time step. The error is simply
computed from the difference of the estimate and the true state. For the position and the velocity estimates
the absolute error is computed as well.
The true state parameters for the spin rate of the target are not logged and are thus excluded from the assess-
ment.
The quaternion error is translated into Euler angles for easier visualisation later on.

Correlation of measurement data to filter time

As was mentioned previously, the interval of the logged measurement data does not match the filter es-
timation interval either. Therefore, the approach as for the correlation of the true state to the filter time is
followed to determine a measurement entry at every filter iteration step at which the cameras were running.

As was discussed before, the measurements are only provided in a servicer centred body reference frame.
Therefore, the measurement information needs to be translated into ECI to be comparable with the true state
information. Firstly, the reference frame is established with

qcha-Ect = [Gx—cha-ECD dy—cha—ECI>Yz—cha-ECI» qs—cha-Eci]
From this, the 3x3 reference matrix Ry f2p0qy is found using Equation 5.4 where q = qcpa-£ci-

Rrefabodyl0,0] = ql0] * g[0] + q[3] = q[3] — g[1] * q[1] — q[2] * q[2]
Rrefabodyl0,1] =2 (ql0] * g[1] + q[2] * q[3])
Rrefapoayl0,2] =2 % (q[0] * q(2] = q[1] * q[3])
Rrefapoay(1,0] =2 (q[0] * g[1] — g(2] * q(3])
Ryefopoayll, 11 =—ql0] * q[0] + q[3] * q[3] + q[1] * q[1] — q[2] * q[2] (5.4)
Ryefopoayll, 21 =2 % (g[1] * q[2] + q[0] * q[3])
Rrefaboay2,0] =2 (q[0] * q(2] + g[1] * q(3])
Rrefopoay(2,1] =2 (q[1] * q[2] — q[0] * q(3])
Ryefopoayl2,21 = —ql0] * q[0] + q[3] * q[3] — q[1] * q[1] + q[2] * q[2]
The transpose of this matrix is the reference matrix of the body centred reference frame to the ECI refer-
ence frame, Rpoqy26CT = RrTe f2body” The transformation matrix Tpogy2ref from the body reference frame to

the ECI frame is then found from the position of the chaser satellite (which takes the images) in ECI, p.pq—-gcr,
and Rpogy2£c, as shown in Equation 5.5, with R = Ryoqy2pcr and p = pepa-Ecr-

R[0,0] R[0,1] RI[0,2] plO]
. _|RI,01 ROL,1I RIL2] pll]
body2ref =1 R[2,0] R[2,1] R[2,2] pl2]
0.0 0.0 00 1.0

(5.5)

The measured position in the body reference frame pj;eqs-pody is then transformed to the ECI frame
using the transformation matrix to find the 3-dimensional vector pyeqs—gcr, as in Equation 5.6. The 4th
value (misc) in the output is ignored.

Pmeas-body (0]

Pmeas—ECI Pmeas—bodyl1]
; =T, . (5.6)
misc bodyzref Pmeas-body(2]
1.0

The quaternions in the ECI frame are found using the transformation matrix Tpoqy2ref and the mea-
sured quaternions ¢eqs—pody- First, a reference matrix R,y is formed using the same Equation as in 5.4
but with qyneqs-boay as q. Next, the reference matrix is regained by extracting it from the top left 3x3 entries
of Thoayzref, yielding again Rpo4,2£c1. Next, the reference matrix between the quaternions and the ECI frame
is formed using Equation 5.7.

Rquarzect = Rpody2Ecr* Rref (5.7)
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The transform of matrix Rgyqr2£cy is then finally used as input R for the algorithm presented in Equation 5.8.

a=R[0,0] +R[1,1] + R[2,2]

ifa>0.0:
b=Vl1+a
c=2.-b

gdx = (R[1,2] = R[2,1])/c
qy = (R[2,0] - R[0,2])/c
q. = (R[0,1] - R[1,0])/c
gs=0.5%b
else:
if R[0,0] > R[1,1] and R[0,0] > R[2,2] :

b= \/1 + (R[0,0] — (R[1,1]+ R[2,2]))
c=2-b
gx=0.5-Db
qy = (R[1,0] + R[0,1])/c
gz = (R[2,0]+ R[0,2])/c
gs = (RI[1,2] = R[2,1])/c
elif R[1,1] > R[2,2] :

b=/1+(RI[1,1] - (R[2,2] + R[0,0]))

(5.8)

c=2b
qx = (R[1,0] + R[0,1])/c
qy=05-b

q: = (R[1,2] + R[2,1])/c
qs = (R[2,0] - R[0,2])/c

else:
b=+/1+(RI2,2] - (R[0,0] + R[1,1]))
c=2-b

qx = (R[2,0] + R[0,2])/c
qy = (R[L,2]+ R[2,1])/ ¢
q:=0.5-b

gs = (R[0,1] = R[1,0])/c

Finally, the vector g determined in Equation 5.8 is normalised by dividing it by the sum of its entries. There-
after, the sign of the first entry is checked. If g[0] is negative, the vector is multiplied by —1. The resulting
vector ¢ is the measured quaternion vector in ECI. The accuracy of the measurement data is computed as for
all other state parameters by determining the difference between the measured state and the true state.

Hold-points and approaches

Since the EPOS 2.0 tests feature actual approaches it is expected that there are differences in state esti-
mation accuracy between the approaches and the times when the satellites are held at constant distances
(hold-points). These are thus considered separately. In order to identify hold-points the times during a test
run were noted at which satellites moved and kept position relative to each other.
5.2.6. Test planning
Tests were set up as described in 5.2.1 and 5.2.3. The test plans thus all featured the same test procedure. The
following parameters were recorded in addition to the logged data in each test:

¢ Time of start of test, to identify the saved logfiles based on their creation time

* Time of end of test, to determine length of test
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* Time and type of input commands given to facility to correlate potential filter deviations to commands

e Irregularities and exceptional observations throughout test

5.3. Performing hardware-in-the-loop tests
This section describes how the tests were performed, what was observed and what deviations occurred from
the test plans, what lessons were learned and the adjustments that were made.

5.3.1. Observations during testing

Several observations were made throughout testing, especially on the time of test runs and on the accuracy
of filter estimates throughout close proximity operation at a distance below 5 metres using the two newly
implemented filter modes.

The total time of a test run was not deemed too crucial for the accuracy of an estimate at the beginning
of the test sequence, which is why the total time of the original EKF test was longer than for the other filters.
All filters were given time to settle and converge towards the target ad additional time was given to assess the
quality of the filter performance. However, it was realised later that, in order to judge the filters across the
entirety of the test runs, the intervals of movements and hold-points should be roughly the same since oth-
erwise the average accuracy may be distorted. This is a potential error source in the assessment that needs to
be kept in mind.

It was observed that the EKFS and the UKF showed erratic filter behaviour in close proximity operation.

The EKFS was accidentally started when the satellites were at a relative distance of 5 metres in an early test
run. The filter estimate almost immediately diverged and the test had to be stopped. When the filter was
restarted with the satellites at a 15 metre distance it worked well (this is the test case assessed in the following
sections) and the normal test approach was performed. Even below a relative distance of 5 metres the filter
performed fine. It could not be determined what caused the initial filter behaviour, but the EKFS is not con-
sidered reliable for close proximity operation in its current state.
The UKF faced a similar problem throughout testing. It was initiated at 15 metres as planned and performed
the approach nominally. However, during the approach from 6 to 4 metres the filter estimate diverged be-
tween 5 and 4 metres distance. The test had to be stopped to avoid harm to the robots. The behaviour could
not be reproduced reliably.

Thus, both new filters are not entirely stable in their performance at close proximity operation. Further
stability assessments are still ongoing at DLR at the time of writing of this report. A potential error source that
was identified by assessing differences between far distance and close distance operation is the increased
image processing time at close proximity operation. This may cause the filters to use outdated measurements,
which may offset the EKFS and the UKE However, it is unclear why this would only be a problem for these
new filters.

5.3.2. Lessons learned and test adjustments
Purely based on the observations during conducting the tests, several conclusions and recommendations can
be given.

* The test times need to be standardised in a better way to more easily control filter performance

¢ Ideally, the filters should be able to run parallelly given the same inputs; however, facility limitations
and filters yielding non-representative results when fed with outputs from a different filter mode may
hinder this in the future

¢ More stability assessments at close proximity operation are required to further develop the EKFS and
the UKF

5.4. EPOS 2.0 test results

All filter data was assessed the same way, in a raw format, where all data entries were considered for analysis,
and a cut-off version, excluding outliers. Data entries were considered outliers when they exceeded a certain
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Table 5.1: Thresholds for data cut off, used for outlier identification in results

Absolute position | Absolute velocity | Attitude angles
0.5m 0.5m/s 0.4 rad

Table 5.2: Error in state estimate using EKE hardware-in-the-loop test

Parameter error
Position mean error 0.085 m
Velocity mean error 0.005 m
Attitude error x 0.009984 rad
Attitude errory 0.007797 rad
Attitude error z 0.007197 rad
Measurement mean position error | 0.125191682

threshold, which was determined from assessing the plotted data. Table 5.1 shows the value above which a
data entry was considered an outlier by parameter. Excluding outliers rigorously is important since at the
beginning and end of each test run the filter is not initially set to the actual target state but assumes a default
zero state which is then set to orbital parameters once the filter is synced to the target. Thus, great offsets are
possible.

For the figures in the following sections, the error in estimation is presented in the same way as for the
simulation performance test (see Section 4.5). The colour coding is the same.

5.4.1. EKF performance

The performances of all filters are presented in the format excluding outliers and excluding error values that
are exactly 0, since the algorithm logs a zero error when no data is available (for example at time steps where
no measurement is recorded). The only state parameter not assessed here is the spin rate. As in the simulation
performance test, the EKF performance across the test run is presented below. In addition, the measurement
accuracy is determined. The mean errors across the test run are shown in Table 5.2. As can be seen, all errors
are very low for the EKE No error stands out particularly. The low velocity estimation error translates into
a low position error, which, however, seems to have a slightly higher error. This is not surprising since the
filter corrects its estimation towards the true state over time, reducing the (initially large) position estima-
tion error using a smaller velocity estimation error. Figures 5.6 and 5.7 show the error of the EKF estimate
in position and velocity across the duration of the test run. The deviations in the beginning and in the end
are attributed to the filter initialisation and shut-down, when default values are assumed. These areas are
excluded from analysis and assessment, but are later discussed for the other filter modes. As can be seen,
the position estimate shows larger error values across the entire test and never achieves the accuracy of the
velocity estimation, as was assumed from the numerical assessment.

As was mentioned before, the same assessment is performed for hold-points and approaches separately.
The data collection is shown in Tables 5.3 and 5.4, respectively.

The tables above show that the EKF performs slightly worse in the state estimation when the relative dis-
tance between the satellites is kept constant, as showcased by the larger error values in Table 5.3 than in Table
5.4. This is also supported by the graphical assessment of the errors.

The attitude performance across the test duration is shown in Figure 5.8. It can be seen that the attitude

Table 5.3: Performance of EKF in state estimation at hold points

Parameter error
Position mean error 0.115m
Velocity mean error 0.007 m

Attitude error x 0.010894 rad
Attitude errory 0.008897 rad
Attitude error z 0.007286 rad
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Figure 5.6: Position estimation error of EKF state estimate in EPOS 2.0 facility test
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Figure 5.7: Velocity estimation error of EKF state estimate in EPOS 2.0 facility test

estimation is working better in cases where the position and velocity estimation is performing worse. Since
there should not be a correlation between these factors (the respective blocks in the covariance matrix are 0),
this means that the attitude estimation works better in hold points than during approaches. This could be
due to the fact that changes of the imagery of the target satellite during the approach caused by the decrease
of the relative distance could be misinterpreted by the image processing as attitude changes, decreasing the
quality of the perceived measurement that is passed to the filter.
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Table 5.4: Performance of EKF in state estimation during approach

Parameter error
Position mean error 0.076 m
Velocity mean error 0.007 m

Attitude error x 0.006280 rad
Attitude error y 0.003835 rad
Attitude error z 0.002493 rad
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Figure 5.8: Attitude estimation error of EKF state estimate in EPOS 2.0 facility test

5.4.2. EKFS performance
The EKFS performance relative to the original EKF is assessed using the total test run data excluding out-
liers. The data for the total test runs as well as a comparison of the respective hold points and approaches is
presented here. Table 5.5 shows the overall performance comparison.

Overall, the performance of the EKFS compared to the EKF worsens. However, it can also be seen that the
average measurement error of the measurement used by the EKFS excluding outliers was worse throughout
the test run.

Figures 5.9 and 5.10 show the position estimation error and the velocity estimation error from the EKFS
test, respectively. As can be seen, the EKFS position estimate develops an offset from the true state at around
5300 seconds into the test run (the high test time originated from an initially failed run after which the system
was set up again but the internal clock kept running). This time roughly coincides with the start of the ap-
proach from 15 metres. As shown below, this matches the EKFS performance in approaches, which is worse

Table 5.5: Performance of EKFS compared to EKF in state estimation, hardware-in-the-loop test

Parameter error
Position mean error -45.2 %
Velocity mean error -8.9 %
Attitude error x -9 %
Attitude errory -7%
Attitude error z -9.5%
Measurement mean position error | -52.4 %
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Table 5.6: Comparison of EKFS to EKF performance at hold point state estimation

Parameter

error

Position mean error
Velocity mean error
Attitude error x
Attitude errory
Attitude error z

-20%
-8.7%
0.3 %
-7.9%
-0.5%

Table 5.7: Comparison of EKFS to EKF performance during approach

Parameter

error

Position mean error
Velocity mean error
Attitude error x
Attitude error y
Attitude error z

-76.6 %
-31.8%
-40.2 %
21 %
-53.8 %

than at relative satellite hold points. Furthermore, from assessing the measurement quality around the onset
of the approach, it can be seen that the measurement also features an offset, thus causing the EKFS to perform
worse with respect to the real target estimation. Figure 5.11 shows this. Large measurement error spikes in
the beginning of the test run can be compensated for by the filter, but the offset of the measurement disturbs
the overall performance in the approach. Further investigation shows that the filter estimation reflects the
measurement offset well, meaning that no conclusive performance comparison is possible for the different
filters when not using the same measurement input quality.

This may also be a reason why the EKFS performs worse than the EKF overall, as the test was dominated
by approaches and the filter follows the measurements.
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Figure 5.9: Position estimation error of EKFS state estimate in EPOS 2.0 facility test; an estimate offset can be observed

Table 5.6 shows the improvement and worsening of the EKFS performance at hold-points compared to
the hold-point performance of the EKE
The comparative approach performance is shown in Table 5.7. As can be seen, the EKFS performs better
in the cases where the satellites are held at constant distances from each other. This is not surprising since
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Figure 5.10: Velocity estimation error of EKFS state estimate in EPOS 2.0 facility test
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Figure 5.11: Accuracy of the position measurement of the measurement used in the EKFS test run

the EKF performance is better in the cases where the position is changed, making it more difficult for the
EKEFS to outperform the original filter in this case. It is, however, interesting to note that the position estimate
is always inferior to the EKF estimate, partially also due to the offset discussed above.

Interestingly, the attitude estimation seems to improve with the onset of the approach. The performance
throughout the test is shown in Figure 5.12, where it can be seen that the attitude estimation quality again
improves when the position estimate gets worse. However, in this case it seems like this coincides with the
onset of the approach.
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Figure 5.12: Attitude estimation error of EKFS state estimate in EPOS 2.0 facility test

Table 5.8: Performance of UKF compared to EKF in state estimation, hardware-in-the-loop test

Parameter error

Position mean error 10.2 %
Velocity mean error -98.7 %
Attitude error x 47.8 %

Attitude errory 21.8%

Attitude error z 342 %
Measurement mean position error | 50.4 %

Conclusively, the EKFS performs worse than the EKE However, it also uses a far worse measurement input
than the original filter. Additional tests have to show whether the EKFS performance can be improved and
why erratic divergence occurred at close-proximity application. As for the simulation performance test, the
hardware-in-the-loop test verifies and validates the performance of the EKFS for the test case at hand. How-
ever, due to the poor quality of the measurement and state estimation fluctuations when initialising the filter
at close-proximity it is recommended to perform further tests to make sure that the validation is conclusive.

5.4.3. UKF performance

The UKEF is assessed comparatively the same way as the EKFS. The overall compared performance data is
shown in Table 5.8. The UKF outperforms the EKF in all parameters except for the velocity estimate. This
indicates that the position estimate may be more jumpy, but not wrong on average. However, this could
cause concern during close proximity approaches where a very smooth and accurate estimate is required
and may even lead to divergence, as was observed in the real life testing. Figures 5.13 and 5.14 show the
UKEF performance in position estimate and velocity estimate. Again, the position estimate is offset by the
start of the approach but it quickly resettles towards the actual target state. The velocity error is smaller but
follows the same pattern. As shown in Figure 5.15, the measurement fed to the UKF is far more accurate and
less disturbed by outliers than the measurement used for the EKFS. This helps the UKF to achieve a better
performance in the test. However, as can be seen, both parameters diverge at the end of the test run. This has
nothing to do with the system shut-down but an actual filter divergence was observed during testing at the
approach between 5 and 4 metres distance of the servicer satellite to the target. A detailed assessment of the
position estimate in this section of the test run, shown in Figure 5.16, shows that the position diverges quickly.
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The velocity estimate shows the same behaviour. It has not been conclusively determined what caused this
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Figure 5.13: Position estimation error of UKF state estimate in EPOS 2.0 facility test
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Figure 5.14: Velocity estimation error of UKF state estimate in EPOS 2.0 facility test

The attitude estimate is far more accurate than in the case of the simulation performance test. This
could either indicate that the simulation performance test does not accurately represent reality (for exam-
ple through its propagation model, as was discussed before) or that the UKF performs far better in test cases
where measurements are delayed and where the filter and measurement update rates do not match. This
latter point was partially observed in the simulation performance test as well. However, as was shown for
test case 11 in Figure 4.21, the attitude estimation of the UKF also showed faulty behaviour in such test cases.



88 5. Hardware-in-the-loop test and results

€

'E' 1.0 UKF; Deviation of measurement from true position EPOS
;E —— Absolute error
0n

g —— Xerror
g 0.8 — Yerror
- — Z error
€

e

5 0.6

=

o

o

© 0.4

€

g

>

7]

o

£ 0.2

Y

[S)

C

°

S 0.0

P 300 400 500 600 700 800 900 1000
o Time [s]

Figure 5.15: Accuracy of the position measurement of the measurement used in the UKF test run
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Figure 5.16: Accuracy of the position measurement in the end of the test run; divergence is observed

Furthermore, this observation does not match with the insight that the implementation of taking weighted
averages of quaternions is faulty. It is not yet explained why attitude estimation problems only occurred very
late in the UKF test run. However, as was seen in some test cases in the simulation performance test where
problems also only occurred very late or hardly at all, this was also the case in the simulation test. Thus, it
is seen again that the UKF implementation of quaternion calculation would need to be adjusted and then
tested again. This is seen as a confirmation of the observations from the simulation test.

Throughout the simulation performance test it was observed multiple times that the UKF performs well
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in position estimation and on average better in general for test cases 9 through 14 and comparative perfor-
mance decreases are primarily due to the test cases where filter and measurement update intervals match.
The EPOS 2.0 test partly verifies this general behaviour.

The attitude performance of the UKF is shown in Figure 5.17. The performance resembles the other fil-
ters. However, as for the position estimate and the velocity estimate, the final iterations where the estimate
diverged are dominated by an error increase, as was eluded to above. A zoomed in version of the quater-
nion state estimation of this section is shown in Figure 5.18, where it can be observed that the quaternions
deviate away from the true target state in a manor similar to the one observed in multiple test cases in the
simulation test (see for example Figure 4.21). Quaternions are shown here to highlight the resemblance with
the simulation performance test. Again, the potentially faulty implementation of the UKF approach, taking
weighted averages of the state parameters to determine a state estimate, may cause the UKF quaternion es-
timation to perform in this way and result in divergence. Furthermore, comparing Figures 5.16 and 5.18 the
onset of the quaternion divergence seems to occur slightly earlier than the onset of the position deviation.
Thus, it is postulated that the error source lies in the quaternion behaviour, which would match with the as-
sessment of the implementation problem of the quaternions in this kind of UKE However, the quaternion
and position estimation should not be closely related (the covariance is near zero), which is why this requires
further investigation. The general take away is, nevertheless, that these observations are in line with the con-
clusion from the simulation performance test, in that the EPOS 2.0 test can neither be used to fully verify
nor validate the performance of the attitude estimation for the UKE Again, it is concluded that the unit tests
are not enough to conclusively verify the filter performance since after many iterations errors occur, and the
hardware-in-the-loop test can as a result not be used to validate the filter performance of the UKE
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Figure 5.17: Attitude estimation error of UKF state estimate in EPOS 2.0 facility test

The UKF hold-point and approach performances are shown in Tables 5.9 and 5.10, respectively.

As can be seen, the improved performance in the UKF tests primarily came from the approach assess-
ment. It has to be stated that the approach period was longer then the hold-point period in the test that was
performed. Still, it is noteworthy that the velocity estimation is off in both the hold-point case and the ap-
proach case. The UKEF is thus also not yet an alternative for the original EKF that should be applied without
further improvement. Particularly the strong estimation deviation from the target state below a distance of 5
metres is threatening to a real-life system.
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Figure 5.18: Attitude quaternion estimation error of UKF at the end of the test run; error deviation resembles behaviour observed in
simulation test

Table 5.9: Comparison of UKF to EKF performance at hold point state estimation

Parameter error
Position mean error | -2.6 %
Velocity mean error | -158 %

Attitude error x 2%
Attitude errory 0.3%
Attitude error z -18.4 %

5.5. Judging hardware test performance against performance criteria
Again, as for the simulation test (see Section 4.6), the performance of the different filters is judged against the
performance criteria presented earlier. As can be seen in the comparison of the two test approaches and sub-
sequent results, the hardware-in-the-loop test did not confirm the results of the simulation test.Nevertheless,
some observations can be related.

As the simulation performance test suggested the UKF performs far better than the EKF in cases where
the measurements are delayed. The UKF also has a better position estimate than the EKFS and the EKF in
the EPOS 2.0 test, as was already indicated by the simulation performance test. The EKFS does, however, not
show the improved position and velocity estimation from the simulation test in the hardware test. Only the
attitude estimation performance in case of the EKFS is similar in both tests, where the filter performs poorly
compared to the EKE

Table 5.10: Comparison of UKF to EKF state estimation performance during approach

Parameter error
Position mean error | 14.4 %
Velocity mean error | -53 %

Attitude error x 69.5 %
Attitude error y 9.5 %
Attitude error z 54.6 %
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Table 5.11: Rating of filters against performance criteria based on EPOS 2.0 test results

| Criterion | Weight | EKF score | EKFSscore | UKF score

Accuracy 5 0 -1 +1
Time to settle 3 0 0 0
Stability 4 0 -2 -2
Bias 2 0 -1 0
Complexity 3 0 0 0
Overall NA 0 -15 -3

The filter performance is judged similarly as in the simulation test data rating:

Accuracy: Again, the accuracy in position estimate, velocity estimate and the average of the attitude esti-
mates is rated.

Time to settle: In the hardware-in-the-loop test this parameter could not be observed satisfactorily, but
no substantial differences could be observed. Thus, all filter modes are scored equally.

Stability: Since the EPOS tests showed divergence for both new filters as well as strong quaternion fluc-
tuations late in the test run (primarily for the UKF) they are rated as performing very poorly.

Bias: For the EKFS, a slight offset could be made out in the position estimate.

Complexity: No difference could be made out in the EPOS 2.0 test. All filters ran smoothly and no obvious
changes in runtime could be observed. However, this parameter could not be observed conclusively from the
test data.

The results from the filter performance rating is shown in Table 5.11.

Having judged the different results from the simulation test and the hardware-in-the-loop test against
the filter performance criteria, it can be seen that there are substantial differences between the different test
methods and the way they affect filter quality perception (see Tables 4.10 and 5.11). Both filter alternatives
perform better in the controlled environment of the simulation performance test. No filter estimate diver-
gence or other unusual estimate behaviour can be observed and both accuracy and time to settle improve.
The UKEF slightly outperforms the the EKFS due to a faster time to settle. Both filters have a substantially
longer runtime, but since it remained under 0.1 seconds of filter execution time using a conventional desk-
top PC this is not considered a substantial problem.

However, these results weren’t confirmed in the EPOS 2.0 tests and the state estimation could not be con-

clusively be validated. Here, both filter alternatives perform poorer than the original EKF when judged against
the performance criteria. In particular the EKFS is downgraded due to its poorer accuracy in estimating the
state parameters. Despite it being difficult to rate the stability parameter numerically, both filter alternatives
are rated as very poorly due to divergence at close proximity operation. Complexity and time to settle were
not rated due to data not being available. However, they are expected to perform in a similar way as in the
simulation performance test, thus cancelling out in the overall rating.
From the overall result it can be concluded that neither the EKFS nor the UKF are currently viable alternatives
for the EKE at least not in the way they are currently implemented. Nevertheless, the UKF shows the greatest
potential to eventually replace the EKE since it performed better than the other filters in the simulation per-
formance test and only ranked slightly worse in the EPOS 2.0 test. The problem of estimate divergence needs
to be addressed first, though.

In addition, it can be said from the assessment of hold-points and approach stages from the hardware-in-
the-loop tests that the EKFS performs worse in both stages, whereas the UKF seems to be particularly suited

for approach stage state estimation. This should be confirmed through additional testing.

The differences in ratings from the results of simulation test and hardware test highlight another impor-
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tant conclusion. While the simulation test results on their own suggest that the implementation of the filter
alternatives would bring a substantial performance improvement the reality observed in the EPOS 2.0 tests
is a different one. This means that simulation tests only give a suggestion of performance but that hardware-
in-the-loop tests are crucial to judge a filter and are far more important for filter assessments. While a more
accurate model in a simulation test may yield results closer to reality the real-life facility test cannot be ne-
glected. This may also explain the differences between observed filter performance and filter performance
found in documentation as presented in [29], since most filters are assessed theoretically or through methods
similar to the simulation performance test.

In line with this, the verification method through unit tests needs to be reconsidered, since problems in
the state estimation, especially in the attitude estimation of the UKE were only caught after multiple itera-
tions. This could not be captured by the verification method and was only highlighted through validation in
the simulation performance test and the hardware-in-the-loop test. It should thus be reconsidered whether
the verification method should be adjusted to include a method to verify the working of the filter across a
multitude of iterations to catch such problems earlier in the development phase.

5.6. Explanations and improvement of the testing approach
Several explanations for the difference in performance in the different tests have been given before.

For the UKE the calculation method of taking the weighted average of state vectors to find propagated
states may not work for the quaternions and thus cause divergence. It remains to be explained why this does
not seem to be a problem in the hardware-in-the-loop test up to the point of divergence at the end of the
test run and why some test cases in the simulation performance test do not show as strong quaternion error
divergence as others. In the future, it can be tested whether this causes a problem by re-implementing the
computation of quaternions via a different averaging approach (see [21]).

Another observation in the tests is the comparatively poor performance of the EKFS and the UKF (the lat-
ter shows a worsening of the velocity estimation) in the hardware test. This may have to do with the far better
performance of the EKF in the hardware-in-the-loop test than in the simulation test. This can be explained
theoretically by the fact that the EKF test was run longer than the other tests, which caused the EKF to have
more time to settle around the target state. Thus, in comparison with the other test runs, a higher percentage
of states are estimated that are closer to the target state, which means that the mean performance is better
than for the EKFS and the UKE where tests were run shorter. This could be improved in future projects by
either further standardising testing to follow the same timeline, inputs and structure, or by reliable excluding
swing-in-periods. Further options for improving the comparability of the tests is shown below in Section 5.7

Another difference in the tests was observed in the overall performance of state estimation being differ-
ent in the simulation performance test. This could be due to the inconsistencies in the hardware tests and
the occurrence of real errors. However, the comparatively different performance may also have to do with
the matching propagation methods of the filters and the simulation test. In the simulation performance test,
the EKF may have an advantage over the other filters. The propagation of the simulated true servicer and
target satellite is performed using the same orbital propagation algorithm as is applied in all filter propaga-
tion steps. This means that the propagation of the simulation test perfectly matches the EKF’s propagation
method, but not the propagation method of the other two filters, since the EKFS and UKF use the same prop-
agation method as a basis but both perform adjustment steps to it, such as the smoothing steps and the
determination of sigma vectors. Thus, theory predicts that the EKF would perform better in the simulation
test comparatively. This could be tested by using a different propagation method in either the simulation
performance test or the filters.

5.7. Comparison of hardware test and simulation test

When comparing the performance of the filters in the hardware test with the performance in the simula-
tion test cases with delayed measurements (which are the most representative compared to the EPOS 2.0 test
conditions and are shown in Table 4.9), the poor performance by the UKF in attitude estimation compared
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to the EKF in the simulation performance test is standing out and does not compare to the actually better
performance in attitude estimation of the UKF in the hardware test. Neither does the UKFs simulated good
performance in velocity estimation correlate to the poorer estimation in the hardware test. However, the po-
sition estimation accuracy of the UKF matches closely to the position estimation improvement seen by this
filter in the hardware test.

Again, when looking at the EKFS’s performance in test cases 9 through 14 of the simulation test, they do not
match the hardware test performance. The EKFS performs worse than the EKF in the hardware test in all
areas, while the simulation test suggested an improvement over the EKF in the estimation of position and
velocity.

Furthermore, both new filters showed problems at close-proximity operations. While this wasn’t observed
in the simulation performance test, where this close distance was not tested either, it highlights the wider is-
sue that neither of the newly implemented filter modes are yet a viable alternative for the existing EKE This is
due to the fact that unforeseen state estimation deviation could lead to catastrophic failure, especially since
it occurs in close proximity operation. However, it has to be stated as well, as was seen in the simulation
performance test, that both new filters have the potential, and in case of the UKF have shown, that they can
outperform the EKF in real life conditions.

This also relates to a great mismatch between simulation testing and hardware testing. The simulation
test did not test the approach and hold point scenarios in the same way as the hardware test. This is due to the
lack of some of the inputs (mainly the force input to move the servicer satellite relative to the target satellite
in the example under investigation) and slight differences in the setup of the satellite models. It can thus be
concluded that both the setup and the system inputs into a system need to be modelled the same way as are
tested in the hardware test.

It was seen in the hardware test that the measurement delay fluctuated and dramatically increased the
closer the servicer satellite moved towards the target satellite. This fluctuation and the higher measurement
delays in excess of 0.5 seconds was not modelled in the simulation performance test since it was not fore-
seen. The occurrence in the hardware test can, however, be explained theoretically from the fact that the
target satellite occupies a larger area of the image taken by the sensor the closer the two satellites are. Thus,
the image processing algorithm needs to perform increasingly more feature recognition tasks as the servicer
approaches the target. This delays the sensor information input to the navigation filter, which in turn may
lead to bigger state estimation "jumps" between different iteration steps. This shows that in a simulation test,
the inputs to a system or filter can be perfectly controlled but in a hardware test they cannot and might differ
dramatically, resulting in different outcomes.

In line with the previous point, the perfect controllability of inputs in simulation testing, another chal-
lenge for the transition from simulation to hardware testing was observed to be the consistency across test
runs in hardware testing. As was seen, all filters could be fed with perfectly matching input data, initialisa-
tion conditions and test scenario sequences in simulation testing. This was not the case in hardware testing,
where filters had to have their own dedicated test runs. This meant that both initialisation and input as well
as test sequences differed as they were partly human-controlled and not necessarily fully consistent. Thus,
while simulation test results may be less representative of real-world performance, they are more suited for
direct comparison of filter performance. However, when moving into hardware testing, this also explains
why results observed in simulation testing may not be reproduced and may rather give an indication of the
real-world performance under the circumstances given in the relevant test runs. Thus, in order to perform
performance comparison based on results from hardware testing, the consistency or precise awareness of
circumstances in the test runs is far more crucial than for simulation testing.

This also means that in order to compare the performances of systems in simulation tests and hardware
tests, not only a general assessment of the differences between the simulation and the hardware facility test-
ing approach needs to be conducted (as was done in this project), but a precise assessment of the differences
between the simulation and each individual test run in the hardware test is necessary.

An alternative for more consistent hardware testing would be to only track the real life behaviour, measure-
ments and filter inputs throughout a test run and not use filter feedback to steer the satellites. Then, saving
all these parameters and externalising them, the filters can be fed with these inputs and the state estimation
from each filter based on the same inputs can be compared to the true state collected before. Thus, the fil-
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ters could be tested using the hardware facilities advantages but also using the same inputs for comparability.

As was shown throughout this report, the transition from simulation testing to hardware testing and the
definition of expected results from this comparison is also affected by the selection of appropriate test cases.
For the project at hand, several test cases were used in the simulation test which were known to not be fully re-
latable to the hardware tests. Thus, a separate comparison was conducted for the test cases that were deemed
more appropriate. The knowledge of such test cases was taken from experts knowledge of test runs. However,
simulation testing for future research projects, and the transition from simulation to hardware in particular,
can be improved by iteratively adjusting the simulation testing approach using observations from hardware
testing. This will make the two test approaches more comparable and the definition of expected outcomes
from hardware testing can be facilitated, while at the same time the simulation models are improved.

Several differences between the performance of filters in simulation and hardware testing also arise from
erratic behaviour and random errors in the test systems. This can, for example, explain fluctuations in the
accuracy of the state estimation of navigation filters. An example of such a behaviour can be random noise
on measurements. In the simulation test, noise is randomly generated within certain bounds. However, this
random behaviour may be different in real-world applications and test facilities. A detailed assessment of
the origin, the frequency and the magnitude of such erratic effects should be conducted to either adjust the
simulation model or to exclude the effects from the performance assessment and the comparison between
simulation and hardware tests.

The section above discusses the mismatches between simulation testing and hardware testing, and which
steps can be taken to either correct for, overcome or understand such mismatches. Since the hardware test
is used to capture behaviour that is not observed in simulation testing, the approaches shown above can be
used to either improve the simulation model or to better understand the origin of unrealistic behaviour in
the simulation model. This in turn can be used to improve the theory of whatever system is tested to make it
better suited for real-world applications.

5.8. Conclusion and recommendations for future tests

The analysis performed on the test results from the hardware in the loop tests have shown several insights.
These are reiterated in the following.

Neither the EKFS nor the UKF could consistently outperform the EKF in a real-life hardware in the loop
test. The UKF showed better performance except for the performance in the estimation of the velocity of the
target satellite, and confirmed the observation from the simulation performance test that the UKF performs
better when measurements fed to the filter are delayed or withheld (as is the case in a real-lief test requiring
image processing). However, the UKF showed sudden estimation divergence in close proximity operation
that could not be recreated and conclusively explained yet. The EKFS also showed such behaviour at an ini-
tial start up of the system but never afterwards. For both cases this error has thus not been understood or
mitigated.

The EKFS shows poorer performance than the other two filter modes in the state estimation (exception:

velocity estimation). This is partially explained through an estimation offset and a worse quality measure-
ment that was fed to the EKFS. However, it also highlights another issue that needs to be addressed in future
tests: A standardisation of the test parameters and inputs.
Since the facility is operated by human operators there are always differences between individual test runs
testing different navigation filters. This means that filter run times can vary and that different measurements
are fed to the filters, which in turn affects the filter estimate and, comparatively, the performance. For future
test runs, a system needs to be developed that allows for filters to be compared under more similar circum-
stances. Additionally, more test runs under similar and different test conditions need to be performed, par-
ticularly at close-proximity operation. These should be used to confirm the test results gathered so far and
can be used to help improve the performance of the new filters.

The implemented filter modes showed differences in performance between test phases where the satel-
lites were held at a constant relative position and where the servicer satellite approached the target. These
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were investigated separately. It was found that the EKF performs very well in the case where satellites are
moving, however, in this condition, the UKF performs even better (up to the point of divergence at close
proximity at the end of the test run). The EKFS performs almost as well as the EKF in the case where the
satellites are held at hold-points but far worse when satellites are moving.

Neither the EKFS performance nor the UKF performance could conclusively be validated through the
hardware-in-the-loop test. This has several reasons. The EKFS performs according to the expectations, how-
ever, the measurements fed to the EKFS were so poor that further tests are suggested to validate the perfor-
mance conclusively under better test conditions. Furthermore, state estimation deviations were observed
once when initialising the filter at close proximity, which has not be explained yet. The UKF showed state
estimation deviation for all parameters late in its test run. This was similar as the attitude deviation observed
in the simulation test but affected the position estimate as well, meaning that the filter should not be used in
real mission applications yet. This means it is not validated yet and further filter testing and improvement is
required. This again highlights the conclusion drawn from the simulation test that while the unit tests could
be used to verify the working of the filter state estimation and the individual filter functionalities, they were
not extensive enough to assess potential problems building up over a multitude of iterations. This is what the
simulation test and the hardware test were used for and the results shows that the new filter options are not
yet fully ready for implementation in real-life applications.

Furthermore, based on the results from both the simulation test and the hardware-in-the-loop test, sev-
eral conclusions were drawn on how to explain the differences in test performance theoretically, and how
future projects can approach testing to validate the explanations. In addition, general approaches for im-
proving the tests and the compatibility of the test results were presented.

5.9. Addressing the research questions

As part of the research project, the research questions posed in Chapter 1.7 need to be answered. Throughout
the project all of them were addressed. However, minor changes presented in the previous chapters affect
the answers and the way the questions were tackled. In particular, the sub-sub-questions of sub-question 1
needed to be altered slightly since it was identified that a full implementation of all 6 identified potential filter
alternatives for the EKF in the simulation performance test would have exceeded the scope of the project.
This is mainly due to the fact that the implementation in the simulation performance test and the EPOS
2.0 facility hardly differs, meaning that the full filter would need to be developed and unit tested in either
case. Thus, the narrowing down of filter options to 2 potential filter alternatives was not done quantitatively,
as originally planned, but qualitatively. Table 5.12 gives an overview over the Sections in this report where
individual research questions were answered and briefly explains the answers themselves.

5.10. Value of results

The value of the research project lies in both the assessment of the viability of the newly implemented filters
to serve as alternatives for the exiting EKE and the identification of mismatches between the simulation and
hardware tests and challenges in the transition from simulation to hardware testing. The latter can be used
by future research projects to improve their test approaches.

As was shown, the newly implemented filters cannot yet be used in real-life applications as alternatives
to the EKF since they both showed problems in close-proximity operations in the hardware-in-the-loop test.
These problems need to be resolved first.

Nevertheless, the research performed over the course of this project shows the potential of both alterna-
tive filter modes to outperform the EKF in close proximity operation. The state parameter estimation was
better especially for the UKF for most test cases. Thus, it is recommended that the development of this filter
method is intensified.

In addition, the research presents a comprehensive approach for comparative satellite navigation filter
assessment. By presenting performance criteria for close proximity satellite operation and judging them ac-
cording to their importance to mission success, as well as by presenting several approaches for collecting
performance data this work can be used as a baseline study for future comparative filter performance assess-
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Table 5.12: Addressing the research questions

] Research question:

Answered in section:

Answer

Question 1.1

3.1

EKFS, UKE EnKE RBPE MKF

Question 1.2

2.1

The EKF takes visual sensor inputs and initial state esti-
mates to update state estimations; it can take delayed mea-
surements and assess whether a measurement is appropri-
ate for use or not; it was chosen since it is a well established
navigation filter

Question 1.3

2.1

DLR has an existing orbital propagation model that is used
in all filters and in the simulation performance test

Question 1.4

1.9.8,3.2

Readiness to use in real-time, Ease of implementation, use
in space applications, novelty of filter, readiness for visual
navigation systems

Question 1.5

2.1,2.4

Filters should be able to run at 10 Hz and output the up-
dated state estimate; all filters should have the same func-
tionalities (accepted inputs, delivered outputs) as the origi-
nally used EKF

Question 1.6

4.5

Time constraints required to limit the assessment to the
EKFS and the UKF; both EKFS and UKF perform deliver
more accurate estimates of the state position and converge
to the true state faster; the attitude estimate of the UKF is
considerably worse than that of the EKF; both filters show
potential to outperform the EKF

Question 1.7

3.2

EKFS and UKF; due to time constraints the trade-off was
performed purely based on qualitative criteria

Question 2.1

5.1

The EPOS 2.0 facility is operated through a control room
and is run using the DLR GNC system; filters are tested by
implementing them in the GNC system using configuration
files

Question 2.2

1.9.5,1.9.8

Accuracy, time to settle, stability of estimates, estimate bias,
computational complexity

Question 2.3

4.4,5.2

The performance of filters against the criteria is assessed us-
ing a simulation test and a hardware in the loop test; the rel-
evant parameters are deduced from the state estimates and
the true target states as well as filter execution times and
measurement accuracy

Question 2.4

5.1

EPOS 2.0 test results cannot currently match the simula-
tion test results since they are generated using different ap-
proaches. However, the test results should show the same
trends and confirm the overall performance behaviour ob-
served in the simulation test.

Question 2.5

5.2,5.3

The original filter structure is rewritten as such that an over-
arching filter class has access to all filter modes; configura-
tion files used to initialise the GNC system are used to access
and execute different filter modes using the given input pa-
rameters

Question 2.6

1.9.10

The same performance parameters as in Question 2.2 are
used

Question 2.7

4.7,5.8,72,22

These differ greatly by test case; both filter alternatives
show the potential to outperform the EKF in estimate ac-
curacy and execution speed but currently diverge in close-
proximity operation in the hardware test

Question 2.8

22,22

The EKFS performs worse in the EPOS 2.0 test, the UKF per-
forms well in the position estimation in the EPOS 2.0 test
but neither of the filters is stable at close-proximity opera-
tion

Question 2.9

2?2

From the assessment of hold-point and approach perfor-
mance it seems that the UKF is particularly suited for ap-
proach operations
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ments.

Furthermore, the research highlighted a wider problem in satellite navigation filter assessment, which is
an over-reliance on simulation results over hardware test results. As was shown, the simulation test method
was too simplified in comparison to the EPOS 2.0 test and could not reflect many of the more complex state
estimation conditions occurring in the approach and arising from using real-world sensor inputs.

Another problem that the difference between the different test approaches highlights that can be consid-
ered for future work on navigation filters in general is the approach taken to hardware testing. In simulation
testing, the comparability of tests is ensured since different filters can be initialised and tested using exactly
the same input conditions, whereas this is not always possible in real-world applications, especially when
using complex systems including satellite models. This needs to be considered before starting testing and
test approaches and expected outcomes should be adjusted.

It was shown that the verification method of purely using unit tests on filter functionalities and instan-
taneous state estimation assessments is not extensive enough to account for problems occurring when per-
forming multiple subsequent iterations. This needs to be accounted for in any filter development at earlier
verification steps, rather than in the filter validation through testing.

Several challenges in transitioning from simulation to hardware testing were identified that can be con-
sidered by future projects: the need to identify the complete set of input conditions that may be present in
hardware testing and the assessment of their effect on the outcome of the test campaign in comparison with
results from simulation testing; Ongoing changes in the timing and quality of inputs throughout a hardware
test which are simulated as constants or are simplified in simulation testing; The mismatch between differ-
ent test runs in hardware testing that leads to results not being fully comparable and the resulting need for
consistency across test runs.

Throughout this report, several examples of such challenges are collected and potential approaches to val-
idate and tackle them are presented. The research report can thus serve as a blueprint for identifying and
approaching challenges in simulation and hardware testing in a research project.






Recommendations and conclusion

Based on the insights gained over the course of this project, several recommendations are given in this chap-
ter. In section 6.1, general recommendations are given how the research results can be used to improve future
projects and what lessons have been learned. In section 6.2, recommendations on future filter developments
are given. Section 6.3 presents the next steps in the process of determining viable filter alternatives to the EKF
and section 6.4 finishes the report with conclusions from the project.

6.1. Overall observations based on project outcomes

Several issues occurred throughout conduction the research project at hand. This section summarises in-
sights that were gained specifically around the methods of filter assessment and how the problems that oc-
curred can be avoided in the future. Furthermore, it is reiterated how the insights from the research project
can be used to improve the transition from simulation model testing to testing in a hardware facility.

Revision of performance criteria is required throughout project:

Since the performance criteria that are used to judge the filters are defined in the beginning of the project
when the methods of filter assessment are outlined, they should be revised once the practicalities of the test
methods are clearer. As was seen, the EPOS 2.0 test did not yield clear insights on time to settle and com-
putational complexity since the filters could not easily be executed parallelly and using the exact same test
conditions. This was not known upfront but affected the filter comparison presented in Section ?2. A revision
and adjustment of filter performance criteria based on the practicalities of gaining filter test data would have
been more sensible.

Detailed assessment of compatibility of different assessment method results is necessary:

The research project is based on the assessment of filter performance based on two methods, the simulation
test and the hardware-in-the-loop test in the EPOS 2.0 facility. While the simulation performance test was
designed and developed in such a way that it can simulate test cases encountered in the EPOS 2.0 facility,
it is not advanced enough to yield fully comparable results. Furthermore, the EPOS 2.0 facility can also not
fully reproduce the test cases defined for the simulation test. Thus, verification of simulation test results is
very difficult using the hardware facility, which means that while performance parameters can be compared
based on the individual test cases from the different test methods, there is no direct correlation between the
tested scenarios. The simulation performance test thus primarily serves as a performance indicator of what
is theoretically possible, whereas the hardware test yields more reliable results on real-life performance. The
two methods are not fully compatible.

Purely simulation test based results are unreliable for real-life performance:
Following from the previous point, purely assessing the performance of a filter (or other new systems for that
matter) based on a simulation model yields a clear idea of the performance, but, especially for poorer mod-
els, should always be followed up with more reliable testing methods, such as hardware tests. The research
presented in this paper would have concluded substantially different results on the applicability of the filters
in real-life scenarios if the hardware tests hadn’t been performed. This is also observed in other publications
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that rely heavily on theoretical performance of filters in simulations. In addition, the project detailed in this
report would have benefited greatly from more stringent validation efforts which may have improved the
quality of the simulation test outputs.

In summary, simulation models and tests should be followed by hardware tests to identify problems that the
simulation model may not have captured.

When comparing simulation test results and hardware test results, the selected test cases are crucial:
As was discussed before, if one wants to compare test cases and results, the selection of representative test
cases and the reiteration based on hardware test insights is crucial for the simulation testing phase.

6.2. Recommendation for future filter development and testing

The previous chapters outlined the problems that were highlighted through the filter test results. It was seen
that both the EKFS and the UKF show a potential to outperform the EKE but this performance could not be
confirmed in all test cases and in the EPOS 2.0 test. This section aims to explain what could be improved in
the filter development to avoid problems in the test process.

Furthermore, an important aspect of this research project is the identification of concrete mismatches and
challenges when transitioning from simulation to hardware testing.

6.2.1. Lessons learned during filter development

Several recommendations can be given based on the lessons learned during the filter development: Identifi-
cation of key performance functionalities and their implementation:

The original EKF has several key functionalities that were identified early on in the filter alternative devel-
opment process. These include the inputs and output as well as all returns that need to be passed to the
GNC system (see Section 2.4 for details). In addition, the original filter features functionalities in excess of a
conventional EKF that were developed specifically for DLR needs and needed to be transferred into the new
filter alternatives, such as the ability to include delayed measurements and neglect measurements that have
been used in previous filter iterations. While there were identified as important early on their implemen-
tation wasn't specifically considered when implementing the new filter alternatives. Thus, it wasn't realised
that the implementation of the delay function in the EKFS and the UKF actually required a deviation from the
documented EKFS and UKE Not realising this early on caused test errors and development delays. It is thus
recommended for future filter developments to carefully adjust filters to include additional functionalities
and to check how the documented filter may need to change.

Start hardware testing earlier in development process:

As was mentioned before, the simulation performance test was developed as a quick way to test filter capa-
bilities and determine whether a filter could potentially be used in hardware facilities. While this worked well
in theory and, especially early in the development process, errors in the filters could be identified, a great
reliance on the simulation test as an actual performance indicator representative of the real-life test condi-
tions pushed back the actual hardware test to a very late stage of the process. This meant that filters were
adjusted based on simulation test results and not based on hardware test results since they came too late in
the project. Thus, the divergence of the EKFS and UKEF state estimation observed in the EPOS 2.0 facility tests
could not be addressed through extensive testing and filter adjustments any more. It is thus recommended
that in a filter implementation activity, hardware tests should ideally be performed earlier in the project and
it should not primarily be relied on simulation tests.

6.2.2. Recommendations based on test performance
Based on the way the tests were conducted and from the assessment of the results, several recommendations
can be given in general and for the transition between the different tests:

Make test runs comparable:
Despite the efforts to recreate similar test conditions in the EPOS 2.0 facility tests there were obvious differ-
ences in the filter tests that make comparative data assessment difficult. The simulation test on the other
hand delivered comparable results since the same inputs were fed to the filter modes in parallel. While this
was not possible for the hardware-in-the-loop test, a more strictly controlled test procedure or the capability
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to run filters in parallel would benefit the comparability of filter performance and the accuracy of a compara-
ble data assessment. Another approach would be to collect test run data and inputs from the EPOS 2.0 facility
first and then run the filters all using this data.

Furthermore, longer and more filter tests in the hardware facility would reduce the impact of outliers or faulty
data and thus yield a more reliable data assessment. Time limitations in the project at hand didn’t allow for
more tests, but future development projects should incorporate more time. This again roots back to an over-
reliance on the accuracy of the simulation test results since time needed to address errors in the hardware
test was not allocated.

Ensure compatibility of filter method with state parameters:

This is a problem that is postulated to have affected the UKF performance greatly. It was identified that the
propagation method of the UKE which relies on taking weighted averages of propagated sigma vectors, may
not be compatible with the quaternions used in the satellite state to indicate the attitude. Mean quaternions
cannot be calculated using weighted averages but have their own computational rules. However, this was
realised too late for correction. It is postulated that this affected the divergence observed in the EPOS 2.0
facility tests when satellites operated in close distance to each other, as well as the performance in some of
the simulation performance test cases. It should thus be checked earlier in the filter development whether
the filter being implemented may need adjustments based on the produced output (or state). A specific revi-
sion of computational rules for all state parameters is recommended. Again, more stringent verification and
earlier validation could help to avoid such problems as well.

Identify all input conditions and their potential effect that may be neglected in simulation testing but
are present in hardware testing:
As was mentioned earlier, the simulation test is often a simplified version of a real-world application. It may
thus neglect some of the inputs or environmental conditions that have an effect on the system in the hard-
ware test. An assessment of such inputs (for example force inputs, tumbling) and the expected effect on the
system response is required to perform a better comparison of test results and understand mismatches be-
tween the test outcomes.

Identify constant conditions modelled in the simulation test that are not truly constant in hardware
testing:
As was seen, several inputs in the simulation test, such as the frequency with which measurements were
passed to the filters, were modelled as constants, while it was observed in the hardware tests that these were
not truly constant. Furthermore, the EPOS 2.0 facility, being more complex than the simulation test, involves
other factors such as differences in sensor information errors, which divert the performance in the hardware
test from that in the software test.

6.3. Next steps

Summarising the lessons learned and the recommendations given above, it can be said that the viability of
the selected filter alternatives is not shown conclusively. The next steps in the process of determining viable
filter alternatives for the EKF are shown here. These can also be used by future research projects to improve
their own theory and implementation in software and hardware tests.

Improving the simulation performance test:
The simulation performance test should be adjusted to match the real-life conditions of filter testing more
closely. One poignant example that was identified is the change in propagation algorithm in the simulation
to not match the filter propagation method and to be more accurate than the current method.

Perform stability tests for all filters:
DLR has developed a stability check for the original EKF which tests whether filters access the correct stored
state to compute measurement predictions when measurements are delayed. Since stored states do not nec-
essarily match the time stamp of the delayed incoming measurement, past states need to be interpolated. It
was observed that some interpolation cases can cause estimate divergence under specific conditions. DLR is
currently working on a paper discussing this issue and has been able to fix it for the EKE
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Further research in how to stabilise the EKFS and UKEF is required, and may lead to a better understanding of
why the filters diverge at close-proximity operation.

Further hardware-in-the-loop tests:
As was discussed, the EPOS 2.0 tests were not all performed in such a way that they were easily comparable.
In addition, only one test run per filter was fully performed under real-operating conditions (earlier tests used
a different, faulty sensor feedback approach and were neglected for filter quality assessment), which means
that more test runs are required to expand the data set and confirm the current results.

Average quaternion prediction adjustment:
It was previously explained that the part of the satellite state using quaternions for attitude determination
in the UKF (and potentially the EKFS as well) may require a different method for drawing the mean weight
estimate than is the case for the other state parameters. This is due to the quaternions not working with con-
ventional weighted averages. A separate approach needs to be implemented. This may correct the quaternion
deviation, and, consequently also improve the close-proximity operation of the state estimate overall.

Re-evaluate filter performance scoring:

The initial performance criteria were determined and rated based on purely theoretical knowledge at the start
of the project to allow for an unbiased evaluation of the performance of the different filters. However, as was
seen in the test process and the subsequent performance assessment the scoring may not always be repre-
sentative of the actual usefulness of the filter in an application. As was seen with both the EKFS and the UKE
the stability of a filter and the range of application has to be rated higher and rating criteria have to be defined
more clearly. This allows for excluding filter options that do not perform up to minimum requirements or at
least scores them as considerably worse than the existing option. Furthermore, by assessing the performance
requirements on the existing filter in existing mission specifications more thoroughly, performance criteria
can be defined more clearly, in particular for numerical filter performance assessment.

Re-perform tests according to revised test approach and performance assessment:
Finally, the tests that have already been performed need to be repeated and added to. Thereafter, the revised
performance assessment can be undertaken in order to achieve a more accurate filter viability comparison.

6.4. Conclusion

This report details a research project that was conducted as part of a master thesis at TU Delft at the faculty
of Aerospace Engineering in the space engineering department. The purpose of the project was to determine
the viability of 2-3 potential navigation filter alternatives to the Extended Kalman Filter in close-proximity
satellite operation. This was done by qualitatively selecting two filters, an extended kalman filter with an in-
termediate smoothing step and an unscented kalman filter, for implementation and testing within the GNC
system framework at DLR Oberpfaffenhofen. A simulation test was built to assess the theoretical performance
of the filters and numerically compare them. 16 test cases were performed using the same test conditions and
inputs for all filters. Furthermore, the filters were assessed through test data collected from approach scenar-
ios performed in the hardware-in-the-loop facility EPOS 2.0. In addition, the purpose of the research was
to uncover mismatches between simulation and hardware testing. While the transition from simulation to
hardware testing may seem straightforward, it was found that there are several general problems that can be
encountered. This report can thus serve as a blueprint to improve this transition for future projects.

Neither of the two newly implemented filters are, at this time and under the current implementation, vi-
able for replacing the currently used EKF in real-world applications since their correct working could not
be conclusively validated in the hardware tests. They both showed state estimation divergence in close-
proximity operation below a relative distance of 5 metres between the target satellite and the servicer satellite,
which was deemed a critical criterion for exclusion in real-world applications since it could lead to catas-
trophic failure, particularly in close proximity operation.

Nevertheless, both newly implemented filters showed the potential to outperform the original EKF in the
estimation of the state parameters in both the simulation performance test and the hardware-in-the-loop
test prior to divergence, in particular in the estimation of position and velocity of the target satellite. For the
simulation performance test, it was decided to focus the performance assessment on test cases with delayed
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measurements of which the update frequency did not necessarily match the update frequency of the filters.
This was done since it was a realistic test scenario observed in real-world applications. Both the EKFS and the
UKEF were able to outperform the EKF in the estimation of the position and velocity by about 12% (position)
and 14% and 24% (velocity, respectively).

In the hardware-in-the-loop-test neither filter could repeat this performance improvement. This had several
observed reasons. The EKFS performed worse overall in the state estimation. All estimated state parameters
did not match the true state of the estimated target satellite as well as in the case of using the original EKE
This was partly due to a poorer quality of the measurement that was fed to the EKFS. Due to the nature of the
testing approach in the EPOS 2.0 facility it was not possible to run filters in parallel with exactly the same mea-
surements (and thus measurement quality) which is why this inconsistency could not be corrected for. The
UKF improved in the mean position estimation (10% improvement) and the attitude estimation compared
to the EKF but greatly decreased in the accuracy of the velocity estimate. This had both to do with the EKF
performing very well in this parameter estimation (thus resulting in a strong baseline which the new filters
were compared to) as well as other inconsistencies in the testing approach. For example, it was found that
the duration of test runs and corresponding longer settling times of filters in longer test runs would decrease
the average estimation error. Since the EKF was tested the longest this could have affected the perceived
performance in comparison by the other filters. It was concluded that hardware-in-the-loop tests need to be
standardised better in the future to allow for fairer comparison (see below).

Not only the quality of the state estimation was assessed during the project. From the simulation test it
could be seen that both the EKFS and the UKF were able to converge faster than the EKF to within the same
convergence boundaries, meaning that they achieve the same accuracy quicker, which is important in close
proximity operation. From the hardware-in-the-loop test it was seen that the UKF outperformed both the
EKF and the EKFS prior to divergence. Fast state estimation convergence is critical for close proximity oper-
ation since it is crucial to achieve a precise estimate fast and for it to remain precise when satellites operate
closely to each other.

Based on its potential for superior performance it was concluded that the UKF is the most viable alter-
native for the EKE However, before it can be used as an alternative in real-life applications the divergence
problems at close-proximity operation needs to be rectified and a hardware-in-the-loop facility filter vali-
dation needs to take place. The primary areas that need to be investigated are the implementation of the
quaternion estimation from the weighted average that is drawn in the UKF to determine the state estimate
as it was found after the testing that this approach may not work with the quaternions. Nevertheless, the
UKF showed the most potential based on its test results. It was thus concluded that the UKF was the most
promising alternative to the EKF once the divergence problems are mitigated, since it showed better accu-
racy and faster convergence, thus dominating two of the most important stated performance criteria. This
was particularly observed in the approach phase in the hardware test, where more accurate state estimation
results were achieved.

Throughout the implementation and testing process, several other conclusions were drawn on how to
improve the approach to determine the viability of satellite navigation filters.

e While the simulation performance test can fairly assess the performance of the individual filters since
it feeds the same information to all filters using the same initialisation for test cases, the hardware-
in-the-loop test does not have this capability. Thus, the duration, approach scenario and the quality
of measurement throughout the test of each individual filter differs. This was particularly observed in
the EKFS test, where the measurement quality was very poor. The capability of the hardware test thus
needs to be adjusted to be able to feed comparable inputs to the filters to allow for a fair assessment.

¢ The simulation performance test were not used to simulate tumbling or force inputs to the modelled
satellites. Furthermore, no approach representative of the observed scenario in the EPOS 2.0 facility
was performed. To make the results from both tests more comparable, these capabilities need to be
added.

e The means of verification were concluded to not be sufficient for the project at hand. The primary
method of verification of the filter functionalities was through unit tests that tested the individual func-
tionalities of the filters as well as their interaction in determining a state estimate. This represents a
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single iteration of the filter, or, at most, a succession of only a few subsequent filter iterations. All these
functionalities up to a system level could be verified. However, this verification could not account for
accumulating errors across multiple iterations and thus either does not verify all relevant parameters
throughout the state estimation or needs to be extended by other methods.

¢ Tt was concluded that an over-reliance on the simulation test results could negatively impact the legiti-
macy of the viability assessment. As was seen, the filters performed differently in the simulation and the
hardware test. It was thus concluded for future navigation filter assessments that different verification
strategies and simulation testing methods may be required to deliver more conclusive results.

It can be said conclusively that more tests need to be performed, in particular in the hardware facility, and
that the newly implemented filters need to be assessed further in close proximity operations to make them
viable alternatives to the EKE For the moment, they cannot be used as viable alternatives for the EKF in real-
world applications. The value of this research lies in showing that both the EKFS and the UKF show the po-
tential to outperform the EKF but need further assessment regarding the implementation, and in highlighting
the need for parallel hardware-in-the-loop testing of filters to judge filters fairly in addition to conventional
simulation testing.

Throughout testing, several aspects were observed that differed between the simulation and hardware
testing, causing mismatches. The purpose of the hardware test was to identify and capture conditions of
performance that were not observed in the simulation tests. The conclusions drawn from this are presented
here.

¢ The selection of comparable test cases is crucial when comparing the performance of a system in simu-
lation and hardware testing. As was seen, not all test cases in the simulation test relate to the hardware
test conditions and thus do not yield meaningful insight on a system under simulated real-world condi-
tions. Thus, while such test cases may be useful to assess theoretical performance parameters, they are
not useful for the specific application at hand when it can be shown that they do not relate to the real-
world. This means that simulation test cases should be adjusted to, or reiterated, following real-world
observations if the purpose is to yield meaningful insight on real-world behaviour in a simulation test.

* The identification of all possible inputs in the hardware test that may affect performance assessments
but are neglected in the simulation test is important before and throughout hardware testing. This
helps to assess the potential impact on the performance that is tested. An example is the fluctuation of
errors and force inputs.

* Being aware of changing conditions throughout a hardware test run that are modelled as constants
in the simulation test, or are simply initialised in the simulation and do not change dynamically, is
critical to understand changing performance across a hardware facility test. Throughout this project,
the outstanding parameter was the timing of the measurement information input to the filter, which
was modelled as a constant in the simulation test but became drastically slower in the hardware test
the closer the servicer satellite got to the target satellite. This, naturally, causes the state estimation
to perform bigger jumps between update steps and may affect conversion quality. Being aware of this
allows to adjust the simulation models of future projects.



Simulation test data analysis code

This appendix shows the code used to perform the simulation performance test data assessment. Code sam-
ples to plot graphs are excluded. Separate data frames were used to assess individual state parameters. The
data assessment program is coded in Python.

The assessment is show for the EKF but is performed in the same way for the other filters. The extracted
data is saved in a csv file separately.

import matplotlib.pyplot as plt
import numpy as np

import pandas as pd

import math

from openpyxl import load_workbook

## Define function for system assessment

def systemAssess(df_f):

## DETERMINE BOUNDARY POINTS FOR ASSESSING FLUCTUATION AND CONVERGENCE TIME
## determine high points

df _f[’h_point_check?’] = ""

for index, rows in df_f.iterrows():
if (index == 0):

df _f.iloc[0,-1] = 0

elif (index == df_f.index[-1]):

df_f.iloc[index,-1] = 0

else:

if (df_f.iloc[index,-2] > df_f.iloc[index - 1,-2] and df_f.iloc[index,-2] > df_f.iloc[index +
1,-21):

df_f.iloc[index,-1] =1

else:

df_f.iloc[index,-1] = 0

df_f_hp = df_f.loc[df _f[’h_point_check’] == 1]

df _f_hp = df_f_hp.reset_index()

df_f_hp[’first_min’] = ""

abs_diff_loc = int(df_f_hp.columns.get_loc("abs_diff_pos"))

## determine lowpoints

for index, rows in df_f_hp.iterrows():
if (index == 0):
df_f_hp.iloc[index,-1] = 0

if (index == df_f_hp.index[-1]):

df _f_hp.iloc[index,-1] = 1

else:
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if (df_f_hp.iloc[index,abs_diff_loc] < df_f_hp.iloc[index - 1,abs_diff_loc] and
df_f_hp.iloc[index,abs_diff_loc] < df_f_hp.iloc[index + 1,abs_diff_loc] and

df _f_hp[’abs_diff_pos’].iloc[(index+1)::].max() <
df _f_hp[’abs_diff_pos’].iloc[::(index+1)] .max()):
df_f_hp.iloc[index,-1] = 1
else:
df _f_hp.iloc[index,-1] = 0
if (len(df_f_hp.index) == 0):
conv_pnt_idx = 0
conv_pnt_time = "no conversion reached within time period"
bnd_pnt_time = "no boundary point reached within time"
bnd_pnt_err = "-"
max_tail = "-"
bnd_tail = "-"
else:
conv_pnt_idx = df_f_hp[’first_min’].idxmax()
conv_pnt_time = df_f_hp.iloc[conv_pnt_idx,1]

######4### find boundary point

# convergence point is highpoint after which higher highpoints follow
# boundary point is the point before conv point after which only smaller values

# first determine max point after conv point, then check last occurence for which total error

higher

max_tail = df_f_hp[’abs_diff_pos’].iloc[(conv_pnt_idx+1)::].max()

df _f_hp[’first_max’] = ""

for index, rows in df_f_hp.iterrows():
if (index == df_f_hp.index[-1]):

df _f_hp.iloc[index,-1] = 1

else:

if (df_f_hp.iloc[index,abs_diff_loc] > max_tail and df_f_hp.iloc[index + 1,abs_diff_loc] <
max_tail):

df_f_hp.iloc[index,-1] =1

else:

df_f_hp.iloc[index,-1] = 0
bnd_pnt_idx = df _f_hp[’first_max’].idxmax()

bnd_pnt_time = df_f_hp.iloc[bnd_pnt_idx,int (df_f_hp.columns.get_loc("est_time"))]

bnd_pnt_err = df _f_hp.iloc[bnd_pnt_idx, abs_diff_loc]
bnd_tail = df_f[’abs_diff_pos’].iloc[int (bnd_pnt_time)::]

return (conv_pnt_time, bnd_pnt_time, bnd_pnt_err, max_tail, bnd_tail, df_f_hp);

######### determine accuracy of position estimate
def posDataFrame (df_f):
df_return = df_£f

df_return[’x_diff_pos’] = df_return[’est_px’] - df_return[’true_px’]
df _return[’y_diff_pos’] = df_return[’est_py’] - df_return[’true_py’]
df _return[’z_diff_pos’] = df_return[’est_pz’] - df_return[’true_pz’]

df_return[’abs_diff_pos’] = (df_return[’x_diff_pos’]**2 + df_return[’y_diff_pos’]**2 +

df _return[’z_diff_pos’]**2)**(1./2.)
return df_return

######### determine accuracy of velocity estimate

def velDataFrame(df_f):

df _return = df_f

df _return[’x_diff_vel’] = df_f[’est_vx’] - df_f[’true_vx’]
df _return[’y_diff_vel’] = df_f[’est_vy’] - df_f[’true_vy’]
df _return[’z_diff_vel’] = df_f[’est_vz’] - df_f[’true_vz’]

df _return[’abs_diff_vel’] = (df_return[’x_diff_vel’]**2 + df_return[’y_diff_vel’]**2 +

df _return[’z_diff_vel’]**2)**(1./2.)
return df_return

#H####### determine accuracy of attitude estimate
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def quatDataFrame (df_f):
df _return = df_f

df _return[’x_diff_q’]
df _return[’y_diff_q’]
df _return[’z_diff_q’]
df _return[’s_diff_q’]
return df_return

df _f[’est_qx’] - df_f[’true_qgx’]
df _f[’est_qy’] - df_f[’true_qy’]
df _f[’est_qz’] - df_f[’true_qz’]
df _f[’est_qs’] - df_f[’true_gs’]

#H####### determine accuracy of attitude rate estimate
def rateDataFrame(df_f):

df _return = df_f

df _return[’x_diff_w’] df _f[’est_wx’] - df_f[’true_wx’]
df _return[’y_diff_w’] df _f[’est_wy’] - df_f[’true_wy’]
df _return[’z_diff_w’] = df_f[’est_wz’] - df_f[’true_wz’]
return df_return

#H####### determine time to stay within same position accuracy as original EKF

def timeToBfBndPnt(df_f_hp, bnd_pnt):

for index, rows in df_f_hp.iterrows():

if (index == 0 and df_f_hp.iloc[index,int(df_f_hp.columns.get_loc(’abs_diff_pos’))] <
bnd_pnt) :

return df_f_hp.iloc[(index+1),int (df_f_hp.columns.get_loc(’est_time?’))]

break

elif (index == df_f_hp.index[-1]):

return (’No conversion to within comparative bounds’)

break

elif (df_f_hp.iloc[index,int(df_f_hp.columns.get_loc(’abs_diff_pos’))] > bnd_pnt and
df _f_hp.iloc[index + 1,int(df_f_hp.columns.get_loc(’abs_diff_pos’))] < bnd_pnt and
df_f_hp[’abs_diff_pos’].iloc[(index+1)::].max() < bnd_pnt):

return df _f_hp.iloc[(index+1),int (df_f_hp.columns.get_loc(’est_time’))]

break

else:

continue

#H####### conversion from quaternions to Euler angles
def quatToEuler(x, y, z, s):
t0 = 2.0 * (s * x +y * z)

tl =1.0- 2.0 % (x *x+y*y)

xangle = math.degrees(math.atan2(t0, t1))
t2 =2.0 %x (s xy - z * x)

t2 = 1.0 if t2 > 1.0 else t2

t2 = -1.0 if t2 < -1.0 else t2

yangle = math.degrees(math.asin(t2))
t3=2.0% (s xy + x *y)

t4 =1.0 - 2.0 % (y *y + 2z x 2)

zangle = math.degrees(math.atan2(t3, t4))

return xangle, yangle, zangle

#H####### determine accuracy of Euler angles
def quatAngleDataFrame (df_f):

df _return = df_f

df _return[’x_angle’] =
df _return[’y_angle’] =
df _return[’z_angle’] = ""

for index, rows in df_return.iterrows():

X, §, Z2 =

quatToEuler (df _return.iloc[index,int (df _return.columns.get_loc("x_diff_q"))],df_return.iloc[index,int (df_retu:
df _return.iloc[index, int(df_return.columns.get_loc("x_angle"))]
df _return.iloc[index, int(df_return.columns.get_loc("y_angle"))] =y
df _return.iloc[index, int(df_return.columns.get_loc("z_angle"))]
return df_return

X

z
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#H####### determine tail section after set swing-in time

def determineSwingTail(df, tailStart):

#determine filter dt

filter_dt = df.iloc[-1,int(df.columns.get_loc(’est_time’))] -
df.iloc[-2,int (df.columns.get_loc(’est_time’))]

# delete all rows in sdInLog where time is smaller than filter_time_min

indexNames = df [df["est_time"] < (tailStart - filter_dt)].index

df _tail = df.drop(indexNames)

return df_tail

######### determine general error characteristics for a data frame
def errorAssessment (df_err):
sum_df_err = sum(df_err[’abs_diff_pos’].abs())
print (’Mean error in bounds ’,round(df_err[’abs_diff_pos’].mean(),5))
print (’Median error in bounds ’,round(df_err[’abs_diff_pos’].median(),5))
return sum_df_err, round(df_err[’abs_diff_pos’].abs().mean(),5),

round(df _err[’abs_diff_pos’].abs() .median(),5)

######### determine errors of state parameters apart from position

def remainErrorAssess(vel_df, ang_df, rate_df):

vel = round(vel_df[’abs_diff_vel’].abs().mean(),5)

x_ang = round(ang_df[’x_angle’] [ang_df [’x_angle’]<10.] [ang_df [’x_angle’]>-10.] .abs() .mean() ,5)
y_ang = round(ang_df[’y_angle’][ang_df [’y_angle’]<10.][ang_df[’y_angle’]>-10.].abs() .mean(),5)
z_ang = round(ang_df[’z_angle’][ang_df [’z_angle’]<10.] [ang_df[’z_angle’]>-10.].abs() .mean(),5)
x_w = round(rate_df[’x_diff_w’].abs().mean(),5)

y_w = round(rate_df[’y_diff_w’].abs().mean(),5)

round (rate_df [’z_diff_w’].abs() .mean(),5)

return vel, x_ang, y_ang, z_ang, X_w, y_W, Z_W

Z_W

######### determine errors of attitude in quaternions
def quatErrorAssess(q_df):

gx = round(q_df[’x_diff_q’].abs() .mean(),5)

qy = round(q_df[’y_diff_q’].abs() .mean(),5)

gz = round(q_df[’z_diff_q’].abs() .mean(),5)

gs = round(q_df[’s_diff_q’].abs() .mean(),5)

return gx, qy, 9z, Qs

#H####### convert errors to percentage errors

def improvementAssessment (df_comp, df):

improv = round((1. - (df_comp)/df)*100,2)

print (°}, improvement to BF’, round((1. - (df_comp)/df)*100,2),°%’)
return improv

#Hd4 S A R S ASSESSMENT #### #4444 #4444 444 # H A4S HH S HH SRS H 144
#load in data into data frame

TestCase = 1

swingTime = 10.0

for TestCase in range(1,17):

# read in EKFS, EKF, UKF

df _ekfs = pd.read_csv(’./Data/TestCases/TestCase’+str(TestCase)+’/EkfsOutlog.csv’,
delimiter=’;’)

df_bf = pd.read_csv(’./Data/TestCases/TestCase’+str(TestCase)+’/BfOutLog.csv’, delimiter=’;’)

df _ukf = pd.read_csv(’./Data/TestCases/TestCase’+str(TestCase)+’/UkfOutlog.csv?,
delimiter=’;’)

#### add relevant columns with error computation
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df _ekfs = posDataFrame (df_ekfs.copy())
df_bf = posDataFrame (df_bf.copy())
df _ukf = posDataFrame (df_ukf.copy())

#######velocity framework

df _ekfs_vel = velDataFrame(df_ekfs.copy())
df _bf_vel = velDataFrame(df_bf.copy())
df_ukf_vel = velDataFrame (df_ukf.copy())

####### quaternion framework

df_ekfs_q = quatDataFrame(df_ekfs.copy())
df _bf_q = quatDataFrame (df_bf.copy())

df _ukf_q = quatDataFrame (df_ukf.copy())

df _ekfs_q_ang = quatAngleDataFrame(df_ekfs_q.copy())
df _bf_q_ang = quatAngleDataFrame (df_bf_q.copy())
df _ukf_q_ang = quatAngleDataFrame (df _ukf_q.copy())

#H###### attitude rate framework

df _ekfs_w = rateDataFrame (df_ekfs.copy())
df_bf_w = rateDataFrame (df_bf.copy())

df _ukf_w = rateDataFrame (df_ukf.copy())

R QUALITY ASSESSMENT ##t#tst ittt
##sum of total error, first quality check for filter

sum_df_bf = sum(df_bf[’abs_diff_pos’])
sum_df_ekfs = sum(df_ekfs[’abs_diff_pos’])
sum_df _ukf = sum(df_ukf[’abs_diff_pos’])

## DETERMINE BOUNDARY POINTS FOR ASSESSING FLUCTUATION AND CONVERGENCE TIME POSITION

# filter assessment of EKF

swingTail_bf = determineSwingTail(df_bf.copy(), swingTime)
total_err_bf, mean_err_bf, median_err_bf = errorAssessment (df_bf.copy())

sT_bf_vel = determineSwingTail(df_bf_vel.copy(), swingTime)
determineSwingTail (df _bf_q_ang.copy (), swingTime)
sT_bf_rate = determineSwingTail(df_bf_w.copy(), swingTime)

sT_bf_ang

swingtail_err_bf, swingtail_mean_err_bf, swingtail_median_err_bf

errorAssessment (swingTail_bf.copy())

# deterime errors that are not in position

mean_vel_bf, ang_x_bf, ang_y_bf, ang_z_bf, w_x_bf, w_y_bf, w_z_bf
remainErrorAssess (sT_bf_vel.copy() ,sT_bf_ang.copy(),sT_bf_rate.copy())
qx_bf, qy_bf, qz_bf, gs_bf = quatErrorAssess(df_bf_q)

conv_pnt_time_bf, bnd_pnt_time_bf, bnd_pnt_err_bf, maxtail_bf, bnd_tail_bf, df_f_hp_bf

systemAssess (df _bf.copy())
if (len(df_f_hp_bf.index) > 0):

print (°Time to convergence point basic filter
print (°Time to boundary point basic filter
print (’Boundary point estimation error to true target basic filter :

round (bnd_pnt_err_bf,5),’ meters’)

print (’Maximum deviation of a highpoint from true after boundary point

round (maxtail_bf,5),’ meters’)

df_x1s_fill_bf = pd.DataFrame(np.array([[conv_pnt_time_bf, bnd_pnt_time_bf,
round (bnd_pnt_err_bf,5), round(maxtail_bf,5)]1]))

else:

print ("No conversion reached within time period, extend time of analysis")

:?, conv_pnt_time_bf,’ sec’)
:’, bnd_pnt_time_bf,’ sec’)
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