
How well does GPT-3.5 perform on course assignments from the TU Delft
Computer science and engineering Bachelor?

Finding themes in course assignments GPT-3.5 performs well on and does not perform well on

Mike Segers

Supervisor(s): Fenia Aivaloglou, Xiaoling Zhang

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2023

Name of the student: Mike Segers
Final project course: CSE3000 Research Project
Thesis committee: Fenia Aivaloglou, Xiaoling Zhang, Tom Viering

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract

Since large language models (LLM) have been
emerged, they took a present role in today’s soci-
ety. From society, they also found their way into the
field of education that is why in this research paper,
we looked into assignments and exams from the
TU Delft Computer science and engineering bach-
elor and assessed which problems Generative pre-
trained transformer (GPT) version 3.5, the current
version used by ChatGPT, performs well on (i.e.
at least above a pass rate) and on which problems
it performs less good (i.e. below pass rate). For
our research, we collected assignments by asking
professors for consent, to make sure our research
was ethically correct. Upon receiving consent, pro-
fessors had the option to send material, which al-
lowed a deeper analysis, or they could also allow
a Brightspace (site where TU Delft courses are
hosted) course page scrapping. Once all the ques-
tions were gathered, we processed them by prompt-
ing them into ChatGPT. We gathered the results and
categorized them as wrong or right. We did this all
with as few modifications to the questions as pos-
sible. The only modifications we did were correc-
tions of copy errors from a PDF, for example: C
becoming e after copying. From the results, we
found that ChatGPT has its limitations, particularly
in large code understanding and complex mathe-
matical reasoning. However, the model performed
well in defining concepts and connecting different
ideas. We suggest that GPT lacks a comprehensive
understanding of coding principles, which hinders
its ability to comprehend code. Future work could
include exploring other LLMs like GPT-4 and com-
paring their performance. Further work could also
look at assignments from other universities, pos-
sibly in different educational fields. Additionally,
investigating different prompting techniques to en-
hance the model’s accuracy and reliability could be
done as well.

1 Introduction
The integration of Artificial Intelligence (AI) technologies
in education has the potential to revolutionize the learning
experience, offering new opportunities for student engage-
ment and knowledge acquisition. As AI models like GPT
continue to advance, it becomes essential to understand their
capabilities and limitations within the context of education.
By categorizing these problems into themes, the goal is to
incorporate problems that challenge students to collaborate
with AI, requiring them to understand and apply concepts
rather than either ignoring the existence of AI tools or relying
solely on AI tools like ChatGPT. This approach aims to
develop an educational environment that embraces AI while
ensuring that students meet learning objectives. This is why
we will be investigating:

How well does GPT-3.5 perform on course assignments from
the TU Delft Computer science and engineering Bachelor?

While the performance and potential applications of GPT
models are already been studied [1–10], the answer to
the research question of how well GPT-3.5 performs on
problems from the TU Delft Computer science and engi-
neering Bachelor is still missing. Evaluating this data set
will allow professors to adapt their courses in a specific way
so, TU Delft can learn to incorporate AI in their courses.
Overall, no study goes in depth about themes of questions
GPT can perform well on and not well on and only goes
into how well an AI performs or which AI tool performs
best. Finding these themes will allow a more general pub-
lic to find good questions for learning collaboratively with AI.

This research paper focuses on analysing assignments and
exams from the TU Delft Computer Science and Engineering
bachelor program to assess the performance of Generative
pretrained transformer version 3.5 (GPT-3.5), more specifi-
cally the ChatGPT model. The aim of the study is to identify
the types of problems where the model performs well (i.e.
above pass rate) and those where it performs less effectively
(i.e. below pass rate).

Relevant material for answering the research question, such
as assignments, exams, rubrics, and other course-related
information from the TU Delft Computer Science and
Engineering (CSE) Bachelor program were obtained through
two options presented to professors. Option 1 involved pro-
fessors contributing their past course material for analysis.
Option 2 allowed professors to permit scraping of publicly
available course material from Brightspace pages. The
chosen language model for the study was ChatGPT from the
company OpenAI, specifically GPT version 3.5, as GPT-4
was not publicly available at the time. The prompt design
aimed to maintain the originality and integrity of questions,
making minor edits only for clarity or context. If an answer
seemed incorrect, then an additional chance was given to
correct itself. Results were categorized for multiple-choice
and open-ended questions, with additional measures taken
for cross-referencing and verification to make sure that the
categorization happened correctly.

2 Related work
The use of ChatGPT, a language model trained on the GPT-
3.5 architecture, has been explored in various educational
settings. D. Nunes et al. [1] evaluated the performance
of GPT-3.5 and GPT-4 models with several prompting
techniques in solving multiple-choice tests, specifically the
Brazilian university admission exam, and found that GPT-4
with Chain-of-Thought prompts outperformed GPT-3.5
and different prompting techniques that were tested in
the research. This study demonstrates the applicability of
language models like GPT-3.5 in multidisciplinary tasks
and indicates their potential for improving performance on
similar problem-solving assessments in our research. In



another study, D.M. Katz et al. [2] evaluated the zeroshot per-
formance of GPT-4 on the entire Uniform Bar Examination
and found that it outperformed humans and prior models in
all components. This study highlights the capability of GPT
models in achieving superior performance in standardized
exams, which is very interesting to show that AI is capable
to pass harder tests and thus, possibly, the TU Delft CSE
bachelor. J. Savelka et al. [3] investigated the capability
of GPT models of passing assessments in higher education
programming courses, finding that GPT models exhibit
remarkable capabilities, including correcting solutions based
on an auto-grader’s feedback. However, the study also found
that GPT models have limitations in handling exercises
requiring complex chains of reasoning steps. This study
is particularly relevant to our research as it highlights the
potential of GPT-3.5 in solving programming problems and
emphasizes the importance of evaluating its performance on
problems that involve complex reasoning. In yet another
study, J. Finnie-Ansley et al. [4] examined the educational
implications of AI-generated code for undergraduate com-
puting education using OpenAI Codex. They found that
Codex performs well on more advanced data structures and
algorithmic problems used in CS2 exams. Overall, these
studies demonstrate the potential of ChatGPT and other
language models to support education and other complex
tasks. However, limitations and areas for improvement
also exist, highlighting the need for continued research and
development in this field. Furthermore, papers by B. A.
Becker [9] and J. Robinson [10] delve into the application
of LLMs like GPT-3 in MCQ (multiple choice question)
answering tasks. They propose a more natural prompting
approach where the LLM is presented with the question and
answer options jointly, allowing explicit comparison and
reducing computational costs. The papers emphasize the
importance of the LLM’s multiple choice symbol binding
ability to associate answer options with corresponding
symbols. Through empirical analysis, they demonstrate that
models with high MCSB ability perform significantly better
with the natural approach. These findings challenge previous
underestimations of LLMs’ MCQ answering capabilities.
Overall, these papers contribute valuable insights to the
literature on utilizing ChatGPT and LLMs in education,
offering potential areas for improving teaching and learning
practices.

The potential of ChatGPT in education is significant, accord-
ing to several papers on the topic. Since this research will
be conducted in an educational setting, these papers are all
relevant to our research. In a survey, Liu et al. [5] found
that the models have significant potential in various fields.
ChatGPT’s adaptability and performance can be enhanced
through the integration of Reinforcement Learning from
Human Feedback (RLHF), allowing it to offer personalized
responses to students. This research shows that RLHF greatly
improves the results, which is great with the research goal in
mind, since now we have proof that collaborative education
between AI and humans is possible and will yield the best
results. In a paper by Kasneci et al. [6], ChatGPT is described
as highly flexible and capable of generating various things.

Its ability to learn from previous conversations and give per-
sonalized responses makes it a valuable tool in collaborative
education. However, the paper notes that ChatGPT is not
perfect and can make mistakes, particularly on simple maths
problems, and thus needs to be checked by humans with
an understanding of the topic. Roose [7] also emphasizes
the potential of large language models (LLM) in education,
particularly in improving reading and writing skills, language
learning, problem-solving abilities, critical thinking, and
collaborative learning. However, Roose also notes ethical
considerations and limitations related to interpretability,
bias, and risks of misuse. D. Baidoo-Anu [8] conducted a
review article that synthesized extant literature, highlighting
ChatGPT’s remarkable capacity to perform complex tasks
in education. The paper emphasizes the potential benefits
of ChatGPT, such as promoting personalized and interactive
learning, generating prompts for formative assessment
activities, and providing ongoing feedback for teaching and
learning. However, limitations were also acknowledged,
including the generation of wrong information, biases in
data training, and privacy concerns. The study provides
recommendations for leveraging ChatGPT to maximize
teaching and learning, calling for collaboration among
policymakers, researchers, educators, and technology experts
to ensure safe and constructive use of evolving generative
AI tools in education. Overall, ChatGPT has significant
potential in education, particularly in providing personalized
and effective learning experiences for students.

3 Methodology

Figure 1: Flowchart to describe the methodology section



3.1 Dataset
To conduct this research, data was collected through a com-
bination of methods. The objective was to obtain relevant
material such as assignments, exams, rubrics, and other
course-related information from bachelor CSE courses. The
dataset gathering process involved seeking the consent of
professors, who were approached via email with two options.

Option 1: Material Contribution
Professors were requested to provide material from past
course editions, including exams, assignments, rubrics, and
any other available resources. Professors who were willing to
participate in this manner could submit the relevant material
for analysis. By submitting more material, we could go more
in depth in evaluating that specific course.

Option 2: Brightspace Page Scraping
Alternatively, professors were given the option to allow the
scraping of the TU Delft Brightspace course pages from
previous years. Brightspace pages contain publicly (i.e. for
all TU Delft students and staff) available course material and
resources. By utilizing this method, we could gather openly
accessible material to evaluate the course in a less depth
intensive matter.

In return for their participation and cooperation, professors
were provided with a comprehensive report based on the
data collected. The report aimed to offer insights and
recommendations for improvement in their courses, tailored
specifically to their own data set. This personalized approach
ensured that professors received practical feedback that could
be directly incorporated into their teaching practices. The
ultimate goal of this research was to assist professors in
incorporating AI into their own courses, without requiring
them to review an entire research paper that may contain
general data unrelated to their specific context.

Eventually, six courses gave consent to process their assign-
ments. The courses that went with material contribution
were: computer organisation, software engineering and
methods and operating systems. The courses which allowed
Brightspace scraping were: object oriented programming,
concepts of programming languages and software quality and
testing. Scanning all material, we’ve obtained 349 MCQs
and 215 open questions for research.

3.2 GPT-model
GPT-3.5 became available for users in March 2022 and
has been since then the most used AI tool worldwide. The
architecture of GPT-3.5 has 175 billion parameters which
were pre-trained on an undisclosed data set which contains
millions of websites and billions of words.

In this study, we chose to use the LLM ChatGPT from
OpenAI1. Its publicly available version is currently (June
2023) based on GPT version 3.5. We thus do not yet use

1https://openai.com/blog/chatGPT

GPT-4 as this version is not openly available to the public
yet and can only be accessed with a paid subscription, which
most users do not have.

3.3 Prompt design
During the course of our research, we endeavoured to pre-
serve the originality and integrity of the questions provided
as much as possible, since prompting is not the topic under
research in this paper.

We made a conscious effort to avoid edits or alterations to the
original questions. Our aim was to maintain the clarity and
intent of the questions, while seeking answers and insights
from the language model. Only minor changes were made
if a question appeared unclear or required additional context
to produce a meaningful response. For example, copying
a C from a PDF would often result in a regular e. We
changed it back to a euro sign. The same holds for other
non-ASCII tokens. Also, information is often given in the
first question of an array of sub-questions. We made sure
that the necessary information to solve a sub question was
always present within the prompt itself, so that no previous
questions were necessary to solve this question. An example
of this can be found in Appendix A.

When ChatGPT failed to answer a question, we chose to
give it a second retry by simply mentioning ”This answer is
wrong, can you please retry”. In this manner, we stay as ob-
jectively as we could in the field of prompt engineering [11]
but we can see how well the scores become after a retry. We
did not delve into a more detailed version of feedback, like
for example, the feedback an auto grader would give. This is
because not all questions in our dataset had an auto grader.
Allowing detailed feedback only to a subset of questions
would lead to meaningless results, so we went for the same
prompt for all questions.

3.4 Evaluation of results
In the process of analysing the results obtained from the
research, categorizing the responses proved to be a sig-
nificant aspect of the evaluation. Categorization played a
crucial role in organizing the data and extracting meaningful
insights from the collected answers. However, the process
of categorizing differed between multiple-choice questions
(MCQs) and open-ended questions.

For MCQs, categorization was relatively straightforward
since there was typically a clear and definitive answer pro-
vided. The responses could be easily classified into correct
or incorrect categories based on the model solution given out
by the course. This allowed for a more objective assessment.
Since we received too much assignments to process during
the time span of the research, we prioritized this kind of data
due to the easy processing and objective results.

On the other hand, categorizing the responses to open-ended
questions presented a greater challenge. These questions



often yielded a range of diverse answers, and it was rare
to impossible to find a response that was the exact same
as the reference solution. The subjective nature of these
questions made it difficult to determine a single correct
answer. In such cases, the categorization process involved
evaluating the relevance and accuracy of the responses based
on the knowledge acquired during the course, combined with
cross-referencing with the internet and peers.

Furthermore, it is important to acknowledge that open-ended
questions often have the potential for partial correctness. In
such instances, where a response contained both correct and
incorrect elements, it was treated as a partially correct an-
swer. This approach recognized the effort and understanding
while acknowledging any inaccuracies or areas that needed
improvement.

By following this methodology, we are doing meaningful
research into the field of AI performance. To ensure repro-
ducibility and enable peer reviewing, we explain what the
data set is, what GPT version we use and which prompting
technique we use. A visual summary of the methodology
section is presented in the flowchart below.

3.5 Finding themes
Processing all the assignment and categorizing them as right
or wrong can give us valuable insights, but to get to those
insights it is essential to have a closer look at the results and
identify the specific themes in which the GPT performed
well and those in which it did not. This enables us to find
where it goes wrong in certain types of questions, rather than
the sole true or false result. Identifying significant variations
in the performance of the GPT model across different types
of questions within a course reveals distinct themes where
the model either excels or falls short.

These themes allow for a more focused analysis of the
model’s strengths and weaknesses in relation to specific
question types, enabling to gain a deeper understanding of its
capabilities and areas that require improvement.

4 Results
The first course we evaluated was the introductory pro-
gramming course named object oriented programming. The
course is a foundation of the bachelor’s as it introduces the
concepts of object oriented programming. Throughout the
course we learned the Java programming language.

We evaluated the whole course and found interesting results.
The most interesting results can be found in the table below.
Overall, it passed all individual exams and obtained an
average of 61%, which is a passing result but below the
average of the course edition during the 2020-2021 year,
which was 64%.

The most interesting findings were that ChatGPT lacks to
check if code compiles and if certain things happen on com-
pile time or happen during run time for the Java program-
ming language. Possible reasons for this behaviour will be
discussed in the discussion section. The worst performance
was in large code understanding. For these kinds of ques-
tions, we gave ChatGPT a large (i.e. +50 lines) code base
and asked questions based on those which require code un-
derstanding. In these kinds of questions, ChatGPT even per-
formed less well than a random strategy which would achieve
a 25% score since we were evaluating a 4 answer based on a
multiple choice exam.

Object oriented programming

Questions containing compiling understanding 42%
Questions containing large code understanding 17%
Overall score on MCQ questions 61%

Table 1: Most relevant results obtained from evaluating the multiple
choice exams of the course object oriented programming

Another course under investigation is the software engineer-
ing and methods course. In this course, students learn to
create a software architecture and requirements based on a
scenario, learn the use of design patterns and learn to analyse
their code and improve it.

Since this course gave the most material out of all courses,
it was possible to thoroughly investigate the course. We
split exam questions into different categories, which often
occurred. We also evaluated multiple lab assignments. These
assignments are hard to give an exact score as the rubric was
not complete and left room for teaching assistants’ input.
I decided to evaluate them on a scale from 1 to 5. In this
system, 1 corresponds to very poor, 3 corresponds to average
and 5 corresponds to very good.

Interesting findings were that in both theory and in the
practical lab, it performed very well on the design patterns.
While looking at the grade distribution per question for
the course, design patterns was the lowest scoring part for
students. On the other hand, students were very good in
the mutation part component, while AI failed to do this.
These findings provide a great opportunity for collaborative
learning with AI, which is the intent of the research.

Another interesting fact is that GPT-3.5 performs well on
software analytics in practice but fails to answer theory about
this. This is interesting as the practical aspect builds upon
the theoretical background.



Software engineering and methods

Design patters 100%
Code smells 100%
Sofware analytics 8%
Mutation testing 50%

Exam
(theory)

Overall 69%

Domain Driven Design 5
Design Patterns 4
Software analytics + Code smells 4

Lab
(practical)

Mutation Testing 1

Table 2: Most relevant results obtained from evaluating the exams
and lab work of the course software engineering and methods

On the evaluation of the course Computer Organisation we
saw no particular topics where it performed very well (i.e.
above 80%) or parts where it scored very mediocre (i.e.
under 50%). With an average performance of 55%, we can
see it did not perform very well on this course, but we did not
find specific topics it would fail consistently on or get great
scores on consistently.

The investigation of the course Operating Systems was
really interesting because the open question exam labelled
the questions already for us. In this manner, we can easily
identify the topics of weakness and strengths for this course.

From the table underneath, it can clearly be seen that it
scored pretty good in most aspects with a final grade, taking
grade distribution into account, of 7.9. The highest score
obtained on a course. Looking at the questions more in depth,
it scored very well on questions based on pure definitions
and terms but failed hard on questions containing some more
challenging mathematics which were mainly found in the
I/O, Storage and File Systems section.

Operating systems

Definitions and concepts 68%
Processes and Threads 50%
Security and Protection 100%
Memory and Virtual Memory 60%
I/O, Storage and File Systems 29%
Connecting concepts 100%
Final score 7.9

Table 3: Results per topic obtained from evaluating the multiple
choice exams of the course operating systems

The course ”Software Quality and Testing” aimed to provide
students with a comprehensive understanding of theoretical
testing principles and their practical application. From this
evaluation, we can derive the AI’s quality in code testing.
Something which was only lightly covered during the
investigation of the course object oriented programming.

In terms of theoretical testing principles, AI demonstrated

significant capabilities. AI algorithms were effective in
solving theoretical questions about testing principles and
were of great help with coming up with possible test cases.

However, when it came to converting theoretical principles
into practical testing, AI failed repeatedly. One of the main
issues encountered was the generation of incorrect tests.
Despite the promising theoretical foundation, the generated
tests often failed to produce the desired results in practice.
Many of these tests did not even compile, let alone execute
successfully. Even when the generated tests were executable,
they frequently scored low on test coverage tests. Test
coverage is a crucial metric used to determine the extent
to which the software has been tested. Scoring low on this
means that the generated tests were not meaningful to ensure
bug-free code and thus failed to serve their purpose.

Software quality and testing
Theory (MCQ) 82%

Theory (Open questions) 71%
Practical testing - Did not compile 62%

Practical testing - 0% score 19%
Practical testing - Avergage score
excluding did not compile and 0% 34%

Table 4: Results from evaluation of the course software quality and
testing categorized into theory and practical questions.

It appears that for the course Concepts of programming
languages material has been removed from public access,
resulting in a scarcity of available assignments. As a conse-
quence, results obtained from this investigation may not be
significant and do not give meaningful insight.

From the small number of assignments, we found that GPT
has difficulties understanding the later stages of the course.
This includes mutation and type checking. Earlier content
was based on basic parsing, desugaring and interpreting
scores better. Again, it is important to notice that these
findings are based on a sample size that cannot provide any
significance.

In our research, we decided to give GPT another chance
when it was wrong to see if it could correct itself based on
the information that itss first response was wrong. We found
that only with the prompt of stating it was wrong, it had too
little information to correct itself. In MCQs, it sometimes
apologizes for the mistake and then gives back the exact
same answer with a different wording. An example can be
found in Appendix B. After analysis, we found that in only
52% of the multiple choice cases, it gave the right result after
stating it was wrong. 33% would be achieved by guessing,
because out of four options, one was eliminated. In open
questions, we only saw a mediocre 12% improvement after
stating that it was wrong.

During the research, we have encountered certain themes
where the model consistently failed to answer a certain type



of question, regardless of the content. Two notable areas
wherein the model struggled continuously were large code
understanding and complex mathematical reasoning.

When it came to large code understanding, the model often
failed to understand code structures, advanced algorithms,
or complex software architecture. The model’s performance
tended to deteriorate as the codebase grew larger and more
intricate. In such cases, it often provided incorrect responses
with reasoning that made sense for non-programmers but
was easily spotted to be wrong for computer scientists.

Similarly, complex mathematical reasoning posed a big
challenge for GPT. While it could handle relatively straight-
forward mathematical questions and calculations, its ability
to reason through advanced mathematical concepts was
limited. When faced with problems, it often failed to take out
the important data correctly, which inevitably led to wrong
responses.

On the other hand, a great strength of ChatGPT is its profi-
ciency in addressing questions that can be easily googled,
such as retrieving definitions and explaining fundamental
concepts. In these cases, the model can provide concise and
accurate responses.

Moreover, ChatGPT goes beyond mere information retrieval
by demonstrating an impressive ability to connect different
concepts and seemingly establish a deeper understanding
of course topics. It shows off a remarkable capacity to
contextualize information and provide coherent explanations
that integrate multiple ideas seamlessly.

This capability to connect concepts is very valuable in
educational contexts, where students often struggle to grasp
the relationships between different topics. ChatGPT’s ability
to bridge these gaps and provide comprehensive explanations
helps learners develop an understanding of the subject.

It is important to note that while ChatGPT excels in these
aspects, it still relies on the information available within
its training data and may not always provide the most
up-to-date or comprehensive answers. Verification and
cross-referencing with trusted sources remain important
steps to ensure correctness.

In conclusion, the model consistently struggles with certain
question types, irrespective of the course or content. Large
code understanding and complex mathematical reasoning
pose significant challenges. However, ChatGPT excelled
in definitions and explaining fundamental concepts. It also
demonstrated the ability to connect concepts, aiding learners
in understanding course topics.

Good in Bad in
Defenitions & Concepts Large code understanding

Connections between
different topics

Complex mathematical
reasoning

Table 5: Summary of the themes found in the performance of Chat-
GPT

5 Responsible Research
Responsible research practices were followed throughout
the course of this study, ensuring ethical considerations
and consent from all involved parties. In particular, the
acquisition of material from professors for research purposes
involved a careful approach.

To do ethical research, a consent-seeking process was
undertaken to request permission from professors to utilize
their material. During this process, clear communication was
established, outlining the objectives of the research and the
intended use of the data. It is worth noting that professors
have the autonomy to decide the extent of their participation
based on their preferences and concerns.

Some professors granted permission to use their material
under the condition that only publicly available information
was processed. They were worried about training a large
language model, such as ChatGPT, on their specific answers.
These professors knew that the publicly available data would
most probably already be entered on platforms as ChatGPT
by students undertaking the course, so they saw no harm
in the research doing the same, but did not want to train
ChatGPT with additional answers.

On the other hand, there were professors who willingly
agreed to provide answers and were aware that their re-
sponses would be utilized to train the ChatGPT model.
They understood the implications and recognized the value
of contributing to the advancement of research in natural
language processing. Their informed consent and coopera-
tion enabled a richer and more diverse data set for my studies.

By respecting the decisions of the professors and ad-
dressing their individual concerns, this research adhered to
responsible practices following the standards of the TU Delft.

6 Discussion and limitations
6.1 Discussion
From the results we found many interesting insights. One of
the key findings from our study is that GPT-3.5 fails when it
comes to understanding and analysing large code samples.
When presented with questions or problems that involve
extensive code comprehension, the model’s responses were
often inaccurate or simply wrong. This limitation suggests
that GPT-3.5 does not understand programming concepts.

On the other hand, we observed that GPT-3.5 was able
to generate code. The model was able to provide correct



code snippets when prompted with programming-related
tasks, as long as it was a text based prompt with clear
instructions on what to program and thus not needing any
code understanding.

Another noteworthy observation is that GPT-3.5 occasion-
ally confuses the concepts of compile time and run time.
GPT-3.5’s confusion may arise due to the model’s lack of
context-awareness specific to each language. In these cases,
GPT may confuse programming languages with each other.

An interesting finding in the context of the software engi-
neering methods course was the successful collaboration
between AI and humans. AI and humans scored well in areas
where the other performed poorly, indicating the potential
for integrating AI into the curriculum. This finding encour-
ages further exploration of how AI can supplement human
instruction, aiding students in areas where they typically
struggle and enhancing the overall learning experience.

In the course on operating systems, the strength of AI
was evident in its ability to connect different concepts and
synthesize information. This leads to believe that GPT
has great strengths in contextualizing content based on the
relation between different concepts. However, when faced
with questions involving complex mathematical concepts,
the language model struggles to provide accurate answers.
This limitation can possibly be explained by the fact that
ChatGPT does not understand certain concepts but only
sees certain numbers/characters in a certain context and
reproduces based on this. It can do basic maths as it is trained
on this, but the moment understanding of the topic comes
into play to solve this math-based question, it cannot perform
well any more.

In our results we often saw that on a retry the model didn’t
really improve much. From this, we led to believe that
the model chose a new option at random. To check this
hypothesis, we stated that it was wrong on a question it was
right on from the first try. This to see what GPT would do.
As expected, GPT took our assumption as the truth and came
with a wrong answer. The full conversation can be found in
Appendix C. From the improvement of 52% instead of 33%,
it is a possible hypothesis to state that ChatGPT can probably
eliminate a few options on some questions, which leads to a
more 50/50 chance of improving rather than 33%, but when
we go to open questions we see only an 12% improvement as
the model just has too less information to correct itself.

The research also revealed the difficulty AI encountered
in conducting proper software testing. This failure can be
attributed to its limited understanding of code principles. As
AI lacks a comprehensive understanding of programming
concepts, it is unable to effectively test code as humans
would. To our belief, this leads back again to the same
problem as with large code understanding, since it fails to
understand code and thus cannot test it as well.

In conclusion, while the model excels at generating code, it

struggles with understanding and analysing large codebases,
possibly due to not understanding coding principles. This
also makes it impossible to solve questions related to the
understanding of code, such as software testing. Addition-
ally, GPT-3.5 occasionally confuses compile time and run
time, potentially due to a lack of language-specific context.
Even though GPT is great at connecting concepts and giving
definitions, it fails to do complicated maths. These findings
underscore the need for further research and development
to refine the capabilities of language models in computer
science and engineering.

6.2 Limitations
Dataset limitations
A potential limitation of this research lies in the scope of
the research, which only focuses on a small number of
courses from the computer science and engineering bachelor.
This narrow sample may not fully capture the diverse range
of educational approaches, instruction writing, and course
content present in other courses or universities. As a result,
the findings and conclusions drawn from this study may
not be entirely applicable to the broader curriculum of the
bachelor or to other universities.

ChatGPT limitations
During the study, it was revealed that GPT models failed to
answer when faced questions that involve images. The in-
ability to process image-based questions reduces the model’s
overall performance and leads us to only process text-based
questions. Incorporating image processing capabilities into
language models like ChatGPT could be a valuable addition,
considering the large number of image-based questions. This
would improve the utility and applicability tremendously.

Furthermore, the research highlighted that GPT models
tend to select incorrect answers to multiple-choice questions
(MCQs), despite providing the right answer/reasoning in the
rest of the prompt. This observation suggests that while LLM
models may have sophisticated reasoning abilities, they may
still struggle to accurately identify the correct answer among
the options presented, as in the learning set GPT might of-
ten have seen other options close to the actual answer. An
example of this can be found in Appendix D

7 Conclusions and Future Work
7.1 Conclusion
In our research, we looked towards how well does GPT-3.5
perform on problems from the TU Delft Computer science
and engineering Bachelor. The aim is to identify the types of
problems where the model performs well and those where it
performs less effectively. The integration of AI technologies
in education has great potential, and it is important to
understand the capabilities and limitations of AI models like
GPT within the context of education. By categorizing the
problems into themes, the goal is to understand where these
capabilities and shortcomings lye.



For our research, we collected assignments related to the CSE
bachelor of the TU Delft. Two options were given to pro-
fessors. They could either give out material or allow me to
scrape content from Brightspace. After we collected these
assignments, we processed them through ChatGPT, based on
GPT-3.5, because this is the most used LLM worldwide. The
originality of the questions was preserved, with only minor
changes made for clarity. This to remove bias in prompting.
By using this approach, we aimed to enabled reproducibility
and peer review.
We found limitations in GPT’s ability to answer image-based
questions and select correct answers to multiple-choice
questions, even with the right reasoning. The field where
AI struggles the most is the fields of large code understand-
ing and complex mathematical reasoning. However, AI
performed very well at defining concepts and explaining fun-
damental ideas, showcasing an impressive ability to connect
different concepts. Overall, we found that ChatGPT shows
great possibilities in the educational field, as other research
papers already mentioned in the related work section.

We discussed possible evidence on why the results came out
like this and came up with the key finding that ChatGPT does
not understand coding principles and thus fails to understand
code the way it does with text. This is probably because the
training data did not have enough code in it, since it was
mostly text. The low score based on difficult maths questions
can be explained by the reasoning that it does not actually
understand things, but can only place certain characters and
words in context.

7.2 Future work
This research paper only focuses on the performance of
AI based on the TU Delft CSE bachelor. However, it is
important to acknowledge the potential for further explo-
ration beyond GPT-3.5 and compare it with other large
language models, such as the upcoming GPT-4. Comparing
different models can provide insights into the advancements
and improvements made in natural language processing.
This could show the potential for upcoming large language
models.

As discussed, bias in this research may come from the fact
that we have only sampled from the TU Delft CSE bachelor.
Exploring different universities and different educational
fields may lead to different interesting findings. Since con-
tent, way of examining and teaching may differ per university.

Another aspect worth further investigating is the impact of
different prompting techniques on the responses generated
by the language model. Throughout the research, it was ob-
served that the model’s outputs were often close to the correct
answer, but occasional mistakes could be easily identified by
humans. Exploring the effect of different prompts and ap-
proaches to refining the model’s responses can help uncover
strategies to enhance its accuracy and reliability. Finding
good techniques to prompt would greatly improve the AI’s
overall performance.

References
[1] D. Nunes, R. Primi, R. Pires, R. Lotufo, and

R. Nogueira. Evaluating gpt-3.5 and gpt-4 models on
brazilian university admission exams, 2023. unpub-
lished.

[2] D. M. Katz, M. J. Bommarito, S. Gao, and P. Arredondo.
Gpt-4 passes the bar exam, 2023. unpublished.

[3] J. Savelka, A. Agarwal, C. Bogart, Y. Song, and
M. Sakr. Can generative pre-trained transformers (gpt)
pass assessments in higher education programming
courses?, 2023. unpublished.

[4] J. Finnie-Ansley, P. Denny, A. Luxton-Reilly, E. A. San-
tos, J. Prather, and B. A. Becker. My ai wants to know if
this will be on the exam: Testing openai’s codex on cs2
programming exercises. In Proceedings of the 25th Aus-
tralasian Computing Education Conference, ACE ’23,
page 97–104, New York, NY, USA, 2023. Association
for Computing Machinery.

[5] Y. Liu, T. Han, S. Ma, J. Zhang, Y. Yang, J. Tian, A. Li
H. He, M. He, Z. Liu, Z. Wu, D. Zhu, N. Qiang X. Li,
D. Shen, T. Liu, and B. Ge. Summary of chatgpt/gpt-
4 research and perspective towards the future of large
language models, 2023. unpublished.

[6] E. Kasneci, K. Sessler, S. Küchemann, M. Ban-
nert, D. Dementieva, F. Fischer, U. Gasser, G. Groh,
S. Günnemann, E. Hüllermeier, S. Krusche, G. Ku-
tyniok, T. Michaeli, C. Nerdel, J. Pfeffer, O. Poquet,
M. Sailer, A. Schmidt, T. Seidel, M. Stadler, J. Weller,
J. Kuhn, and G. Kasneci. Chatgpt for good? on op-
portunities and challenges of large language models
for education. Learning and Individual Differences,
103:102274, 2023.

[7] K. Roose. The brilliance and weirdness of chatgpt,
2023.

[8] D. Baidoo-Anu and L. O. Ansah. Education in the era
of generative artificial intelligence (ai): Understanding
the potential benefits of chatgpt in promoting teaching
and learning, 2023. unpublished.

[9] B. A. Becker, P. Denny, J. Finnie-Ansley, A. Luxton-
Reilly, J. Prathers, and E. A. Santos. Programming is
hard - or at least it used to be: Educational opportunities
and challenges of ai code generation. In Proceedings of
the 54th ACM Technical Symposium on Computer Sci-
ence Education V. 1, SIGCSE 2023, page 500–506, New
York, NY, USA, 2023. Association for Computing Ma-
chinery.

[10] J. Robinson, C. M. Rytting, and D. Wingate. Leverag-
ing large language models for multiple choice question
answering, 2023. unpublished.

[11] J. White, Q. Fu, S. Hays, M. Sandborn, C. Olea,
H. Gilbert, A. Elnashar, J. Spencer-Smith, and D. C.
Schmidt. A prompt pattern catalog to enhance prompt
engineering with chatgpt, 2023. unpublished.



Appendix
A Not all information present in sub questions
Question

A UNIX file system uses 512 byte (29B) blocks and 8 byte
disk addresses. Each inode contains 16 direct entries, one
(singly-) indirect block, and one doubly-indirect block.

i. What is the maximum file size in this file system?

ii. If half of the files are exactly 384 Byte (1.5 × 28B) and
the other half are exactly 512 Byte large, what fraction of the
disk space would be wasted? Consider only blocks used to
store data.

iii. Based on the same conditions as in the question above
(ii.), does it help to reduce the fraction of wasted disk space
if we change the block size to 256 Bytes?

B Giving back the same response
Question
Given a MouseListener, we can say:
a. MouseListener is an interface; if it contains ¿ 1 method,
there is an abstract MouseAdapter class

b. MouseListener is an interface; an abstract MouseAdapter
class might exist.

c. MouseListener is a class; if it contains ¿ 1 method, there is
a MouseAdapter interface

d. MouseListener is a class; a MouseAdapter interface might
exist.

Original responds
The correct answer is:
b. MouseListener is an interface; an abstract MouseAdapter
class might exist.

Explanation:
MouseListener is an interface in Java’s Swing library, which
defines a set of methods that respond to mouse events such
as mouse clicks, mouse moves, etc. If a class implements the
MouseListener interface, it must implement all the methods
in the interface. MouseAdapter, on the other hand, is an
abstract class that implements the MouseListener interface.
It provides empty implementations for all the methods in the
interface, so a programmer can extend MouseAdapter and
override only the methods that are necessary for the class,
instead of implementing all the methods in the interface.

Therefore, option b is the correct answer.

New responds
Apologies for the incorrect response. Let’s reassess the

options: a. MouseListener is an interface; if it contains ¿ 1
method, there is an abstract MouseAdapter class.

b. MouseListener is an interface; an abstract MouseAdapter
class might exist.

c. MouseListener is a class; if it contains ¿ 1 method, there is
a MouseAdapter interface.

d. MouseListener is a class; a MouseAdapter interface might
exist.

The correct answer is:
b. MouseListener is an interface; an abstract MouseAdapter
class might exist.

Explanation:
The ‘MouseListener‘ is indeed an interface in Java. It defines
several methods such as ‘mouseClicked‘, ‘mousePressed‘,
‘mouseReleased‘, etc., that need to be implemented by any
class that implements the ‘MouseListener‘ interface. The
‘MouseAdapter‘ class is also a class in Java, but it is not
an interface. It is an abstract class that provides empty
implementations for all the methods of the ‘MouseListener‘
interface. This allows you to extend the ‘MouseAdapter‘
class and override only the methods you need, rather than
implementing all the methods of the ‘MouseListener‘ inter-
face.

So, option (b) correctly states that MouseListener is an
interface, and an abstract MouseAdapter class might exist.

C Example correcting right responds
Question
Method overloading means (which statement is the most
correct one):
a. In 1 class you can define 2 or more methods with the same
name.

b. In 1 class you can define 2 or more methods with the same
name, but the names of the parameters need to be different.

c. In 1 class you can define 2 or more methods with the same
name, but the types of the parameters need to be different.

d. In 1 class you can define 2 or more methods with the same
name, but the parameter lists have to be different in terms of
the number of parameters. If the number of parameters is
equal, than the types of the parameters need to be different or
the order of the types needs to be different.

Original responds

The most correct statement about method overloading is:

d. In 1 class you can define 2 or more methods with the same
name, but the parameter lists have to be different in terms of



the number of parameters. If the number of parameters is
equal, then the types of the parameters need to be different or
the order of the types needs to be different.

Explanation:
Method overloading allows you to define multiple methods
in a class with the same name but with different parameter
lists. The parameter lists must differ in terms of the number
of parameters or the types of the parameters, or both. If the
number of parameters is different, regardless of their types,
you can define multiple methods with the same name.

For example:

1 public void exampleMethod(int x) {
2 // Method implementation
3 }
4

5 public void exampleMethod(int x, int y) {
6 // Method implementation
7 }

In the example above, the two methods have the same name,
but their parameter lists differ in terms of the number of
parameters. If the number of parameters is the same, the
types of the parameters must be different or the order of the
types needs to be different.

For example:

8 public void exampleMethod(int x) {
9 // Method implementation

10 }
11

12 public void exampleMethod(String x) {
13 // Method implementation
14 }

In the example above, the two methods have the same name
and the same number of parameters (one parameter), but the
types of the parameters differ. Overall, method overloading
allows you to define multiple methods with the same name,
providing flexibility and allowing for different ways of
calling methods based on the arguments provided.

Corrected responds

Apologies for the incorrect response. Let’s evaluate the
statements again. The most correct statement about method
overloading is:

a. In 1 class you can define 2 or more methods with the same
name.

Explanation:
Method overloading allows you to define multiple methods
in a class with the same name but with different parameter
lists. This allows you to provide different implementations
of a method based on different parameter types, number
of parameters, or both. In method overloading, the names
of the methods can be the same, and the parameters can

have different names, types, or order. The return type of the
method does not play a role in method overloading.

For example:

15 public class MyClass {
16 public void myMethod(int x) {
17 // Method implementation
18 }
19

20 public void myMethod(String s) {
21 // Method implementation
22 }
23

24 public void myMethod(int x, String s) {
25 // Method implementation
26 }
27 }

In the example above, the class ‘MyClass‘ defines three meth-
ods with the same name ‘myMethod‘, but each method has
a different parameter list. You can then call the appropriate
method based on the arguments you pass:

28 MyClass obj = new MyClass();
29 obj.myMethod(5); // Calls

myMethod(int x)
30 obj.myMethod("Hello"); // Calls

myMethod(String s)
31 obj.myMethod(10, "World"); // Calls

myMethod(int x, String s)

Therefore, statement a. In 1 class you can define 2 or more
methods with the same name is the most correct statement
regarding method overloading.

D Example failing MCQ with right reasoning
Question
When an exception is thrown (which statement is correct):
a. Execution in the surrounding try-block stops immediately
(i.e., any statements after the statement raising the exception
are skipped) and control resumes in the catch-block that
matches the exception. After completing the catch-block,
the finally block is executed (if present). Depending on the
situation, control resumes after the catch block (or the finally
block if present).

b. Execution in the surrounding try-block stops immedi-
ately (i.e., any statements after the statement raising the
exception are skipped). Control resumes in the finally-block
(if present), once the statements in the block have been
executed, control goes to the catch-block that matches the
exception. Depending on the situation, control resumes after
the catch block (or the finally block if present).

c. Execution in the surrounding try-block stops immediately
(i.e., any statements after the statement raising the exception
are skipped) and control resumes in the catch-block that
matches the exception. After completing the catch-block,
the finally block is executed (if present). Depending



on the situation, control resumes at the statement immedi-
ately after the statement in the try block raising the exception.

d. Execution in the surrounding try-block stops immedi-
ately (i.e., any statements after the statement raising the
exception are skipped). Control resumes in the finally-block
(if present), once the statements in the block have been
executed, control goes to the catch-block that matches the
exception. Depending on the situation, control resumes at
the statement in the try block immediately after the statement
raising the exception.

Responds
c. Execution in the surrounding try-block stops immediately
(i.e., any statements after the statement raising the exception
are skipped) and control resumes in the catch-block that
matches the exception. After completing the catch-block,
the finally block is executed (if present). Depending
on the situation, control resumes at the statement immedi-
ately after the statement in the try block raising the exception.


	Introduction
	Related work
	Methodology
	Dataset
	GPT-model
	Prompt design
	Evaluation of results
	Finding themes

	Results
	Responsible Research
	Discussion and limitations
	Discussion
	Limitations

	Conclusions and Future Work
	Conclusion
	Future work

	Not all information present in sub questions
	Giving back the same response
	Example correcting right responds
	Example failing MCQ with right reasoning

