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Abstract
Topology optimization methods improve the structural performance of components. However, in food processing, medical, 
high-precision, and other industries' designs should also fulfil the requirement of being cleanable. An important aspect of 
cleanability is drainability, which entails that fluids can always run off the structure under just gravity. Therefore, taking 
drainability into account during the optimization process is essential for many applications. This paper proposes a drainage 
filter that turns a blueprint design into a drainable design. In a layer-by-layer fashion, the design is adjusted, to ensure fluids 
can always run down its surface. A smooth minimum and maximum are used in the formulation to allow for consistent 
sensitivity calculation. To allow for the small runoff angles, typical for practical drainability, a grid refinement is proposed. 
Moreover, any drainage direction can be considered. The effectiveness of the method is illustrated in 2D and 3D.

Keywords Topology optimization · Drainability · Cleanability

1 Introduction

Topology optimization techniques enable designers to gen-
erate structures with superior mechanical performance. The 
complex designs created with topology optimization can, 
however, require intense postprocessing, which can undo the 
optimization gains. This can be prevented using constraints 
reflecting the real practice during the optimization process. 
Sectors such as the food processing, medical, and high-pre-
cision industry, have a design requirement in common for 
their structural components: they have to be cleanable. The 
cleanability of a component is directly related to its geom-
etry, as well as the applied cleaning procedures.

One essential aspect of cleanability is to ensure that the 
cleaning fluid can leave the component. If cleaning fluid 
remains, dirt can be collected and the component is unfit for 

usage. Although active methods can be used (reorienting, 
vibrating, air flow, etc.), often passive methods are preferred. 
In this context, we focus on the requirement that cleaning 
fluids can leave the component by running off under grav-
ity: the structure has to be drainable, which is illustrated 
in Fig. 1. Firstly, drainability entails that the inclination of 
surfaces should be such that fluids run off under gravity. This 
implies that upward facing surfaces must make a minimum 
angle with the horizontal: the runoff angle. Our partners 
have indicated that 10◦ is a typical guideline for the runoff 
angle in the food processing industry (R Deckers, personal 
communication, 12 January, 2021). Secondly, the geometry 
should be such, that no pockets with stagnant fluids can 
exist. This way, fluids will be able to run down and leave 
the structure. Having a method that can ensure drainable 
designs, by respecting the two above aspects, would greatly 
improve the applicability of topology optimization in indus-
tries where cleanability is important.

Within structural optimization, to the best knowledge of 
the authors, no research has been done on creating drainable 
structures. Yet, there is related research to consider. Firstly, 
there are approaches focusing on optimizing fluid flow 
through structures, see Alexandersen and Andreasen (2020) 
for an overview. Given the excessive computational effort 
requirement which is involved in simulating a fluid flow over 
a structure, a geometric approach, which typically involves 
modest computational costs, for evaluating drainability is 
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more appealing. In the context of powder evacuation in addi-
tive manufacturing (AM), the outflow of material from a 
structure is also considered by Gaynor and Johnson (2020). 
This method ensures the existence of pathways to evacuate 
the powder from the structure, which can also be used to 
provide drainability. The aforementioned authors note that 
dealing with shallow angles, such as the runoff angles of 
interest here, is challenging.

Taking inspiration from the latter study, for drainability 
it is helpful to focus on controlling the void regions in the 
domain, since there the fluid can reside. In order to ensure 
that fluid can run off, every void region must be connected 
to a void region beneath it. The runoff angle defines the 
maximum horizontal offset. It is assumed that the fluid can 
always run off at the bottom (and optionally at the sides) of 
the design domain.

The requirements for drainability have some interesting 
similarities with those for overhang control used for AM. 
For a drainable design, void regions need to have sufficient 
drainage regions below, while for a printable design, solid 
regions need to have sufficient material below. And where 
drainability involves a minimum runoff angle, printability is 
linked to a critical overhang angle. Furthermore, while fluid 
can drain off at the bottom of the domain, this is also where 
the printing of solid material can start. These similarities 
are illustrated in Fig. 2. Therefore, works in the field of AM 
overhang control can also serve as inspiration.

Topology optimization approaches for overhang control 
have been extensively studied, and for a comprehensive over-
view the reader is referred to Liu et al. (2018). Two relevant 
categories of overhang control methods are: local boundary 
control and geometrical AM process modelling. The local 
boundary control methods constrain the angle between the 
surface normal and the build direction (Qian 2017; Allaire 
et al. 2017). These methods require additional care to pre-
vent the creation of saw-tooth like structures. Therefore, 
the main inspiration for the proposed drainage approach 
comes from geometrical AM process modelling. Examples 
of these methods are presented in Gaynor and Guest (2016) 
and Langelaar (2016) with a layer-by-layer approach, or in 
van de Ven et al. (2018) with a front propagation approach.

For this research, the focus is on a density-based topology 
optimization approach, in a structured mesh setting. Further-
more, it is preferred to work with a filter instead of adding 
a constraint term to the objective function, to achieve strict 
enforcement of the drainability requirement. Therefore, the 
filter from Langelaar (2017) is taken as the main inspiration 
for our proposed drainage method, but we switch the focus 
to the void. Furthermore, an extra refinement is introduced 
to accommodate the shallow runoff angle requirements.

This paper presents an approach that ensures drainable 
designs in 2D and 3D density-based topology optimization. 
A filter is proposed that converts a given blueprint design 
into a drainable design. The performance of this drainable 
design is subsequently evaluated and is optimized. The run-
off angle is adjustable by using a refined grid in vertical 
direction. Draining always works in the direction of grav-
ity, but this direction may not necessarily equal the vertical 
direction in the topology optimization domain. Therefore, a 
step is added to accommodate any orientation of the com-
ponent with respect to gravity. Since the filter procedure 
adjusts the design variables to a drainable design in a sepa-
rate procedure, the proposed method can be used in com-
bination with other methods. As an example, the proposed 
drainage filter is combined with an AM filter.

The rest of the paper is organized as follows. Section 2 
presents the drainage filter method. The optimization prob-
lem used for the numerical examples is described in Sect. 3. 
In Sect. 4, the performance of the drainage design method 
are demonstrated on two minimum compliance design prob-
lems. Finally, the findings are summarized and discussed in 
Sect. 5.

2  Method

The discussion in this section is focused on 2D for clarity, 
the steps required to extend to 3D will be indicated. Sec-
tion 2.1 introduces the method for a runoff angle of 45 ◦ . The 

(a) Not drainable (b) Drainable

Fig. 1  A 2D static part in a fixed orientation is considered, with 
gravity acting downwards. Design a is not drainable, because of the 
pocket and the flat surface area prevent that the fluid (denoted in blue) 
will run down. Design b is drainable, implying that all fluid runs off

(a) Printable design, with a
45 overhang angle

(b) Drainable design, with a
45 runoff angle

Fig. 2  Comparison between designs for AM and drainage, where 
blue represents void and grey represents material. A printable design 
is determined by placement of the solid and the overhang angle (a). 
Similarly, a drainable design is determined by the void and the runoff 
angle (b)
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filtering steps for runoff angle control, drainage direction 
control, and length scale control, are given in Sect. 2.2 till 
2.4. The full filter procedure is given in Sect. 2.5.

2.1  Drainage filter

As stated in the Introduction, to facilitate the drainage of 
fluid, every void region should have some void region below 
where fluid can run off. Otherwise, either the void region 
should be transformed into solid so that no fluid can reside 
there, or a solid region below should be transformed into 
void so fluid can be drained. In our drainage filter D , we 
follow the first strategy and the void region without void 
below in the blueprint design � is transformed into solid 
in the drainable design �̂ . This process is executed layer-
by-layer, sweeping upwards through the domain. This will 
ensure that undrainable regions are banned from the design. 
The filter is defined on a regular Cartesian mesh, with the 
conventions shown in Fig. 3. For unstructured meshes, map-
ping on a structured field is possible (see e.g. Hoffarth et al. 
2017; Langelaar 2018).

In a continuous density variable setting, an element with 
blueprint density x(i,j) , fulfils the drainability requirement if at 

least one of the adjacent elements below is has a lower density. 
Therefore, the lowest density value of the elements in the drain 
region of element (i, j), denoted with xdr

(i,j)
 , is to be found, which 

is done with a minimum operator. If this density xdr
(i,j)

 is not 
lower than the density x(i,j) , the latter inherits the value of the 
former, for which a maximum operator is used. This procedure 
can be seen in Fig. 4. Note that this bears similarity with the 
AM filter of Langelaar (2017), but drainage requirements lead 
to a reversed ordering of the min and max operations.

Because these steps can change element densities, which 
themselves are part of the drain region for the row above, this 
procedure should happen in a layer-by-layer fashion from bot-
tom to top. The newly obtained drainage field �̂ densities are 
considered for the drainage region, rather than the blueprint 
densities �:

Because we are considering gradient based topology opti-
mization, the min/max operations have to be replaced with 
a smooth operation. Material added on top of a structure 
to ensure drainability, does often not have the most favora-
ble location for an optimization objective. But since it is 
required to ensure drainability, it should be prevented that 
the density becomes lower towards the top because of the 
accumulation of approximation errors. Therefore, it is pre-
ferred to over-approximate the density rather than to under-
approximate. Appropriate approximation choices are the 
P-mean ( Pmean ) for the minimum, and the P-norm ( Pnorm ) 
for the maximum:

In here, N represents the number of elements in the drain 
region, i.e. 3 in 2D. The 3D implementation could have a 
drain region of either 5 or 9 elements, where the former is 

(1)
xdr
(i,j)

=min(x̂(i−1,j−1), x̂(i−1,j), x̂(i−1,j+1))

x̂(i,j) =max(x(i,j), x
dr
(i,j)

).

(2)
Pmean(x) =

(
1

N

N∑

e=1

(xe)
Pm

) 1

Pm

Pnorm(x, x
dr) =

(
xPn + (xdr)Pn

) 1

Pn .

Fig. 3  The used conventions for 2D, in which the three ele-
ments below element (i,  j) are the drain region for element (i,  j). It 
is assumed that the bottom of the domain is void, so the fluid can 
always run off here. For an extension from 2D to 3D, instead of using 
the 3 elements below, a drain region of 5 elements below element 
(i, j) is used

Fig. 4  The drainage filtering 
procedure, which changes the 
design layer-by-layer from bot-
tom to top, using min and max 
operations



 R. Giele et al.

1 3

183 Page 4 of 14

more conservative and ensures that the runoff angle can-
not be violated. In this paper we therefore use 5 elements, 
namely all elements in the layer below that share one or 
more edges with the element on top. A negative Pm should 
be used to get the minimum. Written out, the approximations 
used for the drainage filter D are given by:

The used aggregation parameters are taken as: Pm = −40 and 
Pn = 40 . For elements at the sides of the domain, a ‘ghost 
element’ is added to represent the outside of the domain. 
If this is given a density of 0, it implies that fluids can run 
off at this side of the domain. Furthermore, the blueprint 
design in the top row of the domain can not be transformed 
into a drainable design, because this row is not a drainage 
region itself for the region above the domain. Therefore is 
should be prevented that this is a solid region, e.g. with a 
local volume constraint. Finally, if computational overflow 
occurs because the input of the approximation functions is 
too small, this can be resolved by introducing a small offset 
on the input values.

No full derivation of the sensitivity analysis is presented 
here, as it proceeds along the same lines as described in Lange-
laar (2017). Only the order of the min/max operations and the 
used approximation functions differ, which will be given here. 
The sensitivities from a performance criterion f in row i can 
be calculated with:

in which � is the multiplier vector, which is computed with 
the multiplier vector from the row above:

The derivatives of Pnorm and Pmean are as follows:

(3)
xdr
(i,j)

=
((

x̂
Pm

(i−1,j−1)
+ x̂

Pm

(i−1,j)
+ x̂

Pm

(i−1,j+1)

)
∕3

)1∕Pm

x̂(i,j) =
(
x
Pn

(i,j)
+ (xdr

(i,j)
)Pn

)1∕Pn

.

(4)
�f

��i
= �

T
i

�Pnorm,i

��i
,

(5)�
T
i
=

(
𝜕f

𝜕�̂i
+ �

T
i+1

𝜕Pnorm,i+1

𝜕�̂i

)
𝜕Pnorm,i

𝜕�i
.

In here, i and j are left out for readability. Note that the sen-
sitivities are calculated in a layer-by-layer manner from top 
to bottom, with the topmost multipliers equal to zero.

2.2  Runoff angle control

For the method described in Sect. 2.1, the runoff angle can 
be calculated with � = atan(

ly

lx
) , where lx and ly represent the 

element size. For a structured grid with ly = lx , this results 
in a runoff angle of 45 ◦ . The runoff angle can become 
smaller if ly < lx.

In the proposed method a smaller runoff angle is obtained 
by projecting the values of original grid on a grid refined in 
the drainage direction. The drainage filter is applied on this 
refined grid, after which the drainable design is projected 
back to the original grid. This procedure is shown in Fig. 5. 
It is important to note that the refined grid is only used for 
creating the drainable design with the filter and not for the 
finite element analysis, so no remeshing is performed.

We choose the refined grid to have size ly,r =
ly

n
 , in which 

refinement factor n is an integer, so that n refined cells fit 
exactly in one element of the original grid. Thus, a refine-
ment of n = 5 gives a runoff angle of 11 ◦ , which suffices for 
common drainability requirements in industry.

For the forward projection Rf  , from original to refined 
grid, all refined cells inherit their value from the original 
grid. For the backward projection Rb , from the refined to the 
original grid, the original elements densities are set to the 
average value of the corresponding refined elements. For an 
original grid �o and refined grid �r , these operations can be 
described as follows:

(6)

𝜕Pnorm(x, x
dr)

𝜕x
=
(
xPn + (xdr)Pn

) 1

Pn
−1
xPn−1

𝜕Pnorm(x, x
dr)

𝜕xdr
=
(
xP + (xdr)Pn

) 1

Pn
−1
(xdr)Pn−1

𝜕Pnorm

𝜕x̂
=

𝜕Pnorm

𝜕xdr

𝜕Pmean

𝜕x̂

𝜕Pmean(x̂1, x̂2, x̂3)

𝜕x̂
=

1

N

(
1

N

N∑

e=1

(xe)
Pm

) 1

Pm
−1

xPm−1.

Fig. 5  Grid refinement proce-
dure for shallow runoff angles. 
In this example the runoff angle 
is tan−1(1/3) = 18 ◦
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in which � represents the (sub)cell volume. Finally, note that 
for a more specific pick in runoff angles, it would also be 
possible to do projection on a grid in which the refined cell 
is not exactly fitted with integer n in an original cell.

2.3  Drainage direction control

Structural components can have any orientation while being 
used. However, the gravity that induces the drainage always 
works downwards. This motivates the need to ensure drainabil-
ity from multiple specified orientations. This is achieved with 
a projection on another grid, similar to the approach used for 
the runoff angle. First, the values of the original grid are pro-
jected with a rotation on another grid, which we call the rota-
tion grid. The drainage filter, that creates a design for straight 
downward drain orientation, is applied on this rotated design 
field. Finally, the values of the drainable design are projected 
back to the original grid. This procedure is shown in Fig. 6.

In our application, the rotational projection is performed 
around the center point of the original mesh. The cell size 
of the rotation grid is the same as the original grid, but the 
amount of cells is increased to fully cover all elements of 
the original grid. The projection is done with a density filter 
operation with an integrated coordinate transformation. For 
an original density field �o and a mapped field �m , the for-
ward mapping filter Mf  and backward mapping filter Mb are 
defined as follows:

where Nm,o is the neighborhood set of elements within the 
filter domain for element m, and w(�o, �m) is the linear weight 
function between two cells with central coordinates �o and 
�m:

(7)

xr =Rf (xo) = xo for 𝛺(xr) ⊆ 𝛺(xo)

xo =Rb(xr) =

n∑

i=1

xr(i)∕n for 𝛺(xr) ⊆ 𝛺(xo),

(8)

xm =Mf (xo) =

∑
o∈Nm,o

xow(�o, �m)
∑

o∈Nm,o
w(�o, �m)

xo =Mb(xm) =

∑
m∈No,m

xmw(�m, �o)
∑

m∈No,m
w(�m, �o)

,

with Rm the specified filter radius, and where the coordinates 
of �m are first rotated by rotation matrix M. The filter radius 
Rm is picked as small as possible, but big enough to ensure 
that all elements in the rotation grid that are covered by the 
original grid have an input. Limited additional smoothing of 
the design is induced, as is demonstrated in the numerical 
examples (Sect. 4). The elements in the rotation grid that 
are not covered by the original grid get assigned a value of 
0, which represents drainable space.

2.4  Length scale control

Small sinkholes can be created inside the structure, some-
times only the size of one element. In particular in 2D with 
large runoff angle this was observed. According to the 
model the fluid can run off through these sinkholes, how-
ever for practical usage a minimum length scale on the void 
is required. The robust method (Sigmund 2009; Wang et al. 
2011; Lazarov et al. 2016) creates a length scale on both the 
solid and the fluid, and is summarized here.

First, the structural domain density field � is filtered using 
the standard density filter F  (Bourdin 2001; Bruns and Tor-
torelli 2001), given by:

where Nk,l is the neighborhood set of elements within the 
filter domain for element k, and w(�l, �k) is the linear weight 
function between two elements k and l:

with R the specified filter radius. �k and �l contain the central 
coordinates of the design elements k and l respectively. Next, 
a smooth Heaviside projection H is used:

where � is the threshold value, and � the steepness of the 
projection. Using three threshold values results in eroded, 

(9)w(�m, �o) = Rm − ‖M(�m) − �o‖,

(10)x̃ = F(x) =

∑
l∈Nk,l

xlw(�l, �k)
∑

l∈Nk,l
w(�l, �k)

,

(11)w(�l, �k) = R − ‖�l − �k‖,

(12)x̄ = H(F(x)) =
tanh(𝛽𝜂) + tanh(𝛽(x̃ − 𝜂))

tanh(𝛽𝜂) + tanh(𝛽(1 − 𝜂))
,

Fig. 6  Rotation procedure for 
drainage in variable orienta-
tions, shown for a rotation 15 ◦ .  
The elements that are not 
covered by the original grid are 
represented in blue
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blueprint, and dilated designs, with corresponding sub-
scripts e,b,d, and threshold values 𝜂e < 𝜂b < 𝜂d . The offset 
parameter Δ� is used to obtain the erode and dilate threshold 
values: �

e
= �

b
− Δ� and �

d
= �

b
+ Δ� . By basing the opti-

mization on the worst case performance of the three designs, 
robustness against boundary variations is achieved.

This added robustness might result in a bigger length 
scale than initially intended for the structure. However in 
general, robustness is in line with creating designs for clean-
ability, which requires avoiding tiny design features. The 
relationship between the parameters and the imposed length 
scale is explained in Trillet et al. (2021). Finally, note that 
the robust filter step is mostly needed for problems where 
material is scarce or drainage solutions are limited, which 
is often the case in 2D, especially for high run-off angles. In 
these cases, the robust formulation helps to prevent designs 
in which the optimizer exploits intermediate densities. In 
more realistic cases, i.e. 3D and with lower runoff angles, 
this is not required as the optimizer has more freedom to 
create a drainable design. Therefore, in 3D applications only 
the density filter F  is used and the Heaviside filter step H 
can be left out.

2.5  Full filter procedure

All the steps in the drainage filter procedure are shown in 
Fig. 7. Only the drainage filter D is essential, all other filters 
are optional and depend on the specific problem require-
ments. Refinement filter R is needed for runoff angles 
smaller than 45 ◦ , which holds for most practical cases. 
Rotation filter M is needed for drainage orientations other 
than straight downwards. Heaviside filter H in combination 
with the robustness offset is effective in preventing small 
sinkholes, which may otherwise occur for complex prob-
lems. This step is done before the drainage filter to achieve a 
bigger variance in the input variables of the smooth min/max 
approximations. This also means that the subsequent steps 
are done for all of the eroded, blueprint, and dilated designs.

3  Optimization formulation

The optimization problem is formulated based on the design 
variable field � . The drainable density field �̂ is obtained 
by performing the drainage filter steps on design field � , as 
outlined above and shown in Fig. 7. As the focus is on the 
demonstration of the performance of the drainability filter, 
numerical examples will involve minimum compliance prob-
lems with a global volume constraint, defined as:

Blueprint design

x

Density filter F

x̃

Heaviside filter H

x̄

Rotation filter Mf

Refinement filter Rf

Drainage filter D

Refinement filter Rb

Rotation filter Mb

x̂

Drainable design

Fig. 7  Schematic representation of the full drainage filter procedure, 
where the filter on the left results in the design on the right. Only the 
drainage filter D is essential
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in which 𝐊(�̂�) is the stiffness matrix, � are the nodal loads, 
and � are the the resulting nodal displacements. V(�̂) 
is the volume of the current design, and V∗ is the maxi-
mum allowed volume. Nel is the number of elements in the 
domain.

As stated in Sect. 2.5, for minimum length scale control 
the robust approach will be used in the several problems. 
The simplified robust optimization formulation (Lazarov 
et al. 2016) is used, which utilizes only the eroded and the 
dilated design in the optimization problem, and which is 
given by:

Here �e and �e come from the eroded realization, while Vd 
comes from the dilated realization. To ensure that the opti-
mized design meets the target volume fraction for the blue-
print design V target

b
 , the volume continuation scheme pre-

sented in Wang et al. (2011) is used. Thus, the allowed 
volume fraction V∗ is updated every 20th iteration as 
V∗ =

Vd(�̂)

Vb(�̂)
V
target

b
 , where V

b
(�̂) refers to the blueprint volume 

fraction. A � continuation is performed every 15 iterations, 
initially by increasing the value with 1.0, and after this is 
higher than 7 the value is multiplied with 1.2.

Classical isoparametric elements are used, with 4-node 
quadrilateral elements with bilinear shape functions in 2D, 
and 8-node hexahedral elements with trilinear shape func-
tions in 3D. The modified solid isotropic material with 
penalization (SIMP) interpolation scheme (Sigmund 2007) 
is used for the mapping in each Element i between the 
drainable density and the Young’s modulus, i.e.:

In here, Emin and Emax are the lower and upper bounds of the 
Young’s modulus, for which the used values are 10−9 and 
1.0, respectively. A Poissons ratio of � = 0.3 is used. The 
penalization power p is 3.0. Note that the SIMP penalty is 
useful for eliminating big areas of intermediate densities, 
but it cannot suppress the intermediate density used for the 
subelement slope on top of the structure (Fig. 5).

(13)

minimize
�

∶ C(�̂) = �T�(�̂)�

subject to ∶ �(�̂)� − � = �

V(�̂)

V∗
− 1 ≤ 0

0 ≤ xi ≤ 1 for i = 1...Nel,

(14)

minimize
�

∶ C(�̂) = �T
e
�e(�̂)�e

subject to ∶ �e(�̂)�e − � = �

Vd(�̂)

V∗
− 1 ≤ 0

0 ≤ xi ≤ 1 for i = 1...Nel.

(15)E(x̂i) = Emin + (x̂i)
p(Emax − Emin).

The 2D problem is solved by the 88 line MATLAB code 
(Andreassen et al. 2011) augmented with the MMA opti-
mizer of Svanberg (1987). The 3D problem is implemented 
as an extension to the open-source framework for large-scale 
topology optimization (Aage et al. 2015) based on PETSc, 
with the MMA implementation of Aage and Lazarov (2013). 
Unless mentioned otherwise, all cases have been run for 250 
iterations with default optimizer settings. This ensured suf-
ficient convergence of the designs. A full overview of the 
used parameters is given in Table 1.

4  Numerical examples

To illustrate the performance and characteristics of the 
drainage filter, the method will be subjected to several tests. 
First, in Sect. 4.1 the method is tested in 2D to most clearly 
illustrate its behaviour. Second, a simple 3D case is used in 
Sect. 4.2. Third, the method is tested in 3D in combination 
with other constraints and methods to address more complex 
use cases in Sect. 4.3.

4.1  2D case

First, the performance is tested in 2D for a cantilever beam 
problem. The load and boundary conditions can be seen 
in Fig. 8. The locations of the loading and clamped area 
are placed more inwards in the domain, so there the fluid 
have space on the side to run off, while the structure is not 
cut off by the domain for any drainage direction. In addi-
tion, sufficient space is provided in the top region of the 
design domain, which is needed with large run-off angles. 
The discretization is 150 × 150 elements, the filter radius is 
4.5 elements. The robust method was used, in which robust 
threshold offset Δ� is 0.075, and the Heaviside � is incre-
mented from 1 till 12.

Table 1  Summary of used parameters

Parameter Value

SIMP power p 3.0
Poissons ratio � 0.3
E
min

10−9

Emax 1
P
m

− 40
P
n

40
Iterations 250
Rotation filter radius R

m
1.5 l

x

Filter radius R 3.0l
x
−4.5l

x

Threshold �
b

0.5
Offset parameter Δ� 0.075
Heaviside �

final
12
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The results of the 2D tests are presented in Fig. 9. It 
can be seen that the structure created without the drain-
age filter contains horizontal areas on the top surface as 
well as internal voids. This does not meet the criteria of a 
drainable design. Drainable structures are created by using 
the drainage filter, as shown in Fig. 9b–f. Drainability is 
often obtained by creating a triangular ‘roof’ on top of the 
cantilever beam. The fluid can run off on either side of this 
roof. The filter also bans internal voids from the designs. 
For a 45 ◦ runoff angle, much material is needed to create 
the roof, at the expense of the lower part of the structure 
and the compliance performance. Yet, a drainable design 
is ensured by the strict enforcement of the drainability 
requirement of the filter. Towards the top of the structure, 
the elements remain fully solid, which confirms the effec-
tiveness of the applied smooth min/max operators from 
Sect. 2.1. For an 11 ◦ runoff angle (i.e. n = 5 ), the impact 
of the drainage requirement is less severe and the structure 
is allowed to look more similar to the reference design, 
which is beneficial for the compliance. The smooth slope 
of the runoff angle has to be represented on a discretized 
field, which at the surface leads to a gradual increase of the 
density for every n elements sidewards. In Fig. 9d it can be 
seen that the filter also works for lower volume fractions, 
which is usually harder to solve because the structure has 
to comply with the drainability constraint while there are 
only limited material resources. Finally, in Fig. 9e and f 
the structure can be seen for when a different drainage 
orientation is enforced, more specific a 150 ◦ and 270 ◦ 
angle respectively. An 18 ◦ runoff angle is used, to make 
the ‘roof’ clearly visible, which can now be recognized 

at the right-bottom and left-side of the structure, respec-
tively. It is visible that the extra filter step does add a blur 
to the edges of the structure. One could add an extra final 
Heaviside to mitigate this effect.

The history of the objective for the experiments in Fig. 9a 
and c, i.e. cases without and with a representative drainabil-
ity requirement, is plotted in Fig. 10. The history plot shows 
that the convergence is mostly smooth, except for some 
jumps at the continuation of the Heaviside � parameter. The 
rate of convergence without and with drainage filter is com-
parable. When using unrealistic high run-off angles (e.g. 45 
◦ ) a stronger design restriction is imposed, and convergence 
can be slower than in the reference case.

A final study with the 2D problem concerns the influ-
ence of the runoff angle on the compliance. In Fig. 11 the 
compliance is plotted for different runoff angles, ranging 

Fig. 8  Load and boundary conditions for the 2D problem. The load is 
applied 15% from the right edge, and 40% from the bottom. The fully 
clamped region is located 15% from the left edge, 40% from the bot-
tom, and has a width of 2% and a height of 40%

(a) No drainage filter,
20% volume. Cref := C.

(b) 45◦ runoff angle, 20%
volume, 300 iterations.
C = 2.43× Cref .

(c) 11◦ runoff angle, 20% vol-
ume. C = 1.09× Cref .

(d) 11◦ runoff angle, 15%
volume. C = 1.52× Cref .

(e) 18◦ runoff angle, 20% vol-
ume, 150◦ orientation.
C = 1.13× Cref .

(f) 18◦ runoff angle, 20% vol-
ume, 270◦ orientation.
C = 1.92× Cref .

Fig. 9  Results of 2D cantilever beam problem. The arrow indicates 
drainage direction other than downwards
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from 45 ◦ ( n = 1 ) down to 8 ◦ ( n = 7 ). As seen before, high 
runoff angles lead to drastic design changes and therefore 
significant increases in compliance. In contrast, for runoff 
angles between 18 ◦ and 8 ◦ , the compliance only changes 
3% at an increase of 8% compared to the reference design. 
Such angles are more representative for realistic drainability 
requirements, and only a minor impact on component per-
formance is observed.

4.2  3D case

Secondly, the drainage filter is investigated in 3D, also for a 
cantilever beam problem. The orientation of the load is such 
that the largest area has to be made drainable, as this poses 
the biggest challenge for the method. The boundary condi-
tions can be seen in Fig. 12. The clamped nodes and loaded 
nodes are 10% from the domain edges in y-direction, to leave 
space for the fluid to run off within the domain, without any 

Fig. 10  Evolution of the 
objective function for the cases 
depicted in Fig. 9a and c

0 50 100 150 200 250

1

1.2

1.4

1.6

1.8

2

Fig. 11  The compliance for 
different runoff angles, for 
20% volume, and Cref  taken 
from Fig. 9a

51015202530354045
1

1.5

2

2.5



 R. Giele et al.

1 3

183 Page 10 of 14

boundary effects. The problem is solved on a mesh of 192 
× 144 × 96 elements, for a volume fraction of 10%, and a 
filter radius of 3 elements, and the drainage orientation is 
in the z-direction. No robust method was used, and also no 
Heaviside filter.

Different runoff angles where tested for this problem. The 
results of the 3D tests can be seen in Fig. 13. It can be seen 
in Fig. 13a that if no drainage filter is employed, the design 
that is created is not drainable. Not all upward facing surface 
areas have a minimum runoff angle, and there is a pocket in 
the middle where fluid could reside. By using the drainage 
filter, the structure becomes drainable, as seen in Fig. 13b 
and c for runoff angles of 45 ◦ and 11 ◦ respectively. Material 
is added on top to create a ‘ridge’, outer parts of the structure 
are lowered, and sink holes appear in the middle of the struc-
ture, allowing for fluid drainage. For an 11 ◦ runoff angle, 
these changes in the design are relatively small, because in 
this 3D case there are multiple options where the fluid can 
be send off to. This results in only a small increase in the 
compliance of the structure, and a much smaller increase 
than seen for the 2D case.

The smooth isovolume projections in Fig. 13e and f give 
a representation of the realization of the final design. This 
shows that no flat areas are present on the structure. The 
top of the ridge of the structure is the only area with a run-
off angle smaller than 10 ◦ . The other upward facing sur-
faces that are part of the ridge are between 10 ◦ and 20 ◦ .  
Finally, some mesh dependency can be seen, which is caused 
by using 5 elements below for the drainage region. This 
assumes that fluid can only run off in line with the mesh 
and drainage in the not orthogonal directions has to happen 
through a combination of these four directions. It can be 
seen that the surfaces that are not in line with the mesh can 

have a slightly higher runoff angle than the surfaces that are 
in line with the mesh.

4.3  3D cases with extra constraints

Thirdly, the performance of the drainage filter is tested, 
while more practical constraints are added to the problem. 
Case A is a problem where a loading is located more upward 
in the design domain, which means that not a ‘roof’ or ridge 
can just be built on top of the structure. For this, the MBB 
load case is used, for which the boundary conditions are 
shown in Fig. 14. It is important to prevent material from 
being all in the top row of the domain. This was done by 
adding 4 rows to the top of the domain, and setting a local 
volume constraint for this area, taken into account the effect 
of the density filter radius. The material here is highly penal-
ized with Vtop

10−6
− 1 ≤ 0 , so the elements here should become 

void. The problem is solved on a mesh of 192 × 64 × 68 
elements, for a volume fraction of 28.2% (which is equal to 
30% for the relevant domain volume), and a filter radius of 
3 elements. No robust method was used, and also no Heavi-
side filter.

Case B applies a drainage filter in one orientation in com-
bination with a second drainage filter in another orienta-
tion. This can ensure the drainability of a component without 
fixed orientation. The same 3D cantilever beam problem is 
used, as previously shown in Fig. 12, again with a mesh of 
192 × 144 × 96 elements, for a volume fraction of 15%, and a 
filter radius of 3 elements. No robust method was used. The 
drainage direction of the first filter is 10 ◦ around the y-axis, 
the drainage direction of the second filter is 170 ◦ around the 
y-axis. To make the effect more visible, a refinement of 3 is 
used, which gives a runoff angle of 18 ◦.

Case C applies the drainage filter in combination with 
an AM filter. The AM filter method described in Langelaar 
(2017) is used. The same mesh as for Case B is used, only 
the volume fraction is increased to 25% to allow the struc-
ture to connect to the baseplate. Again, a refinement of 3 is 
used.

The results of Case A, the 3D MBB problem, can be seen 
in Fig. 15. Without drainage filter, material forms a flat sur-
face at the top of the allowed domain. Applying the drainage 
filter makes the design drainable, while again obeying the 
local volume constraint. The top of the structure still looks 
like a ridge, but this ridge does not enter the constrained 
area. In addition, it is visible that the fluid can run off of the 
structure on the sides of the domain.

The results of Case B, the 3D beam problem with multi-
ple drainage filters, are presented in Fig. 16. It can be seen 
that the ‘ridge’ is not in the middle anymore but skewed 
towards one side. Another ‘ridge’ is created at the bottom of 
the structure, so the fluid would also run off from this side. 
Regarding Case C, in Fig. 17 it can be seen that the structure 

Fig. 12  Boundary conditions for the 3D cantilever beam problem. 
The problem has dimensions L x=1.5, L y=2, and L z=1. The load 
is applied in x-direction at: x ∈[0.73,0.77], y ∈[0.19,0.21], and z ∈
[0.39,0.41]. The fully clamped part is located at: x ∈[0.375,1.125], 
y ∈[1,60,1.80], and z ∈[0.2,0.6]
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is both printable and drainable. The challenge for this case is 
that one filter results in material being added at the bottom, 
while the other filter results in material being added on top. 
Yet, both design requirements are fulfilled. This shows that 
the drainage filter can work well in combination with other 
complex filters.

5  Conclusion

A new filter for density-based topology optimization is pro-
posed that guarantees drainability of a structure through its 
geometrical design. In a layerwise process, a given blue-
print design is transformed into a drainable design, which 
decreases the need for postprocessing. To the authors’ 
knowledge, it is the first filter to address cleanability, and 

specifically drainability, of designs generated by topology 
optimization.

The proposed method has several benefits. First, the 
method performs well in creating drainable designs. Fluids 
are ensured to run off the obtained structures, because the 
drainability definition embedded in the filter eliminates all 
undrainable regions. The filter is robust, and also works 
for problems where less material is available.

Second, the refinement method succeeds in handling shal-
low runoff angles, which is important for the performance 
of the components. This can help to create components for 
which the final geometry is only slightly changed compared 
to the optimized component without drainability consid-
erations. Consequently, the increase in compliance remains 
minor. Similarly, the rotation filter adds to the applicability 

Fig. 13  Results of the 3D cantilever beam problem. a–d is projected with an element 0.5 density threshold value. For e, f The cell data has been 
projected to point data, after which an isovolume with threshold 0.5 is created
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of the filter by ensuring that components can be drainable 
in any chosen orientation relative to the gravity direction.

Third, the proposed layer-by-layer filter is a simple 
method, which is is easy to implement. The filter itself 
and the handling of the sensitivities only consist of simple 

low-cost operations, so that the computational cost of both 
the filter and its sensitivity analysis is small compared to the 
finite element analysis. The filter works stand-alone without 
the need to adjust other parts of the topology optimization 
code. To facilitate its use and further developments, a 2D 
implementation is provided with this paper. Combining it 
with an overhang filter was successfully demonstrated.

However, the proposed method also has a few limita-
tions. First, the used definition of drainability might be too 
strict for some applications, as closed internal voids are 
banned from the filtered design. Second, the 2D version of 
the drainage method often requires the robust formulation, 
which is needed to prevent small sinkholes. Thirdly, the 
discrete grid refinement procedure, allows only for some 
specific runoff angles. Finally, some mesh dependency 
exists in the 3D implementation where drainage regions of 
5 elements are considered. But since the proposed method 
builds on a discrete overhang filter, these limitations if 
necessary can likely be resolved by taking inspiration from 
a mesh-independent overhang scheme (e.g. van de Ven 
et al. 2018)

Drainability is an important aspect of design for clean-
ability, certainly not the only one. Additional requirements 
for hygienic design are the topic of future investigations. 

Fig. 14  Boundary conditions for the 3D MBB problem. The problem 
has dimensions L x=1, L y=3, and L z=1.0625, where the top 0.0625 is 
involved in the local volume constraint. There is a symmetry bound-
ary condition at the x = 0 plane, with a line load on top. The simply 
supported part is located at: x ∈[0,1], y ∈[2.98,3.0], and z ∈[0,0.02]

Fig. 15  Results of Case A, the 3D MBB problem, with a local volume constraint at the top of the domain, and with an element 0.5 density 
threshold projection
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This is expected to introduce the benefits of topology optimi-
zation to new application domains in e.g. biomedical, food 
processing, and space industries.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00158- 022- 03272-3.
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