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Abstract—Designing and implementing artificial systems that
can be interfaced with the human brain or that can provide
computational ability akin to brain’s processing information
efficient style is crucial for understanding human brain funda-
mental operating principles and to unleashing the full potential of
brain-inspired computing. As basic neural network components,
responsible for information transfer between neurons, artificial
synapses able to emulate analog biological synaptic behaviour
are of particular interest. State of the art CMOS and memristor-
based synapses suffer from scalability drawbacks (large energy
consumption and area footprint), variability-induced instabil-
ity, and are not bio-compatible. In this paper, we propose a
generic Graphene Nanoribbon (GNR) based synapse structure
and demonstrate that by changing GNR geometry and exter-
nal bias voltages it can emulate different synaptic plasticity
behaviours, i.e., Spike Timing Dependent Plasticity and Long-
Term Depression and Potentiation, and that both excitatory and
inhibitory synaptic behavior can be obtained with the same GNR
geometry. To demonstrate biologically plausible operation, we
make use of low voltage bias, i.e., 0.1V, 0.2V, and consider inputs
consistent with measured brain synapses data, i.e., −50mV to
50mV pre- and post-synaptic spikes voltage range, and −60ms
to 60ms time range. The simulations indicate that by changing
the GNR shape we can enrich the plasticity behaviour (poten-
tially beyond the considered cases) and the plasticity change
of 100% provided by natural synapses can be achieved. Our
investigation clearly suggests that the proposed GNR synapse
structure is a promising candidate for large-scale neuromorphic
systems integration, which might potentially bring novel insight
on brain neurophysiology, as it requires a small footprint, is
energy effective, biocompatible, and versatile from the synaptic
behaviour point of view.

Index Terms—Neuromorphic Computing, STDP, Artificial
Synapse, Graphene, GNR.

I. INTRODUCTION

The human brain, comprising approximately 86 billion

neurons connected through trillions of synapses, is the natural

high performance computing system. Its unique capabilities,

e.g., low power consumption, robustness, massively parallel

information processing, suitability for complex tasks, inspired

Carver Mead in the late 1980s [1] in coining a disruptive

computing paradigm, the Neuromophic Computing (NC). Over

the last decades NC gained substantial momentum, provided

valuable inside into brain’s complex functionality, novel brain-

inspired computation paradigms have been introduced [2], and

biologically-inspired neuromorphic systems fabricated [3].

Synapses are the most ubiquitous neural system compo-

nents which are ensuring information interchange between

neurons. Their essential property is Synaptic Plasticity (SP),

manifested either by the strengthening or the weakening of

the transmitted signals, is the brain learning and memory

enabler. Spike Timing Dependant Plasticity (STDP), which

enables synaptic transmission strength changes according to

the relative timing of pre- and post-synaptic spikes, Long-

Term Potentiation (LTP) and Long-Term Depression (LTD),

which are persistent synaptic strengthening and weakening, re-

spectively, are the essential functionalities an artificial synapse

ought to be endowed with [4].

Given that at any brain inspired system crux of the matter

reside artificial synapses able to emulate the biological ones,

their design and fabrication received massive attention. In

most of today’s neuromorphic computing systems, artificial

synapses are typically implemented using dozens of CMOS

devices [5], [6]. However, CMOS technology inadvertently im-

poses restrictions on both functionality and neuromorphic sys-

tem implementations, foremost in terms of energy efficiency,

scalability, and integration density. Furthermore, CMOS de-

vices cannot truly convey the analog behaviour associated

with biological synapses. Alternatively, emerging resistive

switching memory devices [7] based synapses have been also

proposed [8], [9] and exhibit promising characteristics, e.g.,

simple (a single or a few memristors) structure, inherently

analog conductance, and good scalability potential. However,

they suffer from temporal (cycle-to-cycle) and spatial (device-

to-device) variability of the resistive state even under the same

applied signals, as well as undesired nonlinearities, which may

cause the instability of the entire neuromorphic system.

Graphene, one of the prominent post-Si forerunners, owing

to its outstanding properties, e.g., fast switching speed, low

energy, thermal stability, ultimate thinness, flexibility, and

biocompatibility [10], [11], has emerged as a potent material

[12] and previous work demonstrated that graphene-based

artificial synapse can emulate plasticity. In [13], by changing

the back-gate voltage, the authors obtained various synaptic

plasticities within the same device. However, quite large

back-gate voltages (20V, 40V) and input pulses (2V) are

utilized, which are faraway larger than the electric potentials

measured in natural neurons, and are negatively affecting the

power consumption. Moreover, the obtained synaptic weight

change is relatively small (≈ 10%) when compared with

(100%) in biological counterparts, and the provided synaptic

plasticity is restricted. In [14], a fabricated graphene-based

electrochemical synapse is reported, whose conductance is

modulated by changing the Li ion concentration between the

graphene layers. This synapse enables low-power switching,

exhibits low variability, and is potentially suitable for large-

scale integration. However, the reported STDP conductance

change of ≈ 2% and timing difference around 1000ms are in
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a different range than the one of natural synapses, i.e., ≈ 100%
and 100ms, respectively.

In this paper, we propose a generic Graphene Nanoribbon

(GNR) based synapse structure consisting of a GNR mono-

layer placed above an insulator and a doped substrate. Two

top contacts are utilized to bias the GNR and its conduction

modulated by means of electrostatic interaction via top and

back gates reflects the synaptic weight. Specifically, we con-

sider 2 fundamental synapse functionalities, i.e., Spike Timing

Dependant Plasticity (STDP) and Long-Term Plasticity (LTP),

which are known to underlie learning and memory in brain.

By carving the GNR synapse geometry and changing the

bias and back-gate voltages we successfully emulate: Bal-

anced Hebbian STDP, Potentiation Dominated Hebbian STDP,

Potentiation Dominated Anti-Hebbian STDP, and Long-Term

Plasticity. Furthermore, we demonstrate that both excitatory

and inhibitory synaptic behaviours can be obtained with the

same GNR synapse, simply by changing the bias back-gate

voltage. To demonstrate biologically plausible operation, we

bias the GNRs at low voltage (0.1V, 0.2V) and consider

inputs consistent with measured brain synapses data, i.e.,

−50mV to 50mV pre- and post-synaptic spikes voltage range,

and −60ms to 60ms time range.

The simulations indicate that by changing the GNR shape

we can enrich the plasticity behaviour (potentially beyond the

4 considered cases) and the plasticity change of 100% pro-

vided by natural synapses can be achieved. Our investigation

clearly suggests that the proposed GNR synapse structure is a

promising candidate for large-scale neuromorphic systems in-

tegration, which might potentially bring novel insight on brain

neurophysiology, as it is small (e.g., 38 nm2), energy effective,

biocompatible, and versatile from the synaptic behaviour point

of view.

The remaining of this paper is organized as follows: Section

II outlines basic synapse and plasticity concepts, and intro-

duces the proposed GNR-based synapse. In Section III we

describe the simulation model employed for simulating the

GNR electronic properties, and the overall simulation setup

and methodology. In Section IV we present the obtained

simulation results, and in Section V we conclude the paper.

II. SYNAPTIC PLASTICITY AND GRAPHENE-BASED

SYNAPSE

In this section, we briefly present the synaptic plasticity un-

derlying concepts and then introduce the proposed graphene-

based synapse.

To explain the role of a synapse in the neuron information

interchange, Figure 1 depicts a very small network composed

of two neurons, Nj and Nk, connected via synapses to a

third neuron, Ni. Neuron Ni collects input signals from

the two pre-synaptic neurons, Nj and Nk, and when their

cumulated signals effects exceed a certain neuron-specific

firing threshold, neuron Ni generates an output signal (spike)

which then propagates through all its terminations. From

the synapse perspective, (consider for instance the synapse

between neurons Ni and Nj), there are (i) two input spikes: the

Synapse 
Pre-synaptic neuron (Nj) Post-sy

naptic 

neuron (Ni)

Pre-synaptic 
neuron (Nk)

Pre-synaptic spike (Sj)

Spike (Sk)

Post-sy
npatic spike (Si)

Synapse

Post-synaptic
neuron (Ni)

Sj Sj
out

Si

Sk

Wji=f(Sj,Si)

Pre-synaptic
neuron (Nj) Wji*Sj

Wki*Sk

Wki=f(Sk,Si)

Sk
out

Si

Si

synapseji

synapseki
Pre-synaptic
neuron (Nk)

Fig. 1: Synaptic-based information interchange.

pre-synaptic spike Sj , which comes from neuron Nj , and the

post-synaptic spike Si, which is generated by neuron Ni, and

(ii) one output spike Sout
j , which will be transmitted to neuron

Ni. In general, the synaptic transmission efficiency - quantified

through the synaptic weights W - is variable, either weakening

or strengthening the magnitude of the signals transmitted via

the synapse. This property is known as synaptic plasticity and

it is believed to hold a crucial role in learning and memory

in brain. Spike Timing Dependent Plasticity (STDP) [15] is a

widely utilized Hebbian synaptic learning rule, for which the

synaptic weight changes based on the relative timing between

the pre- and post-synaptic spikes, as follows: (i) when the pre-

synaptic spike arrives shortly prior to the post-synaptic one,

the synaptic weight increases and this may lead to a persistent

weight increase (Long-Term Potentiation (LTP)); otherwise,

the synaptic weight decreases and may lead to a persistent

weight decrease (Long-Term Depression (LTD)), and (ii) if the

pre- and post-synaptic spikes arrive very close to each other, a

large synaptic weight change occurs. We denote by ΔW , the

synaptic weight change, and by Δt = tpost − tpre, the arrival

time difference of the pre- and post-synaptic spikes. Figure

2 graphically illustrates ΔW (Δt) according to a biological

synapse measured data [16]. Even though the data exhibit

stochasticity, a widely accepted interpolating model is the

following:

ΔW (Δt) =

{
A+ · exp(−Δt/τ+), for Δt > 0

−A− · exp(Δt/τ−), for Δt < 0,
(1)

where A+ and A− are parameters determining the magnitude

of synaptic potentiation and depression, while τ+ and τ− are

time constants in the order of 10ms fitted by experimental

data reflecting the temporal range over which the synaptic

strengthening and weakening occurs.

Figure 3 illustrates the proposed graphene-based generic

synapse structure. It consists of a monolayer Graphene

Nanoribbon (GNR) located above an insulating layer and
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Vbg

Si
O 2

n
++

Vd

Vs
Vg

Fig. 3: Graphene-based synapse.

a doped substrate, which serves as back-gate. The GNR

constitutes a conduction channel when applying a bias voltage

Vd − Vs between the source and the drain contacts and

its conductance G can be modulated by the input voltage

Vg applied on the top-gate. From the synapse operational

standpoint, the top-gate is used for applying the synaptic input

signals, the plasticity is reflected in the GNR conductance

change, and the drain-to-source current is the synapse output

current, which corresponds to the synaptic output spike Sout
j

in Figure 1. When applying an input spike, which can be

regarded as a time varying voltage, the synapse output current

magnitude will depend on the cumulated previous activities

in the synapse (for all the discrete voltages corresponding

to the input spike). This dependance is accounted for in

GNRs via a hysteretic I-V behaviour (specifically drain-to-

source current vs. top-gate voltage), which is usually caused

by defects in the top-gate oxide, that trap and release GNR

carriers [17]. In the following we demonstrate that, different

from previous graphene based synapse proposals, we can

accommodate various plasticity types, by shaping the GNR

in non-rectangular forms. Furthermore, by tuning the back-

gate voltage properly, both excitatory and inhibitory synapses

can be implemented with the same graphene-based synapse.

III. SIMULATION FRAMEWORK

In this section, we present the model we used for deriv-

ing the electronic properties of the graphene synapse, and

describe the simulation setup and the employed methodology

to calculate the synaptic weight change (the GNR conductance

change) and to obtain the plasticity behaviour.

A. Simulation Model

For the electronic transport computation, we used an NEGF-

based hysteresis-aware simulation model [17]. Tight Binding

(TB) Hamiltonian matrix H = H0 + U is used in this model

to model the interaction between carbon atoms (via H0) and

external potentials (via U ). The interaction matrix is calculated

as follows:

H0 =
∑
i,j

ti,j |i〉 〈j| , (2)

where ti,j =

{
τ, if atoms i and j are adjacent

0, otherwise.
(3)

We account for the first nearest-neighbor interaction with τ =
−2.7eV . The potential distribution U is calculated by solving

a 3D Poisson equation self-consistently with finite difference

method. As the interface traps cause an equivalent shift of the

gate voltage, denoted ΔVg
, we update the potential profile with

Vg + ΔVg
while solving the Poisson equation. The interface

trap charge can be calculated with an accumulation equation:

Qit =
∑

αi ·Qq · exp(−(t− tarrival)/ttrap), (4)

where tarrival is the input spike arrival time. The value of α can

be calculated as a function of the interface traps capacitance

Cit:

α(Cit) =
Cit · (VgCox −Qq)

Qq · (Cit + Cox)
, (5)

where Vg is the top-gate voltage, Qq is quantum capacitor

charge, Cox is the oxide capacitance, and Cit is the interface

traps capacitance, expressed as a function of the traps density

as Cit = q2 ·Dit.

The source and drain contacts along the end sides of

graphene channel, which sustain the conduction, can be mod-

eled with self-energy matrices Σ1 and Σ2, respectively. Thus,

the transmission function T (E) that models the possibility of

one electron being transmitted between the source and drain

contacts, can be derived as a function of energy:

T (E) = Trace
[
Γ1 GR Γ2 G†

R

]
, (6)

where

GR(E) = [EI −H − Σ1 − Σ2]
−1, (7)

Γ1,2 = i[Σ1,2 − Σ†
1,2]. (8)
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Fig. 5: GNR dimensions and contacts topology.

The current through the graphene channel is calculated by

Landauer formula:

I =
q

h

∫ +∞

−∞
T (E) · (f0(E − μ1)− f0(E − μ2)) dE, (9)

where f0(E) denotes the Fermi-Dirac distribution function at

temperature T , and μ1,2 represents the source and drain con-

tacts electrochemical potential. A block-by-block algorithm

[18] for computing matrix inversion is used to speedup the

calculation of GR. Then the conductance of GNR device is

calculated as:

G =
I

Vd − Vs
. (10)

B. Simulation Setup and Methodology

In order to apply the input spikes to the graphene synapse,

we employ a single-input scheme, as exemplified in Figure

4. The signal applied as input to the synapse is computed

as a superposition of the pre- and post-synaptic spikes (i.e.,

the voltage difference between the two spikes). We define

Toverlap as the arrival time of the secondly arriving spike. To

perform biologically plausible simulations, we considered data

consistent with measured data from brain synapses: −50mV
to 50mV pre- and post-synaptic spikes voltage range, and

−60ms to 60ms Δt range (which covers the general time

range for biological LTP and LTD) [15], [16].

As concerns the GNR, we define its topology in Figure

5. In particular, W and L represent the GNR width and

length, PVg
signifies the distance between the top-gate and

the drain contact, and WVg denotes the width of the top-

gate contact. In our simulation, we considered multiple non-

rectangular GNRs with different shapes but the same overall

W = 39a and L = 28
√
3a. For the top-gate contact we

set PVg
= 8

√
3a and WVg

= 6
√
3a, where a is 0.142 nm.

Concerning the traps induced hysteresis, we assume a density

of interface traps of 2.5 × 10−12cm−2(eV )−1, and we set a

trapping/detrapping time constant of 20ms. Subsequently, we

present the overall design and simulation methodology. For a

desired plasticity behaviour, we first determine a potentially

appropriate GNR geometry and drain-to-source and back-gate

voltages. Subsequently, we subject the graphene synapse to a

train of spikes applied via the top-gate, one spike for each

Δt in the considered range. Corresponding to each input

spike, we then measured the synaptic weight change ΔW
(the difference between the GNR conductance values at two

consecutive time moments, i.e., Toverlap and the immediately

previous time moment), and asses its compliance with the

desired ΔW (Δt) plasticity curve. If results are not according

with the desired plasticity we change the GNR geometry and

bias voltages.

IV. SIMULATION RESULTS

To evaluate the capabilities of proposed graphene synapse,

we target 3 common plasticity types underlying balanced and

potentiation dominated learning [19], [20]: Hebbian STDP

with balanced LTD and LTP (Figure 6 (a)), LTP-biased Heb-

bian STDP (Figure 6 (d)), and LTP-biased Anti-Hebbian STDP

(Figure 6 (g)).

Figure 6 (b) depicts the GNR synapse shape we obtained

for the Hebbian STDP with balanced LTD and LTP scenario,

biased at Vd =0.2V and back-gate voltage Vback =0.2V.

The simulated synaptic weight change (conductance change)

(Figure 6 (c)) indicates a good resemblance with the Hebbian

STDP with balanced LTD and LTP weight change trend. In

biological models, there is a certain randomness in the synapse

reaction. We seek a synaptic reaction tendency closer to the

plasticity models. When fitting the simulated conductance

change with the canonical model in Equation 1, we obtained

τ+ =23ms and τ− =37ms. Since for a biologically plausible

input, we obtain an amplitude of the conductance change

around 100%, which is consistent with biological synapse

measured data shown in Figure 2, the proposed graphene

synapse can enable potentially biologically plausible imple-

mentations (artificial synapses which can be interfaced with

biological neurons in the context of, e.g., neural prosthetics).

Figure 6 (e) and (h) illustrate the obtained GNR synapse

shapes for LTP-biased Hebbian STDP and LTP-biased anti-

Hebbian STDP, respectively. The drain voltage Vd is set to

0.1V for both shapes, while the applied back-gate voltage is

0V and −0.5V, respectively. The simulated synaptic weight

change (conductance change) in Figure 6 (f) and (i) is tem-

porally asymmetric, being dominated by (LTP) potentiation

for both graphene synapses. When fitted with the model in

Equation 1, we obtained τ+ =21ms and τ− =10ms for the
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Fig. 6: GNR synapse shapes and corresponding STDP.

LTP-biased Hebbian synapse, and τ+ =19ms and τ− =15ms
for the LTP-biased Anti-Hebbian synapse.

A synapse can either be excitatory (i.e., potentiation for

pre-before-post synaptic spikes arrival) or inhibitory (i.e.,

depression for pre-before-post synaptic spikes arrival). Tradi-

tionally, 2 artificial synapses are employed, but we are able

to obtain both excitatory and inhibitory behaviours with a

single synapse, which is beneficial from the area and energy

standpoints for large-scale integrations. For instance, the GNR

synapse shape illustrated in Figure 6 (b) exhibits an excitatory

behaviour but by simply changing the biasing gate voltage

Vback from 0.2V to 0.5V, while the other GNR applied

voltages (Vd and Vg) are identical the inhibitory counterpart

is obtained, as depicted in Figure 7.

Apart from STDP, Long-Term Plasticity is a fundamental

synaptic functionality, dominant for how the brain stores in-

formation, which is obtained when applying an identical spike

consecutively. In our experiments we considered the GNR

synapse shape from Figure 6 (h) and applied 50mV input

spikes with an intermission period between the spikes of 1 s.
For each spike, we measured the GNR drain to source current,

which represents the current of the output spike generated
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by the graphene synapse (e.g., Sout
j in Figure 1). The long

lasting potentiation and depression are successfully emulated

for the considered time range with positive and negative

back-gate voltage, respectively, as illustrated in Figure 8.

Note that the proposed GNR synapses exhibit a small

footprint (e.g., 38 nm2), and can operate with low voltages,

resulting in low energy consumption, which is one of the

desired characteristics for large-scale artificial neural network

implementations.

V. CONCLUSIONS

In this paper, we proposed and evaluated non-rectangular

Graphene Nanoribbon (GNR) based artificial synapses. We

demonstrated that by changing the GNR shape and tuning

the back-gate voltage, various synaptic plasticity types can

be achieved and that the same GNR shape can provide both

excitatory and inhibitory synaptic behaviours. We success-

fully emulated two fundamental synapse functionalities: Spike

Timing Dependent Plasticity and Long-Term Plasticity, which

underlie learning and memory in brain. We demonstrated that

the plasticity can be tuned by changing the GNR synapse

shape and topology, thus even though only three STDP types

have been considered the presented GNR synapse design

methodology is generic and can be utilized for the design

of synapsed able to provide other plasticity types. All the

simulations have been performed with biologically plausible

settings, which indicates that GNR based biologically com-

patible synapses can be designed, fabricated, and eventually

interfaced with biological neurons. The proposed synapses

have a small area footprint (order of 10 nm2) and operate at

low operating voltages (order of 100mV), which makes them

strong candidates for the potential implementation of large-

scale energy effective artificial neural networks.
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