
 
 

Delft University of Technology

Holographic wavefield imaging for surface reconstruction and 3d tomography

van Rooij, Jos

DOI
10.4233/uuid:2544d1be-5c42-4eea-b360-9e9273f4f218
Publication date
2020
Document Version
Final published version
Citation (APA)
van Rooij, J. (2020). Holographic wavefield imaging for surface reconstruction and 3d tomography.
[Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:2544d1be-5c42-4eea-
b360-9e9273f4f218

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:2544d1be-5c42-4eea-b360-9e9273f4f218
https://doi.org/10.4233/uuid:2544d1be-5c42-4eea-b360-9e9273f4f218
https://doi.org/10.4233/uuid:2544d1be-5c42-4eea-b360-9e9273f4f218


HOLOGRAPHIC WAVEFIELD IMAGING FOR SURFACE
RECONSTRUCTION AND 3D TOMOGRAPHY





HOLOGRAPHIC WAVEFIELD IMAGING FOR SURFACE
RECONSTRUCTION AND 3D TOMOGRAPHY

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op donderdag 10 september 2020 om 10:00 uur

door

Jos VAN ROOIJ
MSc. Technische Universiteit Delft
geboren te Schiedam, Nederland



Dit proefschrift is goedgekeurd door de

promotor: Prof. dr. ir. L.J. van Vliet
copromotor: Dr. J. Kalkman

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof.dr.ir. L.J. van Vliet, Technische Universiteit Delft
Dr. J. Kalkman, Technische Universiteit Delft

Onafhankelijke leden:
Prof.dr.ir. F.J. Verbeek Universiteit Leiden
Prof.dr.ir. A.J. den Boef VU Amsterdam/ARCNL/ASML
Prof.dr. M. Kujawinska, Warsaw University of Technology
Prof.dr. H.P. Urbach, Technische Universiteit Delft
Prof.dr.ir. G.V. Vdovine, Technische Universiteit Delft

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/


Aan mijn ouders
Marja Admiraal en Jan van Rooij





CONTENTS

1 Introduction 1

1.1 Optical wavefield imaging contrast . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Phase contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Polarization contrast . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Computational imaging. . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Ptychography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Digital holography . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.3 Computed tomography . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.4 Depth resolved imaging . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Optical tomography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Optical projection tomography . . . . . . . . . . . . . . . . . . . 11

1.3.2 Optical diffraction tomography . . . . . . . . . . . . . . . . . . . 11

1.3.3 Zebrafish imaging . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.4 Optical clearing . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Thesis challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4.1 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . 15

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Sub-millimeter depth resolved digital holography 19

2.1 abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Depth from focus digital holography. . . . . . . . . . . . . . . . . 22

2.3.2 Focus metric definition . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Depth from focus precision analysis . . . . . . . . . . . . . . . . . 22

2.4 Digital holography simulations . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.1 Digital holography setup . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.2 Sample preparation and characterization . . . . . . . . . . . . . . 28

2.5.3 Digital holographic reconstruction. . . . . . . . . . . . . . . . . . 29

2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.8 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7



8 CONTENTS

3 Large scale ODT 37
3.1 abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Acquisition of phase projections . . . . . . . . . . . . . . . . . . . 40
3.3.2 Optimizing ODT resolution and field of view. . . . . . . . . . . . . 41
3.3.3 Noise suppression in large scale ODT . . . . . . . . . . . . . . . . 42
3.3.4 Tomographic image reconstruction . . . . . . . . . . . . . . . . . 44
3.3.5 Characterization of resolution . . . . . . . . . . . . . . . . . . . . 45
3.3.6 3D data visualisation. . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.7 Sample preparation: 3 day old zebrafish larva . . . . . . . . . . . . 45
3.3.8 Sample preparation: damaged zebrafish heart . . . . . . . . . . . . 45

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.1 Large scale zebrafish ODT . . . . . . . . . . . . . . . . . . . . . . 46
3.4.2 Large scale zebrafish heart ODT . . . . . . . . . . . . . . . . . . . 48

3.5 Discussion and conclusions. . . . . . . . . . . . . . . . . . . . . . . . . 48
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Polarization contrast ODT 53
4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Polarization contrast imaging . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Parallel-polarization output . . . . . . . . . . . . . . . . . . . . . 56
4.3.2 Cross-polarization output . . . . . . . . . . . . . . . . . . . . . . 57
4.3.3 Polarization tomography. . . . . . . . . . . . . . . . . . . . . . . 58
4.3.4 Polarization tomography simulations . . . . . . . . . . . . . . . . 60

4.4 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4.1 Acquisition of projections . . . . . . . . . . . . . . . . . . . . . . 63
4.4.2 Phase and polarization projections . . . . . . . . . . . . . . . . . 64
4.4.3 Tomographic image reconstruction and visualization . . . . . . . . 64
4.4.4 Noise suppression in polarization sensitive ODT. . . . . . . . . . . 65
4.4.5 Zebrafish sample preparation . . . . . . . . . . . . . . . . . . . . 66

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.6 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6.1 Polarization ODT contrast . . . . . . . . . . . . . . . . . . . . . . 67
4.6.2 Limit on maximum projected δ . . . . . . . . . . . . . . . . . . . 68
4.6.3 Absolute quantification of birefringence . . . . . . . . . . . . . . . 69
4.6.4 Applicability of the uniaxial model . . . . . . . . . . . . . . . . . . 69
4.6.5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Conclusion and outlook 73
5.1 Depth information from 2D data . . . . . . . . . . . . . . . . . . . . . . 74

5.1.1 Applications of depth-resolved digital holography . . . . . . . . . . 75



CONTENTS 9

5.2 Sensitivity and contrast in large scale ODT . . . . . . . . . . . . . . . . . 75
5.2.1 ODT sensitivity improvement . . . . . . . . . . . . . . . . . . . . 75
5.2.2 Applications of large scale high sensitivity ODT . . . . . . . . . . . 79
5.2.3 Polarization contrast . . . . . . . . . . . . . . . . . . . . . . . . . 81

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Summary 85

Samenvatting 87

Acknowledgements 91





1
INTRODUCTION

1



1

2 1. INTRODUCTION

Since the invention of the first camera obscura (pinhole camera), and it’s subsequent
description by Ibn al-Haytham in (AD 965–1040) [1], imaging played an increasingly im-
portant role for human beings in a variety of applications, such as medicine, biology,
astronomy, industry and earth observation. Ibn al -Haytham first thoroughly described
the camera obscura and postulated the idea that light travels along straight lines and that
the object is inverted in the image plane (see Fig. 1.1), laying the foundations for geomet-
ric optics. Centuries later, the idea of optical microscopy was developed in Europe after
the art of grinding lenses was perfected. In the 17th century, Antoni van Leeuwenhoek
used a one-lens microscope to examine biological specimens and was the first to visu-
alize bacteria [1]. Although the camera obscura and the first microscope differ greatly
from modern-day imaging systems in many aspects (components, type of contrast, ca-
pabilities, etc.), all of imaging can be described as creating a correspondence between a
point in the object (based on some form of contrast) and a point in the image, in order to
make a spatial map of a physical property [2]. The method or technique of forming this
correspondence defines the type of imaging method, together with the kind of contrast
that is measured.

Figure 1.1: The concept of the camera obscura as described by Ibn al-Haytham. An inverted image is formed
that can be constructed with a ray diagram. Taken from [1].

Historically, two kinds of developments took place in the advancement of imaging tech-
niques. First of all, the methods improved by which to create an image, such as the
invention of the first optical microscope. For example, the invention of the first optical
microscope enabled humans to see things that the human eye could not see before in
terms of scale. An example of a method by which new kind of contrast could be imaged is
the invention of the phase contrast microscope by Frits Zernike in the 1930’s, which con-
verts phase shifts in light passing through a transparent specimen to brightness changes
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in the image [3].
The second kind of development concerns the methods by which to store the image.

For example, the invention of the CCD camera contributed to a shift away from analog
optical processing to digital processing. Digital imaging led to the start of joint optical-
computational approaches, where optical information is encoded specifically with post-
detection digital processing in mind, e.g. to enhance resolution [4], increase the depth of
field of the imaging system [5][6] or to image the distribution of primary light sources in
3D [7]. In these cases, the method of forming the image is intertwined with the method
of capturing the data.

Such joint optical-computational approaches (now called computational imaging)
eventually went on to have an enormous impact on fields like biology (e.g. super resolu-
tion microscopy [8]) and process control (e.g. nanoscale metrology [9]). Developments
in imaging continue to shape these fields and form an essential element in their success.

1.1. OPTICAL WAVEFIELD IMAGING CONTRAST
Much of today’s imaging is done by probing a sample with a kind of wave, such as acous-
tic waves or light waves. Waves can be mathematically described by, among other things,
their complex amplitude (amplitude and phase of the wave) and polarization [10]; the
amplitude contains information about the energy of the wave, whereas the phase can be
seen as the relative shift of a wave with respect to an identical wave at another point in
time. The polarization takes into account the direction in which the field oscillates per-
pendicular to the propagation direction. A sample generally modulates some or all of
these three wave properties. The image contrast can then be seen as the extent to which
the sample modulates a specific property. In optical imaging however, we can only mea-
sure an intensity distribution of the wavefield from which only the amplitude of the wave
can be directly deduced [11]. Whether or not the intensity in the measurement plane is
affected by the phase or polarization of the wave depends on how the experiment is con-
ducted.

1.1.1. PHASE CONTRAST
When a light wave travels through a pure phase sample, i.e. a sample that only causes
the wavefield to be delayed (see Fig. 1.2), the interaction of a wave with a thin sample
can be described as a multiplication of the wave’s complex amplitude with a phase factor
eiφ where φ is the net phase acquired by the wave due to the sample, and is given by [12]

φ= 2π

λ

∫
n(s)ds, (1.1)

where n(s) is the refractive index of the sample at position s in the sample, λ is the wave-
length of the light and the integral is over the ray path. With regards to measuring the
phase, the following scenario’s may apply:

• The phase sample is imaged in focus onto the detector. In this case the phase
distribution in the input plane does not affect the amplitude in the measurement
plane and the amplitude thus does not contain information about the phase, which
can thus not be retrieved.
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• The wavefield emerging from the sample interferes coherently with a reference
wave. In this case the amplitude in the measurement plane is always modulated
by the phase of the sample wavefield, whether the sample wavefield propagates or
not. Interferometric techniques such as digital holography rely on this principle to
determine the phase.

• After transmission through the sample, the wavefield is propagated over a finite
distance (greater than zero) before arriving at the detector. In this case the phase
distribution in the input plane will affect the amplitude distribution in the mea-
surement plane. The detected amplitude thus encodes the phase. Based on field
or intensity propagation models, the amplitude and phase of the object can be ex-
tracted. This is utilized in ptychography, where the measurement plane is in the
far field.

Figure 1.2: Schematic illustration of a samples that generates phase contrast in transmission. The wave exiting
from the sample is generally at a different point in its oscillation with respect to an unperturbed reference
wave, as is clear when comparing the amplitude of the wave on the red dashed line.

Different methods exist to retrieve the phase of a wave from intensity measurements,
two (ptychography and digital holography) are discussed in more detail later in this in-
troduction.

1.1.2. POLARIZATION CONTRAST
In a birefringent material, the refractive index experienced by a lightwave depends on its
polarization. This concept is illustrated in Fig. 1.3 using the refractive index ellipsoid.
The refractive index ellipsoid is an ellipsoid with three main axes with lengths nx ,ny and
nz . In Fig. 1.3 (a), the wave propagates in the y-z plane, indicated by the long arrow. The
propagating wave can be decomposed into two mutually orthogonal polarization states,
which are also orthogonal to the direction of propagation, indicated by the smaller ar-
rows. These two polarization states are the normal modes associated to the wave. The
refractive index experienced by these states can be found using the index ellipsoid as
follows:

• Draw the ray in the index ellipsoid (given the propagation direction)
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• Draw a plane that contains the origin and is normal to the ray

• The plane intersects with the index ellipsoid to form an ellipse; the length of the
of the principal axes of the ellipsoid give the refraction indices experienced by the
two polarization states.

In a uniaxial material, two of the ellipsoid axes are equal. In case all ellipsoid axes are
equal, the material is optically isotropic. In all other cases the ellipsoid has three distinct
axes and the material is called biaxial [13]. The refractive index ellipsoid of a uniaxial
material is schematically depicted in Fig. 1.3 (b).

Figure 1.3: a) Refractive index ellipsoid of a biaxial material with nx 6= ny 6= nz ; the refractive index that a wave
experiences depends on its polarization; if a wave is a superposition of polarization states, each polarization
component will experience a separate refractive index and travel at a different speed, causing a phase shift
between the components. b) Refractive index ellipsoid of a uniaxial material (taken from [14])

.

The two polarization states in Fig. 1.3 (a) experience a different refractive index. This
leads to a relative phase shift between the two polarization states, causing a change in
the net polarization of the light. This is utilized in polarimetry, where the contrast in the
image is generated by this polarization state [15]. A schematic depiction of a polarimetry
setup is shown in Fig. 1.4 where the sample is placed between two polarizers. Without a
birefringent sample in between, no light would be let through the second polarizer (the
analyzer) if it is oriented orthogonal to the input polarization. A birefringent sample,
however, changes the polarization of the light after the first polarizer, hence leading to
transmission of light and generating a form of polarisation contrast that can be used for
imaging. Jones calculus is often used to describe polarized light propagation. Polarized
light is then described by a Jones vector, whereas linear optical elements are represented
as Jones matrices. The resulting polarization when light crosses an optical element is the
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product of the Jones matrix of the optical element and the Jones vector of the incoming
light. In the case of a cross-polarizer polarimetry setup, this can be represented as [16]

Et = Px ·M ·Px ·E0, (1.2)

where Et is the transmitted field, Px and Py the crossed linear polarizers given by Jones
matrices

Px =
(
1 0
0 0

)
, (1.3)

Py =
(
0 0
0 1

)
, (1.4)

M is a (birefringent) wave retarder and E0 is the incoming field. Under the uniaxial as-
sumption, M is given by

M =
(

cos(θ) sin(θ)
−sin(θ) cos(θ)

)(
e

iδ
2 0

0 e−
iδ
2

)(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)

with δ the relative phase shift between the two polarization components and θ the in-
plane orientation of the optic axis of the fiber with respect to the y, z-plane. The geome-
try is illustrated in Fig. 1.4. In Chapter 4, we will use Jones calculus to show in theory and
experiment that the amplitude, phase and polarisation can be combined using digital
holography in order to reconstruct phase and polarisation contrast in 3D.

Figure 1.4: Cross-polarizer setup; Unpolarized light goes through the first polarizer Px to obtain polarized
light along the vertical direction. After travelling through the birefringent sample, the polarization of the wave
changes. The light then passes through a polarizer Py (the analyzer) to filter out all the light except the hori-
zontally polarized light.



1.2. COMPUTATIONAL IMAGING

1

7

1.2. COMPUTATIONAL IMAGING
In digital imaging, characteristics of an object are directly or indirectly digitally encoded.
One of the main advantages is that digital data can be processed. This can be either
directly on the image (such as the filtering to enhance an image), or this can involve
complex algorithms to form the image from digitally acquired data as is the case in com-
putational imaging. This results in imaging systems with greatly enhanced capabilities
compared to traditional imaging systems [2], for example super resolution microscopy
techniques, or with completely new capabilities that were not possible with conven-
tional imaging in the first place, such as 3D imaging through computed tomography
(CT) or quantitative phase imaging. Often, multiple computational imaging techniques
are combined such as in 3D quantitative phase imaging. In this case, computational
imaging is involved in two stages; firstly in the calculation of the phase and/or ampli-
tude projections and secondly in the tomographic reconstruction. In order to illustrate
the concept of computational imaging in optics, we first discuss some techniques to re-
trieve the phase, and after that the principles of tomographic reconstruction.

1.2.1. PTYCHOGRAPHY
In optical imaging, phase cannot be measured directly due the very high temporal fre-
quency of the optical wavefield. However, the phase can be retrieved from intensity mea-
surements only. An example is ptychography, a phase retrieval method that does not use
a reference wave to interfere with the object scattered wave. Instead, in ptychography
an unknown object is probed by a lightwave at different shifted positions [12]. Given the
translational invariance of the probe and the object, together with known shifts of the
probe with respect to the sample, the phase of the wavefield can be retrieved with an
inverse (iterative) operation. Convergence typically takes place after a few tens of itera-
tions. The benefit of ptychography is that it does not require a reference wave to retrieve
the interference, and as such is less prone to setup instabilities. However, it does require
multiple measurements and an iterative computation scheme.

1.2.2. DIGITAL HOLOGRAPHY
In holography , a known reference wave R is superimposed onto the object wave O (both
from the same coherent light source) and the intensity in the sensor plane is given by
[17]

I (x, y) = ∣∣O(x, y)+R(x, y)
∣∣2

=O∗(x, y)R(x, y)+O(x, y)R∗(x, y)+ ∣∣O(x, y)
∣∣2 + ∣∣R(x, y)

∣∣2 .

From the resulting cross-terms, the amplitude and the phase of the object wave can be
retrieved. Only one of the two cross-terms is needed in order to reconstruct the object
wave, as they contain the same information. If there is no angle between the object
and reference waves, the diffraction orders will overlap, contaminating the desired im-
age. This can be solved by either introducing an angle between the object wave and
the reference wave, or by recording multiple phase-shifted holograms to remove the un-
wanted diffraction orders [18]. Since wave propagation can be described mathemati-
cally using diffraction integrals, knowledge of the complex object field O(ξ,η)(amplitude
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and phase) in the sensor plane enables one to calculate the object field in any arbitrary
plane in three-dimensional free space. For example, assuming paraxial propagation the
object field at a plane x, y at a distance z from the input plane is described by Fresnel
diffraction[19] and can be calculated with

O
(
x, y, z

)= ei kz

iλz

Ï ∞

−∞
O(ξ,η,0)e

i k
2z ((x−ξ)2+(y−η)2)dξdη (1.5)

with O(ξ,η) the field in the input plane, O(x, y, z) the input field propagated over a dis-
tance z to the output plane, and k = 2π

λ . Thus, digital holography allows for numerically
refocussing of the wavefield, which has applications in extended focus imaging [20] and
tomography [21]. Since the complex wavefield is known, digital holography can be used
for phase contrast imaging. The wrapped phase can be calculated as the inverse tangent
of the ratio of the imaginary and real parts of the object wavefield

φ(x, y, z)wrapped = arctan
Im[O(x, y, z)]

Re[O(x, y, z)]
. (1.6)

The unwrapped phase can then be found by applying a phase unwrapping algorithm
which ensures that all appropriate multiples of 2π have been included in φ [22].

Digital holography setups can be broadly categorized in reflection and transmission
setups, of which two examples are shown in Fig. 1.5. Although the underlying math-
ematics describing the interference is completely identical, the difference between the
two setups is in how the object wave is formed. In reflection geometry, a light waves il-
luminates an opaque surface and the reflected beam interferes with the reference wave,
whereas in transmission geometry the light goes through a transparent or weakly scat-
tering sample before interfering with the reference wave. The nature of the information
contained in both object waves is thus completely different. For volumetric imaging,
the transmission setup is most suitable. In chapter 2, we will use the reflection based
geometry to do depth resolved imaging with digital holography. In chapter 3 and 4, we
use the transmission geometry to achieve volumetric phase and polarization contrast
respectively.

1.2.3. COMPUTED TOMOGRAPHY
In order to retrieve 3D object contrast information the probing wave must interact with
the complete object. One way of achieving this, is by sending the wave through the object
and measuring the transmitted wave. An advantage is that the wave has to pass any voxel
in the object only once per projection, increasing the imaging depth. A disadvantage is
that, as mentioned in the previous section, the measured field leads only to a summa-
tion over the projection path of some quantity related to the contrast. The object must
thus be probed from different angles in order to reconstruct the 3D object contrast. Var-
ious reconstruction algorithms exist, such as algebraic reconstruction techniques (ART)
and filtered backprojection (FBP). These concepts are widely used in hospitals for di-
agnostics under the name of computed tomography (CT) with X-ray radiation. Due to
the short wavelength of the X-rays, multiple scattering effects and diffraction can be ne-
glected, and the light going through the sample can be considered as propagating in
straight rays.
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Figure 1.5: Digital holography setup in transmission (a) and reflection (b) geometry. HeNe: Helium-Neon laser,
BE: beam expander, BS: beam splitter, S: sample, M: mirror, C: camera.

Mathematically, the relation between the measured projection and the object f (x, y)
can be expressed with the Radon transform

p(θ, t ) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)δ(x cosθ+ y sinθ− t )dxdy, (1.7)

The function p(θ, t ) is called the sinogram (see Fig. 1.6 (b)), with θ the angle at which the
sample is illuminated and t the coordinate on the detector line (see Fig. 1.6). The delta
function implies a light ray travelling through the object in a straight line at angle θ. In
order to reconstruct the object f (x, y) from measurements p(θ, t ), one can invert the
Radon transform with filtered back projection (FBP). In order to do this, the Fourier slice
theorem is used, which states that the 1D Fourier transform of a projection is equal to a
radial cross-section of the 2D object Fourier transform perpendicular to the projection
direction. The filtered back projection reconstruction is then defined as

f (x, y) =
∫ π

0

∫ ∞

−∞
Pθ( ft )ei 2π ft t | ft |d ft dθ, (1.8)

where Pθ( ft ) is the 1D Fourier transform of p(θ, t ) and | ft | is a filter in the frequency
domain. The FBP reconstruction of an object from the sinogram is schematically illus-
trated in Fig. 1.6 (c). As mentioned, technically, FBP is valid only when the light travels
through the sample in straight rays and diffraction can be neglected; an approximation
that holds well for CT with X-ray radiation due to the high energy of the photons, but
may be violated in optical tomography.
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Figure 1.6: Schematic overview of FBP. (a) Projection geometry , (b) the sinogram of the object, (c) the FBP
reconstruction of the object from the singoram.

1.2.4. DEPTH RESOLVED IMAGING

Another way of performing tomography is in reflection geometry. In this case it is pos-
sible to localize information in the object wave to a single point in the depth direction
without scanning the illumination or rotating the object like in computed tomography.
The simplest of such cases is when the object is a single opaque scattering surface, since
there is only one point in 3D space where the wave interacts with the object. Wave-
length scanning interferometry (WSI) is one such technique to reconstruct the object
surface [23]. WSI is based on the interference signal of a low-coherence (white light)
source. The interference between the reference field and object wave field imaged with
a lens onto the camera changes as a function of the distance of the scanning reference
mirror. The technique can acquire surface topography in full-field at sub-nanometer ax-
ial resolution. Furthermore, it can be applied to surfaces that are complex in terms of
roughness and discontinuities, but has a long acquisition time due to the requirement
of axial scanning. Time-domain OCT is similar to WSI but instead of only measuring
surface topography, it is used to image the inside of turbid media, such as retinal tissue
or skin [24]. Time-domain OCT is based on lateral scanning and the use of a focusing
lens to suppress scattered light while measuring deep in tissue. In Fourier-domain OCT
an axial depth scan is calculated with a Fourier transform of an acquired interference
spectrum, and as such does not require axial scanning, but is in general not full-field
and therefore lateral scanning is necessary (except for swept-source full-field OCT). Dig-
ital holography can be used to reconstruct depth as well, since it allows reconstruction
of the object wavefield in three dimensions. A way to determine the surface location is
to apply a metric to determine the local amount of focus of the intensity of the recon-
structed wavefield, such as the gray-scale variance, and to determine at which depth the
metric peaks [20]. This can be applied in order to do extended depth-of-focus imaging,
since each part of the image can be reconstructed in-focus, even those parts of the object
traditionally outside of the depth-of-field (DOF) of the imaging system. Another appli-
cation can be in surface metrology; both applications will be exploited in this thesis. In
chapter 2, resolving depth of a reflecting surface will be done for the purpose of metrol-
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ogy. In chapter 3 and 4, we use depth reconstruction to achieve extended depth-of-focus
imaging for the purpose of noise suppression in volumetric imaging.

1.3. OPTICAL TOMOGRAPHY
Computed tomography can be done with light in the optical wavelength range. Advan-
tages include the non-ionizing character of the radiation, the high spatial resolution and
the cost-efficiency [25]. There are also drawbacks however, such as diffraction and tissue
scattering. The former typically plays a role when imaging biological specimens in 3D,
whereas the latter limits the attainable imaging depth. Two optical tomographic imaging
modalities will be discussed, namely, optical projection tomography (OPT) and optical
diffraction tomography (ODT).

1.3.1. OPTICAL PROJECTION TOMOGRAPHY

Optical projection tomography is the optical analog of X-ray CT, in the sense that the
object is reconstructed from the projections of transmitted or emitted optical radiation
[26]. In OPT, emission and attenuation contrast can be measured. Emission contrast re-
sults from the excitation of fluorescent markers or intrinsic luminescence in the sample,
which can be used to image different tissue regions or particular types of proteins [27].
Attenuation contrast results from the transmission of light through the sample where the
resulting loss of light due to scattering and absorption provides structural information
about the sample. In OPT, with a wavelength in the order of hundreds of nanometers, the
effect of diffraction plays a role. Refraction and scattering are sample dependent effects
that can be minimized using, for example, optical clearing techniques. Whether or not
diffraction plays a significant role depends on the imaging system parameters. Optical
tomography therefore requires the sample to be within the depth of field (DOF) of the
system, during the rotation of the sample. Since the lateral resolution is proportional to
the numerical aperture of the objective lens, while the depth of field is inversely propor-
tional, there exists a trade-off between sample thickness and resolution. This is schemat-
ically depicted in Fig. 1.7. Moreover, the resolution is not isotropic throughout the sam-
ple, meaning that the point spread function (PSF) is spatially variant. Approaches have
been developed to compensate for these effects. One approach is to correct for the spa-
tially variant PSF by means of a deconvolution method [28]. The 3D image is thus first
reconstructed by means of conventional FBP, and then corrected. Another approach is
to incorporate the PSF in an iterative reconstruction [29]. In this case the FBP recon-
struction functions as the first estimate of the object. Using the measured beam shape a
forward projection is calculated, after which the object is again reconstructed.

1.3.2. OPTICAL DIFFRACTION TOMOGRAPHY

In conventional CT, the light is considered to travel through the sample along straight
lines, which is called the ray approximation.This approximation becomes less accurate
when the wavelength is comparable to the sample size. In biomedical optical imaging for
example, the size of the features of interest is generally in the same order of magnitude
as the wavelength used. Furthermore, the larger the numerical aperture of the objective,
the higher the resolution but the lower the depth of field (DOF), which is illustrated in
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Figure 1.7: Illustration of the concepts of numerical aperture and depth of field; a lower numerical aperture
(NA) and thus larger depth of field (a) implies that objects further away from the focal plane will still appear in
focus, but also results in a larger beam width w0 in-focus and thus poorer resolution than in the case of high
NA (b).

Fig. 1.7. Features outside of the image plane and beyond the depth of field will be im-
aged onto the detector, but with a degree of defocus. When repeating the acquisition for
different angles, either through sample rotation or angular scanning of the illumination
beam, the sinogram will then contain projections where relevant information is imaged
out of focus. This negatively affects the reconstructed image if conventional FBP is used.
Optical diffraction tomography (ODT) incorporates diffraction, using certain approxi-
mations regarding the sample. Most commonly used are the Born approximation, which
asserts that the absolute optical path length difference through the sample is small, and
the Rytov approximation, which asserts that the gradient in optical path length differ-
ence is sufficiently small [30]. In order to reconstruct an image of the refractive index
(RI) distribution of the sample it is necessary that the complex wavefield be recorded for
each projection angle, rather than just the intensity image. This is most commonly done
using digital holography. Similar to FBP, the projection can then be related to the spatial
frequency spectrum of the object of interest, with two differences:

• the Fourier transform is now over the projection of the complex scattered wave
instead of the intensity

• each projection is mapped along arcs in the Fourier space, instead of lines as is the
case in FBP. This is illustrated in Fig. 1.8.

The radius of the arcs in spatial frequency space limits the maximum resolution and is
given by

km = 2πnm

λ
, (1.9)

with nm the refractive index of the background medium. It can be seen that for small
wavelengths λ the radius of the arcs becomes large, approximating the straight lines in
the case of the ray approximation to tomography in Fig. 1.8 a). In practice, whether the
complete arc can be filled depends on the resolution of the imaging system. The smaller
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Figure 1.8: Schematic comparison between the Fourier slice (a) and the Fourier diffraction (b) theorems; the
Fourier slice theorem is used in FBP and assumes an infinitely small wavelength, i.e. straight ray projections.
The real-valued intensity projections are then mapped onto lines in Fourier space. In ODT the finite wave-
length is taken into account, leading the complex projection data to be mapped onto arcs. Adapted from [31]

.

the numerical aperture of the imaging system, the smaller the part of the arc that is filled,
and thus the better it will approximate a straight line. By measuring the complex scat-
tered wave from different directions, the spatial frequency spectrum of the sample can
be filled. The object can then be reconstructed with an inverse Fourier transform. Opti-
cal diffraction tomography has been applied mainly on the scale of single cells (several
tens of microns) [32][33][34], or on larger ( mm size) synthetic samples such as a lens
[35].

1.3.3. ZEBRAFISH IMAGING

In biology and medicine, small animal models are often studied to understand disease
progression and treatment, eventually enabling (improved) treatment for human be-
ings. For this purpose, zebrafish have gained popularity over the past decades, due to
the fact that they grow and reproduce rapidly and are relatively cheap to keep. An ad-
ditional advantage is that they are optically transparent in the embryo and larva stages,
making them especially suitable for studying embryologically and genetically tractable
disease models. Thus, zebrafish models of a wide variety of human diseases have been
developed [36]. Zebrafish research has been conducted with a variety of optical imag-
ing techniques, among which are OPT [37] and OCT [38]. An example of an OPT virtual
cross-section of a zebrafish is shown in Fig. 1.9.

1.3.4. OPTICAL CLEARING

Biological objects are often scattering, even when non absorbing, due to the fact that
they consist of different types of biological materials having different refractive indices.
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Figure 1.9: Example of an OPT virtual cross-section of a zebrafish taken from [39]

.

This causes light to scatter due to refraction and limits the penetration of (visible) light
into the tissue, causing both the imaging resolution and contrast to decrease when going
deeper into the tissue. This is an obstacle for high resolution volumetric imaging. In
order to enable studying larger tissue samples in 3D, optical clearing of tissue is regularly
used. The aim of optical clearing is to reduce the width of the RI distribution in a sample
in order to reduce the amount of scattering. Examples of clearing agents are a mixture
of benzyl alcohol/benzyl benzoate (BABB) with a RI of 1.55, and glycerol (RI of 1.47)
[40]. There are different views on how the clearing mechanism works, for example that
optical clearing agents with higher RI diffuse into tissues, matching the RI’s of tissue
components of extracellular fluid [41].

Figure 1.10: Mouse embryo’s extracted from a physiological saline solution (left) and after optical clearing
(right). Optical clearing reduces scattering and thereby improves light transmission through tissue. Image
taken from [42]

.

1.4. THESIS CHALLENGES
The general theme of this thesis is 3D imaging using the complete optical wavefield. The
first challenge is to reconstruct the depth profile from rough reflecting objects in the
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millimeter range, and to theoretically understand the attainable axial resolution. The
second challenge is to extend the use of ODT from small cellular level biological objects
to large scale biological tissue. In order to achieve this, the object contrast must be as low
as possible in order to measure useful projections, while the imaging method must be
sensitive enough to still detect the contrast. The third challenge is to do multi-contrast
imaging of phase and polarisation contrast.

1.4.1. OUTLINE OF THIS THESIS

CHAPTER 2: DEPTH RESOLVED DIGITAL HOLOGRAPHY

This chapter presents sub-millimeter full-field depth-from-focus digital holography of
surface topography of rough objects. Although depth can be accurately reconstructed
using techniques such as white light or wavelength scanning interferometry, the depth
range of such techniques is generally limited to the order of the size of a wavelength.
Depth resolved imaging has been achieved with digital holography before, however, with
limited axial resolution. First, the axial resolution is described theoretically, and the fea-
sibility of sub-millimeter resolution is demonstrated assuming standard experimental
conditions. Then, it is experimentally demonstrated that an axial resolution of 100 mi-
cron can be achieved.

CHAPTER 3: LARGE SCALE OPTICAL DIFFRACTION TOMOGRAPHY

In this chapter, large-scale optical diffraction tomography is demonstrated on a zebrafish
larva using optical clearing to reduce RI contrast and thus scattering, while obtaining
high RI sensitivity in order to image the remaining contrast. We demonstrate that com-
bining off-axis placement of the sample in combination with a large number of projec-
tions is necessary in order to achieve sufficient RI sensitivity. Finally, we demonstrate
that the technique can be applied to detect the cryo-injured region in a millimeter sized
adult zebrafish heart.

CHAPTER 4: POLARISATION CONTRAST OPTICAL DIFFRACTION TOMOGRAPHY

In this chapter large-scale multi-contrast ODT is experimentally demonstrated with po-
larization and phase-contrast. We show that by probing the sample with a polarized
wave, the phase of the parallel polarized output contains the average phase-contrast,
while the amplitude of the orthogonally polarized output contains the polarization con-
trast. Furthermore, we show that FBP can only be used for reconstruction of the polar-
ization contrast in the case of thin samples or small birefringence. Finally, we propose a
solution to the reconstruction problem in case this condition is not met.

CHAPTER 5: CONCLUSION AND OUTLOOK

In this chapter the main results are summarized and future directions for research are
presented.
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2.1. ABSTRACT

We present sub-millimeter full-field depth from focus digital holography of surface to-
pography of rough objects. For each pixel, the depth of the object is calculated from the
variance of the intensity image over a set of reconstruction distances. First, we theoret-
ically describe the axial resolution of this method and show that sub-millimeter resolu-
tion is feasible. Second, using a digital holography setup without magnifying optics or
lateral scanning we experimentally demonstrate 100 micron axial resolution depth rang-
ing and surface topography imaging. This is significantly better than what has previously
been reported using digital holography and could make this technique useful for rapid
large area characterization of surface topography of objects.

2.2. INTRODUCTION

Surface metrology and absolute distance measurement are essential in many applica-
tions; for example in the field of geosciences, remote sensing aims to reconstruct the sur-
face topology and track changes of the earth surface over time. On a much smaller scale,
optical measurement of surface topography has become vital in many process and qual-
ity control methods [1]. A number of established optical surface imaging techniques are
available, such as Phase Shifting Interferometry (PSI), White Light Interferometry (WLI),
Optical Coherence Tomography (OCT), Digital Holographic Microscopy (DHM), and Fo-
cus Variation Microscopy (FVM ). In PSI a controlled phase shift is applied to the refer-
ence wave while acquiring the full field interference pattern. From a series of images,
acquired at different phase shifts, the phase can be calculated with 2π ambiguity. Since
phase unwrapping is necessary, PSI is problematic with phase discontinuities greater
than 2π [2]. WLI is based on the interference signal of a low coherence (white light)
source. The interference between the reference field and object wavefield imaged with
a lens onto the camera changes as a function of the distance of the scanning reference
mirror. The technique can acquire surface topography in full-field at sub nanometer ax-
ial resolution. Furthermore, in contrast to PSI [3], it can be applied to surfaces that are
complex in terms of roughness and discontinuities, but has a long acquisition time due
to the requirement of axial scanning. Time-domain OCT is similar to WLI but instead of
only measuring surface topography, it is used to image the inside of turbid media such
as retinal tissue or skin. Time-domain OCT is based on lateral scanning and the use of
a focusing lens to suppress scattered light while measuring deep in tissue. In Fourier-
domain OCT an axial depth scan is calculated with a Fourier transform of an acquired
interference spectrum, and as such does not require axial scanning, but is not full-field
and therefore lateral scanning is necessary. Meter-scale OCT depth ranging with 15 mi-
cron axial resolution has recently been achieved [4]. DHM is a technique that does not
use scanning because it reconstructs the complete wavefield. The acquisition time is
therefore short compared to other techniques while having the possibility to attain sub-
nanometer axial resolution. When the reconstructed wavefield is in focus, the phase of
the wavefield is linear to the height of the sample. The reconstructed phase is defined
modulo 2π and therefore the height that can be reconstructed in reflection mode with-
out ambiguity is half a wavelength [5]. This can be overcome using phase unwrapping,
however, this does not work if abrupt steps greater than half a wavelength are present.
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Furthermore, for rough objects the wavefront becomes too disturbed to calculate the
topography. Localization of rough objects with digital holography has also been demon-
strated using a statistical fringe processing technique [6]. In this technique, the object is
illuminated from two angles, a digital hologram is captured for each angle, and the two
wavefronts are reconstructed at a number of reconstruction distances near the object
plane. At each reconstruction plane, a statistical algorithm is applied to the phase dif-
ference map for object localization up to a precision of 250 microns. FVM on the other
hand is not an interferometric technique. It uses axial focus scanning and exploits the
limited depth of focus of the objective lens to extract topology information from focus
variation quantified with a focus metric, provided the surface is optically rough [7]. The
axial precision of this technique depends on the magnification used; a 2.5x and 100x
magnification for example lead to micron and nanometer range precision respectively
[8]. Just like in WLI, the acquisition time is relatively long due to the requirement of axial
scanning. For any of these techniques there exists trade-offs between acquisition time,
sample properties (e.g. roughness and discontinuities), the presence of scanning, depth
range, and axial resolution. Depth from focus digital holography (DFF-DH) attempts
to combine the short acquisition time of digital holography (scanless imaging) with the
ability to reconstruct topographies with large discontinuities or rough surfaces. In con-
trast to ordinary imaging where the focus is varied by changing the position of the lens,
in DH the in-focus image can be calculated at any depth plane. The DFF-DH method is
an image processing approach that estimates the surface location from the optimum of a
focus metric calculated from the digitally reconstructed image. For 3D objects the image
plane depends on the distance of every part of the object to the camera. By reconstruct-
ing the image of the object at different depths, the degree of focus of a particular region
in the image reconstruction (calculated with a focus metric) encodes the depth of the
object [9]. Because one can reconstruct the complete wavefield at any depth from a sin-
gle digitally captured hologram, this method does not need lateral or axial scanning and
has no fundamental limit regarding the depth range that can be measured other than
the coherence length of the light source. DFF was first used within the context of digital
holography by Ma et al. (2004) [10], who recovered object depth for every part of the ob-
ject in this way from a digital hologram. A similar approach was also used for extended
focus imaging by McElhinney et al. (2008) [11]. While Tachiki et al. (2008) measured
an axial accuracy of a centimeter [9], the theoretical understanding of the axial resolu-
tion and its fundamental limits remains largely unknown. In this paper we show how
the depth resolution of DFF-DH depends on sample properties and on experimental
setup parameters. Furthermore, we show experimentally that the precision in the axial
direction can be brought down to the 100 micron range in a basic DH setup without any
magnification. In the next section, we first give an overview of the basic principles of
DFF-DH and a theoretical framework to analyze the precision. Subsequently, we com-
pare our framework with simulations where we show that sub-mm resolution is possible.
In the results section we experimentally demonstrate sub-mm axial in DFF-DH.
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2.3. THEORY

2.3.1. DEPTH FROM FOCUS DIGITAL HOLOGRAPHY
In digital holography the image is numerically calculated from an interferogram, instead
of it being formed optically with a lens. For an explanation of the basic principles of dig-
ital holography, we refer the reader to Schnars and Jueptner (2005) [12]. Digital holog-
raphy suffers from a limited depth of field just like most other imaging systems. If the
reference wave R(x, y) is a plane wave, as we will assume throughout this paper, then
the reconstruction distance zr equals the recording distance z0 and the reconstructed
image appears in focus [13]. Reconstructing the image at other distances than z0 leads
to defocus blurring of the image due to the limited depth of field. The degree of focus in
the image depends on the reconstruction distance and therefore encodes the distance
of the object to the sensor. Since the degree of focus is at its’ maximum when zr =z0, one
needs to quantify the degree of focus with a focus metric and find the optimum value
as a function of the reconstruction distance. For each pixel in the object image we can
repeat this process and calculate its’ distance to the sensor plane z0 to obtain a height
map of the object. The degree of focus in the image as a function of reconstruction dis-
tance zr depends on the numerical aperture (NA) of the imaging system. In DH, the NA
is inversely proportional to the recording distance and proportional to the dimensions
of the sensor.

2.3.2. FOCUS METRIC DEFINITION
The degree of focus is quantified using image based metrics. These metrics are calcu-
lated from the image and have their maximum when the image is in focus, and decrease
rapidly when the image is out of focus. Different focus metrics exist, see for example
Tian et al. (2007) for an overview [14]. Image variance is a focus metric that is simple to
calculate, and has been proven to be a good depth measure [15]. The variance of a digital
image I of n ×m pixels is given by:

var(I ) = 1

N M

N∑
i=1

M∑
j=1

(I (i , j )− I )2 , (2.1)

where I is the mean intensity of the image. In order to derive an analytic model for the
variance as a function of reconstruction distance, we will use a continuous form which
is given by

var(I ) =
∫ ∫

(I (x, y)−µ)2dx dy , (2.2)

where µ is the mean of the image and is given by

µ=
∫ ∫

I (x, y)dx dy . (2.3)

2.3.3. DEPTH FROM FOCUS PRECISION ANALYSIS
To obtain a theoretical description, we neglect the details of surface scattering processes,
following the assumption of Nikolaev et al. (2016) in their linear theory approach to FVM
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[7], and consider the object surface to be a perfect plane with a reflection coefficient that
has a random distribution. The object will be considered to have a reflection coefficient
that has a “white” frequency distribution, i.e., all spatial frequencies have equal power.
Due to the linearity of the digital holographic imaging process with respect to the ob-
ject field, the reconstructed object field is described by propagation of every spatial fre-
quency of the object into the image space. For each spatial frequency in the object, the
focus curve is periodic due to the Talbot effect, and we will term such a focus curve a Tal-
bot curve. In our specific case, it turns out that the focus curve for the object is a sum of
the individual Talbot curves for all spatial frequencies. In order to keep the expressions
concise we consider a one dimensional input, although a generalization to two dimen-
sions is straightforward. We first derive an expression for the image of a reflecting planar
object with a single spatial frequency and random phase at recording distance z0 as in-
put to the holographic imaging system, which we reconstruct at reconstruction distance
zr . Neglecting the finite extent of the aperture, we consider an object described by the
field reflection

tn = 1

2
[1+m cos(2πnξ/L+φn)] , (2.4)

where φn is a random phase term, n/L is the spatial frequency and m is an amplitude
factor and ξ is the lateral spatial coordinate in the input plane. In principle n can be any
number, although in practice it is an integer value due to discrete sampling of the de-
tector. The reconstructed holographic wavefield is calculated by propagating the input
wavefield to the hologram plane, and then to the reconstruction plane, using the transfer
function Fresnel diffraction method approach according to the treatment of Goodman
(1996) [16]. The resulting reconstructed wavefield is

Un(ξ, zr ) =
2+2me−

iπλn2(z0+zr )

L2 cos
(

2πnξ
L +φn

)
4N

, (2.5)

where N is the total number of spatial frequencies captured by the imaging system. The
intensity of the reconstructed wavefront is then

In(ξ, zr ) = 1

4N 2

(
m cos

(
2πnξ

L
+φn

)
+2cos

(
πλn2(z0 + zr )

L2

))
m cos

(
2πnξ

L
+φn

)
+ 1

4N 2 .

(2.6)

This reduces to |tn |2 for reconstruction distances

zr =−z0 + 2L2k

λ
, (2.7)

which means that the input grating is replicated at fixed distances for an integer value of
k, also called "self-imaging". This occurs for periodic inputs in general and is a manifes-
tation of the Talbot effect [16] appearing in holographic reconstruction. The variance for
one spatial frequency as a function of reconstruction distance is subsequently found by
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calculating the integral in one dimension ((2.2)) over the integration range 0 to L, which
yields

varn(zr ) = a +b cos

(
2πλn2(z0 + zr )

L2

)
, (2.8)

where m is assumed to be equal to one, and

a = 9L
(
2L2 −4L+3

)
128N 4 , (2.9)

and

b = L

16N 4 . (2.10)

For every spatial frequency n/L the variance is thus periodic as a function of reconstruc-
tion distance zr . For this reason we will refer to such a curve as a Talbot curve. We now
assume that the object is composed of many spatial frequencies. Since in an experimen-
tal setting the spatial frequencies are discretely sampled, we describe the reflection of
the object as

tN = 1

N

N∑
n=1

1

2
[1+m cos(2πnξ/L+φn)] . (2.11)

According to the superposition principle, the reconstructed field intensity is

IN (ξ, zr ) =
∣∣∣∣∣ N∑
n=1

Un(ξ, zr )

∣∣∣∣∣
2

(2.12)

=
N∑

n=1
|Un |2 +

N∑
n=1

N∑
m=1

UnU∗
m(1−δn,m) . (2.13)

Due to the random phase term φn , the first term in (2.13) and the last term are indepen-
dent random variables. Using the property that var(a + b) = var(a)+ var(b) if a and b
are independent random variables, we can write the variance of the reconstructed field
intensity as

var(IN ) =
N∑

n=1
var

(|Un |2
)+var

(
N∑

n=1

N∑
m=1

UnU∗
m(1−δn,m)

)
. (2.14)

We then have:
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N∑
n=1

N∑
m=1

UnU∗
m(1−δn,m) =

1

4N 2

N∑
n=1

N∑
m=1

cos

(
πλ(n2 −m2)(z0 + zr )

L2

)
cos

(
2πnξ

L
+φn

)
·

cos

(
2πmξ

L
+φm

)
(1−δn,m)+

N −1

2N 2

N∑
n=1

cos

(
πλn2(z0 + zr )

L2

)
cos

(
2πnξ

L
+φn

)
+ N (N −1)

4N 2 . (2.15)

Using the independence property for the variance, we obtain for the variance of this
expression

var(In) = var

(
N∑

n=1

N∑
m=1

UnU∗
m(1−δn,m)

)
=

var

(
N∑

n=1

N∑
m=1

cos

(
πλ(n2 −m2)(z0 + zr )

L2

)
cos

(
2πnξ

L
+φn

)
cos

(
2πmξ

L
+φm

)
(1−δn,m)

2N 2

)
+

var

(
N −1

2N 2

N∑
n=1

cos

(
πλn2(z0 + zr )

L2

)
cos

(
2πnξ

L
+φn

))
. (2.16)

The first term is equal to

var = L

32N 4

N∑
n=1

N∑
m=1

cos

(
2πλ(n2 −m2)(z0 + zr )

L2

)
+1. (2.17)

The last term is equal to

var = L(N −1)2

16N 4

N∑
n=1

(
cos

(
2πλn2(z0 + zr )

L2

)
+1

)
. (2.18)

From an analogy with Fourier analysis we can observe that the peak width of σ2(IN )
is limited by the higher spatial frequencies caused by the n2 terms in the argument of
the cosine, and not by the difference terms n2 −m2 which correspond to lower spatial
frequencies. We thus approximate the variance curve as a linear sum of the Talbot-curves
resulting from the n2/L2 frequencies in the variance curve:

varN (zr ) = A+
N∑

n=1
B cos

(
2πλn2(z0 + zr )

L2

)
, (2.19)

where

A = N

(
a + L(N −1)2 +L

16N 4

)
, (2.20)
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and

B = L(N −1)2 +L

16N 4 . (2.21)

Equation 2.19 provides a physical understanding of the width of the focus curve. The
sum of cosines gives rise to a peak at zr = −z0, the virtual image plane. For larger N ,
either because of a larger numerical aperture or a larger number of contributing spatial
frequencies in the input, the peak width becomes smaller. The result in (2.19) gives a
limit for the precision that can be achieved by depth from focus digital holography in
terms of the peak width. In Figure 2.1, the focus curve of (2.19), for z0=70.9 mm (real
image), λ=633 nm, L=6.7 mm and N =1024, is plotted as a function of reconstruction
distance zr . In the preceding analysis it has been assumed that the object has an ideal
flat power spectrum, and the phases φn for spatial frequencies n/L were assumed to
be statistically independent (ideal white noise input). For a real object the spatial fre-
quency distribution of the object may be less ideal leading to less terms contributing to
the summation in 2.19 and therefore resulting in a wider peak. Finally, the summation is
limited by the numerical aperture and sampling of the imaging system. The numerical
aperture of the system limits the highest spatial frequency to reach the sensor, while the
pixel pitch of the sensor limits the highest spatial frequency that can be sampled prop-
erly. At the critical recording distance, the maximum amount of spatial frequencies is
imaged without aliasing. This distance is given by zcr i t = Npi x∆ξ

2/λ where Npi x is the
number of sensor pixels, ∆ξ is the pixel pitch and λ the recording wavelength. For an
amplitude grating with spatial frequency n/L, the angle under which the first diffraction
order propagates from the normal is

sin(θ) = λn

L
. (2.22)

The numerical aperture is determined by the sensor dimension Npi x∆ξ and recording
distance z0 and limits the maximum diffraction angle θmax that can be imaged by the
system, according to

θmax = tan−1
(

Npi x∆ξ

2z0

)
, (2.23)

which follows from the imaging geometry.
Combining the last two equations and solving for the maximum spatial frequency n/L =
Nmax /L, we find that

Nmax

L
= sin

(
tan−1

(
Npi x∆ξ

2z0

))
1

λ
. (2.24)

Using the critical sampling distance z0 = zcr i t this becomes

Nmax

L
= 1

2∆ξ
√

λ2

4∆ξ2 +1
≈ 1

2∆ξ
. (2.25)

Hence, the summation in (2.19) is limited to the term with the maximum spatial fre-
quency Nmax /L that is imaged with the system. At the critical sampling distance, this is
equal to the Nyquist frequency and in the summation of (2.19) limits the DFF-DH mini-
mum peak width.
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2.4. DIGITAL HOLOGRAPHY SIMULATIONS

We validate the analytic focus curve model of (2.19) as a sum of Talbot curves by compar-
ing it to the well-known method of Fresnel diffraction calculations, namely the transfer
function method, . We implemented the transfer function methodcode in MATLAB 2016,
we refer the reader to the work of Voelz (2011) [17] for more information. The input im-
age in the simulation is given by (2.11), where the input object support L is 200 pixels,
the number of pixels in the recording plane is N =1000, the number of unique spatial fre-
quencies in the input image is L/2−1, the wavelength λ=633 nm, the pixelsize ∆ξ=6.45
micrometer and the recording distance z0 at N∆ξ2/λ (critical recording distance). These
are parameters used in a typical experimental digital holography realization.

The digital hologram is calculated and the real image is reconstructed in 400 steps
over the distance z0 - 2 mm to z0 + 2 mm. The variance of the reconstructed image is
calculated at each step. The variance as a function of reconstruction distance is shown
in Figure 2.1.

Figure 2.1: Comparison between the focus (variance) curves resulting from the Fresnel diffraction simulation
(blue) and the analytic model Eq. 2.19 (red). The difference between the two calculations is due to the finite
aperture used in the simulation.

Since there is amplitude scaling in the diffraction calculation that is not present in
the analytic model, the simulated focus curve is scaled along the vertical axis to match
the peak variance of the analytic model. The simulated focus curve describes the ana-
lytic model of (2.19) well around the center zr = z0, and deviates towards the edges due
to finite aperture effects that occur in the simulation, but are not accounted for in the
analytic model. Both approaches lead to the same focus curve peak-width of approx-
imately 450 microns, indicating the possibility of sub-millimeter axial resolution with
DFF-DH without magnification.
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2.5. MATERIALS AND METHODS

2.5.1. DIGITAL HOLOGRAPHY SETUP

The digital holography setup is shown in Fig. 2.2 and consists of a Michelson interfer-
ometer with the light illuminating the object normal to the surface. The light source is
a HeNe laser with a wavelength of 633 nm and an output power in the order of 3 mW.
Two lenses (Thorlabs, LD2568 and LA1979) are used to expand and collimate the illu-
minating laser beam respectively to a width (FWHM) of approximately 15 mm, besides
that no lenses or objectives are used in the imaging process. A shearing interferometer
(Thorlabs, SI254) is used to assure proper collimation of the reference beam, so that the
distance in reconstruction (virtual) space equals the physical recording distance. The
object is placed approximately 70 mm away from the sensor plane. The mirror in the
reference arm is mounted onto a piezoelectric transducer controlled by a computer for
phase-shifting the digital hologram, where we capture four holograms with a phase shift
of π/2 of the reference beam between each subsequent hologram. From a linear com-
bination of these holograms a complex hologram is formed where the zeroth and out
of focus conjugate order are removed[18]. In this way we can use the full image plane
and maximize the lateral resolution in the reconstructed image. We use a pellicle beam
splitter (Thorlabs, BP233) in order to avoid ghost-images in the reconstructions (that
resulted in degraded reconstructions in earlier research on DFF-DH [9]). Due to the sen-
sitivity of the pellicle beamsplitter membrane to vibrations from sound or airflow, the
setup is enclosed in a box in order to minimize movement of the membrane. A variable
neutral density filter is placed between the beamsplitter and the piezo mounted mirror
and right after the laser aperture in order to control saturation of the camera and the
ratio of the intensity between the reference and the object beam, which is close to 1. The
digital holograms are captured by a CCD camera (ORCA ER, Hamamatsu) with 1344 ×
1024 square pixels with a pixel size of 6.45 micrometer and acquisition speed of approx-
imately 10 frames a second.

2.5.2. SAMPLE PREPARATION AND CHARACTERIZATION

We use a brass reflector with four different step heights (squares) separated at heights
approximately 200 microns apart as a test target to demonstrate sub-mm axial resolu-
tion. The sample surface is made rough by briefly sandblasting the object. The total
area of the square sample is 25 mm2. For a reference measurement of the surface height
topology we use a white light interferometer (WLI, Bruker ContourGT-K). We used the
smallest magnification available on the WLI, which was 2.5×. Due to the field of view
(2 mm) being significantly smaller than the lateral sample dimensions (5 mm), stitching
is necessary which is done automatically with the accompanied V i si on software. Tilt is
corrected for by fitting a plane to one of the four surfaces and correcting the entire profile
for this tilt. The acquisition time for the full surface at the lowest magnification is in the
order of 30 min. The roughness parameters Sa (average roughness) and Sq (root mean
square roughness) are measured with WLI for the sample and are given by 3.6 and 11.6
micrometer, respectively.
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Figure 2.2: Michelson interferometer setup for acquiring the digital holograms. HeNe=HeNe laser (633 nm),
BS=pellicle beam-splitter, C=CCD camera (1344x1024 pixels), M=piezo mounted mirror and O=object, L=lens,
ND=variable neutral density filter.

2.5.3. DIGITAL HOLOGRAPHIC RECONSTRUCTION

Even though the lateral sample dimensions are smaller than the sensor and thus the
transfer function approach can be used, there is the possibility of the sample holder,
which extends to beyond the sensor plane, appearing in the reconstructed image. For
this reason reconstruction of the digital holograms was performed using the S-FFT method
[19] since this does not restrict the reconstruction plane to the dimensions of the sensor.
Since noise appears as high frequency information in the reconstructed images, we ap-
ply a spatial Gaussian filter to each reconstructed image. We found that a standard devi-
ationσ of approximately 0.7 pixels gave the most accurate reconstructions. We calculate
the focus metric per pixel for each reconstruction distance by taking a window of N by
N pixels around the center pixel. A trade-off exists in DFF-DH between the axial resolu-
tion and the window size and thus the lateral resolution [9]. We used a window size of 61
by 61 pixels (0.2 mm2) and calculated the variance of the windowed image over recon-
struction distances zr = z0 - 2 mm to z0 + 2 mm. The reconstruction distance where the
variance peaks for a particular pixel is our estimate for the distance from the recording
plane to the object pixel. Finally, we corrected for surface tilt of the entire object with
respect to the recording plane by fitting a plane to two diagonally opposite surfaces and
calculating the average tilt. This tilt is subtracted from the actual distances. The time for
the algorithm to calculate a complete depth image on a quad core computer is around
half a minute.

2.6. RESULTS

Figure 2.3 a) and b) show the reconstructed DH intensity images at reconstruction dis-
tances zr = 69.8 and zr = 70.4 mm respectively. At zr = 69.8 mm, the lower right quadrant
is in focus and shows the fine details of the surface, whereas the upper left quadrant has
a blurred appearance because it is out of focus. At zr = 70.4 mm the opposite occurs.
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Figure 2.3: Reconstructed intensity image of the brass reflector object at zr = 69.8 (a) and zr = 70.4 mm (b).
For (a) the lower right square is in focus, for (b) the upper left square is in focus. c) DFF curves obtained from
the experimental data at the points indicated in (a) at different planes.

Figure 2.3 (c) shows focus metric curves obtained from the experimental data at the
locations indicated in Fig. 2.3 (a). The experimental focus curve has a full width at half
maximum of approximately 750 microns, which is significantly broader than the width
of the simulated curve in Fig. 2.1. We attribute this to the fact that the frequency con-
tent of the object is limited and the object plane was slightly tilted with respect to the
sensor plane. In that sense, the focus curve in Fig. 2.1 represents a limiting case with
perfect parallel orientation and uniform spatial frequency power spectrum in the input
image. The spatial frequency content of the experimental input is estimated by taking
the Fourier transform of the optimal in focus intensity image. The logarithm of the power
spectrum in Fig. 2.5 shows that indeed the power spectrum is not flat, but instead shows
a significant drop off in power for high spatial frequencies. Based on the optimum of the
focus curves, the surface is reconstructed as shown in Fig. 2.4.

To obtain an estimate of the accuracy of our approach we determined the distribu-
tion of reconstructed depth values for all pixels in the image. The result is shown in
Fig. 2.6 as a histogram together with a comparison of the distribution obtained with
the white light interferometer. Good agreement is obtained with the DFF-DH method
shown here. Assuming that the WLI data represents the actual height distribution of the
object we estimate that from the width of DFF-DH histogram our method has a depth
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resolution of approximately 100 microns.

Figure 2.4: (a) Reconstructed DFF-DH depth map of the brass reflector object (b) and top view.

2.7. DISCUSSION
We presented sub-millimeter DFF-DH imaging of surface topography without the use
of magnifying or lateral scanning optics. In the theoretical analysis presented in this
paper it is assumed that all spatial frequencies in the object surface are equally present
with randomly distributed phases. This results in a lower limit of the depth resolution of
DFF-DH systems in terms of the peak width of the focus curve.
The focus curves obtained from experimental data do not show the oscillating behavior
in the sidelobes of the curve. Moreover, the experimental focus curve was significantly
broader than the theoretical limit. Both effects are likely caused by the fact that the ob-
ject plane was not perfectly parallel to the camera, but instead is slightly tilted, and the
spatial frequency spectrum of the object does not correspond to a white noise signal.

On the other hand, the optimal depth is determined from the maximum value of the
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Figure 2.5: Cross section along the vertical axis of the logarithm of the object image power spectrum when
reconstructed in focus along x=4 mm in Fig. 2.3.

Figure 2.6: Histogram of the distribution of depth values from the DFF-DH reconstruction of Figure 2.4 (blue),
together with the depth distribution of the reference WLI measurement (red).
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peak which is much better defined than the peak width. Since the DFF-DH method in
this paper relies only on finding the maximum, this partially compensates for the broad-
ening of the focus curve in the experiment; the measured width is approximately 750
microns, while the DFF depth resolution is around 100 microns. As a result the surface
height estimation precision is significantly below the width of the focus curves. Although
using the maximum value of the focus metric to estimate the surface position has a phys-
ical basis, it does not utilize other information of the focus curve, such as the peak width
and shape, to improve the depth estimate. Fitting a polynomial or point spread function
curve, as applied in FVM ([8], could further improve the axial resolution.

While this paper mainly was dedicated to analyzing the axial resolution of DFF-DH,
lateral resolution also plays an important role in applications. DFF-DH is based on an
area of pixels to calculate the focus metric at the center pixel, thus smoothing the depth
map in the transversal direction. In principle there is a relation between the number of
pixels needed for obtaining a depth estimate and the axial precision, thereby resulting
in an intrinsic trade-off between axial and lateral resolution. We observed that a window
size of 61 pixels gave good results. Using more sophisticated methods, mentioned earlier
to estimate the depth, will likely enable the use of smaller window sizes.

In our configuration, four digital holograms were acquired for phase shifting digital
holography. This was to make full use of the image plane, however this is not a strict
requirement. A setup with a larger sensor can produce equivalent results from a single
hologram capture if the reconstructed diffraction orders are properly separated spatially
in the reconstruction plane.

The results in this work were obtained with a basic form of DFF-DH, without using
additional magnifying optics. Magnifying optics can be incorporated into the DFF-DH
system in order to improve lateral and axial resolution, which goes at the expense of the
field of view. Since in digital holography lateral resolution depends also on the aperture
of the sensor and indirectly on the pixel size, resolution in DFF-DH also can be improved
without magnifying optics by using a larger sensor while retaining the field of view. We
envision this technique can be useful for characterizing objects in art, process control
and computer vision, or in general when absolute distance measurements are needed in
a very short acquisition time.

2.8. CONCLUSIONS

We demonstrated that the DFF curve as a function of reconstruction depth can be ap-
proximated by the sum of Talbot curves for every spatial frequency. Analytic theory and
numerical simulation indicated that the axial precision in terms of the peak width can
be brought down to well below the millimeter range using a basic digital holography
setup without scanning, imaging optics or magnification. Sub-millimeter depth reso-
lution was experimentally demonstrated in a DFF-DH set-up using a rough reflecting
step-profile where our method was able to discriminate between layers that were ap-
proximately 200 micrometer apart. This is approximately 100 times better than what
was previously demonstrated in DFF-DH [9].



2

34 REFERENCES

REFERENCES
[1] R. Leach, Optical Measurement of Surface Topography (Springer Berlin Heidelberg,

2011).

[2] P. de Groot, Phase shifting interferometry, in Optical Measurement of Surface Topog-
raphy, edited by R. Leach (Springer, Heidelberg, 2011) Chap. 8, pp. 167–186.

[3] P. de Groot, Coherence scanning interferometry, in Optical Measurement of Surface
Topography, edited by R. Leach (Springer, Heidelberg, 2011) Chap. 9, pp. 187–208.

[4] Z. Wang, B. Potsaid, L. Chen, C. Doerr, H.-C. Lee, T. Nielson, V. Jayaraman, A. E.
Cable, E. Swanson, and J. G. Fujimoto, Cubic meter volume optical coherence to-
mography, Optica 3, 1496 (2016).

[5] J. K. Tristan Colomb, Digital holographic microscopy, in Optical Measurement of
Surface Topography, edited by R. Leach (Springer, Heidelberg, 2011) Chap. 10, pp.
209–235.

[6] T. J. T. Abregana and P. F. Almoro, Object localization using the statistical behavior of
volume speckle fields, Optical Engineering 55, 121720 (2016).

[7] N. Nikolaev, J. Petzing, and J. Coupland, Focus variation microscope: linear theory
and surface tilt sensitivity, Appl. Opt. 55, 3555 (2016).

[8] F. Helmli, Focus variation instruments, in Optical Measurement of Surface Topogra-
phy, edited by R. Leach (Springer, Heidelberg, 2011) Chap. 7, pp. 131–166.

[9] M. L. Tachiki, M. Itoh, and T. Yatagai, Simultaneous depth determination of multiple
objects by focus analysis in digital holography, Appl. Opt. 47, D144 (2008).

[10] L. Ma, H. Wang, Y. Li, and H. Jin, Numerical reconstruction of digital holograms
for three-dimensional shape measurement, Journal of Optics A: Pure and Applied
Optics 6, 396.

[11] C. P. McElhinney, B. M. Hennelly, and T. J. Naughton, Extended focused imaging
for digital holograms of macroscopic three-dimensional objects, Appl. Opt. 47, D71
(2008).

[12] U. Schnars and W. Jueptner, Digital holography, in Digital Holography: Digital
Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer
Berlin Heidelberg, Berlin, Heidelberg, 2005) pp. 41–69.

[13] J. chang Li and P. Picart, Digital holography, in Digital Holography (John Wiley Sons,
Inc., 2013) pp. 165–236.

[14] Y. Tian, K. Shieh, and C. F. Wildsoet, Performance of focus measures in the presence
of nondefocus aberrations, J. Opt. Soc. Am. A 24, B165 (2007).

[15] M. Subbarao and G. Surya, Depth from defocus: A spatial domain approach, Inter-
national Journal of Computer Vision 13, 271 (1994).



REFERENCES

2

35

[16] J. Goodman, Introduction to Fourier Optics, 2nd ed. (MaGraw-Hill, 1996).

[17] J. Breckinridge and D. Voelz, Computational Fourier Optics: A MATLAB Tutorial,
SPIE Press monograph.

[18] I. Yamaguchi and T. Zhang, Phase-shifting digital holography, Opt. Lett. 22, 1268
(1997).

[19] N. Verrier and M. Atlan, Off-axis digital hologram reconstruction: some practical
considerations, Appl. Opt. 50, H136 (2011).





3
LARGE SCALE ODT

37



3

38 3. LARGE SCALE ODT

3.1. ABSTRACT

In this work we demonstrate large scale high sensitivity optical diffraction tomography
(ODT) of zebrafish. We make this possible by three improvements. First, we obtain a
large field of view while still maintaining a high resolution by using a high magnification
over numerical aperture ratio digital holography set-up. With the inclusion of phase
shifting we operate close to the optimum magnification over numerical aperture ratio.
Second, we decrease the noise in the reconstructed images by implementing off-axis
sample placement and numerical focus tracking in combination with the acquisition of a
large number of projections. Although both techniques lead to an increase in sensitivity
independently, we show that combining them is necessary in order to make optimal use
of the potential gain offered by each respective method and obtain a refractive index
(RI) sensitivity of 8 ·10−5. Third, we optimize the optical clearing procedure to prevent
scattering and refraction to occur. We demonstrate our technique by imaging a zebrafish
larva over 13 mm3 field of view with 4 micrometer resolution. Finally, we demonstrate
a clinical application of our technique by imaging an entire adult cryoinjured zebrafish
heart.

3.2. INTRODUCTION

Three dimensional (3D) optical imaging is used in many areas of biology and medicine
as is evidenced by the multitude of 3D imaging modalities that have been developed.
Advantages of such techniques include the capability of virtual instead of physical sec-
tioning and the possibility of quantitative 3D analysis in the original geometry. However,
for many 3D imaging techniques the measurement method is not sensitive to an inher-
ent contrast in the sample. Instead, imaging is performed with the relevant features in
the sample labeled, which requires extra sample preparation and biases the detection to
only the labelled structures. For example, in the study of heart regeneration in zebrafish
after cryoinjury, clinicians must do sectioning of the sample, fixation, staining and finally
manually estimate the injured volume relative to that of the total heart[1]. Therefore, to
image label free in 3D there has been an increased interest in recent years in 3D imaging
of unlabeled samples making use of intrinsic contrast present in the sample[2][3][4]. One
such contrast is the refractive index (RI) variation in the sample, which is often feature
specific and provides information about the global structure in the sample (in contrast
to molecular specific techniques). Optical diffraction tomography (ODT), sometimes
also referred to as phase tomography, images the RI contrast by measuring the complex
wavefront of the transmitted object wave. and is used to make quantitative images of the
3-D RI distribution of transparent samples. This is done by acquiring phase images of a
sample from different angles, and combining these in a 3D reconstruction of the sample
by using a back propagation algorithm.

Closely related to ODT is optical projection tomography (OPT), an established method
to reconstruct 3-D fluorescence emission or attenuation in a sample. Although tomo-
graphic acquisition and reconstruction have common ground in both techniques, the
two fields have been operating independently in some important respects. For example,
in both OPT and ODT research has focused on dealing with diffraction from out of focus
planes. Since OPT and ODT acquire light intensity and complex wave field information,
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respectively, the ways in which diffraction is tackled are completely different. In OPT
diffraction can be corrected through image deconvolution[5] or point-spread function
based reconstruction [6]. This is quite different from ODT where diffraction is accounted
for in the reconstruction algorithm[7] or where the wavefield is digitally refocused [8].

Another example is the striking difference in the size scale at which ODT is applied
compared to that in OPT. It is common in the field of OPT to image both small scale
samples like cells[9] as well as large scale biological samples, like zebrafish (adult and
embryo’s)[10][11] or mouse brains [12], and OPT is considered especially useful in such
millimeter scale samples [13]. ODT of biological tissue is mainly focused on small scale
imaging and applied to samples in the tens of microns size range, such as cells[14][15]
and (plant) fibers [16]. This is caused by the fact that on the one hand ODT relies on
RI differences inside the sample to be present for image formation. On the other hand
ODT requires that RI differences are sufficiently small in order to prevent a change in
direction of the rays passing through the object or severe aberrations of the wavefront
to occur, both which inhibit accurate reconstruction of the object wavefield. In larger
samples, even small changes in refraction can cause a major lateral displacement of the
rays hitting the detector or cause large wavefront aberrations due to the larger optical
path length through the object. Hence, even for small RI differences, deformation of
the phase projection occurs, with a resulting poor imaging reconstruction as a result.
Consequently, for large scale ODT of biological tissues, the RI variation must be small
enough in order to minimize these effects, but the imaging method must be sensitive
enough to still detect this RI variation in the wavefront and allow for sufficient contrast
in the reconstructed image. Since this combination is challenging to obtain it is not
surprising that attention in ODT research has mainly focused on small samples which
are inherently transparent, like biological cells or (plant) fibers, that are in the range of
10−30 µm in diameter, and thus do not cause significant beam deviation and wavefront
aberrations when light propagates through the sample.

A recent exception is ODT applied to a large scale synthetic lens object with high
phase sensitivity [17]. However, in this case the surrounding index matching liquid had
to be very precisely matched to the RI of the lens. This kind of precise index match-
ing only works for homogeneous samples. An alternative is to use optical clearing of the
sample and image the sample in the clearing liquid. Optical clearing aims to homogenize
the RI in a sample in order to increase imaging depth and image quality [18]. However,
optical clearing causes RI differences to be (very) small, necessitating high sensitivity
and therefore a low noise level in the reconstruction to obtain high quality images. Al-
though the issues of deformation of the projections (due to ray displacement) and severe
aberrations of the wavefront could then be solved, the challenge is then to accurately im-
age the remaining RI contrast accurately.

In this paper, we demonstrate, to our knowledge for the first time, that high contrast
and high resolution 3D refractive imaging of large scale biological samples can be done
with phase tomography without extensive index matching procedures using the follow-
ing steps:

• large scale high resolution imaging using a large image sensor and phase shifting
digital holography to make full use of the spatial frequency bandwidth of the sys-
tem.
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• high sensitivity RI detection through off-axis sample placement combined, with
numerical focus tracking during rotation, and acquisition of a large number of
projections.

• minimization of scattering and refraction by using a passive optical clearing pro-
cedure common in OPT.

We demonstrate our large scale high resolution approach with measurements on a
3 day old zebrafish larva and an adult zebrafish heart. Here, ODT adds an additional
type of contrast (RI) to large scale organic tissue imaging not traditionally accessible in
OPT, which allows for imaging of structures such as eyes, brains and yolk sack using
intrinsically present RI contrast. Finally, we demonstrate a clinically relevant application
where we image regenerating zebrafish heart tissue after damage based on RI contrast
and estimate the relative volume of the injured tissue. This can eliminate the need for
the current labour intensive procedure of sectioning and staining of the heart[19].

3.3. MATERIALS AND METHODS

3.3.1. ACQUISITION OF PHASE PROJECTIONS
In ODT, the scattered field is recorded from multiple angles using digital holography. The
digital holography setup is shown in Fig. 3.1 and consists of a Mach-Zehnder interfer-
ometer operated in transmission. The light source is a HeNe laser with a wavelength of
633 nm and an output power of 3 mW. Two lenses (Thorlabs, LD2568 and LA1979) are
used to expand and collimate the illuminating laser beam respectively to a full width at
half maximum (FWHM) of approximately 15 mm.

In the object arm a 4X Super Apochromatic objective lens (N A = 0.2) is used in com-
bination with a 200 mm focal length tube lens (both Thorlabs) to image the sample on
the CMOS camera, (Basler beA4000-62kc) with 4096 x 3072 pixels and a pixel pitch of
5.5 micrometer. A rotation mount (Thorlabs CR1) rotates the sample stepwise over 360
degrees. The sample is displaced from the center of rotation by approximately 1 mm
in order to suppress noise in the reconstruction of the sample caused by fixed pattern
coherent speckle [20]. In the reference arm, a 4X Olympus microscope objective partly
compensates for the object wave curvature to avoid the presence of too high spatial fre-
quencies on the camera. The mirror in the reference arm is mounted onto a piezoelectric
transducer controlled by a computer for phase-shifting the digital hologram. We capture
four holograms with (reference arm) phase shift increments of π/2 between each subse-
quent hologram. From a linear combination of these holograms a complex hologram
is formed where the zeroth and out of focus conjugate orders are removed [21]. In this
way we maximize the lateral resolution in the reconstructed image. This is specifically
important for large scale ODT where magnification is low but an as high as possible N A
is desired, as we will show in the following section. After acquiring the complex holo-
gram, autofocus correction in the reconstruction of the digital hologram is applied in
order to obtain the wavefield in the object region. For off-axis sample placement the ob-
ject position as a function of the projection angle is a sine function. To find the object
position we calculate a focus metric (grayscale variance) as a function of the reconstruc-
tion distance for ten samples of a full rotation acquisition (i.e. 0°, 36°, 72°and so on) .
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For transparent objects, the grayscale variance has a minimum value when the recon-
struction distance is located at the object [20], in contrast to imaging reflective samples
where the grayscale variance has a maximum [22]. A sinus function is fitted to the data to
retrieve the object distance as a function of projection angle. The hologram is then (for
each angle separately) reconstructed with the object in focus by back propagating the
field from the detector plane to the object plane using the angular spectrum method for
diffraction calculation, which is exact (apart from the scalar approximation to the wave
equation). The phase is then calculated by taking the argument of the reconstructed
wavefield. Since the phase change in a projection mostly exceeds 2π, the phase is un-
wrapped using a least squares phase unwrapping algorithm [23].

Figure 3.1: Experimental setup for acquiring the digital holograms. HeNe: Helium Neon laser, BE: Beam ex-
pander, BS: Beam splitter, IML: Index matching liquid, S: Sample rotated around the z-axis, MO: Microscope
objective, M: Mirror, TL: Tube lens, PZT: Mirror mounted on piezo stage, C: Camera.

3.3.2. OPTIMIZING ODT RESOLUTION AND FIELD OF VIEW
In conventional microscopy, in order to meet the Nyquist sampling criterion, it must
hold that η ≥ 2ξ, where η is the projected feature size and ξ is the pixel pitch of the
camera. In off-axis digital holography, diffraction orders appear that must be spatially
separated by introducing an angle between the object beam and the reference beam. In
order to separate the twin images, neglecting the frequency content in the zeroth order
for simplicity, only half of the spatial frequency bandwidth offered by the camera is avail-
able, i.e. η ≥ 4ξ. The smallest resolvable feature that can be imaged with a microscope
objective is∆x = 0.61λ/N A according to the Rayleigh criterion. Hence, for a point object
projected onto the camera sensor by an objective with magnification M , the condition

0.61λ

N A
M ≥ 4ξ (3.1)

must be met in order to satisfy the Nyquist sampling criterion and separate the twin
images. For the camera pixel size ξ = 5.5 · 10−6 m and wavelength λ = 633 · 10−9 m the
ratio between magnification and numerical aperture to make full use of the available
resolution is

M

N A
' 57. (3.2)

Since typical N A values are between 0 and 1 only microscope objectives with high mag-
nification use the spatial frequency bandwidth of the camera without loss in resolution.
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In large scale ODT, it is desirable to use a low magnification to image a relatively large
object onto the camera while having an as high as possible N A to maximize the resolu-
tion. In a standard off-axis configuration this results in a significant loss in resolution.
In the setup in this paper we have M/N A = 20. Since, by applying phase shifting there
are no twin images, Eq. 3.2 reduces to M/N A ≥ 28 and hence, our ODT imaging set-up
configuration is close to the optimum configuration for large scale high resolution ODT.

3.3.3. NOISE SUPPRESSION IN LARGE SCALE ODT
In large scale ODT, RI contrast should be small enough not to cause severe ray displace-
ments and aberrations as a result of light propagation through the sample. Optical clear-
ing of the samples reduces the RI contrast significantly to make the samples suitable for
imaging. However, at the same time the contribution of the noise relative to the RI con-
trast will increase as a result, decreasing the effective sensitivity of the ODT reconstruc-
tion. Noise suppression therefore plays an important role, especially in large scale ODT,
to obtain high quality images. The noise in the phase projections originates from inten-
sity noise in the digital hologram (assuming perfect phase unwrapping). The noise in
the digital hologram translates into the phase noise in a highly non-linear way and an in
depth discussion is beyond the scope of this paper. Two sources of intensity noise that
contribute to the phase noise can be identified, namely fixed speckle noise in the digital
hologram that is constant for each projection[20] and variable noise that changes from
projection to projection (e.g. due to read-out or shot noise), which we call incoherent
noise. Two methods can be used to reduce the noise levels. The first noise suppression
method was proposed by Kostencka et al. [20], where they argue that placing the sam-
ple at the center of rotation (as is generally done to keep the sample in focus) leads to
more noise in the reconstruction as the speckle noise is spread over a circle in the re-
constructed image with radius equal to the off-axis distance. By displacing the sample
with respect to the center of rotation the noise is spread over a larger circle in the recon-
structed image, and hence is strongly decreased. Kostencka et al. reported a reduction
in the reconstruction error by a factor between 2 and 7, depending on the sample size.

Besides the fixed speckle noise, there is noise in the phase projections resulting from
incoherent (shot and read) noise fluctuations in the recorded digital holograms. Since
this type of noise varies from hologram to hologram it thus leads to variable phase noise
in the projections, and can be mitigated through averaging. We suppress this noise with
an increase in the number of projections, since backprojection is akin to averaging of
projections for each pixel. This is analogous to what is common in signal processing,
where signal averaging increases the strength of the signal relative to the noise. More
specifically, averaging N realizations of the same, uncorrelated noise reduces the stan-
dard deviation by a factor

p
N .

We expect that in the region close to the center of rotation, the first kind of (angle
independent) speckle noise dominates the noise level, and that an increase in the num-
ber of projections is less effective in suppression of the noise than displacing the sample
of axis. Further away from the center of rotation, we expect the contribution due to the
speckle noise to be small, and thus further displacing the sample away from the cen-
ter of rotation will not give significant improvements. Instead, we expect that off-axis
the incoherent noise dominates the noise level, and that increasing the number of pro-
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jections dominates further improvement in terms of noise suppression according to thep
N law. Thus, we expect that noise suppression with an increasing number of projec-

tions is effective mainly outside of the center of rotation. To quantify the noise level,
we take the standard deviation of the RI difference values in a collection of voxels of a
constant RI part of optically cleared agarose. This is in line with the approach of Kim
et al. [17], where they associate the standard deviation of a constant background re-
construction with the sensitivity of the ODT reconstruction. In Fig. 3.2 (b) the standard
deviation at the axis of rotation (purple circle in Fig. 3.2 (a)) and outward towards the
edge of the sample (red circle in Fig. 3.2 (a)) is plotted as a function of the number of
projections. It is clear that increasing the number of projections as well as moving the
sample radially outward significantly reduces the noise level, increasing the sensitivity
up to approximately a factor 4 for 1440 projections compared to on-axis placement of
the sample with 360 projections. Furthermore, in Fig. 3.2 (b) a curve σ= a ·N−0.5

p is fit-
ted to the off axis noise level, where Np represents the number of projections and a is
a constant. The accuracy of the fit confirms the expectation that away from the center
of rotation, the incoherent noise type dominates and reduces with the square root of the
number of projections. In the center of rotation the decrease in noise as a function of the
number of projections is limited due to the presence of the fixed speckle noise, which is
indicated by a horizontal line in Fig. 3.2 (b). In Fig. 3.2 (c) the reciprocal of the vari-
ance curve (also called the precision or variability) increases linearly with the number
of projections in the off-axis case as expected, but stays nearly constant for the on-axis
case. Figure 3.2 (d) shows the noise standard deviation through a cross section of the
reconstructed object. It shows that the noise level at the center of rotation is similar for
144 and 1440 projections, whereas it differs significantly away from the center of rota-
tion. The noise level can be seen to be approximately constant around half a millimetre
away from the center, and further sample displacement will not yield significant noise
reduction. Thus, for on-axis placement an increase of the number of projections will not
yield significant noise reduction, and away from the center of rotation the variable phase
noise (e.g. due to read-out and shot noise) dominates and can be effectively reduced by
increasing the number of projections. The fact that the sample must be off-axis (to guar-
antee low noise) does however reduce the field of view, in our case by almost a factor 8,
to approximately 13 mm3. This was estimated by calculating the area of the largest pos-
sible circle in a region starting approximately 0.5 mm away from the center of rotation,
until the edge of the horizontal field of view, and multiplying this by the vertical field of
view to obtain the volume.
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Figure 3.2: (a) Reconstruction of a horizontal cross-section of the agar sample indicating the a point close to
the center of rotation (green circle) and one 1 mm radially outward (red circle). (b) Noise levels at the center of
rotation and 1.5 mm radially outward as a function of the number of projections (Np ), with y = a N−0.5

p fitted
to the off-axis data and the on-axis noise limit indicated by a constant. (c) Plot of the precision, defined as the
inverse of the variance, of the same data and model as in (b), with y = a Np fitted to the off-axis data and the
on-axis noise limit indicated by a constant. (d) Noise levels as a function of distance to the center for 1440 and
144 projections respectively (cross-section horizontally through the middle in (a)).

3.3.4. TOMOGRAPHIC IMAGE RECONSTRUCTION

For reconstruction of the digital hologram the angular spectrum method is used. The
phase distribution at the in-focus position is then unwrapped using a least squares phase
unwrapping technique [23]. Assuming that RI variation in the sample is sufficiently small
so that refraction does not occur, a phase projection can be regarded as a scaled inte-
gral over the RI variation with respect to the background medium along the illumination
direction. The 3D relative RI (∆n) structure of the object is reconstructed using the fil-
tered back projection (FBP) algorithm, in which case reconstruction can be performed
for each transverse slice separately. In this study, we perform tomographic reconstruc-
tion with 1440 projections over 360 degrees (steps of 0.25 degrees) with four phase steps
per projection. The net acquisition time is approximately 7 minutes. The total acquired
data in this case is around 20 GB , which fits in the internal memory of a 32 GB RAM
desktop PC.
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3.3.5. CHARACTERIZATION OF RESOLUTION

We characterized the spatial resolution of the setup using a FEP-tube (Fluorinated Ethy-
lene Propylene) with an inner diameter of 0.9 mm embedded in a 9 % mass-percentage
glucose/water solution. The spatial resolution is estimated based on the edge response
from the inner boundary between the FEP-tube and the liquid (at 0.45 mm from the
center of rotation) along the x-axis (where z is the vertical axis, and the y-axis the optical
axis). For a reconstruction based on 1440 projections, the resolution is estimated to be 4
micrometer.

3.3.6. 3D DATA VISUALISATION

In order to discern different features in the zebrafish samples, we estimated the mean rel-
ative RI of different parts of the zebrafish larva by calculating the∆n distribution of a sub
volume inside that feature. We used the Drishti software package [24] with a non-linear
transfer function of ∆n based on the ∆n distributions of different zebrafish features for
the visualisation.

3.3.7. SAMPLE PREPARATION: 3 DAY OLD ZEBRAFISH LARVA

The sample is a 3 day old zebrafish embryo (wild type). The eggs are grown on a petridish
and subsequently placed in PTU (1-phenyl 2-thiourea) to prevent pigment formation.
At 72 hours, the eggs are dechorionated and fixated in 4 % paraformaldehyde. Then,
the eggs are washed with Phosphate buffered saline tween-20 three times, after which it
is replaced with 100% MeOH in two cycles for dehydration. The embryos are placed in
small cylinders ( 4 mm diameter) and mixed with agarose (2% mass-percentage). After
the agarose is dry, the agarose containing the embryo’s is removed from the cylinders
and as a whole placed in BABB, a mixture of benzyl alcohol (Sigma B-1042) and ben-
zyl benzoate (Sigma B-6630) in a 1:2 ratio, to make the sample completely transparent.
During this process, the RI of the sample becomes almost that of the BABB clearing solu-
tion. The optimal clearing time ensures that the sample is transparent enough for optical
phase tomography, while at the same time maximizing remaining RI contrast in order to
keep a good signal (RI contrast in the reconstruction) to noise (background) ratio in the
final reconstruction. We used a clearing time of 3 hours that we estimate is the optimal
time that fulfills the above mentioned criterion.

3.3.8. SAMPLE PREPARATION: DAMAGED ZEBRAFISH HEART

The heart is extracted from a one year old zebrafish. Seven days before extraction, the
heart is damaged through cryoinjury. This is done by anesthetizing the fish in tricaine,
after which the chest is opened and the heart is damaged with a copper needle cooled
in liquid nitrogen [25]. 7 days after damaging the hearts, the fish is euthanized in ice-
water. The heart is then isolated in phosphate buffered saline), KCl (Potassium chlo-
ride) and heparin. After fixation, the heart is dehydrated, mounted in an agarose (2%
mass-percentage) cylinder and placed in BABB solution like the zebrafish samples in the
previous section.
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3.4. RESULTS

3.4.1. LARGE SCALE ZEBRAFISH ODT
Virtual cross-sections of our large scale zebrafish ODT reconstructions of the sample are
shown in Fig. 3.3 (a-c) where ∆n is quantitatively visualized on a linear gray scale. The
∆n distribution of the reconstructed background (optically cleared agarose) is depicted
in Fig. 3.3 (d) and found to have a standard deviation of σ = 8 · 10−5. Visualization of
different structures is done based on the RI difference distribution plotted in the his-
togram in Fig. 3.4 (f) on a logarithmic scale, and is shown in Fig. 3.4. The RI distribution
of an organ was estimated by scaling the distribution of a sub-volume of that organ to
the maximum in the histogram. The brain tissue, for example, is distributed around
∆n = 2.2 · 10−3 (visualized in blue in Fig. 3.4), the interstitial tissue is centered around
∆n = 7.5 · 10−4 (visualized in green), and the yolk sac appears in the distribution cen-
tered around∆n = 2.0·10−4 (visualized in red). Due the small volume of the eyes and the
relatively high RI, it is not visible in Fig. 3.4 (f), but has a RI of around∆n = 1 ·10−2 and is
visualized in red in Fig. 3.4 (d) and (f).

Figure 3.3: (a-c) Coronal, saggital, and axial cross-sections of ODT reconstructed refractive index contrast of
an optically cleared 3 day old zebrafish larva. (d)∆n distribution of agarose background in which the zebrafish
sample is placed. From this the sensitivity in the reconstruction was calculated as the standard deviation of
the distribution and yields σ= 8 ·10−5

.
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Figure 3.4: A 3D visualization of a complete zebrafish larva (3 days old) based on RI differences is shown in (a)
and different cross-sections in (b-e). In (f), a logarithmic plot is shown of the RI distribution of the complete
sample (zebrafish larva and agarose). Indicated are the estimated ∆n distributions of different types of tissue
in the zebrafish larvae. The first two peaks in blue from the left are from the agarose and index matching liquid
(BABB) contributions respectively
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3.4.2. LARGE SCALE ZEBRAFISH HEART ODT
Virtual cross-sections of the zebrafish heart are shown in Fig. 3.5. Different parts of the
heart can be discerned, such as the injured area (IA), the ventricle (V), the bulbus (B)
and the atrium (A). The damaged part of the heart is correctly segmented using a region
growing algorithm based on RI values of the image [26], and is indicated in the bounded
area (red) in Fig. 3.5 (a). The ∆n range of the entire heart is found to be comparable to
that of the zebrafish larva. The RI distribution of the regenerating tissue was compared
to the cleared agarose background and found to have the same mean, but larger standard
deviation, since less structure appears in the regenerating tissue. This is as expected, as
the zebrafish was euthanized 7 days after cryoinjury, whereas full recovery after cryoin-
jury takes approximately 2 months. We estimate the relative volume of the injured part
to be approximately 14 (± 0.5)% of the total heart volume through manual slice by slice
segmentation of the 3D reconstruction. This estimate is in line with histological stud-
ies of zebrafish regeneration, e.g. Chablais et al. who found an average of relative scar
volume between 13.5% and 18.5% in 6 samples aged between 6-18 months and with a
similar cryoinjury procedure [1].

3.5. DISCUSSION AND CONCLUSIONS
In this paper, we showed for the first time, to the best of our knowledge, the viabil-
ity of high resolution and high sensitivity 3D RI imaging of millimeter sized biological
samples using ODT. Previously, this has only been achieved using OPT, or with ODT on
non-organic homogeneous samples [17], using careful index matching to obtain a low
RI contrast (and thus low scattering) and high sensitivity. Optical clearing proved to be
an easy to implement solution to make samples sufficiently transparent for ODT , while
still retaining relevant RI contrast to segment different organs and features in the ze-
brafish larva and zebrafish heart. Optimizing the clearing time to approximately 3 hours
and the system sensitivity were found to be important for obtaining high quality im-
ages. We showed that high RI sensitivity can be achieved by using noise suppression of
two independent noise sources. We achieved this by combining off-axis placement of
the sample and auto-focus correction together with the acquisition of a large number of
projections. Although both techniques lead to an increase in sensitivity independently,
we showed that combining them is necessary in order to make optimal use of the po-
tential gain offered by each respective method. In this way, high RI sensitivity can be
achieved that is necessary for phase tomography of optically cleared large scale organic
tissue. We demonstrate the identification of tissue structures with features in the or-
der of ∆n = 6 · 10−4 with respect to the background and, based on this RI contrast, are
able to segment it from the background. Finally, we demonstrated a possible clinical
application where regenerating zebrafish heart tissue could be detected and segmented
based on RI contrast, and quantified the relative volume of the injured area (after cry-
oinjury) of a zebrafish heart. Although we did this manually, this can make it possible
to study heart regeneration quantitatively in an automated fashion without labour in-
tensive staining, sectioning, and manual estimating of the volumes. To underline this
potential, we demonstrated automated segmentation of the injured area using a region
growing algorithm on a single slice.

The high sensitivity ODT imaging comes at the cost of the acquisition and processing
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Figure 3.5: Virtual cross-sections in the y-z plane (a), x-y plane (b) and the x-z plane (c) showing the ∆n
distribution of a 1 year old zebrafish heart, damaged through cryoinjury. The regenerating tissue can be seen
in the bounded region (red) in image (a) obtained through region growing segmentation. Features can be seen
such as the injured area (IA), the ventricle (V), the bulbus (B) and the atrium (A).

of large data sets which is challenging to handle even with today’s powerful desktop com-
puters. Using phase shifting digital holography in large scale ODT, unlike in cases with
high magnification, proved necessary for a high resolution with a large field of view but
further increases the amount of data. The phase images are reconstructed using filtered
back projection, which assumes that rays traverse the object in straight paths and no
diffraction takes place. Although this is not a strictly valid assumption, this was done in
view of the large dataset; phase projections obtained with 12 Megapixels lead to a dataset
of over 100 GB for 1440 projections. In current implementations of ODT using the Rytov
approximation the total data should fit in memory at one time in order to do the recon-
struction, which is far more than typically available even on powerful desktop comput-
ers. FBP allows slice by slice reconstruction, circumventing the memory issue, but at the
same time gives a non-isotropic resolution (with resolution deteriorating away from the
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focus position). We expect this effect to be limited for zebrafish larva due to the rela-
tively small dimensions in the axial plane and digital refocusing that was applied. How-
ever, for large scale ODT on samples with isotropic dimensions and with high (isotropic)
resolution we therefore think it is necessary that ODT implementations are developed
that allow for step by step reconstruction of the 3D reconstruction, thereby reducing the
memory needed at one time, instead of solving the inverse diffraction problem on the
entire dataset.

Finally, the zebrafish is relatively long compared to its width. Hence, in order to fit the
complete zebrafish larva on the sensor, the magnification should be in the order of 4X for
a 12 Megapixel camera. In the vertical direction the image plane (and thus resolution)
was therefore used efficiently, but not in the lateral direction. Since the region of interest
is usually the brain, the field of view can be restricted to this part of the sample and im-
aged at a higher magnification (10X) to obtain a higher resolution. The zebrafish heart
was more isotropic in size, and can be studied at a higher magnification (10X) without
losing part of the sample. It is important however to still keep sufficient unused space
laterally in the image plane in order to apply off-axis placement of the sample. We envi-
sion that the method presented by us opens the door to application of ODT as a label-free
diagnostic tool for studying a wider variety of clinically relevant and larger organic sam-
ples than what has been previously done, for example for studying cleared human tissue.
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4.1. ABSTRACT
We demonstrate large scale polarization contrast optical diffraction tomography (ODT).
In cross-polarized sample arm detection configuration we determine, from the ampli-
tude of the optical wavefield, a relative measure of the birefringence projection. In parallel-
polarized sample arm detection configuration we image the conventional phase projec-
tion. For off-axis sample placement we observe for polarization contrast ODT, similar
as for phase contrast ODT, a strongly reduced noise contribution. In the limit of small
birefringence phase shift δ we demonstrate tomographic reconstruction of polarization
contrast images into a full 3D image of an optically cleared zebrafish. The polarization
contrast ODT reconstruction shows muscular zebrafish tissue, which cannot be visual-
ized in conventional phase contrast ODT. Polarization contrast ODT images of the ze-
brafish show a much higher signal to noise ratio (SNR) than the corresponding phase
contrast images, SNR=73 and SNR=15, respectively.

4.2. INTRODUCTION
3D imaging in the life sciences is of great importance for studying fundamental biol-
ogy and performing (pre-) clinical studies. For these studies, label free optical imaging
methods play an important role. There are various label-free contrast mechanisms such
as scattering, absorption, or refractive index (RI). However, in some cases these contrast
mechanisms are not sufficiently sensitive to observe the relevant information, hence,
there is a need for imaging with alternative types of intrinsic contrast.

Optical diffraction tomography (ODT) has shown to be an effective tool for 3D imag-
ing of RI contrast on the scale of cells [1] or small organisms [2]. More recently, phase
contrast ODT was applied on a millimeter scale, where different structural features of
a zebrafish larva and a cryo-injured heart could be distinguished in 3D using RI con-
trast [3]. However, some types of tissue are not visible in conventional phase contrast
ODT.

An alternative form of contrast is given by the polarization change of the optical
wavefield caused by tissue birefringence. Birefringent samples are not described by a
single scalar RI value per voxel that contributes to the optical path length, but the RI
value experienced by the wavefield depends on its polarization state. Polarization con-
trast has been widely applied in microscopy [4, 5], digital holography[6], optical coher-
ence tomography [7], and optical projection tomography [8]. Birefringence provides a
high-constrast label-free mechanism for imaging fibrous structures such as muscle (col-
lagen) or brain (myelin) tissue. Muscle tissue has been imaged in 3D using polarization
sensitive optical projection tomography (OPT), as an extension of brightfield OPT using
a white light source [8]. However, with OPT phase information is lost and refractive index
contrast cannot be determined.

In this work we show that in addition to phase contrast also polarization contrast is
compatible with large scale ODT and offers a significantly higher signal to noise ratio
(SNR) compared to conventional phase contrast ODT. We determine under what con-
ditions a birefringent sample can be properly reconstructed using conventional filtered
backprojection (FBP). Furthermore, we show that off-axis sample placement, which has
been used in conventional ODT [9] for noise reduction, also for polarization ODT offers
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significant noise reduction and that the same steps of numerical refocusing to correct
for defocus can be applied. Finally, we demonstrate 3D multi-contrast imaging of a ze-
brafish larva using two orthogonal components of the transmitted wavefield, from which
a conventional phase contrast and polarization contrast ODT image are reconstructed.

4.3. POLARIZATION CONTRAST IMAGING
In conventional ODT, refractive index differences in the sample causes a change in op-
tical path length of the transmitted light wave. Assuming an isotropic medium, each
voxel in the sample gives a fixed contribution to the optical path length of a ray travel-
ing through it regardless of its’ polarization. However, when a sample is birefringent this
contribution generally depends on the orientation of the polarization of the wave with
respect to the medium.
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Figure 4.1: Schematic of the ODT sample arm geometry. (a) The orientation of the uniaxial sample is defined
by the inclination angle α and the direction angle ϕ. The sample is rotated around the x-axis for tomographic
measurement. The input polarization state is along the x-axis, after which the parallel polarized x-component
(a) or the cross-polarized y-component (b) of the complex wave is measured for each projection angle. The
tomographic angleβ is defined with respect to the fiber orientation in the y-z plane. The angle of the polarizers
ρ is defined with respect to the x axis.

Here we use Jones calculus to calculate light interactions with linear polarizing sam-
ples. We assume that the birefringent tissue locally can be described as uniaxial, where
the optical axis corresponds to the predominant fiber direction. The birefringent tissue
is modeled as a wave retarder that introduces a relative phase shift δ along the fast axis
with respect to the slow axis, and introduces a common phase shift ε (i.e. the average
phase of the two components) for both polarization components. The relative phase
shift δ between the two components is then defined as [10]
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δ= k∆cos2(α(β)) ,with∆=
∫

[ne (s)−no(s)] ds , (4.1)

where α is the fiber inclination angle relative to the x-y plane of the polarizers as indi-
cated in Fig. 4.1(a-b). The wavenumber k is given by k = 2π

λ and ∆ is the optical path
difference integrated over the sample. As indicated in Fig. 4.1(a-b) the angle ϕ indicates
the angle of rotation of the optic axis of the uni-axial sample with respect to the x-axis
projected onto the x − y plane. The rotation angle of the polarizers is given by ρ, which
is the angle of the cross/parallel polarizers to the x-axis. The birefringent object is as-
sumed to rotate around the x-axis for tomographic measurement with angle β, which is
shown in Fig. 4.1(c). We define the tilt angle of the object with respect to the x axis as γ as
show in Fig. 4.1(a-b). During tomographic measurements, the tilt angle γ stays constant.
The tomographic rotation causes α and ϕ to change for each projection according to

α= γsinβ and ϕ= γcosβ , (4.2)

respectively.
We assume an incoming beam polarized along the x-axis that travels through the

sample in the z-direction. Both the x and y components are extracted by placing an
analyzer in the sample arm that can be rotated to align with the parallel x or cross-
polarized y-axis. The complex wavefield of an incoming wave polarized along the x-axis
after transmission through the birefringent medium is

U =
(

e−
1
2 i (δ−2ε)

(
sin2(ρ−ϕ)+eiδ cos2(ρ−ϕ)

)
−i eiε sin

(
δ
2

)
sin(2ρ−2ϕ)

)
, (4.3)

with ε defined as the average phase

ε= 2π

λ

∫
ne (s)+no(s)

2
ds . (4.4)

4.3.1. PARALLEL-POLARIZATION OUTPUT
The first component in Eq. 4.3 is the x-component of the transmitted field with a polar-
ization parallel to that of the input field. It can be extracted by placing a polarizer aligned
along the x-axis after the sample. The x-component in Eq. 4.3 contains phase contribu-
tions of both the conventional phase contrast ε and the birefringence contrast δ. The
phase of this component is defined as the inverse tangent of the imaginary part divided
by the real part

φUx = tan−1

cot
(
δ
2

)
sin(ε)sec(2ρ−2ϕ)+cos(ε)

cot
(
δ
2

)
cos(ε)sec(2ρ−2ϕ)− sin(ε)

 . (4.5)

The derivative of φUx with respect to ε is equal to unity and thus the measured phase of
the x-component is a linear function of the phase contrast projection ε. There is however
also a contribution to the phase of the birefringence δ, which is in general non-linear.
This can be seen by taking the derivative of Eq. 4.5 with respect to δ, i.e.,
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∂φUx

∂δ
=

csc2
(
δ
2

)
sec(2ρ−2ϕ)

2cot2
(
δ
2

)
sec2(2ρ−2ϕ)+2

, (4.6)

where csc is the cosecant or the reciprocal of the sine function. For small values of δ,
Eq. 4.5 can be expanded (in zeroth and first order) as

φUx ≈ tan−1(tan(ε))+ 1

2
δcos(2ρ−2ϕ) . (4.7)

For small values of δ, the measured phase of the x-component will thus be dominated
by the average phase ε, where tan−1(tan(ε)) is the wrapped average phase.

4.3.2. CROSS-POLARIZATION OUTPUT
The vertical y-component is the second component of the field in Eq. 4.3 and is perpen-
dicular to the input polarization. The amplitude of this component is given by

|Uy | =
∣∣∣∣sin

(
δ

2

)∣∣∣∣ ∣∣sin(2ρ−2ϕ)
∣∣ . (4.8)

Similar to what is done in polarimetry it can be measured using crossed polarizers. The
presence of birefringence causes modulation in the amplitude of the wavefield as δ ap-

pears in the y-component as sin
(
δ
2

)
in the amplitude. The amplitude modulation is

utilized to generate qualitative birefringence contrast projections in 2D. However, this
is problematic for 3D tomographic reconstruction as tomographic reconstruction algo-
rithms usually assume a linear relation between contrast and projection. The projection
function δ is thus not measured directly and must be retrieved. Taking the inverse sine
of the modulation term we obtain

sin−1
(∣∣∣∣sin

(
δ

2

)∣∣∣∣)= { δ
2 −mπ if 0 ≤ δ

2 < π
2 mod π

−δ
2 +mπ if π

2 ≤ δ
2 <π mod π

, (4.9)

with m and integer. In Eq. 4.9 the absolute value in the inverse sine is taken since the
amplitude is the square root of the intensity and is thus always positive. The inverse
sine changes the sign of the original δ

2 function for values π
2 ≤ δ

2 < π mod π, making
the inverse sine of the signal not directly suitable as a linear input projection for FBP
reconstruction. Moreover, to reconstruct for arbitrary large δ, the signal needs to be
unwrapped using phase unwrapping.

However, from Eq. 4.9 it follows that in case the maximum value of δ in the projec-
tion does not exceed π, the signal can be directly retrieved by taking the inverse sine
and no further processing is necessary. Even more, if δ is small, the amplitude of the
y-component of Eq. 4.3 can be approximated as a linear function of δ, since for small
values of δ it holds that

|Uy | ≈ 1

2
δ

∣∣sin(2ρ−2ϕ)
∣∣ . (4.10)

To demonstrate the general approach of tomographic birefringence tomography a
polarization contrast calculation for the case of a uniaxial birefringent cylinder of 10 mm
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radius with a maximum projected phase shift of δ = 18 radians is shown in Fig 4.2. The
blue line indicates the original phase shift as a function of position after a plane wave-
front travels through the cylinder and this is the signal that has to be retrieved.
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Figure 4.2: Phase shift δ between the two orthogonal polarizations in the case of a uniaxial birefringent cylinder
with maximum projected phase shift δ= 18 radians as quantified with polarization contrast imaging.

The red line shows two times the inverse sine of the measured |sin(δ/2)| term. The
green line is obtained by flipping the inverse sine function in the appropriate domains
and adding π according to Eq. 4.9. The function δ can then be retrieved with standard
phase unwrapping and is plotted in magenta and corresponds with the original birefrin-
gence distribution. Thus, in theory the projection function δ can be retrieved. However,
in practice this may not be possible, for example, when the data is noisy or the jumps in
the sinusoidal signal of the transmitted field Uy are not properly sampled due to large
increase of δ.

4.3.3. POLARIZATION TOMOGRAPHY

In 3D polarization sensitive tomographic imaging, the sample is rotated and the x (par-
allel) and y (cross) components of the wave are recorded for each angle for phase and
polarization contrast respectively. Due to the small contribution of the birefringence
contrast in the x-component phase it can be used for conventional ODT. However, it
should be noted that in order to preserve the linear relationship between the projection
and δ for the y component, it can be seen from Eq. 4.10 that not the intensity (amplitude
squared) of the wavefield should be taken as the projection, but the square root of the
intensity (amplitude).

However, in general δ itself depends on the tomographic rotation angle β through α
in Eq. 4.1 and Eq. 4.2. Furthermore, the angleϕ in Eq. 4.10 depends on β as well through
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Eq. 4.2. Using these dependencies we find that for small δ the y-component of the field
is

|Uy |(β) ≈ 1

2
k∆cos2(γsin(β))

∣∣sin(2ρ−2γcos(β))
∣∣ . (4.11)

Thus, even though the amplitude of Uy is linear with respect to δ, the signal is non
linear with respect to the rotation angle β. The first non-linearity occurs due to the
cos2(γsin(β)) term in Eq. 4.11. Here we demonstrate the effect of this non-linearity
in the amplitude projection on the tomographic reconstruction. The object we con-
sider is a cylinder according to the orientation outlined in the theory section of this
paper. The cylinder has radius R, and birefringence ne − no = δn. For a plane wave
traveling along the z-axis linearly polarized along the x-axis, the polarization contrast
is retrieved from the cross-polarized transmitted component after traveling through the
sample. This component Uy is given by the y component of Eq. 4.13. Using the relations
δ= k∆cos2(α(β)), α= γsin(β) and φ= γsin(β), the full expression for Uy on β becomes

Uy (β) =−i eiε sin(2ρ−2γcos(β))sin

(
1

2
k∆cos2(γsin(β))

)
, (4.12)

and the amplitude of Uy (β) is

|Uy (β)| = ∣∣sin(2ρ−2γcos(β))
∣∣ ∣∣∣∣sin

(
1

2
k∆cos2(γsin(β))

)∣∣∣∣ . (4.13)

For a cylinder located at the origin with a tilt γ with respect to the x-axis of tomographic
rotation, the cross-section seen by a wave traveling along the z-axis is an ellipse f (y, z),
with semi-major and semi-minor axes a = R sec(γ) and b = R, respectively. The Radon
transform ℜ( f ) for a 2D slice of the ellipse gives the path length experienced by the prob-
ing wave per projection angle β and is given by [11]

ℜ( f ) =
{

2R2 sec(γ)
p

A−p2

A p2 ≤ A

0 otherwise
(4.14)

where
A = R2 cos2(β)sec2(γ)+R2 sin2(β) , (4.15)

and p is the transverse coordinate along the projection. Replacing ∆ in Eq. 4.13 with
ℜ( f )δn, the effective amplitude projection function measured at the detector becomes

|Uy (p,β)| =


∣∣∣∣sin(2ρ−2γcos(β))sin

(
R2 δn k sec(γ)cos2(γsin(β))

p
A−p2

A

)∣∣∣∣ p2 ≤ A

0 otherwise
(4.16)

The projection functions |Uy (p,β)| along with the resulting tomographic reconstruc-
tions are plotted in Fig. 4.3 for tilt angles γ = 0◦ (a-b) and γ = 54◦ (c-d). The simulation
parameters are cross-polarizer angle ρ = 27◦, δn = 1 ·10−5, R = 1 mm and λ = 633 nm.
For comparison, the case for a non-birefringent cylinder at γ= 54◦ is shown (e-f). It can
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be seen that the angular dependency of the amplitude projections results in a modula-
tion along the horizontal projection angle axis in Fig. 4.3(c). Since this does not cause
modulation along the transverse coordinate axis and the amplitude is zero outside of
the projection of the birefringent object, the contrast inside the birefringent sample is
not modulated (Fig. 4.3 (d)). Instead, it gives a slowly varying angular modulation in the
background.

The second term
∣∣sin(2ρ−2γcos(β))

∣∣ in Eq. 4.11 also modulates the amplitude as a
function of the tomographic angle β. This can be compensated for by taking the cross-
polarization angle ρ such that

∣∣sin(2ρ−2γcos(β))
∣∣ is maximum. Experimentally, this

implies that tomographic image acquisition should be done for a sufficient number of
cross-polarizer angles ρ, and for each projection angle β the maximum amplitude pro-
jection is subsequently selected [8]. Thus, despite the angular dependency of the phase
shift δ, a linear reconstruction algorithm can be used for polarization contrast tomogra-
phy.

The question arises whether the phase of the crossed-polarizer component can be
used to do the conventional phase reconstruction, so that capturing of Ux is not neces-
sary. In cross polarization, the phase ε of the transmitted y-component is defined for
any path through the birefringent sample where the field amplitude is not zero. Hence,
this component cannot be used to reconstruct the conventional RI contrast ε across the
whole sample. However, the phase of the y-component can be used in order to propa-
gate the wavefield. This can be used to numerically refocus the wavefield if necessary,
for example in the case of off-axis placement of the sample for noise suppression [3, 9],
or to extend the depth of field of the imaging system [2].

4.3.4. POLARIZATION TOMOGRAPHY SIMULATIONS

In order to analyze the effect of large magnitude of δ on the tomographic reconstruction,
we model a homogeneous hollow cylinder that exhibits uniaxial birefringence along the
direction of the cylinder axis, based on a macroscopic model of a birefringent nerve
fiber [10]. The cylinder has a radius of 1 mm, is illuminated with a plane wave of wave-
length 633 nm, and has a refractive index difference ne −no along the optical axis and
perpendicular to it that is varied between 1.3·10−5, 1.3·10−4 and 1.3·10−3, corresponding
to a maximum phase shift δmax of approximately 0.26, 2.6 and 26 radians respectively.
The results of the simulation are plotted in Fig. 4.4, where the first row corresponds to
ne −no = 1.3 · 10−5 and the last row to ne −no = 1.3 · 10−3. The first column shows the
amplitude projections, the second column the digital holograms and the last column a
slice of the reconstructed cylinder perpendicular to the cylinder axis, reconstructed with
FBP. It can be seen that for larger values of the projection integral δ, the FBP reconstruc-
tion does not yield correct results due to the non-linear behaviour of Uy for larger values
of δ. At ne − no = 1.3 · 10−4 a non-uniform birefringence is visible in the reconstruc-
tion. For ne −no = 1.3 ·10−3 the reconstruction even yields ringing artifacts. We applied
our proposed processing of the data, namely taking the inverse sine of the projection
and apply a modified phase unwrapping procedure, and can correctly reconstruct the
projection and the tomographic reconstruction for even a birefringent sample with the
highest birefringence ne −no = 1.3 ·10−3. This is indicated in Fig. 4.4(k).
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Figure 4.3: Plot of the projection functions |Uy (p,β)| along with the resulting tomographic reconstructions
for tilt angles γ = 0◦ (a-b) and γ = 54◦ (c-d). The simulation parameters are cross-polarizer angle ρ = 27◦,
δn = 1 ·10−5, R = 1 mm and λ= 633 nm. For comparison, the case for γ= 54◦ for a non-birefringent cylinder
is shown (e-f).
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Figure 4.4: Polarization tomography simulations. (a-c) Simulation for ne−no = 1.3·10−5 with (a) the amplitude
projection, (b) the digital hologram at one angle and (c) the 2D reconstruction for a cylinder with radius of 1
mm.This figures illustrates what happens when the ne −no of the birefringent medium (the refractive index
difference experienced by the two orthogonal polarization states) becomes large enough so that the projection
is no longer linear with respect to the ne −no contrast. (d-f) for ne −no = 1.3 · 10−4 and (g-i) for ne −no =
1.3 · 10−3. (j-k) corrected phase and reconstruction for the ne −no = 1.3 · 10−3 case based on our proposed
unwrapping scheme.
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4.4. MATERIALS AND METHODS

4.4.1. ACQUISITION OF PROJECTIONS
In ODT, the scattered field is recorded from multiple angles using digital holography. The
digital holography setup is shown in Fig 4.5 and consists of a Mach-Zehnder interferom-
eter operated in transmission. The light source is a HeNe laser with a wavelength of 633
nm and an output power of 3 mW. Two lenses (Thorlabs, LD2568 and LA1979) are used
to expand and collimate the illuminating laser beam to a full width at half maximum
(FWHM) of approximately 15 mm.

PZT

BS1
HeNe BE

MO2

MO1
TL CIML

S

BS2P2

P3
M

M

M

P1WP

y

zx

Figure 4.5: Experimental setup for acquiring the digital holograms. HeNe: Helium Neon laser, BE: Beam ex-
pander, BS: Beam splitter, IML: Index matching liquid, S: Sample rotated around the z-axis, MO: Microscope
objective, M: Mirror, TL: Tube lens, PZT: Mirror mounted on piezo stage, C: Camera, P: Polarizer, WP: Half-wave
plate.

In the object arm a 10X objective lens (NA=0.3) is used in combination with a 200 mm fo-
cal length tube lens (Thorlabs) to image the sample in close proximity to the detector of a
CMOS camera, (Basler beA4000-62kc) with 4096×3072 pixels and a pixel pitch of 5.5 µm.
A rotation mount (Thorlabs CR1) rotates the sample stepwise over 360◦. One polarizer
is placed in front of the sample (P1), and a second one is placed behind the sample (P2).
For acquisition of the regular phase contrast projections, the optical axes of the polar-
izers are made parallel and a acquisition of 720 projections over 360◦ is performed. For
the polarization contrast projections, the relative angle between both polarizers is kept
constant at 90◦. The complete tomographic measurement is then carried out as before.
The polarization contrast measurement is then repeated after simultaneous rotation of
both the polarizers by 30◦ and 60◦,respectively. In the reference arm, a polarizer (P3) is
placed in order to maximize the fringe contrast at the detector; this polarizer is rotated
simultaneously with the polarizers in the object arm. A half-wave plate is placed behind
the beam expander in order to maximize the signal at the detector. In the reference arm,
a 10X Olympus microscope objective partly compensates for the object wave curvature
to avoid the presence of too high spatial frequencies on the camera. The mirror in the
reference arm is mounted onto a piezoelectric transducer (Thorlabs, KPZ 101) controlled
by a computer for phase-shifting the digital hologram. We capture four holograms with
reference arm phase shift increments of π/2 between each subsequent hologram. From
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a linear combination of these holograms a complex hologram is formed where the zeroth
and out of focus conjugate orders are removed [12]. In this way we maximize the lateral
resolution in the reconstructed image. This is specifically important for large scale ODT
where magnification is low but an as high as possible NA is desired.

4.4.2. PHASE AND POLARIZATION PROJECTIONS

Autofocus correction is applied on the digital hologram in order to obtain the wavefield
in the object region. The object position is determined by calculating a focus metric
(grayscale variance) as a function of the reconstruction distance. For transparent ob-
jects the gray scale variance has a minimum value when the reconstruction distance
is located at the object. For polarization contrast projections, the gray scale variance
has a maximum value when reconstructed in focus. For both cases separately the mini-
mum/maximum is determined for ten samples of a full rotation acquisition (i.e. 0◦, 36◦,
72◦, etc.). A sinusoidal function is then fitted to the minimum/maximum as a function
of the projection angle to determine the object distance as a function of projection an-
gle. For every angle the hologram is reconstructed for both the phase and polarization
contrast data, with the object in focus by propagating the field to the object plane us-
ing the angular spectrum method for diffraction calculation, which is exact and valid for
small propagation distances. In case of the phase projections, the phase is then calcu-
lated by taking the argument of the reconstructed wavefield. The phase projections are
unwrapped using a least squares phase unwrapping algorithm [13].

For the polarization contrast projections, the amplitude of the cross-polarized com-
ponent is calculated. This amplitude then gives a direct, but scaled measure for the
birefringence: scaled ne −no . For the different (cross) polarizations, the projections are
misaligned horizontally by a few pixels. This is corrected by determining the center of
rotation from the maximum variance of the tomographic reconstruction as a function of
the shift for each polarization contrast sinogram individually. The projections are then
shifted to the correct location using the circular shift function of MATLAB. The wavefield
amplitude of the projections for the three angles are stacked, and the maximum value for
each camera coordinate is extracted to form a single maximum birefringence projection
sinogram. Tomographic imaging is performed with 720 projections over 360◦ (steps of
0.5◦) with four phase steps per projection. At every projection angle and phase step, four
measurements are taken (one for phase, three for polarization contrast) in total. The net
acquisition time for a full 3D measurement is approximately 7 minutes with the total
acquired data around 160 GB.

4.4.3. TOMOGRAPHIC IMAGE RECONSTRUCTION AND VISUALIZATION

For reconstruction of the phase contrast, assuming that RI variation in the sample is suf-
ficiently small so that refraction does not occur, a phase projection is a scaled integral
over the RI variation with respect to the background medium along the illumination di-
rection. The average refractive index difference ∆nav g is calculated from the phase by
using the system magnification and the pixel pitch [9]. Subsequently, the ∆nav g object
is reconstructed using the FBP algorithm on a slice by slice basis. For polarization con-
trast, the maximum birefringence projection sinogram δ is reconstructed using the FBP
algorithm as ne −no . We used the Drishti software package [14] to visualize and merge
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the phase and polarization contrast reconstructions with a non-linear transfer function.

4.4.4. NOISE SUPPRESSION IN POLARIZATION SENSITIVE ODT
The sample is displaced from the center of rotation by approximately 0.5 mm. Figure 4.6
shows the noise distribution, in standard deviationσ, in a tomographic ODT reconstruc-
tion of both the polarization contrast (a) and (b) and the phase contrast (c) and (d). The
polarization contrast ODT reconstruction suffers from increased noise in the region of
the center of rotation, similar to what has been shown to be the case with phase contrast
ODT. The noise at the center of rotation is approximately a factor 7 higher than outside
of the center. This also shows that the on-axis noise reduction is even more significant
in the case of polarization contrast ODT than in phase contrast ODT, where the noise
reduction by off-axis placement was found to be in the order of a factor 2 for 720 projec-
tions [3].
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Figure 4.6: (a) Logarithm of the standard deviation σ(ne −no ) of a single polarization contrast reconstructed
slice. (b) Cross-section along the dashed line in figure (a) and the average standard deviation over all slices of
the stack (red). (c) Logarithm of the standard deviationσ(∆nav g ) of the phase contrast reconstructed slice. (d)
Cross-section along the dashed line in figure (c) and the average standard deviation over all slices of the stack
(red).
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4.4.5. ZEBRAFISH SAMPLE PREPARATION

The sample is a 3 day old zebrafish embryo (wild type). The eggs are grown on a petridish
and subsequently placed in PTU (1-phenyl 2-thiourea) to prevent pigment formation.
At 72 hours, the eggs are dechorionated and fixated in 4% paraformaldehyde. Then, the
eggs are washed with Phosphate buffered saline three times, after which it is replaced
with 100% MeOH in two cycles for dehydration. The embryos are placed in small cylin-
ders (4 mm diameter) and mixed with agarose (2% mass-percentage). After the agarose
is dry, the agarose containing the embryo’s is removed from the cylinders and as a whole
placed in BABB, a mixture of benzyl alcohol (Sigma B-1042) and benzyl benzoate (Sigma
B-6630) in a 1:2 ratio, which makes the sample completely transparent [15]. During this
process, the RI of the sample becomes almost that of the BABB clearing solution. We
used a clearing time of 3 hours (similar to [3]) that ensures that the sample is transpar-
ent enough for optical phase tomography, while at the same time maximizing remaining
RI contrast in order to keep a good signal (RI contrast in the reconstruction) to noise
(background) ratio in the final reconstruction.

4.5. RESULTS

The polarization and phase contrast projections of a 3 day old zebrafish tail are shown
in Fig. 4.7 (a)-(b) and (d)-(e), respectively. The phase contrast projections are similar
to our earlier work on ODT applied to zebrafish larvae [3]. In the polarization contrast
projections most of the larva appears dark, due to the absence of birefringent tissue,
except in the tail where the developing highly birefringent muscle tissue (myotome) is
located. The polarization contrast results are found to be similar in comparison with 2D
polarization contrast measurements of Jacoby et al. [16]. The histograms of the 3D polar-
ization and phase contrast reconstructions are shown in Fig. 4.7 (c) and (f) respectively.
The polarization contrast histogram of the scaled birefringence shows two components,
namely the background and the myotome tissue. In the phase contrast histogram of the
polarization averaged refractive index multiple peaks, corresponding to different organs,
are visible [3].

A 3D visualization of the phase contrast, the polarization contrast, the merged datasets
and transverse cross-sections after tomographic reconstruction using FBP are shown in
Fig. 4.8. It can be clearly seen from the visibility of the developing muscle tissue (my-
otome) that the phase and polarization contrast offer complementary contrasts, even
though they spatially overlap. The anatomical structures are annotated based on refer-
ence data from microscopy [16] and OPT [17]. A striking result is the high contrast ob-
tained in the polarization contrast projections compared to the phase projections. We
quantify this by calculating the standard deviation of a background region outside of the
center (since the level of noise is lower there), and estimate the mean of the signal in the
tail at the same location for both the polarization and phase contrast reconstructions.
For polarization contrast ODT, this yields an SNR of approximately SNR=73, and for the
phase contrast ODT we obtain an SNR of approximately SNR=15. Polarization contrast
ODT thus yields significantly higher SNR than phase contrast ODT for imaging the ze-
brafish tail.
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Figure 4.7: Reconstructed amplitude (a) and (b) and phase projections (d) and (e) from two different angles of
a 3 day old optically cleared zebrafish larva, illustrating the different contrasts obtained through polarization
and phase contrast respectively. In (c) and (f) the histograms of the full 3D data set are plotted for the polariza-
tion and phase contrasts, respectively. The background contribution is indicated in both histograms, and the
myotome and interstitial tissue for the polarization and phase contrast, respectively.

4.6. DISCUSSION AND CONCLUSION
We demonstrate 3D polarization contrast ODT, which has previously only been achieved
only with OPT. Applying it within the framework of ODT makes it possible to image both
phase and polarization contrast and make use of the benefits of ODT such as numerical
refocusing and extended depth of field, due to the fact that both phase and amplitude of
the polarization contrast field are measured.

4.6.1. POLARIZATION ODT CONTRAST

Coherent speckle causes increased noise levels close to the center of rotation in polar-
ization contrast ODT similar as in conventional phase contrast ODT and the same strat-
egy of off-axis placement and numerical refocusing can be applied to reduce the noise
level up to a factor of 7. The polarization contrast ODT reconstruction yields a signifi-
cantly higher signal to noise ratio compared to the phase contrast reconstruction. We
attribute this to the fact that in phase contrast ODT the refractive index differences de-
crease during clearing, leading to a reduction of the signal to noise ratio in the recon-
structed images. For polarization contrast ODT, the background is zero (no transmis-
sion in the absence of birefringence) and consequently leads to a relatively high contrast
when birefringent tissue is present. Besides this qualitative argument, also quantita-
tively, the value of the average refractive index, which is proportional to ne +no , and the
birefringence ne −no may vary during the clearing process [18] and thus influence the
image contrast in both ODT modes.
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Figure 4.8: 3D visualization of the phase (a) and polarization (b) contrast, and combined (c) ODT reconstruc-
tions of a 3 day old zebrafish larva tail. In phase contrast, the tail (in red) and the spinal cord (in purple)
appear, but not the developing muscle tissue (myotome), which is birefringent. In the polarization contrast
reconstruction the structure of the myotome can be clearly discerned. Scalebar for 3D reconstruction corre-
sponds to 200 µm. Insets show transverse cross sections in linear intensity scale taken at the location of the
dashed line.

4.6.2. LIMIT ON MAXIMUM PROJECTED δ

Straightforward tomographic reconstruction procedure only yields valid results for po-
larization contrast ODT in case δ is small. In phase projections of highly birefringent
materials, such as a FEP (fluorinated ethylene propylene) tube, phase wrapping is clearly
visible as a dense amplitude modulation. For cleared biological samples we have not ob-
served dense amplitude modulation and, for all practical purposes, the wrapping prob-
lem is absent. Even for uncleared samples with 0.5 mm of birefringent tissue, phase
wrapping is absent for birefringence lower than ne −no = 6 ·10−4, which is still smaller
than the typical birefringence of uncleared tissue [7].

For application outside of biomedicine, the wrapping of δ places a practical limita-
tion on the amount of birefringence and/or the maximum sample thickness that can be
imaged using conventional reconstruction. In principle, the correct projection and re-
construction can be retrieved in case the linearity requirement is violated using a mod-
ified unwrapping procedure based on the forward model. However, further research is
needed for application of this procedure on experimental data.
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4.6.3. ABSOLUTE QUANTIFICATION OF BIREFRINGENCE

A limitation of the current method is that the polarization contrast is qualitative. Ab-
solute quantification of the birefringence is challenging as the magnitude of the signal
is dependent on the incident field distribution, sample optical absorption, the light to
electron conversion, and the fiber orientation. In principle the first three factors can be
divided out using a reference measurement, e.g., from the amplitude of the parallel po-
larization state projection. A further complication comes from the tomographic angle
dependence of δ that causes a modulation outside of a continuous region of birefrin-
gence. In case the macroscopic assumption of uniform birefringence across a region
does not apply, but the fiber orientation changes significantly on small length scales this
may cause reconstruction artifacts. The case for quantitative birefringence tomography
(quantification of optic axis, ne , and no) is more complicated as it requires more infor-
mation per projection angle and a non-linear inversion scheme. This is outside of the
scope of the current work.

4.6.4. APPLICABILITY OF THE UNIAXIAL MODEL

The analysis and simulations in this paper are based on the assumption of uniaxial bire-
fringence. The uniaxial model is a simple and widely used model in polarization mi-
croscopy, and applicable to fibrous structures such as myelin, elastin, and collagen. The
fiber orientation as is present in the uniaxial model would be of importance to extract
from the data. Further research is needed to determine whether fiber orientation can be
retrieved in 3D, for example by performing more measurements under different input
polarizations and using a full vectorial reconstruction [19].

Although the uniaxial model works for a large class of tissues, some types of tissues
exhibit biaxial birefringence [20]. In addition, in some voxels there may be overlapping
tissue fibers. Incorporating this in the tomographic reconstruction requires a more elab-
orate model and is a topic for further research.

4.6.5. CONCLUSION

We demonstrated 3D polarization contrast ODT. The developing muscle tissue in the
tail of the zebrafish larva is known to be birefringent and cannot be discerned in con-
ventional phase contrast ODT reconstruction. By illuminating the sample with a single
polarization input state and measuring both the parallel (for the phase) and the orthog-
onal component (for the polarization contrast) with digital holography a conventional
and polarization contrast ODT reconstruction of the same object can be obtained.
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Here we present main conclusions of the work presented in this thesis and recommen-
dations for further research.

5.1. DEPTH INFORMATION FROM 2D DATA
Absolute distance measurement using light is a challenging problem. Generally, the dis-
tance from a sample to the sensor cannot be quantitatively and directly derived from a
single image. This is due to the fact that in classical imaging, the mapping from object to
image is only related to the lateral coordinates. The axial coordinate of the light source
is lost in the imaging process. The time-of-flight is in principle suitable for measuring
absolute depth, but it can in general not be measured directly due to the high speed of
light. Techniques such as phase shifting interferometry can measure relative depth in
the sample for depth differences in the order of the wavelength by using the phase infor-
mation of the object scattered wave. In this case the phase is used in a direct way, as for
small depths the phase shift is linear with respect to the sample height. For larger depth
differences phase wrapping occurs, but these still can be reconstructed using phase un-
wrapping if the object profile varies in a continuous way. However, in practice objects
can have a rough and discontinuous surface. In this case, only relative depth can be ob-
tained. Plenoptic imaging is a technique that captures the intensity of a scene as well as
the direction that the rays are travelling through space. From this also depth informa-
tion can be reconstructed, however little is known about the axial resolution and it has
not been widely used as a tool for metrology.

We demonstrated that absolute depth reconstruction is possible while imaging in full
field from a set of phase shifted images with depth resolved digital holography. This
method also works when the depth profile does not vary continuously but step wise.
For our method, the step size in depth of the sample is not restricted to be within the
wavelength. A 100 micrometer axial resolution was achieved using a simple Michelson
interferometer holography setup, without magnifying optics. Instead of using the ob-
ject phase directly, the wave is numerically propagated. This is done with the complex
amplitude of the field that is obtained using digital holography. By evaluating the focus
at each propagation step, a focus metric as a function of propagation distance is ob-
tained. For rough reflecting samples, the distance where the metric peaks directly gives
the absolute distance from object to sample (assuming a plane reference wave). With an
analytic model based on the description of the Talbot effect, it was possible to estimate
the theoretical axial resolution of this method.

Depth-resolved digital holography is essentially a coherent version of the focus varia-
tion microscope (FVM). Coherence in depth-resolved digital holography enables the re-
construction of depth from a single image, since the complex wavefield can be retrieved.
With the FVM, the distance between lens and sample is varied and the focus metric is
evaluated at each distance. Thus, depth-resolved digital holography is potentially faster
since it does not require mechanical scanning. However, optimizing the sample illu-
mination is more challenging for depth-resolved digital holography. In direct backscat-
tering geometry of a planar object the method worked well, but at slight tilt angles the
captured reflection was weak. To obtain good depth resolution, the sample is ideally
illuminated from different angles. In FVM, this is achieved by positioning LED’s in a



5.2. SENSITIVITY AND CONTRAST IN LARGE SCALE ODT

5

75

ring (ring illumination). The separate LED’s are not required to be mutually coherent for
FVM. In depth resolved digital holography, illumination with different sources is not triv-
ial because the sources are not generally mutually coherent as required to obtain digital
holograms. A possible improvement in this regard could be to include a diffuser in the
object arm in a Mach-Zehnder setup to create more diffuse illumination. This can make
the method applicable to a more general class of objects, even those with less roughness
or objects with different shapes or tilts.

The depth resolution of the method is limited by the highest lateral spatial frequency
that can be sampled by the sensor. Therefore, using a camera with a smaller pixel pitch
will improve the axial resolution of depth resolved digital holography, but at the same
time limits the field of view. Another way to improve axial resolution is by using magni-
fying optics in the object arm to capture higher spatial frequencies. This will reduce the
field of view, but this can be compensated by using a larger sensor.

In our study the sample depth was estimated by finding the maximum of the focus
curve. This does not utilize other properties of the focus curve such as the peak width
and shape. The method could further benefit from signal processing as applied in FVM,
where a polynomial or point spread function is fitted to the focus curve to enhance the
axial precision.

5.1.1. APPLICATIONS OF DEPTH-RESOLVED DIGITAL HOLOGRAPHY

There are still significant challenges for depth resolved digital holography before it can
find its way in an industrial application. Among the challenges discussed are improv-
ing illumination conditions and improving axial resolution by benefiting from more op-
timal signal processing. Improving resolution by including magnifying optics is more
straightforward. The most obvious application of depth resolved digital holography is
a coherent version of FVM. This would eliminate the need to perform through-focus
scanning needed in FVM. This means that it is not necessary to capture multiple im-
ages with different focus and that the sample does not have to be moved with respect to
the optics. Since FVM is commonly used in a stable setting, the vibration sensitivity of
the holographic system does not have to pose a problem in this regard. In combination
with magnifying optics, depth-resolved digital holography has the potential to become a
non-scanning counterpart of FVM. Similar to FVM, depth-resolved digital holography
can have applications in dimensional metrology and height measurements of planar
samples such as for example used in integrated circuits manufacturing, or evaluation
of surface topography parameters [1].

5.2. SENSITIVITY AND CONTRAST IN LARGE SCALE ODT
5.2.1. ODT SENSITIVITY IMPROVEMENT

In this thesis we have shown high sensitivity optical diffraction tomography imaging. We
have used various experimental methods to reduce the noise and thus increase the sen-
sitivity. These methods are generally applicable in ODT and do not depend on specific
experimental equipment. First of all, subtraction of a reference phase reduces coherent
noise in the projection. Second, off-axis placement of the sample further reduces coher-
ent noise in the reconstruction. Third, the acquisition of a large number of projections
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reduces incoherent noise.
The source of the noise (coherent or incoherent) makes a difference in how the qual-

ity of the tomographic reconstruction is affected. Coherent speckle noise reduction deals
with static coherent noise. Since the speckle noise is static, it will be present identically
in each projection. Furthermore, the static speckle field will coherently interfere with
the object and reference wave fields at the sensor. Incoherent noise (such as shot noise)
does not interfere with the wave fields and varies randomly per projection. Mathemati-
cally the digital hologram then can be represented as

I (x, y) = ∣∣O(x, y)+R(x, y)+Uspeckl e (x, y)
∣∣2 +ε(x, y)i ncoher ent , (5.1)

with Uspeckl e (x, y) the static speckle field and ε(x, y)i ncoher ent the incoherent noise. There
is still room for further improvement of the sensitivity by reduction of both noise types,
as we will outline here.

SPECKLE NOISE REDUCTION

One way to reduce speckle noise is to use partially coherent illumination (PCI). PCI can
be achieved by reducing the spatial coherence of the light source by inserting a rotating
diffuser after the laser. This makes both the reference and the object wave to have dy-
namic speckle patterns on the detector. When the integration time of the camera is set
to a value larger than (a fraction of) the period of rotation, the intensity variations in the
static speckle field are eliminated. A phase sensitivity improvement of a factor 10 for a
single projection is reported with this method [2].

However, as has already been demonstrated by Kostencka et al. [3] and in this thesis
the effect of speckle noise can be mitigated by placing the sample off-axis with respect
to the center of rotation. Thus, at off-axis positions the effect of speckle noise will be
smaller. The question then arises whether speckle noise reduction in the projections
(while placing the sample off-axis) reduces the noise in the tomographic reconstruction.
We simulated the tomographic reconstruction from phase reconstructions from the holo-
gram in Eq. (5.1) in the presence of speckle noise. The incoherent noise term is set to
zero. We use a wavelength of 633 nm and a pixel pitch of 10 µm. The object we consider
is a homogeneous transparent cylinder (5 mm diameter) with RI difference ∆n=0.0005
with respect to the background, although the value of ∆n was found not to influence
the outcome of the simulation. The speckle field Uspeckl e (x, y) in Eq. (5.1) is given by
Uspeckl e (x, y) = Aspeckl e (x, y)·e iφspeckl e (x,y) . For simplicity, we set the standard deviation of
φspeckl e (x, y) across the (x, y)-plane to zero, and consider only amplitude speckle. This
is modeled by assuming a normally distributed random value over Aspeckl e (x, y), with
a standard deviation σspeckl e and zero mean [4]. Since the speckle field is static, we
assume it to be identical for each projection. The phase is reconstructed from the simu-
lated digital hologram using least squares phase unwrapping [5]. The phase projections
are then combined in a sinogram and reconstructed using an inverse radon transform.
We then compare the noise in the tomographic reconstruction as a function of the num-
ber of projections for speckle amplitude noise σspeckl e = 0.3 and σspeckl e = 0.03 in the
absence of incoherent noise. This simulates a 10-fold reduction in speckle noise as re-
ported by [2]. The results of this simulation are shown in Fig. 5.1.
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Figure 5.1: Comparison of tomographic reconstructions for high and low coherent noise in the digital holo-
gram (σspeckl e = 0.3 and σspeckl e = 0.03 respectively) as a function of the number of projections. Static
speckle noise is put to zero. Both the on (a) and off-axis (b) cases are shown for comparison. The improve-
ment as a result of low coherent noise is indicated as the green-shaded area.

The simulation results indicate that both on and off-axis placement of the sample
benefit significantly from speckle noise reduction in the absence of incoherent noise.
The relative improvement due to speckle noise reduction is higher in the on-axis case as
expected, but still significant in the off-axis case (roughly a factor 6 improvement). Thus,
speckle noise reduction by off-axis placement of the sample can be further enhanced by
speckle noise reduction in the phase projections. It must be noted that this assumes a
coherent noise limited system. If incoherent noise is not reduced simultaneously, inco-
herent noise will become the dominant factor and further speckle noise reduction may
not yield significant improvement.

INCOHERENT NOISE REDUCTION

A next step for sensitivity improvement is to decrease the incoherent noise. One way to
do this is to record a number of frames and average these. By averaging 10 frames, an
improvement of roughly 3 times ( σp

N
) is reported by [6]. We investigate how much this

noise reduction in a single projection can reduce the noise in tomographic reconstruc-
tion by comparing incoherent noise levels σi c = 0.3 and σi c = 0.1. The incoherent noise
is generated independently from projection to projection, in contrast to the coherent
speckle noise in the previous case. We set the static speckle noise to zero. The results
are shown in Fig. 5.2 for the on and off-axis cases. In the absence of coherent noise, it
appears to make no difference whether the sample is placed on or off-axis in terms of
reconstruction noise.

For incoherent noise reduction in the projections of a factor 3 (in the absence of co-
herent noise), the reduction leads to an improvement of roughly a factor 3 both from on
and off-axis placement at 1000 projections. This suggests that the sensitivity improve-
ment in tomographic reconstruction is proportional to the noise reduction in the pro-
jections, and significant tomographic noise reduction is thus possible with this method.
Again, it must be noted that this is in the absence of coherent noise. If coherent noise is
not reduced simultaneously, the effect of incoherent noise reduction may be mitigated.
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Figure 5.2: Comparison of tomographic reconstructions for high and low incoherent noise in the digital holo-
gram (σi c = 0.3 and σi c = 0.1 respectively) as a function of the number of projections. Both the on (a) and
off-axis (b) cases are shown for comparison. The improvement as a result of low incoherent noise is indicated
as the green-shaded area.

Other methods exist to reduce incoherent projection noise even further, but these
can require expensive hardware modifications. For example, the use of more laser power
reduces incoherent noise but requires a camera with a larger well depth. This can lead
to an improvement of the phase accuracy up to a factor 5 in sensitivity [6] in a single
projection.

From the preceding, we can conclude that both coherent and incoherent noise con-
tributions must be tackled independently in order to improve the sensitivity in the to-
mographic reconstruction. Otherwise, noise reduction will be limited by the coherent
noise despite efforts to reduce incoherent noise, and vice versa. This is shown in Fig. 5.3,
where the reconstruction noise σ is simulated on and off-axis as a function of coherent
noise with different cases of constant incoherent noise (a) and vice versa (b). The num-
ber of projections for the tomographic reconstruction is 1000, with all other simulation
parameters identical as before.. The slope in Fig. 5.3 (a) gives the change in reconstruc-
tion noise as a function of coherent projection noise. Since coherent noise affects the
center of rotation more than the off-axis area, the slope is highest for the on-axis curves.
Another point from Fig. 5.3 (a) is that for small values of σcoher ent , the reconstruction
noise becomes limited by the incoherent projection noise. This can be seen by the higher
offset of the purple off-axis curve where incoherent noise is present, as compared to the
red curve. This confirms the idea outlined earlier that at some point, further reduction
of coherent noise is not effective and further reduction is possible by reduction of inco-
herent noise independently. Figure 5.3 (b) shows the same principle, but then with inco-
herent and coherent noise interchanged. The off-set of the purple curve (off-axis in the
presence of incoherent noise) shows that reducing incoherent noise in the phase pro-
jections does not yield further improvement at some point. Only when coherent noise
is reduced independently (red off-axis curve), a further step in noise reduction can be
made. Another interesting feature of Fig. 5.3 (b) is that in the presence of coherent noise,
incoherent noise reduction is not effective for the on-axis case (yellow line). Thus, for
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Figure 5.3: (a): Reconstruction noise σ as a function of the coherent projection noise σcoh for different sce-
nario’s. (b) Reconstruction noise σ as a function of the incoherent projection noise σi c for different scenario’s.

incoherent noise reduction (e.g. through averaging projections) to be effective in the
presence of coherent noise, off-axis sample placement should be considered.

5.2.2. APPLICATIONS OF LARGE SCALE HIGH SENSITIVITY ODT
In this thesis we have applied optical diffraction tomography (ODT) to a millimeter-
sized zebrafish-larva. The zebrafish is a well-known and studied model, and we could
compare the imaging results with optical projection tomography (OPT) reconstructions.
Furthermore, the zebrafish larva itself is suitable for testing of large scale ODT, since
the larva consists of clearly separated regions with different refractive indices (RI’s). For
example the brain, eyes, spine and yolksack all have different RI’s and are spatially sep-
arated. The question arises whether large scale ODT has applications in other kinds of
biological samples. To that end we already imaged an adult zebrafish heart that was
cryo-injured. Biologists study zebrafish heart recovery by estimating the volume of the
injured part relative to the total volume. This is done by cutting the tissue into thin slices.
By estimating the relative injured area per slice, the total relative volume is estimated.
We furthermore demonstrated that with large scale ODT, relative volume estimation can
be done digitally with the 3D dataset without cutting the tissue. This potentially saves
significant labour, amount of resources and time. We demonstrated automatic segmen-
tation of the injured area on a single slice; the next step in this regard is to apply 3D image
segmentation to further speed up this process.

Another potential application is in imaging human tissue where ODT has mainly
been applied to imaging at the cellular level. To the best of our knowledge millimeter-
sized volumes of human tissue have not been studied with ODT before. In order to
demonstrate the viability of large scale ODT on human tissue, we applied our technique
to human prostate tissue taken after clinical biopsy or surgery. Prostate specimens are
generally evaluated with high resolution microscopy in the form of mechanically sliced
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Figure 5.4: (a)-(b): Two virtual cross-sections of a optically cleared clinical prostate specimen imaged with
ODT; (c) 3D rendering of the reconstruction; (d) H&E-stained histology image of a slice of the same sample.

thin tissue sections. These sections are stained with haematoxylin and eosin stain (H&E-
stain). With this stain, the general layout and distribution of cells can be studied and
it provides a general overview of tissue structure with nuclei and extracellular material
having a different color. However, since this gives only 2D-structural information of a
limited number of slices, little is known about 3D architectural features of prostate tis-
sue and prostate cancer. 3D-microscopic analysis of prostate specimens has been per-
formed by Royen et al. [7] using confocal microscopy on optically cleared tissue. Struc-
tures up to a depth of 800 µm were visualized using fluorescence contrast. Large scale
ODT operates in transmission and can thus achieve greater imaging depth than confocal
microscopy and image intrinsic RI contrast. We obtained intact fresh and formalin-fixed
paraffin-embedded (FFPE) clinical prostate specimens that have been optically cleared
from Erasmus Medical Centre (EMC). The sample dimensions were in the order of sev-
eral millimeters. ODT images are shown in Fig. 5.4. For comparison, a HE-stained image
from a slice of the same sample has been included in Fig. 5.4 (d). The results show that
ODT is a method to do label free imaging with a tissue thickness up to a factor 5 of what
was previously done using confocal microscopy. This offers potential new insights in
large scale 3D structures of human prostate tissue that was not accessible before. Fur-
ther research can be done to investigate how these structures change in the presence of,
for example, different grades of prostate cancer.
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5.2.3. POLARIZATION CONTRAST

In chapter 4, we demonstrated that 3D polarization contrast imaging is possible within
the framework of large scale ODT. We also pointed out the main limitation of this method.
The contrast mechanism becomes non-linear when the rotation of the polarization is
not small (δ < π), and thus tomographic reconstruction through inverse radon trans-
form does not give accurate results without proper signal processing. This places a re-
striction on the samples that can be imaged. The developing muscle tissue of an opti-
cally cleared zebrafish larva could be imaged with our method as the phase difference δ
is sufficiently small. However, a FEP-tube (Fluorinated Ethylene Propylene) could not.
Although the FEP-tube is transparent and can be RI matched with water, its strong bire-
fringence causes a large rotation of the polarization when the light propagates through
this millimeter sized sample. This is clearly apparent in the reconstructed intensity pro-
jection in Fig. 5.5 where the intensity is modulated due to the rotation of the polariza-
tion across the FEP-tube. We also applied polarization contrast ODT on millimeter-sized
clinical prostate tissue samples and found a similar effect. From single crossed-polarizer
projections it was clear that the tissue contained highly birefringent structures. In both
cases, standard tomographic reconstruction generated an image with little contrast due
to the large rotation of the polarization.

The question arises how the tomographic reconstruction procedure must be modi-
fied to incorporate the non-linearity of the contrast mechanism. In chapter 4, we already
showed that the general case of polarization contrast tomographic reconstruction can be
approached as a modified phase unwrapping problem. The polarization rotation is en-
coded in the amplitude as a wrapped signal. We demonstrated through simulation that
by approaching the problem in this way, contrast can be reconstructed even when the
polarization rotation is no longer small. Our approach takes into account the physical
forward model by which a projection is formed, i.e. that the amplitude on the detector
scales with |sin(δ2 )|, where δ is the phase shift between the two orthogonal polarizations.
Only for small δ can this be approximated as a linear relation. Moreover, when the phase
difference δ is even larger, the birefringence cannot be unambiguously determined and
must be unwrapped.

In addition to the non-linear relation of the birefringence with the projection am-
plitude, another complication is that the amplitude is also modulated by several other
factors:

• The illumination amplitude A(x, y) varies spatially across the detector in the gen-
eral case of non-uniform illumination. We thus reconstruct |A(x, y)sin(δ2 )|, and
A(x, y) must be corrected for. This is analogous to correcting for the background
phase in the case of phase contrast, by removing the sample and only measuring
the background phase. However, the term A(x, y) cannot be measured directly
since if we remove the sample in the crossed-polarizer configuration, there is no
signal behind the second (analyzer) polarizer.

• The sample itself can be (weakly) absorbing even in the case of cleared tissue. This
is an additional cause of amplitude modulation and can make quantitative analy-
sis of the amplitude difficult.
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Figure 5.5: Intensity projection of a FEP-tube reconstructed from a digital hologram; the intensity across the
tube is modulated due to the rotation of the polarization of the object wave across the tube.

• Local sample inhomogeneity’s can cause strong refraction. This can cause inten-
sity "hot-spots" on the detector, resulting in amplitude modulations that cannot
be directly related to the relative phase δ.

Although these issues are not very relevant for the current work on zebrafish imaging,
for extension of the method to a more broad set a samples they need to be addressed
and require further processing of the raw amplitude projections. The goal of such pre-
processing is to retrieve an amplitude projection where the only source of amplitude
modulation is the relative phase shift δ and additional scaling factors are removed.

The first challenge can be addressed by rotating the second polarizer to be parallel
to the first one, and capturing a reference image. Assuming that rotation of the polar-
izer does not induce a shift of the wavefield, the reference image yields a scaled version
c A(x, y) of the illumination amplitude. The constant c can be estimated by comparing
the reference image with the maximum-intensity in the crossed polarizer image. The
second challenge is more fundamental, as it requires knowledge of the object to correct
for. Attenuation contrast can however be reconstructed using the amplitude of the wave-
field that is measured with parallel polarizers. Attenuation can then be incorporated in
the reconstruction model, as a linear attenuation coefficient k in the projection [8]. In
this case, the constant k functions as a correction constant to normalize the amplitude
signal. The third challenge can be dealt with by applying a threshold to the amplitude
projections. Noise will still be a part of the image, however phase unwrapping algorithms
(such as the least squares algorithm used in this work) show that proper reconstruction
is still feasible with noisy images.

The development of a generalized reconstruction procedure for strongly birefringent
samples is in any case a challenge that will involve experimental as well as signal process-
ing efforts before it can be practically applicable. Even then, the results are most likely
to be qualitative rather than quantitative, since the reconstruction model at this point
does not take into account fiber orientation. Further research is needed to determine
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whether it is possible to retrieve this orientation and how. Most likely, this will involve
the use of generalized Jones matrices making the analysis considerably more complex, or
additional experimental efforts by measuring under different polarization angles. Even-
tually, fiber orientation could offer an additional contrast mechanism on its own and
provide insight in the organization of muscle or brain tissue.
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SUMMARY

Optical imaging is the imaging of objects with visible light. It is a tool often used for di-
agnostic purposes, such as in biomedical and material sciences. Digital holography is an
optical imaging technique that captures and images the amplitude as well as the phase
(the complex amplitude) of the lightwave. An advantage is that the complex amplitude
can be calculated in different propagation planes. The goal of this thesis is to use digital
holography to image depth of a reflecting surface as well as make 3D images of biological
samples, and to contribute to the theoretical understanding in this regard.

First of all we show, with a Michelson digital holography setup, that depth resolved
imaging can be achieved of a rough reflecting surface, without physically scanning through-
focus. We do not use any lenses for the actual imaging (lens free imaging). Furtermore,
the setup is simple in terms of components. The method can image a surface of roughly
half a centimeter by half a centimeter with a depth resolution of 100 micron. This is a
significant improvement with respect to previous research in this regard. We achieve
this improved depth resolution by introducing a phase-shift in the reference arm, in
combination with using a pellicle beam-splitter. By introducing a phase-shift in subse-
quent captures and combining these later, a higher lateral and depth resolution can be
achieved. We also present a theoretical framework to understand the depth-resolution of
this method. We achieve this by describing the depthresolution in terms of the Talbot-
effect. This effect occurs when light falls on a periodic diffraction grating. The image
of this grating will repeat itself (self imaging) at certain propagation-distances from the
diffraction grating. By treating the variance as a function of propagation distance of each
spatial frequency separately and eventually summing these, we can calculate an overal
focus-curve. The maximum of this focus-curve corresponds to the distance/depth of
the object with respect to the detector in case the reference wave is a plane wave. Since
the depth-resolving method depends on spatial frequencies in the reconstruction, the
method only works when there is texture or roughness on the surface that is to imaged.
Because this method does through-focus scanning numerically and not physically (e.g.
by scanning the lens), this method can be useful when surfaces must be characterised
fast or when absolute distance measurements are needed.

Secondly, we apply digital holography in combination with tomography to image a
relatively large piece of tissue (in the order of 1 mm) in 3D with phaseconstrast. This
is significantly larger than has been achieved so far using optical phase tomography. We
use a Mach-Zehnder holography setup in transmission. The light that travels through the
sample undergoes a phase modulation, which can be reconstructed with digital hologra-
phy. By repeating this from multiple illumination angles a 3D phase contrast image can
be reconstructed using computed tomography. We apply this to a zebrafish larva. This
is a relatively large sample for optical phase tomography. The sample is therefore first
made transparent using optical clearing in a benzyl-alcohol benzyl-benzoate solution.
This homogenises the refractive index of the sample, reducing the light scattering. The

85



5

86 SUMMARY

consequence however is a strong reduction of the phasecontrast. The influence of noise
is then much larger and pollutes the image reconstruction, and as a result the zebrafish
larva is hardly discernible. In order to avoid this problem, we place the sample off-axis
with respect to the tomographic rotation axis. The fact that the object will now be out
of focus for part of the rotation we compensate by tracking the in-focus position of the
sample. We then numerically refocus so that the object will be in focus for all rotation
angles. The result is that coherent speckle noise is strongly reduced. We also increase
the number of projections to reduce the incoherent noise. We demonstrate that this
approach makes it possible to image samples of several millimeters in 3D with phasec-
ontrast. We furthermore demonstrate clinically relevant applications of this technique,
such as imaging a cryo-injured zebrafish heart. The tissue regenerates after injury. Using
optical phase tomography it is possible to image the heart and injured part in 3D, and
also to determine the volume of the injured area. We also demonstrate the technique
on prostate tissue samples of several millimeters and successfully reconstruct 3D phase
contrast images of internal structures in the tissue. The method thus enables label-free
imaging of structures in large scale biological samples. A limitation is the large amount
of data needed to reconstruct an image with low noise levels and high resolution.

Finally we demonstrate combined phasecontrast and polarisationcontrast 3D to-
mography on a zebrafish larva. This combination is possible by capturing, besides the
phase, also the amplitude of the wavefield. Certain types of tissue like muscle-tissue in a
zebrafish tail are birefringent. The polarisation of the lightwave going through the sam-
ple undergoes a change as a result. This can be made visible using the amplitude of the
wavefield by introducing cross-polarizers in the sample-arm before and after the sam-
ple. Only the light that travelled through birefringent tissue and changed its polarisation
reaches the camera. In a digital holography setup we thus measure the projection of the
amplitude as well as the phase. By measuring the projections from different angles and
applying tomographic reconstruction a 3D reconstruction can be made of the muscle-
tissue in the zebrafish tail. The polarisationcontrast image gives a significantly higher
signal-to-noise ratio compared to the phasecontrast reconstruction. We also provide a
theoretical analysis of the system (assuming uniaxial birefringence) and show that there
are several non-linear dependencies in the signal. The most limiting of these is the rela-
tive phase-shift between the two polarisation states of the lightwave. If this becomes too
large because of the thickness and/or strong birefringence of the sample, no meaning-
ful image-reconstruction of the sample can be made using conventional reconstruction
techniques. Using knowledge of the physical forward model, under certain assumptions
a correct projection can be retrieved in principle, which we demonstrate in simulation.
The non-linearity as a result of the tomographic angle causes a modulation in the back-
ground of the reconstruction, but does not cause modulation in the reconstruction of
the birefringent sample itself and therefore does not pose a problem for qualitative re-
construction of a single homogeneous object. For absolute quantification of the bire-
fringence, more information is needed per projection, as well as a non-linear inversion
scheme. This research demonstrates that in combination with phasecontrast tomogra-
phy, also polarisationcontrast tomography is possible, and that the same benefits (such
as numerical focusing) apply.



SAMENVATTING

Optische beeldvorming is het afbeelden van objecten met zichtbaar licht. Het is een
middel dat veel gebruikt wordt voor diagnostische toepassingen, zoals in de biomedi-
sche wetenschappen en materiaalonderzoek. Digitale holografie is een optische beeld-
vormingstechniek die zowel de amplitude als de fase (de complexe amplitude) van de
lichtgolf vastlegt en afbeeldt. Een voordeel hiervan is dat een afbeelding op verschil-
lende dieptes uitgerekend kan worden. Het doel van deze thesis is om digital holografie
te gebruiken om zowel diepte van het oppervlakte van een reflecterend object af te beel-
den als 3D afbeeldingen te maken van biologische objecten, en een bijdrage te leveren
aan het theoretische begrip hiervan.

Allereerst laten we, met een Michelson holografie opstelling, diepte-opgeloste beeld-
reconstructie zien van een ruw reflecterend oppervlak, zonder fysiek door-focus te hoe-
ven scannen. We gebruiken geen lenzen om af te beelden ("lens-free imaging"). De op-
stelling is verder simpel qua componenten. We kunnen een oppervlak van ongeveer een
halve centimeter bij een halve centimeter afbeelden en behalen een diepte-resolutie van
100 micron. Dit is een significante verbetering ten opzichte van voorgaand onderzoek.
De hogere diepte resolutie behalen we onder andere door het introduceren van een fa-
severschuiving in de referentie-arm, in combinatie met het gebruik van een membraan
bundelsplitser. Door een faseverschuiving te introduceren in opeenvolgende opnames
en deze later te combineren, kan de laterale en diepte resolutie verhoogd worden. Tevens
laten we ook een theoretisch kader zien waarin de diepte-resolutie van deze methode
begrepen kan worden. Dit doen we door gebruik te maken van een beschrijving van de
diepteresolutie in termen van het Talbot effect. Dit effect treedt op wanneer licht op een
periodieke diffractietralie valt. De afbeelding van deze diffractietralie zal zich dan herha-
len op gezette propagatie-afstanden van de diffractietralie. Door de variantie als functie
van de afstand van elke spatiële frequentie afzonderlijk te beschouwen en uiteindelijk
te sommeren, kunnen we een zogenaamde focus-curve berekenen. Het maximum van
deze curve correspondeert met de afstand van het object tot de detector. Aangezien de
methode afhankelijk is van spatiële frequenties in de reconstructie, werkt deze methode
alleen wanneer er sprake is van structuren of ruwheid op het af te beelden oppervlak.
Doordat bij deze methode het door-focus scannen numeriek gebeurt en niet fysiek, kan
het bruikbaar zijn wanneer oppervlakten snel gekarakteriseerd moeten worden of wan-
neer absolute afstandmetingen nodig zijn.

Vervolgens passen we digitale holografie toe in combinatie met tomografie om een
relatief groot stuk weefsel (in de orde van 1 mm) in 3D af te beelden met fasecontrast. Dit
is significant groter dan toe nu toe met fasetomografie bereikt werd. Het licht dat door
het object gaat ondervindt een fase modulatie. Met digitale holografie kan een projec-
tie van de fase worden bepaald. Door dit te doen vanuit meerdere hoeken kan een 3D
fasecontrast afbeelding gereconstrueerd worden met behulp van computer tomografie.
We passen dit toe op een zebravis larve. Dit is een relatief groot object voor optische
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fasetomografie. Het object is daarom eerst opgehelderd door het te laten rusten in een
benzyl-alcohol benzyl-benzoaat oplossing. De brekingsindex van het object wordt hier-
door gehomogeniseerd waardoor de lichtverstrooiing afneemt. Dit heeft echter als ge-
volg dat het fasecontrast sterk vermindert. De invloed van ruis is dan veel groter en ver-
vuilt dan de beeldreconstructie waardoor de zebravis larve nauwelijks te onderscheiden
is. Daarom plaatsen we het object op enige afstand van de tomografische rotatieas, en
compenseren we het feit dat het object dan uit focus is gedurende een deel van de rotatie
door de in-focus positie van het object te meten. Vervolgens kunnen we het object digi-
taal herfocuseren en het in focus afbeelden voor alle rotatiehoeken. Dit heeft als gevolg
dat de coherente (spikkel) ruis sterk gereduceerd wordt. Tevens verhogen we het aantal
projecties om de incoherente ruis te verminderen. We laten zien dat met deze aanpak
het mogelijk is om objecten in de orde van een milimeter in 3D af te beelden met fase-
contrast. We demonstreren tevens een klinisch relevante toepassing met deze techniek,
namelijk het afbeelden van een zebravishart dat beschadigd is door zogenaamde cryo-
injury. Het weefsel herstelt zich na deze beschadiging. Middels fasetomografie kunnen
we het geregenereerde deel in 3D te reconstrueren, en tevens het volume ervan bepa-
len. Ook demonstreren we de techniek op prostaat weefsel, en blijkt het mogelijk stukjes
weefsel van meerdere millimeters in 3D af te beelden met goed fasecontrast. De me-
thode heeft de potentie om zonder labelen structuren in grootschalige biologische ob-
jecten te reconstrueren. Een beperking is de grote hoeveelheid data die nodig is voor een
reconstructie met lage ruis en hoge resolutie.

Als laatste demonstreren we gecombineerde polarisatiecontrast en fasecontrast 3D
tomografie op een zebravis larve. Deze combinatie is mogelijk door naast de fase ook de
amplitude van het golfveld mee te nemen in de reconstructie. Bepaalde type weefsels,
zoals spierweefsel in de staart van de zebravis larve, zijn dubbelbrekend. De polarisa-
tie van de lichtgolf die door het object gaat ondergaat daardoor een verandering. Dit
kan zichtbaar gemaakt worden met de amplitude van het golfveld door gekruiste pola-
risatie filters voor en na het object te introduceren; enkel het licht wat door dubbelbre-
kend weefsel is gegaan en daardoor van polarisatie is veranderd bereikt de camera. In
een digitale holografie opstelling meten we zodoende de projectie van zowel de fase als
de amplitude. Door deze projecties voor verschillende hoeken te meten en tomografi-
sche reconstructie toe te passen kan hiermee een 3D reconstructie gemaakt worden van
het spierweefsel in de staart van de zebravis. De polarisatiecontrast reconstructie geeft
een significant hogere signaal-ruis verhouding dan de fasecontrast reconstructie. Tevens
doen we een theoretische analyse van het tomografische polarisatiecontrast (onder de
aanname van uniaxiale dubbelbrekendheid) en laten we zien dat er verschillende niet-
lineaire afhankelijkheden zijn in het signaal. De meest beperkende hiervan is de rela-
tieve faseverschuiving tussen de twee polarisatietoestanden van de lichtgolf. Als deze te
groot wordt door de dikte en/of sterke dubbelbrekendheid van het object kan er geen be-
tekenisvolle 3D afbeelding gemaakt worden met behulp van conventionele reconstructie
technieken. Met kennis van het fysische voorwaartse model demonstreren we in simu-
latie dat onder bepaalde aannames een correcte projectie achterhaald worden. De niet-
lineariteit als gevolg van de tomografische hoek zorgt welliswaar voor een modulatie in
de achtergrond van de reconstructie, maar zorgt niet voor modulatie in de reconstructie
van het dubbelbrekende object zelf en vormt daarom geen probleem voor kwalitatieve



SAMENVATTING

5

89

reconstructie van een enkel homogeen object. Voor absolute kwantificering van de dub-
belbrekendheid is echter meer informatie nodig per projectie, evenals een niet-lineair
inversieschema. Dit onderzoek laat zien dat in combinatie met fasecontrasttomogra-
fie ook polarisatietomografie mogelijk is, en dat van dezelfde voordelen (zoals numeriek
herfocussen) gebruik gemaakt kan worden.
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