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Abstract
Large scale, highly sensitive and specific diagnostic tools are needed to eliminate the transmission of
schistosomiasis. This report expands upon the novel approach from M. Hoeboer and P.M. Nijman.
Their Smart Optical Diagnostic Of Schistosomiasis device (SODOS), combining the principles of flow
cytometry and digital holography, was able to detect schistosomiasis haematobium eggs in a 10 ml
urine sample. However the mechanical complexity made it difficult to control the flow and more than
650 frames needed to be processed for each sample. The reason for this was the small flow cell
volume examined within each frame. This report shows it is possible to increase the volume while
maintaining the required resolution for accurate diagnosis. The size of the volume is limited by the
sensor’s pixel pitch, the sensor area, the shutter time of the sensor, the thickness of the volume, the
density of particles and to a lesser extent the distance of the volume to the sensor and the wavelength
of the source. The density of particles in combination with the thickness of the volume proved to be
the main limiting factors. With to many particles the scattered light causes a cloudy, speckle pattern on
the sensor, which does not give the desired resolution upon reconstruction. By using a 24MP APS­C
CMOS colour sensor, present in the Canon EOS M50 camera, in combination with a larger volume
it was possible to reconstruct eggs throughout 1.5 ml of urine using a single frame, decreasing the
total required number of frames to 7. The volume thickness was 5 mm. Increasing the thickness to
analyse the required 10 ml of urine in a single frame was not feasible due to scattering. However when
immersing the eggs in a Phosphate­buffered saline solution a 14 ml volume, with a thickness of 43
mm, could be analysed successfully, showing the possibilities of implementing the technique in other
fields as well. The Fraunhofer particle field holography theory proved to be a valid model when making
predictions regarding the resolution throughout the volume as well as providing information on the axial
position of the particles.
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1
Introduction

Schistosomiasis, or bilharzia, is a decease caused by parasitic blood flukes. It is a neglected tropical
decease considered to be the second most important parasitic decease after malaria [5]. Estimates
show that in 2018 at least 290.8 million people required preventive treatment for schistosomiasis [6]. It’s
most prevalent in sub­Saharan Africa as 85% of the worldwide infected population lives there [7]. The
objective of the World Health Organisation (WHO) is to eliminate the transmission of schistosomiasis
[8]. For this to be met large scale, highly sensitive and specific diagnostic tools have to be developed.
There are two major forms of schistosomiasis, intestinal and urogenital, which are caused by five main
blood fluke species. The life cycle of the schistosoma species is shown in Fig. 1.1.

Figure 1.1: Life cycle of the schistosoma species [1].
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2 1. Introduction

This report focusses on the diagnostic stage of urogenital schistosomiasis caused by the Schistosoma
haematobium species. The presence of eggs is the standard way to diagnose schistosomiasis and the
current WHO standard procedure is by filtration and examination under a microscope [6]. This process
requires labour in filtering the urine, staining the filtration and manual counting under the microscope
as well as the availability of resources such as a lab technician, microscope and disposables. In a first
attempt to reduce these requirements my predecessors M. Hoeboer and P.M. Nijman made the Smart
Optical Diagnostic Of Schistosomiasis device (SODOS) [9][4]. This device combined the techniques
of flow cytometry and digital holography to detect the eggs. No lab technician, filtering, staining and
microscope were needed with this device. Hereby reducing the need for a trained lab technician and
the amount of disposables used. This promising device however had two important drawbacks. The
first is the fact that more than 650 frames had to be captured to analyse the urine sample. This presents
problems when processing the data. The reason for the large number of frames was due to the very
small volume which was analysed within each frame. Using a pump the urine was pushed through a
flow cell, where a sensor imaged the urine inside the flow cell. This leads to the second drawback:
the mechanical complexity of the device. In order to shoot good quality images a correct handling of
the liquid and control of the flow is necessary. When designing a diagnostic device for field use it is
preferred to have the number of parts which could need replacement reduced as much as possible.
From these two drawbacks the following research question arose:

What’s the maximum volume that can be analysed in a single frame using inline digital holog­
raphy in the diagnosis of urinary schistosomiasis?

The answer to this question will provide insight if the computational load can be decreased and if it
is possible to make a device which is able to scan the sample without the use of cytometry, decreasing
the mechanical complexity of the system. To answer the research question is to find the maximum
volume for which the resolution throughout the volume is still good enough to detect the schistosoma
eggs. To predict the resolution throughout the volume the formulas from the in­line Fraunhofer particle
holography theory (FPH) are used. The choice for the Fraunhofer model in combination with the in­line
setup is due to it’s simplicity and the fact that the eggs are so small (110­170 μm in length by 40­70
μm in width [1]) that the Fraunhofer regime is already applicable close to the sensor. The in­line setup
requires only a light source, sample and sensor, making it very interesting for field­implementation.
The Fraunhofer model on the other hand boils down to a Fourier transformation, making the formulas
elegant and easily applicable. As these formulas are derived for basic shapes such as spheres and
one dimensional line objects and the fact that these objects are assumed to be opaque, it is first shown
that the far­field fringe pattern of the eggs matches that of the opaque spheres. With this being the
case the formulas can be used to determine the axial location of the particles.

The report is built up as follows. First the relevant theory of holography, FPH and digital holography is
covered in Ch. 2. Then the work of my predecessors is analysed in Ch. 3. As they did not have the
time to fully implement a classifier for the final diagnosis step this chapter also presents my approach.
Ch. 4 shows that the far­field fringe pattern of the eggs matches that of the opaque spheres. Finally
Ch. 5 contains the results of several experiments. Experiments were done to gain understanding of
the FPH theory and the use of a colour sensor, as well as experiments with eggs immersed in large
volumes. Ch. 6 rounds of with several conclusions and proposals.



2
Theoretical Framework

2.1. Introduction
This chapter presents the underlying theoretical framework used throughout the whole report. Sec. 2.2
starts of with a brief explanation of the schistosoma eggs, followed by a short overview of holography in
Sec. 2.3. From this the theory of Fraunhofer particle holography [10] [2] is explained in Sec. 2.4. The
principles of Digital Holography are explained in Sec. 2.5. Here special attention will be given to the use
of a colour camera. Finally the topic of noise is covered in Sec. 2.6. Throughout the chapter several
parameters are introduced. Each of them having an effect on the resolution 𝑅. These parameters are
presented here as an overview:

– The optical distance of the particle tot the recording plane 𝑧

– The characteristic length of the particle 𝑑

– The number of particles 𝑁

– The depth of the volume 𝐿𝑣𝑜𝑙
– The cross­sectional area of the volume 𝐴𝑣𝑜𝑙 = 𝑤𝑣𝑜𝑙 ⋅ ℎ𝑣𝑜𝑙
– The area of the sensor 𝐴𝐶𝐶𝐷 = 𝑤𝐶𝐶𝐷 ⋅ ℎ𝐶𝐶𝐷
– The pixel pitch 𝑝

– The bit depth 𝑏

– The wavelength of the laser 𝜆

– The shutter­time 𝑡 and the laser power 𝑃, both governing the amount of light being recorded.

2.2. Schistosomiasis haematobium
As mentioned in the introduction, the resolution 𝑅 throughout the volume is what puts restraints on the
volume size. A S. haematobium egg as seen under the microscope is shown in Fig. 2.1. The eggs
range from 110­170 µm in length by 40­70 µm in width [1]. What is typical to the S. haematobium egg
is the clearly visible terminal spine at the end. Lab technicians use the terminal spine to distinguish
S. haematobium eggs from other similar shaped particles. Therefore the spine needs to be resolved
throughout the volume. For the experiments performed in the lab eggs were obtained from gut tissue
of hamsters infected with S. haematobium, in accordance with the project license that was approved
by the Dutch Central Authority for Scientific Procedures on Animals (CCD) (animal license number
AVD116002017106). The morphology and size of these gut­derived eggs represent those normally
seen in urine of infected humans. Pre­mature stages of the egg tend to also be present in these gut­
derived eggs. The interior of the eggs in these stages tend to be darker as the miracidium is not yet
mature [11].
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Figure 2.1: A S. haematobium egg as seen under a microscope [1]. The miracidium lives inside the shell. The terminal spine to
the right is a characteristic feature of the S. haematobium egg.

2.3. General overview of Holography
Holography was discovered by Gabor in 1948 [12]. Since then the theoretical framework has expanded
greatly and many articles and textbooks have been written on the topic [10] [13]. Holography can best
be understood as a coherent imaging technique where both the phase and amplitude of the object
light can be retrieved. This in contrast to photography where only the amplitude can be retrieved.
Retrieving the phase is what lets the viewer see the 3D structure of the object. The reason behind this
is the fact that the phase contains information on the objects 3D morphology. In photography only the
light scattering from the object is recorded as an intensity distribution on the recording medium. Lets
denote this scattered light wave as Ψ𝑜, the complex object wave. Then the intensity distribution on the
recording medium can mathematically be written as:

𝐼 = Ψ𝑜Ψ∗𝑜 = |Ψ𝑜|2 (2.1)

In this process the phase is lost due to multiplication with the complex conjugate of the object wave. To
retrieve the phase in holography interference is used. Interference works best for monochromatic light
sources. Hence holography is done with laser light. The laser light is split in two waves. The first wave
illuminates the object causing the scattered object wave (just like in photography). And the secondwave
directly illuminates the recording medium. The recording medium thus records the interference of two
waves. The second wave is called the reference wave, denoted as Ψ𝑟. This interference between the
object wave and the reference wave is what makes it possible to retrieve the full complex object wave.
And therefore retrieving the phase. For a fully coherent light source the interference is mathematically
written as:

𝐼ℎ𝑜𝑙 = |Ψ𝑜 +Ψ𝑟|2 = |Ψ𝑜|2 + |Ψ𝑟|2 +Ψ∗𝑜Ψ𝑟 +Ψ𝑜Ψ∗𝑟 (2.2)

Where 𝐼ℎ𝑜𝑙 is the intensity distribution imprinted on the recording medium. This recorded intensity is
what is called a hologram, hence the label 𝐼ℎ𝑜𝑙. The complex object wave can be seen in the fourth
term in Eq. 2.2. To retrieve this complex wave and see the 3D image the hologram is illuminated with
a beam identical to the reference beam used in the illumination of the object. This is mathematically
written as:

𝐼𝑟𝑒𝑐 = 𝐼ℎ𝑜𝑙Ψ𝑟𝑒𝑐 = |Ψ𝑜|2Ψ𝑟 + |Ψ𝑟|2Ψ𝑟 +Ψ∗𝑜Ψ2𝑟 +Ψ𝑜|Ψ𝑟|2 (2.3)

The first two terms in Eq. 2.3 are modified versions of the reference wave. These are grouped together
and called the DC­term. The fourth term is proportional toΨ0 and is the reconstructed object wave. The
third term containing the complex conjugate of the object wave is the wave resulting in the so­called
twin image.

2.4. Fraunhofer Particle Holography
In the previous section a general overview of holography was presented. This section focusses on a
specific form of holography: in­line Fraunhofer particle holography. In Fraunhofer particle holography
a volume, containing micro objects, is imaged. The objects are placed at such a distance to the sensor
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that the resulting hologram pattern is governed by the Fraunhofer diffraction formula. Particle hologra­
phy started with Thompson [14] in 1966 and 26 years later Vikram bundled all the research until then
in his book Particle Field Holography [10]. The most common and basic setup used, the in­line setup,
is covered in Sec. 2.4.1. Then in Sec. 2.4.2 the theory of Fraunhofer particle holography is explained.
The last section, Sec. 2.4.3, clarifies the distance 𝑧 used in all the formulas.

2.4.1. In­line Holography
There exist several types of holograms which can be grouped in two groups: on­axis (in­line) [12]
and off­axis holograms [15]. Depending on the setup used one can record the four terms in Eq. 2.3
overlapping or separate them spatially. The in­line setup, being the most simple setup, does not split
these terms. Due to its simple setup it is still a very popular method. It is also the setup mainly used in
particle holography [10]. The in­line setup, with a collimated beam, was used in the diagnostics device
of my predecessors and due to it’s simplicity and unit magnification will be used in this report as well.
In Fig. 2.2 the in­line setup is shown.

Figure 2.2: A schematic of the in­line setup used with Ψ𝑟 the complex reference wave, Ψ0 the complex object wave, 𝐴𝑣𝑜𝑙 the
cross­sectional area of the sample volume, 𝐿𝑣𝑜𝑙 the depth of the sample volume, 𝑝 the pixel pitch, and 𝐴𝐶𝐶𝐷 the area of the

sensor (in this case a charged­coupled device (CCD)).

A laser beam is collimated using a diaphragm and a lens. Collimation is not necessary. However,
when using a diverging beam the volume which is imaged decreases, whereas with a converging
beam, which would increase the volume, an extra lens needs to be added to converge the beam.
Collimation can be acquired with a built in lens in the laser or by placing the laser at a large distance to
the sample, reducing the need for extra parts. Continuing in Fig. 2.2, the beam illuminates the object,
in this case the sample volume containing the small particles, and the interference pattern is measured
at the recording plane, in this case a charged­coupled device (CCD). In in­line particle holography the
object wave is the light scattered of the particles and the reference wave is the light which passes by the
particles. For a good recording of the hologram enough light from the reference beammust be recorded.
A commonly accepted practical limit is that at least 80% of the light through the cross­sectional area
must be undiffracted [16]. Due to the fact that the object and reference wave are illuminating the sensor
under the same angle the different terms in Eq. 2.3 can not be separated from each other. Therefore
in in­line holography the first three terms deteriorate the image quality and are regarded as noise.

2.4.2. Fraunhofer particle holography model
Combining the in­line setup with a recording of the particles’ far­field pattern is the basis for the Fraun­
hofer particle holography model. Within this theoretical framework several formula’s will proof to be
useful when making predictions with the eggs. These formula’s are based on several assumptions
listed below:

1. The far­field requirement is met

2. The particles are opaque
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3. The particles are spherical and can be seen as thin planar objects (i.e. the diffraction occurs in
the plane of the object cross­section)

The far­field
The far­field requirement is met when the distance of the particle to the recording plane is [17]:

𝑧 >> |𝒙0|2
𝜆 = 𝛿 (2.4)

Here 𝑧 is the distance to the recording plane, 𝒙0 are the coordinates in the object plane, 𝜆 is the wave­
length of the incident light, and 𝛿 is one far­field. In practise the far­field requirement is already met for
a distance of one far­field. Eq. 2.4 only holds under the assumption that the area of coherence is larger
than the particle cross sectional area. In their 1966 paper Thompson et al promote the use of far­field
holography as opposed to near­field holography in the detection of micro particles [2]. The reason is
that in the far­field the twin image (the third term in Eq. 2.3) can be neglected. Ever since holography
was invented the inherent deterioration of the field due to the DC term and the twin image has been a
problem [12]. The following derivation follows the approach presented by Thompson et al [2] to show
why the effect of the twin image is negligible when measuring in the far­field. It is important to note that
the far­field considered here is that of the particles, not of the volume as a whole.

As mentioned the objects are assumed to be thin planar objects. Lets assume a diffracting object
with shape 𝐷(𝒙0), lying in the far­field, is illuminated with a plane wave. The far­field intensity pattern
at the recording plane is then given as [2]:

𝐼ℎ𝑜𝑙(𝒙) = 1 −
𝑘
𝜋𝑧 �̃� (

𝒙
𝜆𝑧) sin(

𝑘|𝒙|2
2𝑧 ) + 𝑘2

4𝜋2𝑧2 [�̃� (
𝒙
𝜆𝑧)]

2
(2.5)

where �̃� is the Fourier transform of of the object, 𝒙 the position vector at the recording plane, 𝑘 = 2𝜋/𝜆
the wave number. The first term is due to the undisturbed reference beam illuminating the sensor,
corresponding to the second term in Eq. 2.2. It is the background intensity. The second term is the
term containing the interference between the object and reference wave, corresponding to the last two
terms in Eq. 2.2. The reference wave arises as the sine. It is interesting to note that the sine is inde­
pendent of the object shape, but contains information on it’s 𝑧 location. Thus it can be used to extract
information on the 𝑧 location of the object. The third term is the diffraction pattern created by the object
and it corresponds to the first term in Eq. 2.2. This last term is small compared to the other two terms
for large 𝑧 and can therefore be neglected.

Now neglecting the third term the intensity can be written as a transmission function which subse­
quently will be illuminated to create an image:

𝑡(𝒙) = 1 − 𝑘
𝜋𝑧 �̃� (

𝒙
𝜆𝑧) sin(

𝑘|𝒙|2
2𝑧 ) (2.6)

Using the Sommerfeld method of Green’s function the field in a plane a distance 𝑧 away can be ex­
pressed as:

𝑈(𝝃) = 1
4𝜋 ∫ 𝑡(𝒙)

𝜕𝐺
𝜕𝑛 (𝝃, 𝒙)𝑑𝒙 (2.7)

where 𝝃 is the position vector in the image plane, 𝒙 is the position vector in the hologram plane, and 𝐺
is the Greens function satisfying:

∇2𝐺 + 𝑘2𝐺 = 𝛿(𝝃 − 𝒙) (2.8)

The solution to Eq. 2.7 can be expressed in three parts:

𝑈(𝝃) = 𝑔1 + 𝑔2 + 𝑔3 (2.9)

with 𝑔1, 𝑔2 and 𝑔3 given as [2]:
𝑔1 =

−𝑖𝑘
2𝜋𝑧 ∫∫𝑒

𝑖𝑘𝑟𝑑𝑥1𝑑𝑥2 (2.10)
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𝑔2 =
−𝑘2
4𝜋2𝑧2 ∫∫�̃� (

𝒙
𝜆𝑧) 𝑒

𝑖𝑘( 𝑥
21+𝑥22
2𝑧 )

𝑒𝑖𝑘𝑟𝑑𝑥1𝑑𝑥2 (2.11)

𝑔3 =
𝑘2

4𝜋2𝑧2 ∫∫�̃� (
𝒙
𝜆𝑧) 𝑒

−𝑖𝑘( 𝑥
21+𝑥22
2𝑧 )

𝑒𝑖𝑘𝑟𝑑𝑥1𝑑𝑥2

= 1
2𝑒

𝑖𝑘𝑧𝑒𝑖𝑘[(𝜉21+𝜉22 )/2𝑧]𝐷(𝝃)
(2.12)

and 𝑟 = [𝑧2 + (𝑥1 − 𝜉1)2 + (𝑥2 − 𝜉2)2]1/2. It is apparent that the first integral (Eq. 2.10) gives a
plane wave. The second integral (Eq. 2.11) represents the twin image. This image lies at a distance
2𝑧 from the image plane and is the one that causes the most deterioration of the image in Fresnel
holography (near­field holography). However in Fraunhofer holography 𝑔2 is very small and is spread
out essentially acting as a DC term. The third integral (Eq. 2.12) is equivalent to the fourth term in Eq.
2.3 and this one yields the image of the object. The effect of the twin image is illustrated in Fig. 2.3
where the hologram is recorded in the far­field of the smaller particle only. The smaller particle, to the
top right of the larger particle shows no effect of the twin image upon reconstruction whereas the larger
particle has this halo effect due to the twin image. The question arises if this twin image effect is too
severe when trying to detect the eggs. Numerical methods exist to suppress or even eliminate the twin
image [18], however they may not all be applicable to particle holography [19].

Figure 2.3: Reconstruction of two particles using a hologram recorded in the far­field of of a small particle and in the near­field
of a larger particle. (a) object, (b) hologram, (c) reconstructed image [2]
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Opaque spherical particles
The diffraction of an opaque spherical particle of diameter 𝑑 is the same as diffraction from an opaque
object with circular cross­section of diameter 𝑑 [10]. The two­dimensional Fourier Transform of the
circular object is given as:

�̃�𝑐𝑖𝑟𝑐 =
𝜋𝑑2
4 [2𝐽1(𝑘𝑑𝑟/2|𝑧|)𝑘𝑑𝑟/2|𝑧| ] (2.13)

with 𝑟 the radial distance in the hologram plane and 𝐽1 the first order Bessel function. Plugging this into
Eq. 2.5 gives:

𝐼ℎ𝑜𝑙(𝒙) = 1 −
𝑘𝑑2
4𝑧 sin(𝑘|𝒙|2/2𝑧) [2𝐽1(𝑘𝑑𝑟/2|𝑧|)𝑘𝑑𝑟/2|𝑧| ] + (𝑘𝑑

2

8𝑧 )
2

[2𝐽1(𝑘𝑑𝑟/2|𝑧|)𝑘𝑑𝑟/2|𝑧| ]
2

(2.14)

For the specific case of 𝑑 = 50𝜇m, 𝜆 = 650nm and 𝑧 = 30mm the result is plotted in Fig. 2.4. Also an
envelope function is plotted given by:

𝐼ℎ𝑜𝑙(𝒙) = 1 −
𝑘𝑑2
4𝑧 [

2𝐽1(𝑘𝑑𝑟/2|𝑧|)
𝑘𝑑𝑟/2|𝑧| ] (2.15)
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Figure 2.4: The far­field interference pattern given by Eq. 2.14 for an opaque sphere with 𝑑 = 50𝜇m, 𝜆 = 650nm and
𝑧 = 30mm. 𝑥 is the distance along the recording plane. The dashed curve is the envelope function given by Eq. 2.15

From this graph several things can be learned. The first is that for large |𝑥| the intensity tends to 1
which is the background intensity. The second thing is that this decay is governed by the first order
Bessel function 𝐽1 coming from the diffraction of the opaque sphere. This is the well­known Airy disc
pattern. From practical experience the central peak has proven enough to resolve the particle [20],
however there is no harm in measuring more side­lobes [21]. Recording more side­lobes improves the
resolution. The radius of the 𝑚𝑡ℎ side­lobe can be found by determining the 𝑚𝑡ℎ zero­crossing (here
𝐼ℎ𝑜𝑙 = 1). To do that the first order Bessel function is approximated by:

𝐽1(𝑔) ≈ √
2
𝜋𝑔 cos(𝑔 − 3𝜋4 ) (2.16)

Setting this equal to zero gives:

𝑔 − 3𝜋4 = (𝑚 + 12)𝜋 (2.17)

substituting 𝑔 for 𝑘𝑑𝑟/2|𝑧| we obtain:

𝑟𝑚 = (𝑚 +
5
4)

𝜆𝑧
𝑑 (2.18)
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where 𝑟𝑚 is the radius on the sensor containing𝑚 side­lobes. The distance 𝑧 is assumed to be positive.
Plugging in the values used to make Fig. 2.4 we get 𝑟0 = 0.488mm, 𝑟1 = 0.878mm and 𝑟2 = 1.268mm.
These correspond quite well to the actual values: 𝑟0 = 0.476mm, 𝑟1 = 0.871mm and 𝑟2 = 1.263mm.
Eq. 2.18 can be rewritten in the following form:

𝑧 ≤ ℎ𝐶𝐶𝐷𝑑
2 (𝑚 + 5

4) 𝜆
(2.19)

where 𝑟𝑚 is replaced with half the height of the sensor ℎ𝐶𝐶𝐷, assuming ℎ𝐶𝐶𝐷 ≤ 𝑤𝐶𝐶𝐷. Eq. 2.19 gives
the particle distances for which the 𝑚𝑡ℎ side­lobe can still be measured for a given sensor area and
particle diameter. As Eq. 2.19 is based on the approximation of the Bessel function a more accurate
function for the central peak would be:

𝑧 ≤ 𝜋ℎ𝐶𝐶𝐷𝑑
2 ⋅ 3.8317𝜆 (2.20)

where 𝑔 = 3.8317 is the first zero of 𝐽1(𝑔). From Eq. 2.20 we learn that the sensor area puts a
limit on the particle size. As the central peak of the Bessel function needs to be recorded for correct
reconstruction, the smallest reconstructable object size can be determined. The sensor acts as an
aperture posing a limit on the resolution. By rewriting Eq. 2.20 we get:

𝑅𝐻 =
3.8317𝜆𝑧
𝜋𝑤𝐶𝐶𝐷

(2.21)

𝑅𝑉 =
3.8317𝜆𝑧
𝜋ℎ𝐶𝐶𝐷

(2.22)

with 𝑅𝐻 the minimal resolvable radius in the horizontal direction and 𝑅𝑉 the minimal resolvable radius in
the vertical direction. There however exists another resolution limit and that is simply the resolvability
of the recording medium (i.e. the pixel pitch). The following paragraphs expand this second limit.

Going back to Fig. 2.4 the final thing to note are the fast oscillating fringes due to the sine. As men­
tioned earlier the sine can be used to determine the reconstruction distance. The shape of the particle
however does not depend on the sine term, so the following theory is only meant to improve accurate
distance measurements. By setting the derivative of the sine term in Eq. 2.14 to zero the location of
the 𝑛𝑡ℎ fast oscillating fringe minima and maxima can be found:

𝑟𝑟𝑖𝑛𝑔 = √(𝑛 −
1
2) 𝜆𝑧 (2.23)

Odd 𝑛 are the minima and even 𝑛 are the maxima. By measuring the radius 𝑟𝑟𝑖𝑛𝑔 in the sensor data
the distance 𝑧 can be determined. The more minima and maxima that are used the more accurate the
distance can be determined. The difference between the 𝑛𝑡ℎ and (𝑛 + 2)𝑡ℎ fringe is 4𝜋, giving:

𝑟2𝑛+2 − 𝑟2𝑛 ≈ 2𝑟Δ𝑟 = 2𝑧𝜆 (2.24)

Combining this with Eq. 2.18 we get:

Δ𝑟 = 𝑑
𝑚 + 5

4
(2.25)

as the fringe spacing at the edge of the 𝑚𝑡ℎ side­lobe. The sensor must thus resolve a frequency of
𝑓 = 1/Δ𝑟 to record the finer frequencies at the edge. Taking into account the sampling theorem this
means the sampling frequency should be:

𝑓𝑠 ≥ 2/Δ𝑟 (2.26)
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Opaque 1D line objects
The FPH theory also present analytical formulas for one dimensional line objects. Even though the S.
haematobium eggs bare more resemblance to spheres than to one dimensional objects, it is important
to cover the hologram pattern of a 1D line due to the fact that it is the best resolvable shape. 1D objects
result in a higher fringe contrast compared to spheres and better resolutions can be achieved for 1D
objects as compared to spherical objects [21].

The far­field interference pattern for a one­dimensional opaque object of width 𝑑 which is given as:

𝐼ℎ𝑜𝑙(𝒙) = 1 − 2𝑑√
1
𝜆𝑧 cos(

𝑘𝑥2
2𝑧 − 𝜋4) [

sin(𝑘𝑑𝑥/2𝑧)
𝑘𝑑𝑥/2𝑧 ] + 𝑑

2

𝜆𝑧 [
sin(𝑘𝑑𝑥/2𝑧)
𝑘𝑑𝑥/2𝑧 ]

2
(2.27)

The resemblance with Eq. 2.14 can be seen. The width of the central lobe can be found by setting
sin(𝑘𝑑𝑥/2𝑧) to zero. From this the horizontal and vertical resolution for 1D opaque line objects can be
determined as:

𝑅𝐻 =
𝜆𝑧
𝑤𝐶𝐶𝐷

(2.28)

and:

𝑅𝑉 =
𝜆𝑧
ℎ𝐶𝐶𝐷

(2.29)

We see the resolution relates to that of spherical particles as 𝑅sphere = 1.22𝑅1𝐷. As is done in Eq. 2.25
the fringe spacing Δ𝑟 can be determined for 1D objects by looking at the cosine term in Eq. 2.27. From
that we get:

Δ𝑟 = 𝑑
𝑚 + 1 (2.30)

Transparent particles
S. haematobium eggs are not completely opaque so it is good to note what the transparency has for
effects on the recording and reconstruction. The full phase and intensity are preserved upon recon­
struction, regardless of the particles transparency. However extracting features from the recording and
reconstruction requires some additional knowledge when the particles are transparent. An in depth
study on scattering from particles in water is presented in the book Light scattering by particles in water
fromM. Jonasz and G.R. Fournier [22]. The effect of transparency is dealt with in Ch. 3 from [22]. What
is new in the case of transparent particles is the fact that light not only diffracts of the particle surface,
but that light also passes through the particle causing a refracted wave. The refracted and diffracted
wavefronts combined are the new object wave. The effect of the refraction has been observed by [23]
as a bright spot in a plane before the particle is in focus. For ellipsoidal particles this results in two bright
lines [24]. In essence a transparent particle acts as a lens. The effect of the refracted light compared
to the diffracted light depends on the refractive index of the particle relative to the surrounding medium.
For S. haematobium eggs the refractive index is unknown, making it hard to do a priori estimates on
the effects of refraction.

2.4.3. Optical Distance 𝑧
When doing measurements the particles are suspended in a medium other than air. When determining
the distance 𝑧 to the recording plane it has been chosen to use the optical distance: The distance at
which a particle suspended in air would produce the same interference pattern at the recording plane.
Unless otherwise stated all distances 𝑧 are thus measured in air. Fig. 2.5 shows the effect when
a particle is placed in a medium with refractive index 𝑛1 which is larger than the refractive index of
medium 𝑛0. The actual distance is larger than the optical distance by a distance Δ𝑧.
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Figure 2.5: The effects of light passing through two media with different refractive index. 𝑛1 > 𝑛0. Due to the change in
refractive index the distance to the sensor of each object changes. The solid circle is the actual location whereas the dashed

circle is the location if all media are taken to be air (𝑛0).

2.5. Digital Holography
When the conventional recording material is replaced by an electronic device, such as a complemen­
tary metal oxide semiconductor (CMOS) or a charged­coupled device (CCD), or when the hologram is
generated using a computer, one speaks of Digital Holography [25]. There exist three forms of digital
holography. The first, which will be the one mainly used throughout this report, is that where the recon­
struction step described by Eq. 2.3 is done numerically. In the second form, which will be used to show
that the particle holography model can be applied to S. haematobium eggs, later on, both the construc­
tion of the hologram as described by Eq. 2.2 as well as the reconstruction is performed numerically.
The final form is where the construction of the hologram is done numerically, but the reconstruction is
done optically.

2.5.1. Digital recording effects
When recording with a CMOS/CCD sensor several effects need to be taken into account. The first is
the size of the sensor. Eqs. 2.21 & 2.22 and 2.28 & 2.29 state the limitations on the resolution due
to the sensor area. The second notable thing is the pixel pitch 𝑝. This poses the second limit on the
resolution. According to the sampling theorem the sampling frequency is given as 𝑓𝑠 = 1/𝑝. Combining
this with Eq. 2.26 gives:

Δ𝑟 = 2𝑝 (2.31)

So to record the finer fringes the particle size is limited to:

𝑑 ≥ 2𝑝 (54 +𝑚) (2.32)

for spherical particles and for 1D line objects to:

𝑑 ≥ 2𝑝 (1 + 𝑚) (2.33)

As the central peak is only of interest (m=0) we see that the resolution of the system can not get lower
than 1.22𝑝 for spherical particles and not lower than 𝑝 for 1D line objects.
The last thing that needs to be taken into account is a typical effect for a CMOS/CCD sensor, namely
aliasing. Aliasing can occur both in the recording of the fringe pattern as well as in the reconstruction
step. Frequencies higher than the sampling frequency will be under sampled causing false effects to
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occur. This can be seen as folding in the spectral domain. Aliasing due to the reconstruction will be
explained in the following section.

2.5.2. Angular Spectrum Method
To calculate the field in a second plane several numerical techniques can be applied such as the Fresnel
diffraction method, the Huygens convolution method and the angular spectrum method (ASM) [26]. In
this report the ASM as described by [25] is followed as it is applicable at close distances as will be
proven later on. However with zero­padding it is also applicable at larger distances, making it feasible
for reconstructing a large volume. Terminology is not very consistent in the field as the ASM is also
called the convolution method or the double Fourier transform method.
According to scalar diffraction theory the diffracted field Ψ(𝑥, 𝑦; 𝑧) can be obtained from the incident
field Ψ(𝑥, 𝑦; 𝑧 = 0) by:

Ψ(𝑥, 𝑦; 𝑧) = ℱ−1 [ℱ [Ψ(𝑥, 𝑦; 𝑧 = 0)] × 𝐻(𝑘𝑥 , 𝑘𝑦; 𝑧)] (2.34)

where 𝐻(𝑘𝑥 , 𝑘𝑦; 𝑧) is the spatial frequency transfer function. This equation can be expressed in its
discrete form as:

Ψ[𝑚, 𝑛; 𝑧] = DFT2D [IDFT2D [Ψ[𝑚, 𝑛; 𝑧 = 0]] × 𝐻[𝑞, 𝑠; 𝑧]] (2.35)

where

𝐻[𝑞, 𝑠; 𝑧] = exp [−𝑗𝑘0𝑧√1 −
(𝑞Δ𝑘𝑥)2
𝑘20

−
(𝑠Δ𝑘𝑦)2
𝑘20

] (2.36)

and the 2D discrete Fourier transform, DFT2D, and inverse Fourier transform, IDFT2D, are defined as:

DFT2D(𝑓[𝑚, 𝑛]) = 𝐹[𝑞, 𝑠] =

𝑀
2 −1

∑
𝑚=−𝑀2

𝑁
2 −1

∑
𝑛=−𝑁2

𝑓[𝑚, 𝑛] ⋅ exp [−𝑗2𝜋 (𝑞𝑚𝑀 + 𝑠𝑛𝑁 )] (2.37)

DFT2D(𝐹[𝑞, 𝑠]) = 𝑓[𝑚, 𝑛] =

𝑀
2 −1

∑
𝑞=−𝑀2

𝑁
2 −1

∑
𝑠=−𝑁2

𝐹[𝑞, 𝑠] ⋅ exp [−𝑗2𝜋 (𝑞𝑚𝑀 + 𝑠𝑛𝑁 )] (2.38)

The discretization was done using a sampling period of Δ𝑥, with total 𝑀 samples, along the x­axis and
a sampling period of Δ𝑦, with a total of 𝑁 samples, along the y­axis. The corresponding frequency
spacings are then Δ𝑘𝑥 = 2𝜋/𝑀Δ𝑥 and Δ𝑘𝑦 = 2𝜋/𝑁Δ𝑦. [𝑚, 𝑛] and [𝑞, 𝑠] are the indices of the samples
at the spatial and Fourier domain, respectively. Thus their ranges are: −𝑀/2 ≤ 𝑚 ≤ 𝑀/2−1, −𝑁/2 ≤
𝑛 ≤ 𝑁/2 − 1, −𝑀/2 ≤ 𝑞 ≤ 𝑀/2 − 1, and −𝑁/2 ≤ 𝑠 ≤ 𝑁/2 − 1. Equation 2.36 can be rewritten to:

𝐻[𝑞, 𝑠; 𝑧] = exp [−𝑗2𝜋𝑧√ 1𝜆2 − (
𝑞
𝑀Δ𝑥

)
2
− ( 𝑠

𝑁Δ𝑦
)
2
] (2.39)

where 𝜆 is the wavelength of the laser and relates to the wave number as 𝑘0 = 2𝜋/𝜆.

Like mentioned earlier the ASM was chosen due to its applicability for distances near to the sensor.
At larger distances errors occur due to aliasing. This aliasing is due to under­sampling of the product
IDFT2D [Ψ[𝑚, 𝑛; 𝑧 = 0]]×𝐻[𝑞, 𝑠; 𝑧] in Eq. 2.35. For the case that Δ𝑥 = Δ𝑦 = 𝑝 and𝑀 = 𝑁, the criterion
for an alias­free results is:

|𝑧| ≤ √4𝑝2 − 𝜆2
2𝜆 (𝑀 −𝑀′)𝑝 (2.40)

Here 𝑀′ denotes the 𝑀′ ×𝑀′ non­zero pixels from the incident field. From Eq. 2.40 it can be seen that
increasing the pixel pitch 𝑝, decreasing the wavelength 𝜆 and increasing 𝑀, by having a larger sensor
area or zero padding, all result in an increase in the distance over which Eq. 2.40 holds.
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2.5.3. Using a Bayer filter
Keeping in mind the idea that the outcome of this report should aid the development of a low­cost di­
agnostic device for low­resource settings, and the fact that a large sensor area is needed, we chose
to investigate the effects of using a colour camera. Buying a consumer camera and using the sen­
sor is cheaper than buying a scientific monochrome sensor. Colour cameras however, as opposed
to monochrome cameras, have a Bayer filter applied over the sensor [27]. This filter causes pixels
to be sensitive to certain bands of the visible spectrum. The RAW sensor data thus provides a dif­
ferent intensity distribution than in the case of a monochrome sensor. This will result in a deformed
reconstruction. Removing the Bayer filter is not without risks however. Therefore this section provides
ways to reconstruct correctly, while still recording with a Bayer filter. The Bayer filter used in the rest of
the report is arranged in a RGBG pattern as depicted in figure 2.6. As an example of the wavelength
dependency of the filter the spectral response for the red, green and blue pixels for a Canon 40D is
shown in figure 2.7.

Figure 2.6: Bayer filter pattern

Figure 2.7: Spectra response curve for Canon 40D [3]

It can be seen that the spectral responses of the three filters overlap. So for example light with a
wavelength of 700 nm will be recorded by all pixels when using a Canon 40D. However most light will
be captured on the red pixels. To reconstruct without artefacts two approaches are possible. The first
is to only use the data from a single colour channel. The second approach is to use a debayering
algorithm.

Using 1 colour channel
If we only want to use the information from the red pixels for example we need to multiply the hologram
intensity 𝐼ℎ𝑜𝑙 with an array of ones and zeros 𝑃𝑟𝑒𝑑:

𝐼𝑟𝑒𝑑 = 𝐼ℎ𝑜𝑙 ⋅ 𝑃𝑟𝑒𝑑 (2.41)
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With 𝑃𝑟𝑒𝑑 defined as:

𝑃𝑟𝑒𝑑 =

⎡
⎢
⎢
⎢
⎢
⎣

1 0 1 0 ⋯ 0
0 0 0 0 ⋯ 0
1 0 1 0 ⋯ 0
0 0 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 ⋯ 0

⎤
⎥
⎥
⎥
⎥
⎦

(2.42)

When applying the Fourier transform to the new intensity the multiplication of the two arrays becomes
a convolution of two Fourier transforms:

𝐼𝑟𝑒𝑑 = 𝐼ℎ𝑜𝑙 ∗ 𝑃𝑟𝑒𝑑 (2.43)

To understand what is going to happen the 2D Fourier transform 𝑃𝑟𝑒𝑑 needs to be calculated. As all
arrays are discrete we need to take the discrete Fourier transform:

𝑋[𝑞, 𝑠] =
𝑀−1

∑
𝑚=0

𝑁−1

∑
𝑛=0

𝑋[𝑚, 𝑛]𝑒−𝑖2𝜋𝑞𝑚/𝑀𝑒−𝑖2𝜋𝑠𝑛/𝑁 (2.44)

with [𝑞, 𝑠] the indices in the Fourier domain and [𝑚, 𝑛] the indices in the spatial domain. 𝑀 and 𝑁 are
the number of pixels along the two dimensions of the sensor array. The 2D DFT can be decomposed
in to two 1D DFT’s. So we only need to solve the transform of

𝑋[𝑞] =
𝑀−1

∑
𝑚=0

𝑋[𝑚]𝑒−𝑖2𝜋𝑞𝑚/𝑀 (2.45)

with

𝑋[𝑚] = {1, if 𝑚 = 0, 2, 4, 6, ....
0, otherwise. (2.46)

If we use a new variable to group all even 𝑚 in a single sum we get:

𝑋[𝑘] =
(𝑀−1)/2

∑
𝑙=0

𝑋[𝑚]𝑒−𝑖4𝜋𝑞𝑙/𝑀 (2.47)

where we used 𝑙 = 𝑚/2 as a new variable. The sum now ends at a non­integer value for even𝑀 and at
an integer value for non­even 𝑀. In this report only even 𝑀 are considered, so the summation should
be adapted as:

𝑋[𝑞] =
𝑀/2−1

∑
𝑙=0

𝑋[𝑚]𝑒−𝑖4𝜋𝑞𝑙/𝑀 (2.48)

now using the following rule:
𝑁−1

∑
𝑛=0

𝑒𝑖𝑛𝑥 =
sin (12𝑁𝑥)

sin (12𝑥)
𝑒𝑖𝑥(𝑁−1)/2 (2.49)

we see equation 2.48 is in the form of equation 2.49 so that we can express it as:

𝑋[𝑞] = sin(𝜋𝑞)
sin (2𝜋𝑞𝑁 )

𝑒−𝑖𝜋𝑞(𝑁−2)/𝑁 (2.50)

Due to the fact that the numerator is always 0 for every value of 𝑞, as 𝑞 is an integer value, 𝑋[𝑞] = 0 for
all values of 𝑞 except for 𝑞 = 0 and 𝑞 = 𝑁/2, because there the denominator is also 0. Using l’Hôpital’s
rule the limit for 𝑞 = 0 and 𝑞 = 𝑁/2 is 𝑁/2. Combining the two 1D DFT results we conclude that:

𝑃𝑟𝑒𝑑[𝑞, 𝑠] =
sin(𝜋𝑞) sin(𝜋𝑠)

sin (2𝜋𝑞𝑁 ) sin (2𝜋𝑠𝑀 )
𝑒−𝑖𝜋(𝑞+𝑠)𝑒𝑖2𝜋(

𝑞
𝑁+

𝑠
𝑀 ) = {

𝑁𝑀
4 , for (0, 0), (0, 𝑁2 ) , (

𝑀
2 , 0) , (

𝑀
2 ,

𝑁
2 ).

0, otherwise.
(2.51)
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This means that when applying the convolution in Eq. 2.43 the hologram intensity is going to be con­
voluted with four delta peaks located at (0, 0) , (0, 𝑁2 ) , (

𝑀
2 , 0) , (

𝑀
2 ,

𝑁
2 ). This will result in four copies of

the Fourier spectrum centred around the locations of the four delta peaks.

In the same manner to extract the information from the green pixels we need to multiply the hologram
intensity with the following array:

𝑃𝑔𝑟𝑒𝑒𝑛 =

⎡
⎢
⎢
⎢
⎢
⎣

0 1 0 1 ⋯ 1
1 0 1 0 ⋯ 0
0 1 0 1 ⋯ 1
1 0 1 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
1 0 1 0 ⋯ 0

⎤
⎥
⎥
⎥
⎥
⎦

(2.52)

The 2D DFT of 𝑃𝑔𝑟𝑒𝑒𝑛 can be found using the fact that it can be made of two shifted 𝑃𝑟𝑒𝑑 arrays:

𝑃𝑔𝑟𝑒𝑒𝑛[𝑚, 𝑛] = 𝑃𝑟𝑒𝑑[𝑚 + 1, 𝑛] + 𝑃𝑟𝑒𝑑[𝑚, 𝑛 + 1] (2.53)

The shift theorem is stated as:
𝑥[𝑚 − Δ] ⟷ 𝑒−𝑖2𝜋𝑞Δ/𝑁𝑋[𝑞] (2.54)

Using this we get:

𝑃𝑔𝑟𝑒𝑒𝑛[𝑞, 𝑠] =
sin(𝜋𝑞) sin(𝜋𝑠)

sin (2𝜋𝑞𝑁 ) sin (2𝜋𝑠𝑀 )
𝑒−𝑖𝜋(𝑞+𝑠) (𝑒𝑖2𝜋𝑞/𝑁 + 𝑒𝑖2𝜋𝑠/𝑀) = {

𝑁𝑀
2 , for (0, 0).
−𝑁𝑀2 , for (𝑀2 ,

𝑁
2 ).

0, otherwise.
(2.55)

This means that the hologram intensity is going to convoluted with two delta peaks located at (0, 0)
and (𝑀2 ,

𝑁
2 ). The outcome of Eqs. 2.51 & 2.55 can be understood more clear when visualised. Fig.

2.8A shows a possible Fourier spectrum for a monochrome sensor with 𝑀 ×𝑁 pixels. The intensity is
marked by the tone of blue. It is assumed that the intensity is highest in the centre and lower towards
the edges. Fig. 2.8B & C show the spectra when using the red or green channel. The copies can be
seen at the locations determined by Eqs. 2.51 & 2.55. Unlike the images suggest the actual intensity
of the spectra compared to the monochrome spectrum are a factor 2 lower for the green channel and a
factor 4 lower for the red channel. This is due to the fact that less light is captured when using a single
colour channel. This is also seen in Eqs. 2.51 & 2.55. Under the assumption that the lower frequencies
have a higher amplitude compared to the higher intensities the effect of the copies can be limited by
low­pass­filtering.

monochrome
copy

color 𝐼

B C

𝑁

𝑀

A

Figure 2.8: A. The Fourier spectrum in case of a monochrome sensor. 𝑀 ×𝑁 pixels. B. The Fourier spectrum 𝐼𝑟𝑒𝑑. C. The
Fourier spectrum 𝐼𝑔𝑟𝑒𝑒𝑛.
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Figure 2.9: Graph of the intensity along the black dashed lines in Fig. 2.8B and C

Fig. 2.9 shows the Fourier intensity along the black dashed lines from Fig. 2.8B & C. The edge of the
sensor is marked by the two black solid lines. The solid blue curve shows the scaled monochrome
spectrum. The dashed blue curve shows the spectral copies. The sum of these two is shown in yellow.
Due to the summation the intensity at the edges deviates severely from the monochrome spectrum.
This so­called colour­aliasing can be filtered out by applying a low­pass­filter. When applying the low­
pass­filter such as to cut along the dashed vertical lines in Fig. 2.9 the optimal trade­off between
colour­aliasing and loss of resolution due to the low­pass­filter is achieved. The radius of the low­pass­
filter is is shown in Fig. 2.8B & C by the dashed red and green circles. It is important to note that aliasing
which arose due to under sampling still remains and is now added to the central peak of the spectrum
(in the case of the example of the spectrum in Fig. 2.9). The frequency radius of the low­pass­filter can
be expressed as a function of the sampling frequency 𝑓𝑠:

𝑓𝑟𝑒𝑑 =
𝑓𝑠
4 (2.56)

for the red channel and:

𝑓𝑔𝑟𝑒𝑒𝑛 =
√2𝑓𝑠
4 (2.57)

for the green channel. This means that the resolution limit determined by the pixel pitch increases
to 𝑟𝑟𝑒𝑑 = 2𝑝 for the red channel and 𝑟𝑔𝑟𝑒𝑒𝑛 = √2𝑝 for the green channel. Using this low­pass­filter
approach means it would be better to use the green channel. Combining it with Eqs. 2.21 and 2.22
for the horizontal and vertical resolution, which depend linearly on the wavelength, it would be best to
illuminate with a blue laser using the green channel to reconstruct.

Scaling RGB data
As mentioned the second approach is to apply a debayering algorithm. This interpolates the data into
a RGB value for each pixel. This can be done internally in the camera or by post processing the RAW
data. When using the camera settings it suffices to shoot a monochrome image. The internal algorithm
then produces a greyscale image using all three channels. The resolution will be the same as that
of a real monochrome camera. However the bit depth will have decreased due to the interpolation
algorithm. Post processing the RAW data also decreases the bit depth.

2.6. Noise
A final note needs to be made on the part noise plays in inline holography. Unfortunately the lack of
time has limited this section to a brief overview. When recording the fringes several sources of noise
can be noted:

1. Fringe smearing due to movement of the particles

2. Fringes from neighbouring particles

3. Speckle noise due to sub pixel size particles
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4. Virtual image and DC noise

5. Bit depth quantization error

6. Aliasing due to digitized recording

Also noise arises when reconstructing:

1. Aliasing due to the Angular Spectrum Method

2. Fringes from out of focus particles

Two sources are evaluated a little closer:

Movement of particles:
When a particle moves during the time the sensor is exposed to light the fringe pattern smears out [28]
[29]. The general rule is that a particle may translate in­plane a tenth of its diameter during the expo­
sure time [30]. If this requirement is met any movement in the longitudinal direction has no significant
effect.

Bit depth quantization error:
The bit depth 𝑏 introduces a quantization error. Intensity values will be rounded of to the nearest allow­
able quanta. For an 8­bit sensor there are 28 = 256 allowable quanta. Small intensity variations which
are present in the side lobes may not be recorded correctly due to this quantization error. To determine
the radial distance 𝑟 at which this occurs one can use the visibility. The visibility is given as [31]:

𝑉(𝒙) = 𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛
𝐼𝑚𝑎𝑥 + 𝐼𝑚𝑖𝑛

(2.58)

𝐼𝑚𝑎𝑥 and 𝐼𝑚𝑖𝑛 can be approximated. Using the approximation of the Bessel function stated in Eq. 2.16,
an approximation for Eq. 2.15 can be made:

𝐼ℎ𝑜𝑙(𝒙) = 1 − √
2𝜆𝑧𝑑
𝜋2𝑟3 cos(

𝑘𝑑𝑟
2𝑧 − 3𝜋4 ) (2.59)

By neglecting the cosine term we obtain the smoothly decaying envelope of the fringe intensity [31]:

𝐼𝑚𝑖𝑛 ≈ 1 − √
2𝜆𝑧𝑑
𝜋2𝑟3 ; 𝐼𝑚𝑎𝑥 ≈ 1 + √

2𝜆𝑧𝑑
𝜋2𝑟3 ; (2.60)

These can be used to get an approximation of the visibility:

𝑉(𝒙) = √2𝜆𝑧𝑑𝜋2𝑟3 (2.61)

When the visibility drops below 1/2𝑏 the fringes are not recorded faithfully any more. By setting 𝑉(𝒙) =
1/2𝑏 the quantization radius can be determined:

𝑟𝑞 =
3√8𝜆𝑧𝑑𝑏

2

𝜋2 (2.62)

To give an illustration of how 𝑟𝑞 relates to other radii we can plug in the values used to make Fig. 2.4
and assume we have an 8­bit sensor. The result is 𝑟 ≈ 3.7 mm which is slightly larger than the radius
of the eighth side­lobe 𝑟8. Most likely in practice other effects will play a more significant role than the
bit­depth. It has also been observed that 1D objects have a higher fringe visibility compared to spheri­
cal objects [21].

Without going into detail for the other sources the two rules of thumb which are used in practice are
stated. The first which was already mentioned is that 80 % of the light passing through the volume
must be undiffracted [16]. The second is that the signal­to­noise ratio in the reconstruction plane must
exceed 5 dB [32].





3
Processing cytometric data obtained by

predecessors

3.1. Introduction
In the introduction to this report the work of my predecessors, M. Hoeboer and P.M. Nijman, was men­
tioned as the source from which my research question arises [9][4]. This section dives into their work
to understand the advantages and disadvantages of their approach. Although they presented a smart
approach to the detection of S. haematobium eggs, much of the data they obtained remained unpro­
cessed. This negatively impacted the accuracy of their proposed technique. To analyse the remainder
of their data a new detection & classification algorithm is written. The analysis of the data provided
many interesting insights of which some will be used later on. The chapter is built up as follows: first a
recap of the work of my predecessors is presented in Sec. 3.2. From this the detection & classification
pipeline is covered in Sec. 3.3. Then the pipeline results are analysed in Sec. 3.4. After which a final
conclusion with several proposals are given in Sec. 3.5.

3.2. Previous work
My predecessors worked on a medical device called the Smart Optical Diagnostic Of Schistosomiasis
(SODOS) [9][4]. This device combines flow cytometry with digital holography to scan theWHO required
10 ml of urine for the presence of the S. haematobium eggs. The SODOSwas used to process samples
in the lab and was also taken to the field in Ivory Coast for real­time measurements on human samples.
This section gives a brief overview of the technique and recaps themost important results and proposals
found by M. Hoeboer and P.M. Nijman.

Optical setup
The optical setup within the SODOS consisted of a KY­008 laser module [33], an iDS UI­1492LE­M
CMOS monochrome camera [34] and a 𝜇­Slide I Luer flow cell from Ibidi [35]. The setup is depicted in
Fig. 3.1 and the relevant specs are listed in Tab. 3.1.

Laser
Wavelength: 650 nm

CMOS sensor
Size: 3840 x 2748 Pixels
Size: 6.413 x 4.589 mm

Pixel pitch: 1.67 𝜇m
Bit depth: 8 bit

Flow Cell
Width: 5 mm
Depth: 0.8 mm

Table 3.1: Relevant data of the optical setup within the Smart Optical Diagnostic Of Schistosomiasis (SODOS) device.
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Figure 3.1: Optical setup within the Smart Optical Diagnostic Of Schistosomiasis (SODOS) device. The urine sample flows
through a 𝜇­Slide I Luer flow cell from top to bottom. The CMOS field of view is marked by the dashed lines.

A urine sample was pumped through a vertically placed flow cell and imaged by the CMOS sensor. Due
to the fact that after each sample measurement urine remained in the pipeline before the flow cell and
the fact that air bubbles needed to be removed from the flow cell prior to the measurement 12 ml urine
was injected through the system. Of this 12 ml a total of 10.7 ml was analysed by the sensor. This 10.7
is calculated assuming a uniform flow profile. This assumption was alreadymentioned to be incorrect by
P.M. Nijman. To image this 10.7 ml the SODOS captured 660­670 frames per sample. An example of a
single frame is shown in Fig. 3.2. The volume captured in a single frame is 5×0.8×4.589 = 18.356 mm3,
where the sensor is placed such that the width (6.413 mm) is used to fully capture the width of the flow
cell. In total it took 24 minutes to capture and store the frames of a single sample [9].

Figure 3.2: A single frame of contaminated urine shot in the lab using the SODOS.
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Algorithm
P.M. Nijman [4] wrote an algorithm which detects moving objects in each frame and classifies them
to be an egg or not. These classifications can be labelled as True Positive (TP), False Positive (FP),
True Negative (TN) and False Negative (FN). The overall functioning of the detection & classification
algorithm is based on the total duration and the classifier’s sensitivity & specificity scores which are
given as:

Sensitivity = TP
TP+ FN (3.1)

Specificity = TN
TN+ FP (3.2)

The object detector itself is very fast, detecting up to 20 000 objects in field samples taking only 3
minutes. The main problem however lies with the classification of the objects. Tab. 3.2 shows the
results for four examined lab samples. It can be seen that the number of eggs found is very low
compared to the expected theoretical number of eggs. P.M. Nijman assumed this is due to the classifier
having a sensitivity of 0.506 and a specificity of 0.986, but also that the increased flow rate along the
centre of the channel causes eggs to escape the sensor. The second thing that can be noted is the
long computation time. It can be seen that the classification of an object takes at least 1 second. This
becomes a problem when detecting 10 000+ objects per sample as is the case for contaminated field
samples.

Series ID Theoretical number of eggs Eggs found Objects detected Time taken [s]
SODOS A01.7. 7 0 0 1276 1542
SODOS A01.7. 8 200­300 0 7255 9821
SODOS A01.7. 9 200­300 1 7203 10776
SODOS A01.7. 10 400 1 4617 5210

Table 3.2: Results upon examining lab data from the SODOS [4].

Using the insights gained from my predecessor’s reports I propose to rewrite both the detection and
classification procedures to achieve the following goals:

1. Write an object detector which detects the eggs but detects less other objects

2. Increase the speed of the classification of the detected objects

3. Increase the sensitivity and specificity scores of the classifier

4. Achieve a lower overall duration for the analysis of a single sample.

In addition the scanned volume will be recalculated using a more accurate flow profile.

3.3. The detection & classification pipeline
As the field data proved unsuitable, due to movement of the flow upon capturing a frame, a detection
and classification algorithm was written based on the lab data. The algorithm can be calibrated for field
use in the future. The lab data used is presented in Tab. 3.3.

Series ID Theoretical number of eggs
SODOS A01.7. 7 0
SODOS A01.7. 8 200­300
SODOS A01.7. 9 200­300
SODOS A01.7. 10 400
SODOS A01.7. 11 400
SODOS A01.7. 12 1000
SODOS A01.7. 13 1000
SODOS A01.7. 14 2000
SODOS A01.7. 15 2000

Table 3.3: Lab data from the SODOS.
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A pipeline is written to count the number of eggs within each frame. The sum over all frames provides
the contamination rate. The process of detecting the eggs within a single frame was done along the
following steps:

1. Using an object detector the centre of mass (CoM) coordinates of fringes belonging to eggs are
determined.

2. To get rid of recurring false positives the CoM coordinates are compared with the five previous
frames and overlapping coordinates within a range of ±50 pixels are thrown away.

3. A 256 x 256 pixels square is cropped around the remaining CoM coordinates.

4. Over a range of 15 distances the focus distance of each object is determined along the following
steps:

(a) The cropped image is reconstructed at a given distance.

(b) From this reconstructed image the central 80 by 80 pixels are extracted.

(c) A binary image is made. At the first reconstruction distance this binary image is tested to see
if applying a Gaussian filter will give better results. This filter is then applied on all distances
for that image.

(d) A new binary image ismade of the (filtered) 80 by 80 imagewith threshold 0.21⋅mean(image).
(e) This binary image is filled using binary closing. This is done over 8 iterations.

(f) Summation over all pixels provides the sharpness score.

5. The 140 by 140 image with the highest sharpness score is fed through two types of classifiers to
determine if it is an egg.

Feeding a single frame through the pipeline takes 2.801 ± 0.126𝜎s on an Intel(R) Core(TM) i7­4790
CPU. Where 𝜎 is the standard deviation. This result is based on feeding all frames from ID:8 ­ 15
through the pipeline. ID:8 ­ 15 were scanned in 30.99 ± 0.47𝜎min per sample. This is considerably
faster than the previous algorithm. The next sections provide more detail on the pipeline steps.

3.3.1. (1) The object detector
Using a faster R­CNN object detector [36] the eggs within the frame are detected. The algorithm was
trained using 53 images from 7 different lab samples listed in Tab. 3.4. Within each image the fringes
corresponding to eggs where labelled manually. The images contained in total 68 labelled eggs.

ID Frames used Number of eggs within frames
9 1 1
10 10 10
11 11 11
12 10 14
13 6 11
14 9 10
15 6 11

Table 3.4: The frames used to train the object detector.

The hologram fringes corresponding to an egg are very characteristic. Two egg­fringes with the cor­
responding reconstruction are shown in Fig. 3.3. The fringes can be characterized by the dark figure
eight oriented along the length of the egg and the two lighter spots at the waist of the eight.
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Figure 3.3: Hologram fringes and reconstruction of two eggs

Figure 3.4: Detection of objects using the faster R­CNN object detector

Fig. 3.4 shows the outcome of the detector. It can be seen that the four eggs present (lying between x­
coordinates 500 and 2000) are detected. However also other objects are labelled as an egg. There are
two objects lying outside the flow channel which are easily excluded by taking only the x­coordinates
within the flow channel. The other two objects lying in the channel need to be filtered out further down
the pipeline.
The flow channel can be moved during operation therefore an adaptive detection of the flow channel
was implemented. This step is implemented as a preprocessing step within the object detector. This
was done by taking the mean of the top 10 rows and looking at the maximum value in the first 500
pixels and the maximum value of the last 780 pixels for the left and right coordinates of the channel.
The idea was that the boundary is characterized by alternating bright and dark fringes. The algorithm
works in most of the frames, however there are cases where it makes the channel narrower or wider
than it actually is. Two extreme cases are shown in Fig. 3.5. The left is for ID:9 and the right for ID:14.
It is possible that eggs have gone missing in frames for which the channel width was narrower than the
actual channel width (2994 pixels). But in the majority of the cases the channel width is even larger
than the real channel width. This is good because as the channel is slightly tilted to the left the bottom
right is still in view.
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Figure 3.5: Left and right boundaries of the flow channel per frame for samples ID:9 and ID:14.

The time needed to do the object detection on a single frame is 2.558 ± 0.050𝜎 s. This is determined
based on all the frames from ID:12. Comparing this to the total time needed per frame for ID:12 (2.876±
0.170𝜎(𝑠)) shows that around 90% of the computational time is used for detecting objects. This means
that the object detector consumes at least 25 minutes which is much more than the 3 minutes needed
for the previous object detector [4].

3.3.2. (2) Filtering on centre of mass coordinates
From each object the centre of mass (CoM) coordinates can be extracted. These where then compared
to the CoM coordinates of the five previous frames to exclude fringes that recur in successive frames.
These recurring objects where assumed to be due to things sticking to the glass, laser or sensor and
indents in the glass. They where excluded if the coordinates where shifted by a maximum of 50 pixels
in x or y. The chance of an egg lying in the 100 by 100 square box around an object from a previous
frame is given as:

𝑃overlap = 1 − (
2994 ⋅ 2748 − 100 ⋅ 100 ⋅ 𝑚

2994 ⋅ 2748 )
𝑛

(3.3)

With 𝑛 the number of successive frames in which objects occurs and𝑚 the number of objects occurring
in each of those 𝑛 frames. The channel encompasses 2994 x 2748 pixels. It is assumed that the 100
by 100 square boxes around the 𝑚 objects don’t overlap within a frame. From this equation it can be
concluded that for 𝑛 = 5 and 𝑚 = 1 the chance of having an egg lying in the 100 by 100 square box
is 0.6%, which is negligible. However if there are objects occurring in all 670 frames then the chance
of missing an egg becomes apparent. For 𝑛 = 670 and 𝑚 = 2 the chance of missing an egg due to
exclusion on recurring CoM coordinates is already 80%.
The time needed to exclude recurring objects is 4.15±4.97𝜎ms as measured in ID:12. The time needed
to process an object through the rest of the pipeline takes 85.0 ± 21.5𝜎ms as measured in ID:12. This
shows that in the case of many recurring objects the relative time gain is significant (although it remains
absolute small compared to the time needed for object detection).

3.3.3. (3) Cropping a square
Around each of the remaining CoM coordinates a square of 𝑁 × 𝑁 pixels is cropped, with 𝑁 = 2𝑛.
This cropped square image is fed to the next step. The reason for 𝑁 = 2𝑛 is that the discrete Fourier
transform works fastest with input dimensions of power two. From the different values of 𝑁 the com­
putational time needed for reconstruction and the quality of the reconstructed output where optimal for
𝑁 = 256. Fig. 3.6A shows the cropped hologram area for 𝑁 = 64, 128, 256, 512 and 1024 pixels and
Fig. 3.6B the corresponding reconstructed results. The egg used is the bottom egg from Fig. 3.4.
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Figure 3.6: Reconstruction of hologram for different values of 𝑁. A) the hologram with the different 𝑁𝑡𝑖𝑚𝑒𝑠𝑁 regions shown.
B.1) 𝑁 = 64, B.2) 𝑁 = 128, B.3) 𝑁 = 256, B.4) 𝑁 = 512, B.5) 𝑁 = 1024. In B.3 ­ B.5 only the central 140 x 140 pixels are

shown.

As 𝑁 increases more fringes are used to reconstruct the egg. At a certain point the fringes can not
be distinguished from the surrounding noise. This occurs somewhere between B.3 and B.4 as there
is hardly any difference between B.3, B.4 and B.5 upon reconstruction. There is a visible difference
between B.2 and B.3 as B.2 is more blurred. B.2 could be used as the general shape of the egg still
remains. However for now the choice was made to take 256 x 256 as the necessary hologram area.
The black band at the bottom edge in Fig. 3.6 is there to circumvent errors occurring when the CoM
lies on or near the edge of the photo. To still get a N by N square, N/2 pixels are added at the bottom
and top edges. To the left and right use is made of the fact that the image width is larger than the height
so the extra band is taken from within the image itself.

3.3.4. (4) Determining focus distance
Many algorithms exist for automatic focussing [37]. Several of the proposed algorithms in [37] were
tested but did not perform well using the images from the previous step. Therefore a new basic algo­
rithm is written based on the properties of the eggs. The focus distance of each object is determined
by attaching a sharpness value to the reconstruction at each distance. The particle is expected to
be in focus at the maximum value. Determining the sharpest image takes 83.9 ± 18.3𝜎ms per object
(determined for ID:12). The following steps describe the process of finding the sharpest image.

A. Reconstructing at distance z
The cropped image from the previous step was reconstructed at 15 different distances using the Angular
Spectrum Method (ASM). The distances where in the range of 𝑧 = 2.45 − 3.15 mm in steps of 0.05
mm. This range was chosen based upon reconstructing several eggs. Later on it is shown that this
range should be extended if the whole depth of the channel needs to be reconstructed. The spatial
frequency transfer function H used in the ASM was calculated outside the loop to save time. Also the
Fourier transform of the cropped hologram was done outside the focussing loop. So at each distance
only the inverse Fourier transform had to be calculated to reconstruct the image.

B. Cropping to 80 by 80 pixels
To determine the sharpness of the image only the central 80 by 80 pixels were used. This is because
other particles in the image could be in focus and alter the sharpness value whereas the egg would not
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yet be in focus. Assuming the CoM also corresponds to the centre of the egg we now get an image
with only the egg in view.

C. Gaussian blur
Detecting the sharpest image out of 15 images sometimes proved to give better results if a Gaussian
blur was applied. To determine if the image needed blurring I applied a twofold threshold. First the 80
by 80 image was thresholded at 0.21 ⋅ mean(image). All values below the threshold were set to one
and the rest to zero. And a second binary image was made by thresholding at 0.1 ⋅ mean(image). All
values below the threshold were set to one and the rest to zero. The values 0.21 and 0.1 are, apart from
the fact that the eggs are often darker than the surrounding, determined by trial and error. To determine
if the image needed blurring I subtracted the two binary images from each other and summed over all
pixels. The 57 eggs from ID:11 ­ 15, listed in Tab 3.4, were analysed and checked if Gaussian blurring
improved the results. The results are shown in Fig. 3.7. The green crosses mark the eggs for which
applying a Gaussian filter was beneficial. The focus distance, provided by the algorithm, then lies closer
to the actual focus distance (determined manually by eye) as compared to the case without Gaussian
filter. The red crosses perform worse when applying the filter. There is not really a general reason
why blurring gives better results for certain images. For example eggs lying at the boundary of the flow
channel (marked with a circle in Fig. 3.7) could use blurring in some cases. I think this is due to the
edge fringes causing trouble later on in the filling part. Transparent eggs (marked with a square in Fig.
3.7) on the other hand give worse results upon blurring. The change in results was not the same for
all eggs. Some focus distances deviated more from the actual focus distance than others. After tuning
the parameters (𝜎 of the Gaussian kernel and the threshold) I came to the conclusion that the best
sharpness was achieved when a Gaussian blur was applied if sum(image) > 490 or 210 < sum(image)
< 360. The images that needed blurring where blurred with a Gaussian blur (𝜎 = 1). This is of course
based on a set of 57 eggs and could be different for other eggs. The 57 were however from 5 different
lab samples. The blurring was applied to all 15 distances as the check was done on the first image (z
= 2.45 mm).

Figure 3.7: Testing if applying a Gaussian blur improved the results. Along the horizontal axis is the egg number. The
maximum number of eggs being 14 according to table 3.4. Along the vertical axis is the sum over all pixels after subtracting the

two binary images.

D. Thresholding
The (blurred) image is thresholded at 0.21 ⋅ mean(image). This is due to the fact that the histogram of
the in focus image shows a distinct peak for low pixel values. Fig. 3.8 shows the histograms for the egg
from Fig. 3.6. The peak seemed to lie around 0.21 ⋅ mean(image). The corresponding reconstructed
eggs at different distances are shown in Fig. 3.9. It can be seen that the focus distance is around
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2.9 mm. The reason for taking 0.21 ⋅ mean(image) as a threshold is because it is assumed that in
focus images have large number of pixels below threshold clustered together compared to out of focus
images. Out of focus images show a broader spectrum resulting in less dark pixels. Fringes in out of
focus images contain dark pixels, but due to the fact that they are separate from the main body they
can be removed later on. Fig. 3.10 contains the thresholded images. For this egg it can be nicely seen
that the in focus image already has a larger white area compared to the out of focus images.

Figure 3.8: Histogram of the images from figure 3.9 with the vertical line representing 0.21⋅ mean(image). The caption above
each figure is the reconstruction distance in mm. The egg is in focus at 2.9 mm. Along the x­axis is the pixelvalue and along

the y­axis is the pixel count.

Figure 3.9: Reconstruction of an egg at different distances. The caption above each figure is the reconstruction distance in
mm. The egg is in focus at 2.9 mm. The x and y scaling is in pixels.
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Figure 3.10: Binary image of the thresholded egg. The caption above each figure is the reconstruction distance in mm. The
egg is in focus at 2.9 mm. The x and y scaling is in pixels.

E. Filling
Likementioned above, to enhance the egg and remove the noise due to fringes or other smaller particles
lying in the thresholded image the image is filled. The filling is done by binary closing the image.
Binary closing first expands all white patches by binary dilation and then removes the edges by binary
erosion. This causes hollow patches to be filled and thin and smaller patches to be removed (the
fringes or noise). Also patches may knit together in the process. The process also causes zero’s to
come inwards from the edges. To prevent unnecessary ones near the edge being set to zero in this
process the image is expanded with a band of zero’s (width = 30 pixels) along the edge. The binary
closing is done over eight iterations. The result is shown in Fig. 3.11.

Figure 3.11: Filled binary image of the thresholded egg. The caption above each figure is the reconstruction distance in mm.
The egg is in focus at 2.9 mm. The x and y scaling is in pixels.
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F. Summation
The last part is to sum over the total filled binary image. The results for the egg from Fig 3.9 are shown
in figure. A nice peak is shown around the focus distance of 2.9 mm.

Figure 3.12: Results of the summation over all pixels from the images in figure 3.11. Along x are the reconstruction distances in
mm and along y the summation over all pixels.

Figure 3.13: Reconstruction of an egg lying at the boundary. The corresponding filled binary image and histogram is shown for
each reconstruction distance. The graph with the summation over the filled image is shown in the bottom right. Focus distance

lies around 3.1 mm

This works well for a lot of eggs. However there are cases in which it doesn’t work. For example eggs
lying at the boundary and transparent eggs tend to have more dark pixels out of focus. An example
of an egg lying at the channel boundary is shown in Fig. 3.13. It can be seen that it’s focus distance
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lies around 3.1 mm. The algorithm however presents a focus distance at 2.75 giving a blurry image.
The reason for this shift is most probably due to the fringes from the edge of the channel. A possible
solution to improve the algorithm for eggs at the boundary may lie in the addition of an extra check on
the smoothness of the filled image. Around the focus distance the edges of the filled egg are smoother
than out of focus.

Figure 3.14: Reconstruction of a transparent egg. The corresponding filled binary image and histogram is shown for each
reconstruction distance. The graph with the summation over the filled image is shown in the bottom right. Focus distance lies

around 2.8 mm

A transparent egg is shown in Fig. 3.14. It has a focus distance at around 2.8 mm. The algorithm
however presents a focus distance at 3.05 giving a distorted image. This can be explained due to the
fact that the border of the egg becomes broader when out of focus and therefore the amount of dark
pixels increases. What could solve this is by taking a second look at the histogram and classifying an
image as being bright before thresholding it. Then there could be two different thresholds depending
on the brightness of the object.

3.3.5. (5) Classifying images
To classify the in focus images two classifiers were tested. The first is a convolutional neural network
(CNN) and the second is a classifier based on visual properties. The computational time was so short
that it can not be said which one performs faster. Both have computation times lying in the range of
1­4 ms per object.

Convolutional neural network
To get training data for the CNN ID:15 was pushed through the pipeline. All focused reconstructed
images of the objects were manually labelled as being an egg or not. 77 eggs and 77 non­eggs were
used to make 1232 augmented images using the original images plus 3 rotations and transposes of
each rotated image. All of these were used to train the CNN without a separate test group. The data
was fed as numpy arrays.
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Visual properties classifier
30 eggs from ID:11 ­13 were used to try to find some classification based on visual properties. The
width, length, area and width/length ratio of the object were used. To extract the values for each of
these criteria an ellipse was mapped on the image. For this the filled binary image was used. The
mapped ellipse and binary images are shown in Fig. 3.15. In most of the cases the ellipse matches
with the binary image. Egg 7, 10, 19 & 24 are to small to be an egg. The reason this did not go well is
due to the eggs being either transparent or blurred as can be seen in Fig. 3.16. What also needs to be
noted is that the ellipses are slightly smaller than the actual egg size. This is due to the binary closing
erosion step and the eggs being slightly lighter towards the edges.

Figure 3.15: 30 filled binary images with an ellipse mapped over the largest patch.

Figure 3.16: 30 eggs corresponding to figure 3.15 with the ellipse mapped over the image.

Based on the outcome of the 26 successful ellipses the criterium range of the width, length, area and
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width/length ratio was determined. The range is determined to be:

28𝜇m < width < 55𝜇m
75𝜇m < length < 130𝜇m

area > 2000𝜇m2

1.9 < width/length < 3.5

Table 3.5: The range of each visual criterium.

These values are a factor 1.3­1.4 lower than the range given in Sec. 2.2. This cannot only be explained
by the ellipse being smaller than the actual egg. The most likely reason is that the eggs are not mature.
This also explains why they are so dark. If all four criteria are met then the object is classified as an
egg.

Comparing Classifiers
To compare the performance of both classifiers the outcome of ID: 8 ­ 15 was manually scanned for
eggs. Eggs recurring in multiple frames were only counted as one, so the recurring eggs were labelled
as negative. All objects detected by the object detector where labelled as True Positive (TP), False
Positive (FP), True Negative (TN) or False Negative (FN). From this a sensitivity and specificity score
was given using the definitions from Eqs. 3.1 & 3.2. To get more information on the actual classification
done by the two classifiers also a score was given using only the objects that were passed through the
two classifiers (so excluding the filtered out recurring objects). All results are presented in the following
table:

Sensitivity Specificity
CNNTotal 0.80 0.93
VisualTotal 0.80 0.97

CNNRemaining 0.82 0.83
VisualRemaining 0.81 0.94

CNN8 0.96 0.90
Visual8 0.87 0.94
CNN9 0.88 0.89
Visual9 0.63 0.96
CNN10 0.71 0.93
Visual10 0.69 0.96
CNN11 0.90 0.83
Visual11 0.80 0.96
CNN12 0.86 0.79
Visual12 0.83 0.93
CNN13 0.79 0.75
Visual13 0.81 0.91
CNN14 0.85 0.67
Visual14 0.85 0.88
CNN15 0.75 0.83
Visual15 0.82 0.95

Table 3.6: Sensitivity and Specificity scores for all the detected objects (1st and 2nd row), the two classifiers ignoring the
filtered out recurring objects (3rd and 4th row) and for each of the 8 sample sets without the recurring objects (5th till 20th row).

The difference between the score without and with recurring objects taken into account is due to the
fact that 5756 objects were labelled as recurring. Of these only 6 were eggs. So the TN count is
higher when including the recurring objects. Comparing the two classifiers we can conclude that their
Sensitivity scores are comparable, but that the visual classifier has a higher specificity. This could be
explained due to the small training set used to train the CNN. However acquiring enough training data
is a difficult issue in the field with patients having egg counts varying from 0 to 100+ eggs with only 12%
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of the examined patients having an egg count above 10 [9]. As there was also no significant difference
in computational time observed, the visual classifier is recommended.

3.4. Pipeline analysis
The results of each step within the pipeline are shown in more detail in Tab. 3.7.

CNN Visual
ID Recurring Recurring Eggs Remaining TP FP TN FN TP FP TN FN Eggs
8 1554 0 613 22 60 530 1 20 36 554 3 23
9 671 0 414 7 43 363 1 5 17 389 3 8
10 713 0 461 25 30 396 10 24 16 410 11 35
11 1355 0 349 18 56 273 2 16 12 317 4 20
12 1345 5 1211 96 231 869 15 92 77 1023 19 116
13 4 0 339 50 68 208 13 51 25 251 12 63
14 19 1 370 56 100 204 10 56 35 269 10 68*
15 95 0 611 89 86 406 30 97 27 465 22 119

Table 3.7: The pipeline results for the 8 evaluated samples. The last column contains the egg count that was possible if the
detected objects were classified correctly. It is a sum of the Recurring eggs + TP + FN. (*) In the case of ID:14 there are two

eggs overlapping which are not split by the detector.

When analysing the results several things can be noted. The first thing is that the amount of recurring
objects is higher for ID:8­12 compared to ID:13­15. This can be explained by the flow channel being
refreshed between ID:12 and ID:13. The new flow channel most likely had less defects in the glass/dust
on the exterior or the old flow channel had stuff sticking to the sides which did not flush out when
rinsing. The second thing is that when comparing ID:8­10 from Tab. 3.7 with Tab. 3.2 we see the
object detector detects 23% less objects. A third thing to be noted is that upon comparing the results
from the last column in Tab. 3.7 with the predicted egg count from Tab. 3.3 we see that the amount
of eggs seen by the detector is much lower than the amount theoretically predicted. There are several
possible reasons for this. First of all the object detector may miss objects. Secondly there is no uniform
flow in the channel and this was assumed when designing the setup. This mismatch causes eggs to
flow past the sensor in between frames. The third and most plausible explanation is that the theoretical
estimate may have been wrong. The following sections expand each of the three explanations.

3.4.1. Missing objects
As the object detector may have missed objects the frames from ID:13 and ID:14 were manually
checked for eggs that were missed by the detector. The detector proved to have missed 4 eggs in
ID:13 and 7 eggs in ID:14. Of these 7 were lying at the edges of the channel or at the top/bottom of
the sensor. The other 4 were all transparent eggs. This indicates that the detector needs to be trained
better to identify eggs at the edges and transparent eggs. Examples of missed eggs are shown in Fig.
3.17. Also in frames M541­M606 of ID:14 there seemed to occur eggs in multiple frames along the left
channel edge. In some of these frames the egg is not detected. This is when it comes to close to the
edges. It is not a very accurate estimate but based on ID:13 and ID:14 we can say that some 5­15%
of the eggs are missed by the object detector.

Figure 3.17: Fringes missed by the object detector.
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3.4.2. Fluid escaping the sensor
P.M. Nijman [4] already proposed taking into account the non­uniform flow profile. A non uniform flow
profile may cause eggs to escape the field of view (FoV) of the sensor in certain areas whereas eggs
may remain in the FoV over multiple frames in other areas. This last effect has already been observed
in frames M541­M606 of ID:14. To determine the flow profile with great detail accurate measurements
can be done. But as I only have static data to my disposal I did several assumptions based on obser­
vations from the frames.

First of all it seems that eggs tend to stick to the sides as mentioned. This gives the assumption
that the flow velocity is lower at the sides. In some cases however it seems like the eggs at the edges
drift upwards indicating turbulence. As turbulence is hard to take into account the choice was made to
describe the flow as a laminar stable flow. Two things need to be calculated to estimate the number of
eggs escaping the sensor: the fraction of the fluid flowing beyond the sensor FoV in between frames
and the distribution of the eggs across the channel cross­section.

Fluid fraction escaping the sensor
To calculate the fraction of the fluid flowing beyond the sensor FoV the equation for the flow velocity in a
rectangular duct for a fully developed stable flow was used [38]. The coordinate framework is presented
in Fig. 3.18, with 𝑙 = 4.589 mm, 𝑤 = 5 mm and ℎ = 0.8 mm. This is the volume imaged within each
frame. The origin is chosen to be in the centre of the volume. The x­axis lies in the horizontal direction
perpendicular to the flow and the z­axis in the vertical direction. The y­axis is in the direction of flow.

Figure 3.18: Section of flow channel imaged by the sensor containing fluid volume of 𝑉𝑠𝑒𝑛 = 𝑤 × ℎ × 𝑙 mm3. The origin of the
coordinates lies at the centre of the volume.

Adapted to the framework of Fig. 3.18 the flow velocity in a rectangular duct for a fully developed stable
flow is written as:

𝑣(𝑥, 𝑧) = −1𝜂
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Where 𝜂 is the viscosity and 𝑑𝑝/𝑑𝑦 the pressure gradient along the length of the channel. Between
each frame a fluid volume 𝑉 is pumped. We want to know the fraction 𝑉escaped of the pumped fluid
volume 𝑉 which flows past the sensor and is therefore not imaged. For that end we need to use the
local flow rate defined as:

𝑑𝑄(𝑥, 𝑧) = 𝑑𝑥𝑑𝑧 ⋅ 𝑣(𝑥, 𝑧) (3.5)

When pumping starts new fluid will enter the field of view of the sensor. The displaced volume is
determined by 𝑑𝑉 = 𝑑𝑄(𝑥, 𝑧) ⋅ 𝑡 with 𝑡 the pumping time. When the following requirement is met a
part of the fluid passing by 𝑑𝑥𝑑𝑧, centred around the point (𝑥, 𝑧), has flowed beyond the sensor before
pumping has stopped:

𝑑𝑄(𝑥, 𝑧) ⋅ 𝑡 > 𝑑𝑄avg ⋅ 𝑡𝑙 (3.6)

If met, Eq. 3.6 states that the local volume flowing by the infinitesimal area 𝑑𝑥𝑑𝑧, centred around the
coordinates (𝑥, 𝑧), exceeds the volume acquired with an average flow rate and a pumping duration
of 𝑡𝑙 = 𝑤ℎ𝑙/𝑄avg = 𝑙/𝑣avg. Comparing it to the case with an average flow rate is comparing it to the
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uniform flow case. To determine the fraction of the pumped volume we need to integrate over the area
that satisfies Eq. 3.6, taking into account that a portion of the pumped volume remains within the sensor
FoV after pumping has ceased:

𝑉escaped =
1
𝑉 ∬𝑆

(𝑣(𝑥, 𝑧)𝑡 − 𝑣avg𝑡𝑙) 𝑑𝑥𝑑𝑧 (3.7)

Here 𝑆 is the cross­section of the flow that satisfies Eq. 3.6. The problem in solving Eq. 3.7 is the
occurrence of the viscosity and pressure terms in the flow velocity as described by Eq. 3.4. These
terms can be eliminated if we divide by the average flow velocity 𝑣avg and corresponding pumping time
𝑡𝑙 and multiply with 𝑙:

𝑉escaped =
𝑙
𝑉 ∬𝑆

(
𝑣(𝑥, 𝑧)𝑡 − 𝑣avg𝑡𝑙

𝑣avg𝑡𝑙
)𝑑𝑥𝑑𝑧 (3.8)

Using the fact that 𝑡/𝑡𝑙 = (𝑉/𝑄avg)/(𝑤ℎ𝑙/𝑄avg) = 𝑉/𝑤ℎ𝑙 we end up with the final equation:
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𝑉
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𝑣avg can be found by solving:
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In Fig. 3.19 𝑣(𝑥, 𝑧)/𝑣avg is plotted using 𝑤 = 5 mm and ℎ = 0.8 mm.

Figure 3.19: Relative flow velocity profile through a rectangular duct of width 𝑤 = 5 mm and height ℎ = 0.8 mm. The flow
velocity is relative to the average flow velocity as given by Eq. 3.11.

We see that the velocity at the boundary is zero, as is expected due to the implied boundary conditions,
and maximum in the centre of the channel. Now by numerical integration Eq. 3.9 can be solved for
different 𝑉. The result is shown in Figs. 3.20 and 3.21:
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Figure 3.20: Fraction of the pumped volume 𝑉 escaping the sensor.

Figure 3.21: Zoom in on the smaller pumping volumes.

We see the graph behaves as what we expect. The line tends to 100% for large volumes and for small
volumes all the pumped fluid remains within the FoV of the sensor. Below 𝑉 = 11 mm3 no fluid escapes
the sensor. This can be explained when looking at the centre of the channel where he flow velocity is
maximum. The maximum volume for which no fluid flows beyond the sensor is when the term within
the integral in Eq. 3.9 is equal to 0 for 𝑣(0, 0):

𝑣(𝑥, 𝑧)
𝑣avg

𝑉
𝑤ℎ𝑙 − 1 = 0 (3.12)
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From Fig. 3.19 we see that the maximum value is 1.664 plugging this into Eq. 3.12 we get 𝑉 =
11.03 mm3 which is when the graph in Fig. 3.21 starts to rise.

Now each sample consists of around 670 frames. 10.7ml fluid was pumped through while capturing
these frames. So this means between frames a volume 𝑉 = 10700/670 = 15.97 mm3 was pumped.
Looking at the graph in Fig. 3.21 we see that 14.55% of the fluid was not captured by the camera. This
doesn’t have to mean that 14.55% of the eggs were not imaged by the camera. To estimate the number
of eggs which were not captured on the camera we need to know the distribution of eggs across the
channel cross­section.

Distribution of eggs
Using all the 452 eggs from the analysis of ID:8 ­ ID:15 a plot of their (x,z) location was made, shown
in Fig. 3.22. As the automatic focussing algorithm is not accurate enough, the eggs that did not
seem focussed were manually refocussed. It should be noted that determining the z­coordinate has
a ±0.1mm uncertainty due to the fact that in some cases the focus distance was difficult to determine
both with the algorithm and by eye. To get the position in the framework of Fig. 3.18 the reconstruction
distance (optical distance) is replaced with the actual distance from the channel centre. The start of
the channel was determined by focussing a scratch or object on the glass which recurred throughout
many frames and the fact that the eggs should be within the channel. Then with the refractive index of
urine the actual z position for each egg within the channel is calculated. Urine has a refractive index in
the range of 1.336 ­ 1.349 [39]. It has been chosen to set the refractive index to 1.34.

Figure 3.22: (x,z) location of 452 eggs detected in ID:8 ­ ID:15. 40 bins along x and 18 bins along z. The red dashed lines mark
approximately the boundaries of the channel.

What can be noted is that the eggs tend to be off centre in both the x and z direction. This could be
described as particles moving away from the centre due to a shear gradient induced lift force [40]. For
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a more in­depth explanation we need to know the velocity of the fluid to calculate the Reynolds number
and the particle Reynolds number and then we know what type of flow it is and then we can explain
even further the results. For now I take the results as they are. What anyway can be concluded is
the fact that the eggs are not distributed uniformly over the channel’s cross section and have a larger
probability of lying in the lower velocity areas. This means that the percentage of eggs missed could
be lower than the percentage of fluid volume missed.

Using this cross­sectional distribution of eggs and the flow velocity from Fig. 3.19 we can calculate
the number of missed eggs given a pumping volume 𝑉. The idea is that in a certain region 𝑑𝑆 = 𝑑𝑥𝑑𝑧
a certain percentage of the fluid passing through is missed by the sensor. This we denote as 𝑑𝑉escaped.
The amount of eggs missing in 𝑑𝑆 is then:

𝑑𝑁escaped = 𝑑𝑉escaped ⋅ 𝑛 (3.13)

where 𝑛 is the number of eggs detected within 𝑑𝑆 by the sensor. To find the number of eggs which
escaped the sensor we just integrate over 𝑑𝑁 to get:

𝑁escaped =
𝑙
𝑉 ∬𝑆

(𝑣(𝑥, 𝑧)𝑣avg
𝑉
𝑤ℎ𝑙 − 1) ⋅ 𝑛(𝑥, 𝑧)𝑑𝑥𝑑𝑧 (3.14)

The region 𝑆 over which is integrated depends on the pumping volume 𝑉. As we only have data for one
pumping volume no graph can be made expressing the fraction of eggs escaping the sensor. However
we can give an estimate of the number of eggs escaping for a pumping volume of 𝑉 = 15.97 mm3. To
do this a 2D histogram is made from the (x,z) location of the eggs and the region 𝑆 is mapped onto this
histogram. The histogram and the region 𝑆 are shown in Fig. 3.23.

Figure 3.23: 2D histogram of (x,z) location of 452 eggs detected in ID:8 ­ ID:15. 40 bins along x and 18 bins along z. The
orange border marks the region 𝑆 for which Eq. 3.6 is satisfied with 𝑉 = 15.97𝑚𝑚3. The red dashed lines mark approximately

the boundaries of the channel.

Multiplying the section of the 2D histogram within the red dashed lines with the array corresponding
to 𝑉escaped and summing over the area 𝑆 we find that a total of 68.6 eggs escaping the sensor. This
corresponds to 68.6/452 ⋅ 100% = 15.2% of the eggs. This value is considering the uncertainty of the
focus distance nearly equal to the 14.55% of the fluid volume escaping the sensor. Based on this a
plausible rule of thumb is to say that the percentage of eggs missed by the sensor is the same as the
volume percentage flowing beyond the sensor.
To correct for the missing eggs there are two possible solutions. The first is to decrease the pumping
volume to 11.03 mm3 so that no fluid flows past the sensor. In this case great care needs to be taken
to not count eggs double. The second solution is to increase the amount of urine scanned to be above
11.70 ml when having a pumping volume of 15.97 mm3. This also assures the imaged volume to be
10 ml.



3.5. Pipeline conclusion and proposals 39

To conclude what we have so far we can calculate the fraction of actual eggs which are detected:

𝑁detected =
1

(1 + 𝑁detector)𝑁flow
(3.15)

Where𝑁detector is the fraction of eggs missed by the object detector and𝑁flow the fraction of eggs missed
due to the flow profile. Say we take 𝑁detector = 0.1 and 𝑁flow = 0.15 then we can conclude that 79% of
the eggs present in the fluid is detected. This can not explain the discrepancy between the detected
eggs and the theoretically predicted number of eggs.

3.4.3. Miscalculation in theoretical prediction
The theoretical number of eggs was determined based on the applied dilution. Reducing the number
of eggs by dilution needs to be done with great care. As the dilution was applied by shaking and then
quickly extracting eggs it can be concluded that this method is not precise at all, resulting in a wrong
theoretical number of eggs.

3.5. Pipeline conclusion and proposals
Looking back at the goals set out in Sec 3.2 it can be concluded that almost all have been met:

1. The new object detector detects 23 % less objects compared to the previous object detector.

2. The classification speed of the detected objects increases from approximately 1­1.5 seconds to
0.06­0.1 seconds per object.

3. The sensitivity increased from 0.506 to 0.81 although the specificity dropped from 0.986 to 0.94.

4. The overall duration dropped from 1­3 hours to 31 minutes per sample.

Also using an improved model for the flow profile it can be said that approximately 79% of the eggs
present in the fluid is detected. Thus we can conclude that the SODOS is able to detect eggs in a 10
ml urine sample. Future improvements still have to be made. I propose several ideas:

1. As the object detector currently consumes most of the computational time an alternative needs to
be found. A possibility is to use themuch faster object detector fromP.M. Nijman [4] in combination
with the rest of the pipeline from the new approach. A quick calculation shows that if 20 000
objects are detected (which is a highly contaminated sample) it will take the new classifier around
30 minutes to process the whole sample. Samples with 5000 objects are classified in 10 minutes,
making it a nearly feasible time in actual field use.

2. Train the detector with extra data from eggs lying at the boundaries so that less eggs are missed
by the object detector.

3. As some eggs are excluded based on their CoM coordinates some optimisation on the box size
and number of past frames needs to be done to minimise the loss of eggs.

4. Optimise the focussing for transparent eggs and eggs lying at the boundaries. Perhaps also
inserting a band of zeros to the left and right instead of using the existing image pixels may cause
the edge effects to be less.

5. It may be possible to use less reconstruction distances as the eggs don’t have to be in focus to
be determined as eggs.

6. Improve the distinction between eggs that need blurring and those that don’t.

7. Improve the thresholding by smoothing the histogram or by applying a different threshold.

8. Extend the number of criteria in the visual classifier to include for example the terminal spine.

9. Increase the sample volume or decrease the pumping volume to reach a total imaged volume of
10 ml.
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3.5.1. Field results
As the whole detection and classification was done based on the lab samples a small remark should
be made when using it on field samples. As mentioned earlier field samples contain more objects.
The majority of which is regarded as noise. Clear distinction between eggs and other similar particles
is vital. Figs. 3.24, taken in the lab, and 3.25, taken from the field, show fringes corresponding to
eggs. Upon reconstruction however only Fig. 3.24B contains a sharp egg. The other two are blurred.
This is not a problem when analysing lab samples where almost all of the oval shapped objects are
eggs. For the field samples this is however not the case. To improve the quality of the field samples
the flow should be stationary upon capturing a frame. Fig. 3.25 shows vertical lines along the centre
indicating a moving flow. As the time between frames was kept the same in both the lab measurements
as the field measurements, the reason must lie elsewhere. Most probable is the difference in urine
consistency causing a slightly different flow behaviour. Tuning the time between frames should alleviate
the problem.

Figure 3.24: Frame M492 from ID:15 from the lab data. The reconstruction of the fringes within the yellow squares is shown in
the inset.

Figure 3.25: Frame M431 from ID:81 from the field data. The reconstruction of the fringes within the yellow square is shown in
the inset.



4
Applying far­field formulas of opaque

spheres to egg hologram

4.1. Introduction
The data from my predecessors showed that reconstructing eggs lying up to a distance of about 3.2
mm proved to be no problem. At this distance the hologram is recorded in the near­field of the eggs.
When increasing the volume by increasing the depth also far­field fringe patterns will be recorded from
particles lying further away. To predict if the eggs can still be reconstructed from these far­field fringe
patterns the Fraunhofer particle holography (FPH) model can be used. To use the formulas from the
FPH theory several requirements have to be met: (i) the fringe pattern has to be recorded in the far­field
of the object, (ii) the objects are spherical or one­dimensional line objects, (iii) the objects are opaque.

It makes sense, as the eggs are ellipsoidal, to see if the FPH formulas for opaque spherical objects
can be applied to them. The hope is that the far­field fringe pattern of an egg, with a height ℎ and width
𝑤, where ℎ > 𝑤, closely corresponds with the far­field fringe pattern of an opaque sphere of diameter
𝑑, with 𝑤 ≤ 𝑑 ≤ ℎ. The resemblance to a sphere can already be observed in the near­field pattern
seen in Fig. 4.1. Fig. 4.1B shows the fringe pattern for an egg lying at a distance 3.1 mm with a height
ℎ = 105𝜇m and a width 𝑤 = 50𝜇m. Using the Angular Spectrum Method (ASM) the fringe pattern for a
sphere with diameter 𝑑 = 50𝜇m was simulated. Fig. 4.1A shows the result. The background intensity
was chosen to match that of Fig. 4.1B. The scale to the right of Fig. 4.1B is the intensity as measured
by the sensor, 1 being a saturated pixel. It can be seen that only half of the bit­depth is used.

Figure 4.1: Fringe pattern of a sphere and egg, both at a distance 𝑧 = 3.1 mm. A) Simulation of a sphere with diameter
𝑑 = 50𝜇m. B) Egg with a height ℎ = 105𝜇m and width 𝑤 = 50𝜇m.

41
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Comparing Fig. 4.1A and B it can be seen that in the centre the fringe patterns don’t match. Further
away the fringes tend to become more circular. The hope is that the far­field fringe pattern also shows
this resemblance to the sphere for the central fringes.

4.2. Propagating to the far­field

To get the far­field fringe pattern the sensor data from the Smart Optical Diagnostic Of Schistosomiasis
(SODOS) device needs to be extrapolated to a larger distance. This is done by taking a binary mask
of a reconstructed egg and propagating the interference pattern to the far­field using the ASM. This
procedure is shown for a distance of 𝑧 = 3.1 mm in Fig. 4.2. Starting from the sensor data (F) a
reconstruction is made of the egg at a distance 𝑧 = 3.1mm (C). Two binary masks are made: an opaque
mask (A) and a semi­transparent mask (B). The interference pattern of these masks at a distance
𝑧 = 3.1 mm is simulated using the ASM (D & E). When comparing the simulated interference patterns
(D & E) to the actual interference pattern (F) it can be seen that they are quite comparable. The semi­
transparent result (E) is slightly better than the opaque (D). The horizontal dark fringes marked by the
orange arrow are a bit more visible as is also the case in (F).

Figure 4.2: Reproducing the measured interference pattern by using the Angular Spectrum Method. A) ’Opaque’ binary image
of the reconstructed egg. B) ’Semi transparent’ binary image of the reconstructed egg. C) Reconstruction of the measurement
data. D) Simulated interference pattern originating from A. E) Simulated interference pattern originating from B. F) Recorded

interference pattern.

The next step is to use the simulated results and simulate the interference pattern in the far­field. Fig.
4.3 shows the results for the case of 𝑧 = 30 mm. Both binary images produce a similar pattern that
almost looks like the interference pattern of a spherical particle. The orange arrow in Fig. 4.3 shows an
area where the fringes deviate from the nice outgoing circular fringes. The horizontal oriented elliptical
fringes are still vaguely present.



4.2. Propagating to the far­field 43

Figure 4.3: Simulated far­field interference pattern for the case of an opaque egg (A) and a semi­transparent egg (B) placed at
a distance 𝑧 = 30 mm. The dashed lines mark the horizontal and vertical cross­sections plotted in Fig. 4.4 & 4.5

Figure 4.4: Horizontal cross­section of the simulated interference patterns plotted against the theoretical curves for a sphere
and a line with 𝑑 = 50𝜇m. B) zoom in on the edge of the central peak. C) zoom in on the edge of the first side­lobe.

To see how well the fringes match those of an opaque spherical particle the horizontal and vertical
cross­sections, marked by the dashed lines in Fig. 4.3, are plotted alongside the theoretical curves
for an opaque sphere (Eq. 2.14) and an opaque 1D line (Eq. 2.27). Fig. 4.4 shows the horizontal
cross­section and the theoretical curves for a sphere with diameter 𝑑 = 50𝜇m and a line with the same
width. We see that the amplitude of both simulations is lower than the theoretical curve for the 1D line
but higher than that of the sphere. This can be explained due to the elongated shape of the egg. This is
a good sign for that means a higher fringe visibility. When looking at the crossing between the central
peak and first side lobe marked by the vertical bar in Fig. 4.4B, we see that the finer oscillations of
the two simulations and the spherical theoretical curve each oscillate different around the vertical bar.
But the three curves quickly maintain the same oscillation frequency after the bar. The fact that both
the simulation curves and the analytical curve for an opaque sphere show a decrease in intensity until
the vertical bar indicates that the width of the egg can be determined from the far­field pattern when
applying Eq. 2.14. Some differences between the opaque and semi­transparent curves need to be
mentioned. The first thing is that the amplitude of the opaque egg is larger within the central peak and
second side lobe whereas the semi­transparent has a larger amplitude within the first and third side
lobe. Also a slight shift between the two simulations can be seen in the right of Fig. 4.4C. However this
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shift only starts to occur after the first side­lobe, providing for both cases still many oscillations which
can be used to determine the distance 𝑧.

Figure 4.5: Vertical cross­section of the simulated interference patterns plotted against the theoretical curves for a sphere and
a line with 𝑑 = 105𝜇m. B) and C) zoom in on parts of the graph.

When looking at the vertical cross­section plotted against the theoretical curves with 𝑑 = 105𝜇m, in
Fig. 4.5, the resemblance is less nice. Now the simulated amplitude is smaller than both theoretical
amplitudes. We do see that the oscillations within the central peak have matching frequencies. Zoom­
ing in on the first and second side lobe a slight offset to the left compared to the theoretical curve can
be observed. Also the third and fourth side­lobe are not distinguishable in the opaque case and the
fourth and fifth are not in the semi­transparent case. This makes it less reliable to use the vertical
cross­section to determine the distance 𝑧 and the height of the egg. The reason for these observed de­
viations lies in the fact that the egg is not purely spherical. It can be noted though that for the frequency
of the central oscillations both the vertical and horizontal cross­section follow the analytical formulas.
So the orientation of the particle doesn’t need to be known to be able to determine the distance 𝑧.

It was mentioned earlier that the eggs are darker in the lab than observed on the field. What exactly
these effects are on the interference pattern is hard to say. One would need to know the refractive
index of the eggs to say what the effect is. With the simple simulation no significant difference was
observed between the opaque and semi­transparent simulation. Both showed resemblance with the
analytical curves for at least the central oscillations.

4.3. Conclusion
To conclude it has been shown, via a simulation, that the far­field hologram pattern of an egg closely
resembles that of an opaque sphere lying at the same distance. The egg under study was oriented in the
vertical direction. The horizontal cross­section of the egg’s fringe pattern closely matched with the fringe
pattern of a sphere with a diameter equal to the width of the egg. From the horizontal cross­section
the distance 𝑧 could be determined as well as the width of the egg. The vertical cross­section, needed
to determine the height of the egg, proved to match less well with the fringe pattern of a sphere with
a diameter equal to the height of the egg, so we don’t think determining the height from the hologram
will be achieved in practise. It is not necessary to know the orientation of the particle to determine 𝑧 as
the frequency of the central oscillations of both cross­sections can be used.



5
Experimental results concerning

resolution throughout sample volume

5.1. Introduction
This chapter examines all that has been said so far by performing several experiments. The first
experiment, covered in Sec. 5.2, focusses on the resolution limits imposed by the sensor’s size and
pixel pitch. A USAF resolution chart is imaged at different distances 𝑧 to see the sensor’s effects on
the resolution. The second experiment, covered in Sec. 5.3, visualises the effects of the Bayer filter. A
USAF resolution chart is imaged with a colour sensor and reconstructed using the techniques described
in Sec. 2.5.3. The final section, Sec. 5.4, covers several experiments with different volumes containing
S. haematobium eggs. It is shown that the scattering of particles poses the greatest limitation on the
resolution throughout the volume. Throughout all the experiments the reconstruction of the sensor data
was done with the Angular Spectrum Method (ASM) as described in Sec. 2.5.2.

5.2. Resolution limit due to sensor size and pixel pitch
At the beginning of Sec. 2.5.1 the effects of the sensor’s pixel pitch and sensor size are mentioned as
imposing limits on the resolution. On the one hand Eqs. 2.21, 2.22, 2.28 & 2.29 describe the resolution
as imposed by the sensor size. On the other hand the pixel pitch 𝑝 imposes a limit as well: 𝑅 = 𝑝 for
1D line objects and 𝑅 = 1.22𝑝 for spherical objects. The limit due to the pixel pitch is always valid. At
a certain distance however the resolution as imposed by the sensor size starts to be larger than that
of the pixel pitch. To visualise this effect a USAF resolution chart was imaged at different distances 𝑧
using an iDS UI­3482LE­M CMOS monochrome camera [41] and a red laser. The setup was built as
depicted in Fig. 5.1. The specs of the used components are listed in Tab. 5.1

Laser
Wavelength: 635 nm

CMOS sensor
Size: 2560 x 1920 Pixels
Size: 5.632 x 4.224 mm

Pixel pitch: 2.2 𝜇m
Bit depth: 12 bit

Lens
Focal distance: 20 cm

Sample
USAF resolution chart

Table 5.1: Specs of components used in the experiment to visualise the effects of the sensor’s size and pixel pitch at different
distances 𝑧.
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Figure 5.1: Setup used throughout the experiments. The laser beam is collimated before illuminating the sample.

Before looking at the resolution at different distances 𝑧 the recording and reconstruction will be exam­
ined in more detail. Fig. 5.2A shows the recorded hologram for the resolution chart placed at a distance
𝑧 = 10.645 mm. The distance 𝑧 was determined as the distance at which the reconstruction was in
focus. The first thing that is apparent is the fact that the larger elements can already be seen without
reconstructing, whereas the smaller elements are clouded in a whirl of fringes. The second thing that
needs to be noted are the diagonal fringes in the background. Where these are from I’m not certain,
but I assume it’s the lens used for collimating the laser beam. These lines result in a pair of peaks
in the diagonal direction in the Fourier domain. Fig. 5.2B shows the Fourier spectrum. The intensity
is on a logarithmic scale. It can be seen that the intensity in the Fourier domain doesn’t tend to zero
near the edges. This indicates that aliasing occurs as copies of the spectra overlap. This is most likely
due to the fact that the lines in the resolution chart contain sharp edges causing high frequencies to be
needed for accurate reconstruction as well as the occurrence of very small details in the group 8 and
9 which also cause high frequencies. The reconstruction in Fig. 5.3 clearly shows that the elements of
group 8 and 9 are to small to be resolved.

Figure 5.2: A) The intensity pattern for the USAF resolution chart placed at a distance 𝑧 = 10.645 mm. B) The Fourier
spectrum of A) with the intensity on a logarithmic scale.

When reconstructing no zero­padding was done at the edges so artefacts are to be expected. The
results are shown in Fig. 5.3. When examining the reconstruction several things can be noted. The
first thing is that the group numbers of group 2 and 3 have fringes around them in the shape of their
number whereas the slightly smaller numbers, the element numbers of group 3, have circular rings
around them. The smallest visible numbers, seen in Fig. 5.3B­E, don’t have any fringes around them.
These fringes around the larger numbers are due to the presence of the twin image. From the theory
we recall that for particles in the far­field the ’halo’ effect due to the twin image is negligible. From Eq.
2.4 we find that particles with 𝑑 ≤ 82.2𝜇m lie in the far­field. This means that elements from G3E5 and
smaller lie in the far­field. And indeed the effect of the fringes around the numbers is almost gone as
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we enter the far­field. Another thing which is notable are the numbers 2­6 from group 2 which arise to
the right noted by the yellow arrow in Fig 5.3A. This effect is called the border effect and arises due to
the truncation of the fringes by the sensor [42]. This effect is most apparent around the edges and as
the object of interest is most often in the centre of the field of view this effect is not bad. To visualise
the smallest elements better the reconstruction was interpolated with a sinc function as this provides
the optimal interpolation for band­limited signals [43]. This does not add any new information but just
improves the visibility as is seen in Fig. 5.3C and E.

Figure 5.3: A) Full reconstruction of the intensity pattern from Fig. 5.2A without zero­padding. B) Zoom­in on the solid yellow
square. C) Zoom­in on the solid yellow square with sinc interpolation post processing. D) Zoom in on the dashed yellow

square. E) Zoom­in on the dashed yellow square with sinc interpolation post processing.

Now understanding the properties of the recorded fringe pattern and reconstructed image the USAF
resolution chart was placed at 45 different distances ranging from 0.575 mm to 50.93 mm. At each
distance the smallest resolvable horizontal and vertical elements were determined. This horizontal and
vertical resolution was plotted alongside with the resolution as predicted by Eqs. 2.21, 2.22, 2.28 &
2.29 and the fact that the pixel pitch resolution limit always holds. The results are shown in Fig. 5.4,
where the dots and stars mark the measured resolution, the dashed curves mark the theoretical res­
olution for spherical particles and the solid curves mark the theoretical resolution for 1D line objects.
Several things can be seen from this graph. The first is that the measurement results lie closer to the
theoretical curves for 1D line objects. This can be expected as the USAF resolution chart is made up
of groups of lines. The second thing is the fact that the measured resolution is most of the time worse
than the theoretical limit of 𝑝 for 𝑧 < 15 mm. This can be explained due to the presence of the virtual
image of the larger elements. The recorded hologram lies in the far­field of the smallest resolvable
elements, but in the near­field of the larger elements. Another thing we see is that around 𝑧 = 41 mm
the measured horizontal resolution has a slight outlier. G6E4 was determined as being visible, but it
must be admitted that the spaces in between the lines are not so clearly visible as it is the case with
G6E3. G6E3 would fall on the theoretical curve.

It must be noted that the USAF resolution chart was placed with the smallest elements on the optical
axis. If an object is positioned away from the optical axis the distance to the sensor’s edge decreases
resulting in a higher resolution. Fig. 5.5 summarises the resolution governed by the pixel pitch and the
sensor size. Within the shaded triangular area the resolution is bounded by the pixel pitch and outside
by the sensor area. The blue triangle shows the area for spherical particles and the orange triangle for
line particles. As the volume is three dimensional the triangle represents a volume. It is a cross­section
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of a prism shaped like a roof with the base being 𝑤𝐶𝐶𝐷 × ℎ𝐶𝐶𝐷.
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Figure 5.4: Measured horizontal and vertical resolution for different distances 𝑧 plotted against the theoretical resolution
predicted by Eqs. 2.21 and 2.22 for a shperical particle and Eqs. 2.28 and 2.29.

Figure 5.5: Triangular domain for which the resolution is bounded by the pixel pitch. Outside this domain the resolution is
bounded by the sensor dimensions. The blue area is for spherical particles and the orange area is for 1D line particles.

To conclude this section it can be said that the resolution limits due to the sensor’s size and pixel pitch
are observed in accordance with the theoretical predictions.

5.3. Effects due to Bayer filter
To understand the effects of the Bayer filter the USAF resolution chart was illuminated with two different
lasers. First the same red laser as in the previous experiment was used, after which the laser was
replaced with a green laser. Images were captured using a 24MP APS­C CMOS sensor present in the
Canon EOS M50 [44]. The same setup as described in Fig. 5.1 was used. For the setup containing
the red laser the setup specs are listed in Tab. 5.2.
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Laser
Wavelength: 635 nm

CMOS sensor
Size: 6012 x 4008 Pixels
Size: 22.3 x 14.9 mm

Pixel pitch: 3.71 𝜇m
Bit depth: 14 bit

Lens
Focal distance: 20 cm

Sample
USAF resolution chart

Focus distance: 25.25 mm

Table 5.2: Specs of components used in the colour camera test with the red laser.

Figure 5.6: A. Canon EOS M50 with red laser, RAW image data. B. Monochrome interpolation of the RAW data at 72 dpi. The
insets show the pixels at the location of the yellow arrow. C. Fourier spectrum of the RAW image data. D. Fourier spectrum of

the monochrome image.

Unfortunately no blue laser was used as source. This would have been the best choice for the larger
distances according to Eqs. 2.21 and 2.22. Illuminating with a red laser however illustrates the general
idea for reconstruction because the blue and red channel have the same amount of pixels and for both
channels three copies arise in the spectral domain. As the green pixels provide us with the highest
resolution when using a single channel, the illumination was tweaked such that the green channel did
not have any saturated pixels, but at the same time used up most of its bit depth. This effect was
reached with a laser power of 𝑃 ≥ 2.5 mW and a CMOS shutter time of 1ms. Fig. 5.6A shows the
RAW image data. The inset in Fig. 5.6A clearly shows that the red channel receives most of the light.
Fig. 5.6B shows the 8 bit 72 dpi jpg monochrome image generated using the Digital Photo Professional
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software from Canon. Due to the debayering the bit depth decreases. Another effect is that the copies
in the Fourier spectrum disappear after debayering. Fig. 5.6C shows the Fourier spectrum of the RAW
CMOS data. The spectral copies are clearly present as marked by the arrows. In Fig. 5.6D, which
shows the Fourier spectrum of the debayered image, the copies are absent.

The response to the laser light for the different colour channels is shown in Fig. 5.7. A histogram
of the pixel count against the normalised pixel intensity (bit depth) for the three colour channels and the
monochrome interpolation is plotted. To ignore the dark background only the pixels within the dashed
yellow squares marked in Fig. 5.6A and B are counted. It can be seen that the red channel is partly
saturated. This is a side effect of wanting to use as much as possible of the bit depth in the green
channel. We also see that the three colour channels have the same shape. This can be explained
due to the fact that they roughly image the same object. It is interesting to note that the debayered
histogram is shifted to include lower values than present in the RAW data. Also the shape is deformed
such that the lower values are stretched out and the higher values are squeezed together.

Figure 5.7: Histogram of the pixel count vs the normalised pixel intensity for the three channels and the monochrome
interpolated data when illuminating with red light.

Figure 5.8: Reconstruction of the USAF resolution chart at a distance of 𝑧 = 25.25 mm using red light (𝜆 = 635 nm). Showing
groups 4 and 5 in images A1, B1, C1 and D1 and groups 6 and 7 in images A2, B2, C2 and D2. The reconstruction was done

with the red channel (A), the green channel (B), the blue channel (C) and the monochrome interpolation (D).
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The reconstruction results for the three colour channels and the debayered monochrome image are
shown in Fig. 5.8. The lines were in focus at a distance of 𝑧 = 25.25 mm. It can be seen that the res­
olution is worst in the case of the red channel. This is due to pixels being saturated. The same loss of
resolution (although to a slightly less extent) is seen in the monochrome reconstruction. So saturation
in the channel that is being used must be prevented. When comparing the green and blue channels
which are both not saturated we see that the resolution is better when using the green channel. This
is what would be expected. G6E1 is almost visible using the green channel whereas this is not the
case for the blue channel. At this distance the resolution is limited by the pixel pitch. For the green
channel it is limited to √2𝑝 = 5.25𝜇m which corresponds to G6E4. The most probable explanation why
this resolution is not achieved is the imperfect alignment of the setup. When replacing the laser the
alignment was redone and improved giving better results as can be seen in Fig. 5.11B2.

The same experiment was repeated using a green laser source with wavelength 𝜆 = 532.5 nm. The
USAF resolution chart was placed at approximately the same distance and the illumination was chosen
such that the green channel was illuminated with approximately the same amount of light as in the case
with the red laser. To achieve this the CMOS shutter time was again 1 ms and the power supply box
was set to 0.343 W. The actual laser power was not measured. The setup specs are listed in Tab. 5.3.

Laser
Wavelength: 532.5 nm

CMOS sensor
Size: 6012 x 4008 Pixels
Size: 22.3 x 14.9 mm

Pixel pitch: 3.71 𝜇m
Bit depth: 14 bit

Lens
Focal distance: 10 cm

Sample
USAF resolution chart

Focus distance: 27.19 mm

Table 5.3: Specs of components used in the colour camera test with green laser.

Fig. 5.9A shows the RAW CMOS data. Less light is captured by the sensor as no pixels were allowed
to be saturated. After debayering the resolution chart is better visible as seen in Fig. 5.9B. The Fourier
spectra are shown in Figs. 5.9C and D. The spectral copy can be seen in Fig. 5.9C marked by the
green arrow. Again the debayering removes this copy as can be seen in Fig. 5.9D. When looking at
the histogram in Fig. 5.10 the three colour channels again show the same shape. Again debayering
causes a deformation of the histogram curve as mentioned earlier. However the shape lies closer to
the three colour channels than in the experiment with the red channel being saturated.

Things become interesting when looking at the reconstructed results in Fig. 5.11. As mentioned before
the alignment was improved resulting in a better resolution for the green channel. It can be seen in
Fig. 5.11B2 that G6E4, corresponding to the theoretical limit, is almost resolved. What is most strik­
ing though is the fact that the resolution improves even more when using the debayered monochrome
image. Fig. 5.11D2 shows that the theoretical limit of 𝑝 = 3.71𝜇m corresponding to G7E1 is almost
resolved. So using the debayering algorithm present in the Canon software gives the best resolution.
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Figure 5.9: A. Canon EOS M50 with green laser, RAW image data. B. Monochrome interpolation of the RAW data at 72 dpi.
The insets show the pixels at the location of the yellow arrow. C. Fourier spectrum of the RAW image data. D. Fourier spectrum

of the monochrome image.

Figure 5.10: Histogram of the pixel count vs the normalised pixel intensity for the three channels and the monochrome
interpolated data when illuminating with green light.
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Figure 5.11: Reconstruction of the USAF resolution chart at a distance of 𝑧 = 27.19 mm using green light (𝜆 = 532.5 nm).
Showing groups 4 and 5 in images A1, B1, C1 and D1 and groups 6 and 7 in images A2, B2, C2 and D2. The reconstruction

was done with the red channel (A), the green channel (B), the blue channel (C) and the monochrome interpolation (D).

The question arises how this would look when illuminating the USAF resolution chart with a blue laser
and not saturating any pixels. This is again illustrated with a red laser where the pixels are this time
not saturated in the red channel. The specs from Tab. 5.2 were used but this time with a laser power
of 𝑃 = 1 mW and a CMOS shutter time of 0.5 ms. The histogram is shown in Fig. 5.12 and the
reconstructions for the different channels in Fig. 5.13. Unfortunately the setup alignment is not as well
as with the green laser. It seems like the USAF resolution chart is tilted slightly. This could explain the
loss in resolution seen in Fig. 5.13D2. However the debayering algorithm may also be affected by the
low intensity of the blue and green channels and the fact that they respond differently to the light. When
illuminating with the green laser the intensity of the red and blue channels doesn’t reach much higher
values, but the two channels respond the same. Redoing the experiment with a blue laser can provide
decisive input. For now the green laser combined with the Canon debayering algorithm is used in the
following experiments.

Figure 5.12: Histogram of the pixel count vs the normalised pixel intensity for the three channels and the monochrome
interpolated data when illuminating with red light.
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Figure 5.13: Reconstruction of the USAF resolution chart at a distance of 𝑧 = 25.2 mm using red light (𝜆 = 635 nm). Showing
groups 4 and 5 in images A1, B1, C1 and D1 and groups 6 and 7 in images A2, B2, C2 and D2. The reconstruction was done

with the red channel (A), the green channel (B), the blue channel (C) and the monochrome interpolation (D).

5.4. Imaging large volumes containing eggs
To answer the main research question it is necessary to see if the eggs can bee seen in larger volumes.
Fig. 5.14 shows the two different volumes which were used. The first is a 3 ml U­shaped volume with
a depth of 5 mm which was placed against the Canon EOS M50 metal ring. The second is a 22 ml
container with a depth of 43 mm, made using a 32 mm PVC end piece with screw cap. This was
mounted on the Canon EOS M50 using a camera adapter. These volumes were chosen based on
the sensor field of view (FoV) volume, the available parts and in the case of the 22 ml container also
the ease of (re)use. The FoV contains ~1.5 ml with the U­shaped container and ~14 ml in the pipe
container. The second container thus contains more than the WHO required 10 ml in a single shot.

Figure 5.14: The two volumes used in the experiments with eggs. Volume 1 is a U­shaped bath with a volume of
14𝑚𝑚 × 44𝑚𝑚 × 5𝑚𝑚 = 3.08𝑚𝑙. The Canon EOS M50 is rotated 90 degrees so that the 14.9 mm height of the sensor

coincides with the 14 mm width of the bath. Volume 2 is a container which consists of a 32 mm PVC end piece with screw cap,
two acrylic glass slides of 2 mm thickness glued to both ends, a 3D­printed connection ring to connect the pipe to the adapter,
and an adapter to connect the container to the camera. For both volumes the sensor is the APS­C CMOS sensor present in the

Canon EOS M50 [44].

Based on the fact that monochrome jpeg images in combination with green laser light contain the
highest resolution as is shown in Sec. 5.3 these were used. However for the following experiments
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these were not made using the Digital Photo Professional (DPP) software as in Sec. 5.3. These are
made from the RGB jpeg image rendered directly in the camera itself. The difference in the results
is shown in Fig. 5.15. Fig. 5.15A is made using the internal camera software and Fig. 5.15B using
the DPP software. The contrast is higher in the case of the camera software, but also a bit noisier.
Fig. 5.16 shows the histogram of the pixel count vs the normalized pixel intensity for the three colour
channels and the two monochrome interpolation results for a random section of Fig. 5.24. It shows
that the camera software results in a broader and smoother spectrum than the DPP software. Based
on Fig. 5.15 it is assumed that the resolution is not affected by the choice of software.

Figure 5.15: Reconstruction of an egg in a Phosphate­buffered saline solution using the A) processing algorithm present on the
camera and B) the Digital Photo Professional software.

Figure 5.16: Histogram of the pixel count vs the normalized pixel intensity for the three channels and the two monochrome
interpolation results for a random section of Fig. 5.24.

5.4.1. Reconstruction of eggs in urine layer with 5 mm thickness
In the first experiment with eggs volume 1 is filled with urine containing many eggs. This was done so
that it would be easy to find the eggs and also to see the effects of urine containing many particles,
which is sometimes the case in the field [9]. As the U­shaped bath is larger than the camera opening
it had to be placed against the metal ring as shown in Fig. 5.14. This meant that the eggs were
positioned at a distance of approximately 26­30 mm. A reconstruction of a small part of the field of view
at 𝑧 = 27.65 mm is shown in Fig. 5.17A. The eggs are marked with a dot. The eggs show up as dark
objects against a somewhat cloudy background. Fig. 5.17B shows an egg in focus. The terminal spine
can be seen indicating the resolution is good enough. Figs. 5.17C­E show eggs lying out of focus. The
characteristic 8­shape shown in Fig. 3.3 is not observed 2­3 mm prior to focussing of the eggs. Fig.
5.17E is however very similar to the out of focus stages in Fig. 3.9. The egg in Fig. 5.17D proves to
be transparent as can be seen in the reconstruction in Fig. 5.18. The terminal spine is also visible for



56 5. Experimental results concerning resolution throughout sample volume

this egg. The other eggs in Fig. 5.17A are darker. The overall resolution is less than is the case with
the data of my predecessors, but still the characteristic properties of an egg can be observed (shape
& terminal spine).

Figure 5.17: Reconstruction of eggs in urine in volume 1. Reconstruction distance is 27.65 mm. B­E show zoom in on the
dashed squares. B) an egg in focus. C­E eggs not yet in focus

Figure 5.18: Reconstruction of a transparent egg lying at a distance 𝑧 = 28.3 mm. It’s hologram is shown in Fig. 5.19D.

Figure 5.19: Sensor data of eggs in urine in volume 1. B­E show zoom in on the dashed squares, matching those from Fig.
5.17. The dashed rings in A & B are the rings marked also in Fig. 5.20.
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Figure 5.20: Analytical solution of the intensity of a opaque spherical particle with 𝑑 = 50𝜇m lying at a distance 𝑧 = 27.65 mm
illuminated with a wavelength 𝜆 = 532.5 nm and the sensor data for the egg from Fig. 5.19B.

When looking at the hologram (sensor data) several interesting features can be seen. Fig. 5.19 shows
the sensor data corresponding to the same field of view as in Fig. 5.17A. The dots mark the centre of
the eggs. Circular rings can be seen around the location of the eggs. These rings correspond to the
minima and maxima of the finer fringes governed by the sine term in Eq. 2.14. To see if the sensor data
matches the theoretical curve from Eq. 2.14 the average pixel intensity for consecutive rings around
the centre of particle B are plotted alongside the theoretical curve in Fig. 5.20. The egg has a width
of 50𝜇m so the theoretical curve was made with 𝑑 = 50𝜇m. Three sections are marked in Figs. 5.19
and 5.20: I) corresponding to the dark ring of the first minima, II) corresponding to the bright ring of the
first maxima and III) corresponding to the ring needed to determine the width of the egg. Ring I and
II nicely follow the theoretical curve. From 𝑟 = 0.2 onwards the amplitude doesn’t match although the
frequency kind of matches for at least another oscillation. Ring III can not be observed as it falls away
in the cloudy background. So far we can conclude that the distance 𝑧 can be extracted from the data
using the first few oscillations.

5.4.2. Reconstruction of eggs in urine layer with 43 mm thickness
The test with eggs in urine was repeated with the larger volume, volume 2. At first the bit depth was
exploited as much as possible without saturating pixels. However upon reconstruction it was nearly
impossible to find eggs. Fig. 5.21A contains sensor data for a high illumination. Many circular rings
can be seen. However only one of the rings in the field of view gave upon reconstruction a reliable
quality egg which is shown in Fig. 5.21B. Zooming in on the hologram shows that ring I can be seen
clearly but that ring II is already broadened. The data is too noisy to reconstruct the eggs. When
decreasing the illumination strength by keeping the laser power constant and decreasing the shutter
time from 1 ms to 0.25 ms the results improved. The most likely reason for this is that the noise due
to the smearing of the fringes from moving particles is less for shorter shutter times. Fig. 5.22A shows
a section containing what seems to be allot of eggs. Upon reconstruction the spots marked with a dot
show objects that have the dimensions and shape of an egg. The reconstructed objects lie in the range
of 11­43 mm. Converting this to the actual distance we get 1.34 ⋅32 ≈ 43mm which corresponds nicely
with the depth of the volume. From the insets B­I it can be seen the upon reconstruction the resolution
is not good enough as the terminal spine is not observed. The terminal spine should be visible in a
noiseless situation as the resolution lies at or just above the pixel pitch in Fig. 5.22A. Comparing it to
the experiment with volume 1 the only thing that has changed significantly is the depth of the volume.
So the added noise must be due to the increase in depth. An increase in depth adds particles to the
system. The incident light has to traverse through a larger depth containing particles. This means the
portion of light which reaches the sensor undiffracted decreases. Also the representation of the incident
light as being a collimated beam no longer holds deeper in the volume. The scattering of particles in
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planes earlier on causes the incident light that illuminates particles closer to the sensor to be more
complex. All this complex scattering results in a cloudy background. Only fringes with high enough
contrast stand out against this background. Fig. 5.23 shows the analytical solution for a particle with
diameter 𝑑 = 63𝜇m at a distance of 35.8 mm plotted together with the sensor data for the egg in Fig.
5.22E. The first bright ring corresponds nicely with the theory, but further away it is lost in the cloudy
background. The fringes belonging to the dust hairs are seen much better than the fringes of the eggs
as is expected for 1D objects.
From this experiment we learn that the complex scattering due to a thicker volume causes the resolution
to get worse. Due to sedimentation of the particles the shutter time should be kept as low as possible
to prevent smearing of fringes. This is more important than exploiting the full bit depth.

Figure 5.21: High illumination intensity sensor data. A) Sensor data for eggs in urine (total depth is 43 mm). B) reconstruction
of egg at 14 mm. C) Zoom in on sensor data with the theoretical rings plotted in dashed lines. D) the theoretical curve for a

spherical particle with diameter 𝑑 = 60𝜇m and 𝑧 = 14mm and the sensor data.

Figure 5.22: Low illumination intensity sensor data. A) Sensor data for eggs in urine (total depth is 43 mm). The dots mark
positions of objects that have the shape of eggs. B­I are eggs or parts of dust hairs reconstructed. In white is the reconstruction

distance.



5.4. Imaging large volumes containing eggs 59

Figure 5.23: Analytical solution of the intensity of an opaque spherical particle with 𝑑 = 63𝜇m lying at a distance 𝑧 = 35.8 mm
illuminated with a wavelength 𝜆 = 532.5 nm and the sensor data for the egg from Fig. 5.22E.

5.4.3. Reconstruction of eggs in a Phosphate­buffered saline solution layer with
43 mm thickness

To see if other effects were at play volume 2 was filled with a Phosphate­buffered saline (PBS) solution.
This solution is clearer than urine. Fig. 5.24 shows the full sensor field of view. At the top of the figure
an air bubble is present deteriorating the top section. The two dark sticks are small cracks in the outer
acrylic cover piece. The ripples seen at the bottom are either due to a speckle on the collimating lens or
on the lens present in the laser. These ripples were not visible when using the lens+laser combination
in the red laser setup. The right part of the image is darker due to the shutter time being 0.25 ms. The
section marked by the yellow rectangle is shown in Fig. 5.25.

Figure 5.24: Full sensor field of view for PBS filled with eggs. The dashed section is enlarged in Fig. 5.25A.
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Figure 5.25: A) Section marked by the yellow rectangle in Fig. 5.24. B) Reconstruction of several objects placed on top of the
image in A. The numbers indicate the reconstruction distance 𝑧.

Figure 5.26: A) Egg containing visible terminal spine. B) What looks like to be two small transparent eggs or an egg split in half.
C) An egg which seems to be hatching. D) A small egg or elliptical particle at the far end of the container. E) thin dust particle

lying against the outer acrylic lid.

Fig. 5.25A contains the sensor data and Fig. 5.25B the reconstruction of several objects mapped on
top of the sensor data. It can be seen that the objects range over a distance of 9 ­ 45 mm. Dust particles
are reconstructed at both ends as is seen in the bottom right. Five interesting objects marked by a ­ e in
Fig. 5.25A are enlarged in Fig. 5.26. Fig. 5.26A shows an egg at a reconstruction distance 𝑧 = 13.00
mm. It’s terminal spine can be seen. Like all the other eggs in the range 9 < 𝑧 < 17mm the centre
of the fringes is darker as can be seen in Fig. 5.25A. Fig. 5.26B is the reconstruction of a bright spot
as seen in Fig. 5.25A. It seems to be in focus at 𝑧 = 19.55 mm. It could be two transparent particles,
but then they are quite small to be eggs. Something like a terminal spine can be seen marked by the
yellow arrow. It could also be a transparent egg torn apart. Fig. 5.26C shows another transparent
egg reconstructed at 𝑧 = 23.20 mm. This one seems to be hatching as the interior is partly inside and
outside of the egg. Fig. 5.26D shows what seems to be a small egg. It lies at a distance 𝑧 = 42.70
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mm. I’ll come back to this egg in a minute. Fig. 5.26E shows a dust particle at a distance of 45 mm
which has a width of 3­4 pixels (11­15 𝜇m). Its fringes spread out nearly 1 mm in Fig. 5.25A interfering
with fringes of surrounding particles. It is a nice example of the resolvability of the system.
Coming back to the egg in Fig. 5.26D we note it has very clear fringes with several rings clearly visible
as can be seen in Fig. 5.27A. Fig. 5.27B shows the average pixel intensity for consecutive rings around
the location of the egg and the theoretical curve for a spherical particle with the same diameter as the
width of the egg. Till 𝑟 ≈ 0.35mm the measurement results match pretty nice with the theoretical curve.
Even till the 6th peak the frequency matches. However from the fourth peak onwards the amplitude
is lost in the background. This background consists of neighbouring particle fringes as well as some
speckles (or cloudiness). These background fringes and cloudiness however are less severe than
in the case with urine. Now we are able to estimate the distance of the particle pretty good with so
many peaks corresponding with the theoretical curve. Reading out the size from Fig. 5.27B could
even be possible when looking at the intersection of the two dashed black lines. These two lines are
the envelope between which the first oscillations are bounded. Further research should show if this
approach works. Another approach would be to first find the distance and using that value to estimate
the diameter by fitting several curves to the data. This is left for further research. Estimating the size
could help to skip certain objects in the reconstruction process. The remaining objects however still
need to be reconstructed as the terminal spine only shows up after reconstruction.

Figure 5.27: A) Hologram belonging to the egg in Fig. 5.26D. B) Analytical solution of the intensity of an opaque spherical
particle with 𝑑 = 41𝜇m lying at a distance 𝑧 = 42.70 mm illuminated with a wavelength 𝜆 = 532.5 nm and the sensor data from

(A). The Roman numerals in A & B mark the rings and the diameter of the central peak.

When particles (almost) lie behind each other, as is the case for the eggs near f and g as marked in Fig.
5.25A, the fringe patterns overlap and focussing based upon the fringe pattern may be more difficult.
The two fringe patterns belonging to the eggs lying near f are compared to the theoretical curves in Fig.
5.28. The fringes belonging to the first egg are quickly indistinguishable from the background, whereas
the fringes belonging to the second egg, lying further away are distinguishable till the 4th/5th peak. Still
the first peak from egg I can be used to determine the focus distance. When detecting an egg great
care should be taken to distinguish eggs lying close to each other in the sensor data.

From this experiment we learn that not only the amount of eggs matters, or the depth of the volume,
but that the smaller particles are also very important. PBS being a clearer solution than urine showed
a better resolution throughout the volume. Eggs at different depths all proved to be reconstructable.
Even eggs almost lying behind each other could be reconstructed. As the fluid was much clearer the
focus distance 𝑧 could be determined using more fringes. It even may be possible to determine the
width of the egg directly from the fringe pattern.
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Figure 5.28: A) Analytical solution for a opaque sphere corresponding to Egg 1 in (C) and the sensor data. B) Analytical
solution for a opaque sphere corresponding to Egg 2 in (C) and the sensor data. C) Hologram corresponding to the eggs

marked by f in Fig. 5.25.

5.4.4. Conclusion
The experiments with eggs show that the resolution is not only dependant on the sensor’s size and
pixel pitch. The thickness of the volume, the density of (sub­pixel) particles and the shutter time also
determine the resolution throughout the volume. Increasing the thickness results in more complex
scattering causing a cloudy speckled background. The fringes are lost in the background and therefore
the resolution worsens. It was observed that with a thickness of 5mm the terminal spine of the S.
haematobium eggs could still be observed upon reconstruction. When using a clearer liquid, containing
less (sub­pixel) particles, a higher resolution could be achieved. It was observed that when immersing
eggs in a Phosphate­buffered saline (PBS) solution, in a volume with a thickness of 43 mm, the eggs
could be reconstructed showing the terminal spine. It was also observed that by decreasing the shutter
time the resolution improved. In the case of shorter shutter times the smearing of fringes is less. In
all experiments the fringes on the sensor could be used to estimate the distance of the particle to the
sensor. This will make focussing much more efficient. In cases of a clear liquid even an estimate of
the size may be possible. The maximum volume containing urine within which the terminal spine of the
eggs could be reconstructed, using a Canon EOS M50, was 14mm × 22.3mm × 5mm ≈ 1.5 ml. This
means that 7 frames are needed to image the full 10 ml required by the WHO. With a larger sensor
this could be reduced to a single frame. For a clearer liquid such as a PBS solution the eggs could be
reconstructed throughout a volume of 14.9mm × 22.3mm × 43mm ≈ 14 ml, showing the possibility of
examining other clearer liquid samples in a single shot.
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Conclusion and Recommendations

The main goal throughout this report was to gain understanding of the maximum volume at which the
Schistosomiasis haematobium eggs could be reconstructed accurately throughout the volume. From
my predecessors data, acquired with the Smart Optical Diagnosis Of Schistosomiasis (SODOS) device,
it was observed that the reconstruction of near­field holograms provided the necessary resolution for
accurate diagnosis. When increasing the thickness of the volume the hologram is recorded in the far­
field of certain particles. To determine the resolution in the far­field the Fraunhofer particle holography
(FPH) theory was used. It provided analytical formulas for the interference patterns of basic shapes
as well as the resolution limits due to the sensor. Using the FPH formulas along with experimental
observations it is shown that the volume is limited by the sensor’s pixel pitch, the sensor area, the
shutter time of the sensor, the thickness of the volume, the density of particles and to a lesser extent
the distance of the volume to the sensor and the wavelength of the source.

The effects of these parameters is shortly explained. The sensor’s pixel pitch should be able to re­
solve the terminal spine upon reconstruction. The sensor area limits the field of view on the one hand
but also limits the resolution for particles lying further away from the sensor, due to the sensor acting
as an aperture. Due to the sedimentation of particles a short shutter time is necessary to prevent the
fringes from smearing out. The most important thing limiting the size of the volume however, is the den­
sity of particles. The density of particles poses a limit on the allowable thickness of the volume. With a
higher particle density the scattering becomes more complex within the volume causing the fringes to
interfere into a cloudy, speckled hologram. The visibility of the relevant fringes is then to low to result
in a good reconstruction. The visibility also decreases when the volume is placed further away from
the sensor. Finally the wavelength of the source, also plays a role in the resolution due to diffraction
properties. A lower wavelength gives a better resolution.

So for a given sensor, laser and desired resolution the only thing that remains to be determined is
the thickness of the volume. This is best done experimentally. Using a 24MP APS­C CMOS sensor
present in the Canon EOS M50 and a laser source with a central frequency of 532.5 nm it was shown
that the S. haematobium eggs showed the terminal spine upon reconstruction if the thickness of the vol­
ume did not exceed 5 mm. Only two different thicknesses were examined, so further research should
determine if this value is indeed the maximum thickness. With this thickness a volume containing 1.5 ml
of urine was imaged. This means only 7 frames are needed to image the required 10 ml as determined
by the WHO. Compared to the 650+ frames from the SODOS this is a great step forward. However it
still has to be shown that the overall diagnosis time can compete with that of the SODOS. The SODOS
took on average 24 minutes to shoot the 650+ frames and store the data. Scanning the data for the
presence of eggs took another 30 minutes, although it is believed this can be reduced to about 10
minutes as mentioned at the end of Ch. 3. With only 7 frames the shooting and storing of the data in
the case of a larger volume is expected to be lower than 24 minutes. Scanning the 7 frames within 10
minutes may be a problem though, as the focus distance has to be determined over a range of 5 mm,
as opposed to 0.8 mm in the case of the SODOS. Fortunately the far­field interference pattern of an
egg corresponds closely to the far­field interference pattern of a sphere with a diameter equal to the
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width of the egg. Using this knowledge it is possible to determine the focus distance directly from the
hologram data, reducing the computational burden of reconstructing at multiple distances to determine
the focus distance. Further research should show how accurate this focussing is and if it possible to
scan the 7 frames at around 10 minutes using this knowledge.

When replacing the urine with a clearer liquid, such as a Phosphate­buffered saline solution, the eggs
can be reconstructed reliably throughout a 14 ml volume with a depth of 43 mm. The terminal spine
was robustly observed in the reconstructed images of eggs. This shows the strong effect the density of
particles has on the resolution. It also shows the potential of the technique as it can be implemented to
examine micro objects in other liquid samples. For a certain particle density there exists a thickness of
the volume for which the scattering effects on the resolution are approximately equal to the bounding
of the resolution due to the pixel pitch. Further research should determine this thickness as it gives
insight into the usefulness of using a smaller pixel size. With a clearer liquid is seemed to be possible
to determine the shortest dimension of the eggs directly from the hologram. Further research should
show how accurate this is.

The use of a large colour camera, as an alternative to the more expensive monochrome cameras,
is feasible without loss of resolution. Current debayering algorithms are capable of generating pixel
pitch resolution monochrome images. Illumination should be such that no pixels are saturated but that
the bit depth is exploited as much as possible. A frequency response of the sensor should tell for which
frequency the bit depth is exploited the most for all three colour channels. In this report a green laser
light was used.

To conclude it is possible to increase the volume for the detection of S. haematobium eggs in urine.
The volume size is however limited by the sensor’s pixel pitch, the sensor area, the shutter time of the
sensor, the thickness of the volume, the density of particles and to a lesser extent the distance of the
volume to the sensor and the wavelength of the source. Future research will show if this will also aid in
the making of a rapid, highly sensitive and specific diagnostic tool for the diagnosis of S. haematobium.



Bibliography
[1] C. for Disease Control and Prevention, “Schistosomiasis,” 2019.

[2] J. B. DeVelis, G. B. Parrent, and B. J. Thompson, “Image Reconstruction with Fraunhofer Holo­
grams*,” Journal of the Optical Society of America, vol. 56, pp. 423–427, apr 1966.

[3] L. D. Processing, “Spectral­response.” [Online; accessed January 14, 2020].

[4] P. Nijman, “Digital holography integrated with flow cytometry for detection of urinary schistosomi­
asis,” 2019.

[5] C. for Disease Control and Prevention, “Parasites ­ schistosomiasis,” 2020.

[6] W. H. Organisation, “Schistosomiasis,” mar 2020.

[7] L. Chitsulo, D. Engels, A. Montresor, and L. Savioli, “The global status of schistosomiasis and its
control,” Acta Tropica, vol. 77, pp. 41–51, oct 2000.

[8] “Schistosomiasis: progress report 2001–2011, strategic plan 2012–2020,” tech. rep., WHO/De­
partment of control of neglected tropical diseases, 2013.

[9] M. Hoeboer, “Smart optical diagnostic of schistosomiasis,” 2019.

[10] C. S. Vikram, B. J. Thompson, and Cambridge University Press., Particle Field Holography. Cam­
bridge University Press, 1992.

[11] J. Pellegrino, C. A. Oliveira, A. S. Cunha, and J. Faria, “New Approach to the Screening of Drugs
in Experimental Schistosomiasis Mansoni in Mice *,” The American Journal of Tropical Medicine
and Hygiene, vol. 11, pp. 201–215, mar 1962.

[12] D. GABOR, “A New Microscopic Principle,” Nature, vol. 161, no. 4098, pp. 777–778, 1948.

[13] T. Kreis, Holographic Interferometry. Principles andMethods. Berlin: Akademie Verlag, 1st ed. ed.,
1996.

[14] G. B. Parrent and B. J. Thompson, “On the Fraunhofer (Far Field) Diffraction Patterns of Opaque
and Transparent Objects with Coherent Background,”Optica Acta: International Journal of Optics,
vol. 11, no. 3, pp. 183–193, 1964.

[15] E. N. Leith and J. Upatnieks, “Reconstructed Wavefronts and Communication Theory*,” Journal
of the Optical Society of America, vol. 52, p. 1123, oct 1962.

[16] J. D. Trolinger, “Particle Field Holography,” Optical Engineering, vol. 14, oct 1975.

[17] M. Born and E. Wolf, Principles of Optics. New York and London: Pergamon Press, 2nd ed., 1964.

[18] B. M. Hennelly, D. P. Kelly, N. Pandey, and D. Monaghan, “Review of Twin Reduction and Twin
Removal Techniques in Holography,” Conference proceedings, no. 216105, pp. 1–5, 2009.

[19] K. Mallery and J. Hong, “Regularized inverse holographic volume reconstruction for 3D particle
tracking,” Optics Express, vol. 27, no. 13, p. 18069, 2019.

[20] W. Grabowski, “Measurement of the size and position of aerosol droplets using holography,”Optics
& Laser Technology, vol. 15, pp. 199–205, aug 1983.

[21] S. L. Cartwright, P. Dunn, and B. J. Thompson, “Particle Sizing Using Far­Field Holography: New
Developments,” Optical Engineering, vol. 19, no. 5, pp. 727–733, 1980.

65



66 Bibliography

[22] M. Jonasz and G. R. Fournier, “Chapter 3 ­ General features of scattering of light by particles in
water,” in Light Scattering by Particles in Water (M. Jonasz and G. R. Fournier, eds.), pp. 87 –
143, Amsterdam: Academic Press, 2007.

[23] I. Prikryl and C. M. Vest, “Holographic imaging of semitransparent droplets or particles,” Applied
Optics, vol. 21, no. 14, p. 2541, 1982.

[24] H. Byeon, T. Go, and S. J. Lee, “Precise measurement of orientations of transparent ellipsoidal
particles through digital holographic microscopy,” Optics Express, vol. 24, p. 598, jan 2016.

[25] T.­C. Poon and J.­P. Liu, Introduction to Modern Digital Holography. Cambridge University Press,
2013.

[26] M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Reviews, vol. 1,
no. 1, 2010.

[27] N. Bayer, Bryce E. (Rochester, “Color imaging array,” July 1976.

[28] B. B. Brenden, “Miniature Multiple­Pulse Q­Switched Ruby Laser Holocamera For Aerosol Analy­
sis,” Optical Engineering, vol. 20, dec 1981.

[29] C. S. Vikram and M. L. Billet, “On allowable object velocity in Fraunhofer holography,” Optik, 1987.

[30] J. Crane, P. Dunn, P. H. Malyak, and B. J. Thompson, “<title>Particulate Velocity And Size Mea­
surements Using Holographic And Optical Processing Methods</title>,” pp. 634–642, mar 1983.

[31] T. E. Agbana, H. Gong, A. S. Amoah, V. Bezzubik, M. Verhaegen, and G. Vdovin, “Aliasing, co­
herence, and resolution in a lensless holographic microscope,” Optics Letters, vol. 42, p. 2271,
jun 2017.

[32] H. Meng, W. L. Anderson, F. Hussain, and D. D. Liu, “Intrinsic speckle noise in in­line particle
holography,” Journal of the Optical Society of America A, vol. 10, p. 2046, sep 1993.

[33] ArduinoModels, “Ky­008 laser transmitter module,” 2016.

[34] I. I. D. S. GmbH, “Ui­1492le.”

[35] ibidi, “mu­slide i luer.”

[36] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R­CNN: Towards Real­Time Object Detection with
Region Proposal Networks,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 39, no. 6, pp. 1137–1149, 2017.

[37] H. A. Ilhan, M. Do�ar, andM. Ozcan, “Digital holographic microscopy and focusingmethods based
on image sharpness,” Journal of Microscopy, vol. 255, no. 3, pp. 138–149, 2014.

[38] R. J. Cornish, “Flow in a Pipe of Rectangular Cross­Section,” Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, vol. 120, pp. 691–700, oct 1928.

[39] H. J. Weeth, R. Witton, and C. F. Speth, “Prediction of Bovine Urine Specific Gravity and Total
Solids by Refractometry,” Journal of Animal Science, vol. 28, pp. 66–69, jan 1969.

[40] H. Amini, W. Lee, and D. Di Carlo, “Inertial microfluidic physics,” Lab on a Chip, vol. 14, no. 15,
pp. 2739–2761, 2014.

[41] I. I. D. S. GmbH, “Ui­3482le­m.”

[42] J. Gire, L. Denis, C. Fournier, E. Thiébaut, F. Soulez, and C. Ducottet, “Digital holography of
particles: benefits of the ‘inverse problem’ approach,” Measurement Science and Technology,
vol. 19, p. 074005, jul 2008.

[43] C. Shannon, “Communication in the Presence of Noise,” Proceedings of the IRE, vol. 37, pp. 10–
21, jan 1949.

[44] Canon, “Canon eos m50,” 2020.


