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Abstract: The maneuvering control of autonomous vessels has been under extensive investi-
gations by academic and industrial communities since it is one of the primary steps towards
enabling unmanned shipping. In this paper, a model predictive control (MPC) approach is
presented for trajectory tracking control of vessels which takes into account the thrust allocation
(TA) problem in the presence of rotatable thrusters. In this approach, the TA problem is formu-
lated over a finite horizon and solved with regard to the power consumption, changes in the angle
and speed of actuators, and the operating constraints. In the proposed control approach, several
linearization techniques have been employed to enable the adoption of quadratic programming
approaches for solving the MPC’s and TA’s optimization problems. The performance of the
proposed approach is evaluated through several simulation experiments using a replica vessel

model.

Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0)

Keywords: Autonomous vessels, model predictive control, maneuvering control, thrust
allocation, feedback linearization, quadratic programming.

1. INTRODUCTION

Maneuvering control is one of the most critical challenges
on the way of enabling autonomous vessels. The problem
has been considered in several research works in the last
few years where different control approaches have been
adopted at address different aspects of this challenge, e.g.,
see Haseltalab and Negenborn (2019a,b); Serensen and
Breivik (2015); Ashrafiuon et al. (2008) .

One of the main adopted approaches for trajectory track-
ing control is Model Predictive Control (MPC) where the
maneuvering model of the vessel is used for building the
prediction model and solving the optimization problem of
MPC (Haseltalab and Negenborn (2019b); Zheng et al.
(2016)). To use MPC, in most of the research works,
the maneuvering model of the vessel is linearized using
Taylor’s approximation scheme and then, discretized (e.g.,
see Zheng et al. (2016); Chen et al. (2019a,b)) so that
quadratic programming approaches can be adopted to
solve the optimization problem of the MPC. In Zheng
et al. (2016), a Model Predictive Control (MPC) algo-
rithm is proposed to address the problem of trajectory
tracking control with knowledge over arrival time where
the nonlinear model of the vessel is linearized to decrease
computational complexity. Nonlinear MPC algorithms are

* This research is supported by the project “Impulse Autonomous
Shipping for Amsterdam” of the Amsterdam Institute for Advanced
Metropolitan Solutions (AMS Institute).

adopted in Abdelaal et al. (2016, 2018); Zheng et al (2013)
to address the problem of trajectory tracking.

The outputs of the ship maneuvering controller are the
forces that should be applied to the ship’s Center of
Gravity (CoG). These forces should be generated by the
actuating propellers. As a result, a Thrust Allocation (TA)
problem should be solved. The complexity of this problem
depends on the type and configuration of the propelling
thrusters (Fossen (2011)). In most of the research works on
the maneuvering control of autonomous vessels, the thrust
allocation problem is either not considered or trivially
considered.

In this paper, the objective is to integrate the thrust
allocation problem into the ship maneuvering controller
in the presence of rotatable thrusters. After presenting
the ship maneuvering model and formulating it in a
state space format, an MPC control approach is proposed
for trajectory tracking in which Input-Output Feedback
Linearization (IOFL) as well as a linearization technique
are utilized to enable the use of quadratic programming
for solving the MPC’s optimization problem. Then, the TA
problem is considered where it makes use of the predictions
of the MPC over a finite horizon with the objective of
minimizing the power consumption as well as the rotation
of rotatable thrusters. In order to solve the TA problem
using quadratic programming approaches, the TA problem
is linearized over the prediction horizon. For evaluating the
performance of the proposed approach, a replica model of
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Fig. 1. A vessel with two propellers, a bow thruster, and
a stern thruster.

a tug vessel is considered and its voyage is simulated in
the city of Amsterdam waterways. The contributions of
the paper can be summarized as:

1. Proposing an MPC control approach incorporating
maneuvering control and thrust allocation.

2. Enabling the use quadratic programming methods for
solving the optimization problems through adopting
a set of linearization approaches.

The remainder of the paper is as follows. In Section 2, the
maneuvering model of the vessel is presented in a state
space format. In Section 3, the proposed MPC and TA
approaches are formulated and presented. The simulation
experiment results are shown and discussed in Section 4.
In Section 5, concluding remarks are given.

2. SYSTEM DESCRIPTION AND THE PROBLEM
FORMULATION

In this section, maneuvering model of vessels and the
thrust configuration problem in 3 Degrees of Freedom
(3DoF) are presented.

2.1 3DoF maneuvering model

In this paper, the 3DoF maneuvering model is considered
(Fossen (2011); Skjetne et al. (2004)) which is suitable
for maneuvering control applications of surface vessels.
The model includes information about the mass of the
vessel and displacement, centrifugal and Coriolis forces,
drag forces, and configuration of actuators. In Figure 1,
the layout of a vessel with two propellers and two thrusters
is illustrated.

The maneuvering model of the ship can then be described
as:

ns(t) = R(WS(t))US(t) (1)

Mvg(t) + Cs( s(t ))Us(t) Ts(t) + Tdrag (US(t) US(t))
where 15(t) = [z(t),y(t),7(t)]T is the ship pomtlon and
orientation at time ¢, vs( ) = [vx(t),vy(t),v:(t)]T is the
3DoF ship speed and 75 is the vector of forces applied to
the ship center of gravity. M is the Inertial Mass matrix
which consists of rigid body and added mass matrices:

Mg = Mpp+ My (2)

my 00 Max 0 0
MS:[O my, O],MA:lO May 0]. (3)
0 0 I 0 0 I

where
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Parameter my, is the mass of the vessel, I, is the moment
of inertia, mayx and m,, are the added mass in x and
y direction, respectively, and I, represents the added
moment of inertia.

Matrix Cs(+) is the Coriolis and Centrifugal matrix defined
as:

0 0 —Mmpvy
Cs(vs) =1 0 0 MpUx | - (4)
MpVy —MpUx 0

Function 7Tqrag(.), which is a function of ship speed and
course angle, represents drag forces in 3DoF applied to
the craft. The details of this function are provided in
Haseltalab and Negenborn (2019b).

A method to present drag forces is by establishing added
Coriolis and damping matrices. In this regard,

Tarag (vs(8), 7s(1)) = —Ca (vs()) — Ds(vs(t))  (5)

where
0 0 013(’()5)
Ca(vs) = 0 0 023('05)‘| , (6)
—ci3(vs) —ca3(vs) 0

+ %(Nv +Y;) and ea3(vs) = —Xqvy.

The damping matrix Dy is constructed by addition of a
linear and a nonlinear matrices, i.e.,

D(V') = Dy, + Dy, (vs), (7)

with ¢153(vs) = Yivs

where

-Xy 0 0
DL: 0 7YV 71}1‘

0 —N, —N; N

—du('l}s) 0 ( )
DNL (US) = 0 _d22(vs) d23( )
0 —ds2(vs) —d3s3(vs)

with dll(vs) = X\u|u|vx‘ + quv;%a d22(Us) \v|v|vy| +
Yv\r\u|vr|7 d23(vs) = Y—|v\r‘vy|+yv|r|r|vr|v d32( ) N|1;|1)|Ur|+
Nippolve| and dzz(vs) = Niy|r|vx| + Njpjr|ve|. For more
information on the model and the parameters, see Fossen
(2011); Skjetne et al. (2004).

Matrix R(ns) transforms ship velocity from body-fixed into
inertial velocities and is defined as:
cos(r) —sin(r) 0
R(ns) = [sin(r) cos(r) O] . (9)
0 0 1

Vector 75 is the vector of forces generated by propellers
applied to the ship center of gravity, defined as:
72 (t)
7s(t) = lTy(t)] :
7 (t)
where 7, and 7, are surge and sway forces and 7, is the
yaw moment.

(10)

2.2 Thrust allocation

Considering rotatable and non-rotatable thrusters, the
relationship between the thrust produced by actuators and
the vector of forces is Fossen (2011):

fi

Ts = :SXmF = S3xm )

Jm

(11)
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where f1, ...,
actuators, m is the number of actuators, and
thrust configuration matrix defined as:

E=v - Yml, (12)
with 1, Y2, ..., ¥m column vectors for standard actuators.
If the actuator is a non-rotatable thruster, then:

m are propelling thrust generated by
= is the

1
B w
_ZYi
if the actuator is a rotatable thruster, then:
cos(a;)
Vi = [ sin(ay;) 1 , (14)
Iy, sin(a;) — Iy, cos(ay)
and if the actuator is a stern or bow thruster, then:
0
Vi = [ 1 ] ; (15)
Iy,

where Iy, and Iy, represent the position of the actuator %
in the vessel’s reference frame.

The TA problem can be formulated as (Fossen (2011)):

Py < min Ju(f, @) (16)
subject to:
E@)F =1
Fiin < F' < Fiax
Qmin < & < Omax (17)

Aamin < A« < AOémax

AF‘rnin S AF S AF‘max
where objective function J,, is:

Ju(f, @) =F'PF + (o — a9)" Q(a — )
n 1% (18)
€+ det (Z2(a)ET ()"

In the above optimization problem, parameter « is the
vector of rotatable actuators’ angle, ag is the vector of
measured angles, Aa = a—qy is the difference between the
current angles and the angles in the next sampling time,
AF = F—Fj is the difference in thrust generation between
two consecutive sampling times, and P is a positive definite
diagonal matrix.

3. PREDICTIVE TRAJECTORY TRACKING
CONTROL AND THRUST ALLOCATION

In this section, a control approach is proposed for maneu-
vering control and TA.

3.1 Predictive Trajectory Tracking Control

Let us rewrite the speed dynamics of the ship as:

30(6) = M (7 + Taras (050, 16(0)) = Co(0s(D)vs(0) )

(19)

With the following IOFL law the above system can be

linearized:

7o = My (Tt (06(8), 70 (6)) +Co (0() v (8) + Asvs B )
(20)

where vg is the input vector of linearized system, wvg

represents its states and Ags and B are states and input
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matrices of the linear system, respectively. As a result, the
transformed linear system can be written as:

Vs = Agvs + Bsvsg. (21)
After discretization, MPC is applied where the objective
is to keep the ship as close as possible to the reference

trajectory. In this regard, the following MPC problem is
defined with sample time T}:

N-1
P(vs) : Hllllbn (VN(’US, Vs) = Z Uvs(k + 1), vs(k + z))))
= (22)
subject to:
vs(k 41+ 1) = As(Ti)vs(k + ) + Bs(Tk)vs(k + 1)
a5+ 1) < v (E -+ )(8) < v (K + ) o
Unmin(k+1—1) <wg(k+1—1) < Upax(k +1—1),
Vi € [0, N],
where
(v (), va(k)) =(va(k) = oo (k)" Wa (va(k) = v, (k)
+ v (k)vs(k).

(24)

In the above MPC problem, parameter N is the prediction
horizon and W is the positive definite weight matrix of the
cost function.

The reference ship speed vs__, (k) is approximated using (1)

| - ”S(k)). (25)

The adoption of IOFL for MPC results in clear advantages
since the optimization problem is simplified, however, due
to non-linearity of input constraints, quadratic program-
ming cannot be adopted for solving the optimization prob-
lem. In the following, using the results in te Braake et al.
(1999), we adopt a methodology for linearizing the input
constraints in (23) to further simplify the optimization
problem which leads to major reduction of computational
costs.

nref(k + 1)
T

Vs (K + 1) = R (my ()

The main idea behind this methodology is linear esti-
mation of non-linear constraints. Let us present the con-
straints acting on the thrust vector 7y:

Tain < Ts(k) < Tmax- (26)
If the IOFL rule is rewritten as:
() =W (0 (6), (1)) =
Byt (M 74(8) + Taras (0608, 16(8)) = Co(0()) 05(1)
~ A(®)),
(27)
then, v can be approximated around (vs (to), Ts(t())) as:

VS(t) ~ \ilsto (Us(t)st(t)) = Uy (vs (tO)a Ts (tO))

ov

+— (vs(t) — vs(to))
005 | (v, (o), t0))
ov

+ == (7s(t) — 75(t0))-
67-5 (’Us(to),‘rs(to))

(28)
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Let vs(k + ilk) denote the value of vs at time (k +
i)tk predicted at time kty, then using (28), the linear
constraints can be found as:

Vmin(k +17— 1) =

Tﬁf?fl) U,y (o5l +ilk — 1), (b +i — 1)) 0
Viax(k +1—1) =
vg(II?Ji')il) li/sk+i\k—1 (vs(k +ilk = 1), 7s(k+i— 1))
subject to,
Tmin < Ts(k+7—1) < Tyax, Vi € [0, N — 1]. (30)
Note that for time instant (k + N — 1)y, we have:
Vnmin(k + N — 1) = vpin(k + N — 2) (31)

Vmax(k+ N — 1) = Unax(k + N — 2).

Note also that, due to the linearity of \ilsk+,i|k71(.), the
optimization problems in (29) are trivial to solve.

The adoption of this methodology leads to simplification
of the optimization problem within MPC and to the
possibility of using a quadratic programming scheme.

At every sample time k, the proposed control algorithm
generates a set of control inputs vs(k|k), ...,vs(k+ N —1|k)
and vs(k|k), ...,us(k + N — 1]k). Using these sets and (20),
the set of future control inputs 75(k|k), ...,7s(k + N — 1|k)
can be estimated.

3.2 Predictive Thrust Allocation

The optimization problem in (16) and (17) is a non-convex
nonlinear problem which needs a significant amount of
computation. Moreover, it does not use the future control
inputs 75(k|k), ...,7s(k + N — 1]k). In this section, the
optimization problem in (16) is regulated and approx-
imated with a convex quadratic programming problem
which utilizes the prediction of future required propelling
forces.

The first term in the optimization problem P, can be rep-
resented as (F(k—1)+ AF(k))" P(F(k —1) + AF(k))
where F(k — 1) is the vector of generated thrusts by
actuators in the previous sampling time. The second
term can be shown as Aa(k)TPAa(k) and the third
term, i.e., the singularity avoidance penalty can be ap-
proximated by a linear term around «(k — 1) that is

% (WA;OET(D‘))) a(k-fl)Aa<k). AS a reSult, the hn—
earized TA problem PP} can be written as:
P : AI?’lilaJ](AF(k), Aa(k))

(32)
subject to:

E(a(k — 1))AF(/€) + (880[5( a(kl)) Aa(k)

=7(k)— E(a(k; — 1))F(k; -1)

JE(k—1)

Q

Fmin_F(k_ )SAF(k)SFmax_F(k_l)
amin — a(k — 1) < Aa(k) < amax(k — 1)
Admin < Aa(k) < Aamax
AF‘mim S AF(k) S AFIII&X

with objective function J; defined as:
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S (AF(k), Aa(k)) =
(F(k—1)+ AFE)T P(F(k —1) + AF(k))
+ Aa(k)T PAa(k) (34)

2 4
da \ € + det (E()ZT () J|*
The above TA problem can be extended to a predictive

TA problem over finite horizon N. In this regard, the
generated thrust at time step k 4 4 can be formulated as:

(k_l)Aa(k).

F(k+1i) =F(k+i—1)+ AF(k +1)

—F(k—1) + Z ARG+ ). Y

=0

If xp(k) = {AF(k),...,AF(k + N — 1)} and xq(k) =
{Aaf(k), ..., Aa(k+ N —1)} are the sets of generated thrust
and thrusters’ angle, respectively, over horizon N, then,
using (34) and (35), the cost function of the predictive TA
problem can be formulated as:

+

AF(k+ ) + Aak + i) QAa(k +i)
3=0

Kl [
* 9a (e+det(5( )E T(Oé)))
+ (N —i)AF(k +9) " PAF(k 4 1).

alk—1) Z Aa(k + j)

Jj=0

(36)

In the above objective function, the fourth term AF(k +
i)T PAF(k+1) is added to guarantee the convexity of the
problem and to explicitly take into account the changes of
the thrust generated by actuators during the operation.

Function J, can be represented in a quadratic program-
ming format as:

Jp(XF(k)’Xa<k)) =u"Hu+ L"u (37)
where u = AFTg? SAFT(k+ N —1),AaT (k), ...,
AaT(k+ N
H =

[ 2NP 2(N-1)P 2P Omxr Omxr -+ Omxr ]
2(N —1)P 2(N — 1)P 2P Omxr Omxr + Omxr
2P 2P .- 2P Om><r 0m><r Omxr
Or><In Orxm Or><m Q 0r><r O1r><r ’
0r><m O1r><m . Orxm 0r><r Q : Or><1r
L Or><rn 01r><m : 01r><m Or><r 0r><r Q i
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2NFT(k—1)P
2(N - 1)FT(k - 1)P

2FT(k. 1P

a(k—1)

N oa <e+det Z(a) ET(a))>
(N—1

a(k—1)

5% 6+det(5(a)5T(a)))
i % <6+det(5/z )= T(a)))

The constraints of the predictive TA optimization problem
are:

a(k—1)

Au<b
Aeqt = beq (38)
I <u<uy
where
A(2N(m+r)><N(m+r)) -

[ Im Omxm Omxm Om><7‘ Om><r Om><r—
Im Im : Omxm Omxr Omxr Omxr
I Iy - I Omxr Omxr =+ Omxr
_Im 0m,><m Omxm 0m><'r‘ 0m><T 0m><T
_Im _Im : Ome Omxr Om><7‘ Omxr
_Im _Im _Irn Omxr Omxr Omxr

Or><7n O7"><7n : O7"><7n Ir Orxr 0r><r

O7‘><7n O'r><m : O7‘><7n 07‘><r Ir . 0r><'r

07‘><m Or><m : 07‘><7n 07‘><r OTXT Ir

Orxm Orxm : Orxm _Ir 01"><r 07"><7"

0'r‘><rn rXm : O'r‘><rn, 07’><r _Ir e 0r><7"

_07'><m O'r><m : O7‘><7n 07’><r 0r><'r _Ir a

and
[ Frax — F(k—1)
Foax — F(k—1)
4 max + F(k - 1)
b | —Fmax+ F(k—1)
(2N(m+r)><l) T | amax —a(k—1)
Omax — a(k — 1)
—Qmax +a(k—1)
—Qmax + a(k —1) |

Matrix I, is an m x m identity matrix and I isan r X r
identity matrix.

The equality constraints matrix Aeq is:

Ali Haseltalab et al. / I[FAC PapersOnLine 53-2 (2020) 14532—14538

Fig. 2. Tito-Neri vessel.

A, _
(3N><N(m+r))
Zak-1) O3xm O03xm  Dzr 03x: -+ 03%;
Eoc(k—l) Eoz(k—l) - O3xm D: Dzp -+ O3x;
Eak-1) Zak-1) " Zak-1) DEF D=p -+ D=zp

where Z,1) = E(a(k — 1)) and Dzp = ZE(a)F(k —
Dla(k—1)- The equality constraints vector is:

T(k) = Eq—1)F(k — 1)
7(k+1) = ZagenF(k - 1)

T(k+N-1)— Ea(k_l)F(k' -1
The vector bounds on u can be derived from (33) as

-AFmin- -AFmax-
l _ A-F.‘Inin u _ AF;rnaux
b(N(m,+7‘)><1) AOémin ’ b(N(,,,,_'_T)Xl) Aamax
_Admin_ _Aa;nax_

Then, using (37),
formulated as:

P, : in J,
p: min J (x

subject to constraints in (38).

4. SIMULATION EXPERIMENTS

the predictive TA problem can be

r (k) Xa(K)) (39)

In this section, the performance of the proposed control ap-
proach is evaluated using a high fidelity 1:30 replica vessel
model known as Tito-Neri (Figure 2). The maneuvering
model parameters of the vessel is presented and discussed
in Haseltalab and Negenborn (2019b).

For the simulation experiment, a trajectory of real vessels
in 1J river, in Amsterdam metropolitan areas, is chosen
that is shown in Figure 3. The trajectory is scaled down
using Froude scaling so that it is applicable to Tito Neri
vessel. Matlab Simulink 2018a is used for simulations.

The prediction horizon is chosen as N = 20 with controller
sampling time of Ty = 3s. The MPC weight matrix is

100 0 0
W, = | 0 100 0

0 0 10

, and the predictive TA weighting

matrices are chosen as P = 10 O}

1001
010 andQ:{ .
001 010
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Fig. 3. Tito-Neri vessel.

The constraints on 75 are chosen as Tmin = —Tmax =
[—2, -2, 2] and the constraints on thrusters are Fiax =
—Fin = [3,3,3]7 and amayx = —max = [1/2,7/2]7.

The simulation results are provided in Figure 4 where
the vessels starts its trajectory tracking from [0,0]. The
trajectory tracking performance is shown in Figure 4a. The
propelling forces generated by the thrusters are shown in
Figure 4b and the angle of azimuth thrusters during the
voyage is presented in Figure 4c.

The speed of the vessel in its own reference frame and its
power consumption are shown in Figure 5. By integrating
over the power consumption, the overall energy consump-
tion during the voyage is calculated using the thrusters
model which is 19.86 W.

This experiment is also carried out using a conventional
discrete Pl-based approach where the PI controller pa-
rameters are chosen as K, = 1.15 and K7 = 0.025.
This approach is used in combination with non-predictive
TA approach in (32). The Root-Square Error (RSE) of
trajectory tracking is shown in Figure 6. By integrating
over the RSE results in Figure 6a, the overall RSE of PI-
based approach is derived as 955 while this for the MPC-
based approach is 719.3. Moreover, the overall energy
consumption of the PI-based approach is 24.66 W.

5. CONCLUSION

In this paper, Model Predictive Control (MPC)-based
approaches have been proposed for trajectory tracking
control and Thrust Allocation (TA) of autonomous ves-
sels. Several linearization techniques have been adopted
including Input-Output Feedback Linearization (IOFL) to
enable the use of quadratic programming approaches for
solving the optimization problems of MPC and TA prob-
lem. For the simulation experiment, a replica vessel model
known as Tito-Neri has been adopted and the trajectory
of real vessels in Amsterdam metropolitan waterways are
chosen. The results show that the proposed approaches
are capable of improving the system performance and
decreasing the energy consumption.
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Fig. 4. Trajectory tracking performance of the proposed
control approach.
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Fig. 6. Trajectory tracking performance of the conven-
tional PI-based approach.
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