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A B S T R A C T

The problem of impaired data sets refers to data sets containing a vast majority of unwanted signals than signals
of interest. With increased interest in partial discharge (PD) testing with arbitrary waveforms and transients,
these kind of data sets are becoming more and more common. Traditional clustering techniques cannot be
applied due to big differences in spatial densities of the existing clusters in the data set. This paper contributes a
simple yet efficient technique to recognize PD signals from noise and other disturbances. The signal recognition
features are based on two specific areas extracted from the cumulative energy signal (CE) of each recorded
waveform. These areas weigh up the extent to which the recorded signals have a pulse-like shape. A third
feature, defined as a shape factor, extracts additional metrics from the CE signal that serves the purpose of
accounting for the factors affecting the computation of the proposed recognition features and threshold for data
size reduction. These three CE-based features are used to create a graph from which a real PD can be spotted in
large impaired data sets. The performance of this technique is tested using PD measurements from superimposed
impulse tests on a 150 kV cable system.

1. Introduction

The diagnostics and monitoring of high-voltage equipment by par-
tial discharge (PD) measurements demand robust and accurate pro-
cessing tools, especially when multiple PD sources are active within the
test object or when the measurements are conducted in presence of
electrical disturbances and interferences. Whenever this is the case, the
resulting phase-resolved PD (PRPD) patterns measured by IEC60270 PD
measuring devices may be difficult to interpret.

The alternative approach to overcome these limitations has been the
extraction of features from each PD signal recorded in time domain and
the subsequent application of a clustering technique that allows for a
clear classification of individual PD sources by their PRPD patterns [1].

This procedure entails several challenges. Firstly, the waveform of
the acquired pulse depends strongly on the nature of the PD source, the
traveling path of the PD pulse and the sensor/circuit used to measure
the signal [2]. The last two factors are related to every particular
measuring set-up, which make it difficult to reproduce results else-
where. Secondly, it comes the challenge of extracting features from the
signals.

A feature is defined as an attribute of a class and thus may be as
arbitrary as needed. In a previous work [3], we used the value of ap-
parent charge, energy and peak amplitude as features for PD clustering

purposes. However, nothing implicitly limits what parameter may be
used as a feature. Examples are, the morphological gradient in time and
frequency domain [4,5] that quantifies some sort of maximum increase
of the energy signal, the quantities derived from/or the wavelet de-
composition coefficients [6] that may populate an endless list of re-
ferences, and all the features extracted from the PD frequency spec-
trum. In particular, the spectral power ratio method [7] that quantifies
the ratios between the area of specific frequency bands and the full FFT
spectrum of the signal, and the TW-map [8] that quantifies what can be
understood as a cluster based on the gravity moment of the FFT spec-
trum and of the equivalent time of the signal, are two techniques ex-
tensively researched and applied on field.

Just as nothing prevents a quantity from being a feature, the
number of features used to describe a PD signal is only limited by
computational resources. When the features data sets become so big
that they are no longer easy to represent visually, carry redundant in-
formation and demand large computation power, it is common to apply
any of the variety of dimensionality reduction techniques, being the
principal components analysis [9] and the t-SNE technique [10] very
common examples of them.

Dimensionality reduction is required to remove redundant and in-
effective information and to decrease the number of features while still
capturing a high portion of information [6,11]. The feature extraction
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step is very important in this procedure and the efficiency of a classifier
is highly dependent on the wellness of extracted features.

The result of this is a reduced set of features producing the largest
distance between natural clusters. When this is the case, a clustering
algorithm shall not find difficulties in classifying each data point to its
corresponding parent cluster. The k-means [12] and DBSCAN [13] are
spatial density based clustering methods (i.e., cluster methods using the
average distance between neighbor points as a parameter) very popular
for this purpose.

However, the clustering algorithms, and specially the kind based on
spatial density, present strong limitations to discover clusters in data
sets with markedly varying densities [14].

In this paper’s context, varying density refers to data sets containing
very little PD data points as compared to disturbance/noise data points.
Data sets of this kind are also known as impaired data sets and are
becoming more common due to the increasing interest in studying PD
activity under impulses, AC-superimposed impulses and in general
under arbitrary waveforms. Under these test conditions, many pulse-
shaped noise and disturbances are produced during the firing of the
impulses or during the testing period, unavoidably producing heavily
impaired data sets.

In [15,16], the processing of impaired data sets has been ap-
proached by inspecting each individual event within the total data set,
(which drops in efficiency when the data sets grow big).

In this paper, the cumulative energy (CE) is used as signature of the
signal shape and from it, two main features are extracted, corre-
sponding to two areas, AEn and AEp, delimited in the CE signal. These
areas are normalized by comparing to the CE signal of a Dirac delta
signal. In this approach, the ability of the features to produce dense
clusters and far-apart from each other as in the conventional clustering
approach is no longer the target, but their absolute values instead. The
closer the value of the feature to unity the higher the extent to which
the signal is pulse-shaped. Thus, our technique can recognize pulse-
shaped PD signals within a large impaired data set. This can be paired
to a “needle-in-a-haystack” problem where the classification of different
types of PD sources (type of needles) is out of the scope of the current
paper.

The description of this new technique follows the next structure. In
Section 2, an overview of the data sets and the software tools used for
data processing is given. In Section 3, the definition of the cumulative
energy function of a signal is presented. In Section 4, the definition and
calculation of the areas AEn and AEp is described. In Section 5, we
propose a shape factor k to quantify the factors affecting the features
AEn and AEp, and that allows to define threshold limits. Finally, in
Section 6, the results of an application case are presented and discussed.

2. Datasets and tools

In this work, three impaired data sets will be used. They correspond
to partial discharge measurements carried out in an environment with
high electromagnetic interference [16]. The data set 1 comprises a
matrix of 4713×2564, data set 2 and 3 are matrices of 5000×2564.
The rows in the matrix represent the number of signals and the columns
the digital samples of each signal. These data sets are made available to
download in the following link [17].

The methods presented in this paper were coded in the software tool
PDflex [18]. PDflex offers the interactive feature of retrieving the wa-
veform of a signal while the user is hovering the pointer over the data in
graphs. Taking into account the large amount of data processed in this
paper, this tool served the main purpose of confirming visually whether
a given signal is a PD or non-PD signal based on its shape.

3. Signal shape signature

From the signal processing theory, given a discrete signal x(n) of N
samples, its total energy E is defined as the sum of its square samples, as

in (1).
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The cumulative energy signal Ec results from evaluating E not for the
entire domain of E but for an incremental number of samples instead.
Thus, E becomes the discrete signal Ec shown in equation (2).
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The cumulative energy Ec produces monotonously increasing values
and its square operand leads to step-like shape raising at the sample
where the main peak of the signal arises. These two characteristics
prove relevant for the signal recognition based on its shape and,
therefore, hereafter the signal Ec will be used as the pulse shape sig-
nature from which recognition features will be extracted.

Fig. 1 shows a collection of examples of the cumulative energy of
pulse-shaped signals. As shown in Fig. 1(a), after the main peak of a
very fast unipolar pulse, Ec increases step-wise reaching a plateau zone.
Since Ec increases monotonously according to (2), any other significant
peak or artifact appearing after the main peak will cause an abrupt
increase, soaring from the precedent plateau zone as depicted in
Fig. 1(b) and (d). In addition, a low signal to noise ratio (SNR) leads to a
drift of the baseline of Ec as in the case of signal in Fig. 1(c).

The Ec of the different signals in Fig. 1 serves as a comparative
example to show how the shape of Ec diverts from a step-like shape
depending on the signal shape and SNR. In the next sections, the pro-
cedure for extracting features from Ec will be presented.

4. AEN-AEP graph

The shape of a PD pulse depends on the PD source type, the signal
traveling path, the sensor and the measuring circuit used to measure the
signal [2]. In this work an assumption is made that a PD signal, when
acquired with enough bandwidth, exhibits two main characteristics:

(1) A main peak: although a PD pulse can have an oscillating shape like
the example of Fig. 2, the existence of a predominant peak sharpens
its pulse-like shape. In other words, the larger the main peak
compared to the peaks of the oscillations the more stepped the Ec
signal is.

(2) A pre-trigger zone: the main pulse peak appears only after a certain

Fig. 1. Examples of the cumulative energy function (dotted line) for different
type of signals: (a) fast, unipolar pulse, (b) oscillating pulse, (c) unipolar pule
with low SNR, (d) pulse with a second pulse (disturbance) within the same
record window.
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number of samples, n0, from the beginning of the record. In addi-
tion, the higher the SNR, the better and the more accurate is the
determination of the sample n0.

Deviations from these characteristics may occur, since noise and
other electromagnetic disturbances can trigger the digital acquisition
units and distort the signals in such a way that the resulting waveforms
are likely to violate these two characteristics.

Based on the cumulative energy, the two areas AEn and AEp shown in
Fig. 3(a) are proposed as quantifiers of the extent to which the signals
conform to these two characteristics. These two areas result from the
intersection of the Ec signal and the baseline connecting the first and
last sample N of Ec, see Fig. 3(a). As seen in Fig. 3(b), this baseline
represents the Ec of the background noise. The procedure to calculate
AEn and AEp is described as follows:

Let Ec(n) be redefined as the cumulative energy normalized to 1 and
g(n) be the normalized reference baseline, then AEn and AEp are calcu-
lated according to (3) and (4).

∑= −
=

=

A E n g n( ( ) ( ))En
n n

n n
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2
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Since Ec(n) and g(n) are discrete functions, a step factor of 1 is
considered and the areas AEn and AEp calculated as the sum of the op-
erand elements.

The indexes n1 and n2 are the indexes of the samples at the crossing
points where the Ec(n) is under the baseline g(n). Likewise, the indexes
n3 and n4 are the indexes of the samples at the crossing points where the
Ec(n) is above the baseline g(n). n0 is determined as the sample index
right at the end of the pre-trigger zone and np is defined as the sample
index at maximum deviation of Ec with respect to the baseline.

Therefore, np marks the turning point beyond which the accumulation
of energy is never as rapid as it was previously.

The indexes n0 and np have to be determined for each signal by
means of a routine that translates the coordinate system to one in which
the reference baseline is the abscissa axis. After the coordinate trans-
lation, finding n0 and np becomes a problem of finding a minimum and
maximum respectively. The following MATLAB pseudocode shows the
process of finding n0 and np implemented in this paper.

pseudocode: Detection of n0 and np.

% translate the coordinate axis to the first sample
Ec2 = Ec−Ec(1);
x = (0:N−1);
% transform to a 2D data set of complex numbers
Ec2 = 1j*Ec2 + x;
% complex reference baseline
bl = Ec2(end);
% translation factor
rot = exp(−1j*angle(bl));
% rotate the coordinate axis by the translation factor
Ec_translated = Ecn2*rot;
% in the new coordinate system, the imaginary part of %Ec_translated becomes the

magnitude of the sample.
[~, np] = max(imag (Ecn_translated));
[~, n0] = min(imag (Ecn_translated));

The output of the max and min operations corresponds to the indexes
needed to determine the inputs of equations (3) and (4), while the
maximum and minimum values themselves are discarded.

In addition, the values of AEn and AEp calculated as per (3) and (4)
are complementary, which means that when one increases the other
decreases simultaneously. This behavior is illustrated in Fig. 4 using as
example the signal Ec of Fig. 1(a) with two different values of n0.

If n0 is swept over the record length, i.e. n0 = 1,2,…, N, then the
geometrical space of the possible values of AEn and AEp is the grey and
red-shaded regions of Fig. 5.

If the fast signal of Fig. 1(a) is now a Dirac delta signal, then its
values of AEn and AEp follow the perimeter of the polynomial curve
colored in red in Fig. 5. On the other hand, for non-ideal and discrete
signals, the relation between AEn and AEp may be as diverse as listed in
Table 1:

The aforementioned possible cases are possible because the shape of
Ec depends on the shape of the signal x(n), that for the aims of this
paper, has no limitation of any kind. Thus, x(n) can be so dissimilar as
those examples in Fig. 6. This variability results in that n2 not always
has the same value of n3 as can be seen in Fig. 6(a). In other words, Ec is
monotonous, but this not imply that the rate of change is steady and
smooth. Fig. 6(b) depicts a case where Ec increases steady and smoothly
leading to n2 = n3 although the resulting area AEn is bigger than AEp.
More than one area above or under the baseline is also possible.
Fig. 6(c) is a case where there are two areas AEn under the baseline. The
value of AEn corresponds to the area with the biggest distance of n0 with
respect to the baseline. Signals missing the pre-trigger zone are also
possible as shown in Fig. 6(d). In such a case, the value of AEn is zero.

Fig. 2. Definition of the characteristics of a pulse-shaped signal.

AEp

AEn

g(n)

Fig. 3. (a) Definition of the areas AEn and AEp and their limits defined by the
crossing of Ec with the baseline, (b) baseline of background noise, g(n).

n0 n0

Fig. 4. Variation of AEn and AEp as a function of no.
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4.1. Normalization

Taking into account that the range of AEn and AEp is [0, N/2] and
that the geometrical space of Fig. 5, at best, results in a graph with data
populating only a fraction of the entire graph area, then a normalization
of AEn and AEp was necessary to improve readability of the graph. This
normalization is the ratio of the areas from the signal and from a Dirac
delta pulse whose Ec signal happens to have the same value of n2.

Consider for example the Ec for the signal of Fig. 1(b) and for a Dirac
delta pulse that are shown in Fig. 7. The areas corresponding to the
Dirac delta pulse are the triangle areas defined by equation (5).

=A A|En norm
En

n
N

( )
2
2 2

(5)

=
− +

A
A

A n
|

( )
Ep norm

Ep

En
N

2 2

In this example, the values of AEn for both pulses (gray-shaded
areas) are similar, due to the low noise in the pre-trigger zone of the

signal and therefore the ratio between them two tend to 1. From the
yellow-shaded areas it can be seen that the AEp of the signal is smaller
than that of the Dirac delta pulse due to the oscillations, thus the ratio
drifts away from 1.

For reference and comparison purposes, the graphs in Fig. 8 depict
the results using the data set 1 before and after normalization.

It is worth mentioning that the notation AEn and AEp has remained
unchanged after the normalization. Hereafter, AEn and AEp should be
understood as normalized values.

Limiting the range to [0, 1] and [−1, 0] makes the interpretation of
the graph straightforward: the closer the value of AEp and AEn to 1 and
−1 respectively, the better the signal conforms to a pulse-shaped
signal. Note for example, that the circled data in Fig. 8(a) is almost
merged into the whole data set. After normalization, the circled data is
located towards (−1,1) giving clear indication of their pulse-like wa-
veforms and getting apart from other type of waveforms. As con-
firmation of this, the waveforms of the signals labeled from I to IV in
Fig. 9(top) are shown in Fig. 9(I-IV).

The waveform I has a more pulsed shape than II and therefore was
found at higher values of AEp. On the other hand, all waveforms located
on the y-axis (AEn ≈ 0) such as IV may be labelled as “low quality”
signals because they fail to either have a clear pre-trigger zone or be
pulse-shaped. In addition, for waveform III, AEp ≈ 0, which results from
the offset drift making the signal energy to increase continuously
without any stepped increase, see Fig. 12(b).

Worth noticing that the graph of Fig. 8(b) is not meant for clustering
purposes, since it is the magnitude of AEn and AEp that bears all im-
portance as it sorts out the non-pulse-shaped signals at the right-bottom
and the more pulse-shaped signals at the left-top of the graph.

This kind of shape-based sorting enables to define threshold levels
to filter out non-PD signals. They may be hard thresholds or, as it will
be described in the next section, thresholds defined from metrics of the
Ec signal shape. In this paper, such a definition will be termed shape
factor.

5. Shape factor k

As was shown in the section before, data yielding values of AEp and/
or AEn close to zero can be directly labeled as low quality signals and
therefore they can be removed from the data set. On the other hand, a
shape factor can be used as a more sensitive threshold. In this work, we

Fig. 5. Geometrical space of AEn and AEp.

Table 1
Example of possible values of AEn and AEp.

Possible result Example

For a signal conforming strongly to the two characteristics criteria
aforementioned:

• n2 = n3 or at least n2 → n3, AEp ≫ AEn

Fig. 6(a)

Otherwise, for a signal poorly conforming to the criteria

• AEn may be bigger (or smaller) than AEp.
Fig. 6(b)

• Several areas under the reference line may exist but AEn

corresponds to the area with the minimum peak.
Fig. 6(c)

• AEn (or AEp) may be zero Fig. 6(d)

Fig. 6. Examples of signals leading to different relationships between AEn and
AEp. (a) AEp ≫ AEn, (b) AEp ≪ AEn, (c) multiple areas of AEn, (d) AEn = 0.

n2 n2

Fig. 7. Comparison of the areas AEn and AEp for a (a) Dirac delta pulse and (b) a
signal like the one in Fig. 1(b).

Fig. 8. AEn and AEp graph for data set 1 (a) before normalization, (b) after
normalization.
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lump together in the shape factor k metrics extracted from the Ec signal
that quantify the effects of the possible instability of no and np, low SNR,
discretization errors and signal offsets on the calculation of AEn and AEp.

The definition of k is given by equation (6) and is illustrated in
Fig. 10.

⎜ ⎟⎜ ⎟

=

= =

= = −
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n

N

0
1

0
0
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The first factor termed k1 is a quantification of how predominant the
main peak of the signal is and therefore how steep is the increase of Ec.
k1 tends to 1 for pulses whose Ec increases stepped-wise like the one in
Fig. 1(a). In signals with low SNR, like the ones in Fig. 1(c) and
Fig. 11(a), although the energy increases stepped-wise (k1 → 1) the
increase itself may be very low as illustrated in Fig. 11(b). In such a
situation, by adding a second factor, k2 = ΔEc, signals with low SNR are
prevented from scoring a high shape factor.

The third factor is k3, that quantifies indirectly the background
noise level of the signal in the pre-trigger zone. Gaussian noise leads to
an Ec that remains close to zero from the beginning of the record until

n0, which means that cos(2β) tends to 1. Otherwise, Ec drifts closer to
the background noise baseline, thus cos(2β) tends to 0 as can be seen in
Fig. 10.

Finally, the value of AEp itself is added to the shape factor in order to
balance out high values of k1, k2 and k3 that can result from signals with
offsets or due to discretization errors.

Fig. 12 is an example of a signal with a drifted baseline (offset),
therefore its Ec increases continuously resulting in an overflowed index
of np. For this signal, k1 = 0.76552, k2 = 0.98144 and k3 = 0.97907,
values that are significantly high despite of the offset of the signal. The
zoom-in in Fig. 12(b) shows that the estimation of AEp = 0.01 is very
coarse because this area happened to be delimited within the last 4 (out
of 2564) samples of the record thus leading to significant discretization
error.

Thus, when AEp is added to k, only the signals with a high energy
content above the normalized reference baseline will score a higher
shape factor.

By this approach, for the data set 1 only 94 out the total 4713 sig-
nals scored a k > 0.6, while most of the signals score a shape factor
close to zero as represented in the histogram in Fig. 13.

The shape factor is a 1D-dimension vector that in addition can be
used as the color map in the AEp-AEn graph of Fig. 14. It can be con-
firmed that pulse-shaped signals produced simultaneously higher va-
lues of both k and AEp-AEn. This result was also confirmed by retrieving
and checking the waveforms of all the signals within the circles.

Fig. 14 also serves the purpose of illustrating the enhancement of
the shape factor by adding AEp that was discussed before. Note that in
Fig. 14(a), the green shades spread over the entire graph, meaning that

II

III

IV
I

Fig. 9. Waveforms of the signals corresponding to labels in the normalized
graph on top.

Fig. 10. (a) Metrics in the definition of the shape factor k, (b) zoom-in to il-
lustrate the definition of the angle β.

Fig. 11. (a) Signal with low SNR, (b) resulting in a stepped but small increase of
energy.

n0

np

Fig. 12. (a) signal with offset, (b) resulting in a continuous increase of energy.

1

47
36

Fig. 13. Histogram of the k values for data set 1.
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non pulse-shaped signal can still score relatively high values of k1∙k2∙k3.
However, as depicted in Fig. 14(b), adding AEp corrects this situation to
a large extent. Thus, the brightest shades of green call attention outright
on the more pulse-shaped signals, also acting as a more discriminative
threshold than a hard threshold.

6. Application case

In this section the proposed methodology is applied to laboratory
measurements on a high-voltage cable as an application case.

The data sets 2 and 3 are measurements collected from super-
imposed impulse testing on a 16-metre long, 150 kV cross-linked
polyethylene (XLPE) extruded cable system, [16].

The test circuit used was that of Fig. 15, which has the purpose of
subjecting the high-voltage cable to a testing voltage of 50 Hz AC, and
firing impulse transients at around the positive peak of the AC voltage.
The collection of the data was done by a Tektronix MSO Series 5 os-
cilloscope that recorded the signals from two HFCT sensors at both ends
of the cable joint. In addition, an artificial defect at the cable joint was
created in order to produce surface discharges, which had an inception
voltage of 48 kVrms. The description of the test object, the testing circuit
and the test program is given below with the sole purpose of presenting
the means by which impaired data was collected. Nevertheless, the
present contribution focuses only on the application of the AEp–AEn

graph on the data sets.
The data set 2 is a case where the AC voltage was set far below the

PD inception voltage, thus leading to a very few PD signals initiated by
the impulse voltage. In data set 3, the AC voltage was close to the PD
inception voltage, and the testing program stretched to roughly 12 min
within which 6 impulses were applied. These resulted in an increase of
the PD activity. Some of the test parameters and testing voltages are
summarized in Table 2.

The testing program followed the next sequence. The AC voltage is
set. At this moment, the FastFrame mode of the oscilloscope is turned
on. Next, the Marx impulse generator is switched on. After the charging
time of the generator the impulse is fired. The AC voltage is still on and
the charging and firing of the impulse generator is repeated as much as
needed. The acquisition stops when the number of recorded frames
reaches 5000. Each frame length is 2 μs sampled at 1.25 GS/s.

6.1. Data analysis of case 1

The analysis of the case 1 is shown in Fig. 16. Fig. 16(a) shows the
peak value of the recorded signals during the 50 s test duration. The
signals during the first seconds of the record correspond to the instant at
which the Marx generator was switched on and subsequent dis-
turbances during the charging time. After roughly 45 s, the generator is
charged to the set voltage and the impulse is fired on top of the AC
voltage, leading to the signals after 45 s in Fig. 16(a). Most of the ac-
quired signals are disturbances that triggered the acquisition unit.
However, due to the extremely high waveform capture rate of the os-
cilloscope, actual PD signals also triggered the acquisition.

The imbalance problem of the data captured by this test circuit is
shown by the PRPD of Fig. 16(b), where the small PD activity is buried
into the disturbance signals. The disturbances due to the impulse firing
can be located around 90° (AC voltage peak). The disturbances due to
the generator charging and after the impulse firing are phase-in-
dependent therefore they appear randomly in the PRPD pattern. After
computing the AEp-AEn graph, a bundle of 4 signals out of 5000 were
spotted having the highest values towards 1 and the highest values of k
as shown in Fig. 16(c). An example of the waveform of these signals is
displayed in Fig. 16(d). This set of 4 signals were classified as PD signals
based on its distinctive waveforms and opposite polarity. As explained
in [16], when a PD signal is originated in the cable joint, the output of
the HFCT sensor at each end of the cable joint is similar in amplitude
but with opposite polarity. Any signal reaching the sensors from outside
the cable joint will result in both sensors output signals having the same
polarity. Visual inspection of the waveforms and their polarity of the
data points out of the circle in Fig. 16(c) confirmed that those signals
had different waveforms as the ones classified as PD signals as well as
equal polarity (non-PD signals), thus further validating the results of the
AEp-AEn method.

6.2. Data analysis of case 2

In the application case 2, with higher AC voltage level and more
impulses being applied, the PD activity increased. In this case, the test
duration was 754 s and 6 impulses were applied around the AC voltage
peak as shown in Fig. 17(a). The firing of the impulses is spotted around
90° in the PRPD pattern of Fig. 17(b). The data after 180° were also
linked to the disturbances created by the impulses based on the non-
pulsed shape of their waveforms. The graph AEp-AEn in Fig. 17(c) re-
veals a larger amount of signals towards 1 and −1 in the graph in
correspondence to the higher AC test voltage and larger number of
impulses. This is further seen when comparing to the previous study
case, the PD signals soared from 4 to roughly 238 and this was enough
to draw the PRPD pattern of Fig. 17(d). Note that this pattern and that
of the Fig. 18 obtained from the defect when only pure AC voltage was
applied are similar. One might expect that with more PD pulses (> 238
signals) the matching of the two patterns would become clearer. Thus,
this surface PRPD pattern served as confirmation of the rightfulness of
the recognition along with the individual pulse inspection as shown in

Fig. 14. (a) Color map representing k1∙k2∙k3, (b) color map representing
k1∙k2∙k3∙AEp. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Joint
HV cable system

Termination 1 Termination 2

Marx generator

Trans-
former

Unconventional PD 
measuring system

Rd

Rb

Cd

Lb

Ck

Cb

CIG

VD1

VD2

Conventional PD 
measuring system

Fig. 15. Superimposed impulse test circuit used for acquiring the data sets 1
and 2. More details can be found in [16].
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Fig. 16(d), [16].

7. Conclusion

The problem of impaired data sets cannot be approached by tradi-
tional clustering techniques. This paper contributed a simple and yet
efficient alternative to recognize pulse-shaped signals, namely PD sig-
nals, within large data sets containing a vast majority of signals of
another shape.

In our approach the resemblance of the energy signal Ec of a re-
corded waveform to that of a Dirac delta signal was quantified by the
features AEp and AEn extracted out of the normalized cumulative energy
signal.

Normalization was applied to these features so that their domain
would be limited to± 1, making it easier to read and interpret the
graph. Such a characteristic becomes the biggest strength of this
method because frees the user from any need for specific or pre-
knowledge on the data sets.

In addition, a shape factor k was proposed to quantify the factors
affecting the calculation of AEp and AEn. k is a 1D-dimension vector
added to the AEp-AEn graph as the color map.

When used in this form, the color map helps in calling the attention
outright on the pulse-shaped signals. It also serves the purpose of
thresholding the data set. Thus, helping to discard non-PD signals from
the data set.

When the amount of non-PD signals is large compared to actual PD
signals, extracting high dimensionality features may be expensive from
the computational point of view and may turn the analysis very com-
plex. In this regard, this tool proved to be very simple because only a
few arithmetic features are extracted from the cumulative energy,
which in turn it is a simple concept.

Some of the disadvantages are that the areas AEp and AEn are

Table 2
Testing voltages and acquisition Parameters.

Number of signals Sampling rate [GSa/s] RecordLength (us) ElapsedTime [s] AC [kV] Impulse[kV]

Case 1 (data set 2) 5000 1.25 2 50 35 85
Case 2 (data set 3) 5000 1.25 2 754 44 120

Fig. 16. Application case 1. (a) PD peak voltage in time, (b) PRPD pattern of the whole data set 2, (c) AEp-AEn graph, (d) PD waveforms.

Fig. 17. Application case 2. (a) PD peak voltage in time, (b) PRPD pattern of the whole data set 3, (c) AEp-AEn graph, (d) PRPD pattern of clustered data.

Fig. 18. Example of surface PRPD from the defect under 46kVAC test voltage.
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affected by the sampling of the signal. The higher the sampling rate, the
better the determination of the crossing points nx between the Ec and
the baseline. Likewise, Ec is affected by the offset of x(n). Therefore, a
conditioning stage to remove the offset of signals may be required be-
fore the application of this methodology.
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