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Various potential flow methods with different assumptions are available to quantify the
efficiency increase and thrust provided by a swirl recovery vane (SRV). In this paper,
thrust coefficients and efficiency results obtained by different potential flow methods for
the same SRV geometry at different advance ratios are presented. The methods include
two VLM and four lifting line (LL) models with different assumptions. The models
are compared in terms of accuracy with respect to RANS results and computational
cost. This makes it possible to evaluate the benefits and drawbacks of neglecting or
accounting for the presence of certain effects and modelling choices. The effects taken
into account or deliberately neglected in different models include; finite propeller-SRV
distance, nacelle presence, wake and free stream nonalignment, flow interaction between
vane blades, the Kutta condition and SRV sweep. The wake angle behind the SRV is
also varied and its effect on thrust coefficient is observed. In conclusion, accounting
for the presence of a nacelle and finite slipstream distance respectively leads to 7.28%
and 16.39% improvement in accuracy of the SRV thrust coefficient with negligible
increase in CPU time. Not aligning the SRV wake with free stream direction has
little impact on the computed thrust coefficient but causes the CPU time to increase
steeply. Using a VLM based model rather a LL model and modelling vane interaction
significantly increases CPU time whilst yielding the highest improvements in thrust
coefficient accuracy (25.43% and 35.16%).

Nomenclature

𝐶𝑇𝑉 = SRV thrust coefficient [-]
(𝑉Γ 𝑗𝑖 𝑡

) = magnitude of the tangential component
of the velocity induced by the jth Horse-
shoe vortex at the ith bound vortex [m/s]

𝛼𝑖𝑛𝑑 = induced angle of attack [rad]
𝛼𝑖 = geometric angle of attack at ith location

[rad]
𝛼𝐿=0 = 0 lift angle of attack [rad]
𝛼𝑟𝑜𝑡 = local flow rotation due to finite SRV-

propeller distance [rad]
[𝑃 = isolated propeller efficiency [-]
[𝑠𝑦𝑠 = efficiency of SRV+propeller system [-]
Γ𝑖 = circulation of at ith location [m2/𝑠]
𝜙 = local swirl angle [rad]
𝜌 = air density [kg/m3]
\𝑖 = local SRV angle w.r.t free-stream direc-

tion [rad]
®𝑛 = local normal to SRV surface [rad]

®𝑉𝑐𝑡𝑟𝑙Γ 𝑗𝑖
= total velocity at the ith control point

[m/s]
®𝑉Γ 𝑗𝑖

= velocity induced by the jth Horseshoe
vortex at the ith bound vortex [m/s]

®𝑉𝑏𝑜𝑢𝑛𝑑𝑖
= total velocity at the ith Horseshoe bound

vortex [m/s]
®𝑉𝑐𝑡𝑟𝑙𝑖 = total velocity at the control (collocation)

point associated with the ith Horseshoe
[m/s]

𝑎0 = airfoil lift curve slope [1/◦]
𝑐 = local SRV chord [m]
𝐶𝑃 = power coefficient [-]
𝐶𝑇𝑃 = thrust coefficient of only propeller [-]
𝐷𝑃 = propeller diameter [m]
𝑑𝐹𝑖 = force created by the ith Horseshoe vortex
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element [N]
𝑑𝑙 = horseshoe bound vortex length [m]
𝐽 = propeller advance ratio [-]
𝑛𝑠 = propeller rotational frequency [s−1]
𝑟 = spanwise distance between bound horse-

shoe vortex and propeller rotational axis
[m]

𝑅𝑛 = nacelle radius [m]
𝑟𝑖𝑚 = spanwise distance between an image

vortex and propeller rotational axis [m]
𝑇𝑃 = thrust of propeller [N]
𝑇𝑉 = thrust of the SRV [N]
𝑢∞ = unit vector along the free stream direc-

tion [-]
𝑢𝑖 = velocity induced by ith horseshoe vortex

at propeller [m/s]
𝑉∞ = aircraft free stream velocity [m/s]
𝑉𝑎𝑖 = axial (free-stream direction) component

of propeller slipstream velocity at the
ith location [m/s]

𝑉𝑡𝑖 = tangential (azimuthal) component of
propeller slipstream velocity at the ith
location [m/s]

𝑉𝑖𝑛𝑖 = propeller slipstream velocity magnitude
at the ith location [m/s]

𝑑ℎ = distance between jth horseshoe vortex
and ith location [m]

𝑑 = axial correction distance [m]
= unit vector in the free stream velocity

direction [-]

I. INTRODUCTION
Engineers have come up with different methods
to increase the efficiency of propeller propulsion
systems. A simple method that can increase
the propulsive efficiency of an aircraft is a swirl
recovery vane (SRV). SRV is a stator that is used
to increase the propulsion efficiency of a propeller
system by converting the rotational energy in the
propeller slipstream into additional thrust. The
SRVs can already be seen in the next generation
CFM RISE open fan engine concepts, making it
important to understand their modelling.

During the design process of an SRV, an initial
optimization needs to be performed before the use
of CFD to save computational effort. However,

the design procedure of the SRVs are not well
developed [1]. A common method of modelling
the SRV in the early design stage is through the use
of lifting line (LL) theory. It was observed by Li
that although the lifting line method predicted that
the SRV would produce 3.4% of the thrust of the
propeller, wind tunnel observations showed that
the SRV only produced 2.6% [1]. This is a 30%
error, which is significant especially given the fact
that the efficiency gain from the SRV is already low
(found to be of order 2% for a typical uninstalled
tractor propeller configuration using RANS [2]).
Thus, to be able to produce an effective SRV
design, it is important to acknowledge and carefully
pick the assumptions of the models used in the
design process. This raises the question: "Which
assumptions in SRV potential flow modelling lead
to the most error and which of these assumptions
can be eliminated without significantly increasing
the computational effort?"

In this paper, the thrust coefficient and efficiency
of the same SRV geometry at different advance
ratios are computed using two different Vortex
Lattice Methods (VLM) and four different LL
models. Each model differs from another by
taking into account an effect that a different
model assumed was not present. The difference
in results between the models quantifies the
increase in accuracy that can be obtained by
modelling a certain effect or flow phenomena.
Comparing the CPU time of the different models
represents the computational cost of removing
an assumption or taking into account a certain effect.

The effects or phenomena that are investigated in-
clude:

• Finite propeller-SRV distance: Assuming that
the SRV does not change the flow profile di-
rectly after the propeller, the finite distance
between propeller and SRV leads to a change
in the angle of attack at the location of the SRV.

• Nacelle presence: The presence of a nacelle
can be modelled by replacing it with a number
of Horseshoe vortices such that the nacelle wall
is represented as a free slip wall. This alters
the flow field at the SRV blade.

• Non-alignment of SRV wake with free-stream
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direction: The swirl direction of the wake down-
stream of the SRV is unknown when running a
potential flow simulation. Thus, by prescribing
the wake swirl at different feasible angles and
comparing the SRV thrust for these different
cases reveals the maximum error that can be
made by picking an arbitrary swirl angle for
the wake.

• Flow interaction between vane blades: Mod-
elling all SRV blades together and using the
induced velocity of one blade to impose flow
tangency at another blade rather than modelling
the flow around an isolated vane blade makes
it possible to compute the effect of assuming
infinite unperturbed flow in the tangential (az-
imuthal) direction.

• The Kutta condition: Since VLM modelling
explicitly enforces the flow tangency unlike LL,
the difference in thrust coefficients can be used
to evaluate this effect.

• SRV Blade sweep: Using the VLM model to
compute the effect on thrust of an SRV ge-
ometry when its sweep is increased highlights
the severity of the error that would be made
by neglecting the sweep. The sweep has to
be neglected automatically if an LL model is
used.

II. SRV PERFORMANCE PARAMETERS
The total propeller and vane efficiency can be de-
fined as the system efficiency [1]:

[𝑠𝑦𝑠 =
𝐽 · (𝐶𝑇𝑃 + 𝐶𝑇𝑉 )

𝐶𝑃

(1)

The propeller thrust coefficient 𝐶𝑇𝑃 , SRV thrust
coefficient 𝐶𝑇𝑉 , propeller advance ratio (J) and
power coefficient 𝐶𝑃 are defined as [1]:

𝐶𝑇𝑃 =
𝑇𝑃

𝜌 · 𝑛𝑠2 · 𝐷𝑃
4 (2)

𝐶𝑇𝑉 =
𝑇𝑉

𝜌 · 𝑛𝑠2 · 𝐷𝑃
4 (3)

𝐽 =
𝑉∞

𝑛𝑠 · 𝐷𝑃

(4)

𝐶𝑃 =
𝑃

𝜌 · 𝑛𝑠3 · 𝐷𝑃
5 (5)

Efficiency and the vane thrust coefficient are the
main parameters that will be used to compare differ-
ent models. By assuming that the upstream effect of
the swirl recovery vane is small, it can be assumed
that the power coefficient and the thrust coefficient
of the propeller are unchanged by the addition of
a swirl recovery vane. Indeed, this assumption is
supported as the change in the power coefficient
of the propeller after the addition of a swirl recov-
ery vane remained in the range of 0% to 0.5% for
advance ratios between 0.95 to 1.6 according to
Stokkermans [3]. Also, the addition of the SRV led
to a deviation between -0.1% to +0.3% in the thrust
coefficient of the propeller.

III. MODELLED FLOW CONDITION
Given that the objective of this paper is to model the
flow around a SRV system using various potential
flow methods to quantify the effect of assumptions
used in these models, the inflow conditions under
which the simulations will be conducted must be
clearly defined. The inflow conditions and the SRV
geometry used in the simulations are taken from
Stokkermans [3]. This is useful for the verification
of the results as doing this allows for a comparison
between the VLM and LL results produced in this
paper and the already existing CFD results obtained
by Stokkermans. The free stream velocity 𝑉∞ is
68m/s. Propeller and SRV diameters both equal 𝐷𝑃

=0.5m. Nacelle radius is 0.0625m. Fig. 1, Fig. 2
and Fig. 3 respectively present the local pitch angle
of the modelled SRV, axial and tangential velocity
at different propeller advance ratios.

Figure 1. SRV local pitch angle and chord distri-
bution as a function of radius [3]
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Figure 2. Axial inflow velocities at 0.9 propeller
radii behind the propeller at different advance
ratios [3]

Figure 3. Tangential inflow velocities at 0.9
propeller radii behind the propeller at different
advance ratios [3]

It is important to note that the contraction of
stream tube behind the propeller is assumed to be
negligible leading to the assumption that the radial
velocity is zero.

The modelled SRV has 4 vanes, placed axis-
symmetrically. The SRV is assumed to be two
propeller radii behind the propeller as done in
Stokkerman’s CFD simulations. Lastly, in order to
convert the thrust of the SRV into coefficients, some
data about the isolated propeller must be known and
is provided by Stokkermans for three advance ratios
that will be used during the simulations with J=0.95
representing the high thrust take-off condition and
J=1.6 representing the cruise condition:

Table 1. Isolated Propeller Quantities At Various
Advance Ratios [3]

J 𝐶𝑇𝑃 𝐶𝑃 [𝑃

0.95 0.547 1.042 0.499
1.30 0.397 0.774 0.667
1.60 0.245 0.510 0.769

IV. POTENTIAL FLOW METHODS
USED FOR MODELLING

The two main base models used are the VLM and
the LL model. These base VLM and LL model are
modified to generate two VLM and four different
LL models. Although a VLM model has never
before been used to model an SRV, it is possible in
principle and is therefore evaluated in this paper.

A. Lifting Line for SRV Modelling
Using XFLR5, the 0-lift angle of attack and the
lift curve slope for NACA4409 were found to be:
-4.373 degrees and 0.1094 per degree respectively.

The fundamental equation of Prandtl’s Lifting-
Line theory at location i on an aircraft wing is given
as [4]:

1
4𝜋𝑉∞

∫ 𝑏/2

−𝑏/2

(𝑑Γ/𝑑𝑦)𝑑𝑦
𝑦𝑖 − 𝑦

+ 𝛼𝐿=0𝑖 +
2Γ𝑖

𝑉∞ · 𝑐𝑖 · 𝑎0

= 𝛼𝑖 (6)

The geometric angle of attack of the wing at location
i (𝛼𝑖) can be replaced with \𝑖 + 𝜙𝑖 for an SRV. 𝑉∞
may be replaced with the inflow SRV inflow speed
𝑉𝑖𝑛𝑖 . The integral can be expressed as the sum
of velocity induced by all the trailing vortices on
the SRV blade to make the equation suitable for a
numerical analysis. The modified lifting line theory
at ith segment 𝑑𝑙𝑖 becomes:

−1
𝑉𝑖𝑛𝑖

𝑛∑︁
𝑗=1

(
−

Γ 𝑗

4𝜋(𝑑𝑙/2 + 𝑑ℎ)
+

Γ 𝑗

4𝜋(−𝑑𝑙/2 + 𝑑ℎ)

)
+

𝛼𝐿=0 +
2Γ𝑖

𝑉𝑖𝑛𝑖 · 𝑐𝑖 · 𝑎0
= \𝑖 + 𝜙𝑖 (7)

The distances 𝑑ℎ and 𝑑𝑙 can be seen in Fig. 4.
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Figure 4. SRV Geometry (adapted from [3])

Where𝑉𝑖𝑛𝑖 is the incoming flow at the ith position
and hence:

𝑉𝑖𝑛𝑖 =

√︃
𝑉2
𝑡𝑖
+𝑉2

𝑎𝑖 (8)

Then, the force in thrust direction on each element
𝑑𝑙 can be summed up to yield the resulting thrust
on the SRV with 4 vanes [1]:

𝑇𝑉 = 4𝜌
𝑛∑︁
𝑖=1

(𝑉𝑡𝑖 +
𝑛∑︁
𝑗=1

(𝑉Γ 𝑗𝑖
)𝑡 ) · 𝑑𝑙𝑖 · Γ𝑖 (9)

This model is the ’LL Base’ model.

B. Accounting for Finite Slipstream Distance
An inherent limitation of the previous method was
that the flow velocity 𝑉𝑖𝑛 was assumed to be at an
infinite distance away from the SRV. But in reality,
this is not true and the SRV is at a finite distance
from the propeller. An airfoil segment 𝑑𝑙𝑖 with
circulation Γ𝑖 in the SRV induces a flow velocity 𝑢𝑖
at the location where the inflow conditions (shown
in Figure 2 and Figure 3) are described [5]:

𝑢𝑖 =
Γ𝑖

2𝜋𝑑
=
𝑐𝑙𝑖 · 𝑐𝑖 · 𝑉𝑖𝑛𝑖

4𝜋𝑑
=
𝑎0𝑖 · (𝛼𝑖 − 𝛼𝐿=0𝑖 ) · 𝑐𝑖 · 𝑉𝑖𝑛𝑖

4𝜋𝑑
(10)

But since the propeller slipstream velocity and di-
rection is assumed to remain unaffected by adding
the SRV, the flow at the SRV airfoil section must
rotate by 𝛼𝑟𝑜𝑡 [5]:

𝛼𝑟𝑜𝑡 = arctan
𝑢𝑖

𝑉𝑖𝑛𝑖
≈ 𝑢𝑖

𝑉𝑖𝑛𝑖
=
𝑎0𝑖 · (𝛼𝑖 − 𝛼𝐿=0𝑖 ) · 𝑐𝑖

4𝜋𝑑
(11)

This means that accounting for the interaction be-
tween the SRV and propeller in 3D flow yields:

𝑐𝑙

𝑎0
= 𝛼 − 𝛼𝐿=0 − 𝛼𝑖𝑛𝑑 − 𝛼𝑟𝑜𝑡 (12)

This means that the fundamental equation of
Prandtl’s Lifting Line equation may be more cor-
rectly written as:

−1
𝑉𝑖𝑛𝑖

𝑛∑︁
𝑗=1

(
−

Γ 𝑗

4𝜋(𝑑𝑙/2 + 𝑑ℎ)
+

Γ 𝑗

4𝜋(−𝑑𝑙/2 + 𝑑ℎ)

)
+𝛼𝐿=0

+
𝑎0𝑖 · (\𝑖 + 𝜙𝑖 − 𝛼𝐿=0𝑖 ) · 𝑐𝑖

4𝜋𝑑
+ 2Γ𝑖
𝑉𝑖𝑛𝑖 · 𝑐𝑖 · 𝑎0

= \𝑖+𝜙𝑖
(13)

The term ’d’ in the modified Lifting Line equation
must match the conditions used by Stokkermans.
Stokkermans reported the velocity distributions at
at 0.9 propeller radii behind the propeller and placed
the SRV two propeller radii behind the propeller.
Thus, the distance ’d’ is 1.1 propeller radii. This
correction leads to the model ’LL w. Finite Slip-
stream Correction’. And the difference between
𝐶𝑇 𝑣 and efficiency computed using this model and
the ’LL Base Model’ highlights the magnitude of
the improvement in accuracy when this effect is
taken into account.

C. Modelling The SRV Nacelle
Another interesting factor to analyze is the presence
of the nacelle in the flow. Different authors such as
Stokkermans and Veldhuis have chosen to account
for the presence of the nacelle whilst others such
as Li have chosen not to include it in the modelling
of the flow. Should the nacelle be modelled, it
can be done so by placing an image vortex that
corresponds to each Horseshoe vortex in the vane.
In order to ensure that the flow component normal
to the nacelle is equal to 0, the position of the ith
image vortex is given by [6]:

𝑟𝑖𝑚 =
𝑅2
𝑛

𝑟
(14)

Where 𝑟 represents the position of the Horseshoe
vortex on the vane with respect to the centre of the
propeller rotation axis. This leads to the model ’LL
with Nacelle Correction’. The results produced by
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this model in comparison to the ’LL Base’ model
highlight the improvement in accuracy obtained by
modelling the nacelle.

D. Wake Model Investigation
In all the previous lifting line models, the trailing
horseshoe vortices and hence, the SRV wake was
aligned with the free stream flow. But this could
only happen when the tangential component of the
flow is completely eliminated, implying complete
swirl recovery. It is important to note that aligning
the SRV wake with the free stream direction as if
all swirl is eliminated does not lead to complete
swirl recovery.

The other limiting case for the wake is if the
wake is completely aligned with the propeller
slipstream swirl direction (𝜙𝑖) which would happen
if the SRV recovered no swirl from the flow.
Again, it is important to emphasize that giving
the trailing horseshoe vortices an angle of 𝜙𝑖 does
not automatically lead to the no swirl recovery
condition.

While conducting the LL simulation, the percentage
of swirl recovery is unknown and hence, the correct
angle of the wake cannot be deduced beforehand.
However, the impact of this error on the vane thrust
coefficient can be understood by simulating the SRV
with trailing horseshoe vortex angles varying from 0
degrees (aligned with free stream direction) up to 𝜙𝑖
(aligned with propeller slipstream). Thus, aligning
the wake with the free stream can be justified if the
angle of the horseshoe vortices make an insignificant
impact on the vane thrust coefficient. To simulate
the angled wake conditions, the lifting line equation
has to be modified. When the trailing horseshoe
vortices at each location i is aligned with the local
incoming flow (𝑉𝑖𝑛𝑖), the new lifting line equation
at location i becomes:

𝛼𝐿=0 +
2Γ𝑖

𝑉𝑖𝑛𝑖 · 𝑐𝑖 · 𝑎0
= \𝑖 + 𝜙𝑖+

arctan(
∑𝑛

𝑗=1(𝑉Γ 𝑗
)𝑡 · cos(𝜙𝑖) − (𝑉Γ 𝑗

)𝑎 · sin(𝜙𝑖)
𝑉𝑖𝑛𝑖 +

∑𝑛
𝑗=1(𝑉Γ 𝑗

)𝑎 · cos(𝜙𝑖) + (𝑉Γ 𝑗
)𝑡 · sin(𝜙𝑖)

)

(15)

The subscript 𝑡 is used to indicate the tangential
(azimuthal) component of induced velocity and 𝑎 is
used to indicate the axial (free-stream direction) of
the induced velocity. This leads to the model ’LL w.
Local Flow Oriented Trailing Vortices’. Comparing
the results of this model to that of ’LL Base’ model
is effectively a comparison between the conditions
where the horseshoe vortex directions are at their
most extreme.

E. VLM for SRV Modelling
If each vane is divided into Horseshoe vortices with
width 𝑑𝑙, then the total aerodynamic force on the
ith vortex is given by [7]:

®𝑑𝐹𝑖 = 𝜌Γ𝑖 ®𝑉𝑏𝑜𝑢𝑛𝑑𝑖
× ®𝑑𝑙𝑖 (16)

The total thrust created by the vanes can be expressed
as the sum of axial component of force on each
Horseshoe vortex:

𝑇𝑉 = (
𝑛∑︁
𝑖=1

®𝑑𝐹𝑖)𝑎 (17)

At each bound vortex location i, the total velocity
vector ( ®𝑉𝑏𝑜𝑢𝑛𝑑𝑖

) can be expressed as a sum of the
axial velocity and tangential velocity of the propeller
slipstream and the velocity induced by all ’n’ Horse-
shoe vortices at the bound part of the ith Horseshoe
vortex. So the total velocity at the location of the
ith Horseshoe bound vortex can be expressed as:

®𝑉𝑏𝑜𝑢𝑛𝑑𝑖
= ®𝑉𝑎𝑖 + ®𝑉𝑡𝑖 +

𝑛∑︁
𝑗=1

®𝑉Γ 𝑗𝑖
(18)

It is known that the induced velocity by a Horseshoe
vortex can be defined as shown in Equation 19, in
accordance with Fig. 5 [8] where ®𝑑𝑙 𝑗 represents
the bound vortex segment, ®𝑟1 and ®𝑟2 represent the
vectors from the ends of ®𝑑𝑙 𝑗 going to the arbitrary
point in space about which the induced velocity is
evaluated, the double headed arrows represent the
orientation of the jth circulation and 𝑢∞ is the unit
vector along the free stream velocity direction with
which the trailing Horseshoe vortices are aligned:
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Figure 5. Vectors defining induced velocity
(adapted from [7])

®𝑉Γ 𝑗𝑖
= Γ 𝑗 · 𝑐 𝑗𝑖 (19)

Given that this arbitrary point in space is the location
of the ith Horseshoe’s bound vortex, ®𝑟1 and ®𝑟2 can
be rewritten as ®𝑟 𝑗1𝑖 and ®𝑟 𝑗2𝑖 [7].

𝑐 𝑗𝑖 =
1

4𝜋


®𝑢∞×®𝑟 𝑗2𝑖

𝑟 𝑗2𝑖 (𝑟 𝑗2𝑖−®𝑢∞ · ®𝑟 𝑗2𝑖)
+ (𝑟 𝑗1𝑖+𝑟 𝑗2𝑖) (®𝑟 𝑗1𝑖×®𝑟 𝑗2𝑖)
𝑟 𝑗1𝑖𝑟 𝑗2𝑖 (𝑟 𝑗1𝑖𝑟 𝑗2𝑖+®𝑟 𝑗1𝑖 · ®𝑟 𝑗2𝑖)
− ®𝑢∞×®𝑟 𝑗1𝑖

𝑟 𝑗1𝑖 (𝑟 𝑗1𝑖−®𝑢∞ · ®𝑟 𝑗1𝑖)


, 𝑖 ≠ 𝑗

c 𝑗𝑖 =
1

4𝜋


®𝑢∞×®𝑟 𝑗2𝑖

𝑟 𝑗2𝑖 (𝑟 𝑗2𝑖−®𝑢∞ · ®𝑟 𝑗2𝑖)
− ®𝑢∞×®𝑟 𝑗1𝑖

𝑟 𝑗1𝑖 (𝑟 𝑗1𝑖−®𝑢∞ · ®𝑟 𝑗1𝑖)

 , 𝑖 = 𝑗

(20)
The 𝑐 𝑗𝑖 exception for when i=j is because the bound
vortex of the jth Horseshoe does not induce velocity
on itself. Finally, the circulations Γ 𝑗 need to be
defined. This can be done by enforcing tangency to
the surface of the swirl recovery vane at each of the
control points associated with each jth Horseshoe
vortex as conventionally done in VLM:

®𝑉𝑐𝑡𝑟𝑙𝑖 · ®𝑛𝑖 = 0 (21)

®𝑉𝑐𝑡𝑟𝑙𝑖 =
®𝑉𝑎𝑖 + ®𝑉𝑡𝑖 +

𝑛∑︁
𝑗=1

®𝑉𝑐𝑡𝑟𝑙Γ 𝑗𝑖
(22)

®𝑉𝑐𝑡𝑟𝑙Γ 𝑗𝑖
=

Γ 𝑗

4𝜋
·


®𝑢∞×®𝑟 𝑗2𝑖

𝑟 𝑗2𝑖 (𝑟 𝑗2𝑖−®𝑢∞ · ®𝑟 𝑗2𝑖)
+ (𝑟 𝑗1𝑖+𝑟 𝑗2𝑖) (®𝑟 𝑗1𝑖×®𝑟 𝑗2𝑖)
𝑟 𝑗1𝑖𝑟 𝑗2𝑖 (𝑟 𝑗1𝑖𝑟 𝑗2𝑖+®𝑟 𝑗1𝑖 · ®𝑟 𝑗2𝑖)
− ®𝑢∞×®𝑟 𝑗1𝑖

𝑟 𝑗1𝑖 (𝑟 𝑗1𝑖−®𝑢∞ · ®𝑟 𝑗1𝑖)


(23)

In Eq. 23, ®𝑟 𝑗1𝑖 and ®𝑟 𝑗2𝑖 represent the vectors going
from each end of ®𝑑𝑙 𝑗 to the ith collocation point.

Of course, this VLM method can be applied in
multiple ways. The modelled SRV has four vanes.
A method of modelling SRV can be simply placing
one of the four vane blades in the flow to obtain the
force created by that vane and then multiplying its
thrust by four leading to the ’VLM Base Model’.
This is similar to the approach used by Li [1].
But of course, this means that the aerodynamic
interaction between the four vane blades is not taken
into account and hence introduces the assumption
of having infinite undisturbed flow in the tangential
direction. This assumption can be removed by
modelling all four of the vanes together to take this
interaction into account. This involves using the
velocity induced by the horseshoe vortices of one
blade in the tangency equations (Equation (21)) of
another blade leading to the model: ’VLM w. Vane
Interaction’. The difference in 𝐶𝑇𝑣 and efficiency
produced by these two models speaks to the impact
of neglecting the interaction between vane blades.

F. Comparison VLM and LL Modelling
The VLM and LL differ from one another in two
main ways. Firstly, unlike the LL models, the
VLM model can take into account SRV sweep.
To test the impact of neglecting sweep, the SRV
geometry described in Section III is changed by only
modifying the leading edge sweep while keeping
all other geometry parameters the same and the
VLM base model is run at different sweep angles.
Secondly, the other difference between the ’LL Base
Model’ and the ’VLM Base model’ is that the VLM
Base Model enforces tangency at all points and
hence, the Kutta condition. Both in VLM and LL
models (except the ’LL w. Local Flow Oriented
Trailing Vortices’ model), the wake has been aligned
with the free stream velocity. The Kutta condition
helps partially correct for this arbitrary choice at
the vicinity of the airfoil trailing edge. Regardless
of the arbitrary orientation of the trailing vortices,
the magnitudes of the Horseshoe vortices adjust to
enforce the Kutta condition as long as a collocation
point is placed at the trailing edge. Thus, the
difference between the ’LL Base Model’ and the
’VLM Base model’ results speaks to the magnitude
of this correction.
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V. Results & Discussion
The different variations of the VLM and LL
model can be evaluated in terms of their ac-
curacy with respect to the CFD results and
their computational cost. Unless explicitly
stated otherwise, for the lifting line models, a
discretization of 40 Horseshoe vortices is used.
For VLM models, 1600 Horseshoe vortices are
used per vane blade (40 along span, 40 along chord).

Figure 6. Propeller induced velocities at J=1.6
behind the propeller

Figure 7. SRV induced radial and tangential
velocities 0.5m behind the SRV leading edge at
J=1.6 based on the ’VLM w. Vane Interaction’
Model

Fig. 6 shows the flow velocities created by the

propeller 0.5m behind the SRV leading edge.

Figure 8. The complete flow 0.5m behind the
SRV leading edge at J=1.6 (sum of propeller and
SRV induced velocities)

The radial and tangential flow 0.5m downstream
of the SRV leading edge is visualized in Fig. 7.
The velocities are only due to the bound and
trailing vortices of the SRV. The propeller induced
velocities have been omitted for clarity sake.
Fig. 8 shows the overall flow behind the SRV by
superposing the propeller slipstream and SRV
horseshoe-induced velocities.

It is possible to see that the SRV blades cause a
downwash leading to an overall clockwise rotation,
shown by the black arrows in Fig. 7. This rotation
is in the opposite direction to that created by the
propeller. In Fig. 7, although the majority of the
flow is in the clockwise direction, the local tip
vortices, one of which is highlighted in the larger
black box in Fig. 7 cause local rotations in the
counterclockwise direction. In addition, there are
also tip vortices at the centre of the vane, shown
inside the smaller black box in Fig. 7. This is
because the nacelle that joins the SRV blades is
not modelled by the ’VLM w. Vane Interaction’
model. Superposing these velocities with that
of the propeller leads to a reduction in the swirl
indicating swirl recovery and lower swirl velocities
as seen in Fig. 8 when compared to Fig. 6.
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While developing the models, the upstream effect
of the SRV on the propeller was neglected. In
Fig. 9, the difference between the two RANS re-
sults highlights the impact of this assumption. The
difference between the two results is negligible at
advance ratios of 0.95 and 1.6, hence during the
most significant portion of the flight.

Figure 9. Vane thrust coefficient prediction of
different models at various advance ratios

Figure 10. Vane thrust coefficient prediction of
lifting line models

From Fig. 9, it can be seen that the difference
between the potential flow methods and the RANS
results become more pronounced at lower advance
ratios and diverge. This is due to the increase of

inflow (swirl) angle leading to increased parasitic
drag. Another observation from Fig. 9 and Fig. 10
is that all VLM and LL models converge at very
high advance ratios (J=1.8 and above) due to the
reduction of the magnitude of the horseshoe vortices.
Because of this, all the models have very similar
cross-over advance ratios (advance ratio at which
𝐶𝑇𝑣 becomes zero) as seen in Table 2.

Table 2. Model Cross-over Advance Ratio and
CPU Time

Modelled Effect Cross CPU
Over J Time (s)

LL Base Model 1.879 0.016
LL w. Finite Slipstream 1.881 0.016
LL w. Nacelle Correction 1.882 0.016
LL w. Local Flow 1.879 0.641
Oriented Trailing Vortices
VLM Base Model 1.872 133.891
VLM w. Vane Interaction 1.876 257.403

Percentage improvement in the accuracy of the
thrust coefficient computation due to each addi-
tional modelled effect is calculated using (24) and
is tabulated in Table 3.�����𝐶𝑇𝑣 |𝑤/𝑜.𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

− 𝐶𝑇𝑣 |𝑤.𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

𝐶𝑇𝑣 |𝐶𝐹𝐷

����� · 100 (24)

Table 3. Percentage Improvement of Potential
Flow Modelling At Different Advance Ratios Due
to Additional Modelled Effects

Modelled Effect J=1.3 J=1.6
Finite Propeller-SRV Distance 5.45 16.39

Nacelle Hub Presence 3.15 7.28
Kutta Condition 5.46 25.43
Vane Interaction 12.78 35.16

From Table 3, it can be inferred that the second
most significant improvement is obtained by
modelling the Kutta condition. Unfortunately,
this improvement leads to the most significant
computational cost increase as seen in Table 2 by
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comparing the CPU times of the ’LL Base Model’
and ’VLM Base Model’.

Figure 11. The change in vane thrust coefficient
due to SRV sweep
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Figure 12. Thrust loading based on the ’VLM
Base Model’ with 10,000 horseshoe vortices at
J=1.6

Another reason to use VLM instead of LL might be

to take the sweep of the SRV into account. As seen
in Fig. 11, this might be important at leading edge
sweep angles of 20 degrees and above which might
make using VLM worth the computational effort.

The reason for drop in the thrust coefficient at
higher sweep angles can be seen by comparing
Fig. 12a and Fig. 12b. When the sweep is increased,
it is observed that at lower radial positions (near
the centre of the SRV), less thrust is produced and
more thrust is produced near the tip of the SRV.
The first effect outweighs the second leading to a
lower thrust coefficient.

The most significant improvement in accuracy is
obtained by taking into account the aerodynamic
interaction between individual SRV blades as seen
in Table 3. However, this leads to a significant
increase in the computation effort. According to
Table 2, the CPU time is increased from 133.891 to
257.403 seconds. Most of the computational effort
in the VLM is spent on using the Biot-Savart law to
compute velocity induced by each horseshoe vortex
at each collocation point and to solve the linear
system. Since the vane blades are axis-symmetric,
modelling four vane blades together instead of
one blade does not quadruple the amount of
unknown horseshoe vortices. The number of
unknown horseshoe vortices to be solved remains
the same meaning the CPU time of the solver
does not increase. However, if there are 1600
horseshoe vortices and 1600 collocation points
on one vane, the Biot-Savart law would have to
be used 16002 = 2560000 times to compute the
velocity induced by 1600 horseshoe vortices at
1600 collocation points. When four blades are
modelled, the Biot-Savart law has to be used
(4 · 1600)2 = 40960000 times which is the reason
for the steep increase in the CPU time.

Modelling the finite SRV-propeller distance and
presence of the nacelle hub as a free-slip boundary
leads to a small improvement in accuracy as seen in
Table 3. However, comparing the CPU times of the
’LL Base Model’, ’LL w. Finite Slipstream’ and
’LL w. Nacelle Correction’ in Table 2 shows that
modelling these effects leads to no increase in the
computational effort. Hence, it is always favorable
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to model these effects.

Lastly, in order to put a cap on the error that could
be made due to the trailing horseshoe vortices’ di-
rection being unknown, their direction was varied
between 0 and 𝜙𝑖 degrees. The vane thrust coeffi-
cient was plotted for this range of angles in Fig. 13.
The x-axis represents the angle of the wake as a
fraction of 𝜙𝑖 .

Figure 13. SRV Thrust Coefficient As A Function
of Wake Angle at J=1.6

From 13, the difference between the maximum
thrust coefficient and the minimum thrust coefficient
is 0.25% meaning that the angle chosen for the
wake has nearly no consequence on the vane thrust
coefficient. However, not aligning the horseshoe
vortices with the free-stream direction leads to
more complex non-linear equations which have to
be solved using an iterative solver. This results
in an increased computational cost. The increase
in CPU time can be seen by comparing ’LL Base
Model’ with ’LL w. Local Flow Oriented Trailing
Vortices’ in Table 2. This means that it is generally
worth aligning the wake with the free stream
direction as if the SRV completely recovers the swirl.

The larger picture can be analyzed by looking at
the improvement in the thrust coefficient and effi-
ciency of the propeller and SRV system as a whole,
provided in Fig. 14. Regardless of the model used,
the SRV is shown to lead to a distinct improvement
in the thrust coefficient up to and including J=1.6.
At J=1.6, even where the thrust coefficient predic-
tions of different models seem to converge, the ’LL

Base Model’ predicts an increase of 2.20% in the
thrust coefficient while RANS predicts 0.6% com-
pared to the isolated propeller. This discrepancy
once again highlights the importance of evaluating
model assumptions.

Figure 14. Thrust coefficient and system effi-
ciency of the propulsion system without SRV and
with SRV according to different models

VI. Conclusions
1) Based on vane thrust coefficient accuracy

and computational cost criteria, it is nearly
always favorable to model the fact that the
SRV-propeller distance is finite and that there
is a nacelle (as a free-slip wall) because the
accuracy can be improved without increasing
computational effort.

2) The alignment of the horseshoe vortices is
arbitrarily chosen as the actual amount of
swirl recovery is unknown. However, the
maximum inaccuracy that can be caused by
this is approximately 0.25%. Thus, it makes
sense to align the trailing vortices with the
axial direction to have linear equations and
speed up the computation.

3) Using VLM instead of LL is beneficial in
two ways: The Kutta condition on the SRV
is modelled and the sweep of the SRV can be
taken into account. Due to both these effects,
using VLM leads to a significant improvement
in the accuracy of the vane thrust coefficient
despite coming at a significant computational
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cost. However, this might be needed never-
theless when leading edge sweep of the SRV
exceeds 20 degrees. A similar trade-off be-
tween computational effort and accuracy has
to be made when deciding whether to model
the interaction between different vane blades.
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