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ABSTRACT: Given the ageing infrastructure, verifying the reliability of existing structures is 
crucial. Field testing presents a viable approach to evaluating a structure’s current condition, par-
ticularly proof load testing. In a proof load test, a large load is applied to assess its reliability. 
Structures in sound condition are expected to display satisfactory behaviour under average load 
intensities. Can good structural performance under moderate load levels already prove sufficient 
structural reliability? The proposed method utilises data from laboratory tests on similar struc-
tural elements. A case study was conducted on a bridge to illustrate the effectiveness of the 
method. Data acquired from laboratory tests were pre-processed to provide the required input for 
the reliability updating. It reveals that sufficient reliability can be demonstrated without excessive 
load levels by incorporating laboratory data. However, the actual capacity of the bridge and the 
uncertainty associated with the laboratory data remain important factors.

1 INTRODUCTION

Ensuring the reliability of bridges and viaducts is an ongoing effort involving inspections, 
structural assessments, and maintenance practices. As the infrastructure ages and experiences 
increased traffic loads and intensities, accurate assessment methods are required to account 
for the changing conditions. Load testing may be used to verify a bridge or viaduct’s current 
structural integrity. A load test conducted to prove a structure’s ability to withstand future 
traffic loads is referred to as a ‘proof load test’ (Alampalli et al., 2021; Faber et al., 2000; Lant-
soght et al., 2017). The magnitude of the load to be applied in the test, commonly called the 
target load, is pivotal in proof load testing. If the structure can resist a large load without any 
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issues, it proves it is sufficiently reliable for future use. The magnitude of the target load is 
directly related to the reliability requirements. Often, such reliability requirements result in 
relatively large loads being applied to the structure (De Vries et al., 2023a). A potential solu-
tion to this problem is to probabilistically consider all relevant information about the struc-
tural resistance, especially the performance indicators during testing. Then, load testing can 
demonstrate the same reliability level with lower test loads, making it a cost-effective alterna-
tive to other evaluation methods.

The current article presents a novel reliability updating method that integrates information 
from two distinct sources: the survival of the applied load during the proof load test and the indi-
cator value observed throughout the testing process. When a proof load test is conducted, the load 
is gradually applied in small steps until the target is reached to prevent unwanted damage. Meas-
urement of displacements, crack widths and so on usually cannot instantly tell us about the struc-
tural performance. Therefore, corresponding stop criteria interpret the structural behaviour rather 
than the measurements directly (Zarate Garnica & Lantsoght, 2021). For example, strains may be 
interpreted via sectional analysis to identify a critical value. The type of expected damage and fail-
ure mechanism will define the specific stop criteria that should be used.

2 METHOD

2.1  Reliability updating using two information sources

When a particular load is resisted in a proof load test, the structure’s resistance is at least 
equal to the load effect achieved during the test (R ≥ EPL). The load effect consists of perman-
ent loads and the load applied within the test (EPL = G + QPL). This results in a truncation of 
the resistance distribution (Lin & Nowak, 1984). Naturally, there will be some uncertainty 
associated with this load effect. When accounted for, the truncation will be more gradual, still 
assigning some probability density to values lower than the intended (mean) proof load effect 
(mE,PL) (Brüske, 2018). This truncation results in the first source of information following 
from successfully withstanding the applied load (Figure 1, point 1).

The in-situ measurements and stop criteria introduced in the previous section are commonly 
used to prevent structural failure. The novel method described herein uses the measurement data 
to predict the structure’s resistance at moderate load levels. This prediction gives rise to 
the second source of information following a load step in the proof load test. The prediction may 
be achieved using suitable data that links observed damage to the applied loading for similar 
structural elements. In this context, the measurements normally conducted within the application 
of stop criteria are called indicators. The strain calculated from displacement measurements at the 
bottom of a beam or slab is an example of such an indicator. From the data obtained in the 

Figure 1.  General principle of updating the resistance distribution from two sources of information.
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laboratory tests and the indicator value observed during the in-situ test, the corresponding mean 
and standard deviation of the resistance may be inferred (Figure 1, point 2).

2.2  Probabilistic model for updating

The structural reliability is determined by evaluating a limit state function (Z), which results 
in a negative value when failure occurs. The limit state function for the assessment of a bridge 
(or viaduct) subjected to traffic load has been formulated in line with the Probabilistic Model 
Code (JCSS, 2015) and fib Bulletin 80 (fib, 2016):

where R is the resistance, θE is the model uncertainty of the load effect calculation, GDL is the 
dead load, GSDL is the superimposed dead load, C0Q is the time-invariant part of the live load, 
and Q is the time-variant part of the live load. Here, θR accounts for the statistical model 
uncertainty in which in-situ testing is coupled with laboratory experiments. This uncertainty is 
small when the laboratory specimens are representative of the structure under consideration. 
However, large uncertainty should be expected if the structures are dissimilar or the measure-
ment techniques and data post-processing differ. Real-world experience with the proposed 
method will give insight into appropriate model uncertainty values. The uncertainty in predict-
ing the resistance from a measured indicator value will be contained in the ratio X and follows 
from the statistical processing of the laboratory data.

Each time the structure successfully resists a new load level, the distribution function of 
R may be updated to reflect the newly obtained information (Section 2.1). The updated distribu-
tion of R may be written as a multiplication of the ratio X and the load effect produced during 
the last successful load test cycle (R = X EPL). Since the proof load is survived, this indicates R ≥ 
EPL and therefore X = R/EPL ≥ 1. However, this does not imply that the resistance distribution 
is truncated at a fixed value because of the uncertainty in the proof load effect (EPL) (Figure 1). 
The resulting distribution of R does not follow a regular distribution since it follows from the 
multiplication of X and EPL, of which the latter is also a product of other random variables. 
The resistance R may be expanded and inserted into Equations (1), giving:

where θE,PL is the model uncertainty applicable for calculating the load effect from the applied 
proof load, and QPL is the load effect following from the applied load in the test. Because of 
the controlled conditions during the test, the uncertainty in calculating the load effect from 
the proof load is expected to be smaller than for the other loads. The calculation model and 
method will likely be the same for both; thus, a strong correlation exists between θE,PL and θE. 
For simplicity, it may be assumed that they are the same (θE,PL = θE), effectively eliminating 
them from the limit state equation:

Although the permanent loads (GDL + GSDL) appear in both the resistance and the load 
effect, they cannot be eliminated from the equation. Yet, it can be difficult to estimate them 
when the original drawings and calculations are lost or the structure has been modified. It is 
seen that the permanent load terms lead to an increase in the resistance since X ≥ 1 must be 
satisfied to survive the proof load. Conservatively, the permanent load terms may be removed:

For structures where the permanent loads are relatively small compared to the live load, Equa-
tions (4) results in similar reliability values as Equations (3). It may also be observed that with 
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X = 1, the lower bound approximation is recovered, which is discussed in De Vries et al. (2023b). 
The lower bound approximation forms the basis of the probabilistic background for the proof 
load testing method in the MBE (AASHTO, 2018), as described by Lichtenstein (1993).

2.3  Distribution of the resistance ratio (X)

A relation between indicator values and the resistance ratio, random variable X in Equations 
(2), may be deduced from the laboratory tests. Therefore, the laboratory measurements are 
post-processed to determine the resistance ratio for each load step. The maximum indicator 
value observed up to each load step is used instead of the actual indicator value for each load 
step. This approach mitigates the noise and erratic response in the crack-forming process. When 
specimens have failed the ratio is 1, reflecting that the resistance is at least equal to the current 
load effect but not higher (Figure 1, point 1). Once the ratios Xi from the laboratory test are 
obtained for each chosen indicator value, the data points may be analysed using the established 
knowledge of sample testing, e.g. Annex D of EN 1990 (CEN, 2019). Student’s t-distribution is 
used to account for the typically small number of tests (Gosset, 1908). Of use here is the 
so-called prediction distribution for an assumed normally distributed population (Geisser, 1993):

where Xn + 1 is the next to-be-observed value, M is the sample mean, S is the sample standard 
deviation, n is the number of samples and T follows Student’s t-distribution with ν = n − 1 
degrees of freedom. The sample mean and standard deviation, including Bessel’s correction 
(n − 1), are obtained through the well-known statistical formulas (Wasserman, 2004). Because 
the prediction distribution of X is used, the actual variation is more significant than solely 
indicated by the standard deviation.

3 APPLICATION TO A REINFORCED CONCRETE SLAB BRIDGE

3.1  Description

To demonstrate how the proposed method would be applied in practice, the structural reliabil-
ity of a reinforced concrete slab bridge is considered. The bridge is fictional but characterises 
typical Dutch slab bridges without shear reinforcement. Deep beams representing strips of 
such a slab were tested in the laboratory to determine the shear resistance (Figure 2). Because 
the bridge is fictional and no actual load test was performed, a load test result must be 
assumed. In reality, indicator values following from actual measurements would be used.

Figure 2.  Reinforced concrete slab bridge considered in the case study, with (a) its schematic drawing 
and (b) a picture of one of the concrete strips tested to failure.
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To simplify calculations only the first lane is considered, whilst in reality reinforced concrete 
slab bridges will typically have multiple lanes. The traffic load effect of the first lane is based 
on Weigh-In-Motion (WIM) measurements (FHWA, 2018) obtained from Dutch highways. 
The load effect in this case study is the shear force occurring at 1 m from the support (E = V). 
Loads applied at a smaller distance from the support are expected to travel directly to the sup-
port. For a span length of 9 m, the annual mean shear force is mQ = 390 kN with a coefficient 
of variation VQ = 0.035 (De Vries et al., 2023b).

The laboratory measurements used in this case study were initially designed to study the 
shear behaviour of reinforced concrete beams without shear reinforcement (Yang et al., 2021). 
The H-variants (H121, H401, H403, H404, H602) were used from the test series. These strips, 
or deep beams, had a height of 1.2 m and a width of 0.3 m. The simply supported beams were 
loaded by a single jack close to the middle of the span and resulted in shear failure close to the 
support. Given the assumed lane width, there are 3.6/0.3 = 12 strips within the considered 
slab.

3.2  Laboratory data post-processing

During the tests, Digital Image Correlation (DIC) was used to identify and follow the forma-
tion of cracks in the concrete (Jones & Iadicola, 2018). From the DIC results, the nominal 
crack width may be obtained for many locations (Gehri et al., 2020). The locations may be 
chosen arbitrarily, but DIC data must be available over the virtual gauge length. The gauge 
length that delivered the best results in this study was 0.8d, where d is the distance from the 
top of the beam to the middle of the longitudinal reinforcement. For each chosen location, the 
nominal crack width is calculated at the reinforcement level. In order to assign greater mean-
ing to cracks forming near the supports, a weighted crack width is introduced where the nom-
inal crack width is multiplied by the factor Vd/M where V and M are the shear force and 
bending moment at the considered location, respectively. Over the entire length of the beam, 
the maximum nominal crack width (wmax) and maximum weighted nominal crack width may 
be determined (wmax,w). The corresponding resistance ratio X = V/Vu for both indicators was 
plotted for each load step (Figure 3).

The data was further post-processed to yield the sample mean and standard deviation for 
each considered indicator value (Figure 4). It is observed that the standard deviation of the 
data is smaller with the maximum weighted nominal crack width indicator (wmax,w), making it 
the best choice for further modelling. The data points with wmax,w < 0.08 mm result in very 
high mean and standard deviation values. This could result from noise in the DIC measure-
ments for very small displacements. In general, the mean and standard deviation show some 
erratic behaviour considering different values of the indicator wmax,w. Therefore, an analytical 
model was fit to the result, which also describes the convergence towards reaching the true 
resistance with higher loads (Figure 4):

A direct consequence of Equations (6a) and (6b), is that for wmax,w ≥ 1 mm the method pro-
vides no benefit over proof load testing using the lower bound approximation (De Vries et al., 
2023b).

3.3  Assumed load testing results

Section 3.1 describes the bridge under consideration as hypothetical and has not been tested in 
real life. However, an indication of reasonable indicator values is desired. The characteristic value 
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of the traffic load multiplied by a factor serves as a helpful target load. Given the target loads, the 
laboratory test may provide reasonable indicator values (Table 1). When applied in practice, this 
step would not be necessary. The sensitivity to this input is described in the discussion (Section 5). 
It should be noted that the structure outside will already have the superimposed dead load (GSDL) 
included in the measurements – i.e. the starting point of the measurements is different. Therefore, 
the values in Table 1 for the case GDL + GSDL should be added to the values obtained during field 
testing to relate them to the laboratory experiments.

Figure 3.  Shear resistance ratio versus (a) the maximum nominal crack width and (b) the maximum 
weighted nominal crack width.

Figure 4.  Mean and standard deviation of the shear resistance ratio versus (a) the maximum nominal 
crack width and (b) the maximum weighted nominal crack width.

Table 1. Expected indicator readings given proof load.

Proof load 
test

Loadsacting on 
structure

Expected shear force 
[kN]

Maximum crack width, weighted by pos-
ition (wmax,w) [mm]

H121 H401 H403 H404 H602 Average

- GDL 30.0 0 0 0 0 0 0
- GDL + GSDL 34.9 0.004 0.002 0.002 0.002 0.010 0.004
1 G + Qk 73.0 0.069 0.058 0.019 0.010 0.016 0.034
2 G + 1.2Qk 80.6 0.069 0.058 0.023 0.010 0.029 0.038
3 G + 1.4Qk 88.2 0.069 0.071 0.026 0.016 0.058 0.048
4 G + 1.6Qk 95.9 0.069 0.135 0.158 0.032 0.087 0.096
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4 RESULTS

4.1  Probabilistic model

In this section, the case study of Section 3 is continued with reliability calculations following 
the method outlined in Section 2. Given the average indicator values from Table 1, the mean 
and standard deviation of the resistance ratio may be obtained from Equations (6a) and (6b), 
see Table 2. For each proof load test, a reliability analysis is performed using the random vari-
ables specified in Table 3. The mean and coefficient of variation are based on the Probabilistic 
Model Code (JCSS, 2015) and fib Bulletin 80 (fib, 2016). A small coefficient of variation 
(0.02) is used for model uncertainty of the resistance because the laboratory tests are assumed 
to be representative.

4.2  Reliability calculation results

The annual reliability in the first year after the proof load test is calculated using the 
various limit state functions presented in Section 2 (assuming survival). In addition, the 
reliability is calculated using the lower bound approach that ignores permanent loads 
and additional resistance (i.e. X = 1 and θR = 1). The calculations were performed with 
SORM (Hohenbichler et al., 1987), which approximately accounts for the non-linearity 
encountered in the limit state functions (Table 4). The results show that the calculated 
reliability indices are much higher compared to the lower bound approach. This reliabil-
ity gain is the result of taking into account the measurements during proof load testing 
in the analysis (information source 2 in Figure 1). Even when the permanent loads are 
excluded from the limit state function, a target load of about 1.2Qk,WIM would still be 
sufficient to satisfy annual β = 4 requirement for CC3 (Steenbergen & Vrouwenvelder, 
2010).

Table 2. Mean and standard deviation of the resistance ratio for each proof load test.

Proof 
load test

Mean PLeffect, 
strip (mQ,PL,s) [kN]

Mean PLeffect, 
lane (mQ,PL) [kN]

Indicator value  
(wmax,w) [mm]

Mean ratio  
(mVu/V) [-]

Std. deviation 
ratio (sVu/V) [-]

1 (Qk) 38.1 457.4 0.034 2.07 0.290
2 (1.2Qk) 45.7 548.8 0.038 2.06 0.289
3 (1.4Qk) 53.3 640.3 0.048 2.03 0.286
4 (1.6Qk) 61.0 731.8 0.096 1.91 0.271

Table 3. Overview of random variables in the limit state function.

Var. Description Distribution Mean COV [-]

θR Model uncertainty of the resistance Lognormal 1 0.02
X Resistance to current load effect ratio Student’s t,  

Equations (5)
(varies) (varies)

GDL Dead load effect Normal 356 kN 0.05
GSDL Superimposed dead load effect Normal 59.3 kN 0.1
C0Q Time-invariant part of traffic load effect, 

including traffic trend
Lognormal 1.1 0.1

Q Traffic load effect, annual maximum Gumbel 390 kN 0.035
QPL Load effect achieved by proof load Normal (varies) 0.02
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5 DISCUSSION

In the laboratory data post-processing in Section 3.2, the model does not fit the data well 
for wmax,w < 0.08 mm. In the reliability calculations that follow, this region of minuscule 
cracks is used in the resistance prediction. Therefore, it may be questioned if the results can 
be trusted. Fortunately, as displayed in Figure 3, the data shows very high resistance ratios 
in this region with positive distribution skew. However, careful consideration must be made 
with regard to the similarity to the in-situ tested structure and the lab results. In the case 
study, it is assumed that the response of the bridge slab is similar to the response of the 
strips tested in the laboratory – presumably a conservative assumption, but it should still be 
validated.

An average response based on the laboratory measurements was assumed for the reliability 
calculations. In reality, the structure that is being tested may give a very different response 
and different measurement data post-processing may be necessary. When its strength is larger 
than expected and its condition is excellent, smaller indicator values are expected. When the 
assumed indicator values are divided by 10, the annual reliability indices increase by approxi-
mately 0.2. For structures that immediately display large crack widths under small loads, 
lower reliability is expected. When the indicator values are multiplied by 10, the reliability 
indices decrease by approximately 0.5 to 1. However, the reliability indices still remain higher 
than when calculated using the lower bound approach.

6 CONCLUSIONS

The proposed reliability updating method involves updating the resistance distribution using 
two sources of information: (1) the survival of the applied load in the proof load test and (2) 
the indicator value observed during the test, leading to an updated resistance distribution. 
A probabilistic model for updating the resistance distribution was presented, considering 
model uncertainties and permanent loads. The application of the proposed method was dem-
onstrated through a case study of a reinforced concrete slab bridge. Laboratory data post- 
processing, including the consideration of weighted crack widths, provided insight into the 
resistance ratios considering different target loads. Reliability calculations based on the pro-
posed method indicated a significant improvement compared to the lower bound approach, 
highlighting the importance of incorporating measured data.

The study addresses potential difficulties, particularly in fitting the model to data for small 
crack widths. It also recognizes the variability in real-world responses compared to assumed 
average values. Despite these considerations, the results consistently showed higher reliability 
indices than conservative estimates based on live loads alone. Real-world validation is recom-
mended to enhance the robustness of the proposed approach. The next steps in the research 
will consider Bayesian approaches to include prior information in addition to the measure-
ment data. Modelling choices and the application of the method with other types of resistance 
modes and measurements will be further reviewed.

Table 4. Mean and standard deviation of the resistance ratio for each proof load test.

Characteristic load 
effect, WIM (Qk,WIM) 
[kN]

Characteristic load 
effect, LM1 (Qk,LM1) 
[kN]

Annual reliability (β) [-]

Incl. permanent 
loads, Equations 
(3)

Excl. permanent 
loads, Equations 
(4)

Lower 
bound 
approach

1 0.78 3.21 3.02 0.70
1.2 0.93 4.11 4.02 2.31
1.4 1.09 5.03 5.00 3.66
1.6 1.24 5.86 5.85 4.78
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