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Density adaptive and geometry aware registration of 
TLS point clouds based on Coherent Point Drift 

Yufu Zang*1,2, Roderik Lindenbergh#2, Bisheng Yang#3, Haiyan Guan#1 

Abstract—Probabilistic registration algorithms (e.g. Coherent 
Point Drift, CPD) provide effective solutions for point cloud 
alignment. However, using the original CPD algorithm for 
automatic registration of Terrestrial Laser Scanner (TLS) point 
clouds is highly challenging because of density variations caused 
by scanning acquisition geometry. In this paper, we propose a 
new global registration method introducing the use of the CPD 
framework for TLS point clouds. We first consider the 
measurement geometry and the intrinsic characteristics of the 
scene to simplify points. In addition to the Euclidean distance, we 
then incorporate geometric information as well as structural 
constraints in the probabilistic model to optimize the so-called 
matching probability matrix. Among the structural constraints, 
we use a spectral graph to measure the structural similarity 
between matches at each iteration. The method is tested on three 
datasets collected by different TLS scanners. Experimental 
results demonstrate that the proposed method is robust to 
density variations, and can decrease iterations effectively. The 
average registration errors of the three datasets are 0.05m, 
0.12m, and 0.08m, respectively. It is also shown that our 
registration framework is superior to state-of-the-art methods in 
terms of both registration errors and efficiency. The experiments 
demonstrate the effectiveness and efficiency of the proposed 
probabilistic global registration. 

Index Terms—Coherent Point Drift, density variations, global 
registration, matching probability matrix, structural constraints. 

I. INTRODUCTION

TLS technique has been used in a variety of applications 
including cultural heritage documentation, urban planning, 
terrain deformation monitoring as well as forest biomass 
estimation [1-2]. TLS point cloud registration which aligns 
scans from multiple stations in a common 3D coordinate 
system is critical to the above applications.  

Various registration methods have been explored. 
According to the strategy of correspondence search, existing 
registration methods are categorized into: local and global 
registration methods [3].The proposed approach falls into the 
latter group. 

Local registration methods determine point 
correspondences locally between adjacent stations. It begins 
with a proper initialized alignment and does not account for 
any neighborhood coherency. The Iterative Closest Point (ICP) 
algorithm [4-5] is probably the most well-known local method, 
which seeks the closest points as point correspondence and 
minimizes the sum of squared differences in an iterative way. 
Various ICP variants have also been proposed [6-7]. In 
addition, the Normal Distribution Transform (NDT), the 
Support Vector Registration (SVR) algorithm, and the 
simultaneous localization and mapping (SLAM) algorithms 
have also been introduced for local point cloud registration [8-

10]. Nevertheless, these approaches still rely on sufficient 
initialization or are vulnerable to convergence to local minima, 
which limit their applications in practice. 

Global registration methods regard all points as candidates, 
and determine correspondences globally, which is needed in 
case of a large transformation or when small overlap exists. 
Geometric primitive based methods extract geometric features 
(e.g., key points, straight lines, spatial curves, planes, curved 
surfaces) first, use local descriptors (e.g., spin image, shape 
context, curvature, covariance matrix, FPFH) to describe their 
geometric characteristics, and determine the corresponding 
primitives globally [11-12]. However, these methods rely on 
the accurate extraction of geometric primitives. There is 
another line of work focusing on the matching strategy 
including Random sample consensus (RANSAC) [13], and the 
4-points Congruent Sets (4PCS) algorithm [14].

Motivated by the limitations of existing methods, several
probabilistic registration methods have been explored. The 
CPD algorithm [15] is one of most popular methods because 
of its generality and accuracy [16], which considers 
registration as an estimation problem of probability density. It 
fits Gaussian Mixed Models (GMM) centroids to point clouds 
by maximizing the likelihood of probability. On this basis, 
Wang et al. [17] introduced a new parameter for outlier 
modeling. Peng et al. [18] used shape context to describe local 
geometric information, increasing its robustness. In addition, 
Lawin et al. [19] used hyper-parameters to weigh points to 
incorporate the effect of density variation, which works well 
for small-scale indoor scenes. However, some drawbacks still 
exist. For data with density variations, the registration easily 
converges to a local extremum (as Figure 1 shows), and the 
robustness and efficiency should also be improved. These 
problems become even more challenging when working on 
TLS point clouds, as these always have density variations 
because of the scanning acquisition geometry [20]. 

Figure 1. Two alignment results for TLS point clouds with varying density: (a) 
Correct alignment result; (b) Alignment by state-of-the-art probability method; 

Considering the above limitations, we propose a density 
adaptive CPD algorithm using geometric information and 
structural constraints for TLS point cloud registration. This 
algorithm is based on one reasonable assumption, that 
levelling was performed before scanning, which means that 
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rotations only occur within the horizontal plane between TLS 
stations. This paper has two major contributions. 
(1)We propose an approximately uniform sampling method by
considering the measurement geometry and the intrinsic
characteristics of scene to reduce the influence of density
variations;
(2)In the probability model, we show how to incorporate the
geometric information and structural constraints. The 
structural similarity of each iteration optimizes the matching
probability matrix, improving the robustness and efficiency.

The rest of this letter is organized as: Section Ⅱ introduces 
the approximately uniform simplification, a probabilistic 
registration method considering the geometric constraints, and 
the structural similarity. Section Ⅲ presents the experimental 
results on real datasets. Section Ⅳ concludes this letter. 

II. DENSITY ADAPTIVE PROBABILISTIC 
FRAMEWORK 

Figure 2. Pipeline of the proposed method. 

The pipeline of the proposed registration method is 
sketched in Figure 2. It contains three main components, 
namely: (1) approximately uniform sampling of input point 
clouds; (2) probabilistic registration method based on 
geometric constraints; (3) improvement by static and dynamic 
structural information. The three components are described in 
detail in the following sections. 

A. Approximately Uniform Simplification
The probabilistic registration method takes the sum of

matching probabilities as its objective value, leading to its 
sensitivity to point density variations. To mitigate this 
influence, we propose to apply a sampling algorithm before 
probabilistic registration is performed. 

The algorithm consists of an importance score and an 
iterative strategy to successively reduce points. The 
importance score of each point is calculated by considering its 
local intrinsic characteristics and the measurement geometry. 
First we evaluate the score of each point, eliminate the least 
important points, and update the score of its neighbors. Finally, 
we repeat this procedure until the required number of points is 
obtained. The score wi of each point is calculated as, 
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Here, wg is the weight of the local intrinsic characteristics, and 
wm describes the weight of the measurement geometry. Curi is 
the curvature of point i, densityi is the number of neighbors. 

iR is the distance between point i and the scanner center, in
→

is 

the normal vector of point i, and iox
→

is the direction from point 
i to the scanner center. a and b are weight coefficients used to 
balance these two terms (e.g., a=300.0, b=0.02). To improve 
robustness, we used [21] to select optimal neighbourhood size 
for each point. In addition, we applied a weighting method [22] 
and fitting method [23] to estimate normals and curvatures, 
respectively.  

According to Formula 1, the scores of points in flat and 
densely sampled areas are decreased. Thus, we obtain an 
approximately uniform sampling result, and reduce density 
variations. Besides, during the estimation of normal vectors, 
noise can be detected and suppressed as well. 

B. Probabilistic Registration with Geometric Constraints
According to the CPD algorithm [15], for two point clouds

X and Y, the points from X are regarded as the centroids of 
Gaussian Mixed Models (GMMs), and the points from Y are 
regarded as the points generated by the GMMs. A probability 
is calculated to measure the similarity between two points. Y 
will be aligned with X when the registration probability is 
maximal. To simplify calculations, an objective function is 
formed as: 
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Here, 0 1w≤ ≤ indicates the fraction of noise or outliers. N 
and M are the number of points in X and Y, respectively. P(m) 
is the probability of the m-th GMM 
component, ( | )np x m indicates the probability that point xn 
belongs to the m-th GMM component. To simplify it further, 
an upper bound is estimated to get a new objective function, 
written as: 
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Here, 2σ is the variance of all GMMs, ( )|old
nP m x is the 

posterior probability of the m-th GMM component calculated 
using the previous parameter values. ( )mT y  denotes the 
transform of ym, D is the dimensionality of point (D = 3), 
and PN is the summation of ( )|old

nP m x . 
In Formula 3, to improve the robustness and efficiency of 

matching, we incorporated geometric information and 
structural constraints as discussed in Section C to estimate the 
posterior probability ( )|old

nP m x , written as, 
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Here, ,n mx yq is the matching probability of xn and ym, 

,n mx yg represents the constraints on curvature and direction, 
written as, 
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Here ( )
myT n

→

represents the normal vector of ym transformed by 
the transformation of the current iteration, ,

n mx yc c are the 

curvatures of nx and my , while 1 2,w w are the weights to 
balance the geometric constraints (w1=8.0, w2=-5.0 are 
suggested). After the construction of objective function, 
rotation matrix R and translation vector T are obtained by 
maximizing Formula 3. Based on the transformation of the 
last iteration and the constraint conditions, a new objective 
function is constructed. The above steps are iterated until the 
transformation becomes stable. 

C. Improvement by Static and Dynamic Structures 
Local structural information between neighbourhood points 

is stable and useful to improve correspondences. To quantity it, 
for each point, we calculate the mean value and variance of 
curvature within a certain radius. We regard the similarity of 
this static structure as a prior to update the matching 
probability. Specifically, the matching probability of xn and ym 
in Formula 4 is improved by a term ( , )n ms x y , 
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Here, M and V are the mean value and variance of curvature, 
T1 and T2 are thresholds (T1 = 0.07, T2 = 0.07 are suggested). 
Note that in this formulation, we assign the probability of two 
points to be zero if they have large structural difference to 
improve correspondences. 

Based on the matching result of each iteration, we use the 
spectral graph method proposed in [24] to describe dynamic 
structural information. For efficiency, after each iteration, the 
n (such as: 500) correspondences with highest matching 
probability are taken into consideration. For each scan, we 
construct a Laplacian matrix to describe the topology (i.e., 
directions and distances) between points. After SVD 
decomposition, the structural information is included in the 
matrix U. We select the first k columns of U (e.g., k=20) to 
construct an embedded space Uk. The structure of each point 
is now expressed by each row vector of Uk. For each 
correspondence (e.g., xn, ym) from n selected correspondences, 
the matching probability is improved by the correlation 
coefficient ( , )n md x y between their row vectors 1 kx × and 1 ky × as: 
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T is a threshold (T = 0.5 is suggested).Then the dynamic 
structure of each iteration is recorded, avoiding convergence 
to a local extremum, and decreasing the number of iterations. 

III. EXPERIMENTAL RESULTS AND ANALYSES 
To evaluate performance, the proposed method was 

evaluated on three sets of TLS point clouds and compared to 
other state-of-the-art methods including the original CPD 
algorithm [15], and SC-CPD (shape context based CPD) [18]. 
Experimental datasets are benchmark data from 
kos.informatik.uniosnabrueck.de/3Dscans/ or used control 
targets for validation. TABLE I shows the description of the 
datasets. 

 

A. Simplification Results 

   
(a)Avg. Point Spacing and Std. dev. are: 0.12m, 0.12m, and 0.95m, 0.32m, 

respectively. 

   
(b)Avg. Point Spacing and Std. dev. are: 0.13m, 0.49m, and 3.28m, 1.68m, 

respectively. 
Figure 3. Initial point clouds (blue) and simplification results (green): (a) 

Beach data; (b) Suburb data. 

We conducted the proposed simplification algorithm on the 
datasets, and kept about 10,000 points of each point cloud. 
The simplified results are shown in Figure 3 (here a=10.0, 
b=0.1 are used). The Avg. Point Spacing and Std. dev. of 
initial and simplified point clouds are also provided to show 
the quantitative information of distribution. 

Figure 3 shows that severe density variation exist in the 
initial point clouds. The simplified results and quantitative 
information demonstrate that the simplified points are more 
uniformly distributed, and that density variations have been 
reduced effectively. The red ellipses in Figure 3(a) illustrate 
that points near the scanner are simplified more. This is 
because the measurement geometry wg is considered, 
balancing the matching probabilities of the areas at different 
distances. The blue ellipses in Figure 3(b) show that more 
points are kept in feature rich areas. Because the intrinsic 
characteristics are weighted by wm, the sampled points are 
more descriptive. Compared to the existing methods, we 



incorporate both the measurement geometry and the intrinsic 
characteristics of the scene, making the simplified point 
clouds more suitable for probabilistic registration. 

B. Evaluation of Registration Results 
The registration performance of the three datasets is shown 

in Figure 4 and TABLE II. The registration errors in Figure 4 
are evaluated by the distance between closest points in 
overlapping areas. The registration errors in TABLE Ⅱare 
calculated by control targets or benchmark. Avg. error and 
RMSE indicate the average distance error and mean square 
root between correspondences. “ablation” indicates the 
registration errors of the proposed method without geometric 
constraints (i.e., Formula 5). The experiments are 
implemented in C++ on a computer with 16 GB RAM and an 
Intel Core i7-4850HQ @2.3GHz CPU. 

      
                          (a)Beach                                              (b)Suburb 

 
(c)Benchmark 

 
Figure 4. Registration errors of the three datasets. Different colors represent 

different degrees of registration errors. 

 
 

Figure 4 shows that all three datasets are aligned well, and 
that registration errors are evenly distributed. Figure 4 (b) 
shows much higher errors through. This is because the 
presence of vegetation affects feature estimation and matching 
probabilities. From TABLEⅡ, we can see that the registration 
errors are controlled efficiently. All registration errors are 
about 0.1m, and the RMSE is controlled within 0.1m. 
Compared to the ablation experiments, the proposed method 
outperforms the registration method without geometric 
constraints, demonstrating its robustness and effectiveness. 
These registration results can be improved further by local 
registration (e.g., ICP). In addition, the iterations and runtime 
show its fast convergence (e.g., the number of iterations is 

about 40). This demonstrates the efficiency and robustness of 
the proposed method. 

C. Evaluation of Correspondences Determination 
To show the matching performance of the proposed method 

directly, we select the 200 correspondences of highest 
matching probability for each iteration. Figure 5 shows the 
correspondence determination of the different iterations of the 
Suburb data. 

  
(a)                                                          (b) 

 
(c) 

Figure 5. Correspondences of different iterations: (a) iteration 1, 133 correct 
matches; (b) iteration 10, 193 correct matches; (c) iteration 20, 200 correct 
matches (blue points indicate the left station, the purple points indicate the 

right station, green lines indicate correct matches, while red the mismatches). 

As can be seen in Figure 5, an increasing number of 
correct matches is determined within a few iterations. This is 
because the geometric and structural constraints reject outliers 
efficiently, showing the superiority of matching. Since all 
correspondences directly contribute to the transformation, this 
correspondence determination model used by our method has 
succeeded in pinpointing correct matches in a seemingly un-
structural point cloud. 

D. Comparison to Other Methods  

  
(a)                                                        (b) 

 
(c) 

Figure 6. Comparison to other methods: (a) registration errors; (b) iterations 
for convergence; (c) number of matches at different iterations. 

Since the initial point clouds are too big for CPD and SC-
CPD, we use Geomagic Studio 2012 to uniformly down-



sample the point clouds before applying these methods. Figure 
6 shows the performance of the proposed method compared to 
other methods. The suburb data is used in Figure 6(c). 

Figure 6(a) shows that the proposed method has better 
accuracy compared to the other two methods. Figure 6(b) 
shows that the proposed method requires fewest iterations for 
convergence. This is because the simplification mitigates the 
influence of density variations, and the probabilistic model 
incorporates efficient geometric constraints and structural 
information, improving the performance significantly. Figure 
6(c) shows that the proposed method has higher number of 
correct matches at different iterations, indicating its improved 
performance in correspondence determination. This 
demonstrates the robustness and efficiency of this 
probabilistic method. 

IV. CONCLUSION

In this letter, we propose a global registration method based 
on the CPD framework for TLS point clouds. Three 
components have been introduced to improve the robustness 
and efficiency of the original CPD algorithm. For point cloud 
simplification, the measurement geometry and the intrinsic 
characteristics of the scene are incorporated together to reduce 
the influence of density variation. We incorporated geometric 
information as well as structural constraints in the 
probabilistic model to improve the robustness of matching. A 
spectral graph is used to measure the structure similarity of 
matching points at each iteration. Experiments were 
conducted on three real datasets, showing the effectiveness 
and efficiency of the proposed method. It could also be shown 
that the proposed method significantly outperforms state-of-
the-art methods in terms of alignment accuracy and robustness. 

Although the proposed method has achieved promising 
results, there still space for improvement. For example, the 
features used are sensitive to vegetation as incorrect matches 
may be introduced. A novel and robust descriptor for cluttered 
scenes deserves future research. 
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