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E X E C U T I V E S U M M A R Y

The Dynamic Integrated Model of Climate and the Economy (DICE) of the Nobel
laureate Nordhaus, which can be classified as an Integrated Assessment Models
(IAMs), is aiming to shed light on the cost-benefit of climate mitigation’s. However,
current IAMs are depicted with a wide range of weaknesses [Storm, 2017; Pindyck,
2017; Weyant, 2017]. Next to questionable assumptions of model functions, such as
the damage function, IAMs are inadequate at addressing deeply uncertain param-
eters, such as the equilibrium climate sensitivity (ECS).

Various research has been conducted in addressing these structural and paramet-
ric uncertainties by utilizing stochastic dynamic programming or approximate dy-
namic processing. However, two crucial aspects were not considered in these stud-
ies. First, most researchers utilized optimization to determine the optimal policy
as their decision analytic method for the risk analysis. Yet optimal strategies are
highly sensitive to uncertainties and thus, they lose their prescriptive value in deep
uncertain environment like in the field of climate economics. Therefore, it is better
to consider robust policies in regards to systems with manifold of deep uncertain-
ties. Second, many economist described the deep uncertainties of IAMs model
by a normal distribution, at best by log-normal distribution. However, Weitzman
[2009a] has shown in his Dismal Theorem, that deep “uncertainty in the form of
fat tails is, at least in theory, capable of swamping the outcome of any CBA”. This
research is aimed in overcoming the mentioned issues and thus, the following re-
search question was answered:

Main Research Question

What are the repercussions of fat-tailed distributions over uncertain
parameters on the outcomes and on the robustness of the policy options of

the DICE simulation model?

To address this research question, the field of decision making under (deep) uncer-
tainty offers a methodological framework, namely multi-scenario Many-Objective
Robust Decision Making (MORDM) [Lempert and Collins, 2007; Lempert et al.,
2006; Kwakkel et al., 2016b; Kasprzyk et al., 2013; Watson and Kasprzyk, 2017].
Multi-scenario MORDM does not only facilitate a framework to analyze the reper-
cussion of fat-tailed distributions on the outcome space but also to generate robust
candidate strategies (see Figure 3.5). However, finding a set of robust candidate
strategies requires the evaluation of different policy options against a large ensem-
ble of possible future states of the system. For this purpose, a simulation model is
mandatory. Therefore, this study has reconstructed the DICE optimization model
into a stochastic simulation model, called PyDICE.
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The repercussion of fat-tailed distributions are analyzed through global sensitiv-
ity analysis (GSA), exploratory analysis, statistical analysis and scenario discovery.
The latter two techniques has been applied on Nordhaus optimal policy to fur-
ther underline the devastating effects of deep uncertainties on the outcomes. Since
the PyDICE is a non-linear and relatively fast model, this study has used variance
based GSA to measure the development of sensitivity of outcomes on the identified
uncertainties (see Table 4.3). Exploratory analysis is used to generate a initial under-
standing about the effects of fat-tailed distribution, damage function and the combi-
nation of both on the outcomes of interest (see Table 4.1). This first observations are
further highlighted by a statistical analysis. Lastly, vulnerable scenarios of Nord-
haus optimal policy has been discovered using time series clustering and directed
scenario search technique. In time series clustering, the time series are partitioned
into “appropriate” number of clusters by applying unsupervised machine learn-
ing algorithm on the data set. For each outcome variable, the least “favourable”
clusters has been investigated with the aim to identify vulnerable regions in the un-
certainty space which led to those outcomes. Lastly, robust policy alternatives has
been identified by using multi-objective evolutionary algorithm (MOEA). Further,
the robustness of the identified policies has been evaluated against a large number
of alternative future states in order to determine their robustness by utilizing the
signal-to-noise ratio criterion and the minimax regret criterion.

The results of this study show that the effect of fat-tailed distribution is substantial
as the optimal policy of Nordhaus fails in 328 out of 30000 scenarios, in which the
failure scenarios comprises of either a Cauchy distributed ECS parameter or log-
normal distributed ECS parameter. The high impact of fat-tailed distribution has
also been unanimously found in the exploratory analysis, statistical analysis and
global sensitivity analysis. Moreover, it has also been shown that as fatter the tail
of the distribution becomes, the more severe are the consequences. However, it is
important to note that, that disastrous outcomes are only reached in combination
with damage function similar to Weitzman. Furthermore, this study has shown
that in contrast to Nordhaus optimal policy, the Pareto optimal robust policies set
a lower pure rate of social time preference and a far earlier emission control rate
target between 2060 and 2070. In addition to this point, it has also been observed
that robust policies are located at the edges of the defined policy space. This means
to avoid catastrophic outcomes from deep uncertainties (incl. fat-tailed distribution
and damage functions), policies must be more radical than suggested by Nordhaus,
but much closer to the demands of climate scientists.

Lastly, it can be concluded that as long as scientific ambiguity surrounds parame-
ters such as the equilibrium climate sensitivity parameter or the damage function,
one has to explore all possible alternatives to deduct a robust set of policies. The
implications of using the traditional method for risk and decision analysis (opti-
mization) instead of methods like multi-scenario MORDM (robust optimization) is
that disastrous events in future will be considered in hindsight as “Black Swans”
although they were predictable “Grey Swans” all the time.

iv



C O N T E N T S

I Introduction 1

1 introduction 2

1.1 Integrated Assessment Models . . . . . . . . . . . . . . . 2

1.2 Dynamic Integrated Climate Economic Model . . . . . . 3

1.3 Uncertainty Analysis . . . . . . . . . . . . . . . . . . . . . 4

1.4 Academic Research Gap . . . . . . . . . . . . . . . . . . . 5

2 research definition 7

2.1 Research Question . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Research Methods . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . 9

3 background and context 10

3.1 Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Fat-Tailed Distribution . . . . . . . . . . . . . . . . . . . . 12

3.2.1 Black Swans . . . . . . . . . . . . . . . . . . . . . . 12

3.2.2 Epistemic Crisis . . . . . . . . . . . . . . . . . . . . 12

3.3 Dynamic Integrated Model of Climate and Economic . . 13

3.3.1 Model Structure . . . . . . . . . . . . . . . . . . . . 13

3.3.2 Critics . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Decision Making under Deep Uncertainty . . . . . . . . . 21

3.4.1 Optimality vs. Robustness . . . . . . . . . . . . . . 21

3.4.2 Exploratory Modelling and Analysis - Stochastic
Optimization . . . . . . . . . . . . . . . . . . . . . 22

II Methods 25

4 model conceptualization 26

4.1 DICE Simulation Model: PyDICE . . . . . . . . . . . . . . 26

4.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 PyDICE XLRM Structure . . . . . . . . . . . . . . . . . . . 29

4.3.1 “M”: Outcomes . . . . . . . . . . . . . . . . . . . . 30

4.3.2 “L”: Policy Levers . . . . . . . . . . . . . . . . . . . 30

4.3.3 “X”: Uncertainties . . . . . . . . . . . . . . . . . . . 32

4.3.4 “R”: Relations . . . . . . . . . . . . . . . . . . . . . 36

v



CONTENTS vi

5 open exploration 37

5.1 Sampling Techniques . . . . . . . . . . . . . . . . . . . . . 37

5.2 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . 38

5.3 Global Sensitivity Analysis . . . . . . . . . . . . . . . . . 39

6 scenario discovery 42

6.1 PRIM & CART . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2 Time Series Clustering . . . . . . . . . . . . . . . . . . . . 43

6.3 Directed Scenario Search . . . . . . . . . . . . . . . . . . . 45

6.4 Scenario Selection . . . . . . . . . . . . . . . . . . . . . . . 46

7 policy discovery 48

7.1 Directed Policy Search . . . . . . . . . . . . . . . . . . . . 48

7.1.1 Multi-objective evolutionary algorithms . . . . . . 48

7.1.2 Pareto-based MOEA: ε-NSGA-II . . . . . . . . . . 49

7.2 Uncertainty Analysis . . . . . . . . . . . . . . . . . . . . . 50

III Results 51

8 open exploration 52

8.1 Initial Exploration . . . . . . . . . . . . . . . . . . . . . . . 52

8.2 Global Sensitivity Analysis . . . . . . . . . . . . . . . . . 54

9 analysis of nordhaus optimal policy 59

9.1 Initial Exploration . . . . . . . . . . . . . . . . . . . . . . . 59

9.2 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . 66

9.2.1 Effect of Fat-Tailed ECS Parameter . . . . . . . . . 66

9.2.2 Effect of Damage Function . . . . . . . . . . . . . . 67

9.2.3 Effect of Damage Function and Fat-Tailed ECS
Parameter in Combination . . . . . . . . . . . . . . 68

9.3 Scenario Discovery . . . . . . . . . . . . . . . . . . . . . . 71

9.3.1 Time Series Clustering . . . . . . . . . . . . . . . . 71

9.3.2 Directed Scenario Search . . . . . . . . . . . . . . . 77

10 policy discovery 79

10.1 Scenario Selection . . . . . . . . . . . . . . . . . . . . . . . 79

10.2 Directed Policy Search . . . . . . . . . . . . . . . . . . . . 80

10.3 Uncertainty Analysis . . . . . . . . . . . . . . . . . . . . . 82

IV Discussion 87

11 conclusion 88

11.1 Revisiting the Sub-Research Questions . . . . . . . . . . . 88

11.2 Answering the Main Research Questions . . . . . . . . . 93

12 debate 95

12.1 Policy Advice . . . . . . . . . . . . . . . . . . . . . . . . . 95

12.2 Salvation of Integrated Assessment Models . . . . . . . . 96

12.3 Unbiased Biased Choices . . . . . . . . . . . . . . . . . . . 99

13 future avenues 101



CONTENTS vii

Appendices 111

a verification 112

b open exploration 115

c global sensitivity analysis 119

d statistical analysis 126

e uncertainty analysis 133



L I S T O F F I G U R E S

Figure 3.1 Structure of the DICE Model described in an
aggregated hybrid Casual Loop Diagram. . . . . 13

Figure 3.2 Estimates of the probability distribution for cli-
mate sensitivity in degrees Celsius [Heal and
Millner, 2014]. . . . . . . . . . . . . . . . . . . . . 19

Figure 3.3 The variety of different damage functions which
can be found in climate economics literature’s . 20

Figure 3.4 The XLRM framework adopted from Kwakkel
[2017]. . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 3.5 Multi-Scenario MORDM Process adopted from
Bartholomew [2018] . . . . . . . . . . . . . . . . 23

Figure 4.1 Comparison between PyDICE and DICE. Left
panel: Emissions control rate; Right panel: Sav-
ings rate. . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 4.2 Comparison between PyDICE and DICE with
the optimized outcome of Nordhaus optimal
policy for the parameter control rate t and sav-
ings rate srt. . . . . . . . . . . . . . . . . . . . . . 28

Figure 4.3 Comparison between PyDICE and DICE with
the integrated functions for emission control rate
4.2 and savings rate 4.2. . . . . . . . . . . . . . . . 29

Figure 4.4 The damage functions of the PyDICE model.
For completeness, the algebraic damage func-
tion Newbold and Daigneault is illustrated. . . . 35

Figure 5.1 Sampling Techniques [Buchheit et al., 2019] . . . 37

Figure 5.2 Visualization examples in statistical analysis. a):
Boxenplot; b): Pairplot. . . . . . . . . . . . . . . . 38

Figure 5.3 GSA decision tree. . . . . . . . . . . . . . . . . . . 41

Figure 6.1 Scenario Discovery using directed search over
uncertainties and times series clustering. . . . . . 45

Figure 7.1 An illustrative example of epsilon dominance
[Woodruff and Herman, 2013]. . . . . . . . . . . 49

Figure 8.1 Time series plots and boxenplots over every out-
comes of interests. . . . . . . . . . . . . . . . . . . 53

Figure 8.2 Sobol indices for the outcome atmospheric tem-
perature: Each cell illustrates the (global) sen-
sitivity of the uncertainties (rows) on the out-
come variable for the years 2050, 2100, 2150,
2200, 2300 (columns). . . . . . . . . . . . . . . . . 55

Figure 8.3 Sobol indices for the outcome damages: Each
cell illustrates the (global) sensitivity of the un-
certainties (rows) on the outcome variable for
the years 2050, 2100, 2150, 2200, 2300 (columns). 56

viii



LIST OF FIGURES ix

Figure 8.4 Sobol indices for the outcome total output: Each
cell illustrates the (global) sensitivity of the un-
certainties (rows) on the outcome variable for
the years 2050, 2100, 2150, 2200, 2300 (columns). 57

Figure 8.5 Sobol Indices for the outcome utility: Each cell
illustrates the (global) sensitivity of the uncer-
tainties (rows) on the outcome variable for the
years 2050, 2100, 2150, 2200, 2300 (columns) . . 57

Figure 9.1 For the year 2050 (a) and 2300 (b), pair plot over
the outcome variable is presented. A third di-
mension is added to the pair plot by colouring
each point based on the utilized distribution
type for the ECS parameter. Besides the cells in
the diagonal axis of the pair plot (which illus-
trates the distribution of each outcome), each
cell illustrates a scatter plot of two different out-
comes of interest. . . . . . . . . . . . . . . . . . . 60

Figure 9.2 For the year 2050 (a) and 2300 (b), pair plot over
the outcome variable is presented. A third di-
mension is added to the pair plot by colouring
each point based on the damage function. Be-
sides the cells in the diagonal axis of the pair
plot (which illustrates the distribution of each
outcome), each cell illustrates a scatter plot of
two different outcomes of interest. . . . . . . . . 62

Figure 9.3 For the year 2050 (a) and 2300 (b), pair plot over
the outcome variable is presented. A third di-
mension is added to the pair plot by colouring
each point based on the combination of dam-
age function and the distribution type. Besides
the cells in the diagonal axis of the pair plot
(which illustrates the distribution of each out-
come), each cell illustrates a scatter plot of two
different outcomes of interest. . . . . . . . . . . 64

Figure 9.4 Distributions of the simulation outcomes for the
three ECS distribution functions at the time points
2050, 2100, 2150, 2200 and 2300 are illustrated
in boxenplots. . . . . . . . . . . . . . . . . . . . . 66

Figure 9.5 Distributions of the simulation outcomes for the
three damage functions at the time points 2050,
2100, 2150, 2200 and 2300 are illustrated in box-
enplots. . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 9.6 Distributions of the simulation outcomes for the
nine different combinations between the three
damage functions and the three ECS distribu-
tion types at the time points 2050, 2100, 2150,
2200 and 2300 are illustrated in boxenplots. . . . 69

Figure 9.7 The average silhouette widths of CID-generated
for k amount of clusters (k = [2, 13]). . . . . . . . 71



LIST OF FIGURES x

Figure 9.8 For the outcome atmospheric temperature: a)
Time Series Clustering; b) Input space of the
undesired cluster. . . . . . . . . . . . . . . . . . . 72

Figure 9.9 Clustered space of the outcome damages: a)
Time Series Clustering; b) Input space of the
undesired cluster. . . . . . . . . . . . . . . . . . . 74

Figure 9.10 For the outcome total output: a) Time Series
Clustering; b) Input space of the undesired clus-
ter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 9.11 For the outcome cumulative discounted utility:
a) Time Series Clustering; b) Input space of the
undesired cluster. . . . . . . . . . . . . . . . . . . 76

Figure 9.12 Uncertainty space of the worst case scenarios
from the directed scenario search. . . . . . . . . 77

Figure 10.1 Results of the scenario selection algorithm il-
lustrating the K=4 maximum diverse scenarios
(coloured in yellow, green, blue, purple) from
N=490 policy relevant scenarios (light grey). . . 80

Figure 10.2 Epsilon progress for each maximum identified
scenarios. . . . . . . . . . . . . . . . . . . . . . . 81

Figure 10.3 Candidate strategies generated for the a) sce-
nario 102, b) scenario 354, c) scenario 467, d)
scenario 473. . . . . . . . . . . . . . . . . . . . . . 81

Figure 10.4 The 10 most robust polices after applying the
SNR criterion. . . . . . . . . . . . . . . . . . . . . 83

Figure 10.5 Comparison of the SNR policies to Nordhaus
optimal policy. . . . . . . . . . . . . . . . . . . . . 83

Figure 10.6 The 10 most robust polices after applying the
minimax regret criterion. . . . . . . . . . . . . . 84

Figure 10.7 Comparison of the MiniMax policies to Nord-
haus optimal policy. . . . . . . . . . . . . . . . . . 85

Figure B.1 For the years 2050(a),2100(b),2150(c),2200(d) and
2300(e), pair plot over the outcome variable is
presented with the third dimension describing
ECS distribution types. . . . . . . . . . . . . . . . 116

Figure B.2 For the years 2050(a),2100(b),2150(c),2200(d) and
2300(e), pair plot over the outcome variable is
presented with the third dimension describing
the damage functions. . . . . . . . . . . . . . . . . 117

Figure B.3 For the years 2050(a),2100(b),2150(c),2200(d) and
2300(e), pair plot over the outcome variable is
presented with the third dimension describing
the combination of damage function and ECS
distribution . . . . . . . . . . . . . . . . . . . . . . 118

Figure C.1 Results of the global sensitivity analysis of the
uncertainties on the outcome atmospheric tem-
perature at the time points 2050(a), 2100(b), 2150(c),
2200(d) and 2300(e) (with confidence intervals). . 120



LIST OF FIGURES xi

Figure C.2 Results of the global sensitivity analysis with
confidence intervals of the uncertainties on the
the outcome damage at the time points 2050(a),
2100(b), 2150(c), 2200(d) and 2300(e) (with con-
fidence intervals). . . . . . . . . . . . . . . . . . . 121

Figure C.3 Results of the global sensitivity analysis of the
uncertainties on the the total output at the time
points 2050(a), 2100(b), 2150(c), 2200(d) and 2300(e)
(with confidence intervals). . . . . . . . . . . . . . 122

Figure C.4 Results of the global sensitivity analysis of the
uncertainties on the outcome utility at the time
points 2050(a), 2100(b), 2150(c), 2200(d) and 2300(e)
(with confidence intervals). . . . . . . . . . . . . . 123

Figure C.5 Results of the global sensitivity analysis of the
levers on the outcomes atmospheric tempera-
ture(a), damages(b), total output(c), and util-
ity(d). . . . . . . . . . . . . . . . . . . . . . . . . . 125

Figure E.1 The output space of the ten most robust polices
according to the SNR criterion . . . . . . . . . . . 134

Figure E.2 The output space of the ten most robust polices
according to the maximum regret criterion . . . 135



L I S T O F TA B L E S

Table 3.1 Five Levels of Uncertainty (adopted from Walker
et al. [2013]) . . . . . . . . . . . . . . . . . . . . . 11

Table 4.1 Outcomes of Interest. . . . . . . . . . . . . . . . . 30

Table 4.2 Policy Levers. . . . . . . . . . . . . . . . . . . . . 31

Table 4.3 Deep Uncertainties. . . . . . . . . . . . . . . . . . 32

Table 4.4 Equilibrium Climate Sensitivity estimation of
the IPCC AR5 and [Rogelj et al., 2012]. . . . . . . 34

Table 4.5 Statistical Sizes of the Equilibrium Climate Sen-
sitivity Distributions. . . . . . . . . . . . . . . . . 35

Table 9.1 Nordhaus Optimal Policy in PyDICE parameters 59

Table 9.2 Number of chosen clusters for the outcome pa-
rameter . . . . . . . . . . . . . . . . . . . . . . . . 72

Table 10.1 Selected scenario based on diversity and policy
relevance for alternative policy determination. . 79

Table A.1 Comparison of the PyDICE and the DICE on
the parameters emission control rate, per pe-
riod utility, emission, atmospheric temperature,
damage and total output with the optimized
outcome of Nordhaus optimal policy for the pa-
rameter control rate t and savings rate srt . . . . 113

Table A.2 Comparison of the PyDICE and the DICE on
the parameters emission control rate, per pe-
riod utility, emission, atmospheric temperature,
damage and total output with the integrated
functions (4.1) and (4.2) for emission control
rate 4.2 and savings rate 4.2 . . . . . . . . . . . . 114

Table D.1 Descriptive statistics of the simulation outcomes
for the three ECS distribution functions at the
time points 2050, 2100, 2150, 2200 and 2300. . . . 127

Table D.2 Descriptive statistics of the simulation outcomes
for the three damage function at the time points
2050, 2100, 2150, 2200 and 2300. . . . . . . . . . . 128

Table D.3 Descriptive statistics of the outcome atmospheric
temperature for the nine different combinations
between the three damage functions and the
three ECS distribution functions at the time points
2050, 2100, 2150, 2200 and 2300. . . . . . . . . . . 129

Table D.4 Descriptive statistics of the outcome damages
for the nine different combinations between the
three damage functions and the three ECS dis-
tribution functions at the time points 2050, 2100,
2150, 2200 and 2300. . . . . . . . . . . . . . . . . . 130

xii



LIST OF TABLES xiii

Table D.5 Descriptive statistics of the outcome total out-
put for the nine different combinations between
the three damage functions and the three ECS
distribution functions at the time points 2050,
2100, 2150, 2200 and 2300. . . . . . . . . . . . . . 131

Table D.6 Descriptive statistics of the outcome utility for
the nine different combinations between the three
damage functions and the three ECS distribu-
tion functions at the time points 2050, 2100, 2150,
2200 and 2300. . . . . . . . . . . . . . . . . . . . . 132



L I S T O F A LG O R I T H M S

6.1 Complexity-Invariant Distant (CID) measure for time se-
ries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

xiv





Part I

Introduction

“Economists set themselves too easy, too useless a task, if in tempestuous seasons
they can only tell us, that when the storm is long past, the ocean is flat again.” -

John Maynard Keynes
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1 I N T R O D U C T I O N

In October 2018, the IPCC [2018] has released a landmark report which emphasized
that the world community has only 12 years to keep the global warming at a max-
imum of 1.5◦C. Even a half-degree difference would mean the eradication of our
coral rifts. This would increase the pressure on the Arctic sheets and thus would
accelerate global warming. These predictions became truly real by the fact that the
record-breaking summer of 2019 led to an increased ice sheet melt and thaw lakes
equal to the worst recorded melt year in 2012 [Borunda, 2019]. Furthermore, the
2019 heatwave is different from the heatwave in 2012 as it has occurred in the ab-
sence of El Niño. An international consortium of climate scientist concluded that the
2019 heatwave would have been extremely unlikely without human-caused global
warming, with a chance of only once in a thousand years Vautard et al. [2019].
To make the matter worse, climatologists predict that these weather patterns will
occur almost every summer by 2050 [Borunda, 2019]. As has been seen with the ex-
treme wildfire in Siberia due to the 2019 heatwave, human-induced global warming
increases substantially the risk of natural catastrophes like droughts, wildfires and
floods all around the world. According to a variety of sources, including the United
Nations Office for Disaster Risk Reduction (UNISDR) and big insurance companies
such as the Munich RE, the losses from natural catastrophes amounted to US$ 334bn
just in 2017 [United Nations, 2018; Straub, 2018]. Losses of this magnitude lead to
the question of common sense: Why has the international community not invested
yet in climate mitigation to prevent future massive economic losses?

1.1 integrated assessment models
The calculation of the cost-benefits of large-scale preventative investment demands
models capable of capturing the complex interaction between economy, climate sys-
tem and earth system. Conventionally, these models are captured under the umbrella
term “Integrated Assessment Model” (IAM). IAMs can be distinguished between sim-
ple IAMs and detailed IAMs. Whereas simple IAMs estimate mitigation costs and
future climate damages based on relatively simple assumptions, complex IAMs com-
prises complete energy system models, land use models as well as detailed popula-
tion models. Although the structure and the transparency of the assumptions un-
derlying the IAM have been challenged, IAMs are an essential tool to support the
decision-making of policy makers [Pachauri and Mayer, 2014; Metcalf and Stock,
2015; Weyant, 2017].

2
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Critics have attributed a wide range of weaknesses to IAMs. Former co-chair of
the Intergovernmental Panel on Climate Change (IPCC) working group and current
senior advisor of the European Climate Foundation (ECF), Dr. Bert Metz, argues
while IAMS “can paint a reasonable picture of what the future would look like. . .
they are based on assumptions. So, the strength of that picture depends on the
strength of your assumptions.” [Carbon Brief, 2018]. Moreover, Dr. Céline Guiv-
arch, senior researcher at Centre International de Recherche sur l’Environnement et
le Développement (CIRED), states accurately that “fundamentally, the issue of cli-
mate change is a question of decisions under deep uncertainty, which we have to
accept and embrace. We have to make decisions that are robust against uncertainty”
[Carbon Brief, 2018]. In contrast, IAMs often adopt deterministic estimates about
variety of deeply uncertain parameters which results often in policy proposals with
no/little action. Although some structural as well as parametric uncertainties will be
outside of the realm of our expectation, a robust decision under uncertainty requires
the assessment of all plausible scenarios [Walker et al., 2013].

1.2 dynamic integrated climate economic model
This also applies to the family of models of the Nobel Prize winner Dr. William Nord-
haus, the Dynamic Integrated Model of Climate and the Economy (DICE)/ Regional
Integrated Model of Climate and the Economy (RICE) [Nordhaus, 2008a]. Whereas
the DICE model takes a global perspective, the RICE model is grouped into 12 regions.
The DICE is mainly utilized to estimate the Social Cost of Carbon (SCC). The SCC is
“the cumulative economic impact of the global warming caused by (or attributed
to) each tonne of the pollutant sent into the atmosphere” [Nature, 2018]. Nordhaus
DICE model is suggesting that the optimal pathway1 of the carbon price ascends from
$21.2/t CO2 in 2020 to about $51.5/t CO2 in 2050 [Nordhaus, 2014]. However, this
optimum is reached with an increase of the global mean temperature around 3.5◦C
above pre-industrial levels [Nordhaus, 2014]. It conflicts with the prevailing consen-
sus among climate scientist that the increase in global mean temperature has to be
kept below 1.5◦C to 2◦C [IPCC, 2014, 2018]. However, this has the consequence
that policy-makers, such as the Obama administration [Bell and Callan, 2011], line-
up behind the results of the DICE model, as it gives them the “scientific” evidence
that government intervention to limit the mean temperature to already 2.5◦C would
make them - in the context of economic growth - worse off [Nordhaus, 2014].

Further, recent literature argues that the DICE model includes improbable assump-
tions on climate damage functions, economic growth and climate risks which does
not represent the possibility of a catastrophic climate outcome. IAMs ignore the non-
zero probability of calamitous warming. This lead to a distorted picture of the cost-
benefit estimation [Weitzman, 2009a, 2011; Pindyck, 2017; Millner, 2013; Heal and
Millner, 2014; Weyant, 2014; Rosen and Guenther, 2015; Moore and Diaz, 2015].

1 The optimal pathway is a climate policy scenario, that optimizes the time path of emission reduc-
tions and investment.
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However, various researchers from different fields made attempts to adjust the DICE
model of Nordhaus. For instance, Weitzman [2009a] has proposed an alternative
climate damage function that put more emphasis on the climate change impacts
for larger temperature increases. It displays the structural uncertainty of the DICE
model. Moreover, Roe and Baker [2007] argued that the climate sensitivity parame-
ter is deeply uncertain and that the right-hand tail of its distribution is even “fat”.

1.3 uncertainty analysis
The evaluation of such exogenous parameters is generally well fitted for an approach
called uncertainty propagation. In this approach, the optimization model is executed
over many possible parameter combinations. The outcomes of those runs may be
combined in a weighted-average if a probability distribution is identified [Golub et al.,
2014]. This Monte Carlo type of approach is very popular in literature [Nordhaus,
2008a; Dietz, 2011; Ackerman et al., 2010]. However, this approach has its limits
in analyzing endogenous uncertainties such as the damage function or the develop-
ment of technology. The literature has illustrated different alternative approaches
[Shayegh and Thomas, 2015; Chang, 2014; Traeger, 2014; Ackerman et al., 2010].
However, due to computational limitations of linear optimization models, these mod-
els just comprise two-stages and a couple of scenarios. A further approach to include
uncertainties is stochastic dynamic programming [Chang, 2014]. The outcomes of
these approaches show a steady increase in the expected abatement path and thereby
support the claims of climate scientist for stricter climate mitigation policy [Chang,
2014]. Another research covered the uncertainty aspect by using the Approximate
Dynamic Processing for the DICE model [Traeger, 2014]. The approximation model
utilized basic functions to approximate future states on a continuing or a finite hori-
zon. The model was later extended by Shayegh and Thomas [2015]. Their research
aimed at the uncertain property of the climate sensitivity parameter in relation to the
risk of hitting a climate tipping point. Since Shayegh and Thomas [2015] focus on
the result of tipping points, they did not include the “pure” continuous response of
the model to uncertainty in the climate sensitivity parameter.

Furthermore, Wagner and Weitzman [2018] highlighted the importance of concep-
tualizing climate policy from the perspective of risk management. Moreover, they
supported the claim of Tol [2003], that there is a sound logic that the uncertainties
about the shocks of climate change are fat-tailed [Weitzman, 2009a, 2011, 2013].
More specifically, if there is a reasonably large body of empirical evidence for a pa-
rameter, then the best estimate of this distribution might be a normal distribution or
other “thin-tailed” distribution. But then again, in a complex uncertain system such
as in the field of climate economic, sufficient knowledge about certain parameters
are limited. Therefore, Weitzman argues that the best available estimate for param-
eters with a small number of observations are fat-tailed distribution, with relatively
high probabilities of extreme values. However, Nordhaus points out that it is in con-
trast to the axiom of decision-making under uncertainty as it leads theoretically to
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infinite large preventative investment. Weitzman is aware of this and emphasizes
that the “infinite limit in [his] Dismal Theorem is a formal mathematical way of say-
ing that structural uncertainty in the form of fat tails is, at least in theory, capable
of swamping the outcome of any cost-benefit analysis (CBA) that disregards this as-
pect.” [Weitzman, 2009b]. Moreover, Weitzman points out that the worrisome part
of a fat-tailed probability density function (PDF) is not that it is long but rather that
it is fat. Thus, he is more concerned about how fast the probability of a catastrophe
declines relative to the welfare impact.

To overcome the issue raised by Weitzman’s Dismal Theorem, several concepts have
been explored in implementing uncertainties and fat-tailed distributions into IAMs.
For instance, Newbold and Daigneault [2009] impose a lower bound on consumption
whereas Costello et al. [2010] put an upper bound on temperature rise. Furthermore,
Pindyck [2011] places an upper bound on marginal utility. Ikefuji et al. [2014] uti-
lize a bounded utility function instead of the constant relative risk aversion (CRRA)
function. Ackerman et al. [2010] draws a sample from key parameters based on
fat-tail distribution and then simulate the model. Hwang et al. [2014] analyzed the
impacts of tails with the curvature of carbon-tax function according to uncertainty.

1.4 academic research gap
Multiple research was conducted in adopting uncertainties into the DICE model with-
out altering the nature of it as an optimization model. However, Pindyck [2011, 2013,
2017], Heal and Millner [2014], and Boyce [2017] have argued that Integrated As-
sessment Models such as the DICE/RICE model are not accurate enough to be used
for predictions and calculating the optimal outcomes. They argue that IAMs should
be rather utilized to first analyze the behaviour of the complex and uncertain system
of climate economics, and to derive answers to the “what-if” questions. Furthermore,
Lempert et al. [2006] puts forward that in deep uncertain systems, analyst should
rather search for the most robust solution rather than the optimal solution. There-
fore, the research aims to transform the model from a non-linear optimization model
into a discrete simulation model. By utilizing the simulation model the details of the
current system become less important while the variety of multiple possible paths
becomes more essential. Especially the very presence of deep uncertainties indicates
the need to compare several alternative paths and their end states based on diverse
assumptions. Although, Ackerman et al. [2010], Hwang et al. [2014] and others
have replaced the deterministic assumption of uncertain parameters in IAMs with
a normal distribution or at best with a log-normal distribution to cope with Weitz-
man’s Dismal Theorem, it is still worth conducting research around this topic for
the following reasons. First of all, every reviewed literature so far has used a differ-
ent methodology to integrate and to analyze the effects of the fat-tailed distribution
in Integrated Assessment Models. This demonstrates that there is still a dissent in
the academic community around the subject matter of decision-making under uncer-
tainty. Second, we have seen that within the research community there is dissonance
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about the usefulness of integrating fat-tailed distributions into the DICE/RICE model.
At last, to the best knowledge of the author, there is no work done in understand-
ing the implication of fat-tailed uncertainties on the robustness of climate-economic
policies.



2 R E S E A R C H D E F I N I T I O N

2.1 research question
The detected academic research gap, in Section 1.4, is the driving force behind this
research. This research is proposed as a master thesis for Engineering and Policy
Analysis program at the Delft University of Technology. This master thesis is aimed
at clarifying the distorted picture of Integrated Assessment Models by exploring the
effect of fat-tailed uncertainties on the outcomes of a stochastic simulation version of
the DICE model. Thus, the following research question is raised:

Main Research Question

What are the repercussions of fat-tailed distributions over uncertain
parameters on the outcomes and on the robustness of the policy options of

the DICE simulation model?

2.2 research methods
The following research methods are utilized to enlighten the before defined research
question. In the following, the methods and its sub-research questions are presented:

Earlier, we acknowledged that the DICE model comprises uncertain parameters. As
climate change models are built on numerous uncertainties, the use of a simulation
model over an optimization model is preferred [Pindyck, 2013; Heal and Millner,
2014]. With transforming the linear optimization model into a simulation model,
there is often a significant amount of ambiguity on how to describe the parameters
of the objective function in a simulation model. Since many of the analysis tools
is written in the high-level programming language, Python, the simulation model is
also implemented in Python to ensure an easy integration. In the next research step,
the crucial uncertainties are described by either a uniform distribution, when there
is no prior knowledge about its probability, or a fat-tail distribution using empirical
data from literature, i.e. Ackerman et al. [2010]; Wagner and Weitzman [2018];
Hwang et al. [2013]. After the deep uncertainties and stochastic uncertainties has
been defined, this will be integrated to the DICE model.

SQ1: Which fat-tailed distributions are used to describe the uncertain parameter
and how are they integrated into the DICE simulation model?

7
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Once the model conceptualization, formalization and implementation are done and
the DICE model is extended by the ability to characterize uncertainties by fat-tailed
distribution. At first, the model is explored over large set of scenarios and a dozen
policies to illustrate the different pathways and behaviours of the model outcomes.
Next, a global sensitivity analysis (GSA) is conducted. A GSA allows us to rank how
uncertainties in output are attributed to different sources, i.e. to determine from
where the uncertainty is coming from. In addition, the sensitivity analysis is also run
over policy levers to provide similar insights. The goal of this GSA is to identify the
most important components of the model that will have the greatest effect on the
anticipated outcome. This allows us to focus on the most important uncertainties.
Furthermore, the intent is to provide insight into uncertainty interactions within the
model and if any uncertainties can be selected specifically to mitigate potential ad-
verse consequences [Cariboni et al., 2007]. In this research, a variance-based GSA,
namely the Sobol method, is applied.

SQ2: How sensitive are the outcomes of the DICE simulation model to the
identified uncertainties?

In the next research step, Nordhaus optimal policy is evaluated over different future
states of the world. Hereby, the outcomes are statistically analyzed. At this point, it
is attempted to reach a conclusion about the effect of fat-tails on the outcomes. The
research is limited to determine normatively the rightfulness of Weitzman’s Dismal
Theorem instead of conducting an extended mathematical proof. Subsequently, a sce-
nario discovery in the form of time series clustering is applied on the optimum policy
to illuminate its vulnerabilities. Note that in contrast to optimization modelling, in
which scenarios are selected a-priori, in simulation modelling scenario discovery is
used to reason backwards from intriguing future states to the combinations of un-
certainties and levers that generated those states. Time series clustering is comple-
mented by using Many-Objective Evolutionary Algorithm (MOEA) to identify worst
case scenarios for the optimized policy by Nordhaus. From the identified scenarios
from scenario discovery, a subset of four maximum diverse scenarios are selected as
reference scenarios to discover robust policies. To attain a policy which minimizes
the atmospheric temperature and damages and at the same time maximizes total out-
put and utility, MOEA is used. In summary, this research follows the multi-scenario
many-objective robust decision making (MORDM) framework (see Section 3.4). The
results of the entire process are then reviewed with particular focus on the political
and scientific ramifications of the identified measures. With the mentioned methods,
the following sub-questions can be answered:

SQ3: For which scenarios is the optimal policy of the DICE optimization model
vulnerable?

SQ4: What are the robust set of policies for the DICE simulation model and how
does they differ to optimal policy of the DICE optimization model?
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2.3 thesis structure
This master thesis is structured as follows: In the remainder of Part I, the fundamental
concepts of the thesis of uncertainty, fat-tailed distributions, and decision-making
under deep uncertainty are presented to the reader. Next, the internal dynamics
and the main points of criticism of the DICE model are illustrated in 3. Part II of this
manuscript provides an extensive description and justification of the chosen methods.
It also presents, in 4, the conceptualization of the stochastic simulation version of the
DICE model, PyDICE. The chosen methods and the formalized model are applied in
Part II. Here the system behavior of PyDICE and the robustness of Nordhaus optimal
policy under deep uncertainty is analyzed in detail. In the final chapter of Part III, a
set of robust policies are determined and compared to Nordhaus optimal policy. Part
IV connects the various results from Part III and thereby answers the main research
question of this research. Furthermore, the implications of the findings for decision-
makers, the use of Integrated Assessment Models and future avenues are discussed.



3 B A C KG R O U N D A N D C O N T E X T

In this chapter, background information around the key subjects of the thesis is pre-
sented. This is essential to understand the main body of the thesis. In that regard,
this also illustrates the scope of the thesis. Section 3.1 presents the definition of un-
certainty. Section 3.2 explores the socioeconomic and mathematical concept around
fat-tailed distribution. In Section 3.3, the DICE model is introduced in detail as it
forms the foundation of the thesis. Lastly, Section 3.4 introduces a methodological
framework to cope with deep uncertainties.

3.1 uncertainty
In the earlier section, it was made clear that the climate economic systems are
plagued with various types of uncertainties. However, the literature in the field of
climate economics does not make any effort to differentiate between the uncertain-
ties. As a result, the research community in the field of climate economics lacks the
right methodology or understanding to treat the different types of uncertainties re-
spectively. Therefore, this subsection is dedicated to clarify the term uncertainty and
the various types.

In general, uncertainty describes an epistemic state of incomplete or unknown infor-
mation [uncertainty., nd]. Knight [1921] was the first one to distinguish uncertainty
between: known probabilities, “risk”, and unknown probabilities, “uncertainty”. Sim-
ilar to the Knightian definition, Quade and Carter [1989] introduced also two cate-
gories of uncertainty: stochastic and real. Stochastic uncertainty is akin to Knightian
risk whereas the real uncertainty is akin to Knightian uncertainty. This already shows
that there is fundamental difference between stochasticity and uncertainty.

Later Walker et al. [2013] further distinguished uncertainties into five levels as de-
scribed in Table 3.1. In addition, they have provided a set of methodologies for each
level of uncertainty. The first level can be tackled with a simple sensitivity analysis
of the model parameters. The sensitivity analysis will determine the impact of small
perturbation of the input parameters on the output of the model. The second level
uncertainty are stochastic uncertainties and thus can be addressed by statistical anal-
ysis. The analysis can be done using a forecast with a confidence interval, or several
forecasts with associated probabilities. The third level is addressed via trend-based
scenarios that are based on the different assumptions about the driving forces. The
scenarios are later ranked depending on the perceived likelihood. Note that, no prob-

10
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abilities are assigned to the scenarios. The four and fifth level uncertainties are the
product of insufficient amount of information/knowledge. However, in a model with
Level 4 uncertainty, there is a range of plausible scenarios which can be specified
well enough to select a scenario with a possible acceptable outcome. Furthermore,
different scenarios can be compared based on basic conditions that are believed to be
true, and rule out the less favourable scenarios. This method is known as Exploratory
Modelling and Analysis (EMA). Level 5 can be addressed by creating adaptive poli-
cies over time which in turn will change to adapt the possible scenarios based on new
data over time, this method is called Adaptive Foresight.

Table 3.1: Five Levels of Uncertainty (adopted from Walker et al. [2013])

Walker et al. [2013] subsumes Level 4 and Level 5 uncertainty under the term “deep
uncertainty” akin to the Knightian uncertainty or Quades real uncertainty. Deep
uncertainty is defined more specific by Lempert et al. [2006] as a situation when the
analysts do not know (Level 5) or the parties to a decision cannot settle on (Level 4)

• the appropriate conceptual models that characterize the relationships among
the key driving forces that shape the long-term future,

• the probability distributions used to perform uncertainty about key variables
and parameters in the mathematical representations of these conceptual mod-
els, and/or

• how to value the desirability of alternative results.
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3.2 fat-tailed distribution

3.2.1 Black Swans

Events resulting from systems with deep uncertainties (i.e., Level 5 uncertainty) can
be called “Black Swans” [Taleb, 2010]. A Black Swan event is characterized by three
main properties. First, a Black Swan event is outside of the realm of our expectations.
Second, the occurrence of these events are only explainable in hindsight. And lastly,
a Black Swan event has an extremely widespread effect on potentially other fields
as the world becomes more complex. It is generally assumed that examples of Black
Swan events ranges from the global financial crisis in 2008, the level 9.1 Tōhoku
earthquake in 2011, the oil crisis in 2014 to the BREXIT in 2016. However many
events such as the financial crisis in 2008 could have been predicted but experts in
their respected fields have erroneously assigned a very low probability on the particu-
lar scenario and discarded from their forecasts. Such events are called “Grey Swans”.
Moreover, Taleb [2010] reasons that the main reason that experts have underesti-
mated the probability of those high impact event is due to their high confidence in
Gaussian models. However, Mandelbrot [1997] has shown that many random vari-
ables observed from real-world processes, such as stock returns or daily river levels,
follow fat-tailed distributions. Defining fat-tailed distributions with certainty is very
difficult, as various authors use the terms fat-tailed and heavy-tailed (and sometimes
even long-tailed distribution) interchangeably whereas others distinguish between
fat-tailed and heavy-tailed. The following paragraph is dedicated to clarifying this
malapropism.

3.2.2 Epistemic Crisis

Heavy-tailed distributions are probability distributions in which the tails of those
distributions are not exponentially bounded. Hence, they consist of “heavier” tails
than the exponential distribution. Distributions can be one-tailed or two-tailed. The
same applies for tails, heavy-tailed distribution can be “heavy” on one tail or on two
tails. Moreover, heavy-tailed distributions can be divided into three sub-classes: the
fat-tailed distributions, the long-tailed distributions and the subexponential distri-
butions. Thus, by definition, a fat-tailed distribution has the same attribute as the
heavy-tailed distribution in terms of the large skewness and kurtosis. Further, every
heavy-tailed distribution is a fat-tailed distribution but not every fat-tailed distribu-
tion is a heavy-tailed distribution [Taleb, 2006, 2015; Taleb et al., 2019].

According to Taleb [2010], there are three types of fat-tails:

1. any distribution with fatter tails than the normal distribution with more obser-
vations within one sigma and with a kurtosis Kurt[X] > 3;

2. any distributions with a power-law decay in the tail of the distribution but not
at every point along the distribution;

3. power-law distributions.
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However, this thesis is not differentiating between the three types but rather regards
them homogeneously. Thus, distributions are identified as fat-tailed if the kurtosis is
leptokurtic: Kurt[X] > 3.

3.3 dynamic integrated model of climate and eco-
nomic

In 1992, Nordhaus published one of the first IAM models, the DICE model. In gen-
eral, the DICE model is a simplified analytical and empirical model, that represents
the optimal time path of emission reductions and associated carbon taxes in a fully
dynamic Ramsey-type optimal growth model. Technically speaking, the DICE model
is a non-linear, inter-temporal optimization model. Over the past years, the DICE
model has gone through several revisions. Although the latest version of the model
was updated in 2016 (DICE-2016R), this thesis uses the DICE-2013R version. The
reason for this is that some parameters of the 2016 version were adjusted from the
earlier version without any further explanations. In addition, the DICE-2013R ver-
sion is well documented in the User’s Manual online [Nordhaus, 2013] and thus the
author is comfortable in utilizing the 2013 version for his study. Starting at year
2010, the model is solved in discrete time for sixty-time intervals of five years.

3.3.1 Model Structure

The DICE model consists of three sub-models: carbon, climate and economy. As
stated earlier, the DICE model translates the effects of the climate change into a stan-
dard neoclassical optimal growth model, the Ramsey–Cass–Koopmans (RCK) model.

Figure 3.1: Structure of the DICE Model described in an aggregated hybrid Casual Loop
Diagram.
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In the RCK growth model, the key equation is the social planners’ problem of maxi-
mizing social welfare function. The welfare is expressed as the discounted sum of all
future utilities from consumption. Consumption is again a function of the world eco-
nomic output. The output function is expressed as a Cobb-Douglas function and thus
it only increases when there is a rise in the labour force and/or the productivity be-
comes efficient. With the increase in economic activity, Nordhaus assumes that more
CO2 is emitted into the atmosphere. However, the CO2 in the atmosphere is passed
through the upper ocean to the lower ocean, which reduces the CO2 concentration
in the atmosphere. The remnant CO2 adds to the accumulated CO2 concentration
in the atmosphere so that more “heat” is trapped which results in an increase in
atmospheric temperature. The resulting climate damage costs from the increasing
temperature reduces the world economic output. Climate damages can be abated
using current investments. This fundamental interaction of the three sub-models of
DICE is represented in Figure 3.1.
In the following paragraphs, the three sub-models are explored in detail and the
mathematical representations of those model parameters are introduced.

Economic Sub-Model

The economic sub-model is based on a standard neoclassical economic growth theory,
namely the Ramsey–Cass–Koopmans (RCK) growth theory. The RCK model consists
of two agents, households and firms. To maximize the present and future flow of
discounted utilities, Ut, the households consume the world gross output, Ygross, and
invest in firms. The output itself is produced by similar firms which sell their products
in a competitive market. Since all firms are held by households, the generated profits
flow back to the households. The world gross output is expressed by the common
Cobb-Douglas production function. The Cobb-Douglas production function exhibits
constant returns to scale:

Ygross,t = AtL
1−γ
t Kγ

t (3.1)

where: At : total factor productivity1

Lt : population & labour force

Kt : capital stock

γ : output elasticity of capital.

The output elasticity of capital, γ, describes the responsiveness of output to a change
in capital. The capital stock is accumulated by investment, It, and at the same time,
it is reduced by depreciation rate of capital, δ:

Kt+1 = ItTstep + (1 − δ)Tstep Kt (3.2)

where: Tstep : time step.
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The investment,It, is equal to the difference between total income ,Yt, and consump-
tion, Ct:

It = Yt − Ct. (3.3)

A certain fraction of gross output is lost to damages and another to the cost of abate-
ment. Thus, the resulting, total output is determined by:

Yt = Ygross,t ∗ (1 − Λt − Ωt). (3.4)

Although finding a reliable projection of the damages from climate change over the
long-run seems to be extremely difficult [Pindyck, 2013], a damage function is imper-
ative for the decision-making of finding the right balance between abatement costs
and climate damages. Nordhaus attempt to express the damage function by, Ωt:

Ωt = ψ1TATM,t + ψ2(TATM,t)
ψ3 (3.5)

where: TATM,t : atmospheric temperature

ψ1,2,3 : estimation parameters.

The damage function is calibrated using the estimation parameters, ψ1,2,3, for dam-
ages between 0◦C and 3◦C Nordhaus [2013]. On the other hand, abatement function,
Λ, which describes the ratio of abatement cost to output, increases exponentially to
the emission control rate, µ:

Λt = Θ1µΘ2
t . (3.6)

Here, the backstop technology is expressed by the calibration parameters, Θ1 and
Θ2. Moreover, Nordhaus assumes that technological advancement will lead to an in-
crease in efficiency of the backstop technology until the cost of abatement eventually
reaches zero. The backstop technology is defined as a technology with the capability
to remove carbon from the atmosphere or as an environmentally friendly zero-carbon
energy technology.

With the above determined parameters, the households (social planner) are maxi-
mizing the social welfare function, W, or in economic terms, the discounted sum of
utilities from consumption per capita:

W =
Tmax∑
t=1

U(ct)LtRt (3.7)

where: ct : consumption per capita

Lt : population & labour force

Rt : social discount factor

U(ct) : per-period utility function.
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The per-period utility function, U(ct), is expressed by a Constant Relative Risk Aver-
sion (CRRA) utility function:

U(ct) =
c(1−α)

t − 1
1 − α

− 1, f or α < 1. (3.8)

This function requires a constant elasticity of the marginal utility of consumption,
α2. It is better described as the degree of relative generational inequality aversion.
Simply put, α depicts the diminishing social valuations of consumption of future
generations. Further, the social discount factor is determined by:

Rt =
1

(1 + ρ)t . (3.9)

The pure rate of social time preference, ρ, gives welfare weights on the utilities of
different generations.

Carbon Sub-Model

The carbon sub-model calculates the radiative forcing on the basis of the carbon
cycle which consists of three-reservoirs: atmospheric level, upper ocean level and
deep ocean level. However, prior to this, the model first defines the total emission,
E, which is defined by the sum of the endogenous industrial emissions, EInd, and the
exogenous emissions from deforestation, ELand:

Et = EInd,t + ELand,t. (3.10)

The industrial emissions, EInd, are reflected in the economic activity of the world and
it only can be reduced by the emission control rate,µt:

EInd,t = σtYt(1 − µt) (3.11)

where: σt : emissions output ratio.

The total carbon emissions, Et, feeds into the atmospheric reservoir of carbon and
results in an increase of CO2 concentration. From there, a certain portion of the total
emission is transferred to the carbon reservoirs of the lower and deeper ocean. This
has a dampening effect on the CO2 concentration in the atmosphere. This mechanism
is described by the following matrix equation:MATt+1

MUt+1
MLt+1

 =

1.36
0
0

 Et +

φ11 φ12 0
φ21 φ22 φ32
0 φ23 φ33

MATt
MUt
MLt

 . (3.12)

Once CO2 emissions are added to the carbon cycle, it stays there. The depreciation
of carbon is not considered in the model. If now the carbon concentration in the

2 When α = 1, the utility function is logarithmic due to l’Hôpital’s rule.
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atmosphere, MATt+1, exceeds the pre-industrial equilibrium concentration MATEQ,
the temperature will rise due to radiative forcing, FORC. This is illustrated by the
following equation:

FORCt = η[log2(
MATM,t

MEQ,t
)] + FORCEX,t. (3.13)

As shown in 3.13, FORC is also affected by greenhouse gases (GHG) other than CO2,
which is added exogenous (FORCEX,t) to the model.

Climate Sub-Model

The climate sub-model is also illustrated as a cycle, in which thermal energy is trans-
ferred between the atmosphere and the oceans. As explained earlier, higher radiative
forcing FORC warms the atmospheric layer which again warms the ocean layer. This
mechanism is described in the following matrix equation.

(
TATM,t+1

TOCEAN,t+1

)
=

(
ξ1
0

)
FORCt +

(
1 − ξ1ξ2 − ξ1ξ3 ξ1ξ3

ξ4 1 − ξ4

)(
TATM,t

TOCEAN,t

)
(3.14)

where: ξ1 : climate equation coefficient for upper stratum

ξ2 : climate sensitivity parameter

ξ3 : heat transfer coefficient between upper and lower stratum

ξ4 : climate equation coefficient for lower level.

The most critical model parameter is the climate sensitivity parameter, ξ2. It is deter-
mined by the following equation:

ξ2 = f co22x/t2xco2 (3.15)

where: f co22x : forcings of equilibrium CO2 doubling

t2xco2 : equilibrium climate sensitivity [dC per doubling CO2].

The estimation of the equilibrium climate sensitivity parameter has been proven to be
difficult. Based on a systematic survey on “The equilibrium sensitivity of the Earth’s
temperature to radiation changes” of Knutti and Hegerl [2008], Nordhaus estimates
the equilibrium climate sensitivity at 2.9◦C.

3.3.2 Critics

Nordhaus and his DICE model made an enormous contribution to the field of environ-
mental economics, as it was the first cost-benefit analysis of policies to mitigate GHG
emissions. Nevertheless, it has become increasingly evident that the model outcomes
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are in contrast to scientific consensus. In particular, Nordhaus [2014] derives to the
conclusion that the world economy can cope with a temperature increase of 3-3.5◦C
above pre-industrial level whereas prior to the COP24 conference in Poland, 91 cli-
mate scientist from 41 countries have warned in the special report “Global Warming
of 1.5◦C” about devastating consequences of climate change by an increase of half a
degree, from 1.5◦C to 2◦C [IPCC, 2018]. The DICE model has been criticized for sev-
eral reasons, but the most important shortcomings can be outlined in the following
paragraphs.

Pure Rate of Social Time Preference

The DICE model consists of input parameter values which are subjective in nature.
The most prominent one is the pure rate of social time preference, ρ. There is no
consensus among economists about a legitimated value for this parameter, as such,
it is the choice of the modeller. Stern [2006] has argued in his review that a high
“pure” time discounting is discriminating life by the birth date. To be more specific,
if we consider two identical lives in every aspect but their date of birth, the one
born later has a lower value considering a high ρ. Moreover, he has shown that
different input values for ρ will lead to a different conclusion regarding the optimal
policy. On this occasion, one point must be stressed. There is a strict distinction
between discounting and pure rate of social time preference. The one is partly a
function of expected future consumption paths, Rt, and the later one is the rate of
devaluation of future generations through time, ρ. This mistake was even made by
Nordhaus [2007] in his response to Stern: “An examination of the Review’s radical
revision of the economics of climate change finds, however, that it depends decisively
on the assumption of a near-zero time discount rate combined with a specific utility
function.” Stern never applied a near-zero discount rate but a near-zero rate of
time preference. It is essential to understand that the modelling approach in the
DICE model can be utilized to generate almost any outcomes of interest which can
legitimize subjective opinions.

Climate Sensitivity

Another critic point in the DICE model is the climate sensitivity parameter. The equi-
librium climate sensitivity (ECS) describes the temperature increase that would result
from a sustained doubling of the atmospheric equivalent CO2 concentration. How-
ever, the strengths and even the sign of the feedback loops that determine the ECS
are to a large extent unknown [Pindyck, 2017; Heal and Millner, 2014; Wagner and
Weitzman, 2018]. Numerous attempts have been made to decrease the uncertainty,
but the likely range has been between 1.5◦C to 4.5◦C (high confidence), extremely
unlikely less than 1◦C (high confidence), and very unlikely greater than 6◦C (medium
confidence) for 40 years [Charney, 1979; IPCC, 2018].

To make the matter worse, like many IAMs, DICE is a deterministic model. Thus, it
is utilizing best estimates over a speculative probability distribution in order to ad-
dress uncertainties about future costs and benefits [Newbold and Daigneault, 2009;
Stanton et al., 2009]. This approach would not be an issue if the best estimate was
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derived from a single agreed-upon climate model for estimating climate sensitivity.
However, this is not the case. Figure 3.2 illustrates the different estimates of the
ECS parameter illustrating huge disagreement in climate science on describing the
ECS. Many studies have tried to implement stochasticity into the DICE optimization
model using normal distribution. However, they did not consider the wide variety
of normal distribution in those analyses, but rather they have utilized some kind of
meta-analysis or have engaged in informal cherry picking to determine a posterior
distribution. In addition, Tol (2003) raised the issue that the ECS parameter can-
not be described by a normal distribution. This was further explored by Weitzman
[2009a]. Weitzmann suggests in his theoretical work that climate policy is highly sen-
sitive to fat-tailed risks of catastrophic outcomes. This new dimension of uncertainty
turns ECS into a deep uncertainty (see Section 3.1).

Figure 3.2: Estimates of the probability distribution for climate sensitivity in degrees Cel-
sius [Heal and Millner, 2014].

Damage Function

Nordhaus stated already in his latest manual that “the thorniest issue in climate-
change economics” [Nordhaus, 2013] is the damage function. While it was possible
to deduct distribution for the ECS on the basis of atmospheric physical science, we
have no idea when it comes to damage function. There is no data or theory to
base the choice of a certain damage function [Pindyck, 2017; Wagner and Weitzman,
2018]. However, IAM modellers try to estimate the damage function using studies of
climate damage at specific degrees of global warming (TATM = 2.5 - 3◦C). In the case
of DICE model, Nordhaus tried to estimate the coefficients ψ1 and ψ2 of a quadratic
damage function (3.5) on the basis of data points from studies, such as crop losses
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and heating. Since TATM = 3◦C has not been seen on the planet for around 3 million
years and thus the consequences of this are unknown, these “quasi” data points are,
to be honest, useless. It is even more difficult to make an assumption on the damage
function for TATM ≥ 3◦C, due to the complete lack of knowledge, understanding
and evidence. Moreover, the quadratic term for damage function (3.5) results in
unrealistic low damages at high temperatures [Stern, 2006; Dietz and Stern, 2015;
Weitzman, 2011; Hwang et al., 2014]. Nordhaus damage function, for instance,
assumes that a 10◦C increase in temperature leads to a damage cost of 26.7% of the
gross world output (see Figure 3.3).

Figure 3.3: The variety of different damage functions which can be found in climate eco-
nomics literature’s

Methodology

Regarding the methodology, the DICE model is a deterministic non-linear, inter-
temporal optimization model. The greatest shortcoming of traditional deterministic
optimization is that it can only consider a very small subset of possible scenarios
[Better et al., 2008]. Some developers/users of the DICE model are fully aware of
the limitation of the methodology and also about the considerable uncertainty over
the ECS and the damage function. Nonetheless, they presume that uncertainties can
be managed by assigning probability distributions on those parameters and to run a
Monte Carlo simulation afterwards [Pindyck, 2017]. For instance, Weitzman [2009a]
argues that estimates of the economic impacts of climate change are better derived
through probabilistic studies, in which, crucially, the key parameters like climate sen-
sitivity and the damage function are better described by distributions with a fat-tail.
However, the issue is that there is a fundamental lack of knowledge about the correct
probability distribution (e.g ECS), or the correct functional form of parameters (e.g
damage function). Thus, the presence of uncertainties makes the identification of an
optimal policy extremely difficult.

In light of the above-mentioned critics, the question arises whether the DICE model
can be actually used for forecasting or even for storytelling. “Can IAMs be salvaged
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as a tool for policy analysis if we somehow account for lack of knowledge about key
relationships and parameter values?” [Pindyck, 2017]. This thesis, to some extent,
is dedicated to answering this question by the means of the methodology presented
in the following section.

3.4 decision making under deep uncertainty

3.4.1 Optimality vs. Robustness

Traditional Decision Analytic Method

Hitherto, optimization was traditionally utilized as decision-analytic methods for risk
and decision analysis, as well as in the field of climate economics. Optimization
models were designed to identify optimal strategies based on the given constraints
and uncertainties. With a single set of strategies and a single set of probability dis-
tribution over the uncertainties, these approaches generated single best outcomes
[Lempert et al., 2006]. This approach is well suited to determine the best possi-
ble strategy when the uncertainties can be described by probability distributions (i.e
Level 2 uncertainties). If there are additional uncertainties over the optimization
model, professionals of traditional decision-analytic methods employ sensitivity anal-
yses to test the dependence of their optimum strategy on those uncertainties [Saltelli,
2008]. This method is adequate if the chosen optimum strategy is relatively robust to
these key assumptions. However, if the optimal strategy is sensitive to those assump-
tions, optimum strategies lose their prescriptive value [Walker et al., 2013]. Conse-
quently, it can be stated with certainty that traditional decision-analysis is unsuitable
for decision-making under deep uncertainty. As a result, the scientific community has
realized that any policy recommendation in a complex system, such as in the field
of climate economics, must be robust in regards to the manifold of the deep uncer-
tainties of those systems [Lempert and Collins, 2007; Giuliani and Castelletti, 2016;
Kwakkel et al., 2016b; Herman et al., 2015]. But what does robustness actually mean
in the context of policy analysis?

Robustness

Robustness is defined differently from one field to another. However, in principle,
most of those definitions agree upon that robustness is only reached when it is able
to maintain its functionality despite external or internal distresses. In policy analysis,
this definition can be applied on a system level as well as a policy level. On a system
level, a system is defined as robust when the main functionality can be maintained
despite changes in their state. Similarly, a policy is considered robust when it per-
forms well across a variety of possible future states of a system [Herman et al., 2015;
Kasprzyk et al., 2013; Lempert and Collins, 2007; Giuliani and Castelletti, 2016;
McPhail et al., 2018]. Although robustness of candidate strategies can be analyzed
from different viewpoints, in general, their calculation consists of three factors: (1)
the policy strategies for which robustness is to be calculated, (2) the outcome of in-
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terest and (3) plausible future states of the world (scenarios) [McPhail et al., 2018].
The robustness metrics, which was utilized in this research, are presented in Section
7.2. However, it must be noted that robustness does not come without a cost in per-
formance. In the literature, this is called as the “price of robustness” [Bertsimas and
Sim, 2004]. This trade-off can be illustrated by comparing the pure rate of social
time preference or the social cost of carbon of Nordhaus optimal policy with the set
of robust policies of this study in Section 10.3.

3.4.2 Exploratory Modelling and Analysis - Stochastic Optimization

Admittedly finding robust policies requires evaluation of different policy options over
a large ensemble of possible future states of the system. To answer the “what-if” ques-
tion and to generate a large number of scenarios, a simulation model is mandatory.
As simulation models strive to describe the reality as precisely as possible, it allows
the integration of various sources of uncertainty [Better et al., 2008]. Exploratory
Modeling and Analysis (EMA) techniques have been used as a foundation for find-
ing robust policies [Bankes et al., 2013]. In EMA, computational experiments of the
simulation model are used to systematically explore the behaviour of the complex
systems under an ensemble of prior specified uncertainties in response to different
policy settings.

Figure 3.4: The XLRM framework adopted from Kwakkel [2017].

As one of the first, Lempert et al. [2006] proposed the robust decision making (RDM)
method. The first step of the RDM method is to conceptualize the simulation model
according to XLRM framework. The four categories of the framework are the follow-
ing:

• X: Exogenous uncertainties that are outside of the control of decision makers

• L: Policy Levers that are in the control of the decision makers

• M: Outcomes of interest

• R: Causal relation between X, L and M
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From here on in an iterative process, policies/candidate strategies are identified
based on expert opinion or traditional sensitivity analysis. Next, a diverse ensem-
ble of scenarios/experiments are built, and subsequently, outcomes are determined
on the basis of the generated set of scenarios and the defined policies. This is done by
utilizing an exploratory modelling software. In the final step, the information from
the computational experimentation is used to calculate the robustness of the policy,
but also to discover the vulnerabilities by applying scenario discovery techniques like
PRIM or CART. With the knowledge about the robustness and the vulnerability of the
policy, the policy can be refined in another iteration [Lempert et al., 2006; Kwakkel,
2017].

Figure 3.5: Multi-Scenario MORDM Process adopted from Bartholomew [2018]
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Kasprzyk et al. [2013] expanded the RDM method to the Many-Objective Robust De-
cision Making (MORDM) method. The most noteworthy change is the use of multi-
objective evolutionary algorithms (MOEA) to identify candidate strategies at base
reference point [Hadka et al., 2015]. In addition, MOEA allows addressing conflict-
ing outcomes of interest directly in the search phase. Furthermore, an uncertainty
analysis is performed over the ensemble of policy options. For this purpose, a set of
scenarios is created by sampling the uncertainty parameters. This new method has
already been proven in several cases [Kasprzyk et al., 2013; Herman et al., 2014;
Trindade et al., 2017; McPhail et al., 2018].

However, Watson and Kasprzyk [2017] rightfully pointed out that in MORDM the
non-dominated set of candidate strategies/policies will be based on a single reference
point. This has the consequence that in conditions, which differ from the reference
point, will result in a less robust policy set. Thus, they suggested the multi-scenario
MORDM method. The crucial difference is the use of MOEA to search for scenarios,
based on the identified weakness of the policy through scenario discovery. With mul-
tiple reference scenarios, a more diverse and robust set of policies can be determined.

As mentioned many times earlier, the field of climate economics is depicted with deep
uncertainties. Traditional decision analytic methods have shown their deficiency in
managing uncertainties. The multi-scenario MORDM shows great potential to over-
come this shortcoming. Thus, multi-scenario MORDM is used as the key methodolog-
ical framework of this thesis.



Part II

Methods

“The standard library saves programmers from having to reinvent the wheel.” -
Bjarne Stroustrup
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4 M O D E L C O N C E P T U A L I Z AT I O N

In order to explore the robustness of Nordhaus optimal policy with regards to deep
uncertainty, this study has reconstructed the DICE optimization model into a stochas-
tic simulation model called PyDICE. Section 4.1 illustrates the conceptualization of
the PyDICE. Further, the model is verified by comparing the outcomes of the PyDICE
to DICE in Section 4.2. Lastly, Section 4.3 presents the model specification of PyDICE
according to XLRM framework.

4.1 dice simulation model: pydice
In PyDICE, the original model equations of the DICE model are maintained to a large
extent. However, as the DICE model aims to maximize the welfare function, optimal
values for the two parameters emissions control rate and savings rate are determined
at the end of the optimization. Thus, in a simulation version of DICE, these two
parameters have to be specifically described in the model, for instance via a function.
The global social planner in the RCK growth model chooses his savings rate and
emission control rate so that the welfare function is maximized. Thus, in PyDICE,
the two parameters are modelled so that they follow the trajectory of each from the
“optimal” climate policy scenario.

Figure 4.1: Comparison between PyDICE and DICE. Left panel: Emissions control rate;
Right panel: Savings rate.

Assessing the trajectory of the emission control rate of the DICE model in Figure
4.1, it can be stated that the control rate increases generally linear over time until

26
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a certain control rate maximum is reached. The maximum emission control rate
µmax can be above 1, since Nordhaus [2013] assumes that a backstop technology,
which extracts carbon from the air (i.e., direct air capture technology), will be used
on a massive scale in future. Similar to the outcome in DICE, PyDICE adopted the
following linear equation to describe the emission control rate, µt:

µt = µmax ∗ t/tµ + µ0 (4.1)

where: µmax : maximum emission control rate

µ0 : initial emission control rate

tµ : emission control rate target

Here, the emission control rate is driven by the emission control rate target tµ of
the global community. Figure 4.1 shows that the resulting behaviour from Equation
4.1 mimics to a large extent the trajectory of the control rate in DICE. The drop at
the end of the emission control rate was most certainly caused by the end-of-horizon
effect, which is an inherent problem of long term optimization.

The savings rate, srt, of the DICE model shows a strong non-linear behaviour. How-
ever, these dynamics are restricted to values between 0.244 and 0.258. Thus, the
savings rate can be simply approximated by a constant, as it can be seen in the right
panel of Figure 4.1. Therefore, the following equation is used to describe the savings
rate in PyDICE:

srt =

{
sr, if t < t−10

optlrsav, otherwise
(4.2)

optlrsav =
(δ + 0.004)

(δ + 0.004α + ρ)γ
(4.3)

where: δ : depreciation rate of capital

α : elasticity of marginal utility

ρ : pure rate of social time preference

γ : capital elasticity

Same as in the DICE model, the optimal long-run savings rate is used in PyDICE for
the last 10 time steps of the savings rate in order to fulfil the transversality condition
of the RCK growth model.

PyDICE runs in time steps of five years beginning in the year 2010 until 2310 (60
time steps in total). With regard to the Python scripted analysis tools used in this
study, PyDICE is written also in Python, a high-level general-purpose programming
language.
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4.2 verification
Usually a model development process consists of an extensive validation and veri-
fication process of the model. Hereby, modellers perform conceptual, operational
and data validity by using for instance expert opinion, historical methods or extreme
condition tests [Sargent, 2013]. However, since the PyDICE is a re-implementation
of the highly utilized DICE model, a conceptual, operational and data validity is not
required. Therefore, this section only focus on the verification of the PyDICE by com-
paring it to the DICE model. First, it is verified whether the internal functions of
the DICE model and their relationship was implemented correctly into the Python
environment. To that end, the functions (4.1) and (4.2) with (4.3) are replaced by
the optimized value for the emission control rate µt and savings rate srt. Next to the
graphical illustration of the verification in Figure 4.3, the numeric verification can be
found in the Appendix A.

Figure 4.2: Comparison between PyDICE and DICE with the optimized outcome of Nord-
haus optimal policy for the parameter control rate t and savings rate srt.
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To inspect whether the integration of the new model functions functions (4.1) and
(4.2) with (4.3) has a significant effect on the model outcomes, a second verification
is done by comparing the model behaviour of the PyDICE with the DICE model. This
is visually illustrated in Figure 4.3.

Figure 4.3: Comparison between PyDICE and DICE with the integrated functions for emis-
sion control rate 4.2 and savings rate 4.2.

Figures 4.2 and 4.3 and Tables A.1 and A.2 show that the outcomes of the PyDICE
coincide to a large extent with the outcomes of the DICE model. Therefore, PyDICE
can be treated as a discrete stochastic simulation version of the DICE model.

4.3 pydice xlrm structure
In addition to the amendments made in Section 4.1, PyDICE is organized by the
XLRM Framework (see Section 3.4.2). Structuring the model into policy levers, out-
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comes of interest, exogenous uncertainties and their relationship is the first important
step in the multi-scenario MORDM process (see Figure 3.2).

4.3.1 “M”: Outcomes

In complex problem settings with many stakeholders and different interests, the
decision-maker, in this case, the global social planner or the international community,
have numerous goals, which are sometimes conflicting. As a consequence, finding a
strategy, that can realize many objectives, is difficult (and messy). The four main
objectives of the decision-maker in PyDICE is summarized in Table 4.1.

Table 4.1: Outcomes of Interest.

Since the key economic structure of the model represents the RCK growth theory, it
is self-evident that cumulative (discounted) utility over the full period is an outcome
of interest. Furthermore, from an economic growth perspective, the total output/in-
come is of interest as it reflects the buying power and the overall economic activity
of the world. At the same time, it is also crucial to discover policies which minimize
damages to the greatest possible extent. The atmospheric temperature is chosen as
an outcome of interest because the main criticism of climate scientists on the opti-
mal policy proposition of Nordhaus is that it allows the temperature to rise up to
3.5 degrees above the pre-industrial level. The outcomes, atmospheric temperature,
damages and total output, are only examined at five specific points in time (2050,
2100, 2150, 2200, 2300), since utilizing the whole time series would have not gen-
erated greater insights but would have rather yielded in higher computational effort.

4.3.2 “L”: Policy Levers

Simply speaking, policy levers are control parameters that the global social planner
has control over to reach the outcomes of interest (see Table 4.1). Based on the
literature review in Chapter 3, the levers are chosen in regards to their effectiveness
at least on one outcome. The levers are summarized in Table 4.2.
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Table 4.2: Policy Levers.

Savings Rate

As already outlined in Section 4.1, the savings rate is chosen by the global social
planer to maximize utility. Moreover, the growth theory assumes that by modifying
the savings rate, the transitional dynamics between capital and consumption can be
affected. Thus, this policy lever would have a direct influence on two outcomes of
interest, total output and utility. In PyDICE, the policy lever savings rate can range
between 0.1 and 0.5. The baseline value of 0.25 reflects the optimal policy of the
DICE model.

Emission Control Rate Target

Extending the RCK growth model by the climate and carbon model in DICE, Nord-
haus quantified the effects of man-made greenhouse gases as a damage of the gross
output. The emission control rate is the only dirigible factor in the model, which
has an impact on the severity of the resulting damage. At the same time, it also de-
termines the abatement costs. Emission control rate has not only a direct effect on
damages but also on total output. Therefore, emission control rate target is chosen
as one of the four policy levers. As shown in Equation (4.1), it determines how fast
the maximum control rate is reached. In other words, the emission control target
lever reflects the setting of “net-zero” carbon target1 by the global community. In
PyDICE, this policy target can range between 2060 and 2300. The minimum value
of this policy lever displays the call of the UN Global compact for a net-zero target
by 2050 [United Nations, 2019]. In addition, the 2060 target still presents a real-
istic goal since countries like Sweden, Japan and the United Kingdom have already
adopted a legally binding net-zero target for 2050 [Carbon Brief, 2019]. In line with
the optimal policy of the DICE model, the baseline value of this lever is 2150.

Pure Rate of Social Time Preference

The choice of the pure rate of social time preference has been long debated (see Sub-
section 3.3.2). On the one hand, scholars like Stern [2006] argues that a “high” rate
of social time preference is ethically unjustifiable and on the other hand, academics

1 If the emission control rate maximum is above 1, the emission control rate target turns into a
negative carbon target.
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like Nordhaus argues that “near-zero” rate of social time preference leads to paradox-
ical results. As there is no consensus, it is modelled in PyDICE as a policy decision
of the global social planner [Stern, 2006; Nordhaus, 2013]. The careful reader has
already noted that this study takes a mediator role in such debates and thus has con-
sidered both “extremes” as the boundary values of the policy lever. In line with the
optimal policy of the DICE model, the baseline value of this parameter is 0.015.

4.3.3 “X”: Uncertainties

The various future states of the world are described by different combinations of
uncertain parameters. Although those parameters are outside of the control of the
decision-maker, they can be used to systematically test the performance of policies.
The deep uncertainties of the PyDICE model are resumed in Table 4.3. They have
shown in earlier studies that they have the largest impact on the outcomes [Nordhaus,
2008b; Butler et al., 2014].

Table 4.3: Deep Uncertainties.

Total Availability of Fossil Fuel

The total availability of fossil fuel is the driving factor that determines the growth
rate of Hotelling rent2 to drive the consumption to the backstop technology. This be-
comes especially crucial for scenarios of fast economic growth or low rates of carbon-
reducing technological change. The boundaries of the parameters are chosen based
on literature [Bruckner et al., 2014; Rezai and Van Der Ploeg, 2017].

2 The price of an exhaustible resource must increase over time with the interest rate.
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TFP Growth Rate

According to Nordhaus [2008b], the most important uncertain parameter is the
growth rate of total factor productivity. The total factor productivity is one of the
main drivers of long-run economic growth (see Equation (3.1)). Subsequently, as
industrial emissions are determined by the output, climate damages are propelled by
the growth rate of total factor productivity. The extremes of these parameters are
chosen based on the literature [Nordhaus, 2008b].

Population Growth Rate

The other main driver of economic growth is labour force (see Equation (3.1)). Sim-
ilar to the argument above, it can be assumed that climate damages are also driven
by the size of the population. Many population prospects in the past had to revise
their projections about the maximum population. In the latest “World Population
Projection 2019” of UN DESA shows a population of 10.9 Billion by 2100. This cor-
responds with the maximum population value of 10.1 Billion (at time period 2100)
in the DICE model. However, there is still uncertainty whether this maximum will
be reached in 2100. Thus, the population growth rate is chosen as an uncertainty in
the PyDICE with a value range between 0.1 (population value of 9.8 Billion in 2100)
and 0.15 (population value of 10.2 Billion in 2100).

Initial Growth Rate of Emissions to Output Ratio

The emission to output ratio describes the carbon intensity of production. In other
words, this factor reflects the carbon efficiency of the global economy. Furthermore,
the growth rate of the emission to output ratio illustrates the rise/decline of carbon
efficiency in production. Thus, an increase in efficiency would reduce the industrial
emission and subsequently it would lead to lower climate damages (and vice versa).
Acknowledging that the growth rate of emissions to output ratio is an uncertainty,
Nordhaus [2016] applied a sensitivity analysis on the DICE2016R version. For this
purpose, Nordhaus illustrates the growth rate of emission to output ratio as a normal
distribution with a standard deviation of 0.003 and a mean of -0.015. Therefore,
PyDICE utilizes the same standard deviation to determine the limits of the scalar pa-
rameter. To be more specific, the 25th and 75th quantiles of the n normal distribution
with a mean of -0.01 and a standard deviation of 0.003 has been used to calculate
the limits of the model.

Price of Backstop Technology

The upper limit of the carbon price is determined by the price of the backstop tech-
nology, as it presents the economic price of replacing fossil fuels. Thus, a low-cost
backstop technology would allow the world to prevent climate damages. Of course,
this also works in the other direction, i.e. high-cost backstop technology would lead
to high climate damages since replacing fossil fuels with the backstop technology
would not be profitable. Furthermore, there is no reliable study which defines the
price of backstop technology. That is because there is no consensus about which
technology or set of technology should reflect the concept of backstop technology.
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Thus, the ranges for the price of backstop technology have been chosen so that it still
reflects low-cost and high-cost of backstop technology.

Equilibrium Climate Sensitivity

In Section 3.3.2, it is clearly outlined that the equilibrium climate sensitivity (ECS)
parameter is deeply uncertain. For one, there is strong dissonance about the statisti-
cal sizes of the ECS distribution (see Figure 3.2) and besides, there is strong evidence,
that the ECS is fat-tailed. Since this study aims to answer the question of what are
the repercussions of applying fat-tailed distribution over uncertain parameters, the
ECS parameter is modelled for three distributions, namely normal distribution, log-
normal distribution and Cauchy distribution.

Table 4.4: Equilibrium Climate Sensitivity estimation of the IPCC AR5 and [Rogelj et al.,
2012].

Majority of climate scientists and climate economists have used the normal distribu-
tion to estimate the ECS parameter. Furthermore, other scholars like [Hwang et al.,
2013] and [Ackerman et al., 2010] have used the log-normal distribution to illus-
trate the “fat-taildness” of the ECS parameter. Log-normal distribution qualifies as a
fat-tailed distribution since the kurtosis K3 of the log-normal ECS is leptokurtic (see
Table 4.5). However, it is also often called as “in-between” distribution due to its
mathematical familiarity to normal distribution. Since the log-normal distribution is
not an adequate distribution to represent a fat-tailed distribution, this research has
also included a Cauchy distribution to describe the ECS parameter.

The probability density function (PDF) of these three ECS distributions were created
by the following three steps:

1. Data points for the cumulative density function (CDF) are generated by using
the ECS estimation of the IPCC [2014] and Rogelj et al. [2012] (see Table 4.4).

2. CDF of the distribution is fitted over the data points from step 1. R-squared is
calculated to assess the goodness of fit.

3 Kurtosis is calculated using the Pearson formula.
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3. If the R-squared is above 0.95, the CDF is translated into a PDF using the corre-
sponding statistical sizes such as mean, variance and/or shape.

In order to prevent absurd extreme cases during the sampling phase like an ECS value
of 500◦C, the rejection sampling method was used to create truncated distributions
between 0◦C and 20◦C. Moreover, the generated three distributions are enumerated
from 0 to 2 (see Table 4.3), so that during the stochastic simulation run, it is already
translated into a computer understandable form.

Table 4.5: Statistical Sizes of the Equilibrium Climate Sensitivity Distributions.

Damage Function

A further structural deep uncertainty is the damage function. Also, this deduction has
been already explained in detail in Section 3.3.2. To design this structural uncertainty

Figure 4.4: The damage functions of the PyDICE model. For completeness, the algebraic
damage function Newbold and Daigneault is illustrated.

in PyDICE, three different damage function has been chosen. Whereas the damage
function of Nordhaus and Weitzman represent the two extremes of the discussion, the
exponential damage function of Newbold and Daigneault can be placed in between
the two extremes. This is illustrated in Figure 4.4. Similar to the ECS parameter,
the damage functions are enumerated from 0 to 2 (see Table 4.3), so that during
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the stochastic simulation run, it is already translated in a computer understandable
form.

4.3.4 “R”: Relations

The above-described uncertainties, decision levers, and outcomes are connected to-
gether through a set of functions, which are described to a large extent in Sec-
tion 3.3.1 and 4.1. At last, a model is nothing more or less than a set of func-
tions. The PyDICE is developed along the XLRM Framework to connect it to EMA-
Workbench, an open-sourced python package for exploratory modelling and analysis.
EMA-Workbench consists of various tools like exploratory analysis, global sensitiv-
ity analysis and many-objective optimization, which has been used for the following
analysis techniques.



5 O P E N E X P LO R AT I O N

Open exploration is a technique utilized to generate insights about the variety of
dynamics and uncertainties in a model. In other words, it is a methodology to sys-
temically evaluate model parameters to study the entire set of possible behaviours
of the outcomes and thereby provides the analyst with a baseline understanding of
the outcome space. This method is technically implemented by simulating the model
millions of times over an experimental design that samples different combinations
of uncertain parameter and tests against a defined set of policies. At the end of this
process, a large data set is generated allowing to trace the performance of a policy
back to the scenario and its combination of the input parameter. Thus, this method
enables the analyst and decision-maker to answers questions like “under which con-
ditions would a specific policy do well/poorly”. This chapter discusses the pitfalls and
benefits of various sampling techniques in Section 5.1. Further, in Section 5.2 and
5.3, the use of the two analysis techniques, statistical analysis and global sensitivity
analysis are explained in detail.

5.1 sampling techniques
Sampling strategy plays a crucial role in open exploration, as it is directly correlated
with the efficiency and robustness of the statistical analysis. Depending on the use
case, sampling methods can vary from Monte Carlo sampling (MC), Latin Hypercube
sampling (LHS) to Full Factorial sampling (FF).

Figure 5.1: Sampling Techniques [Buchheit et al., 2019]

In the context of open exploration, simulation models can be very expensive to run
and thus choosing the right sampling strategy is essential for further analysis. Al-
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though an FF technique would sample across the whole range of the input space, the
computation of the experiment set, which would mean all possible combinations for
the specified number of scenarios across all input parameters (scenariosinput parameter),
is just not feasible. Therefore, MC technique could give a more reliable inference of
the input space. But since it relies on pure randomness, it lacks efficiency. MC can
lead to clustering of samples at specific intervals while other points have no samples.
Thus, an increase in precision of MC requires a higher sample size.
In contrast, the stratified sampling technique, LHS ensures equal representation of
the uncertainty parameters in the experiment set by first dividing the input space
uniformly and then selecting one sample from each interval. Moreover, LHS shuffles
the sample for each input parameter so that an unbiased experiment set is created.
This sampling technique describes the uncertainty space with fewer scenarios and
thus LHS is perfectly suitable for open exploration as one usually generates a great
number of experiments.

5.2 statistical analysis
In order to generate the first insights from the experiment set, the outcomes from
the open exploration have to be statistically and visually analyzed. In a stochastic
simulation model, like the PyDICE, the input space affects the performance of the
outcome. Thus, it is assumed that these conditions are representative of the actual
system. Subsequently, the population statistics for the described system can be esti-
mated using the sample statistics. This study’s statistical analysis focuses mainly on
three key measures: mean, standard deviation and quantiles. Hereby, the statistical
values are used to compare the subset of scenarios in their inference on the outcomes
of interest.

Figure 5.2: Visualization examples in statistical analysis. a): Boxenplot; b): Pairplot.
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The measures of the outcome are not only presented in tables but also visually illus-
trated in boxenplots (or letter value plot). The boxenplot visualisation is similar to
boxplot in terms of its non-parametric representation of a distribution in which all
characteristics of the plot correspond to actual outcomes of the stochastic simulation
model. The major advantage of the boxenplot is its smart intuitive visualization of
the quantiles. In particular, this is very convenient when representing the tails of the
distribution of the outcomes (see Figure 5.2).

Furthermore, to create a greater understanding of the statistical relation between
the output parameter, the correlation is calculated using the Kendall rank correla-
tion coefficient (KRCC). KRCC is chosen over the correlation coefficients such as the
Pearson correlation coefficient since this study does not attempt to estimate the popu-
lation distribution of the outcomes from the experiment set. Visually, the correlation
between the parameters is presented in a pairplot. A pairplot is created by a grid
of axes so that each outcome variable will be shared in the x-axis across a single
column and y-axis across a single row. Thus, each subplot within the pairplot repre-
sents a scatterplot. In addition, the diagonal axis represents the distribution of each
outcome.

5.3 global sensitivity analysis
Another statistic tool, which is also very often used in risk assessment, is the global
sensitivity analysis (GSA). It is aimed at the identification of the most influential un-
certainty parameter on the outcomes. Thereby, GSA answers questions such as, how
much of the uncertainty is epistemic? How much is irreducible? Which uncertain
inputs should be a priority for research?

The most prominent GSA methods in the literature are arguably regression analysis,
decision tree-based GSA and variance-based GSA. The former fits a linear regression
to the model outcome and utilizes the standardized regression coefficients as direct
measures of sensitivity. This simple and fast application makes regression analysis
a powerful tool in analyzing the sensitivity of the input parameter(s) on the output
parameter. However, this tool is only suited for linear model outcomes as otherwise,
it is almost impossible to interpret the standardized coefficients [Jaxa-Rozen and
Kwakkel, 2018].

A more accurate GSA technique for non-linear models is the decision-tree based GSA.
Decision trees are a well-established feature selection approach from statistical learn-
ing. They aim to identify the separation criteria which describes the relationship
between a set of input parameter and regions of the output space. The resulting
variance of individual decision trees can be overcome using ensemble methods, such
as random forest or Extra-Trees algorithms. Theoretically, the accuracy performance
of this method can be used by increasing the number of trees, however, in practice,
the number of trees is limited to the computational capacity. Moreover, “a forest of
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[classification and regression] trees is impenetrable as far as simple interpretations
of its mechanism go” [Breiman, 2001]. A further pitfall of decision-tree based GSA is
its metric (variable importance). It only describes the relative importance of inputs,
rather than their direct effect on output variance [Jaxa-Rozen and Kwakkel, 2018].

Better performance and mathematical representation of GSA can be reached when
utilizing a variance-based approach. In a variance-based GSA approach, also referred
to as Sobol method/technique, the influence of uncertain input parameter on the
outcome variable can be determined using setups like factor fixing or prioritizing.
Hereby, the method is based on the disintegration of the variance of the model out-
come into summands of the model input variances. The Sobol approach can be
divided into four steps [Zhang et al., 2015]:

1. the input space is sampled using a Sobol sequence, a quasi-randomized low-
discrepancy sequence. In other words, the Sobol sequence covers the unit hy-
percube with lower discrepancy than a random sampling;

2. the generated experiment set is used to simulate the model outcomes;

3. the whole data set is then used to calculate the first-order indices and total-
order indices to mathematically represent the contribution of each input pa-
rameter and their interactions to the overall variance of the model outcome
1;

4. the first-order and total-order indices and their respective confidence bounds
are visually presented in a barplot with error bars.

However, the Sobol technique is computationally expensive for models with a large
number of input parameters. The model runs N, which is requisite to calculate Sobol
indices, increases linearly with the number of input parameters X so that the follow-
ing mathematical relationship applies: N = n(X + 2)

1 higher-order interactions such as the second-order interaction between two input parameters are
not considered in this analysis
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Figure 5.3: GSA decision tree.

This juxtaposition of the different GSA approaches shows clearly that the choice of
the “right” GSA method depends on the specific case. To simplify the decision, the
choice of the GSA technique will depend on two aspects: linearity and the average
speed of a model run. The resulting decision tree is presented in Figure 5.3.

Since the PyDICE is non-linear and fast (one model run takes around 2.7ms), this
study chooses to use the Sobol method for the GSA.



6 S C E N A R I O D I S C O V E R Y

After the stochastic simulation model is run over a carefully chosen set of different
combinations of input parameters, which describes sufficiently the input spaces, the
resulting set of experiments and their corresponding outcomes are first analyzed with
a combination of interactive visualization, statistical analysis, and sensitivity analy-
sis, as shown in Chapter 5. In the following step, a scenario discovery can be con-
ducted to illustrate vulnerable scenarios. It should be noted that scenario discovery
differs from more traditional sensitivity analysis because it seeks to describe regions
in databases of model results that have particular properties, rather than rank the
importance of different inputs in explaining the variance in the model output around
a small number of points [Saltelli, 2008].

In Section 6.1, two commonly used supervised machine learning techniques, namely
PRIM and CART, for scenario discovery are carefully described to only showcase their
shortcomings in a time-based stochastic simulation model. In Section 6.2, an alter-
native technique, namely time series clustering, is presented. As a complementary
technique to time series clustering, directed scenario search technique is proposed
in Section 6.3. Lastly, in Section 6.4, a systematic scenario selection method that
combines policy relevance and diversity, is illustrated.

6.1 prim & cart
Scenario discovery can be beneficial to characterize regions in the uncertainty space
that demonstrates particular patterns of interest and/or has an impact on the system
behaviour. In the framework of multi-scenario MORDM, scenario discovery allows
the analyst to define areas in the uncertainty space which remains vulnerable for
the defined candidate strategies. Traditionally, statistical or data-mining algorithms
are used to find interesting patterns in the multidimensional data set. Lempert et al.
[2006] proposed two methods for scenario discovery, the bump-hunting algorithm
PRIM and the classification algorithm, CART.

PRIM searches in the multidimensional data set for regions where values of the out-
comes are higher or lower than the predefined threshold. PRIM fits “boxes” to these
regions and thereby creates hyper-rectangular regions which consist of vulnerable
scenarios. Similar to PRIM, CART pursues to divide the space into subspaces. How-
ever, CART is “greedier” than PRIM as it splits the data at every step and thus re-
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stricting itself to an average of log2(N)1 splits. Thus it is more prone to fail to limit
important input parameters before it has utilized the full set of data.

However, there are two major downsides of using the above-mentioned methods
for scenario discovery in a time-based stochastic simulation model. First, putting
a threshold at a specific time point or a classification criterion like the mean on a
time series outcome may confound different model behaviours [Steinmann, 2018].
Moreover, Kwakkel et al. [2013] consider time series outcomes as a thread over time
(transient scenario) rather than a state at a specific time. Second, the use of PRIM
and CART for scenario discovery presumes that outcomes of the model can be repre-
sented by a single orthogonal input space. However, most often this is not the case
and this concern is acknowledged by many researchers [Lempert et al., 2006; Stein-
mann, 2018; Dalal et al., 2013].

To overcome those issues, Kwakkel et al. [2013] suggested using unsupervised ma-
chine learning algorithms to cluster the time series output into behavioural subsets.

6.2 time series clustering
In contrast to supervised algorithms where it is aimed to predict specific relationship
in a labelled data set, unsupervised algorithms are intended to discover interesting
aspects in an unlabeled set of data. Naturally, unsupervised algorithms are utilized
to organize an unlabeled data set into homogeneous clusters. The aim of unsuper-
vised algorithms is to minimize the similarity within a cluster and at the same time
to maximize the distinctness between clusters. Akin, time series clustering seeks to
set time series into clusters based on their similarity in behaviour. Thus, by utilizing
time-series clustering for scenario discovery, input subspaces, that have generated
unfavourable outcomes, can be discovered. Prior to the clustering itself, the pairwise
similarity or dissimilarity of the time series data must be computed.

In this research, the complexity-invariant distant (CID) measure for time series is
used to calculate the distance between every pair of time series. In CID, the distances
between pairs of time series data are calculated using Euclidean distance. In addition,
since time series can have a wide diversity of complexities, the Euclidean distance is
made complexity-invariant by adding a correction factor. When two-time series are
showing two diverging complexities than the correction factor simply increases the
Euclidean distance. The complexity of a time series is estimated by “stretching” it into
a straight line. Consequently, the time series complexity increases with the length of
the line Batista et al. [2014]. The CID is described by the pseudo-code algorithm 6.1.

Clustering can be divided into two styles of clustering, hierarchical clustering and
partitional clustering. The former does not specifically know how many clusters are
needed for a sufficient clustering and thus clusters are combined to their closest

1 N = Number of points in the data set
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Algorithm 6.1: Complexity-Invariant Distant (CID) measure for time series

1 def CID(a: array, b: array):
2 //deuc: euclidean distance
3 deuc ← (a1 − b1)

2

4 for i← 2, n do
5 deuc ← deuc + (ai − bi)

2

6 end
7 deuc ← √deuc
8 //ce: complexity estimator
9 cea ← (a1 − a2)

2

10 ceb ← (b1 − b2)
2

11 for i← 2, n − 1 do
12 cea ← cea + (ai − ai+1)

2

13 ceb ← ceb + (bi − bi+1)
2

14 end
15 cea ← √cea
16 cea ← √ceb

17 return d max(cea,ceb)
min(cea,ceb)

parent “clusters” from bottom-up (agglomerative). In partitional clustering, the ob-
servations are divided into pre-determined clusters. Thus, it can be concluded that
hierarchical clustering is an iterative partitional clustering style. This research uses
an agglomerative cluster analysis. In the beginning, each time series is first treated
as a separate cluster. In each step, the closest clusters are combined into a greater
cluster based on the distances between clusters calculated by the CID. The method is
terminated if a sufficient number of clusters has been determined.

In the case of scenario discovery, “sufficient” number of clusters is reached when
two main criteria can be satisfied: compactness and separability. This is important as
policies based on insufficient time series clustering can unintentionally aim outcomes
from different input spaces. To determine the appropriate number of clusters which
are separable and compact, Rousseeuw [1987] proposes to utilize the overall average
silhouette width. The silhouette describes for an observation (s(i)) the (dis)similarity
of co-members of the same clusters (a(i)) to (dis)similarity of members in other clus-
ters (b(i)). In other words, s(i) defines the quality of the clustering of the observation
to its cluster:

a(i) =
1

|Ci|− 1

∑
j∈Ci,i 6=j

d(i, j) (6.1)

b(i) = min
i 6=j

1
|Ci|

∑
j∈Ci

d(i, j) (6.2)
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s(i) =


1 − a(i)b(i), if a(i) < b(i)
0, if a(i) = b(i)
b(i)a(i)− 1, if a(i) > b(i)

(6.3)

The silhouette of an observation s(i) is above 1, when a(i) is smaller than b(i). If
s(i) is equal to zero, the “within” dissimilarity is approximately equal to the smallest
“between” dissimilarity. When the observation lies closer to members of other clusters
than to co-members, the s(i) is below 1. The average silhouette width describes the
quality of clustering for all observations of a cluster. To determine the overall quality
of the clustering for k number of clusters over the whole data set, the overall average
of s(i) for all observation i (overall average silhouette width) can be calculated. Thus,
the overall average silhouette width offers an excellent solution for this research to
determine the “right” number of clusters.

6.3 directed scenario search

Figure 6.1: Scenario Discovery using directed search over uncertainties and times series
clustering.

In the previous sections, vulnerable scenarios were selected from a data set that
was generated by sampling across a set of uncertainties using LHS. Even though, for
open exploration, LHS ensures that the uncertainty set is evenly sampled across the
experiment set, it is the cause of a pivotal drawback in scenario discovery. Finding
vulnerable scenarios using an LHS sampled data set depends on the analyst choice
on the number of scenarios to be considered for the experiment set. With an increas-
ing number of scenarios to be examined, uncertainties in the experiment set become
more definite. Theoretically, this intuitive reasoning is correct, however, it is almost
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impossible to validate it in practice. Thus, in this research, Time Series Clustering
in subsection 6.2 is complemented using the directed search technique over the un-
certainties. The directed search technique uses basically evolutionary algorithms to
generate Pareto optimal solutions to a many-objective optimization problem. Here,
the evolutionary algorithm ε-NSGA-II is applied to search over the set of uncertain-
ties in finding the worst-case scenarios for the worst optimum outcome. ε-NSGA-II is
explained in more detail in Section 7.1.1.

6.4 scenario selection
A very large diverse set of scenarios could generate a more distinct set of robust
policies. However, it is crucial to limit the small subset of scenarios for two main
reasons: (i) limited users/decision-makers attention to only a small number of sce-
narios and (ii) the computational constraint of policy evaluation over a larger set
of scenarios. Academic research in selecting the right number of scenarios is still at
early stages. Watson and Kasprzyk [2017] propose to use at first scenario discovery
to determine vulnerable scenarios and afterwards to choose specific values from the
uncertain parameter ranges that caused these vulnerabilities. However, this method
criticized mainly for the reason that the choice of a few values from the uncertainty
ranges is subjective and not subject to a systematic approach that rationalizes the
choice. As a consequence, Eker and Kwakkel [2018] introduce a systematic scenario
selection method that combines policy relevance and diversity in the search. In their
study, they first determine undesirable scenarios based on policy relevance in terms
of unwanted scenario conditions determined by the median values of the scenario
space/outcomes. In the second step, a small number of scenario is selected from the
earlier-defined subset of policy-relevant scenarios on the basis of a diversity criterion
as by Carlsen et al. [2016].

The diversity maximization approach of Carlsen et al. [2016] can be divided into two
steps:

1. After deciding on the number of to be selected scenarios K from scenarios M,
the distances between any scenarios di,j is determined by applying a distance
metric, like Manhatten distance or Euclidean distance, on the normalized out-
come variables fi,(k,j). Thereby, it is basically assumed that the distances be-
tween two scenarios are equidistant to the states of each outcome variable:

di,j =

√∑
i

( fi,j − fi,k)2 (6.4)

2. The diversity of the scenario set DKl is defined by the minimal distance and the
mean distance between the scenarios of the set Kl given the weight w. After
having calculated the diversity for each scenario set out of (M

K ) possible combi-
nations, the scenario set S∗K with the maximum diversity value is chosen:

DKl = (1 − w) min(dj,k) + w mean(dj,k) (6.5)
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S∗K = max[DKl ] where : l = 1...
(

M
K

)
(6.6)

Similar to the approach of Eker and Kwakkel [2018] and Carlsen et al. [2016], this
study first exploits time series clustering and directed scenario search to discover
policy-relevant future states of the world. From this subset of scenarios M, four
maximal diverse scenarios (K = 4) are selected based on the diversity criterion by
Carlsen et al. [2016].



7 P O L I C Y D I S C O V E R Y

This chapter is divided into two sections. Section 7.1 illustrates the search algorithm,
ε-NSGA-II, that is used in this study to find alternative candidate strategies. Next, two
different robustness criterion’s for comparing these strategies is discussed in Section
7.2.

7.1 directed policy search

7.1.1 Multi-objective evolutionary algorithms

In most cases, complex systems consist of many conflicting objectives. This means
that there is no single optimal policy but rather a set of policy alternatives, which are
Pareto efficient/optimal. This means that each policy of the set is non-dominant to
any other policy in the set. The most renowned search algorithms to discover a set
of non-dominated solutions are the many-objective evolutionary algorithm. Many-
objective evolutionary algorithms (MOEA) use evolutionary computing (such as ge-
netic algorithms or evolutionary strategies) to optimize over many conflicting objec-
tives and gradually to reach a set of Pareto efficient solutions. The inner workings of
the algorithms can be simply described as follows [Reed et al., 2013; Emmerich and
Deutz, 2018]:

1. A set of options are initialized on the basis of the objective target.

2. A generational loop is repeated as long as the termination criterion is met.

2.1 Within the loop, the most qualified options from the set is used to deter-
mine the next generation of alternative options.

2.2 A selection process takes place in which the least qualified options of the
current set are replaced by better performing options from the newly gen-
erated set.

Furthermore, MOEAs can be distinguished into three main paradigms: Pareto-based
MOEAs, indicator-based MOEAs and decomposition-based MOEAs. The main dif-
ference between those classes is the applied selection operator during the selection
process. Since Pareto-based algorithms are not only the largest class but also very
prominent within the MOEA community [Li, Yang and Liu, 2018], this study just
focuses on Pareto-based MOEAs.
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7.1.2 Pareto-based MOEA: ε-NSGA-II

A typical algorithm within the Pareto-based MOEA paradigm is the NSGA-II algo-
rithm. Instead of replacing the whole population at each search iteration, NSGA-II
was one of the first algorithms to utilize Pareto dominance and diversity preserva-
tion1 to search and to rank alternative options to determine a new population for
the next search iteration [Reed et al., 2013; Emmerich and Deutz, 2018]. The main
advantages of the NSGA-II algorithm are that it only uses a few configuration param-
eters and it can handle larger numbers of objectives without any issues. However, the
drawback of using NSGA-II algorithm is that convergence can neither be guaranteed
nor measured.

Figure 7.1: An illustrative example of epsilon dominance [Woodruff and Herman, 2013].

To make the search process more efficient, the NSGA-II algorithm was extended by
two features: the integration of the epsilon dominance in the sorting process and
the use of adaptive population sizing [Ward et al., 2015]. The accuracy level of
solutions can now be determined by utilizing Epsilon dominance. Subsequently, this
feature promotes diversity as it eliminates any alternative solution outside of the
space of epsilon dominance (see Figure 7.1). The efficiency of the search process is
also enhanced as adaptive population sizing allows to test alternative options with a
smaller option. If a more stable set is found, the population size can be increased to
ensure that better approximated Pareto optima can be discovered in each generation.
The resulting algorithm is called ε-NSGA-II. This research utilizes this algorithm to
not only to find Pareto efficient policies but also, as already mentioned in Section 6.3,
to discover Pareto efficient worst-case scenarios.

1 Crowding distance criterion: the crowding distance is determined by the “empty” space around a
solution.
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7.2 uncertainty analysis
After having discovered a non-dominated set of policies using ε-NSGA-II, an uncer-
tainty analysis is conducted to evaluate the robustness of the policies across a large
number of possible scenarios. Like in open exploration (see Section 5.1), Latin Hy-
percube Sampling is used to sample efficiently and evenly over the uncertainty space.
The resulting experiment set is used to calculate the robustness of the policies.

In this research, robustness is defined as the ability to maintain its function despite
unexpected external shocks or unpleasant external conditions. In line with this defi-
nition, a robust policy is defined as one that is able to perform well across a range of
possible scenarios [Kasprzyk et al., 2013; Walker et al., 2013; Herman et al., 2015;
Walker et al., 2001]. Further, metrics are used to operationalize the concept of pol-
icy “robustness” and facilitate comparison of proposed policy options, that perform
strongly under a range of plausible conditions. Further, it is suggested to chose more
than one metric as it may disclose different aspects in the robustness of the policy
[Kwakkel et al., 2016b]. In this study, two robustness metrics are used: minimax
regret and signal-to-noise ratio (SNR).

The minimax regret criterion, also known as Savage criterion, strives to minimize the
regret with respect to the worst-case. This metrics is considered as conservative, that
has a high level of risk aversion. The outcome of the metric ranges between 0 and 1,
where 0 indicates high robustness of the policy on the outcome and 1 indicates low
robustness. In contrast, the SNR criterion, derived from signal theory, uses the full
set of scenarios to provide a balanced perspective, which presents neither a low nor
high level of intrinsic risk aversion. To be more specific, the SNR criterion determines
the mean and the corresponding variance of a policy option over a set of different sce-
narios. The outcome of the SNR criterion ranges between 0 and 1, where 1 indicates
high robustness of the policy on the outcome and 0 indicates low robustness.



Part III

Results

“Things that have never happened before, happen all the time.” — Scott D. Sagan
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8 O P E N E X P LO R AT I O N

The goal of this chapter is to first explore the input space and the out space of PyDICE
before analyzing the impact of fat-tailed uncertainty on Nordhaus optimal policy in
Chapter 9. The results of the open exploration are presented in two stages: initial
exploration, indicating the possible range of the outcome space, in Section 8.1 and
global sensitivity analysis in Section 8.2.

8.1 initial exploration
To create an initial understanding of the dynamics and the effects of the implemented
uncertainties on the outcome space, the open exploration technique is utilized. In
particular, this is done by generating time series plots for each outcome. In addi-
tion, a boxenplot is added along the y-axis of each time series plot. This boxenplot
describes the statistical distribution of the outcomes in the year 2300. The design
of experiment (DOE) for this analysis is generated using Latin Hypercube Sampling
(LHS) to create an equal representation of the input space. Furthermore, to ensure
good coverage of the input space, PyDICE is simulated over 10000 different scenarios
and 50 different policies. This results in an experiment count of 500000. This set of
experiments was used to chart the time series plots and boxenplots in Figure 8.1. In
the following, we will analyze each outcome in more detail.

Figure 8.1a presents the time series outcome of the atmospheric temperature be-
tween 2010 and 2300. In general, it can be observed that for most cases, the atmo-
spheric temperature increases over time. Although the atmospheric temperature at
the year 2300 is dispersed between 0◦C and 20◦C, the boxenplot shows that in only
very few experiments, the temperature rises above 7.5◦C. The boxenplot also displays
rare extreme cases where atmospheric temperature ends up between 14◦C and 20◦C.

The time series outcome of the annual damages is displayed in Figure 8.1b. In gen-
eral, it can be observed that until 2060 annual damages are relatively robust. How-
ever, after 2060, the different annual damages show not only high dispersion but
also some non-linear behaviours. Moreover, the boxenplot shows that 25% of all ex-
periments result in annual damage of $300 trillion and above. This indicates a high
variance in the outcomes of the annual damages. The boxenplot also displays rare
extreme cases where annual damages end up around $1300 trillion. Furthermore,
between the year 2250 and 2300, a small dip can be observed for multiple scenarios.

52



8.1 initial exploration 53

(a)

(b)

(c)

(d)

Figure 8.1: Time series plots and boxenplots over every outcomes of interests.
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This dip is due to the optimal long-run savings rate (see Equation (4.2)) which is
used as a savings rate for the last 50 years.

Further, Figure 8.1c illustrates the time series outcome of the total output. Until
2070, the total output is relatively robust. However, from 2070 on, the pathways
of the experiments diverges. Although 75% of the runs rises above $2700 trillion in
2300, there are some rare cases where the value of the total output is below $250
trillion. Moreover, for some extremely rare cases, the total output is at $0. A zero
total output indicates that the whole world economy has collapsed. Please note, that
these values could have gone negative, but in order to reflect the real world, PyDICE
and DICE put a lower bound at $0.

Figure 8.1d illustrates the cumulative (discounted) utility over the full period. Thus,
the final year 2300 is of interest. Here, almost every experiment run returns a utility
value higher than $0 (and up to $30 trillion). However, there are still a few extremely
rare cases in which the utility is between $0 and $-60 trillion. These extremely low
values can only be explained by the fact that the world economy collapsed (total out-
put = $0) very early in time.

Summary

The embedded uncertainties in the PyDICE model trigger a wide range of differ-
ent results for the outcomes of interest. Moreover, this initial exploration has
shown that catastrophic outcomes are possible even though they are present
in only a few experiment runs. One of the main objective of this research is to
determine a set of robust policies on the basis of the precautionary principle
and thus each outcome is of equal importance.

8.2 global sensitivity analysis
Following the initial exploration, this section aims to identify the most influential un-
certainty parameter or combinations of uncertainty parameters on the outcomes of
interest. For this purpose, a variance-based global sensitivity analysis (GSA), namely
the Sobol method, is utilized. Hereto, the first-order indices S1 and total order in-
dices ST give a detailed mathematical representation of the contribution of each
uncertainty parameter and their interactions to the overall variance of the model
outcome. Since the Sobol method only enables sensitive analysis of the uncertainty
parameter on the outcomes at a specific point in time, the years 2050, 2100, 2150,
2200 and 2300 have been chosen to sufficiently represent the time axis. Although
in theory, Sobol scores can never be negative, in practice, negative values can occur.
Subject to the condition that the negative values are relatively small and have confi-
dence intervals that overlap zero, they can be interpreted as zero (see the confidence
intervals of the GSA in the Appendix C). Note that, the scores for the ECS distribution
must be interpreted with caution. The presence of the ECS distribution alone won’t
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have an effect on the outcome, because it only affects the model outcomes via the
sampled ECS value. Thus, the S1 score will be at all times zero. To determine the
relative influence of the ECS distribution on the outcome, the total order indices ST
is used. Moreover, the individual samples from the ECS distributions are also tracked
to analyze the impact of the real values on the outcomes of interest. For a more
nuanced discussion, each outcome is examined individually.

Atmospheric Temperature

The GSA on the outcome, atmospheric temperature, in Figure 8.2 shows that neither
the total availability of fossil fuel nor the TFP growth rate has a substantial impact.
Furthermore, the effects of the uncertainties price of backstop technology, damage
function and population growth rate are negligible, as the S1 and ST scores are below
0.001 over the whole time period. In contrast, the ECS value dominates the outputs
of atmospheric temperature. The S1 and ST scores for this uncertainty parameter is
respectively 0.49 and 1 for all time points besides the year 2300. This dominance is
no surprise, as the ECS parameter describes the temperature rise that would result
from a sustained doubling of the atmospheric equivalent CO2 concentration. For any
experiment run at any time point in which the emission is not equal to zero, the
ECS parameter will have a significant effect on the atmospheric temperature. At the
year 2300, the atmospheric temperature is more sensitive to the initial growth rate
of carbon intensity than the ECS parameter. The implication is that for multiple cases
in the experiment set, the carbon efficiency is 100% (i.e, emission to output ratio is
zero.) at the year 2300. The second most influential factor is the ECS distribution.
This indicates already our prior assumption based on Weitzman Dismal Theorem that
fat-tailed distributions have a substantial effect on the outcomes of interest.

Figure 8.2: Sobol indices for the outcome atmospheric temperature: Each cell illustrates
the (global) sensitivity of the uncertainties (rows) on the outcome variable for
the years 2050, 2100, 2150, 2200, 2300 (columns).



8.2 global sensitivity analysis 56

Damages

The GSA for the damage outcome is presented in Figure 8.3. Similar, to the GSA
of the atmospheric temperature, the damage outputs are most sensitive to the ECS
parameter and the initial growth rate of carbon intensity. Moreover, the sensitivity for
these parameters show the same trends as the GSA on the atmospheric temperature
outcome. Thus, many earlier conclusion can be applied to this GSA. What is different
though is the marginal higher impact of the applied damage function on the damage
outcome. Although the S1 score is only ranges between 0 and 0.13 over the whole
time period, the effect of the damage function in interaction with other uncertainty
parameters is relatively higher (up to 0.21).

Figure 8.3: Sobol indices for the outcome damages: Each cell illustrates the (global) sen-
sitivity of the uncertainties (rows) on the outcome variable for the years 2050,
2100, 2150, 2200, 2300 (columns).

Total Output

Figure 8.4 illustrates the GSA for the outcome parameter, total output. The Sobol
scores for the year 2050 indicates that the total output is solely dominated by the
population growth rate. However, after this time point, the preeminence of the popu-
lation growth rate declines rapidly whereas the total output becomes more and more
sensitive to the ECS parameter, the damage function and the initial growth rate of
carbon intensity. This shift in dominance between 2050 and 2100 is also reflected in
the time series plot earlier (see Figure 8.1c). Otherwise, the sensitivity of the total
outcome to the uncertainties is very similar to the two previous GSAs.

Utility

Lastly, the GSA for the utility outcome is illustrated in Figure 8.5. Although the
discounted utility at year 2300 is of interest for the decision-maker, analyzing the
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Figure 8.4: Sobol indices for the outcome total output: Each cell illustrates the (global)
sensitivity of the uncertainties (rows) on the outcome variable for the years
2050, 2100, 2150, 2200, 2300 (columns).

Figure 8.5: Sobol Indices for the outcome utility: Each cell illustrates the (global) sensitivity
of the uncertainties (rows) on the outcome variable for the years 2050, 2100,
2150, 2200, 2300 (columns)

utility over the full-time period can still present some interesting insights. The Sobol
scores for utility shows that the outcome is predominately influenced by the popu-
lation growth rate (S1 and ST ranges between 0.79 and 0.98). That is because the
utility function is population-weighted. Furthermore, it can be observed that the util-
ity becomes over time marginally more sensitive to the ECS parameter, the damage
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function and the initial growth rate of carbon intensity and the same time marginally
less sensitive to the population growth rate.

Summary

The variance-based GSA has presented the reader with an overview of the im-
pact of uncertainties on the four outcomes. Overall, the atmospheric temper-
ature, the damages and the total output are mainly sensitive to the ECS pa-
rameter and the damage function whereas the cumulative discounted utility is
predominantly affected by the population growth rate. Three main insight can
be derived from this GSA:

1. The two uncertain parameters, total availability of fossil fuels and TFP
growth rate have no effect on any of the four outcomes. The latter is in
particular surprising since Nordhaus [2008b] believed it to be the most
important uncertainty since it is one of the main drivers of long-run eco-
nomic growth (see Equation (3.1)). When moving to further analysis,
these two uncertain parameters are neglected.

2. In most of the GSAs above, it was also observed that the effect of the
initial growth rate of carbon intensity was substantially higher in the final
year in contrast to previous time points. The obvious implication of this
observation is that a faster improvement in carbon efficiency could yield
lower atmospheric temperatures and thus also lower damages.

3. For three out of four outcomes of interest, the GSA has shown that the
distribution of the ECS parameters is highly influential. In other words,
fat-tailed distributions can have a substantial impact on the outcomes of
interest.



9 A N A LY S I S O F N O R D H A U S O P T I M A L
P O L I C Y

In the Chapter 7, the input space and the outcome space of the PyDICE model was
explored using global sensitivity analysis (GSA) and open exploration respectively.
The reader should have now a sound understanding of the various behaviours of the
model. Moreover, they are the first indications that fat-tail distributions can have a
significant impact on the outcomes. The following chapter is exploring further this
presumption by utilizing Nordhaus optimal policy as the baseline policy. To this end,
Nordhaus optimal policy from the DICE model was converted into PyDICE variables.
The savings rate and control were approximated using the equations (4.1) and (4.2).
The following table displays the chosen input parameter in PyDICE to adequately
represent Nordhaus optimal policy:

Table 9.1: Nordhaus Optimal Policy in PyDICE parameters

The effectiveness of these policies levers on the total outcome has been verified by
utilizing a GSA over the these levers on the outcomes. The results of this GSA can be
found in Appendix C.

9.1 initial exploration
In order to create an underlying understanding of the implications of Nordhaus opti-
mal policy on the outcome, an experiment set is generated by simulating over 540000
different scenarios.

The experiment set is used to create pair plots. Pair plots are a great visualization
tool to illustrate the statistical relationship between multiple parameters. Figures
9.1, 9.2 and 9.3 present such a pair plot for the year 2050 and 2300 in which the
relationship between the outcomes of interest are displayed in designated scatter
plots. A third dimension has been added to the pairplots by coloring each point
based on the utilized distribution type for the ECS parameter (see Figure 9.1a,b), the
damage function (see Figure 9.2a,b) and the combination of damage function and
the distribution type (see Figure 9.3a,b). In the following, the relationship between
each outcome is systematically analyzed:

59
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(a)

(b)

Figure 9.1: For the year 2050 (a) and 2300 (b), pair plot over the outcome variable is pre-
sented. A third dimension is added to the pair plot by colouring each point
based on the utilized distribution type for the ECS parameter. Besides the
cells in the diagonal axis of the pair plot (which illustrates the distribution of
each outcome), each cell illustrates a scatter plot of two different outcomes of
interest.
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Atmospheric Temperature - Damages

From the scatter plot “Atmospheric Temperature - Damages” (TATM-D) in Figure 9.3a,
one is able to observe that, as the temperature in the atmosphere rises that the annual
damage grows exponentially. Furthermore, TATM-D reveals that the rise in damages
can follow three different trajectories. According to the TATM-D in Figure 9.1a, these
trajectories are caused by the three damage functions which are specified in PyDICE.
At the year 2050, where the atmospheric temperature ranges between 0◦C and 3◦C,
the curve with the highest slope has been induced by the damage function of New-
bold, whereas, at the same time, Weitzman damage function has the least impact
on the annual damages. But with rising atmospheric temperature over the course of
time, Weitzman damage function has the greatest repercussion on the annual dam-
ages (see Figure 9.2a).

Further, the highest points of all three curves are due to the Cauchy distribution.
The remaining points are caused by the log-normal distribution and the normal dis-
tribution in descending order (see Figure 9.1a). Additionally, it is also striking to
observe that catastrophic damages are attained when Weitzman damage function is
combined with the Cauchy distribution (see Figure 9.3a). Lastly, in the year 2300,
some scatter points demonstrate at higher temperature respectively lower damages.
That is, in these specific future states of the world, the world economy has collapsed
(total output has reached zero) or at the verge of collapse. Although in these scenar-
ios, zero-carbon is emitted, some damages will still occur as the accumulated carbon
in the atmosphere depreciate slowly over time (see Figure 9.3b).

Damages - Total Output

In Figures 9.1, 9.2 and 9.3 it is observed that, as the annual damage rises, the to-
tal output declines. But when total output is on the verge of collapse, the damages
gradually regress. Furthermore, the highest damages and lowest total output is pre-
dominately reached with the Cauchy distribution and for some few cases with the
log-normal distribution. Furthermore, as seen in TATM-D, the D-TO reveals that the
Newbold damage function has the highest impact in the first few decades when Dam-
ages are small due to relatively low atmospheric temperature. From the year 2100
onwards, Weitzman damage function is the most influential factor in the outcomes
of total output (see Figure B.2 of the Appendix B). Similar to the description above,
catastrophic outcomes (high damages and low to zero total output) are attained
when the Weitzman damage function is combined with the Cauchy distribution (see
Figure 9.3).

Atmospheric Temperature - Total Output

The scatter plots “Atmospheric Temperature - Total Output” (TATM-TO) in Figures
9.1, 9.2 and 9.3 shows that rising temperature leads to a decline in total output.
How fast the output declines depends largely upon the applied damage function from
Weitzman (highest impact), Newbold or Nordhaus (lowest impact). The TATM-TO
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(a)

(b)

Figure 9.2: For the year 2050 (a) and 2300 (b), pair plot over the outcome variable is pre-
sented. A third dimension is added to the pair plot by colouring each point
based on the damage function. Besides the cells in the diagonal axis of the pair
plot (which illustrates the distribution of each outcome), each cell illustrates a
scatter plot of two different outcomes of interest.
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in Figure 9.1b shows a further interesting observation. The total output appears to
be very robust for the normal distribution. This is mainly because the maximum
atmospheric temperature of using a normally distributed ECS parameter is around
5◦C and thus not high enough to trigger disastrous outcomes in the model world.
However, it can also be observed in the TATM-TO of Figure 9.3b, that the Cauchy
distribution nor the log-normal distribution alone have a substantial impact on the
total output but only in combination with damage function of Weitzman or Newbold.

Atmospheric Temperature - Utility

From the scatter plot “Atmospheric Temperature - Utility” (TATM-UTIL) in Figures
9.1, 9.2 and 9.3, one is able to observe that, the utility can follow atmospheric tem-
perature on two different trajectories. The first trajectory is very stable around the
cumulative discounted utility of $2 trillion. However, in the case of the second tra-
jectory, the cumulative discounted utility declines as the atmospheric temperature
rises. The second curve is solely caused by the Weitzman damage function whereas
the first trajectory is mainly due to the damage function of Nordhaus and Newbold.
To be more specific, values below $2 trillion for the cumulative discounted utility is
only reached in conjunction with Cauchy or log-normal distribution (see Figure 9.3).

Damages - Utility

Once again two different trajectories for the cumulative discounted utility is discov-
ered in the scatter plot “Damages - Utility” (D-UTIL) in Figures 9.1, 9.2 and 9.3. The
first trajectory is very stable around the cumulative discounted utility of $2 trillion.
In the case of the second trajectory, the cumulative discounted utility declines as the
damage rises. However, in the year 2300, some scatter points demonstrate at lower
damages respectively lower utility. That is, in these specific future states of the world,
the world economy has collapsed at a certain point in time. Hence, the expected util-
ity in these scenarios for Nordhaus optimal policy is naturally alarming. In fact, this
second trajectory is triggered by the Weitzman damage function in combination with
the Cauchy or log-normal distribution (see Figure 9.3).

Utility - Total Output

The scatter plot “Utility - Total Output” (UTIL-TO) of Figure 9.3b shows an exponen-
tial relation between utility and total output. As long as the total output is around
zero, the expected cumulative discounted utility ranges between around -$4 trillion
and $0. But from the moment, the expected utility becomes positive, the total output
increases exponentially to the utility. Furthermore, the scenarios, in which total out-
put at the year 2300 is lower than $1.2 trillion, comprises Weitzman damage function
in conjunction with Cauchy or log-normally distributed ECS parameter.
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(a)

(b)

Figure 9.3: For the year 2050 (a) and 2300 (b), pair plot over the outcome variable is pre-
sented. A third dimension is added to the pair plot by colouring each point
based on the combination of damage function and the distribution type. Be-
sides the cells in the diagonal axis of the pair plot (which illustrates the dis-
tribution of each outcome), each cell illustrates a scatter plot of two different
outcomes of interest.
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Summary

The analysis has illuminated the relationship between the outcomes of interest
in great detail. The most intriguing insight from this exploration is that catas-
trophic outputs in any of the four outcomes are only attained for scenarios
which comprise of Weitzman damage function and fat-tailed ECS parameter. It
can also be derived as fatter the tail of the distribution becomes, the more se-
vere are the consequences. Lastly, this analysis has also shown that the optimal
policy of Nordhaus is not robust for a set of scenarios.
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9.2 statistical analysis
Using a simulation approach has the main advantage that the generated data set
can be used to quantify the effects of input parameter on the outcome. In this re-
search, the generated data set is specifically used to understand the effects of the
fat-tailed ECS parameter and the different damage functions on the outcomes at the
time points 2050, 2100, 2150, 2200, and 2300. The statistics of the data set, namely
mean, standard deviation and percentiles/quantiles, are given in the tables of the
Appendix D as well as visualized in boxenplots (see Figures 9.4, 9.5 and 9.6). From a
risk management perspective, the 1st and 5th percentile for the outcomes, total out-
put and utility, is of interest, since both percentiles can be used to describe the risk of
the particular treatment by means of a single descriptive key figure. Further, to allow
a better reading experience, the Cauchy, log-normal and normal distributed data set
are abbreviated to Cauchy, Log-normal and Normal. Similarly, the data sets that are
treated by damage function of Nordhaus, Newbold and Daigneault, and Weitzman
will be abbreviated to Nordhaus, Newbold and Weitzman, respectively.

9.2.1 Effect of Fat-Tailed ECS Parameter

Figure 9.4: Distributions of the simulation outcomes for the three ECS distribution func-
tions at the time points 2050, 2100, 2150, 2200 and 2300 are illustrated in box-
enplots.
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It is observed that the distributions with high kurtosis for the ECS parameter exhibits
a respective high tail in atmospheric temperature. Further, it is interesting to note
that the inclusion of a fat-tailed distribution on the ECS parameter has a significant
effect on the “taildness” of the other outcomes. This findings coincides with the dis-
coveries in Section 9.1. Furthermore, Figure 9.4 shows that the tail for all outcomes
is increasing with time. The magnitude of the fat-tailed parameter can be quantified
by using the statistical description of the generated data set (see Table D.1).

Total Output

Table D.1c) displays that the average outcome of the total output parameter is very
similar for all three distribution. Moreover, there is no significant difference in the 5th
percentile of the total output between the different types of distributions. However,
there is a substantial difference in the 1% risk. For the year 2100, the 1% value at
risk for Cauchy is $100 trillion lower than for Normal. As the world economy grows,
the 1% risk threshold further diverges between Cauchy and Normal (up to 80% in
year 2200). The same patterns can also be observed by comparing the statistics of
Log-normal and Normal. For the year 2100, the 1% value at risk decreases by $23
trillion.

Utility

Table D.1d) reveals that the choice of distribution has in average a negligible effect
on the cumulative discounted utility (utility at the year 2300). Moreover, there is not
a significant difference in the 5th percentile of the utility between the three distribu-
tions. On the other hand, the distribution type has a significant impact on the value
at 1% risk. The 1% value at risk for Cauchy is $659 trillion (27%) lower than for
Normal. In the case of Log-normal, the difference in utility at the 1st percentile is
“only” $85 trillion (3% lower).

9.2.2 Effect of Damage Function

The statistical analysis shows that depending on the utilized damage function, higher
damage is generated by the model. However, it is interesting to note that the impact
of the damage function also traverse through the other outcomes. This findings coin-
cides with the discoveries in section 9.1. To quantify the effect of damage function,
the statistical description of the generated data set is utilized (see Table D.2).

Total Output

Table D.2c) reveals that the average outcome of the total output parameter is for
all three damage function more or less the same. However, there are substantial
differences between the damage function for the 1% and 5% value at risk. For the
year 2150, the 5% risk of total output for Weitzman is 41% lower than for Nordhaus.
In case of Newbold, the total output is 11% lower. When comparing the 1% risk of
total output, the influence of the damage function on the total output is even greater.
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For instance, in 2150, the 1% risk of total output for Weitzman is 81% lower than
Nordhaus.

Figure 9.5: Distributions of the simulation outcomes for the three damage functions at the
time points 2050, 2100, 2150, 2200 and 2300 are illustrated in boxenplots.

Utility

Similar to the total outcome, table D.2d) shows that the average cumulative dis-
counted utility is almost identical for all three damage function. A noteworthy differ-
ence between the different treatment in damage function has not been found for the
5% value at risk. However, the case is different for the 1% value at risk. Here, the
1% risk of total output for Weitzman is 31% lower (-$754 trillion) than for Nordhaus,
and only 3% lower than for Newbold.

9.2.3 Effect of Damage Function and Fat-Tailed ECS Parameter in Combination

At last, the effect of the distribution types in combination with the damage functions
is analyzed by utilizing the tables D.3, D.4, D.5 and D.6, and the figure 9.6. The
boxenplots in figure 9.6 demonstrates clearly that the risk in the outcomes are the
product of the damage function and probability function of the ECS parameter. In
other words, the larger the kurtosis of the ECS parameter and the greater the impact
of the damage function, the higher is the risk of experiencing an unprecedented event.



9.2 statistical analysis 69

Therefore, the highest risk is carried by scenarios with Weitzman damage function
and Cauchy distributed ECS parameter.

Figure 9.6: Distributions of the simulation outcomes for the nine different combinations
between the three damage functions and the three ECS distribution types at
the time points 2050, 2100, 2150, 2200 and 2300 are illustrated in boxenplots.

Total Output

Table D.5 reveals that the average outcome of the total output parameter is for all
nine combinations of damage function and distribution type about the same size, ex-
cept for the year 2150. Here the average value of combination with Weitzman was
around 6% lower than the combination of Nordhaus and Normal. Moreover, sub-
stantial differences between the combinations is found for the 1% and 5% value at
risk. For instance, in 2150, the 5% risk of total output for Weitzman and Cauchy is
53% lower than for Nordhaus and Normal. In 2200, the 1% risk of total output for
Weitzman and Cauchy is 96% lower than for Nordhaus and Normal. Further combi-
nations that have significant lower 1% value at risk than the Nordhaus and Normal
combination are Weitzman and Log-normal (up to 68% lower (2150)), Weitzman
and Normal (up to 55% lower (2150)) and Newbold and Cauchy (up to 38% lower
(2200)).
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Utility

Table D.6 shows that the average cumulative discounted utility is almost identical for
all combinations. A noteworthy difference for the 5% cumulative discounted utility
value at risk has only been found for the combination Weitzman and Cauchy. In con-
trast to the conventional combination of Nordhaus and Normal, the 5% value at risk
for the cumulative discounted utility is around 7% lower (-$180 trillion) for the com-
bination Weitzman and Cauchy. A far more significant impact is found for 1% value
at risk. Here, the utility at 2300 for the combination Weitzman and Cauchy is 69%
(-$1705 trillion) lower than the conventional combination. Other combinations that
have noticeable lower cumulative discounted utility than the combination Nordhaus
and Normal are Weitzman and Log-normal (14% lower), Weitzman and Normal (7%
lower) and Newbold and Cauchy (6% lower).

Summary

The statistical analysis has shown that the 1% value at risk for the outcomes,
total output and cumulative discounted utility, distinguish significantly depend-
ing on the ECS distribution. Moreover, these differences in risk are dispropor-
tionately amplified by the damage function, so that substantial differences has
been observed at the 5% value at risk. Furthermore, from the findings above,
it can be deduced that the risk for extreme events are at first instance car-
ried by the damage function (in the following order: Weitzman, Newbold and
Daigneault, and Nordhaus) and only subsequently influenced by ECS distribu-
tion (in the following order: Cauchy, log-normal, and normal). This verifies
the observations from the initial exploration in Section 9.1. By quantifying the
difference in the outcomes for the 1% and 5% value at risk, the significance
of fat-tailed ECS paramater and damage functions similar to Weitzman on the
outcomes has been demonstrated.
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9.3 scenario discovery
After the initial statistical analysis and exploration of the outcome space, in this sec-
tion, scenario discovery in form of time series clustering and directed scenario search
is applied to describe regions in the database, that have particular properties of in-
terest. The time series clustering is conducted over an experiment set of 30000 sce-
narios. A relatively smaller number of scenarios has been chosen to not only avoid
extremely lengthy computation but also to reduce the carbon footprint of this thesis
[Strubell et al., 2019].

9.3.1 Time Series Clustering

Figure 9.7: The average silhouette widths of CID-generated for k amount of clusters (k =

[2, 13]).

Before time series of the outcome parameter are aggregated into clusters, one has
to determine the number of clusters which satisfy the two main criteria: separability
and compactness. This is important as policies based on insufficient time series clus-
tering can unintentionally aim outcomes from different input spaces. The number of
clusters is determined by calculating the silhouette width. The concept of silhouette
width is explained in more detail in Section 6.2. In principle, the cluster number
with the highest silhouette width is chosen. But even though the silhouette width is
a good indicator for choosing the “right” number of clusters, the final decision relies
upon the analyst after visual inspection.

Based on the silhouette width (see Figure 9.7) and a visual inspection, the following
cluster number are chosen for the outcome parameters:
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Table 9.2: Number of chosen clusters for the outcome parameter

In the following, for each outcome variable, the generated clusters are investigated
with the goal to identify vulnerable regions. Therefore, the uncertainty space for the
least “favourable” clusters is also illustrated in a parallel coordinate plot.

Atmospheric Temperature

Figure 9.8: For the outcome atmospheric temperature: a) Time Series Clustering; b) Input
space of the undesired cluster.

The outcomes of the atmospheric temperature are aggregated into three different
clusters. Figure 9.8a, shows that each cluster can be examined by their behaviour:

• Blue Cluster: The temperature in the atmosphere grows rapidly until the year
2150. Afterwards, the atmospheric temperature follows three different trajecto-
ries. Some few scenarios still rise up to 12◦C, others start to stabilize between
6◦C and 8◦C, whereas, in few other scenarios, the atmospheric temperature
drops down to 2◦C.
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• Green Cluster: The atmospheric temperature rises until 2150 up to 6◦C. It stays
stable for another 50 years and then sharply declines for most cases to temper-
atures between 0◦C and 2◦C. However, some outliers terminated at 6◦C.

• Yellow Cluster: Until the year 2100, the atmospheric temperature increases
slowly up to 2◦C. It stays stable for another 50 years and then declines to a
temperature between 0◦C and 1◦C.

Lower temperatures are desirable outcomes and therefore the clusters can be ranked
(from undesirable to desirable) as follows: blue, green and yellow. In order to inves-
tigate the root cause for those outcomes, the uncertainty space of the green cluster
(305 scenarios), is plotted in a parallel coordinates plot (see Figure 9.8b. This visual-
ization is often utilized to understand the trade-offs/relationship between variables.
Hereby every uncertainty is placed at an axis parallel to others. Uncertainty values
are plotted as a series of lines, representing the analyzed set of scenarios. The high-
lighted lines reflects the input space of the undesired cluster. Thus, from figure 9.8b,
it can be deduced that high atmospheric temperatures are only obtained in scenar-
ios with ECS parameter that underlies a fat-tailed distribution. Furthermore, many
scenarios in the blue cluster, a trade-off between the population growth rate and the
initial growth rate of the emission to output ratio as well as the price of back stop
technology and the initial growth rate of the emission to output ratio is discernible.

Damages

The annual damage outcomes are aggregated into four different clusters. Figure 9.9a,
shows that each cluster can be classified by their behaviour:

• Yellow Cluster: The annual damages starts to grow after the year 2050. After-
wards, it follows various different trajectories. The boxenplot at the end of the
time series plot shows that around 75% of all scenarios terminates about $0,
many of the remaining scenario between $0 - $200 trillion and some very few
scenario are found around $600 trillion.

• Green Cluster: Here the annual damages remains stable for very low value
(≈ $100 trillion) until 2300.

• Blue Cluster: Similar to the yellow cluster, the annual damages starts also to
grow after the year 2050. Afterwards, the scenarios follows various different
growth trajectories. 50% of all scenarios in the blue cluster ends up between
$700 - $1100 trillion. Further, 25% of the scenario have caused a damage
between $1100 - $1200 trillion for the year 2300, whereas the remaining 25%
have caused only damages between $300 - $700 trillion.

• Purple Cluster: Here the annual damages remains stable for very low value
(≈ $0) until 2300.

As higher damages are undesirable outcomes, the clusters can be ranked (from unde-
sirable to desirable) as follows: blue, yellow, green and purple. Thus, the 156 scenar-
ios in the blue cluster are examined in detail (see Figure9.9b). It can be inferred that
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high damages are never obtained for scenarios which consist of the Nordhaus dam-
age function and/or a thin-tailed ECS parameter. Furthermore, none of the scenarios
in the blue cluster contains log-normal distributed ECS parameter and the damage
function of Newbold and Daigneault, at the same time.

Figure 9.9: Clustered space of the outcome damages: a) Time Series Clustering; b) Input
space of the undesired cluster.

Total Output

The outcomes of total output are aggregated into four different clusters. Figure 9.10a,
shows that each cluster can be classified by their behaviour:

• Yellow Cluster: Whereas for some scenarios in this cluster, total output grows
steadily over time, others decline between 2100 and 2150 just to rise again.
In most cases, the total output terminates around $2700 trillion. Some few
outliers end up around $1900 and $2300 trillion.

• Green Cluster: After the total output increases slowly for the first 90 years, it
stagnates between 2100 and 2200. For the last 100 years, the total output rises
again to terminate between $500 and $1000 trillion in 2300.

• Blue Cluster: Total output increases until 2050. From here, two trajectories
are observed. In the first trajectory, the total output declines steadily over time
until it reaches zero total output whereas, in the second trajectory, the output
declines until 2200, just to rise again and to terminate around $400 trillion.
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• Purple Cluster: Similar, to the yellow cluster, total output increases until 2100.
From here, two different trajectories can be found. One set of scenarios decline
between 2100 and 2150 in total output and has stagnated until 2200, whereas
the other scenarios has experienced a creeping total output growth until 2200.
From 2200, the total output for all scenarios rises again and they finally termi-
nate between $1200 - $2300 trillion.

Figure 9.10: For the outcome total output: a) Time Series Clustering; b) Input space of the
undesired cluster.

As higher total output is desired, the clusters can be ranked (from undesirable to
desirable) as follows: blue, green, purple and yellow. From the parallel coordinate
plot in Figure 9.10b, one can deduct that the outcomes from the blue, green and
purple clusters are only reached for scenarios that comprise of the damage function of
Weitzman or Newbold and a fat-tailed ECS parameter. Trade-off or other interesting
relationship between the other uncertainty parameters has not been found. Theses
three clusters contains 184 scenarios.

Cumulative Discounted Utility

The discounted utility outcomes are aggregated into three different clusters. Figure
9.9a, shows that each cluster can be examined by their behaviour:

• Blue Cluster: The utility grows over the time period and closes around $2700
in 2300.
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• Yellow Cluster: Around 75% of the scenarios in the yellow cluster has shown
exactly the same behaviours as the scenarios in blue cluster, but for a lower
growth rate. Therefore, those scenarios have a cumulative discounted utility
between $300 - $1500 trillion. The other 25% of the scenarios has experienced
a decline after 2100, so that the cumulative discounted utility for these scenar-
ios are between $300 - $-1500 trillion.

• Green Cluster: Interestingly, on the basis of the complex-invariant distance met-
rics, a time series has been clustered into an own cluster. Thus, one can deduce
that this outcome illustrates a very extreme event. In this scenario, the cumula-
tive discounted utility is at $-3800 trillion.

Figure 9.11: For the outcome cumulative discounted utility: a) Time Series Clustering; b)
Input space of the undesired cluster.

High cumulative discounted utility is preferred and therefore the clusters are ranked
(from undesirable to desirable) as follows: green, yellow and blue. From the Figure
9.8b, it can be concluded that for the outcomes for a yellow and green clusters are
only attained for scenarios which consist of the damage function of Weitzman and
fat-tailed distributed ECS parameter. The green and yellow cluster comprises of 76
scenarios.
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Summary

The bottom line of this analysis is to a large extent comparable to the insights
found in the statistical analysis and the initial exploration of the output space
(see Sections 9.2 and 9.1). But in contrast to prior analysis, the time series
clustering allows the researcher to take a relatively unbiased approach in iden-
tifying unfavourable scenarios. Firstly, this analysis has shown that undesirable
outcomes can never be attained for scenarios that consist of normal distributed
ECS parameter. Moreover, under the discovered set of undesirable scenarios,
Nordhaus damage function has only been found in scenarios which led to high
atmospheric temperature. Lastly, the scenario discovery demonstrates that the
outcomes, damages, total output and utility are only vulnerable to scenarios
with a damage function of Weitzman or Newbold and a fat-tailed ECS param-
eter. Furthermore, the prior findings of the statistical analysis and the initial
exploration can be verified as this investigation has shown that that the dispro-
portional risks in the tail of Cauchy and log-normal distribution can only be
translated into catastrophic outcomes by damage functions akin to Weitzman
or Newbold and Daigneault. Lastly, this analysis has also shown that the opti-
mal policy of Nordhaus is vulnerable for 328 out of 30000 (≈ 1.1%) scenarios.

9.3.2 Directed Scenario Search

To overcome the pitfall of using Latin Hypercube sampled data set for the scenario
discovery, it is complemented by the directed search technique over uncertainties (see
Section 6.3 for an in-depth explanation). Hereby, the many-objective evolutionary
algorithm (MOEA), ε-NSGA-II, is applied to search over the set of uncertainties (see
Table 4.3) in finding scenarios which worsens the objectives of this study (see Table
4.1). For 100000 number of function executions, 414 scenarios have been found.
Furthermore, it can be noted, that these 414 scenarios are different to the discovered
scenarios from time-series clustering. The uncertainty space of those scenarios is
presented in 10.1.

Figure 9.12: Uncertainty space of the worst case scenarios from the directed scenario
search.
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It is noted that the uncertainty space of the worst-case scenarios (see Figure 10.1)
corresponds to a large extent with the uncertainty space of the discovered vulner-
able scenarios using time series clustering. Undesirable outcomes are in particular
attained for scenarios which comprise either of the Weitzman damage function and
a fat-tailed ECS parameter or one of the three damage functions and a Cauchy dis-
tributed ECS parameter. Furthermore, many of the worst-case scenarios consist of
a slow population growth rate. In Section 8.2, the global sensitivity analysis has
demonstrated that this particular parameter can have a significant impact on the
utility (see Figure 8.5).



10 P O L I C Y D I S C O V E R Y

In Section 9.3, vulnerable scenarios for Nordhaus optimal policy have been deter-
mined using time series clustering and directed scenario search. In this chapter, these
scenarios are used to determine policy alternatives. To this end, in Section 10.1 four
maximal diverse scenarios are selected from the identified vulnerable scenarios by
utilizing Carlsen et al. [2016] diversity criterion. Next, Section 10.2 uses ε-NSGA-II
algorithm to identify alternative candidate strategies for each of the four maximum
diverse scenarios. Lastly, Section 10.3 uses the signal-to-noise ratio criterion and the
minimax regret criterion on the identified candidate strategies from Section 10.2 to
determine the ten most robust candidate strategies.

10.1 scenario selection
Although a very large set of scenarios could generate a more pronounced set of ro-
bust policies, only a limited number of scenarios can be used in the context of MOEA
algorithm due to computational limitations. Therefore, a small number of scenarios
from a policy-relevant ensemble of scenarios are selected based on the diversity max-
imization approach of Carlsen et al. [2016] (see Section 6.4).

Table 10.1: Selected scenario based on diversity and policy relevance for alternative policy
determination.

A policy-relevant of 742 scenarios are deduced from the findings of scenario discovery
in Section 9.3. As this represents still a large set of scenarios, a subset of scenarios are
selected by prioritizing the results from directed search scenario and the time series
clustering over the outcomes of cumulative discounted utility. This results in a subset
of 490 scenarios. From the set of policy-relevant scenarios, four (K = 4) maximally
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diverse scenarios regarding their outcomes are selected. This diversity selection is
done by using Carlsen et al. [2016] diversity criterion over 2.37 billion subsets with
size 4 (see Section 6.4). The findings of this selection procedure are presented in
Table 10.1.

Figure 10.1 illustrates the policy-relevant scenario space of 490 scenarios in pairwise
scatter plots. This figure validates that the chosen four scenarios (coloured in yel-
low, green, blue, purple) are indeed located in distant edges of the policy-relevant
scenario space.

Figure 10.1: Results of the scenario selection algorithm illustrating the K=4 maximum di-
verse scenarios (coloured in yellow, green, blue, purple) from N=490 policy
relevant scenarios (light grey).

10.2 directed policy search
In this section, the four selected scenarios are now utilized to generate candidate
strategies. These non-dominated set of candidate strategies are identified by using
the ε-NSGA-II algorithm over each chosen scenario individually. Furthermore, a con-
straint is put on the outcome space, assuming that the global community prioritizes a
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positive cumulative discounted utility and an atmospheric temperature below 4◦C at
all time. Even with the constraints, the MOEA algorithm has found 49, 16, 36 and 12
alternative candidate strategies for the scenarios 102, 354, 467 and 473 respectively.
The convergence of the algorithms for each scenario is presented in Figure 10.2.

Figure 10.2: Epsilon progress for each maximum identified scenarios.

Moreover, Figure 10.3 illustrates the trade-off within the candidate solution for each
scenario. There are considerable differences in number but also in the trade-off
for each scenario. This is mainly due to the diversity between the scenarios. For
instance, for scenario 473 (see Figure 10.3d), which can be considered as the worst
case scenario among the four chosen scenarios, only 12 candidate strategies have
been found.

Figure 10.3: Candidate strategies generated for the a) scenario 102, b) scenario 354, c) sce-
nario 467, d) scenario 473.
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Here, the policy set comprises of very low savings rate (SR), very low to medium
pure rate of social time preference (IRSTP) and a very early emission control rate
target (ECRT) at 2060. Similarly for the scenario 354 (see Figure 10.3b), which can
be considered as the best case, the MOEA has only found 16 candidate strategies
which comprise of low SR, relatively high IRSTP and an ECRT for 2060. In contrast,
candidate strategies for the scenarios 102 and 476 cover the full range for the policy
levers SR and IRSTP. But then again, these candidate strategies impose, similar to
the other policies, the ECRT between 2060 and 2080.

Moreover, a trade-off between SR and IRSTP are observed (see Figure 10.3b,d). If
a very high IRSTP is chosen by the policy maker, catastrophic outcomes can only
be averted if the SR is low. In fact, it implies that the global social planner intends
to maximize utility, by setting savings rate low so that consumption can increase.
Thereby it sacrifices the growth of the total output, since lower savings rate would
mean lower investment and that eventually would lead to a decrease in capital/as-
sets.

10.3 uncertainty analysis
After having found a Pareto approximated set of 113 candidate strategies, these
strategies are evaluated in terms of their robustness against a large number of al-
ternative future states of the world. For this purpose, a data set is generated in which
the candidate strategies are simulated over N=10000 different future states of the
world. Subsequently, the data set is used to calculate the robustness of the candidate
strategies according to the metrics that have been selected (see Section 7.2).

As this study strives to find a robust policy on the basis of the precautionary princi-
ple, the minimax regret criterion and signal-to-noise ratio (SNR) criterion are used
to determine the robustness Weitzman [2013]. The minimax regret criterion, also
known as Savage criterion, is considered within the academic community as a high
risk-averse metric McPhail et al. [2018]. It strives to minimize the regret with respect
to the worst-case. In contrast, the SNR criterion is a more balanced risk averse metric
that examines the mean and variance of the performance of the candidate strategies
over multiple scenarios. Moreover, a robustness threshold has been chosen to ensure
that only high-performing policies move forward. A subsidiary effect is that the re-
duction to few policies allows a better interpretation of the candidate strategies for
the decision-maker and the analyst. Thus, only the ten most robust policies for each
criterion are taken into account.

Signal-to-Noise Ratio

By applying the SNR criterion and subsequently calculating the average SNR over the
robustness values of the outcome parameters1, a final set of the 10 most robust can-

1 The cumulative discounted utility is weighted by 5 to adjust the overvaluation of the parameters
total output, atmospheric temperature and total output.
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didate strategies (SNR policies) are derived. These policy alternatives are presented
in Figure 10.4 and in Figure E.1.

Figure 10.4: The 10 most robust polices after applying the SNR criterion.

Both figures illustrate clearly that the performance of the 10 candidates strategies for
the outcomes, atmospheric temperature, damages and total output, is getting better
at each time point. Furthermore, a trade-off between the robustness performance for
damages and total output is detected but only for the year 2050. For the remain-
ing time period, Figure E.1 illustrates that the robustness for both metrics can be
achieved without sacrificing for either parameter’s robustness performance.

Figure 10.5: Comparison of the SNR policies to Nordhaus optimal policy.

Moreover, a trade-off in robustness is also identified between the parameters total
output and cumulative discounted utility. This trade-off especially stands out at the
year 2150 when comparing policy 14 and policy 33. Lastly, the Figure 10.4 present
that the policies are in average similarly (average SNR: 0.81-0.84) robust.

Recognizing that the chosen policies are robust across many objectives, Nordhaus
optimal policy is compared to the identified robust candidate strategies. For a bet-
ter comparison, the policy space is illustrated in Figure 10.5. The difference in the
policy proposal of Nordhaus to the SNR proposed policies is striking. In contrast to
Nordhaus optimized policy, the SNR policies have not only a very low rate of social
time preference (IRSTP), but also an early emission control rate target (ECRT). To
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be more specific, the Nordhaus ECRT (= 2155) is at least 85 years apart from the
ECRT of SNR policies. Furthermore, the savings rate for the identified set of robust
policies varies between the values 0.10 and 0.38. Moreover, for four SNR policies
(12, 14, 70 and 88) higher savings rate relative to Nordhaus has been observed. By
examining these four policies in detail, one could observe that these high savings rate
are balancing out the effect of either high IRSTP or late ECRT (relative to other SNR
policies). As a (relatively) late ECRT will yield higher climate damages and thereby
affects the total output negatively, a higher savings rate can have a counter effect by
increasing the investment, that again rises the gross output. However, note that high
savings rate diminishes the utility, especially when a high IRSTP has been chosen.
After applying the minimax regret metric and calculating the average minimax regret
over the robustness values of the outcome parameters2, the final set of 10 robust
candidate strategies are presented in Figure 10.6 and in Figure E.2.

Minimax Regret

Figure 10.6: The 10 most robust polices after applying the minimax regret criterion.

Similar to the robustness scores from the SNR policies, one can observe from both
figures that the chosen robust policies in terms of atmospheric temperature, damages
and total output are getting closer to zero regrets over time. Moreover, a trade-off
between damages and total output is apparent in the first two time points, but in
the long run, these trade-off balances out. Another clearly discernible trade-off is
between total output and the cumulative discounted utility. In particular, the policies
34, 64, 65, 70 and 72 highlight this trade-off. Other candidate strategies, such as
the policies 11, 12, 14 and 29, cancel this trade-off over time. Although all chosen
policies are relatively robust, the candidate strategies 12 and 34 are still standing out
in the midst of those policies. Whereas policy 12 constitutes minimal compromise
on the regret across all outcomes of interest, policy 34 is extremely robust for total
output over the whole time period.

2 The cumulative discounted utility is weighted by 5 to adjust the overvaluation of the parameters
total output, atmospheric temperature and total output.
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In the following, Nordhaus optimal policy is compared to the identified robust can-
didate strategies (MiniMax policies). For a better comparison, the policy space is
illustrated in Figure 10.7.

Figure 10.7: Comparison of the MiniMax policies to Nordhaus optimal policy.

One can immediately recognize that most MiniMax policies are a mirror image of the
Nordhaus optimal policy for all policy levers. However, one should not conclude that
this demonstrates a trade-off in policy options. This becomes apparent when taking
a closer look at candidate strategy 70. Although it shows a similar SR (= 0.245) to
the SR (= 0.248) of Nordhaus optimal policy, the candidate policy 70 comprises a far
lower IRSTP (= 0.002405) and sets a very much earlier emission control rate target
for 2060. Besides the candidate strategies 64 and 70, the other MiniMax policies
have much higher savings rate. A high savings rate implies in the RCK growth model
high investment. And as investment increases, capital is accumulated, which again
increases the gross output. As discussed earlier, this is essential in the DICE model to
sustain high abatement costs and/or damages. However, in return, high savings rate
reduces the consumption so that a loss in utility must be accounted for. Furthermore,
similar to the SNR policies, all candidate strategies have very low IRSTP. That is jus-
tifiable as low IRSTP results in a low discount rate. And the lower the discount rate,
the higher is the utility. However, what is even more astonishing is that each candi-
date strategies sets a target for emission control between 2060 and 2070. In other
words, in order to protect the world against disastrous outcomes, a zero-emission
target must be reached at the latest by the year 2070.
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Summary

From Figures 10.5 and 10.7, it can be concluded that in contrast to Nordhaus
optimal policy, the set of robust policies consist not only of a very low rate of
social time preference (IRSTP), but also an early emission control rate target
(ECRT). To be more specific, the Nordhaus ECRT (=2155) is at least 85 years
apart from the ECRT of the robust policies. Further, a robust policy at maxi-
mum consists of an IRSTP of 0.0038, whereas Nordhaus optimal policy is for
an IRSTP at 0.015. The difference between the two sets of robust policies is
that in general, the SNR strategies suggest a lower savings rate (SR) relative to
Nordhaus optimal policy whereas the MiniMax policies propose a higher sav-
ings rate. However, both policy sets are clear in their message that the time is
running out for effective mitigation against catastrophic outcomes.



Part IV

Discussion

“He knew that all the hazards and perils were now drawing together to a point: the
next day would be a day of doom, the day of final effort or disaster, the last gasp.” —

J. R. R. Tolkien
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11 C O N C L U S I O N

This voyage has started by illustrating the fundamental issue of Integrated Assess-
ment Models (IAM) of using an optimization approach to find a climate policy in a
deeply uncertain system. Furthermore, key concepts around climate economics and
decision-making under uncertainty as well as the DICE model has been presented
to not only give the reader a general understanding of those concepts, but also to
illustrate the multifariousness of this study. In the second part of this study, PyDICE,
a simulation version of the DICE model, was conceptualized and implemented. In
addition, various methodologies from time series clustering for scenario discovery
to multi-objective evolutionary algorithms were introduced to explore the effects of
fat-tailed uncertainties on the DICE model and to search for a set of robust poli-
cies. Afterwards, these methodologies were applied on PyDICE to generate greater
insights about the consequences of fat-tailed uncertainty on Nordhaus optimal policy
and subsequently to find robust candidate strategies. This final part is dedicated to
bring these strings together and thereby to answer the ensuing main research ques-
tion:

Main Research Question

What are the repercussions of fat-tailed distributions over uncertain
parameters on the outcomes and on the robustness of the policy options of

the DICE simulation model?

11.1 revisiting the sub-research questions
The first chapters of this research are summarized and the sub-research questions are
addressed to lead the discussion in answering the main research question:

As extensively presented in Chapter 1 and 3, the most crucial shortcoming of IAMs
is the deterministic optimization approach to a deeply uncertain future. Deep uncer-
tainties like the damage function or equilibrium climate sensitivity (ECS) is first esti-
mated and then included as a certainty into the model. Many prominent researcher
[Pindyck, 2017; Weitzman, 2009a; Heal and Millner, 2014] have pointed out this ma-
jor issue but have failed to provide an appropriate solution to this problem. Therefore,
this research has utilized a multi-scenario MORDM framework to not only illustrate
the shortcomings of optimized policies from deterministic assumptions but also to
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present an alternative set of robust candidate strategies.

This framework makes use of a variety of methodologies which are summarized un-
der the umbrella term Exploratory Modeling and Analysis. With different methodolo-
gies like global sensitivity analysis or scenario discovery, the behaviour of the complex
system is explored systematically to deduct vulnerable regions for the development
of robust policies. For this, however, a simulation model is mandatory as it allows the
integration of various sources of deep uncertainties. But more important, it allows
us to run a large number of different scenarios for relatively low computational costs.
Thus, the DICE model has been translated into the simulation version PyDICE. Many
functional relationships of the DICE model has been maintained in PyDICE. However,
as the DICE aims to maximize the welfare function, the optimal values for the two
parameters emissions control rate and savings rate are determined a-posterior. Since
the underlying structure of the model embodies the Ramsey-Cass-Koopmans growth
model, the two parameters are described in PyDICE by functions approximating the
trajectory of each from the “optimal” climate policy scenario of DICE.

In the multi-scenario MORDM framework, the model is further organized into pol-
icy levers, outcomes of interest and exogenous uncertainties. It is assumed that the
four main objectives of the decision-makers are to minimize atmospheric temperature
and damages and to maximize total output and utility. Furthermore, the savings rate,
emission control rate target and pure rate of social time preference are considered as
policy levers. Lastly, on the basis of literature review and the sensitivity analysis on
the DICE model, the following seven uncertainties has been integrated into the Py-
DICE: total availability of fossil fuel, total factor productivity growth rate, population
growth rate, initial growth rate of emission to output ratio, price of backstop tech-
nology, equilibrium climate sensitivity (ECS) and the damage function. Although the
experts in the field of climate economics have confidence in the rough ECS estimation
of the IPCC, it is difficult to judge how fat the tail of the distribution is. Therefore,
the following sub-research question has been posed:

SQ1: Which fat-tailed distributions are used to describe the uncertain parameter
and how are they integrated into the DICE simulation model?

Distributions are identified as fat-tailed if the kurtosis is leptokurtic: Kurt[X] > 3.
Since this study aims to answer the question of what are the repercussions of apply-
ing fat-tailed distribution over uncertain parameters, the ECS parameter is modelled
for two fat-tailed distributions, namely log-normal distribution and Cauchy distribu-
tion. and compared to a normal distribution using a statistical analysis and scenario
discovery (see Sections 9.2 and 9.3).
The probability density function (PDF) of these three ECS distributions were created
by the following three steps:

1. Data points for the cumulative density function (CDF) are generated by using
the ECS estimation of the IPCC AR5 and Knutti (2012) (see Table 4.4).
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2. CDF of the distribution is fitted over the data points from step 1. R-squared is
calculated to assess the goodness of fit.

3. If the R-squared is above 0.95, the CDF is translated into a PDF using the corre-
sponding statistical sizes such as mean, variance or shape.

Subsequently, the fat-tailed distributions and the normal distribution are integrated
into PyDICE. During a simulation run, one of these three distributions is uniformly
chosen to describe the ECS parameter. In order to prevent absurd extreme cases dur-
ing the sampling phase like an ECS value of 500◦C, the rejection sampling method
was used to create a truncated distribution between 0◦C and 20◦C. Moreover, the
generated three distributions are enumerated from 0 to 2 (see Table 4.3), so that
during the stochastic simulation run, it is already translated into a computer under-
standable form.

SQ2: How sensitive are the outcomes of the DICE simulation model to the identi-
fied uncertainties?

To assess the sensitivity of the outcome parameter on the defined uncertainties, a
variance-based global sensitivity analysis (GSA), i.e. Sobol method, has been utilized
due to its non-linearity and fast run time1 of the PyDICE (see Figure 5.3). Multiple
interesting insights have been obtained. First, the atmospheric temperature, the dam-
ages, and the total output are mainly sensitive to the ECS distribution and its sampled
data, and the damage function. This is as expected since those exogenous uncertain-
ties are directly linked to atmospheric temperature and damages. This confirms the
prior assumption of this study that fat-tailed distributions have a substantial impact
on the outcomes of interest. Furthermore, the utility is dominated by the rate of pop-
ulation growth. This can be explained by the fact that a higher population growth
rate reduces the steady-state level of capital and output per labour force in the system.
Thus, it reduces per capita factors such as the consumption per capita parameter in
the social welfare function of the RCK model. This has naturally a significant effect
on the utility. It was also observed that the initial growth rate of carbon intensity is
substantially higher across all outcomes in 2300 than in the preceding years. The ob-
vious implication of this observation is that a faster improvement in carbon efficiency
could decrease the atmospheric temperature on earth and thus reduce the damages.
The two uncertain parameters, total availability of fossil fuels and TFP growth rate
do not affect any of the four outcomes. The latter is, in particular, surprising because
[Nordhaus, 2008b] believed it to be one of the most critical uncertainties as it should
be one of the main drivers of long-run economic growth.

Knowing that the system is highly sensitive to the various uncertainties of the model
based on sub-research question 1, this study has also aimed at understanding the
implication of deep uncertainties on the outcomes under Nordhaus optimal policy:

1 One model run takes around 2.7ms for a computer with 8 virtual processors of 2.8GHz and 16GB
of RAM.
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SQ3: Under which scenarios/conditions is the optimal policy from the DICE opti-
mization model vulnerable?

To answer this sub research question, a two-stage analysis has been conducted. In
the first stage, the output space of the model was explored for the optimal policy of
Nordhaus. Hereto, an experiment set is generated by simulating over 540000 dif-
ferent scenarios. The output space was visualized using pair plots for the several
time points. The most intriguing insight from this exploration was that catastrophic
outputs in any of the four outcomes are only attained for scenarios which comprise
of Weitzman damage function and fat-tailed ECS parameter. This visual analysis has
been complemented by a statistical analysis on the outcomes, total output and util-
ity. The statistical analysis has shown that the 1% value at risk for the outcomes
distinguishes significantly depending on the ECS distribution. For instance, the 1%
risk threshold for the total output for Cauchy distributed scenarios is 80% lower than
for normally distributed scenarios at 2200. Moreover, these differences in risk are
disproportionately amplified by the damage function, so that substantial differences
have even been observed at the 5% value at risk. Similar to the visual analysis, it
can be concluded from the statistical analysis that the outcomes for the 1% and 5%
value at risk are significantly lower for scenarios with fat-tailed ECS parameter and
damage functions similar to Weitzman.

The second stage comprises of scenario discovery in the form of time series clustering
and directed scenario search. The analysis has illuminated the relationship between
the outcomes and the uncertainties in great detail. In contrast to the statistical and
visual analysis, the introduced scenario techniques allow the researchers to take a
relatively unbiased approach in identifying unfavourable scenarios. This analysis has
shown that undesirable outcomes can never be attained for scenarios that consist of
normally distributed ECS parameter. Moreover, under the discovered set of undesir-
able scenarios, Nordhaus damage function has only been found for scenarios which
lead to high atmospheric temperature. Further, the scenario discovery has revealed
that the outcomes, damages, total output and utility are only vulnerable to scenarios
with a damage function akin to Weitzman or Newbold and fat-tailed ECS parameter.
Lastly, the time series clustering has indicated that the optimal policy of Nordhaus is
vulnerable for 328 out of 30000 scenarios. In other words, Nordhaus optimal policy
fails for around 1.1% of all cases.
Moreover, all three analysis has unanimously demonstrated that the effect of fat-
tailed uncertainty can be significant. However, the disproportional risks in the tail
of Cauchy and log-normal distribution can only be translated into catastrophic out-
comes by damage functions akin to Weitzman or Newbold and Daigneault.

Nordhaus optimal policy is vulnerable for 1% of the cases that consist of scenarios
with fat-tailed ECS parameter and damage function similar to Weitzman or Newbold.
Thus, under the precautionary principle the following sub-research question has been
answered:
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SQ4: What are the robust set of policies for the DICE simulation model and how
do they differ to the optimal policy of the DICE optimization model?

From the scenarios that have been identified as vulnerable using scenario discovery,
four maximally diverse scenarios (K = 4) have been selected based on the diversity
criterion of [Carlsen et al., 2016]. With these four scenarios, candidate strategies
were generated by utilizing the ε-NSGA-II algorithm over each chosen scenario indi-
vidually. Even with constraints on the outcome parameter, utility and atmospheric
temperature, 113 alternative candidate strategies to Nordhaus optimal policy were
found. These candidate strategies are evaluated on their robustness against a large
number of alternative future states by using two different robustness criterion’s,
namely minimax regret and signal-to-noise ratio. For each criterion, a final set of
10 robust strategies (SNR policies and MiniMax policies) has been identified.

From Figures 10.5 and 10.7, one can immediately observe that the difference be-
tween the identified robust policies and Nordhaus optimal policy is striking. In con-
trast to Nordhaus proposed strategy, the set of robust policies have not only a very
low rate of social time preference (IRSTP), but also an early emission control rate
target (ECRT). To be more specific, the Nordhaus ECRT (= 2155) is at least 85 years
apart from the ECRT of the robust policies. Further, a robust policy at maximum
consists of an IRSTP of 0.0038. For instance, although the candidate policy 70 shows
a similar SR (= 0.245) to the SR (= 0.248) of Nordhaus optimal policy, it comprises
of a far lower IRSTP (= 0.002405) and sets a very much earlier ECRT for 2060.

The difference between the two sets of robust policies is that in general, the SNR
strategies suggest a low savings rate (SR) relative to Nordhaus optimal policy whereas
the MiniMax policies propose a higher savings rate. By examining the policies with
higher savings rate in more detail, one could observe that these high savings rates
are balancing out the effect of either high IRSTP or late ECRT (relative to other SNR
policies). As a (relatively) late ECRT will yield higher climate damages and thereby
affects the total output negatively, a higher SR can have a counter effect by increas-
ing the investment, that again raises the gross output. However, note that high SR
diminishes the utility, especially when a high IRSTP has been chosen. This conclusion
is also justified by assessing the policies with a lower SR. Here, these policies exhibit
lower ECRT as well as lower IRSTP relative to high SR policies.

In all this discussion, it should not be forgotten that the main message of this analysis
is that in order to protect the world against disastrous outcomes, a zero-emission tar-
get must be reached at the latest by the year 2070. What is further worrisome is that
the ECRT of the robust policies is at the edge of the policy space. This could actually
mean that robust policies could have been found with ECRT earlier to 2065. There-
fore, it is recommended to widen the policy window to generate potential further
findings.
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11.2 answering the main research questions
The answers and discussions to each sub-research question can be utilized to answer
the main research question of this study.

Main Research Question

What are the repercussions of fat-tailed distributions over uncertain
parameters on the outcomes and on the robustness of the policy options of

the DICE simulation model?

The results of this study have shown that the effect of fat-tailed distribution is signif-
icant. The prior hypothesis of Weitzman [2009a] has been proven by conducting a
variety of different analysis over the data set generated by the stochastic simulation
version of DICE, PyDICE.

The variance-based GSA has shown that the outcomes are highly sensitive to the
distribution type of the ECS parameter, but also to other deep uncertainties such as
the damage function or the population growth rate. From the statistical analysis, it
has been deduced that the 1% value at risk for the outcomes, utility and total output,
distinguish significantly depending on the distribution type for Nordhaus optimal pol-
icy (up to 80%). Moreover, if the future states of the world comprise of a damage
function akin to Weitzman and a fat-tailed ECS parameter, a significant difference to
scenarios with normally distributed ECS parameter and Nordhaus damage function
has been found for the 5% value at risk for the total output (up to 53% lower). The
scenario discovery has shown that the optimal policy of Nordhaus fails in around
1% of the generated scenarios, in which the failure scenarios comprises of either a
Cauchy distributed or log-normal distributed ECS parameter. The high impact of
fat-tailed distribution has also been found in the global sensitivity analysis. How-
ever, the analysis shows also that these disastrous outcomes are only obtained for
scenarios with damage function similar to Weitzman. All analysis has unanimously
illustrated that as fatter the tail becomes the risk is getting higher, but it becomes
only significant in combination with damage function similar to Weitzman. In addi-
tion, this analysis has also shown that Nordhaus optimal policy is not robust enough
to protect the world against catastrophic events.

Therefore, an alternative set of robust strategies to Nordhaus optimal policy is il-
lustrated in this study. It is shown that the Pareto optimized set of robust policies
suggest a very low pure rate of social time preference and a far earlier emission con-
trol rate target between 2060 and 2070. Moreover, the savings rate depends on the
emission control rate target as well as the pure rate of social time preference. That
means when the global community decides a course of action which consists of an
early emission control rate target and the decision to sacrifice current consumption
for the benefit of the future generation, a lower savings rate (lower investment) can
be chosen. Vice versa, the same principle applies: a high savings rate (= high invest-
ment) is necessary for policies with relatively late emission control rate target and a
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high pure rate of social time preference. The relationship between the savings rate
and the other two parameters is anything but linear. In addition to this point, it has
also been observed that robust policies are located at the edges of the defined pol-
icy space. This means to avoid catastrophic outcomes from deep uncertainties (incl.
fat-tailed distribution and damage functions), policies must be put in place that is far
more radical than suggested by Nordhaus, but much closer to the demands of climate
scientists.

It can be concluded that as long as not more knowledge is generated for deep uncer-
tainties such as the equilibrium climate sensitivity parameter or the damage function,
one has to explore all possible alternatives to deduct a robust set of policies. The
implications of using the traditional method for risk and decision analysis (optimiza-
tion) instead of methods like multi-scenario MORDM (robust optimization) is that
disastrous events in future will be considered in hindsight as “Black Swans” although
they were predictable “Grey Swans” all the time



12 D E B AT E

All the effort and endeavour of conducting an extensive analysis is of little value
without a vivid discussion about the implication of the findings in a bigger picture.
The main intention of this chapter is to start a debate, respond to doubts, answer
potential criticism, and illustrate a code of conduct. Thus, this chapter consists of
individual section each standing for itself.

12.1 policy advice
Since climate change is a global challenge that is not bound to any borders, it can
not be solved by any individual country alone. If climate change is to be tackled ef-
fectively, the global community must negotiate and agree on a global green new deal
(GND). Hereto, policy recommendations, from IAMs such as the PyDICE, can support
decision-makers around the world to decide on some overarching targets, such as
the emission control rate target or the investment cost. Based on the precautionary
principle, this study has proposed a set of robust policies. Taking all potential future
states of the world into account, we show that a very early emission control rate tar-
get between 2060 and 2070 and a low pure rate of social time preference is the safest
strategy in the face of existential risk. Moreover, the more we are willing to sacrifice
our consumption for future generations, the less is the investment costs. However,
we should keep in mind that these policies are a result of a stylized model, which is
essentially only a reflection of the real system. “Letting go of the phantastic mathe-
matical objects and achievables of [...] model-land may not always be comfortable,
but it is necessary if we are to make better decisions.” [Thompson and Smith, 2019].
Hence, the implications and the feasibility of these robust policies in the real world
is discussed in more detail below.

In terms of early emission control rate target, the robust policy recommendations
from PyDICE coincides with the demands of climate scientist to reach net-zero emis-
sion target in the next three decades. On the one hand, 17 countries (e.g., UK and
France) and 34 major corporations are preparing or already have committed to reach
net-zero in the next three decades. However, on the other hand, 159 countries have
set targets in the latter half of the century (e.g., Japan) or have yet to put such a
target (e.g., US, China and Australia) [Edmond, 2019]. Thus, one can conclude, if a
GND that legally binds the global community to reach a net-zero emission target be-
fore 2070, is not reached soon, there is no realistic way to protect the world against
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the catastrophic scenario of the PyDICE model.

Even if the international community manages to set an early emission control rate
target to mitigate the catastrophic climate damages, they still have to agree on an
annual investment sum which depends, in PyDICE, highly on the pure rate of so-
cial time preference (IRSTP). In general, the IRSTP reflects the societies view on the
future. If the global community chooses a very high to medium IRSTP, it means
that they do not recognize the urgency for climate mitigation. However, if the inter-
national community acknowledges the existence of catastrophic risks, as shown in
PyDICE, they have no other means than choosing a relatively low IRSTP since any
medium to high IRSTP will lead to annual investment costs beyond the global in-
come. However, by weighing future generations equal to the present generation, a
low IRSTP will produce a higher social cost of carbon. This sacrifice in the welfare
of the current generation is the price of robustness. If we are fully committed to
radically reduce carbon emissions to prevent future catastrophes, this price has to be
paid, at least according to the neoclassical growth theory .

Moreover, the trade-off between consumption of current generation versus consump-
tion of future generations does only exist if we assume that financial intermediaries
are organized in a loanable funds market. But in reality, banks can create money.
Instead of waiting for a raise in savings, central banks could issue new money by buy-
ing bonds from intergovernmental institutions such as the World Bank or the Green
Climate Fund to cover the large investment costs due to the social discount rate. The
fact that this is possible was seen during the financial crisis when central banks bailed
out private banks as well as governments by buying up private and public bonds. This
would also allow us to shift the discussion from damage cost to the cost of emission
reduction, which is far more critical.

12.2 salvation of integrated assessment models
This section is aimed at responding to Pindyck [2017] question whether IAMs can
be salvaged as a tool for policy analysis if we somehow can account for the lack of
knowledge about key relationships and parameter values. In his manuscript, he ad-
vocates for an approach in which expert opinions are translated into probabilities
and implemented into a simple model. What he is trying to describe sounds like a
stochastic model. Indeed, this is a much better approach than the use of estimates,
assumptions, and beliefs as deterministic inputs of models to determine the social
cost of carbon or the cumulative discounted utility. However, the literature review of
this study has shown that various researchers have applied stochasticity into IAMs.
However, this alone will not make any substantial difference in the outcomes of the
model, and more importantly, this will not change how IAMs will be perceived or
utilized. To support this statement, in the following, three arguments are presented
in detail.
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Decision-Making under Ignorance

The first exhibit starts with the claim that many researchers in the field of climate
economics simply ignore the ontological difference between risk and uncertainty. As
mentioned in the introduction part of this manuscript, Knight [1921] describes “risk”
as known probabilities and “uncertainty” as unknown probabilities. But despite this
strict difference, Nordhaus [2016] and others have applied quasi-random distribu-
tions on variables which are by nature deeply uncertain, such as the growth rate of
total factor productivity or the growth rate of carbon intensity. This utterly wrong
treatment of uncertainties actually could lead to severe consequences in the sense
that a scientific investigation reconfirms false perceptions. Beyond parametric uncer-
tainties, the integrated system of climate, carbon and economics consists of a variety
of other deep uncertainties. This thesis, among others, has shown that there is deep
uncertainty about the distribution type of the equilibrium climate sensitivity param-
eter. However, the two research groups, Hwang et al. [2013] and Ackerman et al.
[2010] who have also studied the implication of fat-tailed distribution on the DICE
model, have only utilized a log-normal distribution. But what about a Cauchy distri-
bution or a Pareto distribution?

Both probability distributions have a much higher kurtosis. This neglection perfectly
exemplifies the ignorance of many researchers in the field. Even though there is
awareness for uncertainties, they still turn a blind eye on other eventualities. More-
over, if one would look deeper into their experiment design, one will observe that
many deep uncertainties have been described by normal distributions. Although,
Hwang et al. [2013] reasons for many of his choices why certain distributions have
been chosen, Ackerman et al. [2010] choices are opaque to the reader.

Optimality vs. Robustness

This ignorance also has direct consequences on how IAMs are perceived and utilized.
In general, IAMs are utilized as an optimization model to identify optimal climate
policies based on the given constraints. However, even if the deterministic parame-
ters are turned into probability distributions, a single set of scenarios and a single set
of probability distribution will still generate a single best outcome [Lempert et al.,
2006]. Stochastic optimization is well suited to determine the best possible strategy
when the uncertainties are well characterized (i.e., risks) and the structure of the
system is well known.

IAMs describe a system that is largely complex in nature. With increasing complexity,
the system is not only more difficult to understand, but it is also more challenging
to find an optimal policy. Any estimates about the future will be inaccurate. When
strategies are optimized for the most likely future, they may fail for events that lie
at the realm of our expectations. Even the assessment of well-elaborated scenarios,
such as the Shared Socio-Economic Pathways SSPs, will fail to cover the vital gran-
ularity between different future pathways. This becomes in particular troublesome,
when models such as IAMs are used to find an optimal policy for a long time-horizon.
Therefore, it can be stated with certainty that the prescriptive value of the optimal
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strategy is lost in climate economic systems.

Hence, in line with the principle 15 of the 1992 Rio Declaration and the principle
7 of the Global Impact, it is urged that “where there are threats of serious or irre-
versible damage” [UN, 1992; Compact, 2016], the precautionary principle must be
applied as long as scientific knowledge is incomplete. This is also recognized within
the scientific community that in a complex system, policy recommendations must be
robust in regards to the manifold of deep uncertainties [Lempert and Collins, 2007;
Giuliani and Castelletti, 2016; Kwakkel et al., 2016a; Herman et al., 2015]. In order
to find robust policies, IAMs must be translated into a simulation model. With this
in hand, it is now possible to answer the ”what-if” question and to systematically
explore the behaviour of the climate economic systems under an ensemble of prior
specified uncertainties in response to different policy settings. The deep uncertainties
are given as a range between two values. How the ranges should be chosen is dis-
cussed in great detail in section 12.3. Moreover, this simulation model can be used to
determine the worst case scenario, so that a robust policy can be determined. Thus,
I propose to redefine IAMs, not as a stochastic optimization model but to take it one
step further and turn it into a robust optimization model. This study is an excellent
example of how this could be attained.

Experts or Opinions

In my last exhibit, I want to discuss the benefits and pitfalls of the involvement of
experts opinions. In traditional model building, the involvement of expert opinion
during the model process is of utmost importance. Based on the conceptual model,
experts validate whether the model reasonably represents the real system. Therefore,
it is effortless to use the experts from the model development process to support the
modeller in determining the inputs of the model.

However, what Pindyck proposes from here on is at the least questionable. He sug-
gests not only to further simplify IAMs but also to use expert opinions to attach prob-
abilities on events such as the GDP or consumption decline regarding catastrophic
outcomes. By this, he completely discards feedback loops between the three subsys-
tems carbon, climate and economics and suggests to create a simple and very linear
model representing the opinion of experts. First of all, determining policies in com-
plex systems regardless of the intrinsic non-linear behaviour is like trying to forecast
the weather for the next 100 years based on a simple extrapolation over the obser-
vations of the last year. But even if we disregard this aspect and only focus on the
second point, that of attaching probabilities on deep uncertain parameters based on
expert opinion, it is still controversial.

On the one hand, if expert opinions are used to instigate a critical discourse to chal-
lenges their internal beliefs and biases, this would be of high value. However, if sci-
entific ambiguity is only addressed by summarizing the different opinions of experts,
it can motivate shortcuts in reasoning and hidden biases. Moreover, such enforced
consensus-building can lead to overconfidence and belief polarization [Curry, 2011].
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Kelly [2008] illustrates that as more and more experts are weighing on a given issue,
at some point when the number of peers exceeds a specific threshold, the total order
evidence will completely swamp the first-order evidence. This can lead to increas-
ing confirmation bias that would eventually peripheralize critical voices. But is not
a healthy amount of skepticism and disagreement the key driver in science to find
an alternative way that could potentially lead to actually solving the problem at hand.

The question of Pindyck, whether IAMs can be salvaged as a tool for policy analysis
if we somehow can account for the lack of knowledge about key relationships and
parameter values can be still answered with a yes. I certainly believe that IAMs can be
salvaged as a policy analysis tool or at least for storytelling, but only if the creators of
IAMs abdicate their ontological ignorance and re-shift their mindset from optimality
to robustness in light of existential risks for humanity.

12.3 unbiased biased choices
As we have seen in this study, forecasting is hampered subject to the modeller’s blind
spots and biases. Models are just a reflection of reality. Thus “all models are essen-
tially wrong, but some are useful.” [Box and Draper, 1987]. However, the usefulness
of those models is diminished by the misuse of statistical distributions like thin-tail
distributions in a highly complex and uncertain environment, that exclude the (low)
probability of high impact events.

But even the use of fat-tailed distribution can be subject to biases. The question is
here where to set the boundaries so that low probability high impact events (Grey
Swans) are incorporated but do not lead to the naive fallacy of infinite costs. Al-
though statistical tools to estimate the boundaries exists, there is no golden bullet
to solve this issue. At the end of the day, setting the boundaries for fat-tailed dis-
tributions lies in the hands of modellers. This can lead to errors as the mind uses
simplifying schemes to confirm their biases, so-called “confirmation bias”. Moreover,
as they become overconfident about their ideas about the right bound, they succumb
to “epistemic arrogance”. This moral dilemma screams for an ethical reflection.

Let us start this discussion by applying the three main ethical theories on the afore-
mentioned dilemma [Annas, 2009; Mill, 2009; O’Neill, 1993]. First off: consequen-
tialism, deontological ethics and virtue ethics are offering arguments why modellers,
in practice, should strive to integrate Grey Swan events even if the modeller him-
/herself has to set the boundaries for the distribution. Consequentialism requires the
modeller to predict the likely results of an act and weigh the good it will produce
against the harm it would cause. In other words, if the integration of Grey Swan
events leads to “good consequences” or “outcomes of higher quality”, it is desirable
to conceptualize and formalize the model reflecting those uncertainties. This can be
defended with the harm principle of Mill [Mill, 2009].
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In contrast, deontological ethics focus on the purpose of the model. Within Kantian
ethics as a paradigmatic example, the model must be used to illuminate rather than
deceive perceptions [O’Neill, 1993]. Therefore, modellers must add additional tools
to their model if it produces a more accurate model with elucidating outcomes.

At last, the virtue ethics focus on the people who suffer due to the inaccuracy in mod-
els caused by the disregard of the Grey Swan events [Annas, 2009]. For instance,
if the integration of Grey Swan events into economic models could have indicated
the financial crisis in 2008, one could have set policies to prevent it. However, due
to the inability to predict the severity and the far-reaching consequences, millions of
households were victims of job loss, home foreclosures and/or debt. All three ethical
framework put forward that from an ethical perspective the integration of Grey Swan
events is of utmost importance.

However, this still does not give modellers an ethical guideline on how to set the
boundaries on fat-tailed distribution in computer simulations. When dealing with
deep uncertainties or Grey Swan events, we are not able to fully express the effect of
the risks and thus to objectively set the boundaries of fat-tailed distributions during
the simulation. To deal with this challenge, the precautionary principle, as shown in
this study, is proposed. The maxim states that preventive measures must be taken
if there are indications of certain risks and even if the risks cannot be entirely scien-
tifically proven. In other words, “if there is a threat, which is uncertain, then some
kind of action is mandatory” [Sandin, 1999]. For our case, the precautionary prin-
ciple translates to setting the boundaries sufficiently large, so that all potential risks
even outside of the realm of expectations are also sufficiently covered. Admittedly,
this approach does not answer the aforementioned issue of confirmation bias. This
issue can perhaps only be overcome when modellers challenge his/her biases with
stakeholders, experts and/or laymen. Moreover, one should be aware that this ap-
proach can lead to overestimation of low probability high impact events. Although
one would have a hard time to forecast the next occurrence of a Grey Swan event,
the solution to deal with Grey Swan events is to restructure institutions and rethink
strategies to be more robust in the face of deep uncertainties. The robustness can be
achieved through flexibility. To describe it differently, let the system absorb the shock.

After all, the key to a good model is to maintain a mindset of humility as a modeller.
A model of a messy and a complex system will never be easy to model and thus will
be most certainly wrong. However, if there is a simple answer on how to incorporate
Grey Swan events into the model without overestimating or underestimating, there
would not be such a polarizing discussion in different scientific fields.
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As this study was only limited to five months, I had to discipline myself to only focus
on a certain number of research pathways and to accept some of the limitations of my
thesis. However, the limitations of one research can be exciting avenues for future
studies.

Design Limitations

One significant limitation of this study is the fact that this study was conducted with-
out the counseling of experts from the field of climate economics. Value ranges for
many of the identified uncertainties relied entirely on desk research. In a best prac-
tice approach, one would have gathered a panel of experts/proponents from each of
the four discourses on climate stabilization not only to identify the min-max ranges of
the deep uncertainties but also to validate the simulation version of the DICE model,
PyDICE [Storm, 2017].

Although, we have acknowledged in the literature review of this thesis that there is
still substantial uncertainty around the equilibrium climate sensitivity parameter, this
research has only focused on the uncertainty around the distribution type. However,
in future work one can/should add an additional uncertainty dimension to cover sci-
entific ambiguity around the median cumulative probability value.

Moreover, an effective net-zero carbon target can only be reached when every nation
in the world actively join this effort at the soonest possible time. In the DICE and
PyDICE model, full participation of all countries is assumed. In reality, however, only
175 countries accounting for 88.75% of global emissions ratified the Paris Agreement,
and if the Trump administration is going to withdraw from the Paris agreement at the
end of 2019, the global emission under control will drop down to 70.86%. Thus, in
a future analysis, the policy levers can include the already existing “full participation
target” parameter in PyDICE.

Methodological Improvements

From the modellers perspective, the time series clustering in the scenario discovery
chapter was limited to “only” 30000 scenarios due to memory issues and computa-
tional efforts. Thus, in future research one could test other techniques such as BIRCH
[Zhang et al., 1996] or PAM [Kaufman and Rousseeuw, 2009].

Another limitation of this study is that the output of stochastic simulation models,
such as the PyDICE, emerges as the results of one “quasi”-random trajectory of po-
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tential internal model states. Traditionally, the likelihood function in these models is
approximated by an extremely large sample set or by running multiple replications
and comparing the outcome based on their descriptive statistics. However, since
simulated data are an output of various distributions, traditional practices are insuf-
ficient. Thus, in a future study, one should estimate the likelihood function by using
methodologies such as approximate Bayesian computing or pattern-oriented mod-
elling [Hartig et al., 2011].

Directions for further Exploration

In this study, we have tested the implications of Weitzman Dismal Theorem by uti-
lizing the multi-scenario MORDM framework on a simulation version of the DICE
model. However, the DICE is model considered as simple IAM. Thus, it would be
highly interesting to explore the effects of deep uncertainties in a more complex
model such as the Model for Energy Supply Strategy Alternatives and their Gen-
eral Environmental Impact (MESSAGE), developed by the International Institute for
Applied Systems Analysis (IIASA) or the Integrated Model to Assess the Global Envi-
ronment (IMAGE), developed by the Netherlands Environmental Assessment Agency
(PBL).

Lastly, another exciting future avenue would also be to integrate a monetary system
into the DICE model and to analyze the effect of pure rate of social time preference
on the outcomes. If we would deduct from such an analysis that the effect of social
discount rate is negligible, one could shift the discussion from Pigouvian taxes to
other policy alternatives such as climate bonds.
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A V E R I F I C AT I O N

In the following, values for the the Figures 4.2 and 4.3 from the verification section
4.2 is given in the following tables A.1 and A.2. Note that, the jupyter notebook file
“PyDICE V4 Validation Part1.ipynb” and “PyDICE V4 Validation Part2.ipynb” in the folder
“1 Model” of the author’s GitHub repository offers the reader the possibility to not
only verify these outcomes but also to test other parameters.
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Table A.1: Comparison of the PyDICE and the DICE on the parameters emission control
rate, per period utility, emission, atmospheric temperature, damage and total
output with the optimized outcome of Nordhaus optimal policy for the param-
eter control rate t and savings rate srt



verification 114

Table A.2: Comparison of the PyDICE and the DICE on the parameters emission control
rate, per period utility, emission, atmospheric temperature, damage and total
output with the integrated functions (4.1) and (4.2) for emission control rate 4.2
and savings rate 4.2



B O P E N E X P LO R AT I O N

In this appendix, the results of the open exploration analysis under Nordhaus Optimal
Policy is given for the time points 2050, 2100, 2150, 2200 and 2300 in the Figures
4.2, Figures 4.2 and 4.3. These figures expand the shown results from the section 9.1
is given in the following tables A.1 and A.2. Note that, the corresponding Jupyter
notebook file “Statistical Analysis NordhausOpt V4Util2300.ipynb” can be found in
the folder “3 Nordhaus Optimal Policy Exploration” of the author’s GitHub repository.
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(a) (b)

(c) (d)

(e)

Figure B.1: For the years 2050(a),2100(b),2150(c),2200(d) and 2300(e), pair plot over the
outcome variable is presented with the third dimension describing ECS distri-
bution types.
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(a) (b)

(c) (d)

(e)

Figure B.2: For the years 2050(a),2100(b),2150(c),2200(d) and 2300(e), pair plot over the
outcome variable is presented with the third dimension describing the damage
functions.



open exploration 118

(a) (b)

(c) (d)

(e)

Figure B.3: For the years 2050(a),2100(b),2150(c),2200(d) and 2300(e), pair plot over the
outcome variable is presented with the third dimension describing the combi-
nation of damage function and ECS distribution



C G LO B A L S E N S I T I V I T Y A N A LY S I S

As an extension to the outcomes from the global sensitivity analysis (GSA) in Section
8.2, this appendix presents the confidence intervals in barplots in the Figures C.1, C.2,
C.3 and C.4. Furthermore, a GSA was also conducted over the identified policy levers
of the study to verify their effectiveness on the outcomes of interest. To that end, the
Figures C.5 illustrate clearly the sensitivity of the outcomes to the policy levers. Note
that, the corresponding Jupyter notebook file “Open Exploration SA V4.ipynb” can be
found in the folder “2 Open Exploration” of the author’s GitHub repository.
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(a) (b)

(c) (d)

(e)

Figure C.1: Results of the global sensitivity analysis of the uncertainties on the outcome
atmospheric temperature at the time points 2050(a), 2100(b), 2150(c), 2200(d)
and 2300(e) (with confidence intervals).
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(a) (b)

(c) (d)

(e)

Figure C.2: Results of the global sensitivity analysis with confidence intervals of the uncer-
tainties on the the outcome damage at the time points 2050(a), 2100(b), 2150(c),
2200(d) and 2300(e) (with confidence intervals).
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(a) (b)

(c) (d)

(e)

Figure C.3: Results of the global sensitivity analysis of the uncertainties on the the total
output at the time points 2050(a), 2100(b), 2150(c), 2200(d) and 2300(e) (with
confidence intervals).
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(a) (b)

(c) (d)

(e)

Figure C.4: Results of the global sensitivity analysis of the uncertainties on the outcome
utility at the time points 2050(a), 2100(b), 2150(c), 2200(d) and 2300(e) (with
confidence intervals).
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(a)

(b)

‘
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(c)

(d)

Figure C.5: Results of the global sensitivity analysis of the levers on the outcomes atmo-
spheric temperature(a), damages(b), total output(c), and utility(d).



D S TAT I S T I C A L A N A LY S I S

The descriptive statistics of the simulation outcomes are used for the statistical analy-
sis in Section 5.2. These statistics are illustrated in the following tables. Note that, the
corresponding Jupyter notebook file “Statistical Analysis NordhausOpt V4Util2300.ipynb”
and the resulting .xlsx files can be found in the folder “3 Nordhaus Optimal Policy Exploration”
of the author’s GitHub repository.
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Table D.1: Descriptive statistics of the simulation outcomes for the three ECS distribution
functions at the time points 2050, 2100, 2150, 2200 and 2300.
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Table D.2: Descriptive statistics of the simulation outcomes for the three damage function
at the time points 2050, 2100, 2150, 2200 and 2300.
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Table D.3: Descriptive statistics of the outcome atmospheric temperature for the nine dif-
ferent combinations between the three damage functions and the three ECS
distribution functions at the time points 2050, 2100, 2150, 2200 and 2300.
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Table D.4: Descriptive statistics of the outcome damages for the nine different combina-
tions between the three damage functions and the three ECS distribution func-
tions at the time points 2050, 2100, 2150, 2200 and 2300.
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Table D.5: Descriptive statistics of the outcome total output for the nine different com-
binations between the three damage functions and the three ECS distribution
functions at the time points 2050, 2100, 2150, 2200 and 2300.



statistical analysis 132

Table D.6: Descriptive statistics of the outcome utility for the nine different combinations
between the three damage functions and the three ECS distribution functions at
the time points 2050, 2100, 2150, 2200 and 2300.



E U N C E R TA I N T Y A N A LY S I S

In this appendix, the two Figures E.1 and E.2 represents the output space of the
selected robust policies from uncertainty analysis by using the criteria, minimax re-
gret and signal-to-noise ratio. These figures are presented here as a complementary
visualization to the Figures 10.4 and 10.6 in Section 10.3. Note that, the corre-
sponding Jupyter notebook file “MORDM Policies V4.ipynb” can be found in the folder
“5 Policy Discovery” of the author’s GitHub repository.
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Figure E.1: The output space of the ten most robust polices according to the SNR criterion
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Figure E.2: The output space of the ten most robust polices according to the maximum
regret criterion
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