
Federated learning: a comparison of methods
How do different Federated Learning frameworks compare?

Cristea Vlad-Andrei

Supervisor(s): Marcel Reinders, Swier Garst

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Cristea Vlad-Andrei
Final project course: CSE3000 Research Project
Thesis committee: Marcel Reinders, Swier Garst, Lydia Chen

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract

Federated Learning is a machine learning paradigm
for decentralized training over different clients.
The training happens in rounds where each client
learns a specific model which is then aggregated
by a central server and passed back to the clients.
Since the paradigm’s inception, many frameworks
that provide Federated Learning tools and infras-
tructure have appeared. This leads to the question
of ”How do different Federated Learning frame-
works compare?”, which is the research question
of this paper. The paper’s main contribution will
be helping developers new to the Federated Learn-
ing field decide between NVidia Flare, OpenFL,
and Flower, three popular federated learning frame-
works.

1 Introduction

Federated Learning is a machine learning paradigm that al-
lows decentralized learning to occur on different machines
or clients. In this approach, each client has its own local
dataset and trains its own model, which is then aggregated
by a central server in each learning round. This decentralized
approach is highly important in the medical industry, where
sharing sensitive data such as medical records is highly reg-
ulated or even prohibited due to privacy concerns. Federated
Learning provides a safe way of exchanging information be-
tween medical centers without compromising patient confi-
dentiality. For example, the paradigm could potentially speed
up research into treating and preventing various medical con-
ditions, such as cancer, by creating a model from lung or even
brain tumor scans from multiple centers.

Previous work on Federated Learning led to the proposal of
the FedAvg method by Google researchers in 2016 [10]. De-
spite progress in the field, many research questions remain
unanswered. For instance, the increasing popularity of Feder-
ated Learning has led to the creation of multiple frameworks
that help the development of Federated Learning algorithms.
However, most of these frameworks are similar or provide
more or less the same tools, making it difficult to determine
which one is best suited for a particular task. As a result, re-
searchers and developers often face the challenge of selecting
the most appropriate Federated Learning platform for their
needs.

The central focus of this paper revolves around a pivotal re-
search question: ”How do three prominent Federated Learn-
ing platforms, namely OpenFL, Flare, and Flower, compare
in terms of performance, usability, and setup?”[12][11][4].
To shed light on this inquiry, the paper establishes a set of
metrics to evaluate these factors and subsequently presents
benchmarking results for each platform. By comparing these
results, the paper tries to empower researchers and develop-
ers in selecting the most suitable Federated Learning platform
tailored to their specific requirements. Ultimately, the aim is

to enhance productivity in the field of Federated Learning re-
search and development. Nonetheless, the idea of comparing
different Federated Learning frameworks came from UniFed,
a platform that tries to accomplish that with other frameworks
already. [9]

Since properly evaluating the frameworks based on perfor-
mance is a complex task, the focus of the paper will be an-
alyzing the heuristics component (which will be discussed
in the Methodology section ) and ultimately helping users of
various prior knowledge (from developers inexperienced with
Federated Learning to researchers) decide what platform to
choose.

The structure of this scientific paper is carefully designed
to ensure a coherent and systematic presentation of the re-
search findings. Chapter 2 lays the foundation by outlining
the methodology employed, providing a comprehensive un-
derstanding of the research process. Chapter 3 contains a
brief overview of each framework, focusing on the aspects
that set them apart. Following this, Chapter 4 conducts an
in-depth benchmarking analysis that contains both a heuris-
tics and a performance evaluation. In Chapter 5, the results
of the benchmarking are discussed, with a particular focus on
comparing the three frameworks. Responsible research prac-
tices are emphasized in Chapter 6, highlighting the ethical
considerations of the study. Lastly, the concluding chapter
summarizes the key findings and presents potential avenues
for future research.

2 Methodology or Problem Description
In order to compare OpenFL, Flare and Flower, each frame-
work will be assessed based on two main categories: general
heuristics and performance. In the following subsections each
category will be explained.

2.1 Heuristics evaluation
Heuristics represent non-functional characteristics of a
framework that are crucial in order to help developers and re-
searchers decide between one of the three frameworks that
will be benchmarked. The main heuristics covered in the
evaluation will be quality of documentation, available exam-
ple experiments, learning curve of using and setting up a spe-
cific framework, quality of documentation of the code. Be-
sides these general heuristics, a special part of the evaluation
will include the frameworks’ capabilities. This section will
cover the available tools of the framework, the machine learn-
ing models supported, as well as what aggregating algorithms
can be used. This will provide a deeper insight into what ar-
eas of federated learning each framework excels at and will
be a central component that dictates choosing one tool over
another one.

2.2 Performance evaluation
The performance evaluation will include a single experiment
that will be replicated for each framework. The goal is to try
to have the same experiment reproduced over all three frame-
works in order to gain an insight into the capabilities of the
underlying infrastructure when processing the same task. The



experiments will use the CIFAR10 [8] dataset and use a con-
volutional neural network as the machine learning model, for
which the code will be visible in the appendix. The main
experiment will compare the learning curve on the training
dataset over the epochs.

3 Frameworks

The follow section will provide a brief overview of each
framework used in the research project, namely Nvidia Flare,
OpenFL and Flower.

3.1 Nvidia Flare

”NVIDIA FLARE™ (NVIDIA Federated Learning Appli-
cation Runtime Environment) is a domain-agnostic, open-
source, and extensible SDK for Federated Learning. It al-
lows researchers and data scientists to adapt existing ML/DL
workflow to a federated paradigm and enables platform de-
velopers to build a secure, privacy-preserving offering for a
distributed multi-party collaboration.”, according to the main
page of the framework’s documentation. [11]

Nvidia Flare is a powerful technology that offers a range
of commonly-used algorithms to facilitate the development
of Federated Learning Workflows while emphasizing best
practices. It encompasses 2 training workflows(Scatter
and Gather (SAG) and Cyclic) and 2 evaluation workflows
(Cross-site Model Validation and Global Model Evaluation).

3.1.1 Key features

Training workflows
The Scatter and Gather workflow implements a hub and spoke
model. In this approach, a central server disseminates tasks to
be executed by client workers. After each client executed the
task, the results are sent back to the server where they will be
aggregated according to the selected aggregation algorithm.

Another notable workflow supported by Nvidia Flare is the
Cyclic approach. This reference implementation enables the
central server to issue a series of tasks that are cyclically ex-
ecuted among a group of participating clients. Each client
processes a task and then sends it to the next client until the
final client will return the final model to the server.

Evaluation workflows
Cross-site model validation is a workflow through which each
model computed (both local models and the global models) is
validated on each client’s dataset. This works by sending all
models to each client where they will be validated with the
local dataset. The results are collected by the server which
computes a matrix that compares all model performances vs
all client datasets.

Global model validation is a simpler evaluation method where
only the global model is sent to each client in order to be
validated on the local datasets.

3.1.2 Privacy

Privacy preservation is a critical concern in federated learn-
ing, and FLARE addresses this through a range of privacy-
preserving algorithms. These include techniques such as ex-
cluding variables, truncating weights by percentile, applying
sparse vector methods, utilizing homomorphic encryption.
These techniques ensure that sensitive data remains secure
during the federated learning process.

Overall, NVIDIA FLARE serves as a comprehensive frame-
work, providing researchers and developers with a simplified
and efficient means to implement federated learning work-
flows. By incorporating best practices and privacy preserva-
tion algorithms, FLARE contributes to the advancement of
federated learning technologies and their applications in var-
ious domains.

3.2 OpenFL
OpenFL is a Python federated learning platform initially de-
veloped by Intel. It mainly focuses on deep learning using
neural networks, but similarly to NVIDIA Flare it is domain-
agnostic and open-source.[12]

3.2.1 Key features

At present, OpenFL offers two discrete methodologies for
configuring and executing experiments involving federated
learning: the Director-based approach and the Aggregator-
based approach. Each workflow presents distinct benefits and
is appropriate for varying situations within a federation.

Director-Based Workflows
The OpenFL’s Director-based workflow presents a more effi-
cient and simplified method for establishing a federation. The
aforementioned text introduces a pair of significant elements,
namely the ”Director” and the ”Envoy.”

The Director assumes the role of a primary coordinator within
the federation. The aforementioned statement pertains to the
management of the comprehensive orchestration of the pro-
cess of federated learning. The system is responsible for man-
aging various operations, including but not limited to the dis-
tribution of models, consolidation of model updates, and fa-
cilitation of communication among diverse participating en-
tities. The role of the Director involves optimizing the work-
flow and facilitating the administration of the federation.

The term ”Envoy” pertains to distinct units or apparatuses that
exist within the federation. Every Envoy functions indepen-
dently and conducts localized training on its corresponding
datasets. Following the training process, the Envoy transmits
the revised model parameters to the Director for the purpose
of aggregation. This particular constituent facilitates the pro-
cess of distributed and parallel training across numerous en-
tities.

The utilization of the Director-based workflow presents no-
table benefits in situations where a federation necessitates
durable components and a centralized coordination mecha-
nism. The system provides a practical means of oversee-



ing the federated learning procedure and streamlines effective
correspondence and cooperation among the Director and the
Envoy entities involved.

Aggregator-Based Workflows
The Aggregator-based workflow, as implemented in OpenFL,
is a suitable approach for situations where it is imperative to
validate the workload prior to its execution. This workflow
adheres to a conventional method of federated learning, em-
phasizing the consolidation of model updates.

The Aggregator-based workflow involves the fragmentation
of a given workload or task into several sub-tasks, which are
subsequently allocated to distinct entities or devices within
the federation. The aforementioned entities engage in local-
ized training procedures for their designated sub-tasks and
subsequently transmit the model updates to a centralized Ag-
gregator. Subsequently, the Aggregator executes the process
of aggregating the updates of the models and generates the
revised global model.

This particular workflow confers advantages in situations
where it is imperative to authenticate the workload or sub-
tasks prior to complete implementation. The utilization of
this technique permits meticulous regulation of the training
procedure and facilitates the implementation of verification
and validation measures to guarantee precise and dependable
model aggregation.

Each workflow presents distinct benefits and can be chosen
according to the particular demands of the federated learning
context. The workflow based on Director presents a stream-
lined and coordinated methodology, whereas the workflow
based on Aggregator offers enhanced control and verification
functionalities prior to ultimate aggregation.

3.2.2 Security

OpenFL uses TLS encryption [19] for client-server communi-
cation. The main ways of generating certificates are through
manual and semi-automatic PKI workflows [18]. The manual
workflow is already embedded in the aggregator-based work-
flow, while the semi-automatic one involves creating a certifi-
cate authority server that listens for signing requests. These
requests come from the clients of the federation and need to
be signed by the security authority via a token.

3.3 Flower
Flower is a problem-agnostic Federated Learning platform
that has as one of its main design goals simplicity of set-
ting up and usage. It is designed for both researchers and
developers to use and it provides an infrastructure that is also
independent of the underlying machine learning framework
used.

3.3.1 Key features

Framework agnostic
One of the main advantages of using Flower is that it is
machine-learning framework agnostic. This means that de-
velopers and researchers who have already worked with a

specific machine learning framework can quickly adapt their
experiments to a federated setting.

In the official documentation it is stated that ”Flower can be
used with any machine learning framework” [4]. Tutorials
and setup guides are available for incorporating flower with
the following frameworks : PyTorch, TensorFlow, Hugging
Face Transformers, PyTorch Lightning, MXNet, scikit-learn,
JAX, TFLite, fastai, Pandas and Numpy.

Customization
Customization is another key feature of the framework. The
most important customization options are for creating cus-
tom aggregation strategies as well as changing the client API
which is responsible for how each client in the federated net-
work behaves.

The aggregation strategy can be changed in 2 main ways: by
altering the configuration of an existing strategy or by creat-
ing a completely new strategy from scratch. While the former
is much easier to adapt, it only provides small configuration
changes such as manually passing the initial parameters of a
neural network (which by default are sampled from a random
client) or changing the fraction of clients sampled for train-
ing. The latter, however, allows building a whole strategy
from scratch which can provide a higher control over each
client node or even the aggregation. For example, in a cus-
tom strategy, each client can have different learning rates and
the client sampling strategy can also be changed.

The client API can also be customized for more complex
optimizations. The default client uses a Numpy configura-
tion that is especially useful for serialization and deserializa-
tion which happens during the client-server communication
rounds. However, by implementing a custom client the user
can modify these processes and make the federated setting
more performant. For example, the normal Numpy arrays
can be converted into sparse matrices, before being sent to
the server. This would not be possible to customize in the
default configuration, where the Numpy client provides an
interface that contains a built-in serialization/deserialization
process which only accepts Numpy arrays. This way we can
save bandwidth, as in certain cases where the weights of a
complex convolutional neural network are sparse, converting
them to a sparse matrix can greatly improve the size of the
package being communicated to the server.

4 Benchmarking
The benchmarking process will be conducted in accordance
with the methodology elucidated in chapter 2, encompassing
an examination of two primary constituents: heuristics and
performance evaluation.

4.1 Nvidia Flare Benchmarking
4.1.1 Heuristics evaluation

• Documentation
The quality of the documentation is one of the areas
where Nvidia Flare excels the most. The main parts of



documentation include key functionalities, example ap-
plications as well as separate guides for regular usage as
well as programming guides for developers that want to
build experiments on top of the available tools.

The documentation also includes different layers of
depth that could help a wide range of users get started
with the framework. Developers would much benefit for
the extensive API documentation that includes all of the
possible ways of manipulating the Nvidia Flare compo-
nents, while researchers could make use of the multitude
of example experiments to test the frameworks’ limits.

The main focus of the documentation revolves around
simulated experiments that run on a local machine.
However, a special section is dedicated to Real-World
Federated learning, where users can learn how to deploy
experiments on multiple machines that run on-premises
or on cloud.

• Available examples
The overarching theme of the documentation (which is
the different layers of depth it provides) can also be seen
in the example experiments. There are several differ-
ent sections that cover setting up the framework. After
analysing each main section the ordering starting from
low to high level of complexity is the following :

1. Using and setting up Nvidia Flare.
2. Experimenting with the main workflows of the

framework.
3. Using different Federating Learning Algorithms
4. Deep learning experiments.
5. Incorporating federated statistics.
6. Experimenting with different development modes.
7. Complex medical image analysis experiments.

• Setup and learning curve
Setting up Nvidia Flare is described in a special part of
the documentation. The only requirement specified is
using Python 3.8+, however, the list of all supported op-
erating systems are not mentioned. The platform does
not appear to work on Windows systems, as being tested
on a Windows 10 machine. The supported Linux dis-
tributions are not mentioned, which can make the setup
process a trial-by-error experience, especially for users
that are not software developers. The only reference
to an operating system is Ubuntu 20.04, which is men-
tioned as part of the tutorial to set up a virtual environ-
ment. Also for newer versions of Ubuntu the user has to
setup the framework only using Python3.8.
After following the tutorial, the main command that runs
the Nvidia Flare simulator was not working. The fix to
the issue could be found by browsing the GitHub issue
page, which might even cause potential users to give up
setting up the tool since the solution is hard to find.

• Quality of code documentation
The high quality of the code documentation can be ob-
served for the example applications, where individual
Jupyter notebooks are provided that explain step-by-step
what each block of code does.
Besides the notebooks, the main APIs are properly doc-
umented in the code, however, using the website API
documentation was much easier to follow.

• Frameworks capabilities
Nvidia Flare provides a wide range of capabilities that
can also be understood from the quality of the docu-
mentation as well the example applications. The frame-
work is suitable for developers (that work in the feder-
ated learning industry or not) as well as researchers and
each user group can easily understand where to start just
by reading through the documentation which is properly
layered based on the complexity of the concepts as well
as the expertise of the user. Also, the framework pro-
vides simulated as well as real-world federated learning
capabilities which makes it a versatile tool.

The framework is model-agnostic allowing users to de-
velop their own models that can be either deep-learning
models, machine-learning, or even statistical workflows.

The available aggregation algorithms are Scaffold [6],
FedProx [7], Fed Average [10] and Fed Opt [15].

4.1.2 Performance evaluation
The results of the CIFAR10 experiment can be found in the
graphs presented in Figure 1 .

Figure 1: Accuracy over 50 rounds.



4.2 OpenFL Benchmarking
4.2.1 Heuristics evaluation

• Documentation
The OpenFL documentation includes a section for each
main part of the framework which are: manual, architec-
ture of the system, and troubleshooting.
The manual is the most important part of the documen-
tation since it includes an installation and setup guide as
well as example applications.
Even though the documentation covers the most impor-
tant topics of the framework, it fails to properly separate
the topics based on complexity, which means the user
can easily be lost within the complex technicalities of the
system while just trying to set up the framework. Thus,
the best way of understanding the framework is first go-
ing through the example applications and then coming
back to the documentation.

• Available examples
The documentation is misleading with regards to the
tutorials since the official website documentation only
mentions aggregator-based workflow tutorials, while the
official github also contains tutorials for the director-
based workflow.
The OpenFL GitHub repository [16] contains a wide va-
riety of tutorials in the form of jupyter [17] notebooks
that cover experiments that use either TensorFlow [3] or
PyTorch [13] as machine learning frameworks for each
individual client.
Even though the variety of the example experiments is
impressive, the code is not commented in-depth and the
user might need to read other pieces of documentation
or even code in order to understand the underlying pro-
cesses of the experiment.

• Setup and learning curve
Setting up OpenFL is straightforward following the tuto-
rial in the official documentation. However, there are no
operating systems requirements, even though the setup
does not work for Windows distributions. The only re-
quirement is installing a Python 3.8 virtual environment
and then following the tutorial.
One major problem encountered after following the ex-
act setup instructions was that the example applications
tested (the Pytorch MNIST tutorial and the Keras Mnist
tutorials) could not be run just by following the respec-
tive Jupyter notebooks. In order to properly run the ex-
periments the source code had to be modified by modi-
fying several methods.

• Quality of code documentation
The documentation for the main components of the
framework is good (namely the collaborator and aggre-
gator APIs) however, there still exist TODO comments
as well as comments that specify that an error might be
encountered by the user. Also, there are comment snip-
pets that mention that a fix needs to be implemented for

the corresponding code fragment. The codebase docu-
mentation as well as the rather simple example applica-
tion documentation suggests that the framework is not
that well established and still under development before
reaching a complete version.

• Frameworks capabilities
The main focus of OpenFL is deep learning, which can
be seen from the wide variety of deep-learning exam-
ple tutorials. However, the framework’s main advan-
tage is being agnostic with regards to the underlying ma-
chine learning tool used, providing wrappers for both
PyTorch and Tensorflow, 2 of the most widely used ma-
chine learning platforms.

Even though the documentation does not provide a clear
distinction between simulated and real-world federated
learning workflows, the director-based worflow presents
different roles of the federation. These are the experi-
ment manager(a person or group who uses OpenFl), the
director manager (the machine learning model creator)
and the collaborator manager (which represents a sin-
gular client). On the other hand the aggregator-based
workflow is mainly used for one-time simulated experi-
ments and testing the framework.
The available aggregation algorithms are FedAvg (for all
frameworks), FedProx (for PyTorch and TensorFlow ex-
periments), FedOpt(for all frameworks), FedCurv (for
PyTorch experiments).

4.2.2 Performance evaluation
The results of the CIFAR10 experiment can be found in the
graphs presented in Figure 2.

Figure 2: Accuracy over 40 training rounds

The experiment only includes 40 rounds since after that the
machine ran out of memory and killing the process.



4.3 Flower benchmarking
4.3.1 Heuristics evaluation

• Documentation
The Flower documentation is extensive and has a really
good transition from simpler concepts to more complex
ones. The very first section starts with an introduction
to federated learning which puts an emphasis on the fact
that the framework tries to welcome users of any expe-
rience level. Also, after the introduction to Federated
Learning, a 4 step tutorial shows how the most impor-
tant components of a federated setting are implemented
using Flower.

After this short but pragmatic on-boarding guide, the
documentation contains quick-start guides for some of
the most popular machine-learning frameworks which
help users from the machine-learning community adapt
their workflows to a federated setting.

The documentation continues with more complex sub-
jects, from which the most important ones are setup
guides for using and configuring Flower, API, and CLI
documentation as well as a dedicated section for future
contributors to the Framework’s progress.

Overall, the documentation is really well organized and
excels at helping users of various expertise levels get on-
boarded to Flower. The versatility of the framework is
definitely reflected in the number of on-boarding guides
for the machine learning frameworks which facilitates
the transition to Federated Learning.

• Available examples
Flower’s GitHub repository [2] contains an extensive
list of example applications. The main category repre-
sents quick-start guides for different machine-learning
frameworks and technologies. However, the repository
contains experiments that cover different facets of the
framework such as using the simulation environment or
advanced tutorials which use more clients and use more
complex features of the framework.

Besides the examples which are part of the GitHub
repository, the main documentation page already con-
tains most of the quick-start examples as well as the ini-
tial suite of onboarding tutorials, which might be easier
to follow for users unfamiliar with Federated Learning.

The most important aspect of the available examples is
the abundance of explanations that follow each block
of code (for introductory tutorials) or each CLI com-
mand (for advanced tutorials). Especially for the quick-
start tutorials the explanations do not just stop at just the
codes’ functionality, but even include advantages of the
approaches taken and even complex information about
the API or the architecture of the framework.

• Setup and learning curve

The setup guide is present in the official Flower docu-
mentation and it is easy to follow. The only restriction
is using Python 3.7 or above and using a virtual environ-
ment is highly recommended. If the user skips the setup
guide, all of the quickstart tutorials include an introduc-
tion to setting up the framework, which makes it really
hard to get stuck.

Flower examples use Poetry [14] to manage dependen-
cies, but there exist tutorials for using other popular vir-
tual environments such as Pyenv [1] or Anaconda [5]as
well. After following the Poetry setup guide and follow-
ing the flower installation tutorial, there were no errors
and basic examples could be run smoothly from the first
try.

• Quality of code documentation
The quality of the code documentation is very good,
especially for the example applications, where ref-
erences to the system architecture and possible code
customization options are explained to the user.

Another great aspect of the code documentation is
the API reference in the official documentation, which
contains all of the information regarding Client and
Server method utilization (which represent the main
working parts of an experiment) as well as an extra
section regarding helper function. Lastly, the docu-
mentation is completed by a short CLI guide for using
Flower commands which are explained in depth.

• Frameworks capabilities

The main advantage of using Flower is the ease of adapt-
ability from a regular Machine Learning setting to a Fed-
erated one. Also, being able to adapt so many regular
machine-learning frameworks leads to an even greater
flexibility with regards to model selection, making the
framework a great multi-purpose tool.

Another key aspect of the tool is the ease of setup and the
on-boarding experience which helps new inexperienced
users get used to Federated Learning really fast. Also,
the code structure is vastly designed around two major
components which are the Client and the Server. This
once again makes it much easier for new users to navi-
gate the codebase and start developing custom solutions.

The list of available aggregation algorithms is ex-
tensive, including FedAvg (alongside 3 variations of it),
FedOpt, FedProx, FedAdagrad, FedAdam and FedYogi.
[15]

4.3.2 Performance evaluation

The results of the CIFAR10 experiment can be found in the
graphs presented in Figure 3.



Figure 3: Accuracy over 50 training rounds.

5 Results
Each framework presented in the benchmarking section in-
cludes unique advantages and depending on the expertise and
experience of the user one platform might be more suitable
than the other 2. Since the key features and main functional-
ities have been already discussed, this section will rank the 3
frameworks based on the components discussed in the bench-
marking section and then include a flow diagram that helps
each type of user decide what framework to choose.

5.1 Heuristics ranking

• Documentation

1. Flower
2. Nvidia Flare
3. OpenFL

In terms of documentation, Flower provides the most
user-friendly one, guiding the user from simple to com-
plex concepts. Nvidia Flare also offers great documen-
tation and the layering from simple to complex concepts
is also present, but it is much harder to follow for an
inexperienced user who is new to Federated Learning.
OpenFL comes on last place, the documentation being
more chaotic and harder to follow than the other 2 frame-
works.

• Available Examples

1. Nvidia Flare
2. Flower
3. OpenFL

Nvidia Flare provides the largest variety of examples,
ranging from introductory and complex examples. Also,
each example is well explained which makes them easy
to follow and implement by the user. While Flower also
offers a large range of examples the majority of them

focus on setting up different Machine Learning work-
flows to a federated setting, which makes the examples
really specialised and sometimes even niche. OpenFL
provides a good amount of great quality examples, but
it specializes mainly on using PyTorch and TensorFlow
workflows, since it specializes on neural networks so the
variety does not compare to the other 2 platforms.

• Setup and learning curve

1. Flower
2. OpenFL
3. NvidiaFlare

The setup process of Flower is by far the easiest one
out of the 3 platforms, with no errors being shown after
following the installation and setup guides. In terms of
setup, OpenFL is also easy to use but the learning curve
is quite steep even when using the most introductory tu-
torials. This is because some features do not work as
expected from the start and the user sometimes needs
to adapt the template code in order to run the tutori-
als. NvidiaFlare comes last in the ranking because the
setup process is the hardest to follow and the encoun-
tered errors were solved by browsing the issues page
of the GitHub repository which is a hard workaround
to find. While setting up the simulation environment is
relatively easy, using the NvidiaFlare Proof-of-Concept
mode, which is a more realistic environment is harder to
learn how to use and properly set up.

• Quality of code documentation

1. Flower
2. NvidiaFlare
3. OpenFL

In terms of code documentation, both Flower and Nvidi-
aFlare excel, with Flower being slightly better with re-
gard to the introductory tutorials. However, both offer
great explanations for the main APIs as well as for the
example experiments. The OpenFL documentation is
good when considering the example applications, but the
codebase contains TODOs as well as comments suggest-
ing future fixes that need to be implemented, which leads
to the fact the framework is not yet at the same maturity
as the other 2.

• Framework capabilites
Since framework capabilities refer to unique features
each platform provides it is hard to create a ranking
based on it. Considering this fact, the final flow diagram
that helps each user decide what framework to choose
should be considered.
However, in terms of the most standout factors of each
framework, we can clearly associate the frameworks
with these features:



– Flower - easiest to start working with and adapt
from regular Machine Learning workflows.

– Nvidia Flare - most inclined towards experienced
users.

– OpenFL - best for security customization.

5.2 Performance ranking

In terms of performance, Nvidia Flare performed best for the
CIFAR10 experiment, followed by Flower and OpenFl. In
the case of OpenFL, the training stopped midway due to the
machine running out of memory.

Figure 4 below shows all of the results from the performance
benchmarking:

Figure 4: Experiments from top to bottom : OpenFL, Flower, Nvidia
Flare

The diagram in Figure 5 (also present in the appendix, for
ease of reading) can be used as a starting point for deciding
what framework to use considering the bench-marking results
and the comparison of each framework’s strengths:

Figure 5: Choosing between the frameworks.

6 Responsible Research
The research conducted did not involve any ethical concerns.
This is because most of the experiments that were run are
based on the CIFAR10 dataset, a generic dataset that classi-
fies images of different objects or animals. Also, the main
focus of the research is based on reviewing the documenta-
tion and the code of federated learning platforms which did
not introduce any ethical concerns.

7 Discussion and conclusion
In conclusion, Flower, Nvidia Flare, and OpenFL are all 3
viable Federated Learning frameworks that have their unique
strengths and weaknesses. The overall goal of the research
paper was to help different type of users decide between one
of the 3 frameworks, which can be decided based on the re-
sults section. The main focus of the benchmarking was evalu-
ating a couple of heuristics that can be derived from using the
platforms. Also, a small experiment was replicated across all
3 platforms in order to have a brief idea about performance
comparisons. The only limitation found was for the OpenFL
experiment, where the same machine that was used for all ex-
periments ran out of memory. This could be classified be a
machine limitation, but considering that the nature of the ex-
periment was not extremely computational intensive it might
point out to some framework limitations as well.

For future work, the benchmarking can continue with a more
thorough performance analysis, including more experiments.
Then, additional frameworks could be added to the compari-
son in order to have a better overview of the Federated Learn-
ing tools available.

References
[1] Pyenv. https://github.com/pyenv/pyenv.
[2] Flower examples. https://github.com/adap/flower/tree/

main/examples, 2020.
[3] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefow-
icz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dandelion Mané, Rajat Monga, Sherry Moore,

https://github.com/pyenv/pyenv
https://github.com/adap/flower/tree/main/examples
https://github.com/adap/flower/tree/main/examples


Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fer-
nanda Viégas, Oriol Vinyals, Pete Warden, Martin Wat-
tenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: Large-scale machine learning on hetero-
geneous systems, 2015. Software available from tensor-
flow.org.

[4] Daniel J Beutel, Taner Topal, Akhil Mathur, Xinchi
Qiu, Javier Fernandez-Marques, Yan Gao, Lorenzo
Sani, Hei Li Kwing, Titouan Parcollet, Pedro PB de
Gusmão, and Nicholas D Lane. Flower: A friendly
federated learning research framework. arXiv preprint
arXiv:2007.14390, 2020.

[5] Conda. Conda installation guide. https://docs.conda.io/
projects/conda/en/latest/user-guide/install/index.html.

[6] Sai Praneeth Karimireddy, Chaitanya Hegde, and
Satyen Kale. SCAFFOLD: Stochastic controlled
averaging for federated learning. arXiv preprint
arXiv:2102.03279, 2021.

[7] Jakub Konečnỳ, H. Brendan McMahan, Peter Richtárik,
Ananda Theertha Suresh, and Felix Xu. Federated op-
timization in heterogeneous networks. In Advances
in Neural Information Processing Systems, pages 317–
325, 2016.

[8] Alex Krizhevsky and Geoffrey Hinton. Learning mul-
tiple layers of features from tiny images. Technical re-
port, University of Toronto, 2009.

[9] Xiaoyuan Liu, Tianneng Shi, Chulin Xie, Qinbin Li,
Kangping Hu, Haoyu Kim, Xiaojun Xu, Bo Li, and
Dawn Song. Unifed: A benchmark for federated learn-
ing frameworks, 2022.

[10] Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Aguera y Arcas. Communication-
Efficient Learning of Deep Networks from Decentral-
ized Data. In Aarti Singh and Jerry Zhu, editors, Pro-
ceedings of the 20th International Conference on Artifi-
cial Intelligence and Statistics, volume 54 of Proceed-
ings of Machine Learning Research, pages 1273–1282.
PMLR, 20–22 Apr 2017.

[11] NVIDIA. NVIDIA Flare Documentation. https://
developer.nvidia.com/flare-rhino, 2023.

[12] OpenFL Community. OpenFL Documentation. https:
//openfl.readthedocs.io/en/latest/index.html.

[13] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang,
Zachary DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. Pytorch: An imperative
style, high-performance deep learning library. In Ad-
vances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019.

[14] Python Poetry. Python Poetry documentation.

[15] Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Amr
Alex, David Li, Virginia Lee, and Suvrit Sra. Adaptive
federated optimization. In International Conference on
Machine Learning, pages 8586–8597, 2021.

[16] Secure and Private AI Collaborative. Openfl. https://
github.com/securefederatedai/openfl, Year of retrieval.

[17] The Jupyter Development Team. Jupyter notebook,
2015.

[18] Wikipedia. Public Key Infrastructure. https://en.
wikipedia.org/wiki/Public key infrastructure.

[19] Wikipedia. Transport Layer Security. https://en.
wikipedia.org/wiki/Transport Layer Security.

https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html
https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html
https://developer.nvidia.com/flare-rhino
https://developer.nvidia.com/flare-rhino
https://openfl.readthedocs.io/en/latest/index.html
https://openfl.readthedocs.io/en/latest/index.html
https://github.com/securefederatedai/openfl
https://github.com/securefederatedai/openfl
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Transport_Layer_Security


A Convolutional Neural Network code
The code below was used to create a Convolutional Neural network which was used for the 3 performance experiments :

model = Sequential()
model.add(Conv2D(32, kernel_size=3, padding=’same’, activation=’relu’, input_shape= (32,32,1)))
model.add(Conv2D(64, kernel_size=3, padding=’same’, activation=’relu’))
model.add(MaxPooling2D(pool_size=2, strides=2))
model.add(Conv2D(128, kernel_size=3, padding=’same’, activation=’relu’))
model.add(Conv2D(128, kernel_size=3, padding=’same’, activation=’relu’))
model.add(MaxPooling2D(pool_size=2, strides=2))
model.add(Dropout(0.05))
model.add(Conv2D(256, kernel_size=3, padding=’same’, activation=’relu’))
model.add(Conv2D(256, kernel_size=3, padding=’same’, activation=’relu’))
model.add(MaxPooling2D(pool_size=2, strides=2))
model.add(Flatten())
model.add(Dropout(0.1))
model.add(Dense(512, activation=’relu’))
model.add(Dense(512, activation=’relu’))
model.add(Dropout(0.1))
model.add(Dense(classes, activation=’softmax’))
model.compile(loss=’categorical_crossentropy’, optimizer=’adam’, metrics=[’accuracy’])
return model

Figure 6: Choosing between the frameworks.


	Introduction
	Methodology or Problem Description
	Heuristics evaluation
	Performance evaluation

	Frameworks
	Nvidia Flare 
	Key features
	Privacy

	OpenFL 
	Key features
	Security

	Flower
	Key features


	Benchmarking
	Nvidia Flare Benchmarking
	Heuristics evaluation
	Performance evaluation

	OpenFL Benchmarking
	Heuristics evaluation
	Performance evaluation

	Flower benchmarking
	Heuristics evaluation
	Performance evaluation


	Results
	Heuristics ranking
	Performance ranking

	Responsible Research
	Discussion and conclusion
	Convolutional Neural Network code

