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1
INTRODUCTION

If there is one thing that the human brain excels at, it is making connections. Maybe that
is why networks are such popular scientific tools. After all, a network is nothing but a
collection of points and connections. Or maybe we see networks everywhere because
John Donne was right to observe that “No man is an island”1, and networks truly are
everywhere.

No matter the cause of the ubiquitousness of networks, the study of (complex) net-
works is very divers. Networks can represent vastly different objects including physical
infrastructures such as rail, road and waterways [1, 2], flight routes and shipping lanes
[3, 4], but also sewage systems and power grids [5], and, of course, the internet. Networks
can be constructed from financial transactions [6], friendship or collaboration relations
among individuals [7], sports players or online gamers that have played on the same
team [8], and more abstract things such as functional brain networks where the nodes in
the network are brain regions that share a link when they show correlated activity [9], or
co-purchase networks where nodes are items in a shop that share a link when they were
purchased together [10].

The emergence of the current multidisciplinary research field of complex networks
is generally attributed to the rise of the computer. The exponential growth in transistor
density of integrated circuits has brought cheap computation power and huge memory
capacities, enabling the storage and manipulation of large datasets. The existence of
large datasets in itself can be attributed to the continued computerisation of our world:
machine readable data can be processed much easier than handwritten records. Where
it used to take anthropologists many hours to map out the social structure of a com-
munity, perhaps using questionnaires or by taking interviews, the immense popularity
of online social networking sites and the existence of digital address books of, for ex-

1No man is an island, entire of itself; every man is a piece of the continent, a part of the main. If a clod be
washed away by the sea, Europe is the less, as well as if a promontory were, as well as if a manor of thy friend’s
or of thine own were: any man’s death diminishes me, because I am involved in mankind, and therefore never
send to know for whom the bell tolls; it tolls for thee. (part of Meditation #17 from Devotions upon Emergent
Occasions (1623))

1
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ample, email or phone contacts, has made it possible to extract the structure of huge
communities in almost no time.

Regardless of what physical or conceptual entity a given network represents, the net-
work representation is always used to gain knowledge about or insight in the behaviour
of the entity. For example, it is crucial to know whether a power-grid is capable of deliv-
ering the requested energy to all the endpoints in the network. It is therefore necessary
to compute, for a given load, the total current flow through each link and whether that
flow is below the capacity of the link. And what happens if a link breaks? Is there another
path through the network to continue to deliver energy to all endpoints, and do the links
on that path have enough capacity to do so. Similar questions can be asked of all kinds
of networks: is it still possible to offer a full train service after a points failure, how much
congestion can be expected on road network when a main road is closed for engineering
work, do species go extinct when the food-web is altered?

The answer to all these questions centre around the structural properties of a net-
work. Nodes are mere abstractions, it is the links that show how a system is connected.
A large part of complex network studies is occupied with defining, computing and un-
derstanding network metrics such as the maximum and average distance between two
nodes, the number of shortest paths between all nodes that traverse a certain link, the
number of neighbours that are neighbours amongst themselves and many others. Most
metrics aim to indicate or rank which nodes are important/central to the network, based
on the links between them. Especially in the study of online social networks this has
lead to fascinating results (and reaffirmation of previous results) such as the friendship
paradox, that states that your friends have, on average, more friends than you, and the
six degrees of separation, that states that a random person is only six steps in friends
away. In addition to topological metrics, which centre around how nodes are linked to-
gether, there is the spectral domain. In the spectral domain, metrics are derived from
the eigenvalues of the adjacency matrix or the Laplacian matrix.

The structural properties of a network help to describe and analyse it and make it
possible to classify nodes as central or influential, but the network in itself remains a
static entity. A roadmap can tells us that there is a path between our home and our holi-
day destination on some sunny beach in southern France. Navigation equipment might
use algorithms to compute what the shortest/quickest/cheapest/most scenic route to-
wards that destination is. It is, however, the dynamic process of thousands of cars, lor-
ries and coaches all trying to reach a myriad of different destinations that determines the
performance of the network. Spectral metrics have proven especially useful in relating
network properties to dynamic processes.

This interplay of the structure of the network and the dynamic process that runs on
top of the network is the over arching topic of this thesis. Rather than characterising the
topological properties of networks, we are interested in the influence that the topology
has on a certain dynamic process that operates on top of the network. The spread of
information or content through an online social network is a good example of a dynamic
process on a network. But also the spread of a virus through a population or a computer
virus over the internet is a good example of how basic and local interactions lead to a
global level of infected nodes. An interesting question in the context of virus spread is
how many nodes (people, computers, etc.) will be infected on average, and how long it
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takes to reach this number, and how long they will stay infected. In the coming chapters
we will answer these and other questions under various circumstances.

1.1. RESEARCH QUESTIONS
The main research focus of this thesis is the interplay of local interactions and global
effects. Nature is full of examples of how simple, local rules within a community can
lead to complex organised behaviour, such as the construction of termite mounds, the
organised building, feeding and defence of ant colonies and the social organisation of
bee-hives. We will mainly focus on a much simpler example of a dynamic process on
a graph: virus or information spread. More specifically, we focus on the Susceptible-
Infected-Susceptible virus model. Much work has been devoted over the past decades
to understanding this simple virus model on graphs, and a few approximations to the
otherwise intractable model have been proposed. Naturally, it is important to know in
which types of graphs these approximations work well, and which one is best.

Approximations to the SIS model give the average fraction of infected nodes in the
meta-stable state and a threshold value for the effective infection rate above which the
meta-stable state actually exists. However, they do not offer any insight in how long the
virus will stay in the meta-stable state or how quickly the meta-stable state is reached.
Also, the meta-stable state itself is not very accurately defined. Especially in the context
of real outbreaks of (computer) viruses, we need a better understanding of the temporal
properties of the SIS model.

The SIS process models the infection and curing processes as Poisson processes: the
inter-arrival time of infection and curing events are exponentially distributed. Whereas
this makes the process a Markov process, and enables the use of the mathematical tools
developed to analyse Markov processes, real-world infection and curing processes are
not necessarily Poissonian. The effects of non-Markovian infection and curing should be
well understood in order to make the SIS applicable to many of the real-world spreading
phenomena.

From a engineering point of view, we can mimic a virus spreading process to use
in an algorithmic setting. Purely local interactions between nodes can collectively form
a dynamic process that computes global properties of the network in a completely de-
centralised fashion. Just as the topology dictates the success of an epidemic outbreak,
it also dictates the performance of epidemic algorithms. A good understanding of the
influence of topological features on, for example, the convergence time of an algorithm
is crucial in designing successful epidemic algorithms. On the other hand, we can ad-
apt the network to make it less vulnerable to virus threats, which conversely means that
epidemic algorithms and content propagation is hindered. One approach is to remove
links from the network to reduce or increase network metrics that are known to influence
the process. This thesis contributes to a better understanding of the research questions
mentioned in this section.

1.2. OUTLINE OF THIS THESIS
The remainder of this thesis is organised as follows. In chapter 2 we introduce the Sus-
ceptible-Infected-Susceptible (SIS) process on a graph together with two mean-field ap-
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proximations. We benchmark these two approximations against a slightly modified SIS
model, the ε-SIS model, where nodes also have a small self-infection rate in order to re-
move the absorbing state of the SIS model. Chapter 3 discusses the survival time of the
SIS process on a graph. The worst-case survival time is the time to reach the absorbing
state starting from the all-infected state. In chapter 4 the dynamic behaviour of two SIS
processes competing for the same healthy nodes in a network is discussed. The key focus
is on the domination time, a concept very much related to the survival time of a single
outbreak. In chapter 5 we move away from the classical SIS process to understand the in-
fluence of a non-Poissonian infection and curing process on the epidemic threshold, the
fraction of infected nodes in the meta-stable state, and the survival time of an epidemic.
In a move even further away from the SIS epidemic, we develop an epidemic algorithm
to count the number of nodes in a large dynamic and distributed network in chapter
6. Finally, we discuss how to extract networks from empirical datasets in chapter 7. We
also discuss how to remove links from a network in such a way that the spreading of an
epidemic is suppressed the most. In chapter 8 we give an overview of the contributions
of this thesis to the general field of complex networks and discuss future research in the
area of SIS epidemics and algorithmics. Appendix A gives an overview of all the tools we
have developed to extract networks from datasets and to compute network properties
and simulate epidemic algorithms.



2
THE SIS EPIDEMIC MODEL

We introduce the SIS virus spread model and explain why it is generally infeasible to de-
rive exact results. We use a modified SIS model, the ε–SIS model, as a benchmark for
the comparison between the N-intertwined Mean-Field Approximation (NIMFA) and the
Pastor-Satorras & Vespignani HMF approximation of the SIS model. NIMFA, the HMF
approximation, and the ε–SIS spreading model are compared in different graph types.
We focus on the epidemic threshold and the steady-state fraction of infected nodes in net-
works with different degree distributions. Overall, the NIMFA approximation is superior
to the HMF approximation. In regular graphs, NIMFA and the HMF approximation are
exactly the same. However, for some special graph types, such as the square lattice and
path graph, the two mean-field approximations are both far away from the ε–SIS model,
especially around the epidemic threshold.

2.1. THE SIS MODEL IN A NUTSHELL
The describing properties of the Susceptible-Infected-Susceptible [11] (SIS) model are
so deceptively simple that a nutshell is indeed sufficient to contain all there is to know
about the SIS model. A node can be in one of two states: healthy or infected. Nodes in
the healthy state move to the infected state, while nodes in the infected state move back
to the healthy state. The infection process describes nodes moving from the healthy state
to the infected state, and the curing process describes nodes moving from the infected
state to the healthy state.

In the classic SIS model, both the curing and infection processes are Poisson pro-
cesses. Figure 2.1a shows the curing and infection processes from a nodal perspective.
The curing process has a rate δ and is a nodal process, i.e. it is not influenced by the viral
state of the neighbours of the infected node. The infection process, however, is a per link
process with a rate β per link between a healthy and an infected node. The total rate of
change from the healthy state to the infected state for a node i is given by β times the
number of infected neighbours.

Figure 2.1b shows the SIS process from a network perspective. The red nodes are in-
fected nodes, whereas the green nodes are healthy nodes. If the yellow node i is infected,

5
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δ

N
j=1 aijvjβ

(a) The SIS process as seen from a node per-
spective. The red node denotes the infected
state, whereas the green node denotes the
healthy state.

β

β

β

(b) The SIS process as seen from a network
perspective. Red nodes are infected nodes,
whereas green nodes are healthy nodes. The
yellow node is also healthy, but coloured dif-
ferently for easy reference.

Figure 2.1

it will cure (move to the healthy state) with a rate δ irrespective of the state of the rest of
the network. When it is healthy, however, the three infected neighbours will spread the
infection with a combined rate of 3β. The combined or total infection rate that node i
experiences is not constant over the healthy period of the node as infected neighbours
can cure. Even though all Poisson processes are independent, the viral state of the nodes
are not independent since clearly the rate of change from the healthy to the infected
state of the yellow node i in Figure 2.1b depends on the number of infected neighbours.

Since the infection and curing processes in the SIS model are Poisson processes, the
entire infectious state of the network is fully described by a continuous-time Markov
chain. With the Markov description of the network state, all properties of the SIS process
are known, that is, theoretically. The one complicating factor in the Markov analysis of
the SIS model is the exploding state space. Figure 2.2 shows the Markov graph of the
SIS process on K5, a complete graph of 5 nodes. The Markov graph in Figure 2.2 illus-
trates two fundamental properties of the SIS process. First, every ordered combination
of healthy and infected nodes is a state in the Markov chain, and second, whereas al-
most all transitions in the Markov graph are bidirectional, the ones to the all-healthy are
unidirectional. The former tells us that the state space scales with 2N in the number of
nodes N , the latter that the all-healthy state is an absorbing state.

The exponentially growing state space of the Markov chain makes an exact analysis
of the SIS process using Markov chains infeasible for graphs larger than 10 to 20 nodes in
most cases. For a few graphs, such as the complete graph and the star graph, it is possible
to reduce the number of states in the Markov chain, but this is not generally the case.
The absorbing state in the Markov chain tells us that the infection will eventually die
out, leaving the network in the all-healthy state. The natural questions to ask are then,
how long will it take until the infection dies out, and how many nodes will be infected,
on average, during an outbreak of the infection. These two questions are the motivation
for substantial parts of this thesis and will pop-up frequently.



2.1. THE SIS MODEL IN A NUTSHELL

2

7

Figure 2.2: SIS state space for a complete graph of 5 nodes (K5).

With the focus on the duration of an infection outbreak and the number of infected
nodes during such an outbreak, we move out of the nutshell and into the complex world
of dynamic processes on networks. Because of the huge state space in the general case,
Markov methods are of limited use and approximations of the SIS process are needed.
In this chapter we evaluate two different mean-field approximations of the SIS process:
the N-intertwined Mean-Field Approximation (NIMFA) [12, 13] and the Pastor-Satorras
& Vespignani heterogeneous mean field (HMF) approximation [14].

We consider the spread of an infection or virus in an undirected graph G(N ,L), char-
acterised by a symmetric adjacency matrix A. The effective infection rate is defined as

τ = β
δ , that is, the infection rate divided by the curing rate. The viral state of a node i at

time t is specified by a Bernoulli random variable Xi (t ) ∈ {0,1}, where Xi (t ) = 0 refers to
a healthy node and Xi (t ) = 1 to an infected node. Every node i at time t is either infec-
ted, with probability vi (t ) =Prob[Xi (t ) = 1] or healthy (but susceptible) with probability
1− vi (t ).

A fundamental question very much related to the duration of an outbreak, is whether
a virus will spread through the entire network, or will die out. It turns out that for viruses
with an effective infection rate that is high enough, the existence of the absorbing state
is of little practical consequence, and the epidemic will stay in the network for a very
long time. It has long been observed (see [14–21]) that an epidemic threshold τc exists
that separates two different regimes in the dynamic infection process on a network: for
an effective infection rate τ above the threshold, the infection spreads and becomes per-
sistent in time; for τ< τc , the infection dies out exponentially fast.

A first order mean-field epidemic threshold τ(1)
c = 1

λ1(A) , where λ1(A) is the largest ei-
genvalue of the adjacency matrix A, was first proposed by Wang et al. [21], and rigorously
proved by Van Mieghem et al. in [12, 13] and later appeared in the physics community
[22]. Van Mieghem et al. [12] also showed that this mean-field threshold lower bounds
the “in reality observed” epidemic threshold, τ(1)

c = 1
λ1(A) ≤ τc . A more accurate lower

bound (the second order mean-field threshold) τc ≥ τ(2)
c ≥ τ(1)

c has been derived in [23].
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The HMF epidemic threshold [14, 17] is given by τH MF
c = E [D]/E [D2], where D is the

degree of a randomly chosen node in G .

In this chapter, we present a detailed comparison of the two mean-field approxim-
ations. Usually, the quality of an approximation is assessed by two criteria: 1) which
approximation is closer to the exact SIS model in terms of average fraction of infec-
ted nodes, and 2) which approximation’s epidemic threshold is nearer to the epidemic
threshold of the exact SIS model? A direct comparison to the SIS model is, however, not
possible, because the steady-state of the exact SIS model in a finite network is, as ex-
plained earlier, the absorbing all-healthy state. The presence of an absorbing state is a
major complication in the analysis of the SIS model.

The steady-state of both mean-field approximations corresponds, in fact, to what
is called the meta-stable state in the SIS model, which is not accurately defined for finite
networks [12]. Therefore, we define the meta-stable state of the SIS model via the steady-
state of the ε–SIS model for a prescribed value of ε. The ε–SIS process generalises the SIS
model by adding a nodal component to the infection. We assume that each node i can
be infected spontaneously. The spontaneous infection process is a Poisson process with
rate ε. Hence, besides receiving the infection over links from infected neighbours with
rate β, the node i can also itself produce a virus with rate ε. As a consequence of the self-
infection, the unidirectional state transitions in Figure 2.2 to the all-healthy state become
bidirectional for ε > 0, removing the absorbing state, and Markov theory guarantees a
unique steady-state. Ideally, ε is small enough not to influence the other state transitions
too much. When ε= 0, the ε–SIS model reduces to the “classical” SIS model. Hence, for
small values of ε> 0, the ε–SIS spreading model can be used to approximate the exact SIS
model. Here, the ε–SIS spreading model with a small value for ε is used as a benchmark
to compare the steady-state of NIMFA and the HMF approximation on different network
types.

2.2. SIMULATION METHOD & MEAN-FIELD APPROXIMATIONS
We will first introduce the ε–SIS model simulation techniques we have used and give a
detailed description of the two mean-field approximations, before turning to the com-
parison of the two approximations in various graph types.

2.2.1. SIMULATING THE ε–SIS SPREADING MODEL

The ε–SIS spreading model was proposed recently by Hill et al. [24] in their analysis of
emotions as a form of infection in a social contact network and earlier in [25] where ε

is defined as the driving field conjugate to the density of infected nodes. Here, we will
explain the simulation process, but defer to [26] for an analysis of the ε–SIS model.

We will briefly describe the ideas behind our simulator here. See Appendix B for a
more detailed description of the simulator. In our simulations we take a nodal central,
event driven approach. An event can either be the curing of a node or the spreading
of the infection from one node to another. Events are stored in a timeline as tickets. A
ticket contains, besides the time and the event type (spreading or curing), the owner
of the ticket. The ticket owner is usually a node, but can also be the system to allow for
scheduling of administrative tasks. Tickets are continuously taken from the timeline and
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passed on to the owner.
If the ticket owner is a node, the ticket either indicates a curing or spreading event.

In case of a curing event, the node simply changes its state from infected to healthy; in
case of a spreading event, it will spread the infection to the neighbour mentioned in the
ticket. If the neighbour was not already infected, it will now become infected and create
one or more tickets.

A newly infected node will always create a ticket for its own curing event. According
to continuous-time Markov theory (see [27]), the time between infection and curing is
exponentially distributed with rate δ and is stored by the node for future reference. An
infected node also generates spreading times at which it will spread the infection to its
neighbours. The spreading times are again exponentially distributed but now with rate
β. If the spreading time does not exceed the node’s curing time, a ticket is created for the
spreading event. All newly created tickets are stored in the timeline. Finally, the owner of
the original ticket generates a new spreading time, which, if not exceeding its own curing
time, creates a new spreading ticket for the same neighbour.

If the ticket is not owned by a node, it is a system ticket. System tickets are used to
cause the spontaneous infections in nodes. Every node becomes infected spontaneously
at a rate ε, but to minimise the number of tickets in the timeline, the system creates one
spontaneous infection ticket at the time. The time between spontaneous infection tick-
ets is exponentially distributed with rate Nε. When the system receives a spontaneous
infection ticket, it selects a random node and tries to infect it. If the node is already in-
fected, nothing will change, whereas a healthy node will become infected and create the
tickets described above.

During the simulation, for each possible number of infected nodes (0 to N ) it is re-
corded how long the network was in a state with that many nodes infected. The average
number of infected nodes during the simulation can be determined by multiplying the
number of infected nodes by the fraction of time spent in that state, and sum over all the
states.

2.2.2. THE PASTOR-SATORRAS & VESPIGNANI HMF APPROXIMATION

Pastor-Satorras & Vespignani [14] studied the Susceptible-Infected-Susceptible (SIS) epi-
demic on networks and proposed the heterogeneous mean-field (HMF) approximation,
in which the degree distribution plays an important role. In the notation of the original
HMF work, the fraction (or density) of infected nodes in a network is denoted by ρ, and
the relative density of infected nodes with degree k, i.e., the probability that a node with
k links is infected, by ρk (t ). The dynamical mean-field reaction rate equation can be
written as

∂tρk (t ) =−δρk (t )+βk[1−ρk (t )]Θ
(
ρ(t )

)
,

where Θ
(
ρ(t )

)
is the probability that any given link points to an infected node. In steady-

state, y∞ = limt→∞ρ(t ) is only a function of the infection rate β and curing rate δ, and
as consequence, so is Θ

(
ρ(t )

)
. By imposing stationarity [∂tρk (t ) = 0], when t →∞, the

relative density reduces to

ρk (τ) = τkΘ(τ)

1+kτΘ(τ)
(2.1)
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where τ= β
δ is the effective infection rate, and

Θ(τ) = 1

E [D]

N−1∑
k=1

kProb[D = k]ρk (τ) (2.2)

where D is the degree of a randomly selected node in the graph. Clearly, if τ = 0, then
Θ(0) = 0. Substituting (2.1) into (2.2) leads to a self-consistent relation, from which Θ(τ)
can be determined as

Θ(τ) = τΘ(τ)

E [D]

N−1∑
k=1

k2Prob[D = k]

1+kτΘ(τ)
(2.3)

(2.3) has a trivial solution Θ(τ) = 0. For a non-trivial solution Θ(τ) > 0 to exist, (2.3) must
satisfy the following condition:

E [D]

τ
=

N−1∑
k=1

k2Prob[D = k]

1+kτΘ(τ)
(2.4)

Next, we introduce the following expansion,

1

1+kτΘ(τ)
=

∞∑
j=0

(−1) j (kτΘ(τ)) j

which is valid when kτΘ(τ) < 1 for all k,

E [D]

τ
=

∞∑
j=0

(−1) j

{
N−1∑
k=1

Prob[D = k]k j+2

}
τ jΘ j (τ)

=
∞∑

j=0
(−1) j E

[
D j+2

]
τ jΘ j (τ)

where the latter series converges for Θ(τ) < 1/(Dmaxτ). Since τ= 0 leads to Θ(0) = 0, the
non-trivial solution Θ(τ) > 0 exists when τ > τHMF

c ≥ 0 by the definition of the epidemic
threshold. When Θ(τ) is sufficiently small, we can write the expansion up to first order
as

E [D]

τ
= E [D2]−τΘ(τ)E [D3]+O(Θ(τ)2) (2.5)

in which τΘ(τ)E [D3] > 0. Hence, when τ> τHMF
c , but Θ(τ) is small enough to ignore the

second order terms O(Θ(τ)2), we have from (2.5),

E [D]

τ
< E [D2]

implying that for all τ> τHMF
c , it holds that τ> E [D]

E [D2]
. Thus, the epidemic threshold of the

HMF approximation is

τHMF
c = E [D]

E [D2]

The same result was also deduced differently in [28]. For a regular graph with degree r , it
holds that E [D2] = E [D]2 = r 2, and the epidemic threshold is given by τHMF

c = 1
r = 1

λ1
[14].
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Finally, we can evaluate the steady-state fraction y∞(τ) of infected nodes using the
relation

y∞(τ) =
N−1∑
k=1

Prob[D = k]ρk (τ) (2.6)

2.2.3. THE NIMFA APPROXIMATION
The HMF approximation considers the relative densityρk (t ) of infected nodes with given
degree k during the epidemic process. However, the state of each node is not taken
into account. The NIMFA approximation [12, 29] is derived by separately observing each
node. Every node i at time t in the network is in one of two states: infected, with probab-
ility Prob[Xi (t ) = 1] or healthy, with probability Prob[Xi (t ) = 0]. Since a node can only be
in one of two states, Prob[Xi (t ) = 0]+Prob[Xi (t ) = 1] = 1. As explained in Section 2.1, the
curing and infection processes are Poisson processes, and the whole epidemic process is
a Markov process. A straightforward application of Markov theory gives the infinitesimal
generator Qi (t ) of the two-state nodal continuous-time Markov chain (see also Figure
2.1a) as

Qi (t ) =
[ −q1;i q1;i

q2;i −q2;i

]
with q2;i = δ. Markov theory requires that the infinitesimal generator is a matrix whose
elements are not random variables. However, this is not the case in our simple model:

q1;i (t ) =β
N∑

k=1
ai j 1{Xk (t )=1}. Using a mean-field approximation [12] so that

E [q1;i ] =β
∑N

j=1 ai j Prob[X j (t ) = 1], the effective infinitesimal generator becomes

Qi (t ) =
[ −E [q1;i ] E [q1;i ]

δ −δ
]

Then, in accordance with Markov theory in [27, eq. (10. 11), pp. 182 ], denoting
vi (t ) =Prob[Xi (t ) = 1] and Prob[Xi (t ) = 0] = 1− vi (t ), the set of nodes obey the differen-
tial equations 

d v1(t )
d t =β

N∑
j=1

a1 j v j (t )− v1(t )(β
N∑

j=1
a1 j v j (t )+δ)

d v2(t )
d t =β

N∑
j=1

a2 j v j (t )− v2(t )(β
N∑

j=1
a2 j v j (t )+δ)

...

d vN (t )
d t =β

N∑
j=1

aN j v j (t )− vN (t )(β
N∑

j=1
aN j v j (t )+δ)

written in matrix form,

dV (t )

d t
=βAV (t )−di ag (vi (t ))(βAV (t )+δu) (2.7)
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where the vector V (t ) = [v1(t ) v2(t ) · · · vN (t )]T . The average number of infected nodes
in G is equal to y(t ) = uT V (t ), where u is the all-one vector.

An alternative approach to find the NIMFA epidemic threshold starts with the ex-
pected value of the nodal infection probability. Since Xi is a Bernoulli random variable,
which has the nice property that E [Xi ] = Pr[Xi = 1], the exact SIS governing equation
[23] for node i equals

dE [Xi (t )]

d t
= E

[
−δXi (t )+β (1−Xi (t ))

N∑
k=1

aki Xk (t )

]

= E

[
−δXi (t )+β

N∑
k=1

aki Xk (t )−β
N∑

k=1
aki Xi (t ) Xk (t )

]
(2.8)

where (2.8) also holds for asymmetric adjacency matrices. Directly from (2.8), we deduce
that

dE [Xi (t )]

d t
≤−δE [Xi (t )]+β

N∑
k=1

aki E [Xk (t )]

When written for all nodes i , with wi = E [Xi (t )] and the vector W = (w1, w2, · · · , wN ), we
obtain the matrix inequality

dW (t )

d t
≤ (

βAT −δI
)

W (t ) (2.9)

from which follows that

W (t ) ≤ e
(
βAT −δI

)
t W (0) = e

(
τAT −I

)
t∗W (0)

where the effective infection rate τ = β
δ and the normalised time t∗ = δt is measured in

units of the curing rate δ. The upper bound is dominated by the fastest growth in t∗,
which is due to the largest eigenvalue of τAT − I . The exponential factor is dominated
by τλ1 (A)−1, where λ1 (A) is the real, largest eigenvalue of the non-negative matrix A
(by Perron-Frobenius Theorem, see [30]). When τλ1 (A)−1 ≤ 0 or τ≤ 1

λ1(A) = τ(1)
c , where

τ(1)
c is the first-order mean-field epidemic threshold [31], wi = E [Xi (t )] decreases ex-

ponentially in t∗. Hence, the epidemic will die out fast. By definition of the epidemic
threshold τc as the border between exponential die-out and a non-zero fraction of in-
fected nodes in the meta–stable state, we conclude that the exact epidemic threshold
τc ≥ τ(1)

c in any finite sized network. A major property, proved in [12] as well as in [23],
of the NIMFA approximation is that vi (t ) ≥ vi (t ) |exact . Hence, the NIMFA approxim-
ation upper bounds the SIS epidemics and, consequently, τ(1)

c < τc . The lower bound
τ(1)

c = 1
λ1(A) is of great practical use: if the effective infection rate τ can be controlled

such that τ ≤ τ(1)
c , then the network is safeguarded from long-term, massive infection.

The approximation τ(1)
c = 1

λ1(A) can be refined to get a second order epidemic threshold

τ(2)
c ≥ τ(1)

c as shown in [23]. Successive higher order approximations are possible but will
increase the complexity with each added term.
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2.3. THE STEADY-STATE FRACTION OF INFECTED NODES

Before turning to the comparison results in the various graph types, we discuss the stead-
state fraction of infected nodes in the ε–SIS model and the two mean-field approxima-
tions.

2.3.1. THE ε–SIS MODEL

In this chapter, we use the ε–SIS model as a benchmark to compare both mean-field ap-
proximations. Whereas the classical SIS model has an absorbing state, the ε–SIS model
does not for ε> 0. The non-zero steady-state of the ε–SIS model is reached as time pro-
gresses. We believe that the steady-state fraction of infected nodes in the ε–SIS model is
the simplest way to determine the number of infected nodes in the meta-stable state of
the SIS model. Another approach would be to remove the absorbing state by not allow-
ing the last infected node to cure by reinfecting it. Alternatively, the simulation process
can be reset to a previous state with a probability that depends on the state distribu-
tion of the simulation up to the point of extinction [32, 33]. The meta-stable state of the
classical SIS model, although easily recognised, is difficult to define precisely. One ap-
proach would be to run many independent instances of the virus spreading process and
calculate the average number of infected nodes at sampled points in time and look for
a platau. This will, however, lead to too low an average number of infected nodes as a
function of time, as for smaller values of the effective infection rate, many instances of
the virus spreading process die out very quickly. These died-out instances have a large
impact on the average number of infected nodes as a function of time. Since instances
of the virus that die out quickly do not reach a meta-stable state, they have to be filtered
out, but that would require an assessment of how long a “reasonable” outbreak lasts.
Such a reasonable outbreak will be dependent on the effective infection rate and on the
network topology which makes it infeasible as a simulation method.

As the ε–SIS model has a well defined steady-state, the steady-state number of in-
fected nodes can be computed precisely. We start our simulations with no nodes in-
fected and continue to run for a specified warm-up period. After the warm-up period,
the measurement period starts during which we record the average number of infected
nodes. For all simulations we have taken the warm-up and measurement period to be
107 time units and self-infection rate to be ε= 10−3. We have chosen for a duration of 107

time units after careful experimentations. The accuracy of the ε–SIS simulations have
been compared to the exact ε–SIS Markov chain (see [26]) for small (N ≤ 10) networks,
where more than 3 digits were accurate for all the considered τ - ranges.

The steady-state number of infected nodes of the ε–SIS model will be close to the av-
erage number of infected nodes in the meta-stable state of the SIS model for small values
of ε. In Figure 2.3, we show a “reasonable” instance of a virus outbreak together with the
steady-state number of infected nodes of the ε–SIS model. These examples illustrate
that steady-state average number of infected nodes of the ε–SIS model is precisely the
line around which the number of infected nodes in the SIS model varies.
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Figure 2.3: The meta-stable state of the classical SIS model (solid line) and the steady-state of the ε-SIS model
(dashed line) in ER graphs with N = 500 nodes, and a link probability of twice the connectivity threshold p =
2pc , for τ= 0.1 (a), τ= 0.12 (b), and τ= 0.6 (c). For all graphs (ε = 10−3).

2.3.2. PASTOR-SATORRAS & VESPIGNANI HMF APPROXIMATION
From (2.1) and (2.2), we obtain the set of nonlinear equations

τ
∑N−1

k=1 kProb[D=k]ρk

E [D]+τ∑N−1
k=1 kProb[D=k]ρk

−ρ1 = 0

2τ
∑N−1

k=1 kProb[D=k]ρk

E [D]+2τ
∑N−1

k=1 kProb[D=k]ρk
−ρ2 = 0

...
(N−1)τ

∑N−1
k=1 kProb[D=k]ρk

E [D]+(N−1)τ
∑N−1

k=1 kProb[D=k]ρk
−ρN−1 = 0

(2.10)

From the nonlinear set (2.10), the densities ρ1, ρ2,· · ·ρN−1 can be calculated, and after
using (2.6), we obtain the steady-state fraction y∞(τ) of infected nodes.

2.3.3. NIMFA APPROXIMATION
The steady-state of the NIMFA approximation is obtained from (2.7), after letting t →∞
and limt→∞

d v j (t )
d t = 0, as

βAV (t )−di ag (vi (t ))(βAV (t )+δu) = 0 (2.11)

Written as a nonlinear equation for a single node i , leads to

τ(1− vi )
N∑

j=1
ai j v j = vi (2.12)

or, alternatively

vi∞ =
β

∑N
j=1 ai j v j∞

β
∑N

j=1 ai j v j∞+δ
= 1− 1

1+τ
∑N

j=1 ai j v j∞
(2.13)

The steady-state fraction y∞(τ) of infected nodes can be calculated using (2.13) by solv-
ing the system and summing over all vi .

For example, for the complete graph KN , when t → ∞, vi∞ = y∞, from which the
fraction of infected nodes (2.13) reduces to

y∞ = 1− 1

1+τ(N −1)y∞
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or

y∞ = 1− 1

(N −1)τ
(2.14)

which is exactly the same as for the HMF approximation in (2.10) when ρk = ρN−1 = ρ =
y∞, as also illustrated in Fig 2.7. Obviously, 2.14 only holds for τ> 1

(N−1)

2.4. COMPARISON OF y∞(τ) VERSUS τ
In this section, we compare the ε–SIS model and two approximations in different graph
types. We take the following topologies into account: the bipartite graph, the star graph,
the complete graph, the lattice graph, the path graph, the Erdős-Rényi random graph,
the Bárabasi-Albert scale-free graph and the small-world graph. The steady-state frac-
tion y∞(τ) of infected nodes is calculated for increasing effective infection rates τ and
ε= 10−3. The values of the NIMFA approximation, the HMF approximation and the sim-
ulations of the ε–SIS spreading model are shown in blue, red and green lines respectively.
The different markers indicate the size of the graphs, e.g. circles in Figure 2.4 indicate the
results for graphs with N = 10 nodes.

2.4.1. COMPLETE BIPARTITE GRAPHS
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Figure 2.4: Comparison in bipartite graphs.

A complete bipartite graph KM1,M2 consists of two disjoint sets S1 and S2 containing
respectively M1 and M2 nodes. All nodes in S1 are connected to all nodes in S2, while
nodes in the same set are not connected. We take M1 = N /4 nodes, and M2 = 3N /4
nodes. The steady-state fraction y∞(τ) of infected nodes as a function of τ is computed
in bipartite graphs with N = 10, 20, 40, 80, 160 and 320 nodes. Figure 2.4 shows that
the epidemic thresholds for the HMF approximation and the NIMFA approximation are
close to that of the ε–SIS spreading model (ε = 10−3) in complete bipartite graphs for
N > 40. As τ(1)

c of the NIMFA approximation is nearer to τc than τHMF
c of the HMF approx-

imation, τ(1)
c provides the better epidemic prediction for the SIS model in the complete
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bipartite graph KM1,M2 . Moreover, in [23] it is proved that τc ≥ τ(2)
c ≥ τ(1)

c , which means
that the second order NIMFA approximation is closest to the ε–SIS spreading model, and
therefore the best in bipartite graphs.
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Figure 2.5: Zoom in of the comparison in the bipartite graphs.

Three interesting results can be observed by zooming in on Figure 2.4 as shown in
Figure 2.5. First, the NIMFA approximation is an upper bound of the ε–SIS spreading
model. Second, the difference between the NIMFA approximation and the ε–SIS spread-
ing model decreases with N . We observe that the NIMFA approximation almost overlays
the ε–SIS spreading model, when N = 320. Third, the HMF approximation is lower than
the ε–SIS spreading model, illustrating that the HMF approximation is not upper bound-
ing the SIS model.

2.4.2. STAR GRAPHS
The star graph K1,N−1 is a special bipartite graph where one of the disjoint sets contains
only one node while the other set contains all the other nodes.

The epidemic threshold for the first order NIMFA approximation is given by τ(1)
c = 1

λ1
.

For any connected graph, the spectral radius is upper bounded [30] by λ1 ≤
p

2L−N +1,
and equality is reached for the complete graph KN , and the star K1,N−1. As a star graph
contains L = N −1 links, we obtain

τ(1)
c = 1p

2L−N +1
= 1p

N −1
. (2.15)

The second-order mean-field threshold for the star was estimated in [23] to be τ(2)
c =

1p
0.53N−1.3

, while exact computations indicate that τc = 1p
N

√
1
2 log N + loglog N +O (1)

for large N . Also, using a definition of the epidemic threshold expressed as a function
of the survival time of the SIS process, in Chapter 3.3.3 the epidemic threshold τ(ST )

c is
shown to be very close to the exact value.
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Figure 2.6: Comparison in star graphs.

Recall that the epidemic threshold of the HMF approximation is given by τHMF
c =

E [D]
E [D2]

. For star graphs it holds that E [D2] = N 2−N
N and E [D] = 2(N−1)

N , reducing the HMF
threshold to

τHMF
c = 2

N
. (2.16)

Equalities (2.15) and (2.16) indicate that, for N > 2, the epidemic threshold of the
NIMFA approximation is larger than that of the HMF approximation in star graphs. Fig-
ure 2.6 shows the superiority of the NIMFA approximation, especially when N is large.
Nevertheless, the two epidemic thresholds are both quite far from the threshold of the
ε–SIS spreading model (ε= 10−3) in star graphs.

2.4.3. COMPLETE GRAPHS
The complete graph KN is a graph in which every node is connected to every other node.
For a complete graph τHMF

c = E [D]
E [D2]

= N−1
N (N−1)2/N

= 1
N−1 , at the same time λ1 = N − 1.

Hence, the epidemic threshold of the NIMFA approximation τ(1)
c = 1

λ1
is equal to the

threshold of HMF approximation τH MF
c = E [D]

E [D2]
. For KN , both approximations are very

close to the ε–SIS spreading model (ε = 10−3), as is shown in Figure 2.7. This is to be
expected, since the mean-field approximation in the NIMFA approximation is best for
dense graphs, as explained in [12]. Moreover, for KN , the steady-state equations (see
Sections 2.3.3 and 2.3.2) in the NIMFA and HMF approximation are the same: y∞ = 1−

1
(N−1)τ .

2.4.4. SQUARE LATTICE GRAPHS
The square lattice graph is a two-dimensional grid. Ignoring the boundary nodes, the
square lattice can be regarded as a regular graph, where all nodes have the same degree
(k = 4). In this case, the equations of the NIMFA approximation and the HMF approx-



2

18 2. THE SIS EPIDEMIC MODEL

1.0

0.8

0.6

0.4

0.2

0.0
0.700.600.500.400.300.200.100.00

τ

Complete graph k40

fr
ac

ti
o
n
 o

f 
in

fe
ct

ed
 n

o
d
es

ε-SIS spreading model (ε = 10-3)

NIMFA
HMF approximation

Figure 2.7: Comparison in complete graphs.

imation are almost the same, as can also be seen from the simulations. Figure 2.8 shows
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Figure 2.8: Comparison in square lattice graphs.

that the epidemic threshold of the ε–SIS spreading model (ε = 10−3) decreases with the
size N of the network. The HMF approximation performs a bit better than the NIMFA
approximation in approaching the ε–SIS spreading model in lattice graphs. The simu-
lation illustrates that both the NIMFA approximation and the HMF approximation do
not predict the epidemic threshold for epidemic processes in lattices. In Chapter 3.5 it
is shown that the time behaviour of the SIS process in the square lattice is also not ac-
curately described by NIMFA. We remark that, in the related process of percolation, the
critical probability [34–36] on the square lattice is equal to 1/2.
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2.4.5. PATH GRAPHS

The path graph is an example of a tree graph in which every root node has only one
branch, and only the last root node is not branched at all. As shown in Figure 2.9, the
steady-state fraction y∞(τ) of infected nodes of the NIMFA approximation and the HMF
approximation are far from that of the ε- SIS spreading model (ε= 10−3). The epidemic
thresholds in the NIMFA approximation and the HMF approximation are both near 0.5,
since the average degree of the path graph is 2, ignoring boundary nodes. However, the
steady-state fraction y∞(τ) of infected nodes of the ε–SIS spreading model increases very
slowly with τ between 0 ≤ τ ≤ 1, and seems to always be around 10−3 in the range of
network sizes that we considered. Clearly, the true epidemic threshold is much larger
than 0.5. In chapter 3.3.3 it is shown that for the ring graph the true epidemic threshold
is around 2.5 - 3 times τ(1)

c , which suggests that for the path graph τc is around 1.25-1.5.
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Figure 2.9: Comparison in path graphs.

2.4.6. ERDŐS-RÉNYI RANDOM GRAPHS

In this section we investigate the thresholds in Erdős-Rényi random graphs1 (ER), which
have a binomial degree distribution [37]. An Erdős-Rényi random graph is connected
with high probability, if p > pc ≈ ln N

N for large N ; pc is called the connectivity threshold.
All the graphs in the simulations are generated with p = 2pc , and checked for connectiv-
ity. Figure 2.10 shows that the steady-state fraction y∞(τ) of infected nodes in the NIMFA
approximation and the HMF approximation for ER graphs with N = 10, 20, 40 and 80,
are extremely close. However, they both differ from the epidemic threshold of the ε–SIS
spreading model, especially when N is small. When N is large, the two approximations
are close to the ε–SIS spreading model (ε= 10−3), as is shown in Figure 2.11.

1An Erdős-Rényi random graph can be generated from a set of N nodes by randomly assigning a link with
probability p to each pair of nodes.
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Figure 2.10: Comparison in Erdős-Rényi random graphs.

2.4.7. BÁRABASI-ALBERT SCALE-FREE GRAPHS

The Bárabasi-Albert graph2 (BA) [38] is a graph model that captures the power-law de-
gree distribution often seen (or approximately seen) in real-world networks. The steady-
state fraction of infected nodes as a function of the effective infection rate y∞(τ) is com-
puted in a BA graph with N = 1000 and m = 4 and shown in Figure 2.12. The NIMFA
approximation is close to the HMF approximation, but a little superior. This is to be ex-
pected, since the NIMFA approximation is better than the HMF approximation in star
graphs as explained in Section 2.4.2, and the BA model can be regarded as a set of hubs
with star graph features.

2.4.8. WATTS-STROGATZ SMALL-WORLD GRAPHS

Watts-Strogatz small-world graphs3 (WS) [39] have two main properties: a small average
hopcount E [H ], similar to Erdős-Rényi random graphs, and a high clustering coefficient
CG , similar to a ring lattice. The structural properties of small-world graphs have been
found in various real-world networks, including social networks [40], neural networks
[41] and biological oscillators [42]. In this chapter, the WS graphs are generated with
N = 40 and 80, ks = 6 and p = 0.1 and 1. In Figure 2.13 the steady-state fraction y∞(τ) of
infected nodes, as predicted by the two approximations are shown together with the ε–
SIS simulations. The NIMFA approximation and the HMF approximation are quite close
to each other, but far away from the ε–SIS spreading model. The epidemic thresholds
τ(1)

c = 1
λ1

and τHMF
c = E [D]

E [D2]
in small-world graphs are close to each other, no matter what

N and p are. This can be explained by observing that most nodes have the same degree

2A Bárabasi-Albert graph starts with m nodes. At every time step, we add a new node with m links that connect
the new node to m different nodes already present in the graph. The probability that a new node will be
connected to node i in step t is proportional to the degree di (t ) of that node. This is referred to as preferential
attachment.

3A Watts-Strogatz small-world graph can be generated from a ring lattice with N nodes and k edges per node,
by rewiring each link at random with probability p.
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Figure 2.11: Comparison among the NIMFA approximation, Pastor-Satorras approximation and the ε- SIS
model in ER network (N = 160).

in WS graphs, justifying the approximation of E [D2] by E [D]2 and τHMF
c = E [D]

E [D2]
by 1

E [D] .
Another consequence of the similar node degrees in WS graphs is that E [D] is close to
Dmax. Since λ1 is bounded from below and above as E [D] ≤ λ1 ≤ Dmax [30, art. 43, pp.
46 and art. 48, pp.52], we can approximate λ1 by E [D], and τ(1)

c by 1
E [D] , just as τHMF

c .

2.5. ANALYTIC COMPARISON OF τ(1)
c AND τHMF

c
In this section, we analyse, after [43] the relation between the first order epidemic thres-
hold of NIMFA approximation τ(1)

c = 1
λ1

and the epidemic threshold of the HMF approx-

imation τHMF
c = E [D]

E [D2]
. From the comparison in Section 2.4, we find that the relation

between the two epidemic thresholds strongly depends on the graph type. The two epi-
demic thresholds are identical in regular graphs where each node has degree r increasing
with N . Indeed, since λ1 = E [D] = r (see [30, art. 43, pp. 46]), and τHMF

c = 1
r , we find that

τ(1)
c = τHMF

c . There are graphs for which τ(1)
c < τHMF

c , while in most cases, our simulations
in Figures 2.4, 2.6, 2.10 and 2.12 demonstrate that τ(1)

c > τHMF
c .

Case τ(1)
c < τHMF

c : The epidemic threshold τHMF
c is larger than the first order threshold

τ(1)
c = 1

λ1
, when the assortativity4 ρD is zero. Van Mieghem et al. [30, 45] have reformu-

lated the assortativity as follows

ρD = N1N3 −N 2
2

N1
∑N

i=1 d 3
i −N 2

2

(2.17)

where, Nk = uT Ak u is the total number of walks with k hops. In [46], it is proved that

λ1 ≥ N2
N1

= E [D2]
E [D] = 1

τHMF
c

, when ρD = 0.

4The degree correlation, also called the assortativity ρD is computed as the linear correlation coefficient of the
degree of nodes connected by a link [44]. It describes the tendency of network nodes to connect preferentially
to other nodes with either similar (when ρD > 0) or opposite (when ρD < 0) properties i.e., degree.
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Figure 2.12: Comparison in Bárabasi-Albert Scale-free graphs.
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Figure 2.13: Comparison in WS Small-world graphs.

Case τ(1)
c > τHMF

c : Newman [44] pointed out that the assortativity ρD of the ER graph
and the BA graph is zero when N is large. However, in most ER and BA graphs with finite
size, the assortativity is only approximately zero. Our simulations in Figures 2.10 and
2.12 show that τHMF

c ≤ τ(1)
c in ER and BA graphs, demonstrating that the precise ρD = 0

condition in (2.17) that led to N1N3 = N 2
2 is not valid. Moreover, we have already proved

τHMF
c ≤ τ(1)

c in star graphs (see Section 2.4.2).
It would be interesting to find all or the most prominent graph classes in which τ(1)

c >
τHMF

c and in which τ(1)
c < τHMF

c .

2.6. CHAPTER SUMMARY
Many approximations of the SIS model have been proposed to understand SIS epidem-
ics. In this chapter, we study which mean-field approximation, the NIMFA or the HMF, is
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better in approaching the SIS epidemic model. A direct comparison to the SIS model is,
however, not possible, because the steady-state of the exact SIS model in a finite network
is the overall-healthy state. Although an infection in the SIS model will eventually die
out, for high enough effective infection rates the fraction of infected nodes as a function
of time is meta-stable. We propose to define the number of infected nodes in the meta-
stable state of the SIS model via the number of infected nodes in the steady-state of the
ε–SIS model for a prescribed small value of ε. From the comparison between the NIMFA
and HMF approximations with the ε–SIS spreading model, we conclude that, overall,
the NIMFA approximation is better than the HMF approximation, except in square lat-
tice graphs and path graphs. We show that the NIMFA approximation can approach the
ε–SIS epidemic model well in most graph types. The simulations show that the NIMFA
approximation almost overlaps with the ε–SIS spreading model when the size of network
is large enough. While the HMF approximation is better than the NIMFA approximation
in the square lattice and path graphs, the difference between the two is small. Moreover,
they are both far away from the ε–SIS spreading model. We also show that the NIMFA
approximation and the HMF approximation are exactly the same in regular graphs with
the degree of nodes increasing with N , such as complete graphs, and are similar in small-
world graphs. In addition to the simulation results, we show analytically the conditions
under which the epidemic threshold of the NIMFA approximation is larger than, smaller
than or equal to that of the HMF approximation.





3
SURVIVAL TIME OF AN SIS

EPIDEMIC

Using the hitting time of the absorbing state in a uniformised embedded Markov chain of
the continuous-time Markov chain describing the SIS process, we derive an exact expres-
sion for the average worst-case survival time of a virus in the complete graph KN and the
star graph K1,N . Our results for the complete graph show that the approximation of the
average survival time by the first term in the Lagrange series of the infinitesimal generator
in [47] is in fact the real average worst-case survival time. Also via the hitting time, we
derive a sharper expression for the epidemic threshold in KN and K1,N than the reciprocal
of the largest eigenvalue.

3.1. INTRODUCTION
An interesting question in the context of SIS virus spread on networks is how many
nodes, on average, will be infected during an outbreak. As shown in the previous chapter,
it has long been observed that an epidemic threshold [17, 31, 48] separates the regime
where an infection dies out quickly, from the regime where the expected number of in-
fected nodes is stable over a long time, called the meta-stable or quasi-stationary state.
The main concern of this chapter is the question: “how long will the virus stay in this
meta-stable state”.

Building on the work in [47], we derive a simpler summation over recursive terms
as an expression for the average survival time of an SIS process in the complete graph.
Based on the hitting time of the absorbing state in the uniformised embedded Markov
chain, we derive an exact solution for the average survival time in the complete graph
and the star graph. The solution for the complete graph turns out to be exactly the same
expression as the result in [47]. We use the complete solution to the hitting time of the
absorbing state in both the complete graph and the star graph to give a definition of the
epidemic threshold that scales in the number of nodes identical to the “true” epidemic
threshold [49]. The effects of non-Poissonian infection and curing processes on the sur-

25
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vival time is treated in Chapter 5.4.

3.2. THE AVERAGE SURVIVAL TIME IN KN
Let T denote the time for the SIS epidemic process to reach the overall-healthy state,
which we call the survival time, and is also known as the time to absorption or the ex-
tinction time. The time to extinction starting from the quasi-stationary distribution in
a continuous-time Markov chain containing an absorbing state is exponentially distrib-
uted as Pr [T ≤ t ] = 1− exp(−tζ), where ζ is the second largest eigenvalue of the infin-
itesimal generator Q of the Markov chain [50]. For an irreducible continuous-time birth-
and-death process (SIS on the complete graph reduces to a birth-and-death process) the
hitting time of the absorbing state starting with n individuals is distributed as the sum of
n independent exponential random variables with parameters equal to the eigenvalues
of Q [51, 52]. A recent result [47] for SIS epidemics on KN is the accurate expression, for
large N , of the decay rate ζ< 0 of the survival time for effective infection rates τ> τc . The
average survival time E [T ] of the SIS process in KN is approximately equal to |ζ−1|, with

−ζ= δ

F (τ)
+O

(
N 2 log N

(τN )2N−1

)
, (3.1)

where

F (τ) =∑N
j=1

∑ j−1
r=0

(N − j + r )!

j (N − j )!
τr . (3.2)

We show that (3.2) can be rewritten as

F (τ) =
N∑

j=1

x j

j
, (3.3)

where x j obeys the recursive relation

x j+1 = x j (N − j )τ+1, (3.4)

with x j =∑ j−1
r=0

(N− j+r )!
(N− j )! τr and initial conditions x1 = 1, x j = 0 for j < 0. Indeed,

x j+1 =
j∑

r=0

(N − j −1+ r )!

(N − j −1)!
τr = τ(N − j )

j−1∑
r=−1

(N − j + r )!

(N − j )!
τr

= x j (N − j )τ+τ(N − j )
(N − j −1)!

(N − j )!
τ−1 = x j (N − j )τ+1

The summation over recursive terms (3.3) is more efficient to compute numerically, as

it contains only N terms instead of N 2

2 in the double sum in (3.2) and does not contain
factorials.

Equation (3.2) is the first term in the Lagrange series of the second largest eigenvalue
ζ of the infinitesimal generator of the continuous-time Markov chain describing the SIS
process (see Section 3.3.1), and as such is expected to be close to the real ζ. To verify
this, we determine the decay rate of the survival time in a complete graph of 64 nodes in
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Figure 3.1: Decay rate in a complete graph of 64 nodes (a) and histograms of the survival time (b).

four different ways: (i) via the second largest eigenvalue of the infinitesimal generator ζ,
(ii) via an exponential fit to the histogram of simulated survival times, (iii) via the recip-
rocal of the average of the simulated survival times, (iv) and as computed from (3.2). All
simulations start in the all-infected state and the time till extinction is measured.

Figure 3.1a shows that the decay rate found by the four different methods all con-
verge to the same value as the effective infection rate τ increases. For relatively small
values of τ, however, the four methods split in two groups. The second largest eigenvalue
ζ and the fit of the survival times give the same decay rate, and the average survival time
and (3.3) give the same decay rate, which leads to two conclusions. First, the second
largest eigenvalue is indeed the most dominant eigenvalue and a good approximation
for the tail of the survival time distribution for the investigated range of τ. For large τ, so
much of the weight of the distribution is in the tail that the average of the distribution of
T is well approximated by ζ−1, but not for small τ. As the average survival time starting
from the quasi-stationary or meta-stable state is given by |ζ|−1, it is to be expected that
for small values of τ starting from the all-infected state and the quasi-stationary state
leads to increasingly different survival times. Second, and more interesting, (3.3), that
was derived as an approximation of ζ, precisely follows the real average survival time. In
the derivation of the approximation to the second largest eigenvalue of the infinitesimal
generator in [47], an expression for the average survival time was found. In Section 3.3.1
it is shown using the average hitting time of the absorbing state, that (3.3) is the exact
average survival time in the complete graph.

Figure 3.1b shows the histograms and fitted exponential functions for four values of
the effective infection rate. These results confirm that the survival time of an SIS virus in
the complete graph is exponentially distributed and that the decay rate in the complete
graph is indeed given by (3.1;3.3).
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3.3. SURVIVAL TIME VIA HITTING TIME
An alternative to finding the survival time of the SIS process on a complete graph via the
second largest eigenvalue of the infinitesimal generator, is the hitting time of the absorb-
ing state in the continuous-time Markov chain. As discussed in Chapter 2.1, SIS process
on the general graph can be written as a 2N state continuous-time Markov chain. Com-
puting the hitting time for a Markov chain with such a large state space is only feasible for
very small graphs. For graphs where the infectious state shows some form of symmetry,
however, the number of states can be dramatically reduced. Unfortunately, symmetry in
the graph structure or node degree alone is not enough to reduced the size of the state
space. In this section, we exploit the symmetry in the infectious state of the complete
graph and the star graph, who posses a simplified Markov Chain with O(N ) states, to
compute the hitting time of the absorbing state. Using the hitting time, we derive an al-
ternative expression for the epidemic threshold, which we compare to the exact results
on the complete and star graph in [49].

We use an embedded Markov chain to transform the continuous-time Markov chain
to a discrete-time one. The embedded Markov chain of a continuous-time process con-
tains the transition probabilities at the time of a transition, but no longer contains the
precise timing of the events (see [53]). The average hitting time of the absorbing state
in the embedded chain, starting from the all-infected state, gives the average number of
transitions between the initial state and reaching the absorbing state. However, the time
between transitions is unknown. By introducing self-loops in the embedded Markov
chain, the average transition rate from state i to j (i ̸= j ) in the embedded chain is made
identical to the transition rate in the original continuous-time Markov chain. The trans-
ition rate, including self-loops, is uniform, which enables relating the number of trans-
itions to time.

The transition matrix of the uniformised embedded Markov chain in units of ϕ of a
continuous-time Markov chain is given by S(ϕ) = I + Q

ϕ , where Q is the infinitesimal gen-
erator of the continuous-time Markov chain [53]. Transitions in the uniformised Markov
chain all occur with the same rate ϕ≥ maxi qi , where qi is the total outgoing rate of state
i : qi =∑

j=1, j ̸=i qi j , with qi j the transition rate from state i to state j .
The average hitting time of the absorbing state in a discrete Markov chain is given by

the minimal non-negative solution of the following system [53, 54]:{
w1 = 0

wi = 1+∑
si j (ϕ)w j for i ̸= 1

(3.5)

where wi is the average hitting time of the absorbing state starting from state i , and si j is
the transition probability from state i to j in the uniformised embedded Markov chain.

The system of equations (3.5) can be written as K w = b, where K = I − S(ϕ). The
vector b is defined as b = u − e1 where u is the all-one vector and e1 is the first standard
basis vector. The minimal non-negative solution of system (3.5) for wi will give the av-
erage hitting time of the absorbing state when starting in state i in units of ϕ−1, where
as multiplying K by ϕ will give the average hitting time in units of 1. Therefore, we solve
the system

ϕK w = b, (3.6)
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Figure 3.2: State diagram and transitions of the SIS process in the complete graph.

where ϕK simplifies to ϕK =ϕ(I − I + Q
ϕ ) =−Q.

3.3.1. THE COMPLETE GRAPH
The SIS process on a complete graph can be described by a continuous-time Markov
chain, as illustrated in Figure 3.2. States are numbered from 1 to N , while the number of
infected nodes in state i is i −1. The infinitesimal generator is given by:

−Q =



0 0 0 0 0 0 0
−1 1+ (N −1)τ −(N −1)τ 0 0 0 0
0 −2 2+2(N −2)τ −2(N −2)τ 0 0 0
0 0 −3 3+3(N −3)τ −3(N −3)τ 0 0

0 0 0
. . .

. . .
. . . 0

0 0 0 0 0 −N N


System (3.6) can be solved using Gaussian elimination, that is, by reducing the augmen-
ted matrix [−Q|b] to row echelon form. Because we are interested in the worst-case
scenario, we only need to know the value of wN+1, which corresponds to the hitting
time of the absorbing state starting from the all-infected state. In Gaussian elimination,
the system matrix is reduced to an upper-triangular matrix. Reducing all non-zero sub-
diagonal elements from column k for k ≥ 2 to zero is achieved by adding k

dk
times row k

to row k +1:

rk+1 → rk+1 +
k

dk
rk ,

where rk is row k in [−Q|b]. The multiplication factor dk can be found recursively for
k > 2 as

dk = (k −1)(1+ (N −k +1)τ)− (k −1)(k −2)(N −k +2)τ

dk−1
, (3.7)

with initial conditions d1 = 1 and d2 = 1+(N−1)τ. Since all row operations are performed
on the augmented system matrix, the entries in b also change. The average survival
time starting from the all-infected state, is found by dividing the last element in b by
wN+1 = dN+1:

E [T ] = bN+1/dN+1, (3.8)

where bk is given by the recursive relation for k > 1 as

bk = 1+ (k −1)

dk−1
bk−1.
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and initial condition b1 = 0.
We will now show that (3.8) is equal to (3.3), and, as a consequence, that the first term

in the Lagrange series of the second largest eigenvalue ζ of the infinitesimal generator Q
is precisely the average worst-case survival time of the SIS process on KN .

We first rewrite bN+1:

bN+1 = 1+ N

dN
bN

= 1+ N

dN
(1+ (N −1)

dN−1
bN−1)

= 1+ N

dN
+ N (N −1)

dN dN−1
bN−1

Repeating this process for all bi until i = 1 results in

bN+1 =
N−1∑
j=0

N !
∏N− j

i=2 di

(N − j )!
∏N

i=2 di

Finally, dividing by dN+1 yields the average survival time

E [T ] =
N−1∑
j=0

N !
∏N− j

i=2 di

(N − j )!
∏N+1

i=2 di
. (3.9)

Next, we write:

p j =
j∏

i=2
di ,

then it follows that

p j = d j p j−1 = d j

j−1∏
i=2

di , (3.10)

and

d j =
p j

p j−1
.

substituted in (3.7) yields

d j = ( j −1)(1+ (N − j +1)τ− ( j −1)( j −2)(N −k +2)τp j−2

p j−1
. (3.11)

Substituting (3.11) in (3.10) leads to the following recursive expression for p j :

p j = ( j −1)(1+ (N − j +1)τ)p j−1 − ( j −1)( j −2)(N − j +2)τp j−2,

which can be further simplified by first splitting and then iterating the first term:

p j = ( j −1)p j−1 − ( j −1)( j −2)(N − j +2)τp j−2 + ( j −1)(N − j +1)τp j−1

= ( j −1)( j −2)(1+ (N − j +2)τ)p j−2 − ( j −1)( j −2)( j −3)(N − j +3)τp j−3

− ( j −1)( j −2)(N − j +2)τp j−2 + ( j −1)(N − j +1)p j−1

= ( j −1)( j −2)p j−2 − ( j −1)( j −2)( j −3)(N − j +3)τp j−3 + ( j −1)(N − j +1)p j−1.
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The first term can be expanded recursively to arrive, with p2 = d2 = 1+ (N −1)τ, at

p j = ( j −1)( j −2)...2p2 − ( j −1)( j −2)...(N −1)τp1 + ( j −1)(N − j +1)p j−1

= ( j −1)!(1+ (N −1)τ)− ( j −1)!(N −1)τ+ ( j −1)(N − j +1)p j−1

= ( j −1)!+ ( j −1)(N − j +1)τp j−1. (3.12)

From (3.12), we find that pN+1 = N ! and (3.9) becomes

E [T ] =
N−1∑
j=0

pN− j

(N − j )!
=

N∑
k=1

pk

k !
. (3.13)

Moreover, let yk = pk
(k−1)! , then in (3.12)

( j −1)!y j = ( j −1)!+ ( j −1)(N − j +1)τ( j −2)!y j−1

which, after rearranging terms, yields

y j = 1+ (N − j +1)τy j−1

Comparing with (3.4), we observe that y j obeys the same recursion (including the initial
conditions) as x j in (3.4). Due to the uniqueness of the solution of a linear difference
equation y j = x j , so that E [T ] = ∑N

k=1
xk
k , which is precisely (3.2), proving that the first

term in the Lagrange series of the second largest eigenvalue ζ of the infinitesimal gener-
ator Q is equal to the average worst-case survival time of the SIS process on KN . As the
survival time starting from the meta-stable state is exponentially distributed with a rate
equal to ζ, the order term in (3.1) is a measure for the difference between starting in the
meta-stable state and in the all-infected state.

Figure 3.3 shows the average survival time of the SIS process in a complete graph on
100 nodes as a function of the normalised effective infection rate τ/τ(1)

c computed via the
hitting time (3.13) and by simulations. As shown in Chapter 2.2.3, the NIMFA epidemic
threshold τ(1)

c is defined as the reciprocal of the largest eigenvalue λ1 of the adjacency
matrix and is a lower bound of the real epidemic threshold [29, 55], i.e. τ(1)

c ≤ τc . The
simulations are in perfect agreement with the average hitting time. The approximation
of the survival time using the second largest eigenvalue of the infinitesimal generator,
that is, E [T ] ≥ |ζ|−1, is also shown in Figure 3.3 and is very accurate for large effective
infection rates.

SURVIVAL TIME DISTRIBUTION AROUND THE EPIDEMIC THRESHOLD

Besides the expectation of the survival time E [T ], the uniformised embedded Markov
chain enables us to derive the complete pdf of the survival time T . Let P k be the k-
step transition probability matrix of the uniformised embedded Markov chain describ-
ing the SIS process on the complete graph, then entry (N + 1,1) is the probability that
the virus has died out after k steps starting with all nodes infected. The probability that
the virus has not died out yet after k steps is then given by Pr[T ≥ k] = 1− (P k )N+1,1,
and Pr[T = k] = Pr[T ≥ k]−Pr[T ≥ k +1]. Figure 3.4 shows the survival time distribution
in a complete graph of 100 nodes for values of the effective infection rate τ at different
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Figure 3.3: Average survival time in a complete graph of 100 nodes as a function of the normalised effective
infection rate as computed via the hitting time, simulations and approximated by |ζ|−1.

fractions of the epidemic threshold ranging from 0.8 to 1.2. The curve for τ = τ(1)
c is in-

dicated by the dashed black line. Figure 3.4 illustrates that the curves for both above and
below the epidemic threshold are similarly shaped. For values of the effective infection
rate τ above τ(1)

c , the peak of the distribution reduces and moves slightly towards the
right while the exponential tail becomes less steep. The exponential tails of the distribu-
tions are drawn on lin-log scale in the inset of Figure 3.4. The inset shows that nothing
special happens around the threshold in terms of the survival time distribution of the
SIS process. The slopes of the exponential tail become less and less steep for increasing
infection rates, but no transition is observed around the epidemic threshold.

When the effective infection rate τ is reduced to zero, the probability density function
of the survival time of the SIS process is given by fX (x) = δI (1− e−δx )I−1e−δx , where I is
the number of initially infected nodes, which is the distribution of the maximum of I i.i.d
exponentially distributed random variables [53]:

fX (x) = d

d x
Pr[ max

1≤m≤I
Xm ≤ x] = d

d x

I∏
m=1

Pr[Xm ≤ x] = d

d x
(1−e−δx )I

= δI (1−e−δx )I−1e−δx (3.14)

which may explain the bell-shape in Figure 3.4.
Even if the changes in the survival time distribution are subtle around the epidemic

threshold, the influence on the average survival time displays transition behaviour. Fig-
ure 3.5 shows the survival time of the SIS process in the complete graph around the
epidemic threshold for various network sizes. The threshold behaviour around τ/τc is
clearly visible. Even for a network of 1600 nodes, the average survival time increases very
sharply after the threshold. This is in agreement with the asymptotic approximation of

F (τ) ∼ f
p

2πexp(N (log( f )+ f −1 −1))

δ( f −1)2
p

N
,
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Figure 3.4: Survival time distribution of the SIS process in a complete graph of 100 nodes for different values

of the normalised effective infection rate τ
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c

ranging from 0.8 to 1.2. The curve for τ= τ(1)
c is indicated by the

dashed black line. The inset shows the same data on a lin-log scale to emphasise the exponential tale of all
distributions, both above and below the epidemic threshold.

with f = τ/τc in [47]. Figure 3.5 also shows the average fraction of infected nodes in the
NIMFA solution y∞ = 1− 1

(N−1)τ on the right-hand side axis for reference. With increasing
network size, even small fractions of infected nodes can last in the network for very long
times. A comparison with the NIMFA solution also shows that the transition point moves
closer towards τ(1)

c with increasing N , very similar to the peak in E [T ]I=1/E [T ]I=N in
Figure 3.8a.
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Figure 3.6: Markov Chain representation of the SIS virus process in the star graph. In the odd state the centre
node is not infected, whereas in the even states the centre nodes is infected. The number of infected nodes is
indicated next to the states.

3.3.2. THE STAR GRAPH

The continuous-time Markov chain for the star graph contains 2N states, as shown in
Figure 3.6. The Markov chain in Figure 3.6 is a relabeling of the chain in [49] so that the
infinitesimal generator has a five-band structure. In the odd states, the centre node is
healthy, whereas in the even states it is infected. The number of infected nodes in each
state is indicated in blue next to the state. Just as in the case of the complete graph, we
solve the system ϕK w = b, where ϕK =−Q and b = u −e1 is the all one vector minus the
first standard basis, by reducing the augmented matrix [−Q|b] to row echelon form. The
system matrix is given by:

−Q =



0 0 0 0 0 0 0 0 0 0
−1 q2 0 −(N −1)τ 0 0 0 0 0 0
−1 0 q3 −τ 0 0 0 0 0 0
0 −1 −1 q4 0 −(N −2)τ 0 0 0 0
0 0 −2 0 q5 −2τ 0 0 0 0

0 0 0 −2 −1 q6 0
. . . 0 0

0 0 0 0
. . . 0 q7

. . . 0 0

0 0 0 0 0
. . . −1 q8 0 −τ

0 0 0 0 0 0 −(N −1) 0 q9 −(N −1)τ
0 0 0 0 0 0 0 −(N −1) −1 q10


Contrary to the complete graph, odd columns have two non-zero elements below the
diagonal and reducing them to zero will also lead to two non-zero elements below the
diagonal of the next (even) column.

The non-zero sub-diagonal entries of odd columns for k > 1 are reduced to zero by
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two row operations:

rk+1 ← rk+1 +
δ

dk
rk

rk+2 ← rk+2 −
(k +1)δ

2dk
rk

The non-zero sub-diagonal entries of even columns for k > 2 are also reduced to zero by
two row operations:

rk+1 ← rk+1 −
mk kδ

2dk−1dk
rk

rk+2 ← rk+2 +
kδ

2dk
rk

where dk is given by:
kδ
2 + (N − k

2 )β− (k/2−1)(N−k/2+1)βδ
dk−2

+ δmk
dk−1

for even k > 2

δ+ (N −1)β k = 2

(k −1)(δ+β)/2 for odd k > 0

and mk is given, for k > 4, by

mk =−(
k

2
−1)β+ (k/2−1)(N −k/2+1)βδmk−2

dk−2dk−3
,

with initial condition m4 =−β. The worst-case expected survival time in the star graph
is obtained by dividing w2N = d2N by the last element in b:

E [T ] = b2N /d2N

where bk is given by{
1+ ( k

2 −1) δ
dk−2

bk−2 + δ
dk−1

bk−1 for k > 1 even

1+ (k−1)δ
2dk−2

bk−2 − (k−1)mk−1δ
2dk−2dk−1

bk−1 for k > 1 odd,

and initial conditions b1 = 0 , b2 = 1.
Although the expression for the survival time in the star graph is more involved than

in the case of the complete graph, it enables the numerical evaluation of the survival
time in a linear time and constant space complexity.

Figure 3.7a shows the survival time as a function of the network size for different
values of the effective infection rate τ ≥ τ(1)

c . The average survival time increases log-
arithmically with the size of the network for relatively small effective infection rates.
For effective infection rates larger than approximately 2.5 times the epidemic threshold
τ(1)

c = 1/λ1 = 1/
p

N −1 the expected survival time E [T ] of the virus seems to stabilise
with increasing network size. The point of stabilisation depends on the effective infec-
tion rate τ and is the result of the the scaling of the real epidemic threshold. In Section
3.3.3 the epidemic threshold in KN and K1,N is determined via the survival time.
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Figure 3.7

Figure 3.7b shows the expected survival time starting from a single infected node in
the star graph as a function of the normalised effective infection rate τ/τ(1)

c . Obviously,
there is a difference in the star graph between starting an epidemic at the centre node
or at one of the leaf nodes. The difference in survival time between these two starting
positions decreases with an increasing infection rate. In contrast to the complete graph,
in the star graph the infection rate has to be a few times larger than λ1

−1 to stay in the
network for a long time. In the next section it is determined, via the hitting time, pre-
cisely how much larger than λ1

−1 the epidemic threshold is. After passing the epidemic
threshold, the increase in survival time is not as explosive as in the complete graph.

3.3.3. EPIDEMIC THRESHOLD VIA SURVIVAL TIME
Although the result in (3.13) gives the average hitting time of the absorbing state in KN

starting from the all-infected state, the hitting time equations (3.6) can be solved nu-
merically for any initial state. Using the numerical solution to the system in (3.6) we can
compare the survival time of a virus starting with a single node infected to the survival
time of virus starting with all nodes infected. The ratio of the survival time starting with a
single infected node and starting in the all-infected state, E [T ]I=N /E [T ]I=1, is relatively
small. Figure 3.8a shows E [T ]I=N /E [T ]I=1 as a function of the normalised effective in-
fection rate τ/τ(1)

c for various network sizes. The maximum ratio depends on the network
size, and is generally largest just after the NIMFA threshold τ(1)

c and slowly seems to move
towards τ(1)

c with increasing N . Below the epidemic threshold, the survival times are ap-
proximately the same because the virus dies out quickly. Above the epidemic threshold,
the ratio rapidly becomes smaller, indicating that the initial number of infected nodes
becomes less relevant with an increasing effective infection rate τ > τ(1)

c . The peak in
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Figure 3.8: The ratio between the average survival time of the SIS process in the complete graph starting with

one node infected and with all nodes infected E [T ]I=N
E [T ]I=1

as a function of τ/τ(1)
c for different network sizes (a).

The ratio of τ(ST )
c /τ(1)

c as a function of the network size (b).

this ratio might be an accurate location of the precise epidemic threshold, as it coincides
with the transition point of the survival time as a function of τ/τ(1)

c in KN as shown in
Figure 3.5. Time-based properties of the SIS process, instead of the fraction of infec-
ted nodes, to identify the epidemic threshold have recently attracted attention [56]. We
define τ(ST )

c (ST for survival time) as max{E [T ]I=N /E [T ]I=1} and plot the ratio τ(ST )
c /τ(1)

c
as a function of the network size N in Figure 3.8b. For large N , both the NIMFA epi-
demic threshold and the one found using the survival time are the same. For very small
networks, however, the NIMFA threshold is larger than the one found using the survival
time, which is suprising since the NIMFA threshold is a lower bound for τc . Either NIMFA
is not a lower bound for τc for N < 100, or τ(ST )

c is not the epidemic threshold.
Similar to the complete graph, τ(ST )

c can also be determined numerically for the star
graph. In Figure 3.9 the ratio between τ(1)

c and τ(ST )
c is compared to the ratio between

of τ(1)
c and the “real” epidemic threshold τ as found in [49]. In [49], the ratio τc /τ(1)

c is
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given as
√

1/2log N +3/2loglog N for the star graph, and 1+ cp
N

with c > 10
3 for the com-

plete graph. Especially the correction factor for the star graph is very close to the ratio
τ(ST )

c /τ(1)
c for large N suggesting that τ(ST )

c is indeed a good estimate of the epidemic
threshold for large N . In the case of the complete graph the difference between the epi-
demic threshold found using the survival time and the corrected NIMFA threshold is also
shrinking with increasing N .

3.4. THE AVERAGE SURVIVAL TIME IN OTHER GRAPH TYPES
In this section, we use simulations and numerical methods to investigate the extinction
time in general graphs and the survival time distribution in the complete graph. The
simulation results are obtained as follows. Starting from the initial state with all nodes
infected, we simulate the SIS process and sample the number of infected nodes. The
sample points are placed at time 1.5k for −20 ≤ k ≤ 32 (3×10−4 to 4.5×105) and samples
are taken regardless of the viral state of the network. If the virus dies out before the
end of the simulation, all subsequent samples for that particular run will be 0. The res-
ults shown in this section are averaged over 10,000 runs. Figure 3.10 shows that the
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(b) A square lattice of 64 nodes for beta ran-
ging from 0.55 to 0.67.

Figure 3.10: The expected number of infected nodes as a function of time for two graphs of 64 nodes for various
values of the infection rate β. The curing rate δ= 1 for all simulations. The insets in the plots show the expected
number of infected nodes on a logarithmic time axis, highlighting the plateau-like meta-stable state of the SIS
process.

survival time in the Erdős-Rényi random graph and the square lattice is exponentially
distributed, as is to be expected since the SIS process in any graph is fully described by a
Markov chain. After the initial quick drop in the number of infected nodes, the decay of
the number of infected nodes are straight lines on the lin-log plot, indicating the expo-
nential decay. The insets in Figure 3.10 show the expected number of infected nodes as a
function of time on a logarithmic time axis. The compression of large time values makes
the plateau-like meta-stable state visible. Both the Erdős-Rényi graph and the square
lattice show similar behaviour.

Indeed, all graph types are expected to show similar meta-stable state behaviour, the
only two differences between different graph types are the number of infected nodes in
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Figure 3.11: Expected survival time in various graphs.

the meta-stable state as a function of the effective infection rate τ and the duration of
the meta-stable state: the survival time.

We first show the difference in the expected survival time for a fixed fraction of in-
fected nodes in the meta-stable state y∞ for various different graphs: the ring graph,
the path graph, the square lattice (grid), the complete graph, the connected Erdős-Rényi
random graph with link probability 2log(N )/N , a grown preferential attachment graph
with m = 4 new links per node, and a star graph. All graphs have 64 nodes and the effect-
ive infection rate τ is chosen in such a way that the average fraction of infected nodes
in the meta-stable state is the same for all graphs: 45%. Figure 3.11a shows that the
ring and path graphs are the two graph types that can sustain an outbreak the shortest,
whereas the star graph can sustain an outbreak the longest. A possible explanation for
the fact that the virus stays alive in the star graph the longest is that, when scaled for the
link density, the effective infection rate to achieve 45% infected nodes in the meta-stable
state is the smallest for the star graph.

All simulations start with all nodes infected, so the number of infected nodes first
drops to the level of the meta-stable state. Figure 3.11a illustrates that the longer the
process stays in the meta-stable state, the quicker it reaches the meta-stable state from
the all-infected state. However, the differences are not nearly as large as the difference
in the survival time for most graphs, with the exception of the ring and path graphs. The
time to reach the meta-stable state is explored in detail in Section 3.5.

Figure 3.11b shows the decay rate 1/E [T ] for seven different graph types as a func-
tion of the normalised effective infection rate τ/τ(1)

c Clearly, the complete graph has the
steepest decline in decay rate when the effective infection rate increases above the epi-
demic threshold. In the star graph, the SIS process needs a much higher normalised
effective infection rate to survive as long as in the complete graph. The path and ring
graphs follow the star graph for smaller values of the effective infection rate but then
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branch off for larger values of the infection rate. The branching suggests that the epi-
demic threshold lies around that point for the ring and the path graph, and that those
two graph types can sustain a virus longer for an effective infection rate that is above
the epidemic threshold than the star graph. Figure 3.11b also suggests that, as the star
and the complete graph are two extreme graphs, the average survival time E [T ] as a
function of the normalised effective infection rate τ/τ(1)

c in all other graphs is expec-
ted to lie between these two graphs. Combining the information from Figs. 3.11a and
3.11b leads to the conclusion that the star graph is the graph where a virus stays active
the longest when the meta-stable state fraction of infected nodes is kept at 45% but the
shortest when the normalised effective infection rate τ/τ(1)

c is kept constant. In part, this
is caused by the fact that the NIMFA threshold for the star graph is not very accurate.

The ring graph is an extreme graph, just as the complete and the star graph. In Figure
3.12a the expected survival time in the ring graph is shown as a function of the network
size for an effective infection rate τ= 3τ(1)

c = 1.5. The survival time in the ring increases
logarithmically with the number of nodes in the graph. The non-exponential scaling of
the survival time with the network size N is surprising. Mountford et al. [57] have shown
that the survival time of a contact process on a tree with bounded degree is exponential
in the number of nodes, which implies that the survival time on a path graph is expo-
nential in N . As the ring graph is a path graph with one extra link, the survival time
for a given effective infection rate τ is expected to be at least equal to that of the path
graph. In Figure 3.12b we use the survival time to determine the epidemic threshold in
the ring graph of N = 500 and N = 1000 nodes. For N = 500 the epidemic threshold lies
at approximately 2.8τ(1)

c , but for N = 1000 it lies at approximately 3τ(1)
c . This shows that

the epidemic threshold indeed scales with N and that for much of the range of Figure
3.12a the infection rate is below the epidemic threshold, explaining the logarithmic scal-
ing. Unfortunately, computing the epidemic threshold based on simulations for larger
graphs is computationally expensive.
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3.5. TIME TO THE META-STABLE STATE
In addition to the extinction or survival time of the virus outbreak, it is important to
know the time until an outbreak reaches the meta-stable state. The average time to first
reach a number of infected nodes equal to the average number of infected nodes in the
meta-stable state is called the spreading time. Of course, the spreading time depends on
the initial condition, as will become clear in the following sections. The spreading time
of a virus in a particular graph is an important metric, since it limits the time in which
the virus can still be contained with relative ease. In the extreme case of only a single
infected individual, quarantining is easy and highly effective. Once the virus reaches the
meta-stable state (τ> τc ), it will be more difficult to eradicate the infection. Hence, the
spreading time is generally the longest time for an authority (government, agency, etc.)
to react and to start immunisation actions (such as vaccination and quarantining).

In this section, we numerically compute the spreading time of the SIS process on the
complete graph and the star graph and investigate the scaling behaviour both in terms
of the graph size N and effective infection rate τ. For the complete graph we derive an
analytical expression for the average time to the meta-stable state starting from a single
node. For other graph types, we use simulations to derive the spreading time.

3.5.1. SPREADING TIME VIA THE HITTING TIME
In general, the spreading time in a particular graph can be found using the Markov de-
scription of the SIS process. Let ȳ be the average number of infected nodes in the meta-
stable state, rounded to the nearest integer, i.e. ȳ = ⌊N y∞(τ)⌉. The spreading time can be
defined as the average hitting time of the set of states for which the total number of infec-
ted nodes equals ȳ , starting from any state. Unfortunately, this method is infeasible for a
general graph due to the exploding state space. As we have seen in the previous sections,
however, for the complete graph and the star graph, however, the state space scales lin-
early in the number of nodes, which enables us to use the hitting time to determine the
spreading time.

Just as in Section 3.3, we use an embedded Markov chain to transform the continuous-
time SIS Markov process to a discrete-time one. Before proceeding, however, we modify
the SIS Markov chain and remove the absorbing state. As explained in [26, 49], the meta-
stable state for finite graphs can be defined in two ways: either we add a nodal self-
infection [26] or we remove the absorbing state [49]. The latter modified SIS model, de-
noted by MSIS, obeys the same evolution rules as the SIS model, except that when there
is only one infected node in the network, this node is forbidden to heal. In both cases,
the Markov chain is irreducible and features a unique steady-state, that corresponds (by
definition) to the meta-stable state in the original SIS Markov process. Also, by our modi-
fication, the virus/infection will always stay in the network and can never die out. Thus,
as the infection is prevented to die out, our modification will return an upper bound to
the exact SIS spreading time in a graph.

The average hitting time of the set of states A starting from any state in the Markov
chain can be found as the minimal non-negative solution of the following system [53,
54]: {

wi = 0 for i ∈A

wi = 1+∑
si j (ϕ)w j for i ∉A

, (3.15)
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Figure 3.13: Markov graph of the modified SIS process on a complete graph. The state numbers coincide with
the number of infected nodes.

where wi is the average hitting time of the set A starting from state i , and si j (ϕ) is the
transition probability from state i to j in the uniformised embedded Markov chain. Ana-
logous to the analysis in Section 3.3, system (3.15) can be written as K w = b, where
K = I − S̃(ϕ), and S̃(ϕ) is the transition matrix of the uniformised embedded Markov
chain with each row i ∈A replaced with the standard basis vector ei multiplied by some
scalar. Because of the structure of b, the scalar can take any value, but for numerical
reasons its convenient to take ϕ. The vector b is defined as b = u−∑

i∈A ei where u is the
all-one vector. Again, as in Section 3.3, we solve the system

ϕK w = b, (3.16)

where ϕK simplifies to ϕK =ϕ(I − I + Q̃
ϕ ) =−Q̃.

3.5.2. SPREADING TIME IN KN
In this section, we investigate the spreading time in the complete graph KN with N
nodes. The meta-stable state is specified via the equilibrium point in KN , which is defined
as the number I of infected nodes for which β(N − I )I = δI holds. At the equilibrium
point in KN , and generally in the meta-stable state for any graph, the total infection and
curing rate are in balance.

The time to the equilibrium point can be found as the hitting time of the state where
βI (N − I ) = δI holds, starting from any state. In the case of a real virus outbreak, the
spreading time is indicative of how quickly measures to counter the infection need to
be taken. Figure 3.13 shows the Markov graph of the modified SIS process on the com-
plete graph. Since the state numbers coincide with the number of infected nodes, the
spreading time or time to equilibrium is found by solving system (3.6) for A = {ȳ}. The
modified infinitesimal generator Q̃ can be derived by inspection from Figure 3.13. Fig-
ure 3.14 shows the average spreading time as a function of the fraction of infected nodes
in the complete graph for various network sizes N . The equilibrium point was chosen
at 15%,25%, 50% and 75% of infected nodes for all sizes. The average spreading time
drops sharply from a single node infected to a few infected. The sharp initial drop is
caused by the fact that, when a single node is infected, the probability that the virus dies
out is the highest. However, in the MSIS model, dying out is forbidden, so that the time
to reach the meta-stable state or equilibrium point is long. As soon as a few more nodes
are infected, the infection is very likely to reach the equilibrium point. Usually, infectious
diseases start at a few individuals/nodes and Figure 3.14 illustrates that it is crucial to de-
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Figure 3.14: Spreading time in the complete graph as a function of the fraction of infected nodes for four values
of the equilibrium point: 0.15 (a), 0.25 (b), 0.5 (c), and 0.75 (d).

tect an outbreak in a very early state, because only at a very early state (with few infected)
the average spreading time is significantly larger than for other states. When initially far
more nodes are infected than in the meta-stable state, the time to the equilibrium point
is almost constant.

Figure 3.15 shows the average spreading time starting from a single infected node as
a function of the network size for various positions of the equilibrium point. The aver-
age spreading time scales logarithmically with the network size for KN . The logarithmic
scaling in the number of nodes is especially interesting as the scaling of the infection
rate to keep the equilibrium point, for example, at 50% infected is linear, as follows from
τ(N−I )I = I . Which can be written as (τN−1)I−τI 2 = 0, and solving for I gives I = 0 and
I = N − 1

τ . Despite the fact that the infection rate decays with the reciprocal of the net-
work size, the time to reach the equilibrium increases only logarithmically. This means
that in a larger network a weaker virus can infect the same fraction of nodes in roughly
the same time, again emphasizing the importance to spot an outbreak early.

Figure 3.15 shows that the spread time in the complete graph scales as log(Nα)+b,
Figure 3.16 shows the fits of α in Figure 3.15 as a function of the equilibrium point y∞.
With an increasing equilibrium point, α reduces quickly, indicating that a stronger virus
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does not only infect more individuals, but also does so quicker than a weaker virus. Fig-
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Figure 3.17: Spreading time in a complete graph starting from a single infected node as a function of the equi-
librium point for various graph sizes.

ure 3.17 shows the average spreading time starting from a single infected node as a func-
tion of the equilibrium point for various network sizes. We observe from Figure 3.17 that
for small values of the equilibrium point, the time to reach that equilibrium point start-
ing from 1 node infected increases. This is caused by the smaller values of the effective
infection rate τ needed to reach the equilibrium point. Interestingly, the time to reach
the equilibrium point peaks due to the probability that the virus dies out when it starts
with only a single infected node and a low effective infection rate τ. Because the absorb-
ing state is removed, the process spends more time in the state with only one node in-
fected for low effective infection rates, which increases the time to reach the equilibrium
point. With an increasing number of infected nodes at the equilibrium point, the effect-
ive infection rate τ increases until the infection rate is so large that dying out becomes
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unlikely. This illustrates that an increasing effective infection rate does not only increase
the number of infected nodes in the meta-stable state but also increases the probability
that the meta-stable state will be reached from a single infection, and reduces the time
to reach the meta-stable state.

3.5.3. ANALYTICAL EXPRESSION SPREADING TIME IN KN

(y-1) 2

(y-1)(N-y+1)τ (N-1)τ

1 2 3 y-1 y
y y-1 y-2 2 1

(y-2)(N-y+2)τ

Figure 3.18: Markov graph of the modified SIS process on a complete graph. The number of infected nodes is
indicated next to the state.

By modifying the Markov chain in Figure 3.13 and solving matrix equation (3.16) for
the modified chain we derive an exact expression for the average spreading time in KN

starting from a single infected node. The modified Markov chain is shown in Figure 3.18,
where we order the states from the meta-stable state back to a single infected node. Mat-
rix equation (3.16) can be solved by reducing the augmented matrix [−Q̃|b] to row ech-
elon form. To reach row echelon form, we iteratively perform the following row opera-
tion for k ≥ 2.

rk+1 → rk+1 +
(y −k)(N − y +k)τ

dk
rk

where rk indicates row k and dy is given recursively by

dk


(y −1)+ (y −1)(N − y +1)τ for k = 2

(y −k +1)[1+ (N − y +k −1)τ− (y−k+2)(N−y+k−1)τ
dk−1

] for 2 < k < y

(N −1)τ− 2(N−1)τ
dk−1

for k = y

The elements in column vector b can be found recursively as

bk = 1+ (y −k +1)(N − y +k −1)τ

dk−1
bk−1

The average spreading time is given by by /dy . Iterating the recursive relation for bk from
k = y backwards leads to

by =
y−1∑
j=1

( j −1)!(N −1)!τ( j−1) ∏i=y− j
i=2 di

(N − j )!
∏i=y−1

i=1 di

,

and dividing by dy gives

E [T ] =
y−1∑
j=1

( j −1)!(N −1)!τ( j−1) ∏i=y− j
i=2 di

(N − j )!
∏i=y

i=1 di

(3.17)
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Writing p j =∏ j
i=2 and using p j = d j p j−1, we can write

p j = (y − j +1)p j−1 + (y − j +1)(N − y + j −1)τp j−1

−(y − j +2)(y − j +1)(N − y + j −1)τp j−2

for 2 < j < y . Iterating the recursive relation for p j from j backwards leads to

p j = (y −1)!

(y − j )!(N − y)!

j−1∑
i=0

(N − y + i )!τi

and using the correct expression for dy ,

py = (y −1)!(N −1)!τy−1

(N − y)!

Filling in the expressions for p j and py into (3.17) leads to our final result

E [T ] =
y−1∑
j=1

y− j−1∑
i=0

(N − y + i )!τi+ j−y

j (N − j )!

3.5.4. MEAN-FIELD SPREADING TIME IN REGULAR GRAPHS
We briefly move from the exact world of Markov chains to the approximate world of
mean-field theory and show that mean-field predicts a spreading time in r -regular graphs
that is independent of the degree r . In the N-intertwined Mean-Field Approximation
(NIMFA) [29, 31] the probability vi that node i is infected is given by the following first-
order nonlinear ordinary differential equation

d v

d t
= rβv(t )(1− v(t ))−δv(t ), (3.18)

which also appeared in [15, 18], and has the solution (also derived in [19]):

v(t ) = 1

( 1
v0

− 1
1− 1

rτ
)exp(−(rτ−1) t

δ )+ 1
1− 1

rτ

(3.19)

According to NIMFA, the fraction of infected nodes in the meta-stable state for an r -
regular graph is given by

y∞ = 1− 1

rτ
,

alternatively, the effective infection rate τ that is needed to achieve y∞ nodes infected in
the meta-stable state is given by

τ= 1

r (1− y∞)

Substituting τ in (3.19) and starting from a single infected node (v0 = 1
N ) leads to:

v(t ) = 1

(N − 1
y∞ )exp(− y∞

1−y∞
t
δ )+ 1

y∞
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Figure 3.19: Markov graph of the modified SIS process on a star graph. In the top row (odd states) the centre
node is infected, whereas on the bottom row (even states) the centre is healthy. The number of infected nodes
in each state is indicated next to the state.

which suggests that the time to reach the meta-stable state is independent of r . The
spreading time according to NIMFA is found by defining a distance between v(t ) and y∞
and finding the time for which the distance is small. Starting from

v(t ) = 1

f (t )+ 1
y∞

with f (t ) = (N − 1
y∞ exp(− y∞

1−y∞
t
δ )), we define the distance to meta-stable state as y∞−

1
f (t )+ 1

y∞
, and the spreading time as the time for which the distance to the meta-stable

state is smaller than ε:

f (t ) ≤ ε

y∞(y∞−ε)

t ≥ (1− y)δ

y
(ln(N − 1

y∞
)+ ln(y2 − yε)− ln(ε))

Although the NIMFA spreading time is not always accurate, and in some cases not even
predicts the right scaling of the spreading time, as shown in Section 3.7, at least for the
complete graph it correctly shows a logarithmic scaling in N .

3.6. SPREADING TIME IN K1,N−1
In this section, we investigate the spreading time in the star graph K1,N−1 with N nodes.
The Markov graph of the modified SIS process on a star graph, as adapted from [49] is
shown in Figure 3.19. The Markov chain consists of 2N −1 states, to make a distinction
between the situation where the centre node is infected (all odd states), and the situation
where the centre node is healthy. The number of infected nodes in each state is indicated
in blue next to the state in Figure 3.19. For each possible number of infected nodes (with
the exception of N infected nodes), the network can be in one of two states. As a result,
the average spreading time can be computed by solving system (3.6) with A = {2ȳ −
1,2ȳ}, for ȳ < N , or A = {2N −1} for ȳ = N .

Figure 3.20 shows the average spreading time in the star graph for various network
sizes and values of ȳ , under the condition that the centre node is infected. The spreading
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Figure 3.20: Spreading time in the star graph for the case that the centre is infected as a function of the fraction
of infected nodes for three different values of ȳ : 0.25 (a), 0.5 (b), and 0.75 (c).

time in the star graph is smaller than for the complete graph. This is caused by the higher
effective infection rate τ that is needed to reach the same ȳ in the star graph compared
to the complete graph. Paradoxically, the better we protect our networks, the quicker a
virus will reach the meta-stable state. Of course, for a virus with a fixed effective infection
rate τ protecting the network by, for example, link removal will have an effect on the
number of infected nodes in the meta-stable state. However, in the context of computer
viruses or other engineered infectious processes, better network protection will have to
lead to stronger viruses to achieve the same goal (infecting nodes). A similar effect might
occur in biological evolutionary processes. The average spreading time in Figure 3.20 is
under the condition that the centre node is infected. An infection starting in the centre
node has a better chance of spreading through the network than an infection starting
in one of the leaf nodes. Yet, the average spreading time for a virus starting in a leaf
node does not differ too much from that of a virus starting in the centre, as shown in
Figure 3.21. Figure 3.21 shows the average spreading time as a function of the number
of infected nodes for three different network sizes, both under the assumption that the
centre node is infected (round markers) and under the assumption that the centre node
is healthy (triangular markers). In terms of the modified Markov process in Figure 3.19:
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Figure 3.21: Spreading time in the star graph as a
function of the number of infected nodes for three
different network sizes, both for the case that the
centre is infected (round markers) and for the case
that the centre is healthy (triangular markers).
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Figure 3.22: Spreading time starting from a single
infected node as a function of the network size for
five different graph types. The fraction of infected
nodes in the meta-stable state is 50%
.

the round markers indicate the spreading time starting in an odd state, the triangular
markers indicate the spreading time starting from an even state. For all three network
sizes, the difference between starting in an odd state (centre infected) or an even state
is roughly the same and diminishes quickly. If more than 20 nodes are infected, the
spreading time under the assumption that the centre is infected is approximately the
same as under the assumption that it is healthy.

3.7. SPREADING TIME IN OTHER GRAPHS
The average spreading time in a general graph cannot be determined using the Markov
transition probability matrix as for the complete graph KN or the star, due to the 2N state
space in general. In the case of a general graph, we simulate the time until the process
first reaches the number of infected nodes of the meta-stable state. We first determine
the meta-stable state as a function of the effective infection rate for each graph and select
the effective infection rate τ that corresponds to 50% infected in the meta-stable state.
The data points for each graph type and size are averages over 100,000 runs.

Figure 3.22 shows the average spreading time as a function of the network size N
for 5 different graph types, the connected Erdős-Rényi random graph Gp (N ) with a link

density or link probability p at the connection threshold pc = ln N
N , the preferential at-

tachment graph (PA) with m links per new node (m is chosen so that the link density is
equal to the ER graph), the star graph, the square lattice and the complete graph.

Curiously, the connected Erdős-Rényi random graph Gp (N ) behaves almost identi-
cal to the complete graph KN = G1 (N ): the spreading time seems hardly to depend on
the link density p = 2L

N (N−1) . Probably the difference in link density is compensated for
by the higher effective infection rate τ that is needed to reach the same ȳ .

The presence of hub nodes in the preferential attachment graph, however, leads to a
smaller time to the meta-stable state, especially for larger graphs. The extreme case in
terms of hub nodes is the star graph, and indeed in the star graph the time to reach the
meta-stable state is shortest.
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Figure 3.23: Spreading time starting from a single
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Figure 3.24: Spreading time starting from a single
node infected in the ring graph.

These four graph types all show a logarithmic scaling of the average spreading time
with the number of nodes, but the slope at the log-lin scale is smaller for graphs with
more hub nodes. The square grid does not show the logarithmic scaling in N that is ob-
served in the other graph types. Indeed, Figure 3.23 shows the spreading time for just the
rectangular grid and a fit, suggesting that the spreading time scales as

p
N with the size

N . This is most likely caused by the large average hopcount in this graph type. The av-
erage hopcount in the lattice [53, p.630] equals E [Hlattice] ≃ 2

3

p
N , for large N , whereas

E
[

HGpc (N )

]
∼ ln N

lnln N (see [53, p. 428]) increases somewhat slower than logarithmically

in N . Also for sparse scale-free graphs of which the Barabasi-Albert preferential attach-
ment graph is an instance [53, p. 428], the average hopcount is E [HPA] ∼ ln N

ln(dav−1) , where

dav = 2L
N is the average degree. Hence, for the lattice, the connected Erdős-Rényi random

graph Gpc (N ) and scale-free graphs, the scaling of the spreading time and the average
hopcount agree. However, the relation between spreading time and hopcount ceases for
the star and complete graph: the average hopcount in KN is E

[
HKN

] = 1 and in the star
K1,N−1 with N nodes is E

[
HK1,N−1

] = 2− 2
N , thus both bounded by a constant, whereas

logarithmic increases is observed in Figure 3.22. In any graph, the average time [58],[53,
p. 460] to hit the absorbing state in SIS epidemics for τ< τc scales logarithmically in N ,
illustrating that, on average, the epidemic process cannot tend faster to the meta-stable
state than O

(
log N

)
, irrespective of the topology. The influence of the network topo-

logy on the SIS dynamic process is measured via the average hopcount which is a good
representative measure for the diffusive spread of the epidemic. Above the epidemic
threshold (τ > τc ), the epidemic diffuses over the network. The spreading time thus
reflects the combined logarithmic scaling (as a lower bound for the average epidemic
extinction time and, hence, of the entire SIS dynamic process) and the average diffusion
time, which is related to the average hopcount of the graph. In conclusion, only when
the average hopcount exceeds a logarithmic scaling, the spreading exhibits the hopcount
scaling, else logarithmic scaling is observed. As a final example of a spreading time that
sales with the hopcount, Figure 3.24 shows the linear scaling in N of the spread time on
a ring graph.
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3.8. CHAPTER SUMMARY
In this chapter, we shed light on the survival time T of an SIS process on a network. We
have derived exact equations for the average survival time in the complete graph KN

and the star graph K1,N using the hitting time of a uniformised embedded Markov chain.
For the SIS process on the complete graph KN , the first term in the Lagrange series (3.1)
of the second largest eigenvalue ζ of the infinitesimal generator of the continuous-time
Markov chain describing the SIS process can be efficiently computed using a sum (3.3)
over recursive terms and is equal to the expected wost-case survival time E [T ].

The embedded Markov chain enables us to compute, via the peak in E [T ]I=N
E [T ]I=1

, the pre-
cise epidemic threshold that corrects for the scaling behaviour in the number of nodes
N of the NIMFA threshold (which is the inverse of the spectral radius of G).

Via simulations, we have shown that other graphs than KN and K1,N also exhibit ex-
ponentially distributed survival times. When the steady-state fraction y∞ of infected
nodes is kept constant at 45%, the star graph sustains the infection the longest, whereas
the ring graph sustains the infection the shortest. As a function of the normalised effect-
ive infection rate τ/τ(1)

c , however, the virus dies out the quickest in the star graph. This
is caused by the accuracy of the NIMFA model that is used for the normalisation and
illustrates the difficulty of finding an unbiased way of comparing the behaviour of the
SIS process in different graph types. In addition to the survival time, we also investigate
the time to reach the meta-stable state, which we call the spreading time. We derive an
exact expression for the spreading time in a complete graph, and show that in the case of
regular graphs, the NIMFA spreading time can be very far off. The spreading time seems
to scale with the hop count as a function of the network size N .
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COMPETITION BETWEEN SIS

EPIDEMICS

When two viruses compete for healthy nodes in a simple network and both infection rates
are above the epidemic threshold, only one virus will survive. However, if we prevent the
viruses from dying out, new and rich dynamics emerge. When both viruses have identical
infection and curing processes, one virus always dominates the other, but the dominat-
ing and dominated virus alternate. We show in the complete graph that the domination
time depends on the total number of infected nodes at the beginning of the domination
period and, moreover, that the distribution of the domination time decays exponentially
yet slowly. When the viruses differ moderately in strength and/or speed the weaker/slower
virus can still dominate the other, but for a short time. Interestingly, depending on the
number of infected nodes at the start of a domination period, being quicker can be a dis-
advantage.

4.1. INTRODUCTION
The SIS model we have studied in the previous two chapters can be used to model the
spread of diseases, rumours, opinions, and habits in populations or on online social net-
works, as well as the effect of marketing and product adoption [59–62].

Viruses, however, do not necessarily live in isolation; a fact that has attracted atten-
tion recently. Work on virus competition either focuses on single layer networks, or on
multi-layer networks. Prakash et al. [63] proved that when two viruses compete on a
single layer network, the stronger of the two will completely suppress the other, provided
that the viruses are mutually immune. This is in line with the competitive exclusion prin-
ciple found in ecology [64, 65]. When viruses are not mutually immune, a region can
exist where both viruses survive in the network [66]. Even when nodes are mutually im-
mune, there is a region where stronger and/or quicker viruses can coexist with weaker
or slower competitors in the SIR model [67]. In the SIR model, a node does not return
to the susceptible state after being infected, but to an inactive recovered/removed state.

53
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The coexistence of SIR type epidemics is greatly influenced by node mobility in spatially
structured populations [68].

In multi-layer networks, each virus propagates over a separate link set. Wei et al. [69]
developed a predictor for the winner of the competition between viruses on multi-layer
networks and offer mitigation strategies to slow one of the two viruses down. Recently,
Sahneh and Scolgio [70] improved on the understanding of virus competition in a mul-
tilayer network and showed that when the degrees in the two layers are negatively cor-
related, coexistence of two viruses is in fact possible, contrary to the findings in [69].
Marceau et al. [71] studied the effect of asymmetric a partial immunity in SIR epidem-
ics where the spread of knowledge that a virus exists in the network helps to combat the
spreading of the virus. Meyers et al. [72] developed a model that describes the interac-
tion between multiple viruses (or contagions) under the assumption that a virus can also
improve the spreading properties of another virus and validated that model on messages
propagating through the Twitter network.

A common feature in the study of virus spread is that viruses can become extinct, as
treated in chapter 2 and 3. What happens, however, if one node will stick to its opinion
or preference or (intentionally) stays infected? Such a model can be used to describe
competing marketing campaigns where each campaign has a (small) fixed support base
and explain ebbs and flows in the success of such campaigns. It can also describe the
arrival of a new product/idea in a population and model its adoption starting from a
fixed fraction of infected nodes. We will see that by disallowing a virus to die out, new
and rich dynamics emerge. In line with previous research, one of the two viruses will be
dominated by the other, but, contrary to what might be expected, this dominance will
not last for ever. We restrict a virus from dying out by reinfecting the last node with a a
particular virus after it cures, but other schemes such as en ε-SIS model with an added
nodal mutation can be thought of.

4.2. MSIS PROCESS DESCRIPTION

We model the process of multiple competing viruses by extending the SIS model. As ex-
plained in Chapter 2.1, in the SIS model, a node is either healthy or infected. If a node
is infected, it will spread the infection to each of its neighbours. After some time, the
infected node becomes healthy again but will remain susceptible to the infection. The
curing process per node is a Poisson with rate δ and the infection rate per link is a Pois-
son process with rate β. All processes are independent. The effective infection rate τ is

defined as the ratio between the spreading and curing rate, i.e. τ= β
δ .

The extension from a single virus to multiple competing viruses is as follows. A node
can still be either infected or healthy. The infectious state, however, is labelled with the
virus type. If a node is infected with virus A, for example, it will spread the infection of
type A to its healthy neighbours. The healthy state is not labelled, so that, irrespective of
the virus type, nodes will only be infected with one virus at a time. In other words, infec-
ted nodes are mutually immune; an infected node cannot become infected by another
virus.
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Figure 4.1: Competition between two viruses in a complete graph of 500 nodes. Each virus is prevented from
dying out by reinfecting the last infected node of a virus at the moment it is cured.

4.3. MODELLING AND SIMULATION
We start by considering the case of two viruses in a complete graph of N nodes, KN , and
use Markov theory to completely describe the process. Although the complete graph is
an extreme graph, simulations in Section 4.3.1 show similar behaviour in very different
graphs. The symmetry of the complete graph allows us to use a Markov chain with a
manageable number of states to describe the process, just as we saw in chapter 3.

We define NA and NB as the number of nodes infected with virus A and B respect-
ively, and NH as the number of healthy nodes. Clearly NA +NB ≤ N and NH = N −NA −
NB . A state in the Markov chain corresponds to a combination of NA and NB in the
network. Every time the total number of infected nodes in the network changes, a state
transition in the embedded Markov chain of the continuous-time Markov process oc-
curs. The total number (N+1)(N+2)

2 of states in the Markov chain is visualised as the lower
half of a rectangular grid, as illustrated in Figure 4.2. The lower left-hand corner cor-
responds to the all-zero state; the other states in the Cartesian grid have coordinates
that encode the number of infected nodes per virus type. The horizontal axis reflects
the change in the number of nodes infected with virus A, and the vertical axis reflects a
change in the number of nodes infected with virus B . State changes in the Markov chain
can be thought of as being either North (NB increases), South (NB decreases), East (NA

increases) or West (NA decreases).
North(N (NA , NB )): This state transition occurs when a virus B spreading event hap-

pens before any other event. Spreading events happen with an exponentially distrib-
uted waiting time over all NB NH links between nodes infected with virus B and healthy
nodes. The first spreading event happens after the minimum of the NB NH waiting times,
which is again an exponential random variable with rate βB NB NH . The first event that
is not a virus B spreading event happens after the minimum of the virus A spreading
events and the virus A and B curing events, of which there are NA NH , NA and NB re-
spectively. The waiting time until the first non-virus-B spreading event is also an ex-
ponential random variable with rate βA NA NH +δA NA +δB NB . The probability that the
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Figure 4.2: Markov chain representation of the number of infected nodes. From each state there are four
different transitions possible: North, South, East and West. The transition probabilities of a direction can be
zero at the borders of the “triangle”.

first spreading event of virus B happens before the first non-spreading event is given by
βB NB NH

βB NB NH+βA NA NH+δA NA+δB NB
.

South(S (NA , NB )): This state transition occurs when a virus B curing event happens
before any other event. Analogous to the transition to North, this probability is given by

δB NB
βB NB NH+βA NA NH+δA NA+δB NB

.
East(E (NA , NB )): This state transition occurs when a virus A spreading event happens
before any other event. The probability is the same as North, but with NA and NB inter-

changed: βA NA NH
βB NB NH+βA NA NH+δA NA+δB NB

.
West(W (NA , NB )): This state transition occurs when a virus A curing event happens be-
fore any other event. The probability is the same as South, but with NA and NB inter-
changed: δA NA

βB NB NH+βA NA NH+δA NA+δB NB
.

From the transition probabilities for the four directions it is clear that if NA (or NB ) is
zero, only transitions along the North-South (East-West) axis are possible. As a result, all
states in Figure 4.2 that are not along either the horizontal or vertical axis are transient
states if we ignore the fact that the all zero state is an absorbing state. For an effective
infection rate far enough above the epidemic threshold, the probability of reaching the
absorbing all zero state is very small, but the probability of reaching either of the two
axes of Figure 4.2 is not. This reaffirms earlier results that one virus will die out much
quicker than the other.

By numbering the states appropriately, we can write the transition probability matrix
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Figure 4.3: The structure of matrices Y1, Y2 and T . Grey areas consists of only zeros.

P as follows [73]:

P =
C1 0 0

0 C2 0
Y1 Y2 T

 ,

where C1 is a matrix containing the transition probabilities of the closed set of states with
only virus A active, C2 is a matrix containing the transition probabilities of the closed
set of states with only virus B active, Y1 and Y2 are the matrices containing the trans-
ition probabilities from transient states to either of the two closed sets, and finally T
is a N (N−1)

2 × N (N−1)
2 substochastic matrix containing the transition probabilities among

transients states.
The structure of the submatrices of P is further detailed in Figure 4.3. Matrix Y1 is

rectangular with only non-zero elements on the diagonal, with the exception of the last
diagonal element. Matrix Y2 is also rectangular but the vertical spacing is N −1 between
the first non-zero elements and decreases for every next element. Matrix T consists of
successively shrinking diagonal and off-diagonal blocks. The diagonal blocks of T are
indicated in green in Figure 4.3 and have the following internal structure:

G =


0 E (1,B) 0

W (2,B) 0 E (2,B)

W (3,B) 0
. . .

. . . 0 E (N−B−1,B)
0 W (N−B ,B) 0


where B indicates the block number (starting from 1 for the top left corner in T in Figure
4.3). The off diagonal matrices in T are diagonal matrices:

RL = di ag {S (1,B +1),S (2,B +1), . . . ,S (N −B −1,B +1)}

RR = di ag {N (1,B),N (2,B), . . . ,N (N −B −1,B)}
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Figure 4.4: The probability that both viruses are alive as a function of the number of transitions. The solid line
indicates the numerical results obtained from the transition matrix and the markers indicate the simulation
results. The probability that both viruses are alive is the same as the probability that the epidemic process is
in a transient state, i.e. the element wise sum of the entries of sub-matrix T . The inset show the same plot on
a logarithmic vertical axis and emphasises the exponential decay of the transient state.

where RR is the right hand side off-diagonal matrix, RL is the left hand side off-diagonal
matrix.

The m-step transition probability from state i to j , that is, the probability of being
in state i after m steps when starting in state j , is given by P m

i , j . Because of the block

structure of P , its powers can be expressed as

P m =
C m

1 0 0
0 C m

2 0
X1 X 2 T m

 ,

where X1 and X2 are the m step transition probabilities from transient states to either
of the two closed sets. Since submatrix T represents the transient states, T m decreases
with increasing m. When all elements in T m are zero, one of the two viruses has died
out. Figure 4.4 shows that in a complete graph of 50 nodes the probability of both viruses
being active decays exponentially after an initial period. The same results were obtained
via simulations, as also indicated in Figure 4.4. The simulation results are averaged over
107 runs. In the initial state, 20 nodes are infected with each virus. The simulation results
overlap exactly with the predicted curve.

4.3.1. PERPETUAL COMPETITION
When both viruses are prevented from dying out, the two viruses will be in everlasting
competition. In the Markov chain this can be achieved by turning the South (East) trans-
ition for all states with just one node infected with virus B (A) into the probability to stay
in the same state. In simulations we reinfect a node if curing it would lead to one of the
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Figure 4.5: Heatmap representation of the steady-state distribution of two equally strong viruses in a complete
graph of 100 nodes, and effective infection rate τ= 0.025.

two viruses dying out.
In the simulations of the continuous-time virus competition process, the number of

infected nodes with virus A and B is logged every time the total number of infected nodes
changes. The moments of data gathering coincide precisely with the state changes in the
Markov chain approach. For each network we simulate the competition process for 108

time units and log the time the process is in each state.
Figure 4.5 shows a heatmap representation of the steady-state distribution of the

Markov chain of the virus competition in a complete graph. The number of infected
nodes with virus A (B) increases along the horizontal (vertical) axis similarly as in Figure
4.2. The hot spots along the axis show that the network is most likely in a state where
one of the two viruses dominates the other. Either virus is equally likely to dominate the
other as the symmetry along the NA = NB axis indicates. The diagonal band connecting
the two hotspots illustrates that the viruses alternate between being dominant and be-
ing dominated. The steady-state distribution confirms the behaviour seen in Figure 4.1.
Figure 4.6 shows the same information as the heatmap but in such a way that multiple
graph types and sizes are more easily compared. It draws the probability that the epi-
demic process is in a state with (NA−NB )/N nodes infected. The probabilities (NA−NB )
are sums over all lines parallel to NA = NB in Figure 4.5.

Figure 4.6a shows the probability that the network is in a state with (NA − NB )/N
nodes infected for different infection rates in a complete graph of 100 nodes. The differ-
ent infection rates are chosen in such a way that a single virus in this network will cause
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an average fraction of infected nodes between 5 and 40 percent. For small fractions of
infected nodes, both viruses will approach the absorbing state relatively frequently. The
states around NA = NB = 1 are therefore visited often in the steady state and cause the
high peak at x = 0. In the extreme case of no spreading, all states except for NA = NB = 1
are transient and the distribution features a single peak at x = 0. For higher infection
rates the distribution shows two peaks around the average fraction of infected nodes
that characterises the alternating domination. These two peaks are around the average
fraction of infected nodes, indicating that one virus is responsible for almost all infec-
tions. They correspond to the hotspots in Figure 4.5. The symmetry around 0 indicates
that both viruses are equally likely to dominate.

Figure 4.6b shows the distributions for complete graphs of different sizes ranging
from 100 to 1,600 nodes. The infection rates are chosen in such a way that the steady-
state fraction of infected nodes is 0.25. For larger networks, the probability of both vir-
uses approaching the absorbing state becomes smaller as can be seen from the lower
probability of being in a state where (NA−NB )/N = 0 for larger networks. Also, the peaks
in the distribution tend to be closer to the average fraction of infected nodes, in this case
0.25, for larger networks. For N = 1,600 the peaks are located very close to the average
fraction of infected nodes: around those peaks one virus is almost non-existent while
the other has almost the entire fraction of infected nodes. The plateau between the two
peaks indicates that during the cross-over from one domination to the other, on average
the same number of nodes are infected by either virus.

The competition behaviour between two viruses is observed in various different graph
types. Figure 4.6c shows the probability that the process is in a state where (NA −NB )/N
nodes are infected in five different graph types: the complete graph, the star graph,
a scale-free graph grown following the preferential attachment paradigm, a connected
Erdős-Rényi random graph with link probability log(N )/N , and a 32 by 32 square grid;
all graphs, except for the grid, contain 1,000 nodes. Again the effective infection rate of
both viruses is the same and on average 25% of the nodes is infected.

In the most extreme graph, the star graph, the peaks indicating one virus dominating
the other are much sharper than in the complete graph. Almost no time is spent in states
where both viruses have a substantial number of nodes infected. For the scale-free graph
the peaks are also markedly sharper than for the complete graph. The hub structure in
both graph types probably enables a virus to dominate the other more easily and for
longer, as will be discussed Section 4.4. The dominated virus has to compete for the hub
nodes in order to have a chance to defeat the other.

In the case of an Erdős-Rényi random graph the difference with the complete graph
is not as pronounced. The peaks are only marginally higher and the value at 0 is almost
exactly the same. On the contrary, the 32x32 rectangular grid shows a much higher prob-
ability to be in a state where the number of infected nodes with virus A and virus B are
more or less equal. The high hop-count and regular structure of the grid allows the two
viruses to exist in more isolation from each other. It is still more likely to find the network
in a state where one virus dominates the other, but to a much lesser extent than for the
star graph.

The differences in hopcount, degree distribution and other structural properties of
various graphs clearly have an influence on the competition process between the two



4

62 4. COMPETITION BETWEEN SIS EPIDEMICS

viruses, but overall, one virus will alternately dominate the other.

4.4. DOMINATION TIME OF MATCHED VIRUSES
Although the steady-state of the Markov chain shows that the process will most likely be
in one of two regions in the state space diagram corresponding to one virus dominating
the other (see Figure 4.5), it does not provide any insight in the alternating of domin-
ating/dominated periods. In this section we investigate the domination time T of two
matched viruses, i.e. βA =βB ,δA = δB .

We say that virus A dominates virus B if there are more nodes infected with virus
A than with virus B , i,e, NA > NB . A domination period of virus A starts when there
are more nodes infected with virus A than with virus B and ends when there are more
nodes infected with virus B than with virus A. The domination time is measured in the
number of state changes between the start and end of a domination period. We first
derive the expected domination time in Section 4.4.1 and compute the distribution of
the domination time in Section 4.4.2.

4.4.1. EXPECTED DOMINATION TIME
Consider the example state space in Figure 4.7 for a network of 7 nodes. The Cartesian
coordinates (NA , NB ) of the state space encode the number of infected nodes with each
virus. The states in which virus A dominates are coloured blue, the states in which virus
B dominates are coloured green, and the states where virus A and B have the same num-
ber of infected nodes are coloured yellow.

The transition probabilities in this state space can be computed using the expres-
sions for North, South, East and West derived in Section 4.3, with the exception of the
states along the axes. These states have a self-loop in the Markov transition graph to
avoid the virus from dying out. The probability of staying in the same state along the
axes is equal to the probability of going one more step West or South.

Let TA be the time that virus A dominates virus B . A domination period of virus A
can start at any state just above the diagonal (states 2, 8, or 12 in Figure 4.7). Let’s assume
for now that the domination starts in state 8. The average domination time, E [TA], is the
average hitting time of any state below the diagonal (the green states) given that we start
in state 8. Using the same techniques we used in chapter 3.3 to find the survival time,
the average hitting time from state 8 to any green state is the value k8 for the minimal
non-negative solution [54] to the following system of linear equations:{

ki = 0 for i ∉ {1, ...,12}

ki = 1+∑
j∉{1,...,12} pi j k j for i ∈ {1, ...,12}

(4.1)

where pi j is the probability of going from state i to state j . The solution for ki will gener-
ally be different for different values of i . In other words, the state in which a domination
period starts influences the average duration. Figure 4.8 shows E [TA] in the complete
graph K50 as a function of ys , the number of infected nodes at the start of the domina-
tion period. Figure 4.8 also shows the measured average domination time of virus A as
a function ys and the measured probability density of ys . The measured values are av-
erages over 106 domination periods. The infection rate for both viruses was chosen in
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Figure 4.7: Example state space for a network with 7 nodes. States where virus A dominates (the lower half) are
green, states where virus B dominates (the upper half) are blue, and states where the viruses are balanced are
yellow. In this state diagram state 1 corresponds to NA = NB = 1.

such a way that y , the expected number of infected nodes, is 33, which is about 65% of
the network. Moreover, with 33 nodes infected it is possible for a domination period to
start with precisely the average number of nodes infected, i.e. ys = y .

Figure 4.8 demonstrates that our simulation results are in agreement with the nu-
merical solution to the linear system in (4.1). For values of ys that occur only rarely, the
simulated results are further from the numerical results because of a lack of statistics.
The average domination time of a virus depends on the viral state of the network at the
start of domination. When ys < y a domination period can be significantly longer than
when the domination period starts close to the expected number of infected nodes. This
means that in a situation with only two nodes infected, the virus that spreads first is
likely to be stronger than the other for initially a rather long period. After the process
converges, the influence of the initial advantage will disappear.

The effect that a domination period is longer if it starts when the number of infec-
ted nodes is smaller than the expected number of infected nodes (ys < y) is more pro-
nounced for larger infection rates. The average domination time TA for periods that start
with more nodes infected is only slightly larger for larger infection rates. This means that
the initial domination period for a process that starts with only two nodes infected can
be very long for high infection rates, but will decrease when the other virus catches up,
since it is very unlikely to find the network in a state with few nodes infected after the
start of the process.

The distributions of ys as shown in Figure 4.8, are identical to the distributions of
the number of infected nodes for the three different values of the infection rate. The
distributions for y are not shown in Figure 4.8 to avoid further cluttering. Because the
probability of a domination period to start with ys infected nodes is the same as the
probability of the network to have y nodes infected, it is unlikely that the beginning of a
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Figure 4.8: Measured and calculated domination time in a complete graph of 50 nodes as a function of the
number of infected nodes at the start of the domination period for three different infection rates β, and unit
curing rate. The right hand side vertical axis shows the measured probability density function of the number
ys of infected nodes at the start of the domination period.

domination period is related to any variations in the total number of infected nodes. If
this would be the case, the number of infected nodes at the beginning of a domination
period would have been higher or lower than the expected number of infected nodes.
However, because of the dependency of TA on the number of infected nodes ys , if a
domination period starts during a spell of few infected nodes, it is likely to last longer.

4.4.2. DOMINATION TIME DISTRIBUTION

The knowledge of the domination period is not complete without the distribution of
the domination time, as the average might be a poor descriptor. We consider again the
state space as illustrated in Figure 4.7. To compute the distribution of the domination
time, we make all the states below the diagonal (the green states) absorbing. The Markov
chain that describes such a process consists of a set of transient states in which virus A
dominates virus B and a set of absorbing states.

Let M be the submatrix of the transition matrix P that only contains the transitions
between the transient states. In the example of Figure 4.7, M is a 12×12 substochastic
matrix containing the green and yellow states. Let sk be the state distribution after k
steps. In our example case, s0 = e8 (an all zero vector with only the 8th element one)
since we assume that the domination of virus A starts in state 8. The L1 norm of sk is the
probability that after k steps the process is in one of the transient states. If the process is
still in one of the transient states after k steps, then the domination time has to be larger
than k. This means that ||sk ||1 = Pr[TA > k], and Pr[TA = k] = ||sk ||1 −||sk−1||1, for k > 0.

Let M be the transition matrix containing the transitions within the transient region.
Assuming that all eigenvalues of M are distinct, M can be decomposed as M = V ΛV −1,
where V is a matrix with the eigenvectors of M as its columns and Λ is a diagonal matrix
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of the eigenvalues of M . The k step transition probabilities, M k can be expressed as
V ΛkV −1. The probability of being in a transient state after k steps starting from some
initial state s0 are found [27] by summing the k step probabilities in row s0 of M k .

Pr[T ≥ k] =
N∑

j=1
(M k )s0, j

Because Λ is a diagonal matrix, the entries of row s0 in V Λk can be written as vs0, jξ
k
j ,

where ξ j is the j th eigenvalue of M . The sum over the entries of row s0 in M k can be
written as

N∑
j=1

(M k )s0, j =
N∑

j=1

N∑
r=1

vs0, jξ
k
j ṽr, j =

N∑
j=1

ξk
j c j ,

where c j = ∑N
r=1 vs0, j ṽr, j and ṽr, j are the elements of V −1. Using Pr[T = k] = Pr[T ≥

k]−Pr[T ≥ k +1] the probability of being in a transient state after k steps, which is the
same as the domination time, can be written as

Pr[T = k] =
N∑

j=1
ξk

j c j (1−ξ j )

which is a weighted sum of exponentials. Because M is a substochastic matrix, all eigen-
values are smaller than 1, and the probability of being in a transient state vanishes. After
sufficiently long time, only the largest eigenvalue has an influence on the distribution of
the domination time leading to a purely exponential tail.
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Figure 4.9: Probability distribution of the domination time T in the complete graph for three different network
sizes. For each network size ys = y = N /4.

The hitting time T of the absorbing region in the embedded Markov chain is ex-
pressed in the number of transitions. In order to transform the number of state changes
to time units in the continuous-time Markov process, we create a uniformised embed-
ded Markov chain, just as we did in Chapter 3.3. In such a chain, self-loops ensure that



4

66 4. COMPETITION BETWEEN SIS EPIDEMICS

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

P
r[

T
 =

 t
]

10
0

10
1

10
2

10
3

10
4

domination time t

 Star          fit exp. 0.00270
 SF            fit exp. 0.00206
 ER           fit exp. 0.00173
 Complete  fit exp. 0.00192
 Grid         fit exp. 0.00110

Figure 4.10: Measured probability density function of the domination time T for a domination period that
starts with ys = y in five different graph types of 1000 nodes. The infection rate is chosen so that the y = N /4.

transitions in the embedded chain happen at the same rate as in the continuous time
process. As a result, the steady-state distributions of the uniformised embedded Markov
chain and the continuous-time Markov chain are the same. The number of state changes
is transformed into time by dividing by the maximum transition rate in the continuous
time process.

Figure 4.9 shows the distribution of the domination time T (starting from ys = y =
N /4) in a complete graph for N = {50,100,200}. Small domination times are most likely,
however, much longer domination times are also possible as a result of the exponential
tail with small exponent. The exponential tail of all three distributions can be clearly
seen on the log-lin scale. For increasing network sizes the slope of the tails becomes
increasingly flat, indicating that for larger networks a virus can more easily dominate for
a longer time.

The domination times for the five different graph types discussed in Section 4.3.1 are
shown in Figure 4.10. The tails of all these distributions are exponential, but the differ-
ences lie in where the tail starts. For the star graph the exponential tail starts earliest. Not
only are the domination periods more pronounced for the star graph, the probability of
having long domination periods is much higher than for the other graphs, although the
exponent is larger. For the grid the exponential tail starts the latest, indicating that small
domination times are most likely. The parts of the distributions for smaller values for the
domination time are very similar for all graphs except for the star graph.

4.5. DOMINATION TIME OF NON-MATCHED VIRUSES
When the two viruses are not matched, the domination periods will no longer be the
same for the two viruses. We investigate two different ways in which the two viruses can
be non-matched: in speed and in effective infection rate. A further line of research is to
investigate two viruses that have different spreading and curing rate distributions, but
the same average number of spreading events during an infection period, motivated by
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Figure 4.11: Average duration of a domination period for two viruses with different effective infection rates as
a function of ys . The green curves indicate the stronger of the two viruses, whereas the blue curves indicate
the weaker of the two.

the results in chapter 5. The average number of spreading events during an infection
period is a more natural way to express the spreading effectiveness in SIS processes as
shown in the next chapter. However, the survival time of a virus depends on the inter-
arrival time distribution of the infection attempts.

4.5.1. DOMINATION TIME FOR A STRONGER VIRUS
In order to investigate the effect that one virus is stronger than the other, we vary the
strength of one virus with respect to the other and compute the expected domination
time. The curing and infection rates for the two viruses are given as

β=
{
γβ0 for virus A

β0 for virus B
δ=

{
δ0 for virus A

δ0 for virus B

where β0 and δ0 are scaled for different values of γ to ensure that the average number of
infected nodes stays 33. The value of 33 (around 65%) is arbitrary, but the odd number
of expected infected nodes means a domination period can start at exactly the expected
number of infected nodes.

Figure 4.11 shows the expected duration of a domination period for both the stronger
and weaker viruses for six different strength ratios. The case in which the two viruses
are matched is also shown for reference. As intuitively expected, the stronger viruses
dominates the weaker virus for longer, but for values of γ not too far removed from 1, the
weaker virus can still dominate the stronger one.

The effect of the difference in effective infection rate is almost independent of ys

for small values of γ, as illustrated in Figure 4.12 where the ratio E [TB ]/E [TA] is plotted
for various values of γ as a function of ys . The ratio between the expected domination
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Figure 4.14: Average duration of a domination period for two viruses with different spreading speed as a func-
tion of the number of infected nodes at the start of the domination period. The green curves indicate the
quicker of the two viruses, whereas the blue curves indicate the slower of the two.

time for the weaker virus and the stronger virus increases with ys . The maximum ra-
tio between the weaker and stronger virus occurs when ys is smaller than the expected
number of infected nodes, but not too much smaller.

Figure 4.13 shows the probability of the network being in a state with (NA −NB )/N
nodes infected for different values of τB where τB > τA . When virus B is only a few
percent stronger than virus A, there is still a fairly high probability of finding the network
in a state where virus A dominates, but that probability drops quickly with an increasing
difference in strength. Viruses need to be matched in strength within a few percent to
show any real competition.

4.5.2. DOMINATION TIME OF A QUICKER VIRUS
Two viruses that have the same effective infection rate can still differ in behaviour. In
this section we compare the average domination periods of viruses that differ in speed,

keeping the effective infection rate τ = β
δ constant. The infection and curing rates are

given by

β=
{
αβ0 for virus A

β0 for virus B
δ=

{
αδ0 for virus A

δ0 for virus B

Where β0 and δ0 are the starting values for the virus process such that the average
number of infected nodes is 33. Contrary to the case of the varying mutual strength, the
difference in speed does not lead to a difference in the total number of infected nodes.

Figure 4.14 plots the average domination time as a function of ys for various values
of α. As expected, the quicker virus has an advantage for almost all values of ys , but sur-
prisingly, when ys > y being quicker becomes disadvantageous. This can be explained
by the fact that when a domination period starts during a period when the number of
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Figure 4.15: Ratio between the average duration of a domination period for the slower virus and the duration
of a domination period for the quicker virus for various differences in speed: βB =αβA for 1 ≤α≤ 15.

infected nodes is above the average, there is a driving force that will push the number
of infected nodes back to the mean. Since the quicker virus dominates, there are more
nodes infected with the quicker virus. All these nodes have a smaller curing time and it
is therefore likely that the number of nodes infected with the quicker virus will decrease
before the nodes infected with the slower virus will decrease, thereby shortening the ex-
pected domination time of the stronger virus.

Because of the disadvantage of being a quicker virus for values of ys that are above
the expected number of infected nodes, the effect of α on the ratio between the expected
domination time of a slower virus and a quicker virus is not constant over ys as for viruses
that differ moderately in strength. Figure 4.15 shows the ratio E [TB ]/E [TA] for different
values of α as a function of ys . The shapes of these curves are markedly different from
those of the strength difference in Figure 4.12. This means that although it is possible
to balance a stronger virus with a quicker virus for a single value of ys it is not possible
for the entire range of ys . Also, the curves are symmetric around ys = y , resulting in a
balance in the total time the quicker virus dominates the slower and vice-versa.

4.6. GENERALISED EPIDEMIC MEAN-FIELD MODEL
Recently, the Generalised Epidemic Mean-Field Model (GEMF) has been introduced by
Darabi Sahneh et al. [74] as a generalisation of NIMFA, the N-Intertwined mean-field
approximation [29, 74]. GEMF uses a node level description of the spreading process to
arrive, through a mean-field approximation, at a set of non-linear ordinary differential
equations that describe the network state as a whole. Nodes can be in one of several
states (or compartments) and interact through a multi layer network depending on their
state. The node level description of the process is given by a set of transition rate graphs;
each transition rate graph can either be a node-based rate graph, if the rate is independ-
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ent of the state of a node’s neighbours, or an edge-based transition graph if the transition
does depend on the state of a node’s neighbours. In the case of the MSIS process, curing
is a node-based transition, whereas spreading is an edge-based transition. The edge-
based transitions are dependent on an influencer state. The influencer state is a label
that indicates that node i ’s transition from one state to another depends on the num-
ber of neighbours of node i in the indicated state. The MSIS process with two viruses
has three states in the GEMF model; the susceptible state (S), the infected with virus A
state (I A), and the infected with virus B state (IB ). Figure 4.16 shows the transition rate
graphs for this MSIS process: a) The nodal rate graph representing the curing of infected
nodes, which happens with curing rate δA for virus A and curing rate δB for virus B. b)
The transition from state S to I A , which happens with rate βA per link and has influencer
state I A . c) The transition from state S to IB , which happens with rate βB per link and
has influencer state IB . The interaction networks for states I A and IB are identical.
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Figure 4.16: Transition rate graph of the MSIS process. a) Nodal transition rate graph: The three states are
susceptible (S), infected with virus A (I A ), and infected with virus B (IB ). A node moves from state I A to S with
curing rate δA and from IB to S with curing rate δB . b) Edge-based transition graph for type A: A node moves
from state S to state I A with infection rate βA for each incident link from a node in I A . c) Edge-based transition
graph for type B: A node moves from state S to state IB with infection rate βB for each incident link from a node
in IB . The contact networks for I A and IB are identical.

The state xi (t ) of node i at time t is represented by the standard unit vector corres-
ponding to the state i . The expected value of xi (t ) is defined as ([74, eq. (2)])

E [xi (t )] = [Pr[xi (t ) = ei ], . . . ,Pr[xi (t ) = eM ]]T , vi (t )

where ei is the i -th standard unit vector and M the number of states. The governing
equations of the GEMF model follow from the transition graphs ([74, eq. (27)]):

d vi

d t
=−QT

δ vi −
L∑

l=1
(

N∑
j=1

ai , j |l v j ,ql )QT
βl

vi , i = {1, . . . , N } (4.2)

where Qδ is the Laplacian matrix of the nodal transition rate graph, Qβl
are the edge

transition graphs for the various layers, and ai , j |l are the adjacency matrix elements of
the network describing the interactions on layer l , ql is the influencer state at layer l , L
is the number of network layers and N is the number of nodes in the network.
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For the two-virus process described by the transition graphs in Figure 4.16, we have
the following Laplacian matrices:

Qδ =
 0 0 0
−δA δA 0
−δB 0 δB

 ,QβA =
βA −βA 0

0 0 0
0 0 0

 ,

QβB =
βB 0 −βB

0 0 0
0 0 0

 (4.3)

The interaction networks for the two infectious states, I A and IB , are identical for the
2-MSIS process, so we can drop the index l from ai , j |l . As indicated above, the influen-
cer states for I A and IB are the states themselves. Equation (4.2) in the case of 2-MSIS
reduces to:

v̇i =−QT
δ vi −

N∑
j=1

ai j v j ,I A QT
βA

vi −
N∑

j=1
ai j v j ,IB QT

βB
vi (4.4)

which we can expand to

˙ Si

I Ai

IBi

=−
0 −δA −δB

0 δA 0
0 0 δB

 Si

I Ai

IBi

−

N∑
j=1

ai j I A j

 βA 0 0
−βA 0 0

0 0 0

 Si

I Ai

IBi

−

N∑
j=1

ai j IB j

 βB 0 0
0 0 0

−βB 0 0

 Si

I Ai

IBi

 (4.5)

If βA = βB and δA = δB , the total number of infected nodes equals the number of
infected nodes of a single SIS process. We take the first row in Equation (4.5).

dSi

d t
= δA I Ai +δB IBi −

N∑
j=1

ai j I A j βASi −
N∑

j=1
ai j IB j βB Si

= δ(I Ai + IBi )−Siβ
N∑

j=1
ai j (I A j + IB j ) (4.6)

After using I = I A + IB and S + I = 1, Equation (4.6) reduces to

dSi

d t
= δ(1−Si )−Siβ

N∑
j=1

ai j I j (4.7)

which is the governing equation of the N-Intertwined Mean-Field Approximation of the
normal SIS processes, see, for example, [29, Eq (1)].
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Figure 4.17: Comparison between the average number of infected nodes in the GEMF model and simulations
in a complete graph of 500 nodes. The simulation results are averaged over 100,000 runs.

4.6.1. EVALUATION OF THE GEMF MODEL

To verify the correctness of the GEMF model description of the MSIS process, we com-
pare the numerical solution of Equation (4.4) to simulations in a complete graph of 500
nodes. The average number of infected nodes per virus type as a function of time can be
computed from Equation (4.4) as the average number of nodes in one of the infectious
states. For the simulations, we have averaged the number of infected nodes at regu-
lar sample intervals over 100,000 runs using the event based simulator first described
in [75]. At the start of each simulation 20% of the nodes are infected with virus A and
another 20% of the nodes are infected with virus B.

In Figure 4.17 the average fraction of infected as computed from Equation 4.4 and
simulations are plotted as a function of time. The GEMF model and the simulations both
coincide and show that the average fraction of infected nodes is the same for viruses A
and B. Yet, Figure 4.17 should be interpreted with care. Just as mean field models for
normal SIS, the GEMF model for MSIS cannot describe the process of a virus dying out.
In reality, one of the two viruses rapidly dies out as a result of the competition.

The effects of the competition can be highlighted by preventing the viruses from dy-
ing out. This is done by reinfecting the last node of a virus type at the moment it is cured.
Figure 4.1 shows the fraction of infected nodes per virus type as a function of time, again
in a complete graph of 500 nodes. In contrast to Figure 4.17, the fraction of infected
nodes is doubled for the dominant virus while it is very small for the dominated virus.
Interestingly, the two viruses alternate from being dominant to being dominated. This
behaviour is further discussed in Section 4.3.1.
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4.7. CHAPTER SUMMARY
When two viruses compete for healthy nodes in a network, we show that one of the two
viruses dies out exponentially fast, even when both viruses have an effective infection
rate above the epidemic threshold. However, when we prevent two equally strong vir-
uses from dying out, a rich dynamic process emerges where one of the two viruses dom-
inates the other but loses that dominance after some time. We show that the average
domination time of a virus depends on the number of infected nodes at the beginning
of the domination period and that it can be computed by solving a linear system. The
distribution of the domination time can also be computed numerically.

When the two viruses are not balanced, but differ in either strength or speed, the
domination times will also be unbalanced. If the differences are not too big, the weaker
and/or slower viruses still periodically dominates their quicker and/or stronger rival,
but only for a short time. Because the effect of speed and strength as a function of the
number of infected nodes at the start of the domination time differs, it is impossible to
balance a stronger virus with a quicker rival for all values of ys , but it is possible to bal-
ance them for a single value of ys . Contrary to being stronger than a rival, being quicker
is not always a benefit but depends on both how much quicker the virus is and how
many nodes are infected at the beginning of a domination period. Interesting future
work includes the effect of non-Markovian spreading properties of both viruses. In this
case the strength of two viruses can be matched while they differ in distributions for the
inter-arrival rate of infection and curing events.



5
NON-MARKOVIAN SIS

SIS epidemics in networks implicitly assume Markovian behaviour: the time to infect a
direct neighbour is exponentially distributed. Much effort so far has been devoted to char-
acterise and precisely compute the epidemic threshold in SIS Markovian epidemics on
networks. In this chapter we show the rather dramatic effect of a non-exponential in-
fection time (while still assuming an exponential curing time) on the epidemic threshold
by considering Weibullean infection times with the same mean, but different shape para-
meter α. For all investigated graph classes, the epidemic threshold significantly increases
with the shape parameter α. By using the average number of infection attempts during
an infectious period in stead of the effective infection rate, however, the influence of the
inter-arrival time distribution on the epidemic threshold is greatly reduced. Moreover, the
NIMFA equations are still valid in that case. The accuracy of NIMFA and the survival time
of the epidemic depend on the inter-arrival time distribution.

5.1. INTRODUCTION

In the SIS model of virus spread that we have seen so far, the infection and curing pro-
cesses are modelled as Poisson processes. Poisson processes are nice to work with be-
cause of the memoryless property of the exponential inter-arrival time distribution. How-
ever, the curing time of an epidemic, be it a disease or computer virus or an opinion, is
most likely not exponentially distributed. Similarly, the inter-arrival times of infection
events are probably not exponential random variables. Research into human online be-
haviour has revealed a wealth of evidence of heavy-tailed distributions in various situ-
ations, such as email traffic, website usage, instant-messaging and phone calls [59, 76–
82]. In this chapter we describe the effects of modelling the inter-arrival times of curing
and infection events by non-exponential distributions. Clearly this turns the SIS model
into a non-Markovian process and we can no longer use Markov theory to describe the
infectious state of the network.

75
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5.2. THE NON-MARKOVIAN EPIDEMIC THRESHOLD
As described in Chapter 2.1, the epidemic threshold of a network distinguishes between
the overall-healthy network regime and the effective infection regime where perman-
ently a non-zero fraction of the nodes is infected. The epidemic threshold reflects how
effective an epidemic is in a particular network and is a major indicator or tool to pro-
tect the nodes (people, computers, ...) and to take preventive measures (governmental
immunisation strategies, anti-virus software protection).

Recently (see e.g. [17, 23, 26, 49, 83–85]) much effort has been devoted to the pre-
cise computation of the epidemic threshold in the continuous-time SIS Markov model in
networks. A basic property of a continuous-time Markov SIS process is the exponentially
distributed infection time [27, p. 184]: a node i infects its neighbours at an exponential
time T with mean 1

β . Only the exponential distribution possesses the memoryless prop-
erty which enables to reduce the process history to only the previous event to compute
the current one. Hence, all events in the past are uncoupled as if the process restarts in
the state at the previous event [27, 349-351]. Thus, the memoryless property of the ex-
ponential distribution makes Markovian processes attractive and analytically tractable.
When a stochastic process is not Markovian, its mathematical description and analysis
is considerably more complex. For example, the relatively simple and intuitive equa-
tion (2.8) and, more generally, the Chapman-Kolmogorov basic equations [27, p. 180]
that characterise Markov processes do not apply anymore. The (non-Markovian) time-
depending branching process [86], that is still tractable, exemplifies the increased math-
ematical complexity, while a non-Markovian epidemic model is analyzed in [87]. Hin-
richsen [88] has overviewed the recent progress in the field of non-equilibrium phase
transitions into absorbing states with long-range interactions and non-Markovian ef-
fects. In many non-Markovian processes on networks, computer simulation or meas-
urement is often the only resort to investigate its behavior and properties.

As it turns out, the effect of a non-exponential infection time on the average steady-
state fraction of infected nodes is rather dramatic. In this section, while the curing
process is still Poissonean with rate δ, the infection process at each node infects direct
neighbours in a time T that is Weibullean distributed [27, p. 56], with probability density
function

fT (x) = α

b

( x

b

)α−1
e−

( x
b

)α
(5.1)

and mean E [T ] = bΓ
(
1+ 1

α

)
. In (5.1), α is generally called the shape parameter, and b

the scale parameter. In order to compare the Weibull with the exponential distribution,
we fix the average infection time to be equal to that of an exponential distribution with
rate β as 1

β , so that

b =
(
Γ

(
1+ 1

α

)
β

)−1

Thus, the shape parameter α in (5.1) tunes the power-law start and the tail of the Weibull
distributions that all have the same mean infection time E [T ] = 1

β , but variance equal to

Var[T ] = 1

β2

(
Γ

(
1+ 2

α

)
Γ2

(
1+ 1

α

) −1

)
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When α= 1, the Weibull distribution reduces to the exponential distribution. For α< 1,
the tail decreases slower, but the probability of small infection times increases as a power
law, proportional to xα−1. In the extreme limit for α→ 0, the Weibull distribution tends
to the Zipf distribution. For α < 1, the distribution is heavy-tailed and reduces to a Zipf
distribution for α= 0. For large values of α, the tail falls off exponentially and for α→∞
the Weibull distribution reduces to a Dirac function. In addition to the natural general-
isation of the exponential distribution, the Weibull distibution also recently appeared in
epidemic studies [89].

The SIS process with Weibullean infection times is simulated as explained in Section
2.3.1 and Appendix B: the complicating absorbing state is removed so that the infection
always remains in the network. When only one node is infected, the process restarts. At
the precise moment that the last infected node is cured, that same node is reinfected. In
order to determine the steady-state of the fraction of infected nodes we run two simul-
taneous, but independent simulations on the same network. One simulation is initial-
ised with a fraction of infected nodes equal to 10%, whereas the second simulation starts
with all nodes infected. During the simulation, the time averaged number of infected
nodes is measured. After running for 100,000 state changes (or events) per simulation,
we start comparing the average number of infected nodes in the two simulations and

conclude that the steady-state is reached when |ȳ1(t )−ȳ2(t )|
ȳ1(t )+ȳ2(t ) < 10−4, where ȳ1(t ) is the av-

erage fraction of infected nodes in the first simulation as a function of time and ȳ2(t ) that

of the second. The steady-state fraction of infected nodes is taken to be ȳ1(t )+ȳ2(t )
2 . Fig-
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Figure 5.1: Steady-state fraction of infected nodes as a function of the effective infection rate for various Weibull
exponents on ER networks (N = 500, p = 2pc ,da = 12.4).

ure 5.1 shows the average steady-state fraction y∞ (τ) = limt→∞ 1
N E

[∑N
j=1 X j (t )

]
of in-

fected nodes in an Erdős-Rényi (ER) random graph Gp (N ) with N = 500 nodes and with

link density p = 2pc , where the disconnectivity threshold [27, p. 338] equals pc ∼ log N
N ,

versus the effective infection rate τ for various α, both larger and smaller than 1. The
curves for y∞ (τ) clearly shift to the right with increasing α. More dramatically, when α
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Figure 5.2: Steady-state fraction of infected nodes as a function of the effective infection rate for various Weibull
exponents on SF networks (N = 500,L = 2970,da = 11.8).

decreases, the epidemic threshold also decreases. Not only does the threshold decrease,
the smaller α, the quicker the steady-state fraction of infected nodes increases when the
epidemic threshold is passed. In other words, the derivative d

dτ y∞ (τ) increases with de-
creasing α for τ above the epidemic threshold: the epidemic infects a larger number of
nodes for the same average strength τ. Hence, in non-Markovian SIS epidemics with the
same mean infection time (and the same effective infection rate τ), the sensitivity of the
power law for values of α smaller than 1 on the epidemic threshold is large. A similar
tendency is found in other types of graphs, for example a scale-free (SF) graph1 (Figure
5.2) and a rectangular grid (Figure 5.3). In the case of the grid, the curves for successively
smaller values of α are spaced further apart, while for larger values of α the opposite
holds.

For small values of α < 1, the Weibull pdf fT (t ) in Figure 5.4 shows that small infec-
tion times are more likely to occur, implying that many short infection attempts are fired
to neighbouring nodes, interchanged with a relatively long inactive time (because the
mean E [T ] is constant). The exponential curing process is less effective to counteract
the fast infection attempts leading to more infected nodes (higher y∞ (τ) for the same
τ) for all tested networks (Figures 5.1, 5.2, and 5.3. Similarly, when α > 1, small inter-
arrival times for curing events takes place more frequently than for infection attempts,
thereby shifting y∞ (τ) to larger effective infection rates τ. Figure 5.4 draws the measured
probability density function of the infection time T for various values of the exponent α.
The infection time is only logged if it leads to a spreading action; that is, if it is smaller
than the current curing time of the infected node. In all simulations the curing time is
exponentially distributed with a mean of 1 (i.e. δ = 1 and τ = β). As the infection time
cannot be larger than the cure time of the infected node, the infection time distribution

1As SF graph, we have simulated a Barabási-Albert graph, whose initial topology is a ring with m nodes and
where m is the number of links added per newly added node and chosen in such a way that the resulting SF
graph has approximately the same number of links as G2pc (N ).
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Figure 5.3: Steady-state fraction of infected nodes as a function of the effective infection rate for various Weibull
exponents on a rectangular grid (N = 484,L = 924,da = 3.8).

is cut off for larger values by the exponential distribution of the cure time. Since the area
below the curves equals one, by definition of a probabity density function, each curve
for α ̸= 1 intersects with the exponential distribution (α = 1) twice. If α < 1, then small
as well as very long infection times are more probable than for the exponential distribu-
tion, while the opposite holds for α > 1, as can be seen from Figure 5.4. The thick line
in Figure 5.4 depicts the exponential case of α = 1. For each value of α approximately
7.5 ·106 infection times are logged.
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Figure 5.4: The effectively simulated probability density function fT (t ) of the infection T for various α.

Figure 5.5 illustrates how the epidemic threshold varies as a function of α. For the
Erdős-Rényi (ER) and scale-free (SF) graph, the epidemic threshold is approximately
linear for α > 1 and convex for α < 1, while the grid exhibits an opposite trend (linear
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for α < 1 and concave for α > 1). In addition to the larger effect of α on the epidemic
threshold in lattices, the SIS epidemics in grids or lattices behaves, indeed, different from
that of the denser graphs (in which the average degree increases with N ). Also, mean-
field approximations are less accurate for lattices than for the other two classes, as is
shown in chapter 2.
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Figure 5.5: The epidemic threshold, deduced from Figure 5.1-5.3, versus the parameter α for the three types
of graphs with approximately the same number of nodes N . The full markers correspond to the first-order

mean-field epidemic threshold τ(1)
c = 1

λ1(A) for α= 1.

Finally, Figure 5.6 shows that the epidemic threshold τc for ER and SF graphs as a
function of the inverse spectral radius λ1 (for various sizes of N ranging from N = 103 up
to 64 103) are all power laws, suggesting that

τc (α) = q (α)

λr (α)
1

(5.2)

For the simulated α ∈ [0.5,1.5] and for both ER and SF graphs, we found that the expo-
nent in (5.2) is approximately r (α) ≈ 1

α , but that q (α) is less accurate and not monotone

in α. For α = 1, q (1) ≃ 1.2 indicating that the NIMFA lower bound τ(1)
c = 1

λ1
is about

20% smaller (for the considered graphs). The corresponding scaling of the grid with N is
different: all considered sizes (above N = 1000) have approximately the same epidemic
threshold τc (α) (becauseλ1 is about 4 for all N ≥ 1000 and nearly independent of N ), but
τc (α) depends on α: τc (0.5) ≃ 0.11, τc (1) ≃ 0.41 and τc (1.5) ≃ 0.56. Based on the general

bound [30], max
(
dav ,

√
dmax

)
≤λ1 ≤ dmax, where dav and dmax are the average and max-

imum degree in a graph, respectively, Chung et al. [90] have proved for SF graphs with

degree distribution Pr[D ≥ x] ∼ x−γ that λ1 ∼
√

dmax = O
(
N

1
2γ

)
and Krivelevich and Su-

dakov [91] that λ1 =O (ln N ) for Gpc (N ). Combining these exact scaling laws with the law
for τc (α) in (5.2) suggests us to conclude that the epidemic threshold in non-Markovian

SIS epidemics will vanish with N as a power-law in SF graphs and as O
(
ln− 1

α N
)

in ER

networks.
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Figure 5.6: The epidemic threshold in ER and SF graphs for various sizes (N = 2k 103, 0 ≤ k ≤ 6) and value of
α= (0.5,1.0,1.) versus the inverse of the spectral radius of the graph.

5.3. NIMFA IN NON-MARKOVIAN SIS
In the classic SIS model, as we saw in chapter 2, the infection and curing processes are
modelled as Poisson processes. This ensures that the state of the process, describing for
each node whether it is infected or not, is a Markov chain. This, in turn, offers the pos-
sibility to derive mean-field approximations. We know, however, that these exponential
distributions are in general not describing real-life epidemics well, and from the previ-
ous section that different distributions for the inter-arrival times of infection and curing
events leads large differences in the fraction of infected nodes. In this section we show,
after Cator et al. [92], how the NIMFA approximation can be extended to include general
infection and curing inter-arrival time distributions. The continuous-time SIS model on
any network, in which the infection time T and the curing or recovery time R have a
general distribution, is called the generalised SIS or GSIS model, of which the classical
continuous-time SIS Markov model is a special case.

5.3.1. THE GSIS MODEL WITH GENERAL WAITING TIMES

Just as in chapter 2, the viral state of the network can be described by a vector of Bernoulli
random variables X , such that Xi = 1 if node i is infected, and Xi = 0 if node i is healthy.
If at time t node i gets infected, we draw independently of everything else a recovery time
Ri (t ) and given Ri (t ), we independently draw, for each neighbouring, a random number

Mi j (t ) of infecting times T (1)
i j (t ) ≤ . . . ≤ T

(Mi j (t ))
i j (t ) ≤ Ri (t ) such that at times t+T (k)

i j node

i tries to infect node j . If node j is already infected at this time, nothing happens. Finally,
at time t +Ri (t ) node i recovers and becomes healthy, but again susceptible to infection.
This is exactly the simulation process as described in section 2.2.1 and appendix B. Each
node i has a random vector associated to it

Zi (t ) = (Ri (t ),Yi j1 (t ), . . . ,Yi jdi
(t )),
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where di denotes the degree of node i , hence the number of its neighbours, and where

Yi j (t ) = (T (1)
i j (t ), . . . ,T

(Mi j )
i j (t )).

We assume that the distribution of Zi (t ) does not depend on t , and if t1, . . . , tk are the
times of infection for node i , we will assume Zi (t1), . . . , Zi (tk ) to be i.i.d. Furthermore,
we will assume that Yi j1 (t ), . . . ,Yi jdi

(t ) are i.i.d.
An exact analysis of the GSIS on any network is very likely intractable, so that only an

approximate treatment seems possible.

5.3.2. MEAN FIELD APPROXIMATION
For the meta-stable state to exist, the distribution of Zi has to meet two conditions. The
average recovery time of a node i is finite, E [Ri ] <∞, and the number of infection events
of a node i has to be finite as well, so we assume that E

[
Mi j

] < ∞. The mean field
approximation [13, 23] in this setting entails that, when we determine the effect of the
neighbours on node i , we assume that node i does not influence its neighbouring nodes
in some relevant way.

Let vi be the probability that node i is infected in the meta-stable state and consider
node j as a neighbour of node i . In a large time interval [0,S], the number of times node
j was infected is asymptotically linear in S, by the elementary renewal theorem [27, p.
145]. Since the length of an infected period equals E [R], the number of infected peri-
ods is equal to v j S/E [R]. During each infected period, node j will try to infect node i
an average number E [M ] of times, so that the total number of infection attempts from
node j to node i asymptotically equals v j SE [M ]/E [R]. The mean-field approximation
decouples the infectious state of node j from that of node i , so that the fraction of in-
fection events from j to i that is successful (i.e., node i was in fact healthy at the time of
infection) equals 1−vi . Hence, the total number of successful infections that node i will
receive in the time interval [0,S] will asymptotically be equal to

S
∑

j∈Ui

E [M ]

E [R]
v j (1− vi ),

where Ui denotes the index set of neighbours of node i , so Ui = { j | ai j = 1}. In the meta-
stable state (where equilibrium holds), this number must equal the number of infected
periods of node i in [0,S], so that

S
N∑

j=1
ai j

E [M ]

E [R]
v j (1− vi ) = vi

S

E [R]
.

In other words, we arrive, for any node i ∈G , at

E [M ] (1− vi )
N∑

j=1
ai j v j = vi , (5.3)

which is exactly the same equation as in NIMFA in the exponential case, if we replace
τ=β/δ by E [M ] and compare (5.3) to (2.12). The expected number of infection events in
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a Poisson process with intensity β within an exponential recovery time with expectation
1/δ indeed equals the effective infection rate τ=β/δ.

The analogy with the NIMFA equations in [29, 31] allows us to transfer the NIMFA
analytic framework to the generalised SIS model. It follows from (5.3) and the epidemic
threshold theorem in [31] that a lower bound for the epidemic threshold in GSIS epidem-
ics satisfies

mc = E [Mc ] = 1

λ1
(5.4)

where λ1 is the largest eigenvalue of the adjacency matrix A of the graph G . Thus, if
E [Mc ] > mc , then the epidemic process is eventually endemic (in the mean-field ap-
proximation), in which case a non-zero fraction of the nodes remains infected, else the
epidemic process dies out after which the network is overall healthy. While E [Mc ] de-
scribes the activity of the viral agents in the SIS epidemics, the right-hand side in the
(mean-field) epidemic threshold equation (5.4) reflects the structural properties of the
underlying network and emphasises the role of the spectral radius λ1 of the graph G .

A practical conclusion is that, irrespective of our knowledge of the underlying dis-
tributions for the infection and recovery times, we can determine the average meta-
stable state fraction of infected nodes, only based on an estimate of the average num-
ber E [M ] of infection attempts during a recovery time R. In most practical cases, the
quantity E [M ] is more easy to measure than the ratio τ = E [R]

E [T ] . The generalised epi-
demic threshold rule (5.4) provides a useful criterion to verify whether a certain viral
agent, whose precise properties are unknown except for its average activity E [M ], will
cause a pandemic in a network or not.

5.3.3. DETERMINATION OF E [M ]
Although (5.3) allows us to solve a system of non-linear equations to compute an ap-
proximation of the fraction of infected nodes in the meta-stable state, regardless of the
type of infection and curing processes, determining E [M ] in general is not trivial. Using
renewal theory [27, Chapter 8], a general expression for E [M ] can be deduced [92]:

E [M ] = 1

2πi

∫
C

φT (z)φR (−z)

1−φT (z)

d z

z
(5.5)

where the contour C encloses the whole Re(z) > 0 plane, and φR is the probability gen-
erating function of the recovery time R and φT is the probability generating function of
the infection time T . If either the infection time or the spreading time is exponentially
distributed, (5.5) can be simplified, and also be determined without integration.

The infection time is exponential:
Since the infection time T is exponentially distributed, the infection process is a Pois-
son process and the mean number of Poisson events in an interval is given by its rate
β multiplied by the average length of that interval, which is E [R]. As a consequence
E [M ] =βE [R].

The recovery time is exponential:
At the start of the infection, two cases can happen: either T1 < R or T1 > R. In the latter
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case, M = 0. In the first case, M ≥ 1 and at time T1 everything starts anew: the distribu-
tion of (R −T1) | R > T1 is again exponential because of the memoryless property [27] of
the exponential distribution. This means that M has a geometric distribution,

Pr[M = k] = pk (1−p), with p = Pr[R > T1] and k ≥ 0,

Since all infection times T1,T2, . . . are i.i.d. and have a same distribution as T , we find the
mean of a geometric random variable as

E [M ] = Pr[R > T ]

Pr[R ≤ T ]
= Pr[R > T ]

1−Pr[R > T ]
.

Finally, instead of evaluating the integral (5.5), the expected number of spreading events
during the infection time of a node can be computed numerically via the expression
E [M ] = ∑∞

k=0 k Pr[M = k]. As above, let M be the number of infection events over a
link during the infection time R of a node, the waiting time until a curing event, and
let T be the waiting time until the next spreading event. The probability that exactly k
spreading events occur during an infected period follows (see [27, p. 140]) from the re-
newal equivalence {M (t ) ≥ n} ⇐⇒ {Wn ≤ t } as Pr[M = k] = Pr[Wk ≤ R]−Pr[Wk+1 ≤ R],
where Wn = ∑n

k=1 Tk denotes the sum of n independent realisations of T . Let fY (x) =
d

d x Pr[Y ≤ x] denote the probability density function (pdf) of the random variable Y .
Since the pdf of the sum of two independent random variables is given by the convo-
lution of the two pdfs of the random variables, we can express the pdf of Wk as a series
of convolutions, i.e. fW3 (x) = fT (x)∗ fT (x)∗ fT (x). To specify Pr[Wk ≤ R], we can use
a similar approach. Let Yk = Wk −R, then Pr[Wk ≤ R] = Pr[Yk ≤ 0]. Since the pdf of
−R is fR (−x) and fYk (x) = fWk (x)∗ fR (−x), we find that Pr[Wk ≤ R] = ∫ 0

−∞ fYk (x)d x. In
general, the series of convolutions can be efficiently determined numerically using fast
Fourier transforms. The number of terms in the sum needed to closely approximate
E [M ] =∑∞

k=0 k Pr[M = k] is typically in the order of 10.

5.3.4. EVALUATION OF THE MEAN-FIELD EQUATION (5.3) AND E [M ]
The mean-field equations (5.3) were compared with simulation results. Every time a
susceptible node becomes infected, an exponentially distributed curing time R is drawn
and a curing event for the newly infected node is scheduled at that time. In addition to
the curing time R, an infection time T is drawn from a Weibull distribution (5.1) for each
neighbour. Only if the infection time T is smaller than the curing time R, the infection
event is scheduled. When the infection event is processed, a new infection time is drawn
and, if the infection time is smaller than the curing time of the node that scheduled the
infection event, a new infection event is scheduled.

To find the meta-stable fraction of infected nodes in GSIS, we log the exact percent-
age of simulated time ti that the network has spent in a state with i nodes infected and
compute the average ȳ(t ) at time t as 1

N

∑N
j=0 j t j , the standard deviation of the fraction

of infected nodes is calculated as 1
N

√∑N
j=0 t j ( j − ȳ(t ))2. We prevent the infection pro-

cess from dying out by reinfecting the last remaining infected node immediately after it
is cured; the elimination of the absorbing state of the GSIS process is called the modified
GSIS, similarly as in [49]. To be certain that the process is indeed in the steady-state of
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Figure 5.7: The average meta-stable state fraction of infected nodes versus E [M ] in the complete graph with
N = 500 nodes.

the modified GSIS (corresponding to the meta-stable state of the GSIS process), we run
two simultaneous but independent simulations on the same network and compare the
time averages after an initial phase of 100,000 state changes. One process starts with
10% of the nodes infected, whereas the other process starts with all nodes infected. We
conclude that the steady-state is reached when the difference between the time averages

of the two simulations is small, i.e. |ȳ1(t )−ȳ2(t )|
ȳ1(t )+ȳ2(t ) < 10−4. The steady-state fraction of infec-

ted nodes is then given by ȳ1+ȳ2
2 . To avoid very long simulation times for larger values of

α we set a time limit of 20 minutes simulation time per run.
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Figure 5.8: The average meta-stable fraction of infected nodes versus τ in the complete graph K500 for various
α ranging from 0.5 (left) to 5 (right) with steps of 0.5.

Just as in NIMFA, which was shown to be a lower bound of the epidemic threshold,
the mean-field equations (5.3) of GSIS are also lower bounding the epidemic threshold
in our simulations illustrated in Figure 5.7 and Figure 5.8, that both contain the same
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data. It is important to stress, however, that in general, the mean-field equations of GSIS
are not upper bounding the steady-state faction of infected nodes, and as a result they
could also over-estimate the epidemic threshold. Nonetheless, Figure 5.7 emphasises
that E [M ] is the more natural parameter, instead of the ratio τ= E [R]

E [T ] , because all curves
tends to each other, indicating that E [M ] constitutes a proper scaling.

When the infection time T tends to a deterministic time (i.e. α→∞), the variance
in the simulations increases, so that more realisations need to be simulated for increas-
ing α. Still, the mean of the simulation seems nicely upper bounded by NIMFA. While
we have concentrated here on the comparison based on the complete graph (for which
NIMFA is exactly available [29] and the average meta-stable state fraction of infected
nodes is given by y∞ (τ) = 1

N

∑N
j=1 v j∞ = 1− 1

(N−1)τ ), the same agreement is found on
Erdős-Rényi graphs and Barabasi-Albert graphs as illustrated in Figure 5.10. For lattices,
on the other hand, Figure 5.10 shows (as also found previously, see e.g. Figures 2.8, 5.3,
and 5.5) that mean-field approximations are less accurate. Finally, also GSIS epidemics
on the complete graph KN with two non-exponential distributions for T and R follows
the same behaviour, as shown in Figure 5.7.
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Figure 5.9: The fraction of infected nodes in a complete graph of 100 nodes as a function of the expected
number of infection attempts during an infectious period θ for different infection and curing distributions:
exponential, normal and uniform. The NIMFA solution is indicated in black.

The accuracy of the NIMFA approximation seems to depend on the distributions of
the curing and infection inter-arrival times. Figure 5.9 shows the fraction of infected
nodes in the steady-state of the modified SIS process (the absorbing state is removed)
for different distributions of the inter-arrival times of both the curing and infection pro-
cesses. The NIMFA solution is shown in black. The curves for the three simulations all
start at 0.01 as a result of the absorbing state being removed. For exponential inter-arrival
times, the fraction of infected nodes is well approximated by the NIMFA solution. For
increasing values of E [M ], the fraction of infected nodes is almost equal to the NIMFA
solution, and, crucially, lies below the NIMFA solution. NIMFA is proved in [55] to upper
bound the infection probability, but only in the Markovian SIS process. For uniformly
distributed inter-arrival times, however, the fraction of infected nodes follows the expo-
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nential case until it reaches about 25%. The fraction of infected nodes for higher values
of E [M ] lies above the NIMFA solution. This shows explicitly that the NIMFA solution in
the case of non-Markovian spreading is not an upper bound, as also mentioned in [55].
For normal (Gaussian) inter-arrival times, the fraction of infected nodes is lower than
the exponential case for smaller values of E [M ] and slightly above the NIMFA solution
for larger values of E [M ].
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Figure 5.10: The average fraction of infected nodes versus E [M ] for three different graph types (with N = 500).

5.4. NON-MARKOVIAN SURVIVAL TIME
The exact results for the complete graph KN and the star graph K1,N that underpin the
results in Section 3.3 are only attainable because the infection and spreading processes
are independent Poisson processes. The analysis of non-Markovian epidemic spreading
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is complicated by the absence of the memoryless property of the exponential distribu-
tion. Yet, it has received attention in literature [87–89, 93]. In this section, we show the
influence on the survival time of a non-Poissonian infection process. The NIMFA ap-
proximation of the infection probability in the meta-stable state is still valid, as derived
in Chapter 5.3,

E [M ](1− vi∞ )
N∑

j=1
ai j v j∞ = vi∞,

where E [M ] is the expected number of infection attempts during an infectious period of
a node, ai j are the components of the adjacency matrix A of the graph and vi∞ is the
probability that node i is infected in the meta-stable state. In the case of exponentially
distributed inter-arrival times between infection and spreading events, E [M ] is given by

τ = β
δ , while the general expression for E [M ] is deduced in Chapter 5.3.3. The NIMFA

steady-state infection probability vi∞ is, however, no longer an upper bound, as shown
in [55] and further illustrated in Chapter 5.3.4. The average survival time E [T ] for non-
Markovian SIS processes is deduced by simulations.

In order to investigate the effect of heavy-tailed distributions for the infection times
on the survival time, we replace the exponential distribution with a Weibull distribution
given by

fT (x) = α

b
(

x

b
)α−1e−(x/b)α , (5.6)

where α is generally called the shape parameter and b the scale parameter. For α= 1, the
Weibull distribution reduces to the exponential distribution. The shape of the Weibull
distribution as a function of α is shown in the inset of Figure 5.12a.

The difference between the Markovian and non-Markovian SIS process is most vis-
ible in the distribution of the infection attempts during an infectious period of a node.
Even when the average number of infection attempts during an infectious period E [M ]
is kept constant, the steady-state fraction of infected nodes and the survival time of the
process change because of the timing of infection attempts relative to the curing time of
a node. In this section, we only change the distribution of the infection events, and keep
the cure time of a node exponentially distributed.

Figure 5.11 shows the simulated time distribution of infection attempts over a single
link, normalised to the infectious period of the source node; every time an infection
attempt takes place in our simulations, we log the infection time relative to the beginning
of the infectious period of the node and normalise that to the duration of the infectious
period of the node. For the exponential distribution, it is known [53] that if an event has
happened during an interval that the event time is uniformly distributed, but for other
distributions this is not the case. Indeed, in Figure 5.11 the exponential case (α = 1) is
uniform, as expected, but for α< 1 events tend to be early, and for α> 1 late.

The SIS process only stays in a network for a long time if nodes become reinfected
after they cure. Therefore, the timing of the infection attempts has a great influence on
the behaviour of the process. When the virus spreads from a source node early in its
infectious period, it is less likely that the newly infected node will reinfect the source
node after it cures, because the newly infected node is also likely to spread early and the
infectious state of the source node has most likely not changed yet. On the other hand, if
the source node spreads the infection towards the end of its infectious period, it is likely



5.4. NON-MARKOVIAN SURVIVAL TIME

5

89

40x10
-3

30

20

10

0

P
D

F
 i

n
fe

ct
io

n
 a

tt
em

p
t

0.80.60.40.20.0

 α=5

 α=1

 α=0.5

time

Figure 5.11: Distribution of the infection attempts over a link normalised to the infectious period of the source
node.

to have cured (and become reinfected) if the newly infected node spreads the infection
back.

Figure 5.12a shows the survival time distribution for α ranging from 0.5 to 1.5 and
a constant value for the expected number of infection attempts during an infectious
period E [M ] = 0.014. For small values of the shape parameter α, the survival time distri-
bution falls off much quicker than for the exponential case (shown in black). This is the
result of the early infection attempts. The virus does not succeed in reinfecting nodes
that have cured and dies out quicker. For larger values of α the opposite happens. The
survival time distribution falls off slower than in the exponential case.
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Figure 5.13

The same influence of the shape parameter α on the average survival time that is
observed in the complete graph is also visible in the star graph, as shown in Figure 5.12b
where the survival time distribution for various values of α is shown in a star graph of 100
nodes. The inset shows the exponent of the tails as a function of the shape parameter α.
In this case, we have kept the steady-state fraction of infected nodes constant at 25% by
changing the scale parameter b in (5.6) appropriately.

The effect of very small values for the shape parameter α is shown in Figure 5.13a,
where the survival time distribution is shown for a complete graph of 100 nodes for vari-
ous values of α. The black curve indicates the survival time of the virus in the case that
the infection rate is zero, in which case nodes can only cure. Since all nodes are infected
in the initial state, the black curve shows the the probability distribution (3.14) of the
maximum of 100 exponential i.i.d. random variables with rate δ. Figure 5.13a illustrates
that, for small values of the shape parameter α, the distribution of the survival time re-
sembles that of the no spreading case. This is because all spreading attempts happen
shortly after infection, as shown in Figure 5.11, after which all nodes cure again.

The effect of relatively large values for the shape parameter α, on the other hand,
is shown in Figure 5.13b for three different graph types: the complete graph, the start
graph and the square lattice. The scale parameter b in (5.6) is chosen so that the average
number of infected nodes in the meta-stable state is 25%. For small values of α, the
expected survival time of the virus is short, as mentioned above. As the shape parameter
α increases, so does the expected survival time. However, the expected survival time
peaks around α = 1.1 for the star graph and complete graph, and then starts to reduce.
This might be caused by a form of synchronisation in the infection times. The larger the
shape parameter α becomes, the narrower the infection time distribution becomes. As
a result, infections occur in an increasingly small interval after the source node becomes
infected. When the infectious periods of the nodes are aligned in time, the chances that



5.4. NON-MARKOVIAN SURVIVAL TIME

5

91

0.10

0.08

0.06

0.04

0.02

0.00

P
r[

X
=

x
]

100806040200

number of infected nodes 

 α=0.05

 α=0.1

 α=0.5

 α=1

 α=1.5

(a) The average number of infected nodes in a
square grid of 100 nodes for various values of
the shape parameter α and a scale parameter
b chosen in such a way that the average is con-
stant. The virus is prevented from dying out.

10
-5

10
-4

10
-3

10
-2

P
r[

T
=

t]

500040003000200010000

survival time t 

 mean 3.95009 width 4  mean 2.12613 width 0.1
 mean 2.99406 width 2  mean 2.09636 width 0.01
 mean 2.52638 width 1  mean 2.09498 width 0.001
 mean 2.2979 width 0.5  exponential 

(b) Survival time distribution of the SIS pro-
cess with uniformly distributed cure and in-
fection times for different values of the width
of the infection rate. The mean of the infec-
tion rate is scaled to have on average 25% of
the nodes infected in the meta-stable state.
The exponential case is shown in black for ref-
erence.

Figure 5.14

the virus dies out increases. This is especially possible in the star and complete graph
because the very small average hop count. In the case of the square grid, the shortening
of the survival time with increasing α is not observed; the expected survival time does
not peak but stabilises. Figure 5.13b illustrates that the peak is much sharper in the star
graph than in the complete graph.

The influence of a small shape parameter α as described above on the distribution
of the number of infected nodes in the meta-stable state is shown in Figure 5.14a, which
shows the distribution of the number of infected nodes for various values of the shape
parameter α. To simulate the meta-stable distribution of infected nodes, we simulate a
modified SIS process where the absorbing state is removed and take the steady-state of
that process to be the meta-stable state of the original SIS process. For smaller values of
the shape parameter α, the distribution peaks around a single infected node and is rel-
atively flat after that peak. States with a large number of infected nodes are not unlikely,
indicating that the virus quickly spreads as a result of the nodes spreading early during
the infectious period, and then dies out again.

To show the effect of both late infection times and synchronisation, we use uniformly
distributed cure and infection times. The width and mean of the cure times is kept con-
stant, but the width of the infection time distribution is varied while the mean is scaled
to keep the average fraction of infected nodes y∞ constant. Because both the curing
and infection times are uniformly distributed, the interval in which infection attempts
can fall is easily identified as between the start of the infection distribution and the end
of the curing distribution. For the values used in this section, that means an interval
for infection attempts between [1.95,2.1] and [2.09,2.1]. Figure 5.14b shows the survival
time distribution in the complete graph of 100 nodes for various values of the width of
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uniform infection time distributions. The average survival time distribution also has
an exponential tail when both the infection and the curing times are non-exponential.
Figure 5.14b shows that the late infection times lead to longer survival times than for
exponential infection times (shown in black), but that for the narrower intervals the ex-
pected survival time is shorter. For the narrowest width of the infection time distribu-
tion, any infection attempt lies in an interval only 0.01 time units wide, which leads to
synchronised behaviour. Although late infections lead to longer expected survival times,
synchronised spreading leads to shorter infection times.

5.5. CHAPTER SUMMARY
The significant effect of a non-exponential infection time on the average steady-state
fraction y∞ (τ) of infected nodes and, thus on the epidemic threshold, questions the
huge efforts to precisely compute the epidemic threshold in Markovean SIS epidem-
ics in networks if viruses in real epidemics (or in computer networks) do not infect in
an exponential time. Unfortunately, it appears exceedingly difficult to measure accur-
ately the infection time in real epidemics to verify the exponential assumption, made in
almost all earlier SIS computations. From interactions with epidemiologists, rare meas-
urements [94] and email activity [95], it seems quite likely that the infection time is not
exponentially distributed so that our observations here may point to a complete revision
of SIS epidemics on networks. If, however, we use the expected number of spreading at-
tempts during an infectious period as the defining parameter of the process, the average
fraction of infected nodes in the meta-stable state is relatively stable regardless of the
shape parameter of the Weibull distribution. Moreover, the NIMFA equations are shown
to be still valid if the effective infection rate is replaced by the expected number of infec-
tion attempts during an infectious period. In contrast to the average fraction of infected
nodes in the meta-stable state, the survival time of the non-Markovian SIS process is
influenced by the inter-arrival time distribution. The non-uniform distribution of infec-
tion events over the infectious period of a node either shortens or prolongs the survival
time. If the infection attempts are highly concentrated towards either the beginning or
the end of the infectious period, the survival time will be shorter than in the Markovian
case.



6
GOSSIPICO: AN EPIDEMIC

ALGORITHM

Mimicking, to a certain extent, the spread of a virus or infection through a network, we
propose GOSSIPICO, an epidemic algorithm to average, sum or find minima and max-
ima over node values in a large, distributed, and dynamic network. GOSSIPICO provides
a continuous estimate of, for example, the number of nodes, even when the network be-
comes disconnected. GOSSIPICO converges quickly due to the introduction of a beacon
mechanism that directs messages to an autonomously selected beacon node. The mes-
sages propagate along near-shortest paths towards the beacon. The proposed algorithm
allows every node to trigger a reaction to network changes, which makes it robust against
network dynamics without having to resort to periodic restarts. Simulations in various
different network topologies (ranging in size up to one million nodes) demonstrate GOS-
SIPICO’s robustness against network changes and display a near-optimal count time. One
of the distinguishing features of GOSSIPICO is that it contains a convergence detection
mechanism that enables nodes to know the network size with certainty.

6.1. INTRODUCTION
Just as a virus spreads from individual to individual, information spreads from person to
person. The most recognisable variant of the uncontrolled (and maybe even unwanted!)
spread of information is that of gossip. The key feature of gossip is that information
usually spreads by means of repeated unicast: one unlucky person tells a secret to a
“friend” and that friend cannot resist the urge to tell it to one of their friends, and before
long the entire community is privy to the secret. In a sense, the secret is an infection
that spreads through the community. In a similar fashion as gossip spreads through a
community, the nodes in a computer network can communicate amongst each other.

Several developments over the past years, such as the growing use of peer-to-peer
overlay networks and sensor networks have led to the deployment of very large decent-
ralised networks. Although decentralised networks are very scalable, they have no cent-
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ral point where information is stored, which makes it challenging to gather global net-
work properties or perform coordinated actions.

One of the paradigms that has emerged to spread and gather information in a fully
decentralised network, is that of “gossipping” [96]. During the gossip process, a node
periodically selects one of its neighbours and either sends, requests or exchanges in-
formation with that neighbour. This simple communication structure can be used to
perform various tasks in decentralised networks, ranging from overlay building and in-
formation dissemination to calculating functions such as sums and averages.

In this chapter we investigate averaging and summation over node values in large
dynamic networks, and in particular the specific case of counting the number of nodes.
Good estimates of the size of a decentralised network can be valuable in optimising the
performance of protocols and services that run on top of it, such as topology building
in a peer-to-peer network. Node counting can also provide information on how many
sensors are still working in a sensor network or how large an ad-hoc network currently
is. The latter can be useful in vehicular communication to estimate traffic conditions.

Algorithms specifically designed to estimate or count the number of nodes in a net-
work can be roughly divided into three groups: probabilistic polling algorithms, ran-
dom walk based algorithms, and gossip-based algorithms [97]. We highlight two rep-
resentative examples of the first two techniques, after which we overview gossip-based
algorithms. The probabilistic polling technique proposed by Kostoulas et al. [98] uses
a conditional reply to a request message to estimate the network size, where the condi-
tion is determined by the distance between the replying node and the initiating node.
In the algorithm by Massoulié et al. [99], a node sends a message containing an initial
counter value on a random walk, and each node that is passed on the walk adds a degree
dependent value to the counter. When the random walk returns to the initiating node, it
can estimate the network size based on the counter value.
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Figure 6.1: Three snapshots in the counting process.

The gossip-based algorithms in [100, 101] rely on averaging an initial value over all
nodes to estimate the network size. Jelasity and Montresor [101] initialise the node val-
ues to 0, with the exception of a single “special” node that has value 1. Nodes find the
estimate of the network size as the reciprocal of the average. Montresor and Ghodsi [100]
first build an overlay structure based on random node values to determine an initial
guess of the network size at each node. That initial guess is subsequently averaged to
improve the estimate. In the work of Kempe et al. [102], each node has a weight-value
pair and periodically sends half of its weight and value to both a random neighbour and
itself. Nodes sum the pairs they receive and estimate the network size by dividing the



6.2. GOSSIPICO

6

95

summed value by the summed weight. By assigning a 1 or 0 to the initial weight of one
or all of the nodes, the algorithm either sums or averages. Finally, Guerrieri et al. [103]
studied the performance of both an averaging-based gossiping algorithm and three vari-
ations on a token collecting algorithm in delay-tolerant networks.

A major drawback of the random walk and probabilistic polling strategies is the poor
accuracy of a single walk or poll and the subsequent need of averaging over many runs
[97]. Size estimation based on averaging using gossip, however, currently also has its
drawbacks. First of all, the process has to be started by a single node, which requires
some sort of coordination in the initial phase of the algorithm. Moreover, the estimate
of the network size at a specific node can vary widely, and joining or leaving nodes cause
large local variations in the estimate that have to be spread out over the network. More
extreme network dynamics such as the joining of two networks will result in an estimate
that is half the new network size, whereas splitting the network in two will lead each part
to believe it consists of the original number of nodes.

Our goal is to develop a gossip algorithm that does not share the drawbacks that
averaging-based algorithms have, and can be used in continuously changing networks,
even when the network becomes disconnected. In our design, we aim for little pro-
cessing and storage at each node. Also, all nodes are uniform in capabilities and func-
tion, i.e. no node is special. The only requirements for the nodes are that they have a
unique identifier and can reliably pass messages to their direct neighbours.

6.2. GOSSIPICO
We propose GOSSIPICO, a gossip-based algorithm that does not rely on averaging to es-
timate the network size, but combines messages to count the number of nodes. Message
combining offers much flexibility in algorithm design, and allows for the simultaneous
execution of several functions such as summation, finding maxima, and averaging in a
single algorithm.

GOSSIPICO consists of two parts: COUNT and BEACON. COUNT performs the actual
counting of the nodes, while BEACON is used to speed up COUNT. We first introduce the
basic ideas behind COUNT and BEACON in Section 6.2.1 and 6.2.2, respectively, and will
further develop those in Section 6.2.3 where we add robustness against dying nodes and
disconnecting networks. In Section 6.3.1 we propose a convergence detection scheme.

Both in COUNT and in BEACON nodes initiate communication periodically. The time
period during which all nodes have initiated communication with one of their neigh-
bours exactly once is called a gossip cycle. Although a node initiates communication
only once during a gossip cycle, it can be contacted by more than one neighbour dur-
ing a single cycle. The time between gossip cycles in a deployment scenario will be a
trade-off between bandwidth consumption and speed.

6.2.1. COUNT

COUNT can be seen as an improvement on the token collection principle. In such a
token collection scheme, all nodes are initially given a single token. Each cycle, every
node contacts one of its neighbours and gives that neighbour all of its tokens. As time
progresses, all tokens will end up in one pile at a particular node. This idea is illustrated
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in Figure 6.1, where, in the left-hand side picture, every node has a single token. In the
centre picture, tokens start to accumulate at different points in the network. Note that
the sum of the tokens in the three piles is still the same as the number of tokens we
started with. In the right-hand side picture all tokens have piled up and the centre node
now knows how many nodes there are in the network.

The token collecting idea has three major drawbacks. First, the pile of tokens has to
be passed on from node to node until all nodes have had possession of the pile of tokens
in order for all nodes in the network to know how many tokens there are. Second, since
the piles of tokens make random walks through the network, it will take a very long time
for all the tokens to pile up. Third, although the centre node in the little example has all
the tokens, it cannot know that it does: there is no convergence detection. GOSSIPICO

addresses all these problems: the first drawback will be addressed in COUNT, whereas
the second will be so in BEACON, and finally GOSSIPICO as a whole will contain conver-
gence detection.

The slow spread of the number of tokens in the final pile in a token collection scheme
is solved in COUNT by gossipping the number of tokens in the pile from node to node
using information spreading messages. Nodes should only gossip the latest information
that is locally known, so they need a way to tell which information is most recent. As they
also need to make the distinction between the gossiping messages and the equivalent of
the tokens, the exchanged messages in COUNT are more complex than tokens. A message
M = {C ,F,T } contains a count value C ∈ Z, a freshness value F ∈ N, and a type value
T ∈ {0,1}. The type value indicates whether the message is an Information Spreading
(IS) (T = 0) message, or an Information Collecting (IC) (T = 1) message. Information
Collecting messages can be seen as the tokens in Figure 6.1. The count value C is the
current estimate of the network size and has a subtle difference in meaning in the two
types of messages. In an IS message, the count value represents the number of tokens
in the latest pile that has been seen locally, whereas in an IC message the count value
represents the number of tokens in the pile that is represented by that IC message. The
freshness value F is a measure for the recentness of the information in the message: the
message with the highest value for F contains the most recent information.

Every node that joins the network is initialised with an IC message with count and
freshness value 1, i.e. M = {1,1,1}, analogous to the single token in Figure 6.1. Nodes
send their message periodically to one of their neighbours and always create a new IS
message afterwards to overwrite the message that was sent. Messages are processed by
the receiving node by following one of four rules, based on the type and the freshness
of both the received message, Mr , and the receiving node’s current message, Mw (sub-
scripts r and w stand for received and waiting, respectively). The rules govern both the
spreading of IS messages and how IC messages are combined. By changing how IC mes-
sages are combined, the algorithm can be made to count both upwards and downwards,
average or find minima and maxima. The four processing rules are explained below:

1 (Tr = 0,Tw = 0) If both messages are IS messages, the received message will replace
the waiting message if the received message has a higher freshness value F than
the waiting one. By keeping the message with the freshest information, only the
most recent information is spread through the network.
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2 (Tr = 1,Tw = 0) A received IC message will always replace a waiting IS message.
IC messages should never be deleted, otherwise the total number of tokens in the
network decreases.

3 (Tr = 0,Tw = 1) A received IS message will be discarded if the waiting message is
an IC message. This again ensures that no collected information is lost.

4 (Tr = 1,Tw = 1) If both messages are IC messages, a new message will replace the
waiting message. The new message is the result of combining the two IC messages.
In the case of counting: the waiting and received messages’ C and F values are
summed, i.e. M = {Cw +Cr ,Fw +Fr ,1}.1

Rule number 2 forces nodes to discard IS messages when an IC message is received,
regardless of the freshness of the information in the IC message. It can happen that a
node’s estimate of the network size decreases temporarily when it is forced to discard an
IS message. In order for nodes to be able to create a new IS message that contains the
fresher (but discarded) information after it passed on this IC message, nodes keep two
state values: a count value Cs ∈ Z, and a freshness value Fs ∈ N (subscript s stands for
state). After processing a received message, the receiving node updates its state values Cs

and Fs if the new waiting message contains fresher information. The state information is
used to create new spreading messages that contain the most recent information. These
spreading messages are always created after a node has sent its waiting message when it
was its turn to initiate contact.

A message’s freshness value will only differ from the count value in dynamic networks
or when the algorithm is used to sum or average. When the algorithm is used in dynamic
settings, the freshness value could run out of its range, but this can be fixed by allowing
nodes to accept messages with a freshness value much lower than their Fs as fresher, if
Fs is close to the maximum, or, alternatively, to trigger a recount using the mechanisms
described in Section 6.2.3.

6.2.2. BEACON
The second drawback of a token collecting scheme that is solved in GOSSIPICO is that of
the long convergence time. Instead of passing on IC messages randomly, nodes guide
them towards each other to speed up the counting process. IC messages have a much
higher chance of meeting each other when they are guided to a particular node in the
network. We propose BEACON to guide IC messages towards each other by using a beacon.
A beacon is a node whose location information spreads through the network by means
of gossip.

The beacon node is not known beforehand, but is the result of a competition among
the nodes. Every node starts out as a beacon, and competes for dominance with the
other nodes. The competition is designed in such a way that eventually there will be only
one beacon. As an analogy we describe the competing nodes as leaders or members of

1Nodes should be initiated with a message Mw = {V ,1,1} to sum over node values V instead. Finding a min-
imum or maximum value is achieved by not summing the values but keeping the highest or lowest value,
whereas averaging requires an extra field in the message where the number of summed values are counted to
allow the average to be calculated as V /C .



6

98 6. GOSSIPICO: AN EPIDEMIC ALGORITHM

armies. Every node j belongs to an army A j that has a certain strength S j ∈ R; node j
also knows which neighbour P j is the first hop towards the beacon of its army, and the
estimated hopcount H j to that beacon. The state of node j is represented by the vector
B j = {A j ,P j , H j ,S j }

Initially, every node is the leader of its own one-node army that has a randomly
chosen strength, i.e. B j = { j , j ,0,random}.2 Nodes periodically and randomly select one
of their neighbours to fight with. The outcome of such a fight is determined by two rules:

1 If the nodes are in the same army, the shortest path to the beacon is updated.

2 If the nodes are not in the same army, one must be stronger than the other, and
the weaker node is incorporated into the army of the stronger one. The losing
node takes over the values for A and S from the winning node, sets the winning
node as the next hop to the beacon, and sets the estimated hopcount to one more
than the estimated hopcount of the winning node.

Following these two rules, the strongest node in the network will defeat all other
nodes and become the only beacon. At the same time, the paths to the winning beacon
are continuously updated. Every node continuously receives new information about
which neighbour can reach the beacon in the fewest hops and selects that neighbour as
the first hop to the beacon. The hop sequences towards the beacon converge to shortest
paths along which IC messages can combine.

IMPROVED NEIGHBOUR SELECTION

BEACON’s neighbour selection, as discussed in Section 6.2.2, is completely random. To
speed up the beacon competition, the neighbour selection can be adapted to avoid re-
peated contacts to the same neighbour before the other neighbours have been contac-
ted. In the improved neighbour selection, nodes keep their neighbours in a list and every
time they communicate with a neighbour (either because they initiate the communica-
tion or because they are contacted by one of their neighbours) they move that neighbour
to the bottom of the list. When they select a neighbour to fight with, they take the node at
the head of the list. We use the improved neighbour selection in the simulations testing
convergence detection, where its effect is maximal.

6.2.3. NETWORK DYNAMICS
GOSSIPICO, as outlined so far, can cope very efficiently with a growing network: new
nodes simply initialise their COUNT message at Mw = {1,1,1} and their BEACON state as
B j = { j , j ,0,random}, and start communicating. Node (and link) removals, however, are
more challenging. A node can leave gracefully by sending an IC message with a count
value of −1 (Mw = {−1,1,1}) to account for its departure, but when a node dies, it cannot
send this message. Moreover, even when a node leaves the network gracefully, there is
no guarantee that the network will remain connected after the departure. If the network
indeed becomes disconnected, a restart of the counting process must be triggered.

2We assume perfect randomness, i.e. Pr[S j = Sk ] = 0, for j ̸= k. In a practical setting where perfect randomness
is not achievable, the recount trigger described in chapter 6.2.3 can be used to break the tie when two different
armies with equal strength meet.



6.2. GOSSIPICO

6

99

In order for nodes to be able to trigger a recount, the counting process is restricted
to work only within the BEACON armies. In terms of the token collecting analogy: nodes
only give their tokens to nodes that are in the same army. As a result, nodes use COUNT

to count the size of their army instead of the network. When a node is incorporated in
a new army, it forgets everything it knew about the old army and starts with a fresh IC
message, i.e. Mw = {1,1,1}. As the growing army conquers the network, the network is
counted. Since nodes count the size of their army, a recount can be triggered by allowing
a conquered node to build a new army that will defeat the reigning one.

GOSSIPICO copes with dying nodes and disconnecting networks by following a single
rule: every time a link is removed, the nodes adjacent to the link rebuild their armies
to trigger a recount. In case the link removal did not disconnect the network, the two
new armies will compete for dominance and the network is recounted. In case the link
removal disconnects the network, the two revived armies will both survive, since they
cannot reach each other to compete. The algorithm is unaffected by network dynamics
such as node and link addition or removal, because every node can trigger a recount in
response to node or link removals.

Two concepts have to be added to BEACON to support recounts: army revival and
immunity. Army revival allows a node j that is conquered by another army (A j ̸= j ) to
build its own army again, by selecting a new random strength S j and setting itself with a
zero distance as the first hop to the beacon (P j = j , H j = 0). The newly revived army of
node j (A j = j ) will also be immune (I j = k) to its previous army k. The immunity en-
sures that all nodes of army j will win all fights with nodes of army k. Without immunity,
the recount will be suppressed if the new army j is weaker than the reigning army k.

Although GOSSIPICO is robust against dying nodes and other network dynamics us-
ing recounts, a node’s count value drops during the recount process. Dips do not last
long, and can even be avoided at the expense of a slight delay if nodes estimate the net-
work size based on their estimate before the recount and the current count value. If dips
are to be avoided, a node’s estimate X is calculated as X = (1− f (t ))Xold + f (t )Cs , where
Xol d is the node’s estimate at the time it was incorporated into a new army and f (t ) is a
logistic function that shifts the current estimate from the previous estimate to the cur-
rent count value. The logistic function is given by f (t ) = 1/(1+exp(−t +2H +5)) where
t is the number of times the node created the same IS message. The constant 5 is used
to make sure that f (t ) starts at a value close to 0. The distance H to the beacon ensures
that high diameter (and therefore slower converging) networks automatically adjust to
the recount time without the need of a tuning parameter. If the value of Cs is larger than
Xol d , nodes accept Cs as the best estimate. In all simulations of GOSSIPICO in Section 6.4
we avoid dips.

6.2.4. INTERACTION BETWEEN COUNT AND BEACON

With the general outline of COUNT and BEACON in place, we will now explain in detail
how the two parts of GOSSIPICO interact. The interactions between COUNT and BEACON

are illustrated in Figure 6.2: COUNT uses the next hop (P ) to the beacon in BEACON when
an IC message is sent, and the army (A) information when receiving messages; BEACON

resets the count process when a node is conquered by another army. The precise inter-
actions will be discussed using the pseudo-codes of both COUNT and BEACON.
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Algorithm 1 COUNT

Init: Mw ← {1,1,1}

Sending
1: if Tw = 1 then
2: select peer P
3: else
4: select random peer
5: end if
6: send message Mw to peer
7: Mw ← {Cs ,Fs ,0}

Receiving
8: if Ar ̸= A then
9: return Mr to sender

10: return
11: end if
12: if Tr = 0 & Tw = 0 then
13: if Fr > Fw then
14: Mw ← Mr

15: end if
16: end if
17: if Tr = 1 & Tw = 0 then
18: Mw ← Mr

19: end if
20: if Tr = 1 & Tw = 1 then
21: Mw ← {Fw +Fr ,Cw +Cr ,Tw }
22: end if
23: if Fw > Fs then
24: Fs ← Fw

25: Cs ←Cw

26: end if

resetCount
27: Cs ← 1
28: Fs ← 1
29: Mw ← {1,1,1}

A message consists of three fields: C , F , and T , i.e. M = {C ,F,T }. Subscripts r , w and s indicate received, waiting and state,
respectively.

The pseudo-code for COUNT is given in Algorithm 1. Lines 1-6 ensure that if a node
wants to send an IC message (T = 1), and it is not the beacon of its own army, it will
send the message to the next hop towards the beacon of its army. In all other cases, the
node will send its waiting message to a random neighbour. After sending a message, a
new waiting message is created in line 7. Lines 8-11 make sure that nodes only accept
messages originating from their own army. If the message is indeed from within the
army, it is processed according to the four rules in Section 6.2.1: lines 12-16 execute rule
1, rules 2 and 3 are executed in lines 17-19, and lines 20-22 form rule 4. After processing
the message, the node’s state values are updated in lines 23-26 if the new information is
fresher than the current information. Finally, lines 27-29 are used to reset a node’s state

Gossipico

Count Beacon
C MF IP S DA

uses

reset update path

fight

pr winner

revive army

invokes

sending

receiving

Figure 6.2: Interactions between COUNT and BEACON.
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Algorithm 2 BEACON

Fight(Node i,j)
1: if Ii = A j then
2: PRWINNER(i,j)
3: return
4: end if
5: if I j = Ai then
6: PRWINNER(j,i)
7: return
8: end if
9: if Ai = A j then

10: UPDATEPATH(i,j)
11: return
12: end if
13: if Si > S j then
14: PRWINNER(i,j)
15: else
16: PRWINNER(j,i)
17: end if

updatePath(Node i,j)
18: if Hi < H j +1 then
19: Pi ← j
20: Hi ← H j +1

21: end if
22: if H j < Hi +1 then
23: P j ← i
24: H j ← Hi +1
25: end if

prWinner(Node i,j)
26: A j ← Ai

27: S j ← Si

28: I j ← Ii

29: H j ← Hi +1
30: P j ← i
31: RESETCOUNT ◃ in COUNT

reviveArmy(Node i)
32: Si ← random integer
33: Hi ← 0
34: Pi ← i
35: Ii ← Ai

36: Ai ← i
37: RESETCOUNT ◃ in COUNT

and message in case it is incorporated in a new army. These lines can be invoked from
BEACON.

Algorithm 2 shows the pseudo-code for BEACON. The first thing that is checked in a
fight is whether one of the nodes is immune to the army of the other node, as can be read
from lines 1-8. If this is the case, the node that is immune will win the fight and the losing
node takes over the strength, army and immunity from the winning node (lines 26-30),
sets the winning node as the first hop towards the beacon (lines 29-30), and resets its
COUNT process (line 31). If both nodes are of the same army (lines 9-12), the shortest
path to the beacon is updated by checking whether either node can reach the beacon
quicker via the other (lines 18-25). If both nodes are from different armies, the stronger
one will incorporate the weaker one (lines 13-17). The “revive army” code can be called
in response to a network change. The army revival process involves determining a new
random strength, setting the army id equal to the node id, setting the immunity equal
to the present army, setting the distance to the beacon to zero, and resetting the COUNT

process (lines 32-37).

6.3. CONVERGENCE OF GOSSIPICO
The analytical discussion of GOSSIPICO’S speed of convergence is based on the bounds
on the spreading time of a single rumour in a network by Giakkoupis [104]. In order for
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these bounds to be applicable, we divide the node counting process into three stages,
although in reality these stages happen at the same time. In the first stage, the armies
fight for dominance to establish a single beacon. In the second stage, the nodes send
their IC messages along the beacon paths until they have all been combined. Finally, in
the third stage, the result of combining all the IC messages spreads through the network.
All three stages can be bounded by the spreading time of a single rumour in a network,
which Giakkoupis [104] bounds as O(ϕ−1 log(N )), where N is the number of nodes in
the network and ϕ the conductance.3 The conductance depends both on the network
type and on N . It is a variation of the isoperimetric constant and closely related to the
algebraic connectivity [30].

During the first stage, the beacon information of the strongest army spreads un-
hindered through the network, just as a rumour in Giakkoupis’ work. During the second
stage, the IC messages are routed towards the beacon. Most messages combine on their
way to the beacon, but in the worst case they combine at the beacon. Since the beacon
information was spread in at most ϕ−1 log(N ) rounds, the longest path to the beacon
cannot be longer than O(ϕ−1 log(N )) hops. During the third stage of the algorithm, a
single piece of information, i.e. the count value of the last IC message, spreads to all
other nodes by means of gossip; this is exactly the same process as rumour spreading.
Simulations in the following section show that GOSSIPICO has an O(log(N )) convergence
in Erdős-Rényi random graphs and scale-free graphs.

6.3.1. CONVERGENCE DETECTION
GOSSIPICO will always converge in static networks and, by the virtue of the recount pro-
cess, also in dynamic networks that display network dynamics that are slower than the
convergence time. As nodes only have a local view of the network, they need a strategy
to distributedly detect that there is only one IC message left. They need to know that the
process has converged.

Convergence detection in GOSSIPICO relies on two observations. First, convergence
can only occur when a single army dominates the entire connected component. Second,
nodes can detect whether all their neighbours are within the same army.

Definition 1. Let a border-free node be defined as a node who’s neighbours all belong to
the same army.

GOSSIPICO with convergence detection consists of three layers: one BEACON layer
and two COUNT layers. In the first COUNT layer the number of nodes is counted, as
described in Section 6.2.1, whereas in the second COUNT layer the number of border-
free nodes is counted. We will call the layer that counts nodes the count layer and the
layer that counts border-free nodes the convergence layer. Since every node is initially a
border node, all nodes are initialised with an IS message in the convergence layer.

In order for border-free nodes to be counted, nodes first have to find out whether
they are border-free or not. As nodes exchange their army membership every time they

3ϕ= min
S⊆N ,

∑
i∈S

di ≤|L |
cut(S,Sc )∑

i∈S
di

, where cut(S,Sc ) is the set of links crossing a partition of a graph G = (N ,L ) in S

and Sc , with N the set of nodes, L the set of links, and di the degree of node i .
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fight on the BEACON layer, they can simply keep a single flag for each neighbour, sig-
nalling that that neighbour is within the same army or in an unknown army. The im-
proved neighbour selection discussed in Section 6.2.2 will be of great advantage in con-
vergence detection because every node needs to have had contact with all its neighbours
before it knows it is border-free and the neighbour selection prevents neighbours to be
contacted twice before all others have been contacted.

When a node has discovered that all its neighbours are within the same army, it cre-
ates an IC message on the convergence layer to signal that it is border-free. The actual
convergence detection is left to the beacon and is achieved by comparing the count val-
ues on both counting layers. If we assume that IC messages on both counting layers fol-
low the same route to the beacon, the following inequality holds at the beacon C con

s ≤C c
s ,

where C con
s is the state count value on the convergence layer and C c

s is the state count
value on the count layer. Equality is only reached when there are no border nodes left in
the network and, hence, the counting process has converged.

Although unlikely, it is possible that a path update to the beacon occurs between the
sending of an IC message on the count layer and the convergence layer for some node.
To avoid false convergence detection caused by IC messages arriving out of order, the
beacon will have to observe a short delay before concluding the process has converged.
This delay is bounded by the maximum hop count from any node to the beacon, which
can be found if nodes include this information in the IC messages.

In dynamic networks, the beacon can revoke convergence by creating an IS message
that is fresher than the converged message but without the convergence flag. Nodes will
now be aware that the latest information is not necessarily the final value. Nodes can
also adjust their border-free status by sending an IC message with count value -1 on the
convergence layer when they discover they are no longer border-free.

6.4. SIMULATION RESULTS
We have performed various simulations to test the convergence and dynamic behaviour
of GOSSIPICO. Time is measured in gossip cycles. During each gossip cycle, the nodes are
processed sequentially and in a random order. The count time of the network is defined
as the number of gossip cycles that pass until every node in the network reaches a count
value equal to the network size, and is averaged over a number of runs. When we use
Erdős-Rényi random graphs, the probability p that a link exists is set to twice the critical
link probability: p = 2log(N )/N ; scale-free graphs are generated following the preferen-
tial attachment model in Batagelj and Brandes [105], with such a number of links per
new node that the total number of links is closest to that in an Erdős-Rényi graph with
the same number of nodes and a link probability of twice the critical value. We will first
discuss the rate of convergence in static networks. We then discuss the dynamic beha-
viour of GOSSIPICO.

6.4.1. COUNTING IN STATIC NETWORKS

We illustrate the impact of BEACON on the performance of COUNT, by comparing the
performance of GOSSIPICO to that of COUNT alone. Since COUNT can be seen as an ex-
tension of randomised token forwarding algorithms, these simulations also illustrate by
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Figure 6.3: Count time for GOSSIPICO and COUNT.
ER indicates an Erdős-Rényi graph, SF a scale-free
graph.
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Figure 6.4: Count time for GOSSIPICO in an Erdős-
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how much BEACON might speed up other algorithms. Simulated network sizes range up
to 106 nodes, and for every size a hundred different networks were generated.

Figure 6.3 shows the count time for both GOSSIPICO and COUNT as a function of
the network size for the two graph types. As expected, GOSSIPICO greatly outperforms
COUNT on its own, as can be seen from Figure 6.3. The count time of COUNT scales
as a power function of N , whereas the count time of GOSSIPICO scales logarithmically.
The logarithmic scaling of GOSSIPICO is illustrated in Figure 6.4. This plot is based on
an average over 500 runs per size and shows an error band at ± one standard deviation.
The count time in GOSSIPICO can be fitted with 3.6+5.2log10(N ) for the random graphs
and 6.0+4.0log10(N ) for the scale-free graphs. For random graphs the fit goes through
all data points from N = 100 nodes and upwards, whereas for scale-free graphs the fit
starts at N = 1000 nodes, because the scale-free degree distribution only emerges for
larger networks. Both COUNT and GOSSIPICO perform better in scale-free graphs than in
random graphs; the hub nodes in scale-free graphs function as meeting places where IC
messages are combined. Because BEACON ensures that GOSSIPICO scales logarithmically
in random and scale-free networks, COUNT and similar (token collecting) algorithms are
made suitable for use in very large networks.

6.4.2. PERFORMANCE OF CONVERGENCE DETECTION

The performance of GOSSIPICO’S convergence detection is quantified as the delay after
the actual convergence of the counting process and the detection of convergence by the
beacon. Since each node has to learn the army membership of all its neighbours, it is
expected that convergence detection is slower in dense networks than in sparse ones.
We track the count value at the beacon on both the count layer and the convergence
layer for networks with varying link densities. The values are averaged over 1000 runs
for the synthetic networks and 100 runs for the real-world networks. The results for all
graphs are grouped in Figure 6.5.

Figures 6.5 a and b show the count value at the beacon on both count layers for
two extreme graphs in terms of density: the complete graph (a) and the path graph (b).
Counting the number of nodes in the complete graph is quick, but it takes N

2 cycles be-
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Figure 6.5: Count value at the beacon in the count layer and convergence layer for (a) a complete graph, (b) a
path graph, (c) a rectangular grid, (d) a scale-free graph, (e) the Google web graph, and (f ) the Gnutella graph.

fore the first IC message is created on the convergence counting layer. For the path graph
the situation is completely opposite; counting is slow, but when the counting process has
finished, convergence detection is almost immediate.

For other graph types similar behaviour is found. In Figure 6.5 the count values at
the beacon for a Scale-Free graph (d) and Grid (c) are also shown. Again, it takes less
time to count the denser graph but convergence detection suffers from a larger delay.
For the grid graph the count value on the convergence layer follows the count value on
the node counting layer with a small delay. We also included two real network traces
in our simulations: a trace of the Gnutella P2P system [106] and a web graph released
by Google as part of the Google programming contest 2002.4 For both graphs we first
remove the directionality of the links, and then extract the largest connected component
to use in our simulations. For real-world networks, as shown in Figures 6.5 e and f, the
delay in convergence detection is not too large, illustrating that in practical situations
convergence can be detected quickly.

6.4.3. COUNTING IN DYNAMIC NETWORKS
In order to illustrate GOSSIPICO’s robustness against node failure and to show that no
node is indispensable, we track the average estimate of the network size while the node
currently functioning as beacon is removed every 40th cycle. When a node is removed,
all links to the node and the node’s state information are also removed.

We start out with both Erdős-Rényi random graphs and scale-free graphs ranging
from N = 1000 to N = 100,000 nodes. In Figure 6.6 the average estimate of the network
size over time is shown. Figure 6.6 illustrates that the average estimate of the network

4Both datasets can be found in the large network dataset collection, part of the Stanford Network Analysis
Project (http://snap.stanford.edu/)
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size follows the real network size. During the 25 cycles after the beacon dies, the network
is recounted and the nodes shift their estimate from the previous count value to the new
one to prevent a drop in the estimate. Even when the beacon node dies before the net-
work is recounted, the average count value does not fluctuate too much as can be seen
in the case of the 100,000 node network (the upper graph in Figure 6.6). This shows that
GOSSIPICO can keep up with dynamics with a rate of change close to, or marginally over,
its own speed of convergence without introducing large fluctuations in the estimate.

We next show GOSSIPICO’s behaviour in fully dynamic and disconnecting networks.
We start by creating two random graphs, one of 1500 nodes (component 1) and one of
500 nodes (component 2), and connect them by adding 10 links between randomly se-
lected nodes in each component. After fifty cycles we add 300 nodes to each component,
all new nodes only link to nodes in their own components. After another 100 cycles the
10 links connecting the two components are removed, and are added again after another
150 cycles.

The average estimate of the network size over time is plotted in Figure 6.7. The figure
shows that the maximum count time for the initial 2000-node network over all the runs
in this simulations is 33 cycles, regardless of the bottleneck of 10 links connecting the
two components.

The addition of the 300 nodes per component (event 1 in Figure 6.7) shows that new
IC messages combine along near shortest paths. All IC messages combine, on average,
within 7 cycles, while the average hopcount in these bridged networks is 4.2. After an-
other 14 cycles, the spreading process finishes. The narrow dip (which only lasts for 1
cycle) in the estimated network size that is visible immediately after the addition of the
new nodes is the result of the initial estimate of 1 of all new nodes.

Removing the bridging links between the two components (event 2) has a similar im-
pact on the average estimate as a single dying node. The estimate falls (event 3) rapidly
after an initial delay of about 25 cycles, without fluctuating. Regardless of the fact that 20
nodes trigger a recount at the same time, the estimate of the component size smoothly
approaches the correct value in both components.
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After reconnecting the two components (event 4), the estimate of the network size
is updated just as quickly as a normal count of the network would be, as can be seen by
comparing the first 25 cycles in Figure 6.7 to the first 25 cycles after the components are
reconnected in cycle 300. The increase in the smaller component is continuous, while
the estimate in the larger component displays a bend (event 5) half way. This bend can
be explained by observing that in half of the cases the army in the smaller component
will dominate the network, and in the other half of the cases the army in the larger com-
ponent will do so. When the larger component assimilates the smaller, the nodes in the
smaller component will immediately accept the new count value as the new estimate
because it is higher than their previous count value. In the opposite case, the nodes in
the larger component will hang on to their previous count value a little longer. In either
case, the counting process continues without a restart as soon as the two components
are connected.

Figures 6.6 and 6.7 illustrate that GOSSIPICO smoothly tracks all dynamics in the net-
work, ranging from node additions to dying nodes and network components discon-
necting and reconnecting again. Instead of relying on a periodic recount, GOSSIPICO

reacts to changes in the network. This ensures that in periods of network stability the
estimate of the network size is also stable, while during periods of network dynamics,
the algorithm tracks the changing network size.

6.4.4. MAXIMUM COUNT VALUE OVER TIME

In this section we discuss the maximum count value in the network as a function of the
normalised number of sent messages. The product of the number of nodes and the ex-
pected hopcount E [H ] is taken as the normalisation constant. We simulate four different
network topologies, an Erdős-Rényi random graph, a scale-free graph, a square grid, and
a path. For each network type the highest count value in the network after every inter-
action between two nodes is averaged over 500 different realisations, both for N = 1,000
and N = 10,000. As an approximation of the average hopcount of both an Erdős-Rényi
graph and a scale-free graph we use log(N ), while for the grid and path graph we use the
approximation for a regular lattice E [H ] ≃ d

3 N 1/d , where d is the dimension of the lattice
(for a grid d = 2, for a path d = 1) [107].

Figure 6.8 shows that the normalised number of sent messages before the maximum
count value is reached, is of the same order of magnitude for all four networks. The main
difference between the networks lies in the slope of the curves. In random and scale-free
graphs, the maximum count value follows an S-curve that is more pronounced for larger
networks, while in the grid and path graphs the maximum count value increases more
steadily, and shows little influence of the network size. The difference between the grid
and path graphs on the one hand and the random graphs on the other, is probably best
explained by the speed at which the winning army can grow. The winning army in the
path graph will grow at a fixed rate because the configuration at the borders of the army
never changes. A growing army will always have two nodes at its endpoints that are
neighbours with different armies. In the case of a square grid, the nodes in the winning
army roughly form a circle, and the army grows at an increasing rate proportional to the
circumference of that circle. The increase in growth rate, however, is stable.

For the random and scale-free graphs the situation is quite different. With every ad-
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dition of a node to the winning army, the percentage of nodes not in the winning army
that can be reached by the winning army can increase rapidly, thus allowing the army
to grow explosively. After a brief initial phase, the number of nodes in the winning army
undergoes a phase-transition and covers almost the entire network. Although the aver-
age hopcount is the most important factor in the count time for all four network types,
the speed at which an army can grow determines the slope of the graph.

6.5. CHAPTER SUMMARY
We propose a gossip algorithm, GOSSIPICO, to count the number of nodes in a network
(or sum/average over node values). Our algorithm works by combining messages, which
has an advantage over averaging-based counting algorithms in that the estimate ap-
proaches the network size quicker and more smoothly. GOSSIPICO uses only O(log(N ))
messages per node to count Erdős-Rényi random graphs and scale-free graphs, while
randomised token forwarding based counting algorithms use O(Nα) messages per node,
with a power exponent α > 0. The count time closely follows the average hopcount for
grids and path graphs, which matches the lower bound O(diam(G)).

A major improvement, besides speed, over previous algorithms is that GOSSIPICO

automatically restarts the counting process when a change is detected that could lead to
disconnectedness in the network. When two components are joined, the algorithm con-
verges to the correct count without a restart, which is impossible for algorithms based
on averaging. Simulations show that GOSSIPICO is a very robust algorithm that provides
nodes with a continuously updated estimate of the network size at a speed of conver-
gence that equals that of rumour spreading, which is known to be very fast. Finally,
GOSSIPICO comes with fully working convergence detection, enabling nodes to distrib-
utedly and precisely count the number of nodes, and be assured that the count value is
correct.



7
NETWORK EXTRACTION, ANALYSIS

AND MANIPULATION

Online Social Networking (OSN) applications such as Facebook’s communication and
Zynga’s gaming platforms service hundreds of millions of users. To understand and model
such relationships, social network graphs are extracted from running OSN applications
and subsequently processed using social and complex network analysis tools. Here, we
focus on the application domain of Online Social Games (OSGs) and deploy a formalism
for extracting graphs from large datasets. Our formalism covers notions such as game
participation, adversarial relationships, match outcomes, and allows to filter out “weak”
links based on one or more threshold values. Using two novel large-scale OSG datasets,
we investigate a range of threshold values and their influence on the resulting OSG graph
properties. We discuss how an analysis of multiple graphs—obtained through different
extraction rules—could be used in an algorithm to improve matchmaking for players.

7.1. INTRODUCTION
An increasing number of complex network studies and social network use graphs to rep-
resent data. Often, two extreme approaches for building a graph from raw data are de-
ployed. At one extreme, graphs are straightforwardly extracted when the raw data spe-
cifies links, such as in the case of friendship relationships for Facebook data. At the
other extreme, graphs are extracted by applying a single, domain-specific and usually
threshold-based, rule for mapping raw data to links. The latter approach has been used,
for example, for building the graphs of mail and email exchanges of various communit-
ies and organisations, of messaging in Twitter and the Microsoft Messenger Network, of
hyperlinking in the Web and in the blogosphere, etc. The impact of the choice of graph
extraction rules and thresholds has received much less attention and constitutes the fo-
cus of this study.

We focus on the social networks formed by the actions of players involved in online
social gaming (OSG), that is, in online gaming where the social element affects positively

109
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the gameplay experience. Online social games such as Defense of the Ancients (DotA)
and League of Legends are each played by tens of millions of gamers. The game is frag-
mented into hundreds of thousands of non-communicating instances (matches [108]),
and groups of only about ten players are involved in any instance of the game at any one
time. Players can find partners for a game instance through the use of community web
sites and online tools, which may include services that matchmake players to a game
instance. An interesting feature of OSGs, as opposed to many online social networks,
is that not only friendship relations are formed, but also adversarial relationships may
manifest as useful social relationships.

Within the application domain of online social games, few studies use network met-
rics to divide players into different classes. For example, Kirman and Lawson [109] ex-
tract a network from an online game by creating an unweighted and undirected link
between players that ever exchanged information in the game. They define three types
of players based on the successive removal of the highest-degree nodes until the largest
connected component falls apart. Shim et al. [110] define implicitly a network that is
used to predict future player performance based on the relationship between mentors
and apprentices. This analysis could be extended by looking at network-wide properties
instead of only local properties. The prediction of the success in games can also be ap-
plied to real-world games as is done by Vaz de Melo et al. [111], where a complex network
approach is used to predict the performance of basketball teams. The authors propose
a network-based ranking of players as a replacement for current statistics such as assists
and points scored to predict the future success of a team.

Other studies use different definitions of links to create different networks from the
same dataset. Szell and Turner [112] study a detailed dataset of interactions and friend-
ship and enemy relations spanning three years in the online game Pardus, which is much
less popular than the communities we investigate in this study. They use the game as a
substitute of the real-world and test several hypotheses in the field of social dynamics
such as social balancing, network densification and triadic closure. They study three
different networks extracted from the dataset: the network of communication between
players, the network of friends as indicated by players in the game, and the network of
enemies as indicated by players in the game. Although the authors present a detailed
analysis of the networks for each type of interaction, and especially contribute to exist-
ing work by analysing the network of enemy relations, their links are either interaction
based or explicitly indicated by the players.

A related study [113] on guild members in World of Warcraft also investigates the dif-
ferences between networks formed based on different types of interaction. In this work
social network analysis is used to explore the network structure of interactions between
guild members in the online game World of Warcraft. The authors studied 76 players
that formed a single guild and extracted networks by creating links between players that
communicate amongst each other. Different types of interaction were classified into
seven different categories such as asking for help or group management to form seven
different networks. An analysis of these networks in terms of reciprocity and topological
structure indicates that the different types of interaction lead to different networks. This
study focusses, however, on a rather small group of players, which enables the authors
to analyse and classify the communication between players. In our study, we analyse
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large datasets by applying different mappings, instead of analysing the dataset to find
the mappings.

In practice, it may be difficult to obtain a clear social structure from an online social
game. Data that has proven economic value or private status, such as expressed friend-
ships, are rarely shared by game operators; instead, third-parties may have access only
to proxies, such as a list of players for each game instance. Furthermore, for OSG net-
works, traditional relationships such as expressed friendship relationships may not be a
good indicator of joint activity. This may be a consequence of the classes of prosocial
emotions involved in OSGs, for example vicarious pride and happy social embarrass-
ment [114, Ch. 5], which are both derived from competition. These emotions comple-
ment other prosocial emotions that precede traditional friendship, such as admiration
and devotion, and may require other tools for expression.

Without a clearly specified social structure, the analyst of OSG networks has to se-
lect and tune the extraction rule, that is, the rule for extracting graph links from play
relationships recorded in the logs of completed and ongoing game instances. For ex-
ample, it is common to extract OSG graphs through the simple rule of forming a link
between gamers that have played at least once together. However, this simple rule over-
emphasises the importance of a single in-game encounter, which may have been casual
or the result of an automated matchmaking mechanism. OSG networks derived using
this rule have been recently investigated, for example for EverQuest [110], World of War-
craft [115], Fighters Club (a Facebook application) [116], etc. In contrast, we generalise
this formalism for graph extraction.

We analyse the interplay between various concepts and thresholds that are used
when defining extraction rules in OSGs, and the characteristics of the resulting OSG
graphs. Based on two large OSG datasets, we study various rules and thresholds for ex-
tracting graphs. Using this approach, we are able to show that even small changes in the
thresholds used for various rules, especially for the small values that have been used by
previous OSG graph studies, can lead to significant changes in the structure and use of
the resulting graph. Thus, our work provides the tools to obtain a broader picture of OSG
graph analysis than previous work.

The results of OSG studies are useful for tuning the distributed systems on which the
games operate, for improving the game experience, and for understanding the individual
and group psychology of players. As an application of the proposed analysis technique,
we study the quality of matchmaking players in game instances.

7.2. DATA SETS
We select for our study Defense of the Ancients (DotA), a free and popular game in which
social relationships, such as same-guild membership and even friendship, can improve
the gameplay experience. DotA is a 5-against-5-player game, that is, it consists of inde-
pendent matches played by two contesting teams of five players each. DotA is a mul-
tiplayer online battle arena (MOBA) game, in which each player controls an in-game
representation (here, the hero), and teams strive for the conquest of the opposite side’s
main building. The game includes many strategic elements, from team operation to the
management of resources and the creation of helper troops.

DotA, which is the representative of the MOBA game sub-genre, is played today by
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an estimated1 number of players above 20 million, world-wide. DotA has featured in
several tournaments with wide appeal to gamers and game-watchers, such as the World
Cyber Games (WCG) and the Electronic Sports World Cup (ESWC). (To understand the
phenomenon of watching DotA games, we recommend the seminal book on gaming cul-
ture of Rossignol [117].) Other successful MOBA games are Blizzard DotA, Valve’s DotA2,
League of Legends, and Heroes of Newerth. Each of these games is played by millions of
players, which are loosely grouped into large communities. In turn, most communities
operate their own game servers, maintain lists of tournaments and results, and publish
information such as resulting player rankings via common websites.

The datasets we used were taken from the Game Trace Archive [118]. The Dota-
League dataset consists of 3,744,753 matches that were played between July 2006 and
July 2011. The dataset contains, for each match, the names of the players (61,198 in
total) on each team, the active time, the start and end times, various gameplay statistics
per team, and the team that has won. The active time refers to the time at which the
match opens and players can enter, while the start time refers to the time when suffi-
cient players are present and the match begins. The end time refers to the time at which
the match finishes. Not all intended matches take place. It can happen, for example,
that not enough players join an active match to actually start it. Therefore, to make sure
that the matches we analyse have indeed been played, we only use those matches that
have a value start and end time. Although the match active time stamp is available for all
matches, the match start and end time stamps were only available from November 2008
onwards, which corresponds to 1,470,786 played matches.

For DotAlicious, the dataset contains 625,692 played matches, which represents the
complete set of matches played from April 2010 to February 2012. Each match entry in
the dataset records the names of the players (62,495 in total) of that match, the countries
from which they are playing, the result of the match (winning team, draw, or abort), the
start and end times, various gameplay statistics per player, and the number of points
obtained for each player. The DotAlicious dataset also contains matches that have not
actually been played. They are identifiable by the fact that they start and end at the same
time. We filtered out matches with a zero duration, obtaining 617,069 played matches.

To understand the general characteristics of our datasets, we conduct an analysis of
the game activity they represent. Both datasets exhibit similar time patterns, along the
lines of other games and of other typical Internet applications. The number of matches
started per hour of the day shows a clear diurnal pattern in weekdays and weekends,
as can be seen from Figure 7.1. In weekdays, the number of matches played per hour
rises from 6AM onwards and reaches a peak around 9PM. In weekends, the number of
matches played rises from 6AM and reaches a peak around 4PM, where it stabilises until
9PM, with only a small drop around dinner time. The average number of matches played
per day of the week is fairly stable (approaching 1000 matches/day), with slightly more
matches played in the weekends.

The two datasets are also similar with respect to the inter-arrival time of matches.
The time between the consecutive matches of individual players is shown, for the Dot-
Alicious dataset, in Figure 7.2. The time between matches shows a power-law-like be-
haviour, with many matches being separated by less than an hour, but also consecutive

1http://www.playdota.com/forums/blog.php?b=892
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Figure 7.1: Average number of matches per hour for DotAlicious (left) and Dota-League (right).
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Figure 7.2: Probability density of the time between consecutive matches for each player in the DotAlicious
dataset.

matches being separated by more than a year.

7.3. A FORMALISM FOR GRAPH EXTRACTION
A common approach in online social network studies is to model a dataset as a graph.
Formally, a dataset D is mapped onto graph G via a mapping function M(D). A simple
undirected and unweighted graph G = (N ,L ) consists of a set N of N nodes and a set
L of L links. In a weighted graph a link weight w is associated to every link in L . In a
directed network, a link between two nodes also has a direction.

A mapping is a set of rules that define the nodes and links in a graph. Entities are
often mapped to nodes, while relations between entities are mapped to links. Entities
are usually readily identifiable as persons, events, or objects and are therefore intuitively
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mapped onto nodes. Mapping relations to links, however, is more challenging.
Entities can be related to each other in many different and often subtle ways and

due care should be given to which relations produce insightful graphs. For example,
some relations between entities may be the result of chance, while others have a clear
origin. The difference between random and meaningful relations is often expressed by
a notion of strength. Strength, represented by a link weight, adds another dimension of
complexity to representing and understanding the characteristics of a network.

In the creation of many “real-world” graphs, often a single explicit mapping is used.
For instance, all graphs in the Stanford Network Analysis Project’s (SNAP)2 large graphs
collection are based on explicit relations in the source datasets with one exception [119],
where graphs are built using the co-occurrence of phrases on news sites and blogs. For
this exception, nodes (phrases) and links (co-occurrences) have to meet a set of criteria
to be added to the graph, although the authors merely state which criteria they used and
do not elaborate on the systematic effects of these criteria.

In this chapter we explore how the mapping influences the resulting graph. Since a
dataset usually comprises different types of information, e.g. location, time, etc., map-
ping to only one graph might misrepresent the dataset, unless clearly put in perspective.
We consider multiple graph representations. Although we use the gaming datasets as
examples, the techniques developed here are generally applicable.

Presently, many proposed complex network metrics (see, for example, Section 7.4.1)
only apply to unweighted graphs. As a result, relations are often only expressed as links
if the strength is within a desired range by applying a threshold. Thresholding, therefore,
is a powerful and popular tool to deal with weighted networks and has an important im-
pact on the resulting graph. For our OSG datasets, the individual players in the dataset
are always mapped to nodes. Nodes without adjacent links are removed from the extrac-
ted graph. We explore six different strategies to map play relationships to links. For each
strategy, a link in the extracted graph corresponds to a different type of gaming relation-
ship between two players, which is likely not expressed directly in the raw (input) data.
Each mapping includes a threshold n; as a consequence, each mapping may produce a
different graph per threshold value.

By applying different mappings and different thresholds to the dataset, we investig-
ate how a particular mapping and/or threshold affects the resulting graph. We have used
the following mappings:

SM: The number of times two players are in the Same Match is greater than n.

SS: The number of matches played on the Same Side is greater than n.

OS: The number of matches played on Opposing Sides is greater than n.

ML: The number of Matches played and Lost together is greater than n.

MW: The number of Matches played and Won together is greater than n.

PP: This mapping is a directed version of the other five mappings. In the PP mapping,
a directed link exists from player A to B if player A has played at least n% of all his
matches (either on the same team, or opposing team etc.) with player B .

2http://snap.stanford.edu/
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The different mappings are related to each other. For example, applying mapping
function SM to the Dota-League dataset with a (low) threshold n = 10 creates graphs
such that for two players p1 and p2 a link between them is formed if p1 and p2 occur
in at least 10 different matches, while applying the SS mapping adds the extra condition
that the players played on the same side. Our formalism can support more complex
mappings, e.g., players played against each other at least 10 times, during the winter,
while located in the same country.

7.4. THE FORMALISM IN PRACTICE:
AN ANALYSIS OF THE EXTRACTED GRAPHS

In this section, we study the structure of the graphs formed by using different mappings.
As each mapping extracts a different type of relationship between players, it is interesting
to know whether these relationships give rise to significantly different graph structures.
The various mappings can help finding different properties of the two seemingly similar
datasets (see Section 7.3). We compare the obtained graphs using a broad selection of
graph metrics. A detailed explanation of (and where to download) the tools we have
developed to carry out the extraction and analysis presented in this chapter can be found
in Appendix A.

7.4.1. GRAPH METRICS
To compare the graphs extracted using different mappings, we calculate a number of
network metrics for the largest component of each extracted graph. The selected met-
rics all reflect properties related to the degrees and paths between players, and allow us
to study the social relations in the gaming community. We also include a spectral met-
ric. The metrics used in this section are explained in the following. For a more in-depth
explanation we refer to [120, 121].

Size(s) of the connected component(s) (N ,L): The size of the largest and other connec-
ted components indicates how many fellow players a player can reach in the network.
Link density (d): The link density is obtained by dividing the number of links in the
network by the possible number of links

(N
2

)
, and indicates how densely connected the

network is. For directed graphs the density is obtained by dividing the number of links
by 2

(N
2

)
, as every link can be in either direction.

Degree distribution: The degree distribution characterises the number of direct neigh-
bours a node has.
Algebraic connectivity: The algebraic connectivity is the second smallest eigenvalue of
the Laplacian matrix3. This is a spectral graph metric that indicates how well connected
a graph is.
Average hop count (h̄): The average hop count indicates how many hops, on average,
players are removed from each other.
Diameter (D): The diameter is the longest shortest path, in terms of hops, in the net-
work.

3The Laplacian matrix is obtained as L = D − A, where D is a diagonal matrix of the node degrees and A the
adjacency matrix.
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Figure 7.3: Frequency of occurrence of link weights in the reference model for five different intervals and the
original data for DotA. The mapping is SM.

Average clustering coefficient (C̄ ): The average clustering coefficient is a measure for
how many neighbours of a node are also neighbours of each other.
Betweenness centrality (B): The betweenness centrality score of a node indicates on
what fraction of shortest paths it is present and is a measure of node importance.
Coreness (c): A node of coreness k has at least k neighbours with at least k neighbours.
Assortativity (ρ): The assortativity measures to what extent nodes link to other nodes
with similar degrees.

In addition to focussing on the largest component, we further analyse the effect of
thresholding (both on the link weight and the play percentage for the PP mapping) on the
size and number of network components. As thresholding removes random and weak
relations between players; graphs extracted with a high threshold value will reveal the
strongest social structures. Among the graph component representations of these social
structures, many may be of similar size, without a clear largest component, while the
collection of those components offers insight into strong social ties.

7.4.2. GRAPH ANALYSIS
In this section, based on different mapping functions and their thresholds, we analyse
the size and social structure of the graphs extracted from the two OSG datasets. We com-
pare the results for Dota-League and DotAlicious to indicate that, while not seemingly
different for one general mapping, different mappings can reveal fundamentally differ-
ent graph characteristics, and as such should be considered by the careful practitioner
to fully capture the various facets of any data set.

METHODOLOGICAL REALITY-CHECK

Before analysing the extracted graphs, we have to be sure that the relationships we iden-
tify are not the result of players being simultaneously online by chance. To answer this
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DotA-League DotAlicious
SM OS SS ML MW PP SM OS SS ML MW PP

N 31,834 26,373 24,119 18,047 18,301 29,500 31,702 11,198 29,377 22,813 21,783 34,523
Nlc 27,720 19,814 16,256 6,976 8,078 33 26,810 10,262 20,971 10,795 13,382 3,239
L 202,576 85,581 62,292 30,680 33,289 53,514 327,464 92,010 108,176 43,240 54,009 125,340
Llc 199,316 79,523 54,186 17,686 21,569 120 323,064 91,354 99,063 29,072 44,129 17,213
d (×10−4) 4.00 2.46 2.14 1.88 1.99 0.62 6.52 14.7 0.49 1.66 2.28 1.05
dlc (×10−4) 5.19 4.05 4.10 7.27 6.61 1,100 8.99 17.4 2.51 4.99 4.93 16.4
µ 0.0301 0.0114 0.0060 0.0040 0.0032 - 0.0385 0.0403 0.0120 0.0095 0.0194 -
h̄ 4.42 5.40 6.30 8.09 7.67 3.70 4.24 3.97 5.3 6.80 5.95 18.45
D 14 21 24 28 26 9 17 12 19 20 22 74
C̄ 0.37 0.40 0.41 0.41 0.41 - 0.43 0.27 0.47 0.47 0.49 -
ρ 0.13 0.26 0.25 0.27 0.28 -0.10 0.08 0.01 0.25 0.27 0.29 0.20
Bm 0.04 0.09 0.09 0.17 0.12 1.21 0.03 0.05 0.04 0.06 0.06 0.37
cm 85 55 41 19 22 3 131 68 48 16 20 7

Table 7.1: Metrics for n = 10: for MOBA games: the Dota-League and DotAlicious datasets. The metrics we
present: number of nodes N , number of nodes in largest connected component Nlc , number of links L, num-
ber of links in largest connected component Llc , link density d , link density of largest connected component
dlc , algebraic connectivity µ, average hop count h̄, diameter D , average clustering coefficient C̄ , assortativity
ρ, maximum betweenness Bm , and maximum coreness cm .

question, we first create a reference model by randomizing, for any window of length
w minutes, the interactions observed in the MOBA datasets. The randomisation of, for
example, the SM mapping is done by taking the players from all matches that started
within the current time window and randomly assigning them to matches. Since the SM
mapping does not take team information into account, the match assignment comes
down to forming random groups of 10 unique players from the entire list of players who
were active in the time window.
We run the parameter w from 1 to ∞ and depict the results, together with the original
data, in Figure 7.3. Whereas the results for w = 1 leave little room for randomisation, the
results for w =∞ randomises the entire dataset. In Figure 7.3, the curves for w = 1 and
the original data have a powerlaw-like shape. The curves for various values of w follow
the w = 1 (original) curve for link weights of up to about 15 matches played together,
but take afterwards an exponential-like shape, which indicates they are more likely to be
the result of chance than of intended user behaviour. The fact that curves are markedly
different for small time windows shows that it is very unlikely that players are found in
the same match often simply because they happen to be online at the same time.

NETWORK SIZES

We first analyse the basic sizes in terms of nodes and links of the extracted graphs, and
summarise the results in Table 7.1. Under the most general mapping, the SM mapping,
graphs extracted from the Dota-League and DotAlicious datasets have different sizes (in
Table 7.1, rows N and L, the respective columns “SM”). The network extracted from the
DotAlicious dataset contains more links, while the two networks contain an equal num-
ber of nodes. Based on this general mapping (column “SM” in Table 7.1, for each of the
two datasets DotA-League and DotAlicious), the graph extracted from the DotAlicious
dataset is denser (d = 4.00×10−4 and d = 6.52×10−4, respectively), although the num-
ber of matches in the DotAlicious dataset is half that in the Dota-League dataset. We
conclude from this that players who play regularly together in the DotAlicious dataset
do so in more diverse combinations, because they create more links with fewer matches,
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Figure 7.4: Number of nodes in the network as a function of the threshold for Dota-League (left) and DotAli-
cious (right).

than the players in the Dota-League dataset do.

Not only do the graphs obtained for different datasets differ, the graphs obtained
using different mappings also highlight differences between the datasets (compare, for
each row in Table 7.1, the respective values obtained for each dataset). In general, it
seems that players from the Dota-League dataset, when they appear in the same game,
play on opposing sides; in contrast, for the DotAlicious dataset they play mostly on the
same side. This can be seen by contrasting the sizes of the networks extracted using the
SS and OS mappings (rows N and L in Table 7.1). The DotAlicious network contains
almost 3 times more nodes and links for the SS mapping than for the OS mapping. In
contrast, for the Dota-League dataset, the networks extracted using the OS mapping are
larger than those extracted using the SS mapping.

The tendency of DotAlicious players to play on the same side, and that of Dota-
League players to play on opposing sides can be seen more clearly from Figure 7.4, where
the number of nodes in the network as a function of the threshold is shown for all map-
pings. The Dota-League graphs are larger (have more nodes) for the OS mapping com-
pared to the SS mapping throughout the range of thresholds. In the DotAlicious dataset,
however, the OS mapping results in the smallest graph of all mappings. Moreover, form-
ing links between players that played on the same side results in graphs that are almost as
large as those produced with the SM mapping. This indicates that whenever DotAlicious
players play many matches together, they almost surely play those matches on the same
side. Arguably, playing together forms a stronger social bond than playing against each
other; an observation that could not have been made based without studying different
mappings and thresholds.

In addition to playing together, DotAlicious players also like to win together. Up from
a threshold of 100, the lines for ML and MW markedly take different slopes in Figure 7.4
(right). The larger networks for MW compared to ML show that winning together forms
true friendships—it leads to long-lasting relationships.

In contrast to the graphs extracted from the DotAlicious datset, in the graphs extrac-
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Figure 7.5: Number of nodes in the network as a function of the play percentage for Dota-League (left) and
DotAlicious (right).

ted from the Dota-League dataset the network sizes for the ML and MW mappings are
the same, indicating a 50-50 win ratio for matches played together. There is no indic-
ation that play relations are strengthened by winning in the Dota-League dataset. This
can be explained by the fact that players in Dota-League cannot choose on which side
they play; instead, the game mechanism offered in this community only allows joining
the waiting queue (see Section 7.5). The 50-50 win ratio we observe for matches played
together indicates that matches are generally well balanced.

By using different mappings we have revealed clear differences between the seem-
ingly similar datasets used in this study. The most general SM mapping does not display
those differences; for example, the curves for SM in both the left and right hand graph
in Figure 7.4 are very similar. The PP mapping, however, can also reveal a difference
between the two SM mappings, as can be observed in Figure 7.5. The number of nodes
in the network for the higher percentages of games played together, is higher by an or-
der of magnitude. This difference indicates that although both datasets contain pairs of
players that play a high number of matches together, only the DotAlicious dataset con-
tains players that play a high percentage of their matches with a select group of other
players.

Although the PP mapping reveals differences between the DotAlicious and Dota-
League datasets, it also clouds information that was visible using the regular mappings.
In the DotAlicious dataset, the difference between the network sizes for the OS and SS
mappings is no longer clear when using the PP mapping. The PP mapping highlights that
players have, on average, a win ratio of 50%. Because the PP mappings produce directed
graphs, the individual win ratio results in equally large networks for ML and MW.

SOCIAL NETWORK STRUCTURE

The metrics in the lower half of Table 7.1 offer a better insight into the social structure of
the network. We look at three path length metrics: the average hop count (h̄), the dia-
meter (D), and the maximum betweenness centrality (Bm). These three metrics relate
to how easily nodes can reach each other in the network and whether some nodes are
more important with respect to reachability. Social networks are characterised by a low
average hop count and a relatively high clustering coefficient; Watts and Strogatz [39]
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call this the small-world property. In Table 7.1, the SM mapping of both datasets shows
very similar values for the metrics related to path length. Based on this general mapping
function, the small average hop count and high clustering coefficient suggest that the ex-
tracted graphs indeed show small-world properties rather than the properties expected
of random graphs.

The relatively high clustering coefficient that is often found in social networks is often
the result of the fact that a friend of your friend is likely to also be your friend, too. For
both the Dota-League and DotAlicious graphs the clustering coefficient of players that
played in the same match is around 0.4 (0.37 for Dota-League and 0.43 for DotAlicious),
indicating that the players you play with are also likely to play among each other. The
higher clustering among DotAlicious players might be the result of the greater control
players have over with whom they play, or might be the result of player behaviour.

Contrary to many online social networks, the competitive element in online social
games may result in foe relations, in addition to friendship relations, which can be stud-
ied via the OS and SS mappings. As can be seen in Table 7.1 for DotAlicious, the cluster-
ing coefficient for the SS mapping is higher than for the SM mapping. The increase in
clustering coefficient indicates that, if we interpret being on the same side in a match as
being friends, the friends of your friends are indeed likely to be friends of yours. The clus-
tering of players increases a bit further if we use the MW mapping, showing the strength-
ening effect of winning matches together. Where winning together strengthens relations,
losing matches does, from a clustering perspective, lead to slightly weaker relations as
can be seen from the clustering coefficient for the ML mapping. As an indication that
the ML and MW graphs are indeed different, the overlap in links between the ML and
MW graphs is about 30%, i.e. 30% of the links in the ML graph also occur in the MW
graph and vice versa.

Whereas the SS mapping results in graphs with a higher clustering coefficient for the
DotAlicious dataset, the OS mapping creates graphs with a markedly lower clustering
coefficient. Intuitively this ties in with the idea that although a friend of your friend is
also a friend of yours, an enemy of your enemy is also your friend. Although players on
opposing sides in a match instance will most likely not dislike each other outside the
scope of that match, we nonetheless see a different graph structure for foe relations. The
much lower clustering coefficient cannot be explained by other graph properties such as
link density. Indeed, the link density in the OS graph is higher than in the SS graph.

Just as in Section 7.4.2, we find that the different mappings allow us to see differ-
ences between the two datasets. The clustering coefficients are the same for all graphs
extracted from the Dota-League dataset. In particular, there is no evident difference
between friend and foe relations in the Dota-League dataset. In contrast, the difference
is prominent in the DotAlicious dataset. As observed previously, the PP extension of
the SM mapping shows vastly different results for the two datasets (see Table 7.1, the
columns “PP” corresponding to each dataset). The difference in the number of nodes is
not large, but the difference in the size of the largest strongly connected component is.
The Dota-League dataset shows no large strongly connected component, whereas the
DotAlicious dataset shows a largest connected component of 3,000 nodes. However, the
largest strongly connected component extracted from the DotAlicious dataset is poorly
connected: it has a diameter of 74 hops and an average hop count of 18.45.
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Figure 7.6: Results for methodology reality-check.

APPLICATION TO OTHER GAME GENRES

To explore whether our findings for the DOTA games are more widely applicable to other
online game genres outside the multiplayer online battle arena (MOBA), we widen the
scope to include two more game types: real time strategy (RTS) games and massively
multiplayer online first person shooter (MMOFPS) games. RTS games are among the
most popular genres today, and ask players to balance strategic and tactical decisions,
often every second, while competing for resources with other players. Although faster-
paced, MMOFPS games test the tactical team-work of players disputing a territory. We
could expect RTS and MMOFPS games to lead to similar interaction graphs as MO-
BAs: naturally emerging social structures centred around highly active players. How-
ever, these game genres have different match-scales and team-vs-team balance than
MOBAs. Moreover, RTS games can stimulate individualistic gameplay, while MMOFPS
games may have teams that are too large to be robust.

We collect then analyse two additional datasets: for the RTS game StarCraft II (SC2)
from Mar. 2012 to Aug. 2013, and for the MMOFPS game World of Tanks (WoT) from
Aug. 2010 to Jul. 2013. For each of these popular games, we have collected over 75,000
matches, played by over 80,000 SC2 and over 900,000 WoT players. SC2 matches are
not generally played in equally-sized teams, and 92% of the collected matches are 1v1-
player. In contrast, 98% of WoT matches are 15v15-player. Such large teams can be much
harder to maintain over time than the teams found in typical MOBAs, due to inevitable
player-churn.

The results of the methodology reality-check for these two game genres, as shown
in Figure 7.6b show similar, yet not so pronounced behaviour as for the DOTA data-
sets. Although players do not play nearly as often together in other genres’ datasets as
in the MOBA datasets, randomisation within only small time windows lowers the link
weights. We conclude that it is unlikely that the relationships we identify are the result
of chance encounters between players and, instead, indicate conscious, possibly out-of-
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StarCraft II World of Tanks
SM OS SS ML MW SM OS SS ML MW

N 907 611 314 95 212 4,340 477 4,251 561 1,824
Nl c 31 22 24 9 14 129 118 122 66 57
L 748 404 327 85 200 9,895 3,253 6,543 1,564 2,923
Ll c 58 21 44 13 24 2,329 1,243 1,160 519 473
d (×10−4) 18 22 67 190 89 10.51 286.54 7.24 99.57 17.58
dl c (×10−4) 1,247 909.10 1,594 3,611 2,637 2,821 1,801 1,572 2,420 2,964
D 2 8 3 2 2 6 3 5 4 3
C̄ 0.58 0 0.70 0.65 0.65 0.79 0.10 0.78 0.88 0.87
ρ -0.46 -0.45 -0.42 -0.58 -0.53 -0.10 -0.12 -0.06 -0.03 -0.10
Bm 0.91 0.74 0.84 0.80 0.79 0.09 0.08 0.11 0.20 0.20
cm 53 11 32 32 32 29 15 14 14 14

Table 7.2: Metrics for n = 10: for other game genres: StarCraft II (RTS) and World of Tanks (MMO and FPS). The
metrics we present: number of nodes N , number of nodes in largest connected component Nlc , number of
links L, number of links in largest connected component Llc , link density d , link density of largest connected
component dlc , algebraic connectivity µ, average hop count h̄, diameter D , average clustering coefficient C̄ ,
assortativity ρ, maximum betweenness Bm , and maximum coreness cm .

game agreements between players.

Alone or together? For SC2, the mappings lead to small graphs, with many small con-
nected components. The majority of players participate in 1v1-player matches, but the
8% of players who do play in larger groups tend to play against each other more than
together (N = 611 for the OS mapping, versus 314 for SS). When players do play on the
same side, winning tends to strengthen the teams (N = 212 for the MW mapping, versus
95 for ML), just as we saw for the DotaLicious dataset. The connected components are
strongly connected, yet small. The connected components of the mappings extracting
same-team (SS) graphs are highly clustered. For the OS mapping, on the other hand,
the largest component is a tree. The clustering coefficients observed in the various RTS
graphs indicate much stronger team relationships in RTS games than in MOBAs. Be-
cause RTS games have not shown a trend of greatly increasing the number of players in
the same instance, over the last decade, we hypothesise that RTS games will continue to
spawn tightly-coupled teams that always play together; such teams are naturally vulner-
able to player departures.

For WoT, the large team-size makes it difficult to organise teams well: the largest
connected components for all mappings are not very large. Similarly to SC2 and DotaLi-
cious, in WoT the players that do play often together do so on the same team and, again,
players who play together are more likely to win rather than lose together. As modern
FPS games tend to be played in increasingly larger teams, with 32v32-player games now
not uncommon, we conclude that MMOFPS games will require additional mechanisms
if they are to develop any form of robust social structure. Moreover, even more so than
in the SC2 datasets, many players play only one or a few games: 69% of the more than
900,000 players played only once or twice. This is another area where developers could
use the emerging social structures among their players to increase the number of players
who keep on playing the game.

In conclusion, our formalism can be applied to other game-genres, for which it leads
to new findings vs MOBAs, and suggests that even communities of popular networked
games could benefit from improved mechanisms that foster denser interaction graphs
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Figure 7.7: Clusters for the SS DotAlicious graph, for various values of the mapping threshold.

and a richer gaming experience.

IMPACT OF THE MAPPING THRESHOLD ON THE RESULTING NETWORK CONNECTEDNESS

An important property of networks is whether the network is connected. A disconnec-
ted network indicates that the nodes in the network cannot come into contact, either
directly or via intermediate nodes. The number of connected components and the size
of the largest connected component in a network are measures of how connected or
fragmented the network is.

The threshold value has a large impact on the number of connected components,
as depicted in Figure 7.7. For a threshold n = 0, the extracted graphs consists of a single
connected component. For increasing values of n, the extracted networks become smal-
ler and more indicative of clusters of players who are actively involved in relationships
with other cluster members. The reverse process—lowering the threshold—makes the
isolated clusters grow. We illustrate the dependency between cluster growth and threshold
reduction in Figure 7.7, where plots from left to right depict the results for decreasing
values of the mapping threshold. As the threshold value decreases, the few connected
nodes in the left-most image grow into a single, large connected component. In prac-
tical terms, players first organise in smaller clusters before these smaller clusters all con-
nect. The player in between the two initial clusters depicted in the left-most image of
Figure 7.7 clearly functions as a hub.

Although it is possible to extract an almost fully connected network for all mappings,
applying a threshold reduces the relative size of the largest component significantly. Fig-
ure 7.8 shows the number of connected components excluding isolated nodes. As the
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Figure 7.8: Number of connected components for Dota-League (left) and DotAlicious (right).

threshold value increases, the dominance of the largest component diminishes and the
number of connected components in the graph increases rapidly. This indicates that the
network falls apart quickly in many small components (players with a strong gaming re-
lationship), rather than that nodes are stripped of the giant component or that it splits
into a few large subcomponents. The small components are all between two and five
nodes in size, which is consistent with the maximum size of five players per team that is
typical of DotA (see Section 7.2). At a threshold value of 28, half of the nodes are located
in small clusters. At a threshold value of 100, 85% of the nodes are in small clusters, yet
the distribution of cluster sizes does not change much. The peak value at a threshold
of 28 is in the same region where the number of nodes in the graph stops decreasing
dramatically and enters a regime of more steady decrease as was shown in Figure 7.4.
In Figure 7.9, the number of strongly connected components in the directed graphs ex-
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Figure 7.9: Number of strongly connected components with PP mapping for Dota-League (left) and DotAli-
cious (right).

tracted with the PP mapping is shown for the Dota-League dataset (left) and DotAlicious
dataset (right). The number of strongly connected components has higher peaks in the
networks extracted from the DotAlicious dataset than for the Dota-League dataset, and
also stays much higher for higher play percentages. This indicates that although the net-
work falls apart in many small clusters in both datasets, only in the DotAlicious dataset
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these clusters are larger than 1 node. Using the largest component to characterise the
network may provide valuable insight for low threshold values, but still is too crude and
misses the composite nature of the network. Scaling up the range of the threshold val-
ues could, in an easier manner than most clustering algorithms, bring forth new and
significant (strong) gaming relations.

The betweenness centrality (B) and coreness (c) can give clues as to whether a graph
contains important nodes, such as, for example, influential spreaders [122]. For the
graphs constructed with the lower thresholds, the maximum betweenness value indic-
ates that between 4 and 9 percent of all the shortest paths cross at the most central node.
This value increases with an increasing threshold while the link density increases. This
indicates that, as the largest component shrinks, some players play an increasingly im-
portant role in facilitating short paths.

7.5. FORMALISM-BASED MATCH RECOMMENDATIONS
We focus in this section on the use of our formalism for extracting graphs for improv-
ing typical game functionality. We propose, as an example, an algorithm that can as-
sist in matchmaking decisions. A good matchmaking system ensures that players in a
game have matching profiles and could, therefore, take player clustering information
into account. In this section, we analyse how matches are formed by players and pro-
pose a graph-inspired matchmaking algorithm that leads to much stronger social ties
than random matchmaking, and is slightly better than the real algorithms used by the
communities from which we collected our datasets.

The two datasets under study represent communities that deploy in practice differ-
ent matchmaking algorithms. For Dota-League, players who want to play a match first
join a waiting queue. When there are 10 or more players in the waiting queue, the match-
making algorithm will form teams that are balanced in terms of the skill levels of the
players. Although this matchmaking algorithm enforces balanced matches, it does not
take into account the social ties of the players. Often, players synchronise themselves
out-of-game via instant messaging tools to join the waiting queue at the same time and
thus increase the probability to end up in the same match as their preferred players, but
there is no guarantee that they will play on the same team. In contrast, for DotAlicious,
each game server has a number of open matches waiting for players to join, and each
arriving player can select which match to join and on which team.

To study the effect of a matchmaking algorithm, we present a scoring of matches
that reflects the utility derived by players from a game. Following McGonigal [114], we
assume that matches played by players with strong social ties are enjoyed to a higher
extent than those played amongst players that have weak or no social ties. As we have
shown in Section 7.4.2, a large part of the DotA players are grouped into relatively small,
high link-weight clusters. This indicates that these players enjoy their gaming experience
best when they play with or against a small set of other players. Since there are multiple
ways to rank matches, our goal is not to propose a unique scoring methodology, but
rather to show how to compare and possibly improve matchmaking based on one such
socially-aware scoring system.

For each match, we assign a score to a match based on the connected components,
referred to as cluster, to which the players of the match belong. Cluster membership
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is derived for the different mappings (excluding PP) described in Section 7.3 as follows:
first, a threshold value of n = 100 is used to filter out weaker links between players. Then,
we identify each connected component (cluster) in the extracted graph. The resulting
clusters are then numbered, and each cluster member (player) is labelled with its cluster
number. In our analysis, we assign a score to every match based on the overlap of cluster
membership amongst players. Intuitively, we design the score to reward those matches
in which many players from the same cluster participate. Specifically, a match receives
one point for every player in clusters that are represented in the game by two or more
players.
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Figure 7.10: Example of a match with cluster numbers associated to the players.

Consider the match schematically represented in Figure 7.10. Team A consists of
players “A1” to “A5”, as can be seen in the column labelled “Player”; team B consists of
players “B1” to “B5”. The column labelled “Cluster” records the cluster number for each
player. In total, this match is assigned 7 points, as follows. First, 2 points are given for
each of cluster 1, which is represented in this game by players “A1” and “A3”, and cluster
2 (players “A1” and “B1”). Then, 3 points are given for players “A4”,“B3”, and “B5” (cluster
3). Players “A5”,“B2”, and “B4” have no fellow cluster members in the match and will be
assigned 0 points.

To favour the small clusters that lead to novel human emotions [114], and which
are shown to be prevalent in our datasets in Section 7.4.2, we design the scoring system
such that the largest cluster is not considered when assigning points. This effectively
avoids biasing the matchmaking algorithm to the dominant set of links, which is akin to
recommending a well-known tune, not because it is similar to the requester’s tastes, but
because it is present in most other people’s playlists.

The socially-aware matchmaking algorithm which works as follows. First, for each
10-minute time interval (sliding windows), the algorithm builds a list of all the players
who are online. In practice, the algorithm can build this list from the online informa-
tion provided by the waiting rooms of each DotA community; to obtain this list from the
real (raw) datasets (see Section 7.2), we define a player as being online during an interval
if the player has joined at least one match during the interval. Second, the algorithm
computes the cluster membership for each player. Third, from the largest online play-
ers’ cluster to the smallest, all online players from the same cluster are assigned to new
matches if size permits; otherwise, the cluster will be divided into two parts and play-
ers from one part will be assigned into new scheduled matches. In practice, the third
step can be executed whenever the number of players exceeds the number needed for a
game (10), at the end of the 10-minute interval, or periodically every few minutes; The
rationale behind obtaining all the online players in a time interval is that players who
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are aware that their friends are online are likely prepared to wait for a short duration in
order to play together.
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Figure 7.11: Average match scores when performing matchmaking for DotAlicious (left) and Dota-League
(right).

The matchmaking results are shown in Figure 7.11; higher scores are better. For com-
parison purposes, we have also scored the matches obtained via randomly matching
players that are online during each time interval (the “Random” matchmaking algorithm
in Figure 7.11) and the matches observed in the real datasets (the “Original” match-
making algorithm). The “Random” algorithm indeed scores the lowest, as it does not
take into account social ties. Our proposed matchmaking algorithm (the “Matchmak-
ing” algorithm in Figure 7.11) improves the scores of matches, by a large margin when
compared with the “Random” algorithm and by a small but non-negligible margin when
compared to the “Original” algorithm. We attribute the better scores achieved by our
admittedly simple “Matchmaking” algorithm to the difficulty of seeing whether friends
are online in the studied systems, due to shortcomings in the offered service. Without
proper information, some players may not be aware that some of their friends are online
and thus join other matches. Indeed, we find that the improvement is smaller for Dot-
Alicious than for Dota-League, and attribute this to players in DotAlicious having more
freedom and tools for selecting whom to play with. By using a graph perspective instead
of manual off-line synchronisation, even a simplistic matchmaking algorithm can reach
higher match utility scores by leveraging cluster information obtained after a fairly high
threshold, that is, after processing only a small part of the original graph. By using a more
complex multi-faceted graph extraction rule that, for instance, would include informa-
tion on friend and foe relationships, we expect that an even better matchmaking could
be achieved.

7.6. DECREASING THE SPECTRAL RADIUS BY LINK REMOVALS
The second topic of this chapter is that of graph manipulation. In addition to extracting
graphs from datasets and using those graphs to improve the performance of an online
gaming server, we can ask whether it is possible to change the topology of the graph in
such a way that it is less vulnerable to spreading processes.

The largest eigenvalue λ1 (A) of the adjacency matrix A, called the spectral radius of
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the graph, plays an important role in dynamic processes on graphs. As we have seen
in chapter 2, the steady-state fraction of infected nodes in a network in the SIS model
is determined by a phase transition at the epidemic threshold τ(1)

c = 1
λ1(A) : when the

effective infection rate τ> τc , the network is infected, whereas below τc , the network is
virus-free. Beside virus spread, the same type of phase-transition threshold [123] in the
coupling strength gc ∼ 1

λ1(A) occurs in a network of coupled oscillators.

Motivated by a 1
λ1(A) threshold separating two different phases of a dynamic process

on a network, we want to change the network in order to enlarge the network’s epidemic
threshold τc , or, equivalently, to lower λ1 (A). Removing nodes is often too drastic, and,
therefore, we concentrate here mainly on the problem of removing m links from a graph
G with N nodes and L links. We are searching for a strategy so that, after removing m
links, λ1 is minimal. Earlier, Restrepo et al. [124] have initiated an instance of this prob-
lem: “How does λ1 decrease when links are removed?” They introduced a new graph
metric, called the dynamical importance Ix = λ1(A)−λ1(A\{x})

λ1(A) , where x either denotes the
removal of a link x = l or of a node x = n. The dynamical importance was further invest-
igated by Milanese et al. [125]. Both Restrepo et al. and Milanese et al. have approached
the problem by using perturbation theory. However, they did not consider optimality of
their removal strategy.

The objective of removing links from a graph is to reduce the spectral radius, and by
that, the epidemic threshold of a virus in the graph. A precise formulation of the optimal
removal of links from a graph is given as follows:

Problem 1 (Link Spectral Radius Minimisation (LSRM) problem). Given a graph G(N ,L )
with N nodes and L links, spectral radius λ1(G), and an integer number m < L. Which m
links from the graph G are to be removed, such that the spectral radius of the reduced
graph Gm of L−m links has the smallest spectral radius out of all possible graphs that can
be obtained from G by removing m links?

The LSRM problem is NP-hard [126], as can be shown by reducing the problem to
an equivalent problem, namely finding a Hamiltonian path in a graph, that is known
to be NP-complete [127]. As a path graph has the lowest possible λ1(A) of 2cos( π

N+1 ),
optimally removing m = L −N +1 links either results in a Hamiltonian path (if λ1(A) =
2cos( π

N+1 )), or not.
As an example to illustrate the NP-completeness of the LSRM problem, Figure 7.12a-

7.12c show, in a topology of N = 10 nodes and m = 3 link removals, that the “best single
step strategy” is not always optimal in the end. The “best single step strategy” consists
of removing the link that lowers λ1 (A)−λ1 (A1) = y1 most in the first step. Next, in the
second step, the link that lowers λ1 (A1)−λ1 (A2) = y2 most is removed and finally, in
the third step, the link that lowers λ1 (A2)−λ1 (A3) = y3 most is removed. The optimal
situation depicts the removal of m = 3 for which λ1 (A)−λ1 (A3) = y∗ is maximal. Hence,
y1 + y2 + y3 ≤ y∗.

In addition, 106 instances of Erdős-Rényi (ER) random graphs with N = 10 and link
density p = 2ln N

N have been generated. In each instance, the “best single step strategy”
and the global optimum have been computed. In 63185 (6,3%) instances, there was no
overlap in links, in 332262 (33,2%) ER graphs, there was one link in common, in 97944
(9,8%) ER graphs, we found 2 links in common and in the remaining 506609 (50,7%) ER
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Figure 7.12: Examples of the results of the greedy approach, ranging from no correct links in the greedy solution
to the greedy solution giving the optimal solution.
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graphs, all 3 links in the “best single step strategy” were the same as in the global op-
timum. Moreover, Figure 7.12d illustrates that the global optimum is not always unique.
The global optimum may not be unique, as it is possible that the removals of different
sets of m links will lead to cospectral or even isomorphic smaller graphs, as indicated in
Figure 7.12d.

The maximum number m of links that have to be removed from G to ensure that λ1

in Gm is lowered below some given value ξ is

m ≤ L− ξ2 +N −1

2

which is derived from the bound [30, (3.48) on p. 54], due to Yuan Hong [128],

λ1 ≤
p

2L−N +1 (7.1)

for connected graphs, else λ1 ≤
√

2L
(
1− 1

N

)
.

7.6.1. STRATEGIES FOR LINK REMOVAL
Since the LSRM problem is NP-complete, we will resort to a greedy heuristic to remove
links. In each step, the link that is expected to reduce the largest eigenvalue the most
is taken from the network. Because it is computationally expensive to compute the real
effect of removing a link on the largest eigenvalue for each possible link, we compare
eight different strategies of selecting the best link to remove. The strategies for greedily
removing a link are all based on bounds for the largest eigenvalue. We will denote a
strategy by S followed by the appropriate node properties involved.

The first strategy is based on the bounds for the difference between the largest eigen-
value of the adjacency matrix A of graph G and that of adjacency matrix Am of graph G
with m links removed [126]:

2
∑

l∈Mm

(w1)l+ (w1)l− ≤λ1(A)−λ1(Am) ≤ 2
∑

l∈Mm

(x1)l+ (x1)l−

where x1 and w1 are the eigenvectors of A and Am corresponding to the largest eigenval-
ues λ1(A) and λ1(AM ), respectively, and where a link l joins the nodes l+ and l−. Remov-
ing the link for which l = i ∼ j for which (x1)i (x1) j is maximal will increase the upper
bound of the decrease in spectral radius. This strategy is denoted by S = xi x j instead of
S = (x1)i (x1) j to simplify the notation.

A lower bound of the largest eigenvalue of the adjacency λ1 ≥ N3
N2

has been proved in
[45], where Nk is the total number of walks of length k. A walk in a graph is a sequence
of links where each next link is adjacent to at least one of the endpoints of the previous
link. The lower bound N3

N2
appeared earlier as an approximation of λ1 in [129], and it is a

perfect linear function of assortativity the ρ [45].
Let us first look at the decrease of N3

N2
by a link removal. We know [45] that

N3

N2
=

N∑
i=1

d 3
i −

∑
i∼ j

(
di −d j

)2

N∑
i=1

d 2
i
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We denote N3 and N ′
3 as the number of 3 hop walks in the original graph G and in the

graph G\
{
li j

}
with one link l = i ∼ j less, respectively. Then, we have that

∆3 = N3 −N ′
3

= d 3
i +d 3

j − (di −1)3 − (
d j −1

)3 − (di −d j )2 − ∑
l∈N (i ),l ̸= j

(dl −di )2 − (dl −di +1)2

− ∑
l∈N ( j ),l ̸=i

(
dl −d j

)2 − (
dl −d j +1

)2

where di is the degree of node i in the original graph G and N (i ) is the set of the neigh-
bours of node i . The decrease ∆3 can be simplified as

∆3 = 2−3(di +d j )+3(d 2
i +d 2

j )− (di −d j )2 + ∑
l∈N (i ),k ̸= j

(2dl −2di +1)+
∑

l∈N ( j ),l ̸=i

(
2dl −2d j +1

)
= 2(d 2

i +d 2
j )+2di d j +2−3(di +d j )+ (

di +d j −2
)−2di (di −1)−2d j (d j −1)

+ ∑
l∈N (i ),k ̸= j

2dl +
∑

l∈N ( j ),k ̸=i
2dl

= 2di d j +
∑

l∈N (i ),k ̸= j
2dl +

∑
l∈N ( j ),k ̸=i

2dl

= 2di d j +2(si + s j )−2(di +d j )

where
si =

∑
l∈N (i )

dl (7.2)

is the total degree of all the direct neighbours of a node i . Similarly, the decrease in the
number of two hop walks is denoted as

∆2 = N2 −N ′
2 = 2(di +d j −1)

Note that ∆2 and ∆3 are only functions of a local property, i.e. the degree di and d j of the
two end nodes of a link li j . The complexity of computing ∆3 or ∆2 for all linked node
pairs is O(N 2) in a dense graph, which is the worst case.

This hints that the spectral radius is possibly decreased the most by a link removal
that either reduces S = N3

N2
or the assortativity S = ρD the most. Strategy S = N3

N2
will

remove the link such that N3−∆3
N2−∆2

is minimised.
The other considered strategies S = di d j and S = di +d j remove that link l = i ∼ j

with largest sum or product of the degrees of the link’s end points, whereas the strategies
S = si +s j and S = si s j remove the link with the largest sum or product of the total degree
si of the neighbours at both end points. Finally, we also considered the strategy S =
betweenness, that removes the link with highest link betweenness, i.e. the number of
shortest paths between all node pairs that traverse the link.

A final strategy is to remove the link that possibly disconnects the graph G into two
disjoint graphs G1 and G2. However, this strategy is not always optimal as illustrated
in Figure 7.13. Only when both G1 and G2 are the same, we found that the removal of
the connecting link induces the largest decrease in ∆λ1. Since this strategy cannot be
applied always, we have further ignored this strategy.
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Figure 7.13: All possible ∆λ1 are computed when one link is removed.

7.7. PERFORMANCE OF THE DIFFERENT LINK REMOVAL STRATEGIES
We define the performance measure ΞS of a particular link removal strategy S as

ΞS = (λ1 (A)−λ1 (A1))optimal − (λ1 (A)−λ1 (A1))Strategy S

Figure 7.14 compares the strategies introduced in the previous section. Figure 7.14
confirms that strategy S = xi x j is superior to all other strategies. There is a very small
difference between the strategies S = di +d j and S = di d j and between S = si + s j and
the corresponding product S = si s j . In both cases the product strategy is slightly better
(but the difference is not observable from Figure 7.14).
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Figure 7.14: Various strategies applied to 106 instances of ER graphs with N = 20 and p = 2ln N /N . The insert
shows two additional strategies “assortativity” and “betweenness” that are clearly worse than the others.

7.7.1. REMOVING m > 1 LINKS
In this section, we investigate the behavior of the several strategies when more than one
link is removed. We generated 104 Erdős-Rényi graphs with N = 10 nodes and L = 20
links, of which about two percent are disconnected. From each of the generated graphs,
all the links are removed one by one following the different “greedy” strategies. We com-
pare the decrease in λ1 for each strategy to the optimal solution found by removing all
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Figure 7.15: Four strategies compared with the global optimum as a function of the number m of removed
links in ER random graphs with N = 10 nodes and L = 20 links, where 104 instances are generated. The lines
show the percentage of connected graphs per strategy after the removal of m links.

possible combinations of m links. In Figure 7.15, the percentage of agreement between
the greedy strategies and the optimal strategy is shown.

Figure 7.15 illustrates that strategy S = max1≤(i , j )≤N (x1)i (x1) j is nearly always (ex-
cept for m = 13) superior to strategy S = N3/N2 and S = si s j . Figure 7.15 exhibits a re-
gime change from m = 10 on, where the connectivity of the graphs starts to decrease
rapidly.

The peculiar regime for m > 10 can be understood as follows. The optimal solution
for m = 10 removals is a circuit, if the original graph contains a single connected circuit
on N = 10 nodes. If strategy S = max1≤(i , j )≤N (x1)i (x1) j finds the optimal solution for
m = 10 removals, the only possible solution for m = 11 removals is to cut the circuit to
form a path. This is also the optimal solution. The eigenvector components of a path
graph are symmetrical around the node(s) in the middle of the path and are maximal for
the centre node(s). Strategy S = max1≤(i , j )≤N (x1)i (x1) j will, for the next link removal, cut
the path in the middle. The resulting graph is also the optimal solution. In the next step,
however, the strategy will cut one of the paths in two, resulting in three paths of lengths
one, two and four links, respectively. The optimal solution for m = 13 link removals con-
sists of a graph with three paths of lengths two and one of length three. This graph can
never be formed by strategy S = max1≤(i , j )≤N (x1)i (x1) j starting from a circuit. The op-
timal solution for m = 14 consists of two paths of length two and two paths of length
one, which can be obtained in many different ways, including cutting the longest path
of the solution for m = 13. In almost 98% of the cases this solution is found by strategy
S = max1≤(i , j )≤N (x1)i (x1) j . The high success rate means, at the same time, that the op-
timal solution for m = 15 is almost never found because it cannot be reached from the
optimal solution of m = 14 by another link removal, regardless of the followed strategy.
The weaker performance of strategy S = si s j for m = 12 can be explained by considering
the optimal solution for m = 11 which is a path of nine links. Strategy S = si s j removes
the link that has the maximum product of the one hop neighbours of its endpoints. Since
a path has an even degree distribution, except for the endpoints, the five links that form
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Figure 7.16: The performance λ1 (A)−λ1 (Am ) of four strategies versus m link removals in a typical instance of
a graph with N = 10 and L = 20 links.

the centre of the path have an equal probability of being removed. Consequently, the
optimal solution for m = 11 will result in the optimal solution for m = 12 only one in five
times. The other four possibilities lead to a graph with either a combination of a path of
length two and a path of length six or a combination of a path of length three and a path
of length five. Both these graphs will give the optimal solution for m = 13 link removals,
which explains the increased success rate for m = 13.

At m = 15, the graph consists of 5 links and N = 10 nodes, configured in separated
“cliques” K2 (i.e. line segments) and the largest eigenvalue is minimal at λ1 = 1. For
m > 15, the strategies are all the same: a clique K2 (i.e. disjoint link) is removed.

Figure 7.16 illustrates four strategies on a typical instance of a network with N = 10
and L = 20 links. While the strategy S = assortativity clearly under performs, the three
other strategies S = xi x j , S = N3/N2 and S = si s j are competitive: for small m, the
strategy S = xi x j excels (as shown in Figure 7.15), but for larger m the others can out-
perform. Again, this phenomenon is characteristic for an NP-complete problem, where
the whole previous history of links removals affects the current link removal. The con-
sidered strategies (except for the global optimum one) are greedy and only optimise the
current link removal, irrespective of the way in which the current graph Gm is obtained
previously.

7.8. SCALING LAW OF (λ1 (A)−λ1 (Am))OPTIMAL

Another observation from Figure 7.16 is that

∆λm |optimal = λ1 (A)−λ1 (Am)|optimal =O
(
mβ

)
(7.3)

where β≤ 1. In other words, we conjecture that the scaling of λ1 (A)−λ1 (Am) with m is
sublinear in m (for non-regular graphs) and that the coefficient β is likely a function of
the type of graph. Obviously, ∆λm = 0, when m = 0. Applying the upper bound (7.1) to
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λ1 (Am) shows that

∆λm ≥λ1 (A)−
√

1− 1

N

p
2L−2m

≥λ1 (A)−
√

1− 1

N

p
2L+

√
1− 1

N

p
2m =O

(
m1/2)

On the other hand, if Gm is a regular graph, then

∆λm =λ1 (A)− 2L−2m

N
=O (m)

In particular, if G and Gm are regular graphs, then

∆λm = 2m

N
(7.4)

These arguments illustrate that 1
2 <β≤ 1. Figure 7.16 shows that λ1 (A)−λ1 (Am)|optimal

is likely close to β= 1, which suggests that the optimal way to remove m links is to make
Gm as regular as possible, because the lowest possible λ1 (Am) with given N and L−m is
obtained for a regular graph (as follows from the Rayleigh inequality λ1 (A) ≥ 2L

N ).
While the law (7.3) is difficult to prove in general, we provide evidence by computing

the decrease in λ1 when m random links are removed in the class of Erdős-Rényi random
graphs Gp (N ). For sufficiently large Erdős-Rényi random graphs Gp (N ), it is known [30]
that

E [λ1] = (N −2) p +1+O

(
1p
N

)
When m random links are removed from Gp (N ), we again obtain an Erdős-Rényi ran-
dom graph with link density

p∗ = L−m(N
2

)
Hence,

E [∆λm] = E
[
λ1

(
Gp (N )

)]−E
[
λ1

(
Gp∗ (N )

)]
= (N −2)

(
p −p∗)+Rp (N )

where the error term Rp (N ) is unknown. Assuming that Rp (N ) is negligibly small, we
find, for sufficiently high N ,

E [∆λm] ≃ (N −2)m(N
2

) = 2m

N
− 2m

N (N −1)

Thus, the average decrease in λ1 (A)−λ1 (Am) after removing m random links in Gp (N )
is approximately, for large N ,

E [∆λm] ≃ 2m

N
(7.5)

which is close to (7.4) for regular graphs.
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For m = 1, simulations on various types of graphs in Figure 7.17 and Figure 7.18 sug-
gest the scaling law

(λ1 (A)−λ1 (A1))optimal =
α

N
(7.6)

where α is graph specific. In other words, N∆λ1 = α is independent of the size of the
graph.

Figure 7.17: The scaling law of (λ1 (A)−λ1 (A1))optimal for ER random graphs as a function of N .

Figure 7.18: The scaling law of (λ1 (A)−λ1 (A1))optimal for square lattices as a function of N .

Ignoring the asymptotic nature of the analysis that led to (7.5), we observe that, for
m = 1, a maximum occurs at N = 2. Figure 7.19 shows the pdf of ∆λ for Erdős-Rényi
random graphs, where for each curve 106 ER graphs have been created in which one
random link was removed. The simulations agree with E [∆λ] ≃ 2

N and indicate that
Var[∆λ] ≃ 13+ 2E [∆λ]. Since a random link removal is inferior to the removal of the
optimal link, Figure 7.17 indeed illustrates that the coefficient of the inverse N scaling
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law αGp (N ) ≃ 2.75 > 2. Figure 7.18 shows that αl at t i ce ≃ 3.9 > αGp (N ) ≃ 2.75, which may
indicate that deviations from regularity causes λ1 to decrease more.
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Figure 7.19: The probability density function of ∆λ1 for ER random graphs of several sizes N .

7.9. CHAPTER SUMMARY
Extracting graphs from a dataset usually comprises mapping entities in the dataset to
nodes and relations between the entities to links. We develop a formalism to extract the
implicit social relations from two datasets containing match instance of two very popu-
lar online games. By analysing the implicit social networks we show that the two gaming
communities differ in whether players play on the same team or on opposing teams.
By varying the threshold in the link mapping it becomes clear that the social network is
composed of many small but strongly connected components that are themselves again
connected by weaker links. Moving from graph extraction to manipulation we study the
minimisation of the spectral radius by link removal. The spectral radius is both funda-
mental in graph theory as well as in many dynamic processes in complex networks such
as epidemic spreading, synchronisation and reaching consensus [30, p. 200]. We show
that the spectral radius minimisation problem is an NP-hard problem, which opens the
race to find the best heuristic. In particular, in large infrastructures such as transport-
ation networks, where removing links can be very costly, a near to optimal strategy is
desirable. We show that an excellent strategy is S = xi x j : on average, this strategy out-
performs most other heuristics, but it does not beat them all the times. Beside graph
theoretic bounds and arguments that underline the goodness of the heuristic S = xi x j ,
two scaling laws (7.3) and (7.6) are found: these laws may help to estimate the decrease
in spectral radius as a function of the number N of nodes and/or the number m of link
removals.





8
CONCLUSION

This thesis describes the research efforts to understand dynamic processes on graphs; spe-
cifically the SIS process on graphs. The main topics are that of temporal behaviour and
non-Markovian behaviour. In the case of epidemic algorithms, the SIS model is no longer
applicable, but the temporal properties of such a process, i.e. the convergence time, are
equally important. The convergence time is a key performance indicator of any algorithm.
In this chapter we summarise the main contributions this thesis makes in the general field
of dynamic processes on complex networks.

8.1. MAIN CONTRIBUTIONS
In chapter 2 we introduce one of the most studied (and also simplest) models to de-
scribe the behaviour of an infection spreading over a network: the Susceptible-Infected-
Susceptible model, or SIS for short. Since a complete analytic solution to the SIS model
in a general graph using Markov theory is possible, yet not feasible due to the exploding
number of states as the network size increases, approximations have been proposed in
literature over the years. We discuss two mean-field approximations from literature: the
N-Intertwined Mean-Field Approximation (NIMFA) and the Pastor-Satorras & Vespig-
nani HMF approximation, and benchmark the performance of these two approxima-
tions in various graph types against the steady-state of the ε-SIS model which we use to
define the meta-stable state of the SIS process. The two approximations that we compare
are part of a large research interest in the meta-stable state of the SIS epidemic process,
that mainly focusses on finding both the epidemic threshold and the average fraction of
infected nodes in the meta-stable state.

Although the epidemic threshold is loosely defined as a temporal property of the SIS
process —it separates a region where the virus dies out “quickly” from a region where it
stays active “for a very long time”—, the temporal properties of the SIS process are less
well known. In chapter 3 we discuss the survival time of an SIS epidemic. We derive ex-
act expressions for the average survival time in the complete and the star graph. In the
case of the complete graph, we show that the average survival time equals the first term
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in the Lagrange expansion of the second largest eigenvalue of the infinitesimal gener-
ator. In general, the survival time depends on the initial state of the epidemic. When an
epidemic starts in a single node, it will have a shorter average survival time than when it
starts with all nodes infected. We show that, for the complete graph and the star graph,
the ratio between the survival time starting in a single node, and the survival time start-
ing with all nodes infected peaks close to the NIMFA epidemic threshold. This allows
us to exactly define the epidemic threshold as the effective infection rate that maxim-
ises the ratio between the spreading time starting from a single infected node and the
spreading time starting from all nodes infected. Interestingly, the worst-case survival
time distribution does not undergo a dramatic change around the epidemic threshold,
the exponential tail gradually grows less steep.

In chapter 4 we discuss another temporal property of the SIS process, this time in
the situation where two SIS processes compete for the same healthy nodes. It is known
that when two mutually immune viruses are active in a single network, one of them will
die out. The average fraction of infected nodes, disregarding with which virus they are
infected, is the same as in a single SIS process, provided that both viruses have the same
effective infection rate. If both viruses are equally strong, i.e. they have the same ef-
fective infection rate, each virus has a 50-50 percent chance of pushing the other out.
However, if we prevent the viruses from dying out completely by reinfection the last cur-
ing node of each type, the dominating virus alternates. Even when one of the two viruses
is pushed down to a single surviving infected node, it will claw back the advantage and
push the other virus down. The domination time, defined as the duration of a period
where one virus continuously has more nodes infected than the other, is shown to be ex-
ponentially distributed and to depend on the total number of infected nodes at the start
of the domination period. As a consequence, when two viruses start with a single infec-
ted node, the first domination period will generally be longer than when a domination
period starts from the meta-stable state. Even when one virus is stronger or quicker than
the other the weaker or slower virus can still dominate the other virus. The domination
time will, however, by asymmetrical. When the difference in strength becomes too large,
the weaker virus no longer has the strength to dominate.

In chapter 5 we let go of the Poissonian infection and curing processes. The fact that
in the SIS model the curing and infection processes are modelled as Poisson processes
makes the SIS process a Markovian process, which puts a number of mathematical tools
at our disposal to compute properties of the process such as the survival time and the
domination time. However, the infection and curing processes that we encounter in the
real world are unlikely to be Poissonian. Various measurements suggest infection pro-
cesses that are log-normal or Weibullian. We illustrate the effects of a non-Markovian
infection process by taking a Weibull inter-arrival time distribution for the per-link in-
fection process. We use the Weibull distribution because it has the exponential distri-
bution as a special case. Via the shape parameter of the distribution we can gradually
steer it away from the exponential distribution while keeping the average inter-arrival
time constant. Steering the inter-arrival time distribution of the infection events away
from exponential towards a more heavy-tailed distribution has a dramatic effect on the
epidemic threshold. We then show that keeping the average number of infection at-
tempts during an infectious period constant, instead of the average inter-arrival time of
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infection events, the NIMFA equations also hold for non-Markovian SIS. The quality of
the NIMFA solution in a non-Markovian setting, however, depends on both topological
properties and the distribution of inter-arrival times. Also, NIMFA is no longer an upper-
bound of the fraction of infected nodes in the meta-stable state in non-Markovian SIS.
Not only the average fraction of infected nodes in the meta-stable state is affected by
a non-Poissonian infection process, also the survival time of the SIS process changes.
This is caused by the distribution of the spreading attempts over the infectious period
of a node. In the case of Weibullian inter-arrival times of infection events, the spreading
attempts can be either concentrated towards the beginning of the infectious period or
towards the end. Both extremes will lead to shorter survival times, probably as a result
of a form of synchronised behaviour.

Moving even further from the classic SIS epidemic model, we enter the realm of epi-
demic algorithms in chapter 6. Epidemic algorithms use information spreading tech-
niques that mimic those of viruses or gossip spreading in order to diffuse information or,
in our case, gather information. We develop two basic algorithms, COUNT and BEACON,
that employ a periodic random communication paradigm. COUNT can be used to com-
pute aggregate functions (sum, average, or find minima and maxima) over node specific
values; in our specific test case we use COUNT to count the number of nodes in a decent-
ralised dynamic network. To speed up COUNT and other token collecting algorithms, we
develop BEACON. In BEACON nodes compete amongst each other to become a beacon
node. The beacon node diffuses its presence throughout the network and by that, at-
tracts the piles of tokens that are on random walks through the network. We show that
the convergence time of GOSSIPICO, which, in its simplest form, consists of a BEACON

layer and a COUNT layer, scales logarithmically in Erdős-Rényi random graphs and scale-
free graphs, while the convergence time in high hopcount graphs, such as path graphs
and grids, is in the order of the diameter. An automatic restart mechanism makes GOS-
SIPICO suitable to be used in highly dynamic networks, even when the network falls apart
in multiple connected components, the algorithm can adapt.

Since all the different forms of epidemic processes and algorithms take place in net-
works, it is fitting that in chapter 7 we turn our attention to the networks themselves.
We develop a framework to extract graphs from datasets. Our framework is based on
the concept of mappings. The mapping decides which relationships or commonalities
between entities in the dataset are mapped onto links. We apply our formalism to vari-
ous large online gaming datasets. The different mappings reveal different kinds of rela-
tions between the players in different games and/or communities. An especially sensit-
ive part of the link mapping is shown to be the threshold for how many times a certain
condition has to be met before a link between two links is created. Removing links has an
influence on the largest eigenvalue of the adjacency matrix. Because the largest eigen-
value is an approximation of the epidemic threshold, we show which greedy algorithm
to remove a set of links to minimise the epidemic threshold works best. A heuristic al-
gorithm is needed as finding the optimal solution is an NP-hard problem. All the soft-
ware we have developed for the graph extraction and analysis is combined in a toolkit as
described in Appendix A, and available online.
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8.2. FUTURE WORK
Despite the fact that epidemic models have been studied for a while now, the research
field of epidemics on graphs still contains large parts of uncharted territory. We roughly
divide the future work on SIS epidemics in three directions: improving our approxim-
ations, understanding the applicability of the (non-Markovian) SIS model to real-world
spreading phenomena, and expanding the SIS model.

To start in the first direction, we still lack a proper understanding of why mean-field
approximations are accurate in one graph and far off the mark in others. The short, or
perhaps naive, answer is that if there is a correlation between the infection probabil-
ity of nodes, mean-field will be inaccurate. The longer, and more complex, answer is
that we do not know how the topology and inter-arrival time distributions contribute
to the correlation between infection probabilities. A quantitative spectral or topological
network property (or set of properties) should be found that can be a measure for the
expected accuracy of mean-field approximations. At the very least we should be able to
take a general graph and decide whether mean-field approximations to describe the SIS
process will work well or not. In addition to approximations to the average fraction of
infected nodes in the meta-stable state, we need approximations to the survival time of
an outbreak in general graphs. Work in this direction would extend the results presented
in chapters 2 and 3.

In chapter 5 we showed that replacing the exponential inter-arrival time distribu-
tion with a Weibullian one has a great impact on the SIS process. The move away from
Markovian SIS is needed to better model real-world spreading phenomena such as con-
tent propagation in social networks. Research has shown that (online) human activ-
ity is bursty: long periods of inactivity are followed by short periods of intense activity.
This kind of infection processes cannot be accurately modelled by Poission processes.
Work has to be done to better understand the actual infection and curing processes of
real spreading processes, both in terms of distributions and typical rates. At the same
time, we need to understand the properties of the non-Markovian SIS process on vari-
ous graph types to model the reach of content, and to learn how to manipulate networks
to improve or counter spreading processes.

The third direction of future work on SIS models is to add detail to both the process
and the network. The classical SIS model assumes that all nodes and links are equal in
terms of infection strength and curing speed. A heterogeneous SIS model is needed to
treat the more realistic case of weaker and stronger nodes. Research in coupled networks
and different inter and intra community infection rates is now becoming hot. Even more
challenging is the situation where the nodes and links become aware of the infection and
start to adapt: healthy nodes break links with infected nodes. Finally, we think that the
topic of virus competition, including mutating viruses and super infection (virus popu-
lations live inside other populations of infected nodes), will receive a lot of attention in
future work on epidemic processes on graphs, expanding the work presented in chapter
4.

Just as epidemic spreading in graphs is an established research field, epidemic al-
gorithms have received solid attention over time. One of the main challenges still re-
mains to develop an efficient way of detecting convergence of the algorithm. The con-
vergence detection of GOSSIPICO, for example, can lead to a big gap between actual
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convergence and detection. In the specific setting of epidemic algorithms designed to
compute graph metrics, it remains unclear which metrics can be computed efficiently
using a decentralised epidemic algorithm. Such algorithms will be very beneficial in the
characterisation of very large distributed (social) networks. Our algorithms developed in
chapter 6 and the toolkit we presented in Appendix A is only a very limited start to such
an approach. Ultimately, if the behaviour of the SIS model can be described or accur-
ately approximated in terms of (spectral) graph properties, a simple SIS simulation on a
network could be enough to compute properties of the graph. However, before the SIS
model can serve as an algorithm in itself, all the problems stated above would have to be
solved.





A
A TOOLKIT FOR REAL-TIME

ANALYSIS OF DYNAMIC

LARGE-SCALE NETWORKS

Networks are used in many research domains to model the relationships between entities.
We present a publicly available toolkit to extract graphs from datasets or data streams and
to analyse their properties. The graph extraction is based on a set of rules that define the
links between entities in a set or stream of self-contained events involving sets of entities.
As the extracted graph is dynamic and, moreover, can be spread over multiple machines,
we include the class of gossip algorithms to analyse them. In addition, the toolkit also
contains algorithms to compute metrics of static snapshots of the dynamic graph.

A.1. INTRODUCTION
Many research domains use networks as modelling tools. Networks can represent vastly
different objects including physical infrastructures such as rail, road and waterways (e.g.,
[2]), flight routes and shipping lanes (e.g., [3, 4]), but also sewage systems and power
grids (e.g., [5]), and, of course, the internet. Networks can be constructed from finan-
cial transactions [6], friendship or collaboration relations among individuals [7], (P2P)
peers exchanging data (e.g., [130]), sports players or online gamers that have played on
the same team [8], and more abstract things such as functional brain networks where
the nodes in the network are brain regions that share a link when they show correlated
activity [9], or co-purchase networks where nodes are items in a shop that share a link
when they were purchased together [10]. In short, everything that can be represented as
a collection of entities that have a relation can be modeled as a network.

The study of complex networks currently faces two main challenges: 1) The size of
the studied networks has grown enormously. Especially online communities such as
social networking sites have exploded in size and easily contain hundreds of millions of
nodes. In addition, the availability of machine-readable data has enabled companies
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and researchers to construct increasingly large networks.
Very large networks are a problem for two reasons. First, in some cases the networks

are so big that it is no longer possible to process them in a single machine. Often, the net-
works are not even stored in a single location, but are distributed over multiple servers
in multiple locations. Second, the time complexity of the algorithms used to calculate
certain properties does not scale well with the network size.

Simple network properties that are limited in scope to single nodes are not challen-
ging to calculate. When our scope encompasses the entire network, however, the real
challenges begin. Calculating how many of the shortest paths in a network go via a par-
ticular link (link betweenness), for example, is computationally expensive; other proper-
ties, such as the isoperimetric constant or the facility location problem, are even NP-hard
to determine.
2) The second challenge that network science faces is that of network dynamics. Real
networks are not fixed in time; they are constantly changing. In an online social network,
for example, new users sign up and existing users leave, thereby changing the number of
nodes. At the same time users make new friends or break old ties, which changes the to-
pology. If we are not just interested in the links between user profiles, but only consider
the users to be present in the network when they are logged in, the network changes are
quick and substantial. Since a social network is very large, it is currently impossible to
accurately track changes in network metrics as a function of time. Traditional methods
of calculating properties of networks break down for very large and dynamic networks.

Before graph analysis can begin, there is the challenge of extracting a graph from a
dataset or a data stream. We have developed a suite of tools, which is publicly available
[131], that can be used for all steps needed to analyse the relationships between entit-
ies in datasets or data streams. Although other tools exist, such as Jung, Igraph, Pajek,
and Cytoscape for static network analysis, Gephi and NetLogo for visualisation, DeSiNe
[132] for traffic dynamics, and PeerSim for simulating gossip algorihtms, the strength of
our suite is that all the components are in one place, using the same underlying data
structures, and that we consider dynamic networks.

We will describe our toolkit in four sections: Section A.2 will provide an overview of
the elements in the toolkit and how they can be combined for real-time analysis of dy-
namic graphs. In Section A.3, the graph extraction from either a dataset or data stream is
introduced in detail, after which in Section A.4 we include the class of gossip algorithms
as a way to compute properties of the extracted graph. Finally, in Section A.5, we briefly
describe the available tools in the toolkit to do static graph analysis on snapshots of the
dynamic graph, and Section A.6 discusses some future work and conclusions.

A.2. OVERVIEW TOOLKIT
The main idea behind the toolkit is to combine three parts, graph extraction, static and
dynamic graph analysis, to analyse data streams. The analysis is illustrated in Figure A.1.
The data stream that we want to analyse is passed through a filter that extracts a dynamic
graph based on a set of rules. This set of rules determines what will become nodes in the
graph and what will become links. We call this mapping a dataset onto a graph. The
details of how to extract graphs from a dataset and how different mappings influence
the resulting graph are explained in more detail in Section A.3. The novel application



A.3. GRAPH EXTRACTION 147

Extract Graph

DataStream

Run Gossip Algorithm

Graph Properties

Figure A.1: Main steps in the data stream analysis. The data stream is passed through a filter to extract a dy-
namic graph containing the relations between entities of interest in the data stream. On this large and dynamic
graph a gossip (or alternative) algorithm is ran to compute properties of interest.

here is that instead of mapping a fixed or static dataset onto a static graph, we apply
these techniques to a data stream. The result of mapping a data stream onto a graph is
not a static graph but a dynamic one. The filter continuously outputs graph dynamics:
nodes and links are joining or leaving the graph depending on the data that is streamed
through the filter.

We use a gossip algorithm to continuously compute or update those graph properties
that we are interested in, although other dynamic algorithms could also have been used.
Gossip algorithms have proven to be ideal candidates to perform computations in large,
dynamic and distributed systems. In Section A.4, we will introduce gossip algorithms
in more detail and explain how we simulate gossip algorithms. We will give an example
algorithm to compute averages or to find minima and maxima over node values.

A.3. GRAPH EXTRACTION
Graphs are commonly used as models to study the properties of various different phys-
ical or non-physical problems. A communication network, for example, can consist of a
group of computers connected via Ethernet links. For such a network we can then com-
pute how many links can be removed without losing connectivity. In this example, the
step from the physical world of computers and cables to the more abstract graph model
is very intuitive. The computers are our nodes, and the cables are our links.

When we study less tangible networks, such as social networks or implicit networks
in datasets, we have to decide what are going to be the nodes in the graph and what are
going to be the links. More formally, a dataset D is mapped onto graph G via a mapping
function M(D). A simple undirected and unweighted graph G = (N ,L ) consists of a set
N of N nodes and a set L of L links. In a weighted graph, a link weight w is associated
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to every link in L . In a directed network, a link between two nodes also has a direction.

A.3.1. EXTRACTION RULES
A mapping is a set of rules that define the nodes and links in a graph. Entities are of-
ten mapped to nodes, while relations between entities are mapped to links. Entities are
usually readily identifiable as persons, events, or objects and are therefore intuitively
mapped onto nodes.

Mapping relations to links, however, is more challenging. Entities can be related to
each other in many different and often subtle ways and due care should be given to
which relations produce insightful graphs. For example, some relations between entities
may be the result of chance, while others have a clear origin. The difference between
random and meaningful relations is often expressed by a notion of strength. Strength,
represented by a link weight, adds another dimension of complexity to representing and
understanding the characteristics of a network.

Our tool to extract graphs from datasets was developed in the context of identifying
implicit social networks in the game data from online social games [8], but is not restric-
ted to be used in the gaming or social network setting. Graphs can be extracted from
every dataset that consists of a collection of self-contained events that involve a group
or groups of entities. In [8], the self-contained events were matches played in an online
game and the groups of entities were two (not necessarily equally sized) teams of play-
ers. The data was crawled from a website and then parsed into a Match object containing
meta-data such as the start and end times of the match, and score-related information.

Graphs were extracted from the Match objects based on two different sets of rules:
global rules and local rules. Global rules apply to the dataset as a whole: for example, a
link exists between two players that were present in the same game. Local rules apply to
individual potential links. For example, while a global rule dictates that two players have
a link if they have been in a match together, a local link can dictate that that match must
have had a duration of at least 20 minutes.

Both local and global rules can either be simple, or compound. Simple rules consist
of a single requirement such as “in the same game together” or “played in the afternoon”,
whereas compound rules are logical combinations of simple rules. The rules can be spe-
cified in a configuration file in bracket notation, for example ([link won] & [duration >
20]) | ([link lost] & [duration < 10]).

Although all our examples are in the setting of online games, the same machinery
can be used in different settings. For example, the self-contained events could be items
in a shopping cart, or people on a bus, etc. The flexibility of our tools for graph extrac-
tion enabled us to study the effect of different mappings and thresholding on the social
networks extracted from gaming data.

A.3.2. LINK SET
Every time a link is formed as a result of the extraction rules, it is stored in a link set.
However, we might want a link to be formed a few times before we want to consider it as
a valid link in the graph. To achieve this, we count how many times a link is formed (we
increment the link weight every time it is formed) and only add it to the graph when the
link occurred more than a threshold value. In this case, the link set can be seen as an in-
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termediate step between the data stream and the graph. The link set is implemented as a
balanced search tree, which is a data structure that is designed to have approximately the
same number of nodes to the left and right of each node. The fact that a tree is balanced
guarantees that a search in the tree will be of O(logn), where n is the number of entries
in the tree. The balanced search tree that we use in the link set is an implementation of
the red and black tree [133].

Each link that is added to the tree has a unique value associated with it that serves as
an identifier for the link but also enables links to be ordered lexicographically. The link
id is simply the binary concatenation of the ids of the source and destination nodes. If
links are bidirectional, the link id is the concatenation of the bigger and smaller node ids
of the endpoints.

Every time a link is added to the link set, its link id is compared to that of the root
node. If it is greater than that of the root node, it is compared to the right child of the
root node, otherwise to the left child. This continues until either (i) a node is found that
has the same value as the link to be inserted, or (ii), it is smaller (larger) than the current
node but larger (smaller) than its left (right) child. In the first case, the link weight of that
link will be incremented; in the second case, the link is added to the tree in the current
position and the tree is rebalanced.

Since the link set can take up quite some memory, especially when it contains hun-
dreds of millions of links, it is not unlikely that the tree runs out of memory. The solution
to this problem depends on whether the tree is used to store the links from a static data-
set or a data stream. For the static case, the link set can be stored to disk when it reaches
a certain size. After storing the link set to disk it is cleared and can be filled again until
it reaches the predefined size again, after which it is merged with the tree on disk. In
this fashion, the stored link set can grow very large. The stored link set can be read from
disk once to extract the graph, possibly while applying a threshold on the link weight. By
writing the link set to disk it is also easier to create graphs from a link set using different
threshold settings later.

If the link set is the result of streaming data through the filter, writing an intermediate
file to disk if memory consumption grows too large is no longer an option because of the
long disk access time which makes merging the tree in memory with the tree on the disk
too slow. Also, since we want to have exact knowledge of when a link is added to the
network, we would have to merge the tree in memory and the one on disk after each link
addition. This effectively reduces the link set to exist on disk only. As the entire link set
has to be kept in memory, we either have to use a machine with a very large amount of
memory, or we have to spread the link set over a number of machines in a computation
cluster.

We have implemented a tree structure of partial link sets that allows the link set to
be distributed over multiple machines. Each individual partial link set is used to store
a part of the links. The simplest way to spread the possible links over the link sets is to
divide the space between the highest and lowest known link evenly between the number
of link sets. However, since it is not known beforehand how many links will be stored in
the link set, the distribution over the partial link sets might become skewed over time. If
the links are too unevenly spread over the partial link sets, they have to be rebalanced to
make sure that all link sets grow at approximately the same rate.
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New Link

Hashing function

LinkSet Tree
Link Set Tree Nodes

Figure A.2: Schematic overview of inserting links in the distributed link set. A new link is first passed through a
hashing function to get a hash of the link. The link and hash are then offered to the centre node of the LinkSet
tree. Based on the hash, the link will end up in one of the partial link sets in the tree.

Our approach to spread links over the partial link sets is centred around a hashing
function. An ideal hashing function has a uniform output probability for every input. If
each of the partial link sets is responsible for a part of the output range of the hashing
function, a new link has equal probability of being assigned to any of the partial link
sets. In this way, the distribution of the links over the partial link sets will be uniform.
The implementation of our tree of partial link sets is based on the LinkSetTreeNode as
illustrated in Figure A.2. First the link id of a new link is hashed. The link and its hashed
id are offered to the central node in a LinkSetTree. From the central node the link is
passed on until the LinkSetTreeNode where the link should be stored is found.

The pseudo-code in Algorithm A.1 illustrates how the correct LinkSetTreeNode is found.
Each LinkSetTreeNode has a lower and upper limit of link ids that it is responsible for. It
also has a pointer to a smaller and larger LinkSetTreeNode. When a link is offered to the
node, it checks whether the (hashed) id is smaller or larger than the lower and upper
limit, and, if it is, it passes the link on to the smaller or larger node. If the hashed link id
is within the range of the current LinkSetTreeNode, it will send the link to its partial link
set via a TCP connection.

The distributed link set is essentially a client-server application where the server uses
the LinkSetTree to find out which client should store which link. The clients use an or-
dinary link set as described above to store the links. Clients do not all have to have the
same amount of memory available. Each client can indicate the maximum number of
links it thinks it can store when it contacts the server. The server can use this informa-
tion to distribute the output range of the hash function in such a way that each client is
responsible for a part of the range proportional to its storage capacities.

In addition to a distributed implementation of the link set, the partial link sets can
also be exploited to speed up the storage in a single large memory machine. Figure A.3
shows a measurement of the running time of adding a billion links to the link set in three
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Object LINKSETTREENODE()
Fields:
int lowerlimit, upperlimit
LinkSetTreeNode() smaller, larger

Method insert(link)
if link.id < lowerlimit then

smaller.insert(link)
return

end if
if link.id > upperlimit then

larger.insert(link)
return

end if
send link to link-set

return

Algorithm A.1: Link insertion in distributed link set.

different scenarios as a function of the number of partial link sets. Our test machine
featured 16 logical cores and 48 GB of memory. In this experiment the added links are
randomly generated. The source and destination nodes are drawn uniformly from a set
of integers between 0 and N − 1, where N is the number of nodes in the graph and is
chosen to range from 104 to 4× 104. Clearly, the larger N is, the larger the number of
possible unique links. In our experiment the number of recorded unique links was ap-
proximately 5× 107, 2× 108 and 5.7× 108. Also shown in Figure A.3 is the rate of link
additions. A link addition in this case is simply an offered link, of which there were 109

in every experiment.

Figure A.3 shows that using more partial link sets leads to lower running times. The
reduction in running time is larger when the number of unique links in the tree is larger.
This is caused by the computational complexity of finding the right insert point in the
search tree for larger trees. Figure A.3 also shows that for a small number of unique links
in the tree, the overhead of sending the links over TCP outweighs the computational
efficiency of smaller trees. For example, there is virtually no benefit of using 16 in stead
of 8 partial link sets for a graph with 50 million unique links.

A.3.3. GRAPH DYNAMICS

Going from a link set to an evolving graph involves two opposing processes: growing and
shrinking. The growing dynamics are more easily extracted from the link set. Every time
a link is found in the streamed data, it is inserted into the link set as described above. If
the link was not yet in the link set, it is added, otherwise, the weight of the link already
present in the link set is incremented by one. While incrementing the link weight, it is
easy to check whether it goes from just below the threshold to over the threshold, and,
if it does, to add the link to the graph. If either of the nodes adjacent to the link is not
present in the graph yet, it is also added. This process will, however, lead to an ever
growing graph. It is probably desirable to include a mechanism to remove links that are
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Figure A.3: Running time for the addition of 109 links to the distributed link set as a function of the number
link set tree nodes for three different random graphs. The number of unique links in the tree is approximately
5×107, 2×108 and 5.7×108 for the three curves.

no longer deemed important.
There are various options available for shrinking the graph and the link set. First of

all it is possible to periodically remove all the links from the link set whose link weight
is smaller than a certain threshold value. A periodic cleaning of the link set reduces the
amount of memory that is used by links that were formed only once or twice, probably
as the result of a chance encounter. If the cleaning threshold is lower than the threshold
used to create the graph, however, the periodic cleaning does not lead to links being
removed from the graph.

Another way to introduce shrinking is to use the time information of link creation. It
is possible to use (i) full time information: each increment has a time stamp, (ii) partial
time information: only the time stamp of increments within a fixed window from the last
increment are kept, and possibly the maximum number of increments ever recorded in
that interval, or (iii) minimal time information: only the time stamp of the last increment
is used. By keeping this time information, it is possible to apply global rules such as “a
link exists between players that played more than 10 times together within any 24 hour
period.” Obviously, the more time information is kept, the more storage is needed. Even
when storing time information, shrinking of the link set and graph will have to be done
periodically and involves variations on the theme of removing links that have not been
formed the last x time units.

A.4. DYNAMIC GRAPH ANALYSIS
In order for the dynamic graph resulting from the graph extraction to offer insight in
the relationships between entities in the data stream, graph properties should be com-
puted. Ideally, algorithms that update a metric following graph dynamics, instead of
recomputing the metric, are used. However, this is not always possible. Moreover, if the
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Data: array order containing node ids
while true do

shuffle order
for node n in order do

activate n
end for

end while

(a) Synchronous simulation

Data: TimeLine T
while true do

take ticket from T
activate owner
set new ticket time
insert ticket in T

end while

(b) Asynchronous simulation

Algorithm A.2: Synchronous and Asynchronous simulation mode.

link set (and graph) is spread out over multiple machines, both distributed and dynamic
algorithms are needed. Gossip algorithms have proven to be useful to determine prop-
erties of large, distributed and dynamic graphs, which makes them ideal to analyse the
graph extracted from a data stream.

In a gossip algorithm, nodes typically select one of their neighbours periodically to
send, request or exchange information with. Depending on whether nodes send, re-
quest or exchange information, the process is called Push, Pull, or Push-Pull. The timing
of nodes becoming active can either be synchronous or asynchronous. In the synchron-
ous case, each node becomes active once during a time window. Nodes will need to be
able to loosely synchronise to prevent too much misalignment of time windows. In the
asynchronous case, a node typically becomes active when an exponentially distributed
timer expires. In other words, the node’s activity follows a Poisson process.

In a gossip algorithm, nodes send a limited amount of information and keep very
little state information. Nonetheless, these algorithms are capable of delivering global
network information to all nodes without central control while being robust against mes-
sage delivery failure. Data aggregation is a particularly fruitful application of gossip al-
gorithms. The goal of aggregation algorithms is to inform every node in the network
about some global property without the aid of a central authority. In the setting of a
sensor network, this could be the average reading over all sensors, or the maximum or
minimum reading. The work of Boyd [134] contains a wealth of references on distributed
averaging. Also, see [135] for applications of gossip algorithms in signal processing.

The simple format of gossip algorithms makes them very suitable to be deployed in
a general setting. Our toolkit offers such a setting where a set of data structures and
functions is offered to simulate the behaviour of the algorithm in a somewhat idealised
setting. The simulator offers both a synchronous and asynchronous mode of operation.
The pseudo-code of the synchronous simulation mode is given in Algorithm A.2a. In the
synchronous mode, the node ids are stored in an array which is shuffled each iteration.
During the iteration, the nodes are processed in the order of which they appear in the
array. The shuffling and iteration-wise operation of the simulation ensures that every
node will be active only once during an operation window and at the same time it mimics
the behaviour of loosely synchronised clocks at the nodes. Without shuffling the nodes
will be processed in the same pattern every iteration. Alternatively, the node array can
be shuffled after a particular number of cycles.

In the asynchronous case, the simulator has to keep track of the expire times of every
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node’s internal timer. These times are stored as tickets in a time line. A ticket consists
of a time value and an owner value. The owner value indicates which node issued the
ticket and the time value indicates when the timer of that node expires. The time line
is implemented as a balanced search tree. Storing the expire times in a tree makes it
easy to chance the distribution of the waiting times. The simulator continuously takes
the ticket with the smallest time value from the tree and makes the node perform its
action. When the node is done, it issues a new ticket to be inserted in the time line with
a time value that is an exponentially distributed random value removed in time from
the current moment. The tree structure ensures that insert and remove operations take
O(log N ) time, where N is the number of tickets in the time line.

The network structure that is used in the gossip simulation is designed to make it
easy to facilitate network dynamics. All nodes are stored in a linked list, making additions
easy and quick. Removals are slower since the node to be removed has to be located first.
In case of heavy churn, nodes could also be stored in a search tree, just like the tickets
in the asynchronous simulation mode. Each node internally also stores a linked list with
pointers to its neighbours. Just as node dynamics is optimised for growing networks,
the linked lists for the links between nodes also favours adding links in terms of running
time. For heavy link removal it could also be better to use a tree structure. Every time a
node tries to send a message over a link, it has to check whether the node the link points
to is still present. If not, it should remove the link.

In addition to the timing and network dynamics the simulator also offers a structured
way of implementing a gossip algorithm. Every class implementing the node behaviour
interface can be loaded as a gossip algorithm. The simulator offers two ways of perform-
ing the actual contact between nodes: the direct method and the message method. In
the direct method, the active node can directly interact with the procedures and fields of
the behaviour code of its neighbours. This makes the interaction between nodes quicker,
but it requires all the nodes to be in a single machine. In the message method, the act-
ive node prepares a message containing all the values that it wants to exchange with its
neighbour and passes that message to the simulator. The simulator then delivers the
message to the target neighbour and takes care that the reply of the target neighbour
is again delivered to the active node. Although this requires a few intermediate steps,
this method allows nodes to be spread over different machines. Spreading nodes over
different machines can be beneficial when the network grows very large.

A basic example of a gossip algorithm that can be used to compute properties of the
large dynamic graph that is the output of the graph extraction filter is Gossipico [136].
Gossipico can be used to sum, average or find the minima and maxima over node related
values. A typical example function of Gossipico is to count the number of nodes and links
in the graph and to compute the maximum degree. These functions can be combined in
Gossipco, but it is also possible with the current simulation framework to run multiple
gossip algorithms in the same network.

A.5. ADDITIONAL FEATURES
An alternative to the dynamic graph analysis described in Section A.4 is to take snap-
shots of the dynamic graph and perform traditional static graph analysis. Depending on
the metric of choice, a dynamic/gossip algorithm may not realise a significant speed-
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up compared to a static algorithm. To minimise the need of additional programs, our
toolkit contains a set of implemented algorithms to compute various network metrics.
The spectral metrics (eigenvector centrality, algebraic connectivity, spectral gap) rely on
the eigenvalue decomposition of the CERN Colt libraries in some cases. In other cases
an implementation of the power method is used.

The hop-count related metrics, such as the average shortest path or the eccentricity
can be computed individually or as a by-product of computing the node betweenness.
The betweenness code is an implementation of Brandes’ work [137] on betweenness al-
gorithms. The coreness algorithm is an implementation of Batagelj [138]. Other sup-
ported operations are the computation of the number of connected components and
various ways of exporting networks including Cytoscape and Pajek formats.

Another feature that is offered by the graph analysis tools is the ability to generate
synthetic networks according to numerous different network models. The code to gen-
erate Erdős-Rnyi random graphs and preferential attachment graphs is based on work
by Batagelj and Brandes [105].

A.6. CONCLUSION
We have presented a toolkit that offers all necessary tools to analyse datasets or data
streams using network science. The links between entities in the dataset or data stream
can be extracted using different types of link rules. These links are stored in a link set
that can be spread out over multiple machines if the link set becomes large. When a
data stream is analysed, the link set and extracted graph will be dynamic. In order to
analyse the properties of a large dynamic graph that is possibly spread out over mul-
tiple machines, we have offered the class of gossip algorithms. The toolkit comes with
a simulation environemnt for gossip algorithms as well as traditional metrics to study
snapshots of a dynamic graph.

Although the dynamic and distributed link set is fully implemented in the toolkit,
as well as a sample gossip algorithm, more work is needed to determine which graph
metrics can be computed using gossip algorithms and which cannot. For those metrics
that cannot be computed using gossip algorithms, new (preferably dynamic) algorithms
are needed.

We have performed basic measurements of the rate at which links can be inserted in
the link set as a function of how many partial link sets are used, but how large the link
set can realistically grow remains unexplored. Future work is needed to determine the
absolute performance limits of our toolkit.





B
SISS

SISS is an event driven simulator of the susceptible-infected-susceptible (SIS) spread-
ing process on a network. In the standard, Markovian SIS process, each node can be in
one of two states: susceptible and infected. Infected nodes spread the infection to their
susceptible neighbours. Spreading of the infection between two nodes is modelled as a
Poisson process with infection rate β. For each node pair containing at least one infected
node, an independent Poisson process modelling the arrival times of spreading events
exist. A spreading event simply means that the infection tries to spread from an infec-
ted node to a neighbour. Such an attempt can either be successful, if the neighbour was
susceptible, or unsuccessful, if the neighbour was a infected itself. The simulator will
simulate the arrival of every spreading attempt, regardless of the state of the network; if
two adjacent nodes are both infected, the arrivals of spreading attempts of both nodes
(so two Poisson processes on the link, one in either direction) will be processed in the
simulator.

When a node is infected, it will cure with rate δ. Curing events also follow a Poisson
process. When a curing event happens the node becomes healthy, yet susceptible to the
infection. As the curing process stops when the node is cured, it reduces to an exponen-
tial infection time per node: when a node becomes infected it will become healthy again
after spending an exponentially distributed time infected.

The spreading and curing events are the drivers in the simulation.

B.1. SIMULATION
The heart of SISS is formed by a balanced search tree called TimeLine. In the TimeLine
all future events are stored. As explained in Section B events in the SIS process can be
spreading events or curing events. The TimeLine can also contain simulation events
used to perform measurements and administrative tasks in the simulator itself, these
events will be treated in Section B.1.2. Events are stored in the TimeLine in the form of
tickets. Tickets are continually take from the TimeLine and processed by ticket handlers.
During the processing of the tickets new events may be generated and stored as tickets in
the TimeLine again. When there are no tickets left in the TimeLine the simulation ends.

157
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B.1.1. TICKETS
A ticket is a simple object containing four fields that completely describe the event. The
four fields are:

1. Time: the time at which this event will occur.

2. Owner: the entity that generated the event. This can either be a node (identified
by its ID) or the system. System tickets are used to perform all kinds of tasks within
the simulator as explained in Section B.1.2.

3. Action: indicates what kind of action has to be performed. Spreading events have
a positive action where the action corresponds to the node id of the node that has
to be infected, curing events have a value of -1. In the case of a system ticket the a
negative (non -1) action encodes a specific action to be performed.

4. Level: the level of simulation. The simulator allows loosely synchronised simul-
taneous simulations of multiple outbreaks on the same network. All outbreaks
have the same spreading and curing characteristics.

B.1.2. TICKET LISTENERS
As mentioned in Section B.1, at the heart of the simulation process tickets are continu-
ously taken from the timeline and processed. Spreading and curing tickets are always
processed by a ticket handler, the most common system tickets are processed by the
simulator directly. It is, however, possible to register custom system ticket handlers as
explained in Section B.1.2Using ticket handlers makes it very easy to implement beha-
viour different from the classic SIS process. Spreading and curing tickets are processed
by different ticket handlers.

SPREADTICKETHANDLERS

Spreading ticket handlers must implement the SPREADTICKETHANDLER interface. The
standard SIS behaviour is implemented in the SISCURETICKETHANDLER and the SISS-
PREADTICKETHANDLER classes. For a spread ticket, the owner is usually the node that
is infected, however, it is possible that a system ticket is used to infect nodes. The sys-
tem can infect nodes to set the initial configuration or to otherwise spontaneously infect
nodes.

In the standard SISSPREADTICKETHANDLER the processing of a spreading tickets in-
volves four steps.

1. The infectious state of the owner is checked (if the owner is not the system) as a
sanity check of the system. If the owner is not infected the simulator throws an
error and halts to ensure that no spreading occurs from a healthy node.

2. The node that will be infected by the owner, the target node, is encoded in the
action field. If the target node is infected, nothing more has to be done. If the
target node is healthy, however, it will become infected. The infectious state of
all nodes is kept in the SIMULATOR as an array of booleans where true indicates
infected and false indicates healthy. When a node becomes infected a random
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cure time is drawn for that node. Cure times are drawn in the getCureTime method
of the SIMULATOR from the cureDist RANDOMVARIABLEGENERATOR. The cure time
for each node is stored in the SIMULATOR class in the cureTime array. After the
cure time for the newly infected node has been determined, a spread time for each
link is generated. The spread times are drawn in the getSpreadTime method of the
SIMULATOR from the spreadDist RandomVARIABLEGENERATOR. If the spread time
for a particular neighbour is smaller than the cure time of the infected node, a
ticket is added to the TimeLine to infect the neighbour at that point in time. If the
spread time is larger than the cure time of the infected node nothing will happen.

3. If the target node was healthy before the ticket was processed, the target has be-
come infected as described in step 2. The resulting change in the viral state of the
network will be processed by calling the updateNetworkState method of the SIMU-
LATOR class. The details of logging and state updates are described in more detail
in Section B.1.5.

4. The final step in processing a spreading ticket is to draw a new spreading time
for the target. Because the spreading process per link in the normal SIS model
is a Poisson process, spreading attempts arrive continuously with an exponential
inter arrival time. The new spreading time is again compared to the cure time of
the ticket owner and a ticket is inserted in the TimeLine if the spreading time is
smaller than the cure time.

CURETICKETHANDLERS

Cure ticket handles must implement the CURETICKETHANDLER interface. The standard
SIS cure ticket handler is implemented in the SISCURETICKETHANDLER class and con-
sists, in its simplest form, of only two lines of code:

1. The viral state of the cure tickets’ owner is set to healthy.

2. The updateNetworkState method in the SIMULATOR class is called.

In addition to these two steps the SISCURETICKETHANDLER also performs a sanity check
to verify that the owner of the cure ticket is really infected. Also, if the absorbing state of
the SIS model is removed, the node is reinfected if it was the last infected node.

SYSTEM TICKETS

A few system tickets are processed directly inside the SIMULATOR class. These tickets
represent events that are likely to occur in many different simulation settings.

EpsilonEvent Epsilon events are spontaneous infection events that occur in the ϵ-SIS
model. An EpsilonEvent is processed by infecting a random node in the network.
After infecting a random node, a new EpsilonEvent ticket is added to the TimeLine.

StartLogging The StartLogging event initiates the logging of the viral state of the net-
work. Only one StartLogging event should be processed per simulation and an
error will be thrown when a StartLogging event occurs while logging has already
started. Care should be taken that a StartLogging event is put in the TimeLine
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either at the start of the simulation or during the simulation, as logging does not
start automatically. See Section B.1.5 for more information about logging of the
network state.

SampleEvent A sample event will cause the simulator to fire a SimulationEvent of the
type SampleEvent. All registered SimulationEventListeners will be called in the
order in which they are registered and the SampleEvent ticket is passed on. At
the return from the SimulationEventListeners a new SampleEvent ticket is created
with a ticket time equal to the current time incremented with the sampleInterval.
For simulations that need sampling, the first SampleEvent ticket should be added
by the NETWORKINITIALISER. See Section B.1.4 for more details about the NET-
WORKINITIALISER.

VisualisationEvent A visualisation event signifies that the the visualisation has to be
redrawn. See Section B.1.9 for further details on the visualisation capabilities.

DeathRay The DeathRay event immediately terminates the simulation in a similar fash-
ion as a stopping rule will terminate the simulation. For more on stopping rules
see Section B.2.1.

CUSTOM SYSTEM TICKET HANDLERS

In addition to the standard system described in Section B.1.2 it is possible to add custom
system tickets to the TimeLine. All system tickets should, however, have a unique action
field. To ensure this, the action field of a custom system ticket is determined when the
custom ticket handler is registered. A custom ticket handler has to implement the Cus-
tomTicketHandler interface and be registered in the simulator class by passing it to the
RegisterCustomSystemTicketAction method. This method will return an integer action
id that should be used for all tickets that are to be handled by this CustomTicketHandler.

B.1.3. RANDOM NUMBER GENERATION
Random number generators are all implementations of the abstract RandomVariable-
Generator class. The RandomVariableGenerator class contains the Mersenne Twister
random engine from the colt library as the basis for all random number generation. The
Mersenne Twister is initialised in the constructor of the abstract class and takes as its
seed the current system time. After initialisation, the thread is paused for a random
number of milliseconds to avoid multiple instances of the RandomVariableGenerator
to share the same seed value. Any class extending the abstract RandomVariableGener-
ator class can be used to generate the spreading and curing event times in the simulator.
Investigating non-Markovian SIS processes is as simple as changing the spread or cure
time generator. The following distributions are currently implemented.

• Exponential

• Weibull

• Normal (Gaussian)

• Uniform

• Discrete Uniform
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B.1.4. NETWORK INITIALISER
The network initialiser is the first piece of code called after the simulation is started in
the run method of the simulator class, if a class implementing the NETWORKINITILISER

interface is registered. The NETWORKINITIALISER has only one required method: set-
InitialState. In this method, which requires the Simulator object as an argument, any-
thing that has to be set at the beginning of the simulation can be set. The most common
things to set in the network initialiser are things like the initially infected nodes but also
more elaborate things can be done efficiently from this point in the simulator. Especially
the combination of a custom result processor (see Section B.1.6) and network initialiser,
possible with an event listener (see Section B.1.7) can be very powerful. The network ini-
tialiser can also be used to reset the simulation to its initial state during the simulation.
Currently implemented network initialisers are:

• SimpleInitialiser

• SimpleSampledInitialiser

• WeibullInitialiser

• CustomDistributionInitialiser

B.1.5. LOGGING AND STATE UPDATES
After each network change, that is, after a successful infection attempt or a curing event,
the updateNetworkState method is called. This makes sure that the infected node counter
is updated accordingly and that the event counter is incremented. If logging is enabled,
the time the network has spent in the previous state is logged. The network state in this
respect is nothing more than the number of infected nodes.

After these task have been taken care of, the additionalStateUpdater is called. Any
additional analysis or date logging after a state change can be done in this place. An
additionalStateUpdater has to implement the additionalStateUpdater interface. For the
classical SIS process, the only implementing class is the SIS_ASU. This state updater fires
a stateChange event and, if the number of infected nodes is zero, an extinction event.

B.1.6. RESULT PROCESSOR
If, after processing a ticket, the TimeLine is empty, no more events are scheduled for the
current simulation. In short, the simulation has finished. Before returning from the run
method, the result processor (if one has been registered) will be called. A result processor
has to implement the SimulationResultProcessor interface and can be registered with
the Simulator via the setSRP method. The SimulationResultProcessor will be called with
the simulator object as a parameter so that any kind of processing on the internal state
of the simulator can be done. A simulation result processor is especially handy when
operating the simulator in GUI mode (see B.2.1). In other settings, the internal state of
the simulator object will be available to the calling code after the run method terminates.
Although possible, it is not recommended to call the run method of the simulator from
within the result processor since this will lead to nested calls of the run method and,
eventually, to a stack overflow.
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B.1.7. SIMULATION EVENTS AND LISTENERS
Simulation events are the standard way in the simulator to let custom parts of code know
that a particular event has happened. Ticket handlers, as well as additional state up-
daters can use simulation events to trigger a reaction. The ticket containing the event
that triggered the firing of a simulation event is always passed on with the simulation
event. Currently, a simulation event can be of the following types:

Node Infected This event can be fired to indicate that a node became infected. Usually
this event is used to track the state of a single node, or a small number of nodes.
Otherwise the State Change event is more convenient.

Node Cured This event can be fired to indicate that a node has cured. Just as the Node
Infected event, this event is usually used to track the state of a single node, or a
small number of nodes. To track the state of the entire network, the State Change
event is more convenient.

State Change This event can be fired to indicate that a node has either become infected
or has cured. It is fired by the SIS_ASU (if required).

Reinfection This event can be fired to indicate that a node was reinfected to prevent the
virus from dying out. It is fired by the SISCureTicketHandler.

Sample Event This event is fired by the standard system ticket handler and indicates
that a sample ticket has been processed. To conveniently sample the state of the
simulation at fixed intervals, a sample ticket in combination with a simulation
listener is recommended. See section B.1.2 for more information on sample tick-
ets.

In order to react to the SimulationEvents fired during a simulation, a class imple-
menting the SimulationEventListener should be registered via the addSimulationEvent-
Listener method of the Simulator class. To fire an event from, for example, an additional
state updater, a call to the fireSimulationEvent method of the Simulator class should be
made. Whenever such as call is made, the Simulator calls all registered SimulationEvent-
Listeners in order of their registration.

B.1.8. TIMER LISTENER
Timer events are a special type of events that are triggered periodically in simulation
time, not simulated time. This means that a timer event that is set to be triggered every
5 seconds is triggered every 5 seconds of running time. The timer interval (measured in
milliseconds) can be set by changing the timerInterval in the Simulator class.

A TimerEvent contains both the simulation time and the simulated time, and offers
access to the Simulator object. They can be reacted to by registering a class that imple-
ments the TimerEventListener interface via the addTimerEventListener method of the
Simulator class.

B.1.9. VISUALISATION
As a part of the GUI mode of the simulator it is possible to visualise the network state.
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B.2. USING THE SIMULATOR

The simulator can be used both as a part of existing code or as a stand alone simulator.
In stand-alone mode, the simulator can be used either from a command line or by using
a graphical user interface. The following subsections give short examples of these use
cases.

B.2.1. RUNNING SIMULATIONS

The following example shows how to run a simulation of the classical SIS process on a
graph that is given as a simple adjacency list.

import siss.core.ExponentialRV;
import siss.core.SIS_ASU;
import siss.core.SimpleInitialiser;
import siss.core.Simulator;
import siss.listeners.SimpleTimerListener;
import siss.tickethandlers.SISCureTicketHandler;
import siss.tickethandlers.SISSpreadTicketHandler;

public class example {

public void simulate()
{

// create simulator with 1 level for network in file network.txt
(adjacency list)

Simulator S = new Simulator("network.txt",1,2);
// Infection is Poisson process with rate 0.125
S.setSpreadDist(new ExponentialRV(0.125));
// Curing is Poisson process with rate 1
S.setCureDist(new ExponentialRV(1));
// Initial state has 1 infected node
S.NI = new SimpleInitialiser(1);
// Simulation will run for 1000 time units
S.timeLimit = 1e3;
S.stoppingRules = new int[]{Simulator.TIME_LIMITED};
// Additional State Updater fires network change events
S.setASU(new SIS_ASU(true,false));
// Regular SIS ticket handlers
S.setSTH(new SISSpreadTicketHandler());
S.setCTH(new SISCureTicketHandler());
// Add a TimerEventListener to output average number of infected

nodes
S.addTimerEventListener(new SimpleTimerListener(true,false));
// Run simulation
S.run();

}}
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STOPPING RULES

The stopping rule specified in the code above is used to stop terminate the simulation.
Two stopping rules are defined:

• TIME_LIMITED as the name suggests, the simulation stops after a specified sim-
ulated time. The simulated time limit is set by the timeLimit variable of the Simu-
lator class.

• EVENT_LIMITED this stopping rule monitors the number of times the network
state has changed. An event in this setting is a change in the network state, not a
processed ticket.

If multiple stopping rules are requested, the simulation only terminates when all stop-
ping rules have been met.

GUI
Instead of writing some start code or embedding the simulator in existing code, a GUI is
provided to run simulations. The GUI consists of a dialog screen that acts as a read-only
console for both standard messages and error messages and various input fields and
tabs to set all the needed parameters. On different tabs, it is possible to specify which
implementations of the different interfaces (such as the ticket handlers, network initial-
iser, additional state updater, simulation listeners and timer listeners) should be used.
The class-path is scanned automatically and all implementing classes of the various in-
terfaces found on the class-path can be selected in the GUI.

The current settings can be saved to a configuration file using via a menu item. This
configuration file can also be used to start the simulator via de command prompt without
using the GUI.

COMMAND LINE

As mentioned in Section B.2.1, all required settings for a simulation can be saved into a
configuration file which can be used to start a simulation from the command prompt. In
addition to passing the location of the configuration file, it is possible to overwrite cer-
tain parameters from the command line using the -overwrite argument. This feature is
especially handy when multiple nearly identical simulations have to be run on a com-
putation grid to perform, for example, parallel parameter sweeps.



SUMMARY

Local interactions on a graph will lead to global dynamic behaviour. In this thesis we fo-
cus on two types of dynamic processes on graphs: the Susceptible-Infected-Susceptilbe
(SIS) virus spreading model, and gossip style epidemic algorithms. The largest part of
this thesis is devoted to the SIS model. We first introduce the SIS model in chapter 2.
Even though the SIS model is a Markov process, and good mathematical tools exist to
analyse Markov processes, the exploding state space of the SIS model make many of the
standard approaches infeasible. Mean-field approximations and simulations are usually
our best bet when trying to solve for the average fraction of infected nodes during an
outbreak. We compare two of the mean-field approximations commonly used in literat-
ure, and benchmark them against a modified version of the SIS model, the ε-SIS model.
We show that especially around the epidemic threshold, which separates a regime where
the virus dies out quickly from a regime where it stays in the network for a very long time
(called the meta-stable state), the two approximations can deviate from the true value.
In general, the NIMFA approximation has the upper hand in terms of accuracy.

Although the time behaviour of the SIS model is used loosely in the description of the
meta-stable state and the epidemic threshold, it has received less attention in research
than the average fraction of infected nodes in meta-stable state. In chapter 3 we show
that the survival time of an SIS process is exponentially distributed, and derive exact
expressions for the average survival time in the complete and the star graph. We also
propose a definition of the epidemic threshold using the survival time, and show in the
star graph and the complete graph that it is accurate.

In general, viruses do not live in isolation. In chapter 4 we show that two viruses
competing for the same healthy nodes in a network form a rich dynamic system. If the
viruses are prevented from dying out, one will completely dominate the other in terms
of the number of infected nodes, but this domination will not last. Even if the dominated
virus is down to only a few infected nodes, it will regain strength and eventually domin-
ate the other virus. We compute the average domination time and show that it depends
on the number of infected nodes at the start of a domination period. Also, we show that
weaker or slower viruses can still dominate their stronger or quicker competitors, but for
shorter periods of time.

Real world spreading phenomena generally have infection and curing processes that
are not well modelled by Poisson processes. In the context of content propagation, for
example, it has been shown that human (online) behaviour is bursty: long periods of
inactivity are followed by short periods of intense activity. In chapter 5, we analyse the
effect of non exponential inter-arrival time distributions on the behaviour of an SIS pro-
cess using a Weibull distribution. As the exponential distribution is a special case of the
Weibull distribution, we can gradually steer the distribution away from exponential. The
effects on the average fraction of infected nodes in the meta-stable state for the same
average inter-arrival time is dramatic. However, by keeping the expected number of in-

165



166 SUMMARY

fection attempts during an infectious period constant, the NIMFA equations still hold
in the non-Markovian setting. The fact that spreading attempts are no longer uniformly
distributed over the infectious period of a node leads to shorter or longer survival times
and can lead to a higher or lower fraction of infected nodes. When infection attempts
tend to be concentrated at either the beginning or the end of the infectious period, the
survival time is shorter. Also, the accuracy of the NIMFA approximation depends on the
inter-arrival time distribution.

The class of epidemic or gossip algorithms mimic the spreading of an infection in its
communication process. In chapter 6 we develop COUNT, an epidemic algorithm that
can count, average and find minima and maxima in a large distributed dynamic net-
work. COUNT can be sped up dramatically by using BEACON, an algorithm where nodes
compete amongst themselves to become the beacon node in a network towards which
the message in COUNT can be forwarded. The two algorithms together form GOSSIPCO,
a much faster version of COUNT that also includes convergence detection. GOSSIPICO

is robust against network dynamics by the virtue of an automatic recount process that
each node can trigger in response to changes in the network. The algorithm converges
in logarithmic time in random graphs and scale-free graphs, and in a time proportional
to the average hopcount in graphs such as lattices and paths.

Finally, in chapter 7 we develop a framework to extract a network from a dataset
based on a mapping. The interactions between entities that are recorded in the data-
set, in our case a record of millions of instances of played matches in the online game
Defence of the Ancients (DOTA), are mapped to links in the graph. We show that differ-
ent mappings lead to different graphs, highlighting different implicit social interactions
amongst players. We show that thresholding has a large effect on which social struc-
tures are revealed by the mappings, and can be used in these graphs as a crude but fast
community detection scheme. Also in chapter 7, we investigate how to adapt networks
to make them less vulnerable to viruses. The underlying idea is that by reducing the
largest eigenvalue of the adjacency matrix, which is an approximation of the epidemic
threshold, the real epidemic threshold is increased. As the minimisation problem is an
NP-hard problem, we compare various strategies in a greedy optimisation approach.

In appendix A we describe most of the software that we developed during the course
of our research, while in appendix B we provide an overview of the SIS simulator we
developed to perform all the simulations in the first five chapters.



SAMENVATTING

Lokale interacties in een graaf leiden tot globaal dynamisch gedrag. In dit proefschrift
richten we ons op twee type dynamische processen in grafen: het Susceptible-Infected-
Susceptible (SIS) virusverspreidingsmodel , en gossip-achtige epidemische algoritmes.
Het grootste gedeelte van dit proefschrift is geweid aan het SIS model. We introduce-
ren het SIS model in hoofdstuk 2. Alhoewel het SIS model een Markov proces is, en er
goede wiskundige methodes bestaan om Markov processen te analyseren, de explode-
rende toestandsruimte van het SIS proces maken de standaard methodes onpraktisch.
Gemiddeldveld benaderingen en simulaties zijn vaak de beste weg om het gemiddeld
aantal geïnfecteerde knopen in een uitbraak te bepalen. We vergelijken twee gemiddeld-
veld benaderingen uit de literatuur, en bepalen hoe goed ze zijn door ze te meten aan een
aangepaste versie van het SIS model, het e-SIS model. We tonen aan dat vooral rond de
epidemische drempelwaarde, die een regime waar een virus snel uitsterft scheidt van
een regime waar het virus voor zeer lange tijd in het netwerk blijft (de meta-stable state),
de twee benaderingen ver van de werkelijke waarde af kunnen liggen. In het algemeen
is de NIMFA benadering beter qua nauwkeurigheid.

Hoewel het tijdsgedrag van het SIS model losjes gebruikt wordt in de beschrijving
van de meta-stable state en de epidemisch drempelwaarde, krijgt het minder aandacht
in de literatuur dan het gemiddeld aantal geïnfecteerde knopen in de meta-stable state.
In hoofdstuk 3 tonen we aan dat de overlevingstijd van een SIS proces exponentieel ver-
deeld is, en leiden we exacte uitdrukkingen af voor de gemiddelde overlevingstijd in de
complete graaf en de ster graaf. Ook stellen we een definitie van de epidemische drem-
pel voor die berust op de overlevingstijd, en laten in de complete graaf en de ster graaf
zien dat die definitie precies is.

Over het algemeen komen virussen niet in isolatie voor. In hoofdstuk 4 laten we zien
dat twee virussen die strijden om dezelfde gezonden knopen in een graaf, een rijk dy-
namisch systeem vormen. Als het onmogelijk gemaakt wordt voor de twee virussen om
uit te sterven, zal één van de twee de ander compleet domineren wat betreft het aantal
geïnfecteerde knopen, maar deze dominantie zal tot een einde komen. Zelfs al is het ge-
domineerde virus gereduceerd tot slechts enkele geïnfecteerde knopen, dan nog zal het
weer aansterken en uiteindelijk het andere virus domineren. We berekenen de gemid-
delde dominante tijd en tonen aan dat die afhangt van het aantal geïnfecteerde knopen
aan het begin van de dominante periode. Daarnaast tonen we aan dat zwakkere of tra-
gere virussen nog altijd hun sterkere of snellere competitie kunnen domineren, maar
voor kortere tijdsperiodes. De verspreidingsprocessen die in de echte wereld voorko-
men hebben over het algemeen infectie en helingsprocessen die niet goed beschreven
worden door een Poisson proces. Zo is aangetoond, bijvoorbeeld, dat in informatie ver-
breiding menselijk (online) gedrag wisselvallig is: lange periodes van rust worden af-
gewisseld met korte periodes van intense activiteit. In hoofdstuk 5 analyseren we het
effect van niet exponentiele tussenaankomsttijdverdelingen op het gedrag van een SIS
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proces aan de hand van een Weibull verdeling. Aangezien de exponentiele verdeling een
speciaal geval is van de Weibull verdelingen, kunnen we de verdelingen geleidelijk van
exponentieel laten afwijken. Het effect op het gemiddeld aantal geïnfecteerde knopen
in de meta-stable state voor dezelfde gemiddelde tussenaankomsttijd is groot. Maar,
als het gemiddeld aantal infectiepogingen tijdens een geïnfecteerde periode constant
gehouden wordt, blijven de NIMFA vergelijkingen geldig in het niet Markoviaanse pro-
ces. Dat infectiepogingen nu niet langer uniform verdeeld zijn over een geïnfecteerde
periode leidt tot een kortere of langere overlevingstijd, en kan leiden tot een groter of
kleiner gemiddeld aantal geïnfecteerde knopen. Wanneer infectiepogingen in het begin
of juist aan het eind van de infectieperiode geconcentreerd zijn, is de gemiddelde over-
levingstijd korter. Ook is de nauwkeurigheid van de NIMFA benadering afhankelijk van
de tussenaankomsttijdverdeling.

De klasse van epidemische of gossip-achtige algoritmes bootsen de verspreiding van
een virus na in het communicatieproces. In hoofdstuk 6 ontwikkelen we COUNT, een
epidemisch algoritme waarmee het mogelijk is om zowel te tellen, het gemiddelde, en
minimum of maximum waardes te bepalen in grote gedistribueerde en dynamische net-
werken. COUNT kan aanzienlijke versneld worden door gebruik te maken van BEACON,
een algoritme waarin knopen elkaar beconcurreren om een baken te worden waarheen
de berichtjes in COUNT gestuurd kunnen worden. De twee algoritmes samen vormen
GOSSIPICO, dat een veel snellere versie van COUNT is, en ook convergentie kan detecte-
ren. GOSSIPICO is robuust in een dynamisch netwerk door een automatisch hertel me-
chanisme dat alle knopen kunnen initiëren in reactie op veranderingen in het netwerk.
Het algoritme convergeert in logaritmische tijd in random grafen en scale-free grafen,
en in een tijd die proportioneel is aan de gemiddelde afstand in grafen zoals het rooster
en pad.

Tenslotte ontwikkelen we in hoofdstuk 7 een methode om een netwerk uit een data-
set te onttrekken gebaseerd op een mapping. De relaties tussen entiteiten die in de data-
set opgeslagen zijn, in ons geval miljoenen gespeelde potjes in het online spel Defence of
the Ancients (DOTA), worden op zijden afgebeeld. We tonen aan dat verschillende map-
pings tot verschillende grafen leiden die verschillende impliciete sociale interacties tus-
sen spelers weergeven. Het toepassen van een drempelwaarde in het maken van zijden
heeft een grote invloed op welke sociale structuren door de mappings zichtbaar gemaakt
worden, en kan gebruikt worden om grof maar snel groepen te vinden. In hoofdstuk 7
onderzoeken we ook hoe netwerken veranderd kunnen worden om ze minder vatbaar te
maken voor virussen. De achterliggende gedachte is dat door de grootste eigenwaarde
van de bogenmatrix, wat een benadering is van de epidemische drempelwaarde, te ver-
kleinen, de werkelijke epidemische drempelwaarde groter wordt. Aangezien het mini-
maliseringsprobleem een NP-hard probleem is, vergelijken we verschillende greedy op-
timalisatie technieken. In appendix A beschrijven we het merendeel van de software
die we ontwikkeld hebben in de loop van ons onderzoek, en in appendix B geven we een
overzicht van de SIS simulator die we ontwikkeld hebben om alle simulaties uit de eerste
vijf hoofdstukken te doen.
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