
25-10-2017 KM 
 

Uni and Multimodal Data Augmentation using 
Generative Adversarial 

Networks for Enhanced Multi Failure 
Classification in Turbine Engine 

Blades 
 

By 
 

Paul IJzermans 
 
 
 
 

In partial fulfilment of the requirements for the degree of  

Master of Science 
at Delft University of Technology, 

to be defended publicly on 16-09-2024 
 
 
 
 
 
Faculty: Aerospace Engineering 
Department: Control and Simulations 
Programme: Air Traffic Operations 
 
 
 
Mentors / Supervisors:  Marcia Baptista (moved to Portugal,  

replaced by Ingeborg de Pater) 
     
Graduation committee:  Alessandro Bombelli 

Roberto Merino Martinez 
Ingeborg de Pater 
Marcia Baptista (external advisor) 
Madelyn Deuten (NLR) 

 
 



25-10-2017 KM 
 

 
 
 
This thesis is confidential and cannot be made public until ………….(day month year). 
 
An electronic version of this thesis is available at http://repository.tudelft.nl  
 

  

http://repository.tudelft.nl/


25-10-2017 KM 
 

 

 

 
Keywords: 
HPT-Blade 
Generative Adverarial Networks 
RGBD 
GAN-based Augmentation 
Turbine Engine Maintenance 
Deep Learning 
Generative Deep Learning 
 
 
 

Abstract 
 
Inherent subjectivity, inefficiencies, and the substantial cost related to human-based visual 
inspection of high-pressure turbine (HPT) blades has driven research in alternative automated 
techniques. The combination of computer vision (CV) and deep learning (DL) provides a compelling 
alternative. However, as DL models increase in capability, their large parameter spaces require 
substantial data toachieve robust training. Therefore, this study explores the use of two Auxiliary 
Classifier Generative Adversarial Networks (AC-GANs) to augment proprietary datasets for two 
failure modes: (a) a 3-channel red-green-blue (RGB) model for obstructed holes, and (b) a 4-
channel RGB plus depth (RGBD) model for foreign object damage, with the depth reconstructed 
using monocular depth estimation. A Differential Evolution Optimizer (DEO) was used for 
hyperparameter optimization of a ResNet-18 classification target model. In the obstructed hole 
dataset, GAN-based augmentation showed significantly improved accuracy, recall, F1, and AUC-
ROC (p < 0.05), competing with traditional methods using less augmentation. In the foreign object 
damage dataset, the inclusion of depth information significantly enhanced accuracy, precision, F1, 
and AUC-ROC performance (p <0.05). However, the RGBD augmentation mainly resulted in a 
trade-off between precision and recall, without statistically significant differences (p > 0.05) 
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A B S T R A C T
Inherent subjectivity, inefficiencies, and the substantial cost related to human-based visual inspection
of high-pressure turbine (HPT) blades has driven research in alternative automated techniques. The
combination of computer vision (CV) and deep learning (DL) provides a compelling alternative.
However, as DL models increase in capability, their large parameter spaces require substantial data to
achieve robust training. Therefore, this study explores the use of two Auxiliary Classifier Generative
Adversarial Networks (AC-GANs) to augment proprietary datasets for two failure modes: (a) a 3-
channel red-green-blue (RGB) model for obstructed holes, and (b) a 4-channel RGB plus depth
(RGBD) model for foreign object damage, with the depth reconstructed using monocular depth
estimation. A Differential Evolution Optimizer (DEO) was used for hyperparameter optimization of
a ResNet-18 classification target model. In the obstructed hole dataset, GAN-based augmentation
showed significantly improved accuracy, recall, F1, and AUC-ROC (p < 0.05), competing with
traditional methods using less augmentation. In the foreign object damage dataset, the inclusion of
depth information significantly enhanced accuracy, precision, F1, and AUC-ROC performance (p <
0.05). However, the RGBD augmentation mainly resulted in a trade-off between precision and recall,
without statistically significant differences (p > 0.05).

1. Introduction
Air transport has played an important role in shaping global
transportation, trade and tourism, and has been a driving
force for local economies. The sector’s growth, supported
by historical demand increase (Franz, Rottoli and Bertram,
2022) and a demonstrated resilience in the post-COVID
era (Sun, Wandelt and Zhang, 2023), is expected to exert
increasing pressure on aircraft maintenance operations.
Maintaining the highest levels of reliability and safety is
crucial, particularly when it comes to critical components
like turbine engines.
Turbine engines function according to the fundamental
principles of gas turbine operation, which encompass com-
pression, combustion, and expansion to convert chemical
energy into mechanical energy. In this process, turbine
engine blades are exposed to extreme environmental factors
such as mechanical loadings, high pressures and operating
temperatures, and high velocity alien particles (Aust, Shank-
land, Pons, Mukundan and Mitrovic, 2021; Juarez, Gutier-
rez and Petersen, 2023). To ensure the safety, reliability,
and longevity of turbine engine blades, Reactive Mainte-
nance (RM), Preventative Maintenance (PM), and Predictive
Maintenance (PdM) strategies are deployed. These strategies
aim to protect the blades, mitigate downstream engine
repercussions, and minimize the operational downtime.
As part of these maintenance strategies, various inspection
procedures can be initiated based on the state and conditions
of the turbine engine. Typically, initial procedures involve

Non-Destructive Testing (NDT) methods to minimize im-
pact and duration. This can include bore-scope inspection
using a specialized rigid camera and may extend to more
complex NDTs such as Magnetic Particle Testing (MPT)
for surface irregularities (Uludag, 2016), Acoustic Emission
Testing (AET) (Zhang, Yang and Hu, 2018), or Infrared
Thermography Testing (ITT). Despite advancements in
NDT methods, human-based visual inspection of turbine
engine blades remains common. Engineers conduct piece-
part visual assessment of the blades to ensure they meet
performance and safety standards. However, these inspec-
tions are often subjective, inefficient, and costly. Given
that one in three accidents and one in four fatalities are
linked to maintenance practices (Marais and Robichaud,
2012; Maddox)—of which an estimated 80% are due to
human factors—structural failures, particularly in the engine
(Aust and Pons, 2022), are recognized as a leading cause of
maintenance-related incidents.
In response to these challenges, research into automated
inspection using Machine Learning (ML), part of Artificial
Intelligence (AI), in combination with Computer Vision
(CV), has gained interest. ML techniques allow machines
to learn without explicit programming, typically using vast
amounts of training data.
More notably, Deep Learning (DL), a specialized subset
of ML, has the ability to autonomously extract complex
structures and hierarchical features by employing a sequence
of mathematical layers commonly known as Deep Neural
Networks (DNNs). In the context of visual inspection,
Convolutional Neural Networks (CNNs), a special type of
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DNN, are the de-facto models for high-dimensional image-
based tasks as they allow for efficient parameter usage
(amongst other characteristics such as spatial invariance).
The adoption of CV and DL could potentially improve the
quality, and therefore, safety of turbine blade inspection by
assisting or (eventually) replacing human-based inspection.
Integrating DL with CV offers considerable promise, but a
fundamental limitation is the requirement for large train-
ing datasets (Aust et al., 2021). Optimizing the parameter
space relies heavily on the availability of training data,
which is particularly problematic for turbine engine blade
failure modes as training data can be scarce and costly to
obtain. Training on inadequate datasets can cause overfit-
ting causing reduced generalization capabilities, adversely
affecting model performance (Pandey, Singh and Tian, 2020;
Antoniou, Storkey and Edwards, 2017). To address this,
different approaches can be utilized, including regularization
techniques, few-shot learning, and transfer learning. Another
widely used technique is augmentation, where small modifi-
cations are introduced in the original dataset using geometric
or photometric transformations to expand the dataset. While
these traditional augmentation methods have been proven
to be effective (Khosla and Saini, 2020; Hussain, Gimenez,
Yi and Rubin, 2017), they are constrained by their limited
ability to generate variability.
This limitation has led to the recent development of en-
hanced augmentation techniques using Deep Generative
Models (DGMs). Particularly interesting is a specific type of
DGM known as Generative Adversarial Networks (GANs)
due to its unique implicit learning ability (Section 2.3).
These models consist of two DNNs — a generator and
a discriminator — competing in an adversarial mini-max
game. In a GAN, the generator has the objective of fooling
the discriminator into believing the data is real, while the dis-
criminator has the objective of correctly identifying whether
the data is real or generated. This competition results in the
generator approximating the underlying data distribution of
the original dataset. More specifically, this research utilizes
a variant known as the Auxiliary Classifier GAN (AC-GAN),
which incorporates an additional loss term for class-specific
training. The approximated distribution can then be used to
synthesize new data to augment the original dataset.
Two main unexplored areas have been identified, which
form the basis for this study’s contributions. The first area
is the application of GANs to real-world application in
turbine engine blade failure modes, specifically obstructed
holes and foreign object damage. Secondly, is the use of
a multimodal AC-GAN for red-green-blue-depth (RGBD)
using 4-channels to integrate geometric information. This
leaves a research gap with potential value in the particular
domain of turbine engine blade inspection but also in more
general (maintenance) applications. Based on the problem
statement, as well as these identified research gaps, the
research question is formulated as follows:

How Does Uni and Multimodal Data Augmentation using
Generative Adversarial Networks (GANs) Affect the Per-
formance of Multi Failure Classification in High-pressure
Turbine Engine Blades?

As part of a broader initiative of the Royal Netherlands
Aerospace Centre (NLR) supported by Royal Dutch Airlines
(KLM) focused on automated HPT inspection, the primary
objective of this research is to enhance classification per-
formance of a downstream target model by utilizing GAN-
synthesized data. This includes improving performance in
both the RGB domain in the obstructed hole dataset and the
RGBD domain in the foreign object damage dataset. The
proprietary data used stems from real turbine engine blades
with artificially applied failure modes.
This study contributes to both academic and industrial
knowledge in the following ways:
i) Developed a large-scale AC-GAN for RGB data aug-
mentation, significantly enhancing accuracy, recall, F1, and
AUC-ROC scores in obstructed hole classification; ii) First
to propose the application of a monocular depth estima-
tor, specifically the Multiple Depth Estimation Accuracy
with Single Network (MiDaS), for enhanced foreign object
damage classification, resulting in significantly enhanced
accuracy, precision, F1, and AUC-ROC; and iii) Proposed
a novel 4-channel red-green-blue-depth (RGBD) AC-GAN
for augmentation purposes, effectively resulting in a trade-
off in recall and precision without statistically significance.
The following research paper is structured as follows:
Related Work (Section 2) provides a lay of the theoretical
landscape of DGMs, to subsequently scope down on GANs
for augmentation purposes. In Case Study (Section 3), a
description on the case study specific stage-1 high-pressure
turbine (HPT) blades will be provided including the failure
modes of interest. The Methodology (Section 4) outlines
the established data pipeline, covering data acquisition,
preprocessing, model training, and data synthesis. It details
the nature of the collected data, the custom models used,
their architecture, and the training procedures. In the Re-
sults and Discussion (Section 5), the statistical analysis is
briefly summarized, followed by an examination of baseline
performance, augmentation effects, and a comparison with
traditional methods. The implications are then discussed. In
Conclusion (Section 6), an overview of the key findings will
be provided referring back to the main research question.
Limitations and Future Work (Section 7) addresses the
constraints encountered in this study and outlines potential
directions for future research.
Further explanation on the technical setup, along with verifi-
cation, validation, performance metrics and statistical analy-
sis, is provided in the Supporting Work due to their extensive
nature.
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2. Related Work
The following section covers the general concept of the
CNNs used in both the target model and GANs, offers a gen-
eral overview of DGMs, and then focuses on the underlying
working mechanism of GANs. It also highlights key studies
where GANs have been applied for data augmentation.
2.1. Convolutional Neural Networks
Ever since the paper "ImageNet Classification with Deep
Convolutional Neural Networks" (Krizhevsky, Sutskever
and Hinton, 2012) presented at the 2012 ImageNet Large
Scale Visual Recognition Challenge (ILSVRC), CNNs have
become the de facto model for classification tasks of images.
The concept of CNNs is inspired by the neural connections
within the visual cortex, where individual neurons respond
to inputs within specific regions known as receptive fields.
These overlapping receptive fields together make the entire
visual area (Lindsay, 2021). To accomplish this, CNNs make
use of two special layers known as convolutional layers and
pooling layers.
Convolutional layers create feature maps from input images
by applying kernels. Each input channel (e.g., RGB) has
trainable kernels that detect specific features (e.g. edges).
The kernel dimensions and stride determine how features
are merged to form the output feature map, significantly
reducing the number of parameters (compared to fully
connected layers) and ensuring consistent processing across
the image. This method eliminates the need to recognize the
same object at every location, crucial for extracting detailed
hierarchical features and achieving efficient local-to-global
processing through multiple layers (Prince, 2023).
Pooling layers trim the spatial dimensions (known as down-
sampling) of a feature map while preserving crucial de-
tails. This process is essential for several reasons. In high-
dimensional data (such as images) pooling layers reduce the
parameter load. Furthermore, a convolutional layer’s output
is sensitive to the specific receptive field of each pixel. This
sensitivity means that even minor shifts in the data can
alter the output. Down-sampling, enhances the network’s
resilience to variations in feature position and location
within the input data, known as translation invariance.
In combination with conventional layers convolutional and
pooling layers are fundamental components of CNN-backbone
architectures for effective image processing. In both aca-
demic and industrial contexts, models like Inception, Visual
Geometry Group (VGG), and Residual Network (ResNet)
are frequently used, with ResNet playing a central role in
this research (Section 4.3).
Moreover, both convolutional layers and their inverse coun-
terparts, deconvolutional layers, are crucial components of
the developed AC-GAN (Section 4.5) used for augmenta-
tion.

2.2. Deep Generative Models
Deep Generative Models (DGMs), part of Generative AI,
lay at the intersection of Generative Models and DNNs.
Generative Models aim to to capture the underlying data
distribution of the data, enabling them to perform a broad
range of downstream tasks, including synthetic data gener-
ation. Whereas discriminative models are designed to learn
the conditional probability 𝑝(𝑦|𝑥) of a label 𝑦 given a set
of features 𝑥, they do not require the modelling of the dis-
tribution of the features themselves. discriminative models
use the concept of decision boundaries in the feature space,
which can be a simple line or a more complex manifold, to
separate classes. While discriminative models can classify
or differentiate objects by identifying a few salient patterns,
DGMs tackle a more difficult task. DGMs are tasked with
modeling the entire data distribution, which requires cap-
turing a broad range of correlations and dependencies such
as spatial relationships and co-occurrences within the data.
This ability of DGMs is highly valuable in specific domains
and application such as high-resolution image synthesis
(Karras, Aila, Laine and Lehtinen, 2017), super-resolution
(Liu, Siu and Chan, 2020), text-to-image conversion (Li,
Qi, Lukasiewicz and Torr, 2019a), and image-to-image
translation (Li, Tang, Zhang, Zhang, Li and Yan, 2019b).
However, the applicability is not limited to imagery. DGMs
are increasingly used in video processing (He, Yang, Zhang,
Shan and Chen, 2022; Ho, Chan, Saharia, Whang, Gao,
Gritsenko, Kingma, Poole, Norouzi, Fleet et al., 2022) and
audio (Oord, Dieleman, Zen, Simonyan, Vinyals, Graves,
Kalchbrenner, Senior and Kavukcuoglu, 2016).
Different types of (hybrid) DGMs exist and are continuously
being developed. Figure 1 presents a taxonomy of the more
well-known (non-hybrid) types of DGMs, categorized based
on different (mathematical) principles. GANs are part of
the latent variable models, more particularly the implicit
models. Unlike explicit models that require explicit density
estimation, implicit models, such as GANs, avoid this com-
plexity by not modeling it directly. This approach makes
GANs particularly effective for tasks like image generation,
where modeling complex density functions can be challeng-
ing.

Figure 1: Taxonomy of Deep Generative Models (DGMs), clas-
sifying various methods based on their underlying principles.
GANs are categorized under implicit models within the broader
class of latent variable models (Tomczak, 2022).
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2.3. Generative Adversarial Networks
The concept of GANs, first introduced by Ian Goodfel-
low et al. in their seminal paper "Generative Adversar-
ial Nets" (Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-
Farley, Ozair, Courville and Bengio, 2014) in 2014 (further
referred to as original GAN), represent a unique generative
framework characterized by the training approach. GANs
are a type of latent variable model. Similar to other DGMs,
they have the objective of solving the generative modelling
problem of observing a collection of data points, and learn
their probability distribution 𝑃 (𝑥). In a GAN, as can be seen
in Figure 2, two distinct networks are present with opposing
tasks, namely a generator and discriminator.
The generator samples from a noise distribution and maps it
to the approximated data distribution (𝑥′). The discriminator
receives samples from both the approximated data distribu-
tion (𝑥′) and the real data distribution (𝑥). The discriminator
is trained to distinguish between real and generated samples,
while the generator is trained to fool the discriminator.

Figure 2: Schematic of the Generative Adversarial Network
(GAN) framework, illustrating the interaction between the
generator and discriminator during the training process.

Where explicit DGMs typically rely on (approximate) Maxi-
mum Likelihood Estimation (MLE), GANs utilize a distinct
loss function. As shown in Formula 1, the loss function,
denoted by , represents the adversarial interaction between
two networks: the generator 𝐺 and the discriminator 𝐷. The
generator 𝐺 is trained to minimize  with respect to its
parameters 𝜃𝐺, while the discriminator 𝐷 is trained to max-
imize  with respect to its parameters 𝜃𝐷. Here, 𝐷(𝑥; 𝜃𝐷)represents the discriminator’s ability, using parameters 𝜃𝐷,
to correctly classify real data points 𝑥. Conversely, 𝐺(𝑧; 𝜃𝐺)denotes the data generated by the generator, parameterized
by 𝜃𝐺, based on samples 𝑧 drawn from the latent space.

min
𝜃𝐺

max
𝜃𝐷

(𝐷,𝐺) = 𝔼𝑥∼𝑝data(𝑥)[log𝐷(𝑥; 𝜃𝐷)]

+ 𝔼𝑧∼𝑝𝑧(𝑧)[log(1 −𝐷(𝐺(𝑧; 𝜃𝐺); 𝜃𝐷))]
(1)

Initially, both networks start with randomized parameters.
First, the discriminator undergoes training, evaluating both
real and fake samples. At this stage, fake samples are essen-
tially random noise because the generator is untrained. The

parameters 𝜃𝐷 are updated using a batch size 𝑁 , real data
samples 𝑥(𝑖), and latent input 𝑧(𝑖) by using the loss function
from Equation 1 and calculating the gradient with respect to
the 𝜃𝐷, as shown in Equation 2, keeping 𝜃𝐺 constant.

∇𝜃DD = − 1
𝑁

𝑁
∑

𝑖=1

[

1
𝐷(𝑥(𝑖))

∇𝜃D𝐷(𝑥(𝑖))

− 1
1 −𝐷(𝐺(𝑧(𝑖)))

∇𝜃D𝐷(𝐺(𝑧(𝑖)))
]

(2)

Following the discriminator’s training, the training process
shifts towards optimizing the generator while keeping 𝜃𝐷constant. The generator employs feed-forward mapping
from the latent space to produce fake data, and its perfor-
mance is measured using the discriminators ability. Simi-
larly, with batch size 𝑁 and data points 𝐺(𝑧(𝑖)), the gradients
with respect to 𝜃G are computed using the loss function from
Equation 1 and taking the derivative with regards to 𝜃G, as
can be seen in Equation 3.

∇𝜃GG = 1
𝑁

𝑁
∑

𝑖=1
∇𝜃G

[

log(1 −𝐷(𝐺(𝑧(𝑖))))
] (3)

Different discriminator loss functions and optimizers can be
employed in GANs. However, the original GAN framework
utilizes Binary Cross-Entropy (BCE) as the discriminator
loss function and the Momentum algorithm to enhance
Stochastic Gradient Descent (SGD). The Momentum algo-
rithm introduces a velocity term, which helps the optimizer
navigate through local minima more effectively.
Using this learning process, a GAN is able to implicitly learn
the underlying probability distribution of the training data. In
Figure 3, a more pedagogical explanation is provided. Here it
can be seen that GANs are trained by simultaneously updat-
ing the discriminative distribution (blue, dashed line) so that
it discriminates between samples from the real distribution
(black, dotted line) 𝑃 (𝑥) and the generative distribution
𝑃 (𝑥′) (green, solid line). The lower horizontal line is the
domain from which 𝑧 is sampled, in this case uniformly.
The horizontal line above is part of the domain of 𝑥′ with
the mapping 𝑥′ = 𝐺(𝑧) (Goodfellow et al., 2014). It can be
observed that the green line slowly converges to the same
distribution as the real distribution.

Figure 3: Pedagogical explanation of the training procedure of
a Generative Adversarial Network training principle (Goodfel-
low et al., 2014).
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2.4. Generative Adversarial Network Variants
The original GAN framework, as can be seen in Figure 4 (a),
has undergone significant enhancements since its inception.
In the context of the image generation, two developments
have been particularly noteworthy.
Firstly, the incorporation of deep convolutional and de-
convolutional layers, known as Deep Convolutional GANs
(DC-GANs), has significantly improved image processing
capabilities. CNN-based models enhance the efficiency and
robustness of image data handling through the specialized
layers. For simplicity, the GANs referenced in this research
are all standard deep convolutional GANs and will hence-
forth be referred to simply as GANs.
Secondly, the introduction of conditional GANs (cGANs) in
"Conditional generative adversarial nets", as can be seen in
Figure 4 (b)(Mirza and Osindero, 2014) and, subsequently,
Auxiliary Classifier GANs (AC-GANs) in "Conditional
image synthesis with auxiliary classifier gans" (Odena,
Olah and Shlens, 2017), as can be seen in Figure 4 (c)
allowed for a level of controllability of the output using a
conditional variable in the generation process. This variable
can encompass a wide range of information, such as class
labels or data from different modalities. While a cGAN
conditions the generator and discriminator, the AC-GAN
does not condition the classifier but adds a classification
loss. This means the loss back propagated for both the
generator and discriminator includes a component for class
conformity.

Figure 4: Different GAN variants with the original GAN (a), a
cGAN (b) and an AC-GAN (c) (Zhan et al., 2023).

Given the central role of AC-GANs in this research, it is
important to explore their functionality in greater detail. The
original GAN loss function, referred to as the adversarial
loss and presented in the previous section (Equation 1), is
expanded in AC-GANs to include additional class-specific
loss terms, known as the classification loss.
To adjust the discriminator, an additional term is added to
the loss function, capturing the class prediction probability
𝐷class(𝑐𝑥 ∣ 𝑥) from the pair (𝑥, 𝑐𝑥) sampled from the real
data distribution 𝑝data(𝑥, 𝑐𝑥), as shown in Equation 4. This
term ensures that the discriminator not only differentiates
between real and fake samples but also correctly classifies
the real data into the appropriate class 𝑐𝑥.

For the generator, the loss function is similarly augmented
to account for class information. Specifically, the generator’s
objective includes 𝐷class(𝑐𝑧 ∣ 𝐺(𝑧)), where 𝑧 is drawn from
the noise distribution 𝑝𝑧(𝑧) and 𝑐𝑧 from the label distribution.
This term, also reflected in Equation 4, encourages the
generator to produce data that not only appears realistic but
is also consistent with the specified class labels.

min
𝜃𝐺

max
𝜃𝐷

(𝐷,𝐺) = 𝔼𝑥∼𝑝data(𝑥)
[

log𝐷(𝑥; 𝜃𝐷)
]

+ 𝔼𝑥∼𝑝data(𝑥)
[

log𝐷class(𝑐𝑥 ∣ 𝑥; 𝜃𝐷)
]

+ 𝔼𝑧∼𝑝𝑧(𝑧)
[

log(1 −𝐷(𝐺(𝑧; 𝜃𝐺); 𝜃𝐷))
]

+ 𝔼𝑧∼𝑝𝑧(𝑧)
[

log𝐷class(𝑐𝑧 ∣ 𝐺(𝑧; 𝜃𝐺); 𝜃𝐷)
]

(4)
A more detailed explanation of the code translation is pro-
vided using pseudo-code in Algorithm 1 (Appendix A).
2.5. Data Augmentation using Generative

Adversarial Networks
The concept of GAN-based augmentation is similar to tra-
ditional augmentation. Traditional augmentation is a widely
established and recognized element in ML pipelines where
data is slightly manipulated to inject variability for training.
Broadly, these methods can be divided into two categories,
namely geometric and photometric augmentation.
Geometric transformations involve subtle alterations to
image geometry, such as cropping, resizing, cutout, and
rotation, as illustrated in Figure 5 (b). Additionally, these
transformations encompass non-linear warping methods,
offering a wide range of techniques for image modification.
These methods can be helpful for enhancing model robust-
ness by introducing variability in the training set.
Photometric methods pertain to the transformation of pixel
intensities (Taylor and Nitschke, 2018). Unlike geometric
transformations, they do not alter the geometry characteris-
tics of an image. Examples of color transformations include
Gaussian noise and jitter color, as can be seen in Figure 5
(c). In essence, these methods involve random adjustments
within image color spaces.

(a) (b) (c)
Figure 5: Normal images (a) and traditional augmentation
methods including rotation (b) and jitter color distortion (c)
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GAN-based augmentation leverages the generative capabil-
ities of GANs to create new, diverse data, thereby increasing
variability. This approach can help promote better gener-
alization and reduce overfitting. GAN-based augmentation
can be classified into three key subdomains: unsupervised,
semi-supervised, and supervised augmentation.
Unsupervised GAN-based augmentation involves using GANs
trained without labeled data. A classic example is the
original GAN, which generates images without targeting
specific attributes or classes. While this approach lacks
control over the characteristics of the generated outputs, it
can still enhance a dataset, provided it generates data within
a single class. However, with the advent of more advanced
models such as cGAN and AC-GAN, which allow for control
over the generation of multi-class data, unsupervised GAN-
based augmentation has become less prevalent in multi-class
augmentation practices.
Semi-supervised GAN-based augmentation is practical in
scenarios where there is ample data but a scarcity of la-
beled examples. This method leverages the abundance of
unlabeled data to better capture the inherent structure of the
data distribution (Madani, Moradi, Karargyris and Syeda-
Mahmood, 2018b). The GAN is trained with both labeled
and unlabeled data to introduce additional variability. A
common practice in this domain is using the discriminator as
the final target model, as the GAN training process enables
it to learn from labeled, unlabeled, and synthetic data.
Supervised GAN-based augmentation will be utilized in
this research. This approach uses labeled data to guide
the GANs in generating class-specific synthetic samples.
Widely used models in this domain include the cGAN and
AC-GAN. It is important to note, however, that training
GANs can be notoriously challenging due to their inherent
mini-max adversarial game. Ensuring stable training can
be difficult, with issues such as mode collapse, imbalanced
generator and discriminator power, and the tendency to
either overfit or underfit the data (Ahmad, Jaffri, Chen and
Bao, 2024). Although promising, to our knowledge, there
has been limited application of GAN-based augmentation
for enhanced failure classification, particularly in turbine
engine blades. However, other fields have demonstrated
successful implementations, providing strong evidence of its
potential for broader adoption.
Demonstrative use of supervised GAN augmentation exists.
For example, in "A Low Shot Learning Method for Tea
Leaf’s Disease Identification" (Hu, Wu, Zhang and Wan,
2019) it was demonstrated that a significant improvement
in disease identification in tea leaves using DC-GAN aug-
mented samples, leading to an average accuracy increase of
28% over traditional augmentation methods with a VGG16
target model, as discussed in "A Low Shot Learning Method
for Tea Leaf’s Disease Identification".

In the study "Tomato Plant Disease Detection Using Trans-
fer Learning with C-GAN Synthetic Images", (Abbas, Jain,
Gour and Vankudothu, 2021) a DC-GAN was deployed to
generate synthetic images of tomato plants. Here, a pre-
trained DenseNet121 which had the highest accuracy among
target models VGG19, ResNET50, Inception-V3, Xception,
MobiNet, Densenet169, and DenseNet 201 was used. The
model achieved an accuracy of 98.16%, 95.08%, 94.34%, on
the original PlantVillage dataset for 5-class classification,
7-class, and 10-class classification tasks, respectively, and
it achieves an accuracy of 99.51%, 98.65%, 97.11% with
the original PlantVillage plus synthetic images dataset for
5-class classification, 7-class, and 10-class classification
tasks, respectively. Here, the deployment of GAN-based data
augmentation has yielded positive outcomes.
Another study titled "Chest X-Ray Generation and Data
Augmentation for Cardiovascular Abnormality Classifica-
tion" (Madani, Moradi, Karargyris and Syeda-Mahmood,
2018a), employed a dataset containing 2,134 normal and
1,976 abnormal frontal chest X-rays. The study reported an
initial classification accuracy of 81.93% without augmenta-
tion, which increased to 83.12% upon the application of con-
ventional augmentation techniques. With the integration of
GAN-based augmentation, generating 500 synthetic images
for each class, the accuracy further increased to 84.19%.
Further evidence of the potential efficacy of GANs as
augmentation method is found in the work "GAN-based
Synthetic Medical Image Augmentation for Increased CNN
Performance in Liver Lesion Classification" (Frid-Adar,
Diamant, Klang, Amitai, Goldberger and Greenspan, 2018).
Their research delineated the superiority of DCGAN- aug-
mented datasets in enhancing the diagnostic precision of
a non-pretrained custom CNN. Post GAN-augmentation
(CNN-AUG-GAN), a marked increase was observed in both
sensitivity, rising from 78.6% to 85.7%, and specificity,
from 88.4% to 92.4%. This contrasted with the performance
improvements seen with traditional augmentation methods
(CNN-AUG), substantiating the potential of GANs in im-
proving performance in CNN-based applications for medical
classification tasks.
It should be noted, that GAN-based augmentation is not
guaranteed to be an effective method and is contingent
upon several factors, including the baseline performance of
the target model, the quantity and quality of the data, the
complexity of the data, and the configurations of the GAN
itself. For example, in the study titled "Data Augmentation
Using Generative Adversarial Networks (GANs) for GAN-
based Detection of Pneumonia and COVID-19 in Chest X-
Ray Images" (Motamed, Rogalla and Khalvati, 2021), the
efficacy of GANs in the domain of pneumonia and COVID-
19 detection in chest X-ray imagery was evaluated. It was
demonstrated that a DC-GAN failed to effectively augment
data for this purpose. This suggests that the efficacy of GAN-
based augmentation can vary.
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3. Case Study

The following section elaborates on the case study by detail-
ing the context of the relevant high-pressure turbine (HPT)
blades, as well as elaborating on the relevant failure modes.
3.1. General Electric High-Pressure Turbine

Blades
The General Electric next-generation (GEnx) turbine engine
is a state-of-the-art high-bypass turbofan jet engine featuring
dual rotors and axial flow. The engine is manufactured
by General Electric (GE) Aerospace and consists of two
models, the 1B (111-inch diameter, 70000 pounds thrust)
and 2B (104-inch diameter, 67000 pounds thrust). The two
variants of the engine possess a shared core but exhibit
specific distinctions between models such as fan diameter,
thrust rating, and aircraft compatibility. The GEnx-1B is
used in the Boeing 787 Dreamliner family, which includes
the 787-8, 787-9, and 787-10 variants. The GEnx-2B engine
is optimized for the Boeing 747-8.
3.2. Failure Modes
The research focuses on high-pressure turbine (HPT) blades
situated immediately post-combustor (stage-1), as illustrated
in Figures 6a and 6b (white box). These HPT blades, of
which a proximate model can be seen in Figure 6c are
subjected to extreme conditions, including high tempera-
tures and pressures, large alien objects, centripetal forces,
and exposure to high-velocity airflow carrying fine particu-
lates. Furthermore, the high temperatures contribute to the
breakdown of engine lubricants, leading to the formation of
sludge, varnish, and solid deposits (Juarez et al., 2023). Ad-
ditionally, carbonaceous deposits and thermal degradation
of fuel and airborne particles contribute to various failure
modes in turbine engine blades.
Common failure modes that can impact engine function
include fractures, deformations, material loss, complete
blade detachment, obstructed cooling holes, cracks in the
tip, platform, and airfoil, overheated areas, foreign object
damage, scratches, and airfoil burns with cracks (Aust
and Pons, 2019). These different failure modes result from
various failure mechanisms such as fatigue, creep, corrosion,
erosion, sulphidation, foreign objects impact, vibration and
combinations of these mechanisms. In this research, the aim
is to enhance the failure mode classification of two of these
frequently encountered modes, namely obstructed holes and
foreign object damage datasets.
Obstruction of cooling holes can pose significant risks, as
these holes play a critical role in dissipating the intense
heat generated during combustion. They allow compressed
air from the compressor stage to flow through and create a
thermal barrier on the blade surface. One common cause
of this obstruction is coke formation—carbon-rich solid
residues from unburned fuel. Coke formation is a major

(a) (b) (c)
Figure 6: Component details with a) the position of the HPT
blades in the turbine engine, b) a visual indication of the airflow
in the engine and c) a 3D approximate model of the turbine
blade.

contributor to premature failure in aircraft turbine engines,
leading to reduced performance and an increased likelihood
of serious accidents (Wu, Zong, Fei and Ma, 2017; Kauff-
man, Feng and Karasek, 2000). Another frequent cause of
blockage is the accumulation of small particles, such as
sand and volcanic ash. This failure mode becomes especially
dangerous when blade temperatures exceed the super-alloy’s
melting point, potentially resulting in severe consequences.
The second failure mode of interest is the presence of dam-
age caused by the impact of foreign objects. Foreign object
damage can be caused by a variety of debris, including small
stones, loose materials ingested into the engine, or even
birds. These damages can result in stress concentrating at a
single point, increasing the risk of failure propagation. As the
material’s resilience is compromised, even minor loads can
exacerbate these damages, potentially leading to cracks or
complete breaks (Aust et al., 2021). Another problem arises
when the thermal barrier coating (TBC) is damaged, as the
coating is designed to protect the material from thermal
stress, oxidation, and corrosion.

4. Methodology
The following section outlines the methodology used. This
methodology contributes to testing the following hypothesis:

• Hypothesis: Augmentation using synthetically gen-
erated data from GANs in both RGB (obstructed
holes) and RGBD (foreign object damage) domains
will significantly improve CNN-based performance in
classifying HPT blade failures.

This hypothesis inherently requires testing another hypoth-
esis within the research: whether the depth information
derived from a cross-modal depth estimator improves per-
formance by concatenating an additional depth channel.
The methodology, depicted in high-level workflow in Figure
7, follows the conceptual data flow and is segmented into
several distinct phases: data collection (A), preliminary
preprocessing (B), target model development including hy-
perparameter optimization (C), AC-GAN development (D),
and the classification target model evaluation (E).
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Figure 7: High-level overview of the research methodology workflow. * refers to the traditional augmentation used for comparison
in the results.

4.1. Data Collection
The experimental setup was used to collect data of the
two distinct failure modes. The blades, provided by KLM,
displayed signs of wear such as damaged coatings but did
not exhibit obstructed holes and only minor foreign object
damage.
In the experimental setup, a camera was mounted on a
Universal Robot robotic arm (model UR10e), as can be
seen in Figures 8a and 8b with weight of 33.5 kg, max.
payload of 12.5 kg and a reach of 1300 mm. The robot
arm is interfaced with RoboDK software for preprogrammed
arm-tip movements. a Daheng Imaging MER2-1220-9GC-
P Industrial Camera connected to an Ethernet cable with a
Kowa Im12fc24m lens (manual focus) was used. The camera
remained constant at 15 centimeter from the turning table.
For a more expansive list of the apparatus and software used,
please see Supporting Work A.
To simulate the phenomenon of obstructed holes, a mal-
leable material composed of Staedtler Fimo clay with mixed
colours of "chocolate" and "nougat" was used. This material
was selected for its ability to replicate the visual properties
of obstructions and their associated dark coloration. An
example can be seen in Figure 8c. Multiple holes in var-
ious regions of a specific blade were randomly obstructed,
including the leading, concave, and trailing edges, to capture
a diverse set of potential obstructions. Since only a limited
number of turbine blades were available, multiple obstruc-
tions were introduced on each blade.
To simulate foreign object damage, a hammer was forcefully
struck against the trailing edge of the blade, as shown in Fig-
ure 8d. Foreign object damages (including nicks, dents, and

tears) are simplified here in terms of physical appearance.
In practice, there is a distinction in the different forms (e.g.
dents are more rounded indentations on the blade’s surface,
while tears involve actual fractures or splits in the material.)
The impact damage mimics the effects of foreign objects
striking the blade (Aust, Shankland, Pons, Mukundan and
Mitrovic). Similar to the obstructed holes, multiple instances
of foreign object damage were artificially applied to each
blade.

(a) (b)

(c) (d)
Figure 8: Overview of the data collection process with a
visualization of the experimental setup with the Universal
Robot arm (a), the position of the lens on the camera (b)
example of an obstructed hole and (c) example of foreign object
damage (d)
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4.2. Preliminary Preprocessing
The large-scale image dimensions, as demonstrated by the
raw images in Figures 9a and 9b, necessitated a series of
steps to transform raw images (2977x2732 pixels), which
were infeasible for data processing and AC-GAN training at
this scale, into a usable format. These steps are referred to
as Preliminary Preprocessing, a phase purposefully distinct
from standard image preprocessing in ML pipelines. This
phase is designed to address the specific needs of the study,
encompassing cross-modal RGB-to-depth conversion, blade
segmentation, labeling, resizing, tiling, and undersampling.
Cross-modal RGB-to-depth conversion was conducted using
a Multiple Depth Estimation Accuracy with Single Net-
work (MiDaS) (version 3.1) from the paper "A Model Zoo
for Robust Monocular Relative Depth Estimation" (Birkl,
Wofk and Müller, 2023a). MiDaS is a cross-modal neural
net, meaning it was trained on mapping RGB to depth,
and was chosen for its high accuracy in-depth estimation
based on a comparative benchmark test (Birkl, Wofk and
Müller, 2023b; Ranftl, Lasinger, Hafner, Schindler and
Koltun, 2022; Ranftl, Bochkovskiy and Koltun, 2021). The
model is trained on a diverse array of datasets (ReDWeb,
DIML, Movies, MegaDepth, WSVD, TartanAir, HRWSI,
ApolloScape, BlendedMVS, IRS, KITTI, NYU Depth V2)
encompassing various environments and objects. Its objec-
tive is to minimize the disparity between predictions and
ground truth. The resultant output is a depth map providing
per-pixel depth values akin to stereo estimation. However,
it’s imperative to acknowledge the limitations of monocular
depth estimation. The quality of the output is highly con-
tingent upon the model’s pretraining and the dataset used
for this. As such, the MiDaS model was unable to map the
RGB, as seen in Figure 9a, to depth with an accurate depth
representation of the obstructed holes, as in Figure 9b. In the
foreign object damage dataset, however, the RGB images, as
exemplified in Figure 9c, were successfully used for depth
creation in most angles, as shown in Figure 9d.
Blade segmentation was implemented to minimize irrelevant
tiles (background). While various methods were available
for this purpose, the efficacy of MiDaS was apparent. More
specifically, as MiDaS is inherently equipped to differentiate
between the object in the forefront and the background,
and was, therefore, utilized as base for the segmentation
procedure. Throughout the blade segmentation process, the
image size remained unchanged to preserve quality.
Labelling was conducted using a custom algorithm designed
to select each failure mode within an image using a bounding
box. Typically, labeling an entire image suffices for clas-
sification tasks. However, due to multiple failure modes
present on each blade, bounding box were used per image to
select the failure mode, to subsequently use this in the tiling
algorithm. A total of 750 images were labelled per failure
mode.

(a) (b)

(c) (d)
Figure 9: Examples of RGB images showing obstructed holes
(a) and foreign object damage (c). Additionally, MiDaS-
generated depth images are presented, where the obstructed
holes are not visible (b), while the foreign object damage is
clearly identifiable (d).

Resizing was employed as an intermediary step to adjust the
image dimensions from 2732 by 2977 pixels to 2240 by 2240
pixels. This modification allows for the use of 224-pixel tiles
without cropping the image, accepting minimal loss due to
interpolation.
Tiling includes the division of the resized images into
smaller tiles of 224 by 224 pixels. This particular size was
chosen, as elaborated in Section 4.3, to leverage a highly
effective classification model. The algorithm processes the
RGB image (10a) and the congruent depth images (in case
of the foreign object damage) 10b, the labeled boxes (white
square boxes) combined with the segmentation mask 10c.
The tiles are then categorized and saved as non-failure or
failure tiles based on a selection criterion: a 50% overlap
with the selected bounding boxes for obstructed holes and
a 75% overlap for foreign object damage, respectively. This
threshold is acknowledged to be influential yet reasonable,
approximating human judgment by engineers.
Figure 10 visualizes the process, where tiles demonstrated
with a red borders are considered irrelevant, yellow-bordered
tiles are disregarded due to insufficient overlap with failure
boxes, green-bordered tiles are identified as failure tiles
based on sufficient overlap with the bounding box, and blue-
bordered tiles are used as non-failure tiles. This approach
is similarly applied to foreign object damage, with the
additional condition that all tiles, both failure and non-
failure, need to be on the edge of the blade where the failures
are located.
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(a) (b)

(c) (d)
Figure 10: Intermediate visualisations of the tiling algotihm
with the RGB (a) and the depth (b) image with bounding
boxes, the MidaS-based segmentation mask (c) and the final
tiles selection (d).

In Figure 11, examples of the resulting individual tiles with
a resolution of 224x224 pixels are displayed. Sub-figures (a)
and (b) show examples of non-failure tiles, while sub-figures
(c) and (d) display examples of failure tiles of the obstructed
holes. Sub-figures (e) and (f) present examples of non-failure
tiles of the foreign object damage with their corresponding
depth images (i) and (j). Additionally, sub-figures (g) and (h)
illustrate failure tiles with their corresponding depth images
(k) and (l).
Undersampling is used to balance the underrepresented fail-
ure tiles with the more numerous non-failure tiles. For the
obstructed holes, there are 29,067 non-failure tiles compared
to 3,719 failure tiles. For the foreign object damage, there
are 13,558 non-failure tiles and 1,730 failure tiles. Since
this research uses balanced datasets — both to ensure non-
skewed performance metrics and to support more stable
AC-GAN training — Table 1 provides information on the
balanced datasets compared to the original output volumes
of the tiling algorithm.

Table 1
Original and balanced tile counts for each failure mode with
obstructed hole (OH), foreign object damage (FOD), non-
failure (NF) and failure (F)

Failure Mode Original (NF / F) Balanced

OH 29,067 / 3,719 3,719 / 3,719
FOD 13,558 / 1,730 1,730 / 1,730

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Figure 11: Examples of tiles after preliminary preprocessing:
(a-d) show tiles from the obstructed holes dataset, while (e-l)
show tiles from the foreign object damage dataset.

4.3. ResNet-18 based target model
Two classification models were developed using a Residual
Network (ResNet) backbone for both RGB and RGBD in-
puts to classify non-failure and failure tiles. These models,
referred to as target models, are used to evaluate baseline
performance without augmentation, with traditional aug-
mentation, and with GAN-based augmentation.
Additionally, these models are used to compare RGB and
RGBD data to assess whether depth information improves
classification in the foreign object damage dataset. The
following section explains the rationale for selecting the
ResNet backbone, describes its architecture, outlines the
preprocessing steps, and details the modifications made to
the models.
4.3.1. ResNet Architecture

A priori determination of the target model can be challeng-
ing. Whilst recognizing the different possibilities, a Resid-
ual Network-18 (ResNet-18) model, part of the ResNet-
family, was chosen due to its consistent state-of-the-art
performance across various image recognition benchmarks
(Tan, Li, Liu, Lu and Xiao, 2020). Residual Networks
(ResNet), introduced in the paper "Deep Residual Learning
for Image Recognition" (He, Zhang, Ren and Sun, 2016),
were designed to address the vanishing gradient problem
(inability to propagate gradients deeper into the network).
The key innovation of ResNet is the use of skip connections
within "residual blocks", which enable the construction of
deep networks by allowing gradients to flow more easily
during backpropagation.
As can be seen in the simplified overview in Table 2,
the architecture consists of an initial convolutional layer
followed by four residual blocks, each containing two 3x3
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convolutional layers with increasing filter sizes. The network
concludes with a global average pooling layer and a fully
connected layer, enabling efficient feature extraction and, in
this research, classification.
Table 2
Simplified architecture of ResNet-18 used as the backbone for
the target model, with key adaptations highlighted (in bold).
The first convolutional layer has been modified to accept 4-
channel inputs, and the final layer has been adjusted for binary
classification.

Layer Name Output Size Description
Input Image - Input Image

conv1 112x112 7x7, 64 filters, stride 2
(modified to accept 3
or 4 input channels)

max_pool 56x56 3x3 max pooling, stride
2

conv2_x 56x56
{

3𝑥3, 64filters
3𝑥3, 64filters

}

×2

conv3_x 28x28

⎧

⎪

⎨

⎪

⎩

3𝑥3, 128filters
stride2
3𝑥3, 128filters

⎫

⎪

⎬

⎪

⎭

×2

conv4_x 14x14

⎧

⎪

⎨

⎪

⎩

3𝑥3, 256filters
stride2
3𝑥3, 256filters

⎫

⎪

⎬

⎪

⎭

×2

conv5_x 7x7

⎧

⎪

⎨

⎪

⎩

3𝑥3, 512filters
stride2
3𝑥3, 512filters

⎫

⎪

⎬

⎪

⎭

×2

avg_pool - Global average pooling
fc - Fully connected, 2-d,

Logits
Total Parameters - Approx. 11.7M

4.3.2. Preprocessing
Several preprocessing steps are implemented to ensure input
compatibility of the data with the ResNet models. A distinc-
tion is made between basic transformations and traditional
augmentation.
Basic transformations are needed when using the ResNet
architecture, which requires input images to be resized to
224 by 224 pixels. The RGB channels were normalized using
standard ImageNet mean and standard deviation (SD) to
ensure stable training. This normalization is essential for
pretrained models trained on ImageNet, as these models
expect input data with similar statistical properties. For non-
pretrained models, these values are used as a reasonable
approximation of the dataset characteristics, though they are
less critical since the model can adapt to the data during
training. Since standard preprocessing does not account for
depth normalization in RGBD data, the mean and standard
deviation for the depth channel were manually calculated.
Traditional augmentation is not strictly required but is
widely used in modern ML pipelines to enhance dataset

diversity through geometric and photometric transforma-
tions. These transformations are typically applied on-the-
fly during data loading, allowing the model to see a slightly
varied dataset each epoch. In this study, the performance
of GAN-based and traditional augmentations will be com-
pared. A geometric 15% rotation, a widely recognized
standard technique, was found to be an effective method
within the standard set of rotation, flipping, and other similar
transformations. Photometric augmentation was excluded
due to its negative impact on performance. This approach
was consistently applied in the comparison of obstructed
holes and foreign object damage datasets. Note that no
optimization techniques were employed to compare all
traditional methods.
4.3.3. Modifications
Architectural modifications were made to adapt the target
models for a) binary classification, b) process 4-channel
RGBD inputs, and c) allow for the implementation of
Gradient-Class Activation Mapping (Grad-CAM) for the
validation of the model (see Supporting Work B). A fully
connected linear layer was introduced, with two logits. Cross
Entropy Loss was used for binary classification on the
raw logit ouputs. The choice of two logits, rather than a
single logit with a sigmoid function, was made primarily to
facilitate the use of Grad-CAM for validation purposes (See
Supporting Work B). This technique allows for class-specific
backpropagation and activation mapping. For the RGBD
classifier, the initial convolutional layer was modified to
accept 4-channel inputs by concatenating the depth channel
to the RGB channels, achieved by replacing the original
convolutional layer with one that has 4 input dimensions.
Standard pretraining on ImageNet was used helping to sta-
bilize and accelerate training. However, for the comparison
between RGB and RGBD, pretraining was not used to ensure
a fair comparison, allowing both models to start from the
same baseline.
4.4. Hyperparameter Optimization
Hyperparameters are the parameters that set the model, train-
ing, and optimization configurations. The set of hyperpa-
rameters can be highly influential on the performance of the
model, and therefore, need to be optimized. The following
section will elaborate on the use of a Differential Evolution
Optimizer for hyperparameter optimization.
4.4.1. Hyperparameter Optimization Strategies
Different hyperparameter optimization techniques exist with
distinct drawbacks and benefits. On one end of the spec-
trum there are more basic methods such as manual search,
random search, and grid search. On the other end of the
spectrum are more complex techniques such as gradient-
based optimization, meta-heuristic approaches, and rein-
forcement learning-based optimization (often avoided due
to their implementation complexity). These methods are
typically faster than exhaustive searches but generally, sim-
ilar to more basic methods, do not guarantee optimality in
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complex, high-dimensional problems, largely because they
are probabilistic and explore the search space with limited
resolution. Nonetheless, certain techniques may still prove
more suitable depending on the specific problem context.
Metaheuristic approaches are problem-independent, mean-
ing these optimization frameworks do not require specific
knowledge (or gradient) of the underlying problem to ex-
plore the solution space. Several methods exist within this
category, including swarm intelligence, simulated anneal-
ing, and evolutionary techniques. In this research, the Differ-
ential Evolution Optimizer (DEO) was chosen due to its abil-
ity to effectively control search processes while maintaining
a balance between exploration and exploitation. Addition-
ally, its implementation is intuitive, making it a practical
choice for the study.
4.4.2. Differential Evolution Optimizer

Differential Evolution Optimization is a population-based
method introduced in the seminal paper ’Differential Evolu-
tion–A Simple and Efficient Heuristic for Global Optimiza-
tion over Continuous Spaces’ (Storn and Price, 1997). This
method solves global optimization problems by iteratively
improving candidate solutions through evolutionary pro-
cesses. It starts with a fixed population randomly generated
within the hyperparameter space. A limited set of hyperpa-
rameters was chosen to avoid an overly large search space,
though determining this beforehand is challenging. In this
case, the hyperparameter vectors consist of epochs, learning
rate, and batch size. Mutation and crossover are then applied
to generate new candidate solutions, represented as vectors,
with the aim of finding the best solution.
The "best/1/bin" strategy is used where mutation creates
a new vector by adding the weighted difference between
two population vectors to the best vector from the current
population, as can be seen in Formula 5. This introduces
diversity and leverages the best solution found so far. The
mutation formula for "best/1/bin" is:

𝐯𝑖 = 𝐱best + 𝐹 ⋅ (𝐱𝑟1 − 𝐱𝑟2) (5)
In equation 5, 𝐯𝑖 is the mutated vector for the 𝑖𝑡ℎ individual,
𝐱best is the best solution vector from the current population,
and 𝐹 is a scaling factor that weights the difference between
two randomly selected vectors from the population, 𝐱𝑟1 and
𝐱𝑟2. Crossover combines the mutant vector with the current
target vector to produce a trial vector. This determines which
parts of the target and mutant vectors are used, helping to
refine and exploit existing solutions. The crossover can be
expressed as:

𝑢𝑖,𝑗 =

{

𝑣𝑖,𝑗 , if rand𝑗 ≤ 𝐶𝑅 or 𝑗 = 𝑗rand,
𝑥𝑖,𝑗 , otherwise. (6)

In Equation 6, 𝐮𝑖 is a trial vector, 𝐯𝑖 is a mutant vector, 𝐱𝑖is the target vector, 𝐶𝑅 is the crossover rate (a constant
between 0 and 1) that controls the probability of copying
each component from the mutant vector, 𝑟𝑎𝑛𝑑𝑗 is a random
number between 0 and 1 for each component 𝑗, 𝑗𝑟𝑎𝑛𝑑 is a
randomly chosen index to ensure at least one component
from the mutant vector is used. After crossover, the trial
vector is compared to the current target vector, and the one
with better fitness is selected for the next generation.
To measure the fitness, a categorical cross-entropy loss is
used as shown in Equation 7. In this equation, 𝑦𝑖𝑗 is the true
class label for the 𝑖-th sample, �̂�𝑖𝑗 represents the predicted
probability for the 𝑖-th sample and class 𝑗, and 𝑁 is the total
number of samples. The total loss is averaged over the test
set, providing an overall measure of model performance for
the given hyperparameter vector.

Loss = − 1
𝑁

𝑁
∑

𝑖=1

𝐶
∑

𝑗=1
𝑦𝑖𝑗 ⋅ log(�̂�𝑖𝑗) (7)

As a stopping criterion, relative tolerance was used, defined
as a fraction of the mean population objective values.
The algorithm stops when the standard deviation of the
population energy falls below this fraction. However, due to
convergence not being achieved within the computationally
acceptable limits, the process was prematurely terminated
after 10 generations (660 objective evaluations). A flowchart
of this algorithmic process is provided in Figure 17, and
DEO parameters can be found in Table 8 (Appendix B).
To manage computational load, single-fold testing was
performed using five training folds. While the optimizer, like
epochs, batch size, and learning rate, is known to be an in-
fluential hyperparameter, the standard Adam optimizer was
chosen for its widely recognized and reliable performance.
Table 3 provides an overview of the found hyperparameters.
The search space and individual objective functions are
visualized in Figures 18a, 18b, and 18c (Appendix B),
corresponding to obstructed holes, foreign object damage
(RGB), and foreign object damage (RGBD), respectively.

Table 3
Hyperparameters found for Different ResNet-18 Target Models

Hyperparameters Obstructed
Holes

foreign
object
damage
RGB

foreign
object
damage
RGBD

Optimizer Adam Adam Adam
Epochs 37 49 45
Learning Rate (log scale) -4.15 -4.57 -4.01
Batch Size 130 153 158
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4.5. Auxiliary Classifier Generative Adversarial
Network

This section covers the key components of the AC-GAN,
including preprocessing, generator and discriminator ar-
chitectures, training, and synthetic data generation. The
synthetic data produced by the AC-GAN will be used to
augment the original dataset. Special attention is given to
the adaptations necessary for applying GANs to this spe-
cific dataset. Additionally, different techniques were im-
plemented sequentially to address instability and enhance
quality.
4.5.1. Preprocessing

The data is subject to various preprocessing steps. The tiles
are converted to tensor format and normalized. Horizontal
and vertical flipping is used for the obstructed holes and 5%
rotation is used in the foreign object damage. The prepro-
cessing steps are summed up in the Table 9 (Appendix C).
4.5.2. Generator and Discriminator Architectures

Both the generator and discriminator in the AC-GAN re-
quired custom design due to the large-scale tiles and the
intermixed feature spaces. Initial tests using a conditional
GAN (cGAN) failed to produce class-specific outputs, as
visually assessed, which could potentially confuse the down-
stream target model. Therefore, an AC-GAN was used to
enforce the generation of distinct classes by leveraging the
previously described additional classification loss (Section
2). As seen in Figure 12, the generator (left) and the discrim-
inator (right) incorporate several specialized mechanisms
(added sequentially) to ensure stable training.
The generator embeds the label into the label embedding
space (LES). The LES and latent vector are combined, and
passed to a linear layer. The linear layers is followed by five
sequential blocks with deconvolutional layers, leaky Recti-
fied Linear Units (ReLU) layers, and batch normalization
layers. Finally, the generator output is constrained between
-1 and 1 using a tanh activation function. The generator
outputs 3-channel RGB for the obstructed holes and 4-
channel RGBD in the foreign object damage.
The discriminator with either 3 or 4-channel input has six
convolutional blocks. Each block consists of leaky ReLU
layers, batch normalization, and dropout (dropout_rate),
with dropout playing a key role in regularization for ob-
structed holes. A bottleneck structure is used to reduce
the number of feature channels for regularization purposes.
The discriminator generates two outputs: one for adversarial
loss (real/fake) and another for classification loss (classes).
For the obstructed holes dataset, a single-neuron with a
sigmoid activation is used for the adversarial loss, paired
with BCE-loss, while two-neurons with CE-loss is used for
the classification loss. In the foreign object damage, two
single-neurons with sigmoid activation and BCE-loss were
applied, as this was empirically found to be more stable.

Figure 12: Generator and Discriminator architectures used in
the AC-GAN. Between brackets is the kernel size.

4.5.3. Training

The AC-GAN uses an Adaptive Moment Estimation (ADAM)
optimizer including three influential hyperparameters: 𝛽1,
𝛽2 and 𝜆. 𝛽1 controls the exponential decay rate for the first
moment estimates (the mean of the gradients), typically set
to 0.9, which helps in smoothing the gradient. 𝛽2 controls
the exponential decay rate for the second moment estimates,
typically set to 0.999, which helps in smoothing the squared
gradients and controlling the adaptive learning rate. Addi-
tionally, a weight_decay 𝜆 is integrated, as a regularization
technique to help prevent overfitting by adding a penalty to
the loss function for large weights.
As GANs are prone to mode collapse, Mini Batch Discrimi-
nation (MBD) was integrated. This mechanism evaluates the
collective batch and derives a feature vector that captures
not only the individual characteristics of the sample but
also its relationship with the other samples in the batch. By
incorporating these mini-batch statistics, MBD encourages
the generator to produce a diverse set of samples.
The loss function components were weighted to give more
control over the training process. The following weights
were used in the AC-GAN: 𝑊1 for discriminator adversarial
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Table 4
Hyperparameter settings for obstructed holes (OH) [fold 10]
and foreign object damage (FOD) [fold 1-4-6-7]

Hyperparameter Value (OH) Value (FOD)
channels 3 4
batch-size 128 32
latent vector 60 50
label embedding 15 20
classes 2 2
epochs Table 10 Table 10
learning rate G 0.0005 0.0005
learning rate D 0.0003 0.0005
𝛽1 0.5 0.5
𝛽2 0.999 0.999
𝜆 2e-5 2e-5
step-size-scheduler 40 10
𝛾𝑑 0.9 0.9
𝛾𝑔 0.9 0.9
features MBD 15 10 [20]
𝜖𝑟𝑒𝑎𝑙 0.85 0.9
𝜖𝑓𝑎𝑘𝑒 0.1 0.1
w1 1 1
w2 3 2
w3 1 1
w4 0.5 0.5
w5 1 1
w6 3 2
dropout 0.45 [0.5] 0

loss on real data, 𝑊2 for discriminator classification loss
on real data, 𝑊3 for discriminator adversarial loss on fake
data, 𝑊4 for discriminator classification loss on fake data,
𝑊5 for generator adversarial loss, and 𝑊6 for generator
classification loss. Pseudo-code A (Appendix 1) provides
further insight.
Two time-scale update rule (TTUR) and stepwise rate
scheduling (SRS) were used. TTUR allows the generator
and discriminator to update at different learning rates, im-
proving training stability. SRS was applied for more gradual
optimization in later epochs, helping the model fine-tune
as training progresses. Additionally, label smoothing for
real (𝜖𝑟𝑒𝑎𝑙) and fake (𝜖𝑓𝑎𝑘𝑒) labels was used to penalize
overconfidence and smooth the backpropagation process.
4.6. Synthetic data generation
In the augmentation experiments, 10-fold cross-validation
is applied to the 10 available blades to maximize data use
and prevent leakage. To avoid leakage in AC-GAN aug-
mentation, 10 separate AC-GAN models were trained and
used for generation, ensuring augmented data is used only in
the fold not involved in AC-GAN training. The generator is
saved at intervals for model selection via visual assessment
(Table 10, Appendix C). The generator’s architecture and
weights are used in combination with a latent sample from a
Gaussian distribution and a class label for generation.

4.7. Visual Assessment Synthetic Data
As an important part of the research is still based on visual
assessment due to the nature of the data, Figure 13 presents
example outputs used in the augmentation for obstructed
holes (Figures 13a and 13d) and foreign object damage
(Figures 13c, 13b, 13e, 13f). These images exemplify the
outputs generated by the AC-GAN used in the augmentation
process. It is important to emphasize that the objective here
is not to achieve the most photorealistic outputs, but rather
to produce results with augmentative capabilities to enhance
classification performance of the ResNet-18 target model.
For obstructed holes, in the non-failure class (Figure 13a),
it can be visually observed that the AC-GAN emphasizes
colors and textures over replicating specific details of non-
failure tiles in the obstructed holes dataset. In the failure
class (Figure 13d), the model gradually captures the char-
acteristic brown spots of obstructed holes, set against a
background similar in tone to the non-failure class. A general
observation was that in the early stages of training, as shown
in Figure 19 (Appendix C), the AC-GAN model struggles to
distinguish between the non-failure and failure classes, even
with the additional classification loss applied. However, as
training progresses, this differentiation becomes clear and
noticeable.
For foreign object damage, in the non-failure class (Figures
13b, 13c), the AC-GAN produces more abstract, darker
shapes with distinct textures. In the failure class (Figures
13e, 13f), it captures the key features of foreign object
damage, including the transition of the coating into the alloy
at the impact location and the shiny edge typical of these
areas. In Figure 20 (Appendix C), more examples can be
observed including the progress over epochs.

(a) non-failure OH
RGB

(b) non-failure
FOD RGB

(c) non-failure
FOD depth

(d) failure OH
RGB

(e) failure FOD
RGB

(f) failure FOD
depth

Figure 13: Example synthetically generated output of the AC-
GAN for both the obstructed holes (OH) (a,b) and the foreign
object damage (FOD) (c,d,e,f).
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5. Results and Discussion
This section presents the results and discussion of the ex-
periments described in Methodology (Section 4). It begins
with an overview of the statistical analyses used. Following
this, the experimental results of RGB augmentation on the
obstructed hole datasets are presented and discussed. Next,
the performance comparison between RGB and RGBD data,
as well as the RGBD augmentation on the foreign object
dataset, is provided. In both augmentation experiments, sen-
sitivity analysis is performed using two augmentation levels.
Elaboration on the classification metrics used can be found
in Supporting Work C.
5.1. Statistical Analysis
Statistical methods were used to analyze the experimental
results for significance. The Shapiro-Wilk test (Shapiro and
Wilk, 1965) was first applied to assess the normality of
residuals in pairwise comparisons (e.g., RGB vs. RGBD)
and the overall data distribution in group comparisons (e.g.,
different augmentation levels). This determined whether
parametric or non-parametric tests were appropriate.
Based on the results of the Shapiro-Wilk and Levene’s tests
(Levene, 1960), different statistical tests were chosen de-
pending on whether two sets (e.g., RGB vs. RGBD) or more
sets (e.g., different augmentation levels) were analyzed. For
two sets, either a paired t-test (Student, 1908) or Wilcoxon
Signed Rank test (Wilcoxon, 1992) was used, depending
on data normality, since the same data sets were compared
under different treatments (augmentation).
For three or more sets, repeated measures ANOVA (Ed-
wards, 2005) was used if the data were normally distributed;
otherwise, the Friedman test (Friedman, 1937) was applied.
When significant differences were found, post-hoc analyses
were performed using pairwise t-tests or Wilcoxon tests,
followed by a Bonferroni correction.
In the results, two alpha levels (𝛼) of 0.05 and 0.1 are used
to indicate the degree of statistical significance. A detailed
explanation of the statistical methods and individual test
results can be found in Supporting Work D.
5.2. Augmentation Performance Comparison for

Obstructed Holes
The following section presents the augmentation of ob-
structed holes using the 3-channel AC-GAN (Section 4.5)
on the 3-channel ResNet-18 target model (Section 4.3). RGB
data is synthesized with augmentation applied at two levels:
50% (a balanced approach between introducing variability
and maintaining the original dataset) and 200% of the
original dataset size added (max. efficient system capacity).
Additionally, baseline performance without augmentation
is included for comparison, alongside traditional on-the-fly
(OTF) augmentation at 15% rotation (Section 4.3). The mean

results of the 10-fold cross-validation, conducted using 10
different HPT blades, are summarized in Table 5. Figure 14
illustrates the mean values in an error bar plot, including the
standard error of the mean (SEM).
In No Augmentation (None), the baseline performance,
without any augmentation, shows an accuracy of 91.89%
(Standard Deviation (SD) = 3.32), precision of 95.71% (SD
= 2.04), recall of 87.74% (SD = 6.21), F1 score of 91.45%
(SD = 3.72), and AUC_ROC of 97.63% (SD = 1.37).
Applying GAN-based augmentation at 50% (GAN50) level
results in an accuracy of 93.40% (SD = 2.53), precision of
97.13% (SD = 1.47), recall of 89.46% (SD = 5.07), F1 score
of 93.06% (SD = 2.86), and AUC_ROC of 98.42% (SD =
0.83). All metrics show an improvement over the baseline
in means. Increased stability can be observed with reduced
variability compared to baseline performance in all metrics.
Applying GAN-based augmentation at 200% (GAN200)
level results in an accuracy increase to 94.75% (SD = 2.21),
precision to 97.36% (SD = 1.82), recall to 92.03% (SD =
4.45), F1 score to 94.56% (SD = 2.39), and AUC_ROC to
98.74% (SD = 0.78). All metrics demonstrate an improved
performance over baseline in means. Increased stability,
similar to GAN50, can be observed with reduced variability
in all metrics.
Applying traditional augmentation (TRADOTF) leads to
improved performance across all metrics. Accuracy in-
creases to 94.21% (SD = 3.53), precision to 97.09% (SD
= 1.59), recall to 91.13% (SD = 6.36), F1 score to 93.93%
(SD = 3.88), and AUC_ROC to 98.47% (SD = 1.18).
Some metrics show enhanced stability, reflected by reduced
variability, although this effect is not consistent across all
measures.

Figure 14: Error bar plot with SEM showing different standard
evaluation metrics across various levels of augmentation levels
in the obstructed hole dataset.
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Table 5
Obstructed Holes: Comparison of augmentation techniques on classification metrics. * and ** indicate significance vs. baseline
(p<0.05, p<0.1); † and †† indicate intra-group differences (p<0.05, p<0.1). Bold marks metrics above baseline, underline
indicates best performance, values in parentheses are standard deviations (SD).

Augmentation Type Level Accuracy (%) Precision (%) Recall (%) F1 (%) AUC_ROC
(%)

No Augmentation (Baseline) - 91.89
(3.32)

95.71
(2.04)

87.74
(6.21)

91.45
(3.72)

97.63
(1.37)

AC-GAN Augmentation 50% 93.40*†

(2.53)
97.13*
(1.47)

89.46
(5.07)

93.06*††

(2.86)
98.42*
(0.83)

AC-GAN Augmentation 200% 94.75*†

(2.21)
97.36**
(1.82)

92.03*
(4.45)

94.56*††

(2.39)
98.74*
(0.78)

Traditional Augmentation TRADOTF 94.21
(3.53)

97.09*
(1.59)

91.13
(6.36)

93.93
(3.88)

98.47*
(1.18)

Having summarized these key findings, it is important to
discuss not only their implications but also the role of AC-
GAN training in achieving these results. Namely, in the ob-
structed hole dataset, the partially overlapping feature space
between the two classes was a challenge. More specifically,
the general context and the distinctive failure feature—the
brown obstructed spots—also appeared to some extent in
the non-failure tiles. This overlap negatively impacted the
discriminator’s ability to distinguish between failure and
non-failure cases, which in turn hindered the generator’s
learning process. This necessitated numerous trials to fine-
tune the architectures and hyperparameters using domain-
specific knowledge. This situation differs from most studies
in the field, where distinctions between classes tend to be
more pronounced (e.g., contrasting colors, shapes, etc.). In
those cases, the discriminator can more easily establish a
clear decision boundary in the feature space, enabling the
generator to better model the true data distribution during
the feed-forward process from the latent space.
Despite the challenges associated with GAN training, sev-
eral valuable insights can be drawn from the results. As
shown in Table 5, both GAN50 and GAN200 demonstrate
improvements across all metrics. Notably, GAN50 shows
statistically significant gains across accuracy, precision,
F1 and AUC-ROC (𝛼 = 0.05), while GAN200 achieves
significant improvements in accuracy, recall, F1, AUC-ROC
(𝛼 = 0.05) and in precision (𝛼 = 0.1). These results clearly
highlight the effectiveness of GAN-based augmentation as
a viable augmentation method. Moreover, the variation in
augmentation levels led to statistically significant differences
in both accuracy and F1 score, underscoring the model’s
sensitivity to augmentation volume.
When compared to the traditional augmentation method
of 15% rotation (Section 4.3), the GAN-based approach
delivered marginally better results. While the difference was
not statistically significant, it is important to recognize that
on-the-fly augmentation achieved comparative results uti-
lizing more augmentative units (occurs during each epoch).
Despite these marginal improvements, the potential gains

of GAN-based augmentation should be carefully weighed
against the ease and proven effectiveness of traditional
augmentation techniques, which require considerably less
fine-tuning, computational power and coding resources.
Nonetheless, this comparison reinforces that GANs can
serve as an effective tool for data augmentation, offering a
comparative alternative.
The changes in performance metrics, focussing on GAN200
due to their best performance, have distinct implications for
real-world applications involving HPT blades. The improved
accuracy reflects the model’s ability to correctly classify
both failure and non-failure cases, especially given the bal-
anced nature of the dataset. Additionally, the higher AUC-
ROC indicates that the model shows improved classification
performance across different decision thresholds, rather than
at a specific point. However, arguably more important is the
enhanced recall, achieved without (frequently encountered)
loss in precision. Enhanced recall is particularly important
given the high cost associated with false negatives (failing to
recognize a failure) in critical HPT blades as this can have
severe repercussions. While trade-offs between recall and
precision are common, it is noteworthy that precision also
significant improvement. This balance between recall and
precision is often represented by the F1 score, the harmonic
mean of the two, indicating an overall enhancement in both
sensitivity and the quality of the model’s predictions for
failure modes. Overall, the enhanced mean performance
and reduced variability suggest improved and more reliable
performance if GAN-based augmentation were to be applied
in in practice.
5.3. Performance Comparison: RGB vs. RGBD
This following section present the results of the performance
comparison between unimodal RGB and multimodal RGBD
on the 3 and 4-channel ResNet-18 target models (Section
4.3). An overview of the results is summarized in Table 6.
Figure 15 displays the error bar plot with the SEM. The
results are based on the mean of 10-fold cross-validation
originating from 10 HPT blades using two-random seeds.
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Table 6
Comparison of unimodal (RGB) and multimodal (RGBD)
performance. Bold indicates improvements, with the best
performance highlighted (only two). * and ** denote statistical
significance at p < 0.05 and p < 0.1, respectively.

Metric RGB Mean (SD) RGBD Mean (SD)

Accuracy 92.88% (3.18%) 94.13%* (2.10%)
Precision 94.93% (2.81%) 95.70%* (2.59%)
Recall 90.71% (5.92%) 92.49**% (3.46%)
F1 Score 92.64% (3.52%) 94.02%* (2.16%)
ROC AUC 97.80% (1.74%) 98.40%* (1.23%)

The RGB input performance metrics, as shown in Table 6
and with RGB_None in Figure 15, shows an accuracy of
92.88% (SD = 3.18%), precision of 94.93% (SD = 2.81%),
recall of 90.71% (SD = 5.92%), F1 score of 92.64% (SD =
3.52%), and ROC-AUC of 97.80% (SD = 1.74%).
Using RGBD input, as shown in Table 6 and with RGBD_None
in Figure 15, shows that using RGBD resulted improvement
across all metrics. Accuracy increased to 94.13% (SD =
2.10%), precision to 95.70% (SD = 2.59%), recall to 92.49%
(SD = 3.46%), and F1 score to 94.02% (SD = 2.16%). The
ROC-AUC also rose to 98.40% (SD = 1.23%).

Figure 15: Error bar plot with SEM showing different evalua-
tion metrics comparing RGB versus RGBD data inputs in the
foreign object damage dataset.

It was hypothesized that using depth information from a
monocular depth estimator (MiDaS) (Section 4.2) could
enhance performance. The rationale was that this additional
depth data would enrich feature representation, enabling the
model to capture geometric properties that might be (more)
discernible in depth data (than in RGB). Even though the
depth estimates have limited resolution, they can provide
valuable contextual insights by introducing a broader range
of features that might be less noisy than the congruent RGB
data. This could help reduce overfitting and improve the
model’s robustness to variations (e.g., lighting and texture).

Supported by statistically significant improvements in accu-
racy, precision, F1, and ROC-AUC (𝛼 = 0.05) and recall (𝛼 =
0.1), the results clearly demonstrate enhanced classification
performance. Moreover, incorporating depth data not only
boosts the mean performance but also reduces variability,
leading to more reliable outcomes compared to using RGB
data alone. These findings support further research into
RGBD augmentation.
5.4. Augmentation Performance Comparison for

Foreign Object Damage
This section shows the results for the foreign object damage
dataset using the 4-channel ResNet-18 target model (Sec-
tion 4.3). The 4-channel AC-GAN (Section 4.5) is used
to synthesize RGBD data for augmentation at two levels
(similar to the obstructed hole dataset): 50% and 200%
of the original dataset size. Similar to the obstructed hole
experiments, a baseline performance without augmentation
is included for comparison, alongside traditional on-the-
fly (OTF) augmentation at 15% rotation. The results are
summarized in Table 7, with Figure 16 presenting the error
bar plot with SEM.
In No Augmentation (None), baseline performance, the
model achieves an accuracy of 93.58% (SD = 2.45), a
precision of 96.01% (SD = 2.21), a recall of 91.00% (SD =
4.63), an F1 score of 93.36% (SD = 2.64), and an AUC_ROC
of 98.26% (SD = 1.46). These values serve as the baseline
performance for evaluating the impact of the augmentation
techniques.
When applying GAN-based augmentation at 50% (GAN50),
the model shows a mixed performance relative to the base-
line. Accuracy drops to 91.62% (SD = 6.21), precision
decreases to 92.13% (SD = 9.08), recall increases to 92.80%
(SD = 4.06), the F1 score decreases to 92.05% (SD = 4.73),
and AUC_ROC declines slightly to 97.87% (SD = 1.56).
Besides recall, variability of the performance metrics tends
to increase.
At GAN-based augmentation at 200% (GAN200), there is a
trade-off in performance metrics compared to the baseline.
Accuracy increases slightly to 93.64% (SD = 2.70), preci-
sion decreases to 94.00% (SD = 2.73), recall improves to
93.27% (SD = 3.76), F1 score slightly improves to 93.60%
(SD = 2.76), and AUC_ROC is slightly lower than the
baseline at 98.09% (SD = 1.49). Similar to GAN50, besides
recall, variability tends to increase.
Applying traditional augmentation on-the-fly (OTF) results
in a less pronounced trade-off in the performance metrics.
Accuracy increases to 93.64% (SD = 3.95), precision de-
creases slightly to 95.33% (SD = 1.73), recall increases to
91.78% (SD = 7.77), F1 score remains stable at 93.36% (SD
= 4.46), and AUC_ROC is slightly lower than the baseline
at 98.10% (SD = 2.31). Besides precision, variability tends
to increase.
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Table 7
Foreign Object Damage: Comparison of augmentation techniques on classification metrics. No symbols for statistical significance
are presented as there are none; bold marks metrics exceeding the baseline, underline indicates the best performance, and values
in parentheses represent standard deviations (SD).

Augmentation Type Level Accuracy (%) Precision (%) Recall (%) F1 (%) AUC_ROC
(%)

No Augmentation (Baseline) - 93.58
(2.45)

96.01
(2.21)

91.00
(4.63)

93.36
(2.64)

98.26
(1.46)

AC-GAN Augmentation 50% 91.62
(6.21)

92.13
(9.08)

92.80
(4.06)

92.05
(4.73)

97.87
(1.56)

AC-GAN Augmentation 200% 93.64
(2.70)

94.00
(2.73)

93.27
(3.76)

93.60
(2.76)

98.09
(1.49)

Traditional Augmentation OTF 93.64
(3.95)

95.33
(1.73)

91.78
(7.77)

93.36
(4.46)

98.10
(2.31)

As can be observed in Table 7, group-based statistical tests
revealed no significant differences. Consequently, post-hoc
tests were not conducted, and no statistical significance was
assigned.

Figure 16: Error bar plot with SEM showing the different
metrics across various levels of augmentation in the foreign
object damage dataset.

Similar to the obstructed hole dataset, training the AC-GAN
on the foreign object damage dataset posed significant chal-
lenges. The primary difficulty stemmed from the generator’s
tendency to converge on a limited variety of outputs, a
common issue known as mode collapse. As the generator
optimizes its loss, it gravitates towards the distribution where
it can more easily produce realistic samples. Despite ad-
justments to hyperparameter settings, particularly with high
MBD injection, a persistent trade-off between photorealism
and diversity was observed.
Despite this training challenge, the 4-channel AC-GAN suc-
cessfully generated outputs that synthesized both RGB and
congruent depth, capturing the prominent features (Section
4.7). The synthesized outputs showed the model’s ability
to learn and represent the relationships between the blade
objects and damage as foreground objects and their back-
ground.

In terms of augmentative performance, acknowledging the
lack of statistical significance, several trends can be ob-
served. GAN50 appears to lead to overall poorer perfor-
mance (besides recall) and increased variability, suggesting
a non-linear relationship as it might fail to reach a critical
augmentation volume. However, when the augmentation
is increased to GAN200, all metrics improve compared to
GAN50, with more consistent performance. While some
metrics remain relatively unchanged (compared to baseline),
a noticeable trade-off between recall and precision appears.
When compared to the traditional augmentation method of
15% rotation, similar results appear with a slightly different
degree of trade-off between recall and precision. It should
be noted that this also did not unambiguously improve
performance.
Several factors could explain these observations. First, the
stable metrics suggest the model is already performing at
a high level, making further improvements increasingly
difficult. In terms of the trade-off, the model may be over-
fitting to noise or specific details in the training data rather
than learning generalizable features. As a result, it becomes
highly confident in its failure predictions (high precision) but
less effective at identifying all failures (low recall). When
exposed to GAN-based augmentation, which introduces
greater variability, the model may begin to generalize more
broadly. This generalization improves recall by detecting
more failures but increases the risk of misclassifying non-
failures, creating a trade-off between precision and recall.
Despite the lack of statistical significance, the observed trend
in the trade-off between recall and precision has practical im-
plications for real-world applications involving HPT blades.
In visual inspections for foreign object damage, as in cases
with obstructed holes, this trade-off may prove beneficial.
The cost of false positives is often less critical than missing
a failure, as engineers can perform secondary checks. In this
context, the additional effort required to verify false positives
is justified by the much greater risk of overlooking a potential
failure.
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6. Conclusion

Inherent subjectivity, inefficiencies, and the substantial cost
related to human-based visual inspection of HPT blades have
driven research into alternative automated techniques. The
combination of DL and CV offers a compelling alternative.
However, the large parameter space of more advanced DL
models requires large amounts of training data, which can be
both scarce and costly to obtain. This challenge has driven
research into advanced augmentation techniques leveraging
generative models.
This paper researched the hypothesis that GAN-based aug-
mentation could significantly enhance failure mode classi-
fication in HPT blades. This included: a) applying GAN-
based RGB augmentation for obstructed holes, b) introduc-
ing additional depth information from a monocular cross-
modal depth estimator for foreign object damage, and c)
building on the findings of b), introducing the approach of
GAN-based RGBD augmentation for foreign object damage.
The research utilized proprietary datasets from real HPT
blades with synthetic failure modes applied. This led to the
following key findings:
First, RGB augmentation of the obstructed holes dataset led
to a statistically significant improvement in the classification
performance, along with enhanced consistency. GAN-based
augmentation achieved results competitive with traditional
augmentation method, despite using substantially less data.
This highlights the potential of GAN-based RGB augmen-
tation for improved failure classification in HPT blade.
Second, when comparing unimodal RGB and multimodal
RGBD data for foreign object damage, depth information
was integrated using a monocular depth estimator through
4-channel concatenation. This led to a statistically significant
improvement in classification performance and enhanced
stability. This shows the potential of multimodal RGBD data
for enhanced failure classification.
Lastly, RGBD augmentation was applied to the foreign
object damage dataset. While this novel approach success-
fully generated the RGBD data, the augmentative results
did not show a significant improvement, instead revealing
a trade-off in performance. This made it similar to the
traditional on-the-fly (OTF) augmentation method rather
than offering a clear advantage. However, despite this trade-
off, the approach may still hold practical value and could
prove beneficial in other applications requiring multimodal
data.
In conclusion, this research advanced the understanding
of GAN-based augmentation and multimodal RGBD data
for failure classification in HPT blade maintenance. The
promising results suggest that further research could im-
prove their integration into automated systems, offering
valuable support for HPT blade inspections and guiding
future advancements in the field.

7. Limitations and Future Work

This research recognizes several limitations and additional
considerations, which will be described in order of the
conceptual workflow of the study. Some of these limitations,
together with other identified areas, provide a basis for future
work.
In ML and DGMs, results are highly dependent on the
specifics of the data used. In this study, balanced datasets
were synthetically created using moldable material for ob-
structed holes and brute force for foreign object damage
within a specific robotic experimental setup. While the find-
ings are promising, caution is needed when extrapolating to
non-synthetically generated datasets. Future research could
extend this work by using different robotic configurations
and unbalanced datasets of real failure modes. Additionally,
exploring various failure modes with different data volumes
and qualities could provide a better understanding of the
applicability of GAN models in real-world contexts.
MiDaS was used as a monocular depth estimator to construct
the congruent depth maps of the RGB imagery. Despite
the promising results, it is recognized that the depth maps
generated by MiDaS have limitations in quality (which
can be beneficial given the simplicity). Future work could
focus on using different cross-modal models or construct
relevant (simulated) RGBD data to further fine-tune the
(open source) MiDaS model, enhancing its performance on
datasets specific to the research
While GANs have a unique working mechanism that the-
oretically enables them to be effective even with limited
data, they are notoriously unstable and thus particularly
challenging to train. It’s important to acknowledge that
other DGMs exist with the ability to augment which might
have different, more stable, training properties given the
dataset (difficult to determine a priori). Other DGMs, such
as Variational Auto-encoders (VAEs) and Diffusion Models
have advanced notably in the past years. Although these
models may be theoretically more susceptible to low data
volumes, future research could explore their potential.
One of the more significant limitations and challenges in
DGMs, particularly in GANs, is configuring hyperparame-
ters, including the network architecture. This configuration
directly influences the quality of the synthesized data used
for augmentation. GANs, as noted, are particularly difficult
to train due to their adversarial mini-max construct. This
challenge is further compounded by the low data volumes.
Tuning these models is often still performed manually,
guided by general heuristics, making it a time-consuming
and protracted process. Future research could focus on
developing and testing robust hyperparameter optimization
strategies specifically for GANs.
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Regarding the developed model, although a broad set of
performance-enhancing methods were employed, additional
techniques like alternative loss functions (e.g., Wasser-
stein Loss), Spectral Normalization, or progressive grow-
ing (particularly valuable given the high resolution) could
further boost performance. Furthermore, future research
could refine this model by experimenting with variations in
architecture.
The results of the RGB augmentation on the obstructed
hole dataset clearly demonstrated strong potential. However,
the intermediate outcomes from the foreign object damage
dataset in the RGBD domain should not be overlooked. The
improved performance from incorporating depth informa-
tion, compared to using RGB alone, combined with the
ability to effectively generate RGBD data, opens valuable
opportunities for future research. Despite the absence of a
clear advantage (namely a trade-off) or statistical signifi-
cance in this specific dataset, the combination of RGBD data
and GAN-based techniques suggests a promising avenue for
further exploration and refinement in future studies.
Finally, an interesting direction for future research is to
explore feature fusion GAN models as an alternative to
traditional pixel-level GAN models. Instead of approximat-
ing the distribution of the original data at the pixel level,
this approach would focus on reconstructing an intermediate
network layer where features have already been extracted.
This method could be particularly valuable not only for RGB
models but also for RGBD, where the features of both RGB
and depth are already fused, potentially allowing for more
efficient and effective augmentation.
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Nomenclature
AC-GAN Auxiliary Classifier GAN
AET Acoustic Engine Testing
ARM Auto Regressive Model
BCE-loss Binary-Cross Entropy loss
CE-loss Cross Entropy loss
CNN Convolutional Neural Network
CV Computer Vision
cGAN Conditional Generative Adversarial Network
D Discriminator
DEO Differential Evolution Optimizer
DGM Deep Generative Model
DL Deep Learning
DNN Deep Neural Network
EBM Energy Based Model
FOD Foreign Object Damage
GAN Generative Adversarial Network
GenX General Electric Next Generation
G Generator
HPT High Pressure Turbine
ITT Infrared Thermography Testing
KLM Royal Dutch Airline
LVM Latent Variable Model
MPT Magnetic Particle Testing
NLR Royal Netherlands Aerospace Centre
OH Obstructed Holes
PD Preventative Maintenance
PdM Predictive Maintenance
RGB Red Green Blue
RGBD Red Green Blue Depth
RM Reactive Maintenance
VAE Variational Autoencoder
AUC Area Under the Curve - Receiver Operating Charac-

teristic
HPT High-Pressure Turbine
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ML Machine Learning
CV Computer Vision
OTF On The Fly
SEM Standard Error of the Mean
ResNet Residual Network
OH Obstructed Hole
FOD Foreign Object Damage
TTUR Two Timescale Update Rule
ReLU Rectified Linear Unit
LES Label Embedding Space
DC Deep Convolutional
Grad-CAM Gradient-weighted Class Activation Mapping
Formulas
𝑃 (𝑥) Probability distribution of data 𝑥

𝑃 (𝑧) Probability distribution of latent variable 𝑧, typically
a standard Gaussian

𝑥𝑖 Individual data point in a sequence
ℝ𝑑 → ℝ𝑑 Space to space mapping
𝜃𝐷 Parameters of the Discriminator
𝜃𝐺 Parameters of the Generator
𝑁 Batch size
𝑥(𝑖) Real data samples
𝑧(𝑖) Noise samples
𝑥′ Generative domain
𝔼 Expected value
 Loss function
𝑃 (𝑦|𝑥) Conditional probability of 𝑦 given 𝑥

𝐺(𝑧)
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A. Pseudo-code Auxiliary Classifier Generative Adversarial Network

Algorithm 1 offers a simplified overview of the core learning process in an AC-GAN. Unlike a standard GAN, this code
incorporates a class-based differentiation loss within the discriminator, which plays a crucial role in updating both the
discriminator and the generator.
Algorithm 1 Minibatch stochastic gradient descent training of Auxiliary Classifier GANs

for number of training epochs do
Sample minibatch of 𝑚 real examples {(𝑥(1), 𝑐(1)),… , (𝑥(𝑚), 𝑐(𝑚))} from the data distribution 𝑝𝑑𝑎𝑡𝑎(𝑥, 𝑐)Sample minibatch of 𝑚 noise samples {𝑧(1),… , 𝑧(𝑚)} from noise prior 𝑝𝑔(𝑧)
Generate minibatch of 𝑚 fake examples {𝐺(𝑧(1), 𝑐(1)),… , 𝐺(𝑧(𝑚), 𝑐(𝑚))} using the Generator
Update the Discriminator:

Compute Discriminator real adversarial loss: 𝑑𝑖𝑠𝑐_𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙_𝑟𝑒𝑎𝑙_𝑙𝑜𝑠𝑠
Compute classification loss for real examples: 𝑑𝑖𝑠𝑐_𝑐𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑟𝑒𝑎𝑙_𝑙𝑜𝑠𝑠
Compute total real loss: 𝑑_𝑙𝑜𝑠𝑠_𝑟𝑒𝑎𝑙 = 𝑤1 × 𝑑𝑖𝑠𝑐_𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙_𝑟𝑒𝑎𝑙_𝑙𝑜𝑠𝑠+𝑤2 × 𝑑𝑖𝑠𝑐_𝑐𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑟𝑒𝑎𝑙_𝑙𝑜𝑠𝑠
Compute Discriminator fake adversarial loss: 𝑑𝑖𝑠𝑐_𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙_𝑓𝑎𝑘𝑒_𝑙𝑜𝑠𝑠
Compute classification loss for fake examples: 𝑑𝑖𝑠𝑐_𝑐𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑓𝑎𝑘𝑒_𝑙𝑜𝑠𝑠
Compute total fake loss: 𝑑_𝑙𝑜𝑠𝑠_𝑓𝑎𝑘𝑒 = 𝑤3 × 𝑑𝑖𝑠𝑐_𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙_𝑓𝑎𝑘𝑒_𝑙𝑜𝑠𝑠 +𝑤4 × 𝑑𝑖𝑠𝑐_𝑐𝑙𝑎𝑠𝑠._𝑓𝑎𝑘𝑒_𝑙𝑜𝑠𝑠
Total Discriminator loss: 𝑑_𝑙𝑜𝑠𝑠_𝑡𝑜𝑡𝑎𝑙 = 𝑑_𝑙𝑜𝑠𝑠_𝑟𝑒𝑎𝑙 + 𝑑_𝑙𝑜𝑠𝑠_𝑓𝑎𝑘𝑒
Update the Discriminator by backpropagating 𝑑_𝑙𝑜𝑠𝑠_𝑡𝑜𝑡𝑎𝑙

Update the Generator:
Compute Generator adversarial loss: 𝑔_𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙_𝑙𝑜𝑠𝑠
Compute classification loss: 𝑔_𝑐𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑙𝑜𝑠𝑠
Total Generator loss: 𝑔_𝑙𝑜𝑠𝑠_𝑡𝑜𝑡𝑎𝑙 = 𝑤5 × 𝑔_𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙_𝑙𝑜𝑠𝑠 +𝑤6 × 𝑔_𝑐𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑙𝑜𝑠𝑠
Update the Generator by backpropagating 𝑔_𝑙𝑜𝑠𝑠_𝑡𝑜𝑡𝑎𝑙

end for

B. Additional Material Differential Evolution Optimizer

Figure 17 presents a flowchart that outlines the algorithm underlying the DEO, including the steps of initialization, mutation,
crossover, and selection of the best fit. The optimizer terminates when a stopping condition is met, which occurs either when
the maximum number of objective evaluations is reached or when the standard deviation of the population (a measure of
spread) falls below a relative tolerance, defined as a fraction of the absolute value of the population mean. It’s important
to note that the term ’optimal solution’ here refers to the algorithm approaching the optimal solution based on the stopping
condition, rather than guaranteeing its exact attainment.

Figure 17: Flowchart of the Differential Evolution (DE) algorithm, illustrating the key steps: Initialization, Mutation, Crossover,
Selection, and the evaluation of the stopping condition.
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Table 8 lists the DEO parameters: Best1bin strategy, empirically set population size and iterations, balanced tolerance,
mutation, and recombination, with Polish step disabled due to computational constraints.

Table 8
Configuration Parameters for the Differential Evolution Optimization Process

Parameter Value

Strategy best1bin
Max Iterations 10
Population Size 15
Mutation Range (0.3, 0.6)
Recombination 0.6
Tolerance 0.1
Display True
Polish False
Callback evolution_callback

Figure 18 illustrates the evolutionary process within the search space across the dimensions of epoch, batch size, and learning
rate, highlighting the balance between exploration and exploitation throughout the optimization. The best solution vector is
depicted with a red circle.

(a) (b) (c)
Figure 18: Visual overview of the hyperparameter optimization algorithm applied to the obstructed holes dataset (a), the foreign
object damage dataset using RGB (b), and the foreign object damage dataset using RGBD (c).

C. Additional Material Auxiliary Classifier Generative Adversarial Network
Table 9 represent the preprocessing steps used in the AC-GAN.

Table 9
Image Preprocessing and Augmentation Techniques

Transformation Description
Random Horizontal Flip (only obstructed hole) Randomly flip the image horizontally with a probability of 0.5.
Random Vertical Flip (only obstructed hole) Randomly flip the image vertically with a probability of 0.5.
Random Rotation (only foreign object damage) Rotate the image by up to 5 degrees.
Resize (redundanct as already 224 by 224) Resize the image to 224x224 pixels.
ToTensor Convert the image to a tensor.
Normalize RGB channels Normalize with mean = [0.5, 0.5, 0.5] and standard deviation

= [0.5, 0.5, 0.5].
Normalize depth channel (only foreign object damage) Normalize with mean = [0.5] and standard deviation = [0.5].
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Table 10 shows the exact epochs at which the generator weights are taken to be used for data synthesis.

Table 10
Epochs were manually selected based on visual inspection, identifying the point where the generated output best resembles the
original data.

Fold 1 2 3 4 5 6 7 8 9 10

obstructed hole 84 84 90 84 108 102 114 84 78 114
foreign object damage 39 72 33 51 57 72 63 27 51 66

Figure 19 illustrates examples from the training process of the obstructed hole dataset, showcasing the top five non-failure
and bottom five failure cases, to provide insight into the outputs generated by the AC-GAN. Note, the differences are nuanced
and can be seen upon close examination.

Figure 19: Example of the training progress in the obstructed holes. It can be observed that the brown characteristic spots, though
subtle, are visible in the failure set (and not in the non-failure set) upon closer inspection.
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Figure 20 presents examples from the training process on the foreign object damage dataset. Rows 1-3 display non-failure
RGB cases, rows 4-6 show failure RGB cases, rows 7-9 depict non-failure depth cases, and rows 10-12 illustrate failure depth
cases. These examples offer insight into the outputs generated by the AC-GAN.

Figure 20: Training progress examples for the foreign object damage dataset reveal distinct patterns: the non-failure class converges
into more uniform black shapes, while the failure classes progressively become more distinct and recognizable. Over time, the
coating transitions to a damaged alloy, with light reflecting on the damaged alloy.
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