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Abstract. In this paper we present a Bayesian logistic regression analysis. It is found that if
one wishes to derive the posterior distribution of the probability of some event, then, together
with the traditional Bayes Theorem and the integrating out of nuissance parameters, the Jacobian
transformation is an essential added ingredient. The application of the product rule gives the
posterior of the unknown logistic regression coef�cients. The Jacobian transformation then maps
the posterior of these regression coef�cients to the posterior of the corresponding probability of
some event and some nuisance parameters. Finally, by way of the sumrule the nuissance parameters
are integrated out.
Keywords: Regression, Logistic Regression
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INTRODUCTION

A literature search on Bayesian logistic regression models will give one a collection of
Monte Carlo schemes. In these schemes the posterior of the beta coef�cients of the logis-
tic regression model are constructed and sampled from. Each Monte Carlo realization of
a set of regression coef�cients corresponds with a probability of some event occurring.
So, having obtained a set of realizations of the regression coef�cients, we also obtain a
corresponding set of realized probabilities. These probabilities then constitute an empir-
ical probability distribution of the probability of some event. These procedures may be
viewed as the Monte Carlo implementation of the Jacobian transformation method.

To the best of our knowledge, it is nowhere in the literature mentioned that the Monte
Carlo schemes are the solution to a Jacobian transformation problem. Thus, we are of the
believe that the here presented approach has some pedagogical merit. By applying the
Jacobian transformation to the posterior of the logistic regression coef�cients we may
obtain an analytical expression of the posterior of the probability of some event. This
expression may then be evaluated either numerically or by way of the above described
Monte Carlo schemes. That is, we give here the analytical model which the Monte Carlo
approach seeks to implement. And, as a rule, analytical models are easier to understand
than their corresponding Monte Carlo implementations.

Furthermore, the Jacobian transformation approach may be seen as a general way to
derive a class of beta-like distributions whichnot only take into account the number of
successes and failures, but also, for example, the values on predictor variables or timeto
failures. The former gives the logistic regression analysis and is treated in the main text
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of this paper. The latter gives a generalization of the third example of Jaynes’ [1], which,
although already derived in [2] and further generalized in [3], will be given here as an
appendix. So as to give the reader a better sense of the overall scope of the here proposed
technique.

THE MODEL

Say we have a logistic probability model for a ‘success’, that is, a certain event happen-
ing:

log
θ

1−θ
= β0 + zβ1 (1)

where z is some given value of some predictor, and β0, β1 are unknown regression
parameters. Then the probability of a success is

θ =
eβ0+zβ1

1+ eβ0+zβ1
(2)

Its complement, the probability of a ‘failure’, that is, a certain event not happening:

1−θ =
1

1+ eβ0+zβ1
(3)

THE LIKELIHOOD, PRIOR, AND POSTERIOR

We observe a sequence of r sucesses having observed predictors xi, for i= 1, . . . ,r, and
n− r failures having observed predictors y j, for j = 1, . . . ,n− r. From (2) and (3), it
follows that the probability of observing r sucesses and n− r failures, or, equivalently,
the likelihood of the unknown parameters β0 and β1, is

p(D|β0,β1) =
r

∏
i=1

eβ0+xi β1

1+ eβ0+xiβ1

n−r

∏
j=1

1
1+ eβ0+y jβ1

(4)

Next, we assign as a prior some uniform distribution to the unknown regression param-
eters β0 and β1

p(β0,β1| I) ∝ constant (5)

The posterior of β0 and β1, then may be found by combining likelihood, (4), with
prior, (5):

p(β0,β1|D, I) ∝
r

∏
i=1

eβ0+xiβ1

1+ eβ0+xiβ1

n−r

∏
j=1

1
1+ eβ0+y jβ1

(6)

Now, we are not that much interested in the regression parameters β0 and β1, we want
to �nd the posterior probability distribution of the probability θ . We observe, (2), that,
for given z, the value of θ is directlydetermined by the values of both β0 and β1. Because
of this two-to-one correspondence we may make a Jacobian transformation from β0 and
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β1 to θ and, so, map the uncertainty regarding the regression parameters β0 and β1 unto
the parameter of interest, θ , which is the probability of a success given some predictor
value z.

THE JACOBIAN TRANSFORMATION

We have that, (2),

θ =
eβ0+zβ1

1+ eβ0+zβ1

So, a possible transformation would be

β0 = − log
(
1−θ

θ
ezβ1

)
, β1 = b1 (7)

The corresponding Jacobian is

J =

∣∣∣∣∣
∂

∂θ β0
∂

∂b1
β0

∂
∂θ β1

∂
∂b1

β1

∣∣∣∣∣ =

∣∣∣∣
1

θ(1−θ) −z
0 1

∣∣∣∣ =
1

θ (1−θ)
(8)

Substituting (7) into the posterior (6) and multiplying it with the Jacobian (8) gives us
the transformedposterior

p(θ ,b1|z,D, I) ∝
1

θ (1−θ)

r

∏
i=1

θ
1−θ e

(xi−z)b1

1+ θ
1−θ e(xi−z)b1

n−r

∏
j=1

1

1+ θ
1−θ e

(y j−z)b1
(9)

If we (numerically) integrate the unwanted parameter b1 out of (9), we get the posterior
of the probability θ , (2), given some predictor value z, and we have the Bayesian logistic
regression model we are looking for

p(θ |z,D, I) =
∫
p(θ ,b1|z,D, I)db1 (10)

A SPECIAL CASE

For non-informative data, that is, for predictors which all have the same value, z= xi =
y j, for i= 1, . . . ,r and j = 1, . . . ,n− r, the terms in the exponentials in (9) all become 0,
and the posterior distribution for θ collapsesto the ordinary beta-distribution:

p(θ |z,D, I) ∝
1

θ (1−θ)

r

∏
i=1

θ
1−θ

1+ θ
1−θ

n−r

∏
j=1

1
1+ θ

1−θ

∫
db1

∝ θ r−1 (1−θ)n−r−1 (11)

This is in nice correspondence with our intuition. If the predictors are non-informative,
in that they ‘�at-line’, then the onlypertinent aspect of our data D which remains is the
number of successes, r, and the number of failures, n−r, and these are just the suf�cient
statistics of the beta-distribution (11).
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DISCUSSION

We have presented here a Bayesian logistic regression analysis. It is found that if one
wishes to derive the posterior distribution of the probability of some event, then, together
with the traditional Bayes Theorem and the integrating out of the nuisance parameters,
the Jacobian transformation is an essential added ingredient. Furthermore, the beta-
distribution may be derived as a special case of this Bayesian logistic regression analysis,
where the predictors are non-informative, in that they �at-line.

SOME ENCOUNTERED CRITICISMS

Now, once seen, the analytical solution of the Bayesian logistic regression model may
seem too trivial to mention. We can only besympathetic to the fact that for those who
are under this impression the following criticisms will be quick to come to mind. And
we will try to defend our position on these issues as best we can.

One of the criticisms heard during the presentation of this article was that this
Bayesian logistic regression analysis had already been derived. Though what was ac-
tually meant was that the posterior (6) for the unknown logistic regression coef�cients
has been derived many times over. But this misses the point. We do not propose a to
derive a new kind of posterior for the logistic regression coef�cients. Rather, we wish
to show how, given the posterior (6), we may come to an analytical expressionof the
Bayesian logistic regression model; (7) through (10). It is our belief that until now the
Monte Carlo schemes were solutions to a problem which had not yet been properly ar-
ticulated. Once we have established the analytical model we wishto implement it is easy
to see that the Monte Carlo schemes, as described in the introduction, are just one of
three ways to implement the model; the second way being a direct evaluation of (10) by
way of numerical integration; the third way being an evaluation of the �rst four moments
of (2), by way of (6), which then may be substituted in an maximum entropy distribution
by way of the Jondeau algorithm, [4] and [5].

Another criticism, in the same vein, was that Jacobian transformations are performed
routinely in a Bayesian context, [6] and [7]. But then again, Jacobian transformations are
also performed routinely in an orthodox context, [8] and [9]. And this then, we believe,
misses the point that the necessity of having to make a change of variables will probably
elude those who try their hand at a Bayesian logistic regression analysis for the �rst
time. Just as it has managed to elude these authors for the past ten years, and, for that
matter, so it may seem, many others. Seeing that a google search on the words “Jacobian
transformation” and “Bayesian logistic regression analysis” did not produce any articles
with the here presented change of variables procedure.

So, what we have endeavored to do here is to write down the derivation of the
Bayesian logistic regression analysis in such manner as we ourselves would have liked
to �nd it in the text books some ten years ago, when the need for such an analysis �rst
arose; that is, short and sweet.
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ANOTHER BETA-LIKE DISTRIBUTION

The posterior (6) is a beta-like distribution in that it takes into account the number of
observed successes and failures, (4), and its domain is constricted to 0 ≤ θ ≤ 1. More
beta-like distributions may be derived by making either a simple change of variable or a
Jacobian transformation, [2] and [3]. We will now proceed to give the derivation of [2]
in terms of [1]; the article that started it all.

The Problem

Jaynes gave in [1] as of his worked out examples the Bayesian solution to the fol-
lowing problem: “The probability thata certain machine will operate without failure for
a time t is, by hypothesis, e−λ t , 0 ≤ t ≤ ∞. We test n units for a time t, and observe r
failures; what assurance do we have that the mean life τ exceeds a preassigned value
τ0?”

The Model

By assumption, the probability of a failure exactly at time ti is

p(τ = ti) = λe−λ tidt (12)

and the probability of no failure until time s j is

p
(
τ ≥ s j

)
=

∫ ∞

s j
λe−λτdτ = e−λ s j (13)

Note that in Jaynes’ problem de�nition all the s j = t, for j = 1, . . . ,n− r.

The Likelihood, Prior, and Posterior

We observe a sequence of r failures having observed failure times ti, for i = 1, . . . ,r,
and n − r non-failures having observed failure-free times s j, for j = 1, . . . ,n − r.
From (12) and (13), it follows that the probability of r failures and n− r non-failures at
the observed times, or, equivalently, the likelihood of the unknown parameter λ , is

p(D|λ ) =
r

∏
i=1

λe−λ tidt
n−r

∏
j=1
e−λ s j (14)

As a prior for the failure rate λ , Jaynes proposes two priors. First the “ridiculously
pessimistic” prior

p(λ | I) ∝ constant (15)
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which, through a change of variable to the failure time τ = λ−1, dτ =
∣∣−λ−2∣∣dλ =

λ−2dλ , can be seen to correspond with the prior

p(τ| I)dτ ∝ λ 2dτ = τ−2dτ (16)

Inspecting (16), we can see why Jaynes dubbed (15) to be ridiculously pessimistic.
Through the second power in (16), small failure times are overly probable, relative to
the standard uninformative Jeffreys’ prior for τ:

p(τ| I) ∝ τ−1 (17)

Note, as an aside, that this uninformative prior (17) would have followed automatically,
had we taken for λ the equally uninformative (Jeffreys’) prior:

p(λ | I) ∝ λ−1 (18)

Such is the internal consistency of the Jeffreys’ prior. Uninformativeness regarding
λ automatically implies uninformativeness for its transformation τ = λ−1. However,
Jaynes takes as his second prior not (18). Rather he insteadgoes for the “reasonable
prior”:

p(λ | I∗) = t∗e−λ t∗ (19)
where t∗ is the prior expected mean life of the units under consideration.
The rational for this prior is as follows, [1]: “In ‘real life’ we usually have excellent

grounds based on previous experience and theoretical analyses, for predicting the gen-
eral order of magnitude of the lifetime in advance of the test. It would be inconsistent
from the standpoint of inductive logic, and wasteful economically, for us to fail to take
this information into account. Suppose that initially, we have grounds for expecting a
mean life of the order t∗; or a failure rate of about λ ∗ = (t∗)−1. However the prior infor-
mation does not justify our being to dogmatic about it; to assign a prior centered sharply
about λ ∗ would be to assert so much prior information that we scarcely need a test. Thus,
we should assign a prior that, while incorporating the number t∗, is till as ‘spread out’ as
possible in some sense. Using the criterion of maximum entropy, we choose that prior
density p(λ ) which, while yielding an expectation equal to λ ∗, maximizes the ‘measure
of ignorance’ H = −

∫
p(λ ) log p(λ )dλ . The solution is: p(λ ) = t∗e−λ t∗ .”

Combining the likelihood (14) with either prior (15) or prior (19), the posterior for λ
is found to be

p(λ |D, I) = T
(λT )r

r!
e−λT (20)

For the ridiculously pessimistic prior (15) we have that T is de�ned as

T =
r

∑
i=1
ti+

n−r

∑
j=1
s j (21)

the actual observed total unit-time of failure free operation. Whereas for the reasonable
prior (19) we have that T is de�ned as

T =
r

∑
i=1
ti+

n−r

∑
j=1
s j+ t∗ (22)
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the observed plus prior expected total unit-time of failure free operation.

Jaynes’ Solution of the Problem

We quote Jaynes: “. . . we note that if λ were known, then by our original hypothesis
[in the problem statement] the probability that the lifetime τ of a given unit is at least τ0,
is

p(τ ≥ τ0|λ ) = e−λτ0 (23)
“The probability that τ ≥ τ0, conditional on the evidence of the test, is therefore

p(τ ≥ τ0| ,D, I) =
∫ ∞

0
e−λτ0 p(λ |D, I)dλ =

(
T

T + τ0

)r+1
(24)

“. . . a result which is simple, sensible, and as far as I can see, utterly beyond the reach of
orthodox statistics.”

Now, the idea for the Jacobian transformation, or, in this case, the change of variable,
procedure was directly inspired by (24). Looking at this equation it was felt that the
probability p(τ ≥ τ0| ,D, I) had the form of the expectation value E

(
e−λτ0

)
. This then

begged the question if there also was a variance var
(
e−λτ0

)
. Having established that

this was indeed the case, it followed automatically that θ = e−λτ0 should admit its own
probability distribution. Once this was realized, it was just a small step to �nd the explicit
distribution of θ by way of a change of variable.

The Change of Variable Solution

The probability of interest is, (23):

θ = e−λτ0 (25)

In order to �nd the explicit beta-like posterior distribution of θ we make the following
change of variable

λ = −
logθ

τ0
, dλ =

∣∣∣∣− 1
θτ0

∣∣∣∣dθ =
1

θτ0
dθ (26)

Substituting (26) in (20), we �nd

p(θ |τ0,D, I) =

(
T
τ0

)r+1 (− logθ)r

r!
θ (T−τ0)/τ0 (27)

It may be checked that the mean of (27) is (24)

E (θ) =
∫ 1

0
θ p(θ |τ0,D, I)dθ =

(
T

T + τ0

)r+1
(28)
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Now, seeing that Jaynes himself, the modern father of all things Bayesian, stopped
at (24), instead of forging ahead to (27), seems to us an indication that the whole change
of variable argument is not that trivial. It is not earth shattering either. It is just a pointer
to the usefulness of transformations when we wish to determine the beta-like posteriors
of probabilities θ ({φ}) , which are a function of a set of unknown parameters {φ} for
which we have some posterior distribution, p({φ}|D, I).

Some Closing Thoughts

Now, if we try the change of variable procedure on a Poisson probability of observing
m events in a given period,

θ = p(m|λ ) =
λm

m!
e−λ (29)

then we will �nd that no change of variable can be made, as λ cannot be rewritten as a
closed expression of θ . However, what we can do, if we have some posterior p(λ |D, I),
is compute the �rst four moments of (29) and substitute these moments into a maximum
entropy distribution, by way of the Jondeau algorithm, [4] and [5]; thus,approximating
the intractable change of variable distribution.
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