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Summary

Can you imagine how many networks you are on, when you check your Facebook or
Twitter on a train? Your brain network guides your behavior and your metabolic

network offers you energy. You and other passengers form a social network. Be careful,
a virus may be spreading on the social network in your carriage! When you use your
phone or laptop to access Facebook or Twitter, your devices are on Internet, your profiles
are on the World Wide Web (WWW) and electricity is supplied by the electric power
grid to your devices. Moreover, Facebook and Twitter are considered to be online social
networks. Now, your phone is ringing, yes, you are on a communication network! Wait,
wait. . . you are on a train, which is a part of a transportation network. Amazingly,
complex networks have become a necessary part of our everyday life. This thesis opens
with an introduction to the history of complex network studies and the essential primary
knowledge, such as network metrics, network models and dynamic processes. Motivated
by a better understanding of real networks, researchers explore the properties observed
in real topologies. Plenty of metrics have been proposed to quantify the properties of
networks, and further to characterize networks.

An essential question arises: “How can we characterize our networks more efficiently
and sufficiently?”. For example, we can characterize a real network from different aspects:
whether the network is well connected; whether the nodes in the network are near to each
other; whether the neighbors of a node also tend to be neighbors; whether the nodes with
similar degree are connected; whether the network is vulnerable to virus attacks, etc. If
we use a number of metrics to characterize a network, is there any redundancy? However,
if we only use one metric, is it sufficient to describe the network? Part I addresses the
issues of selecting a representative set of metrics to efficiently and sufficiently characterize
a network. The metric correlation pattern in studied functional brain networks is verified
to be consistent with what we found in the Erdős-Rényi random graph model. Besides
characterizing the whole network, quantifying the nodes in a network is also important.
For example, when two companies compete for customers, they both try to prevail on in-
fluential customers to use their products. When they adopt different marketing strategies
to select the influential customers, the competition results will be different. Which cus-
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tomers should be selected as the “Very Important Persons (VIP)”: the customers with a
lot of friends, the customers with a high reputation, the ones possessing impressionable
friends or just random ones? Part I also studies the centrality metrics which are used to
rank the importance of nodes. The correlations between centrality metrics are explored
in network models and real-world networks. In addition, the centrality metrics are ap-
plied to an opinion dynamic process to help one opinion win the competition between two
opinion groups. We show that the nodes in a network could be characterized efficiently
by using a low-complexity metric to approximate a correlated high-complexity centrality
metric.

A better understanding of the network characteristics could give rise to a better
grasp on its dynamical and functional behavior. We compare two susceptible-infected-
susceptible (SIS) mean-field approximations, with an ε–SIS model as the benchmark. The
N-intertwined mean-field approximation (NIMFA) is shown to be a better approximation.
A particular spectral metric, the spectral radius, is considered a better quantifier of the
robustness to virus propagation in complex networks than the degree diversity. Part II
mainly focuses on how we can make our networks less vulnerable to viruses. Minimizing
the spectral radius could increase the epidemic threshold. Several approaches to enhance
the epidemic threshold are presented in Part II. Spectral radius minimization by link
or node removal is an NP-hard problem. The strategy that removes the links with the
largest products of components of the principal eigenvector is shown to be superior to
other strategies in most cases. Bounds for the decrease of the spectral radius by link
or node removal are provided. Epidemics have so far been mostly studied in undirected
networks. However, many real-world networks, such as online social networks and the
WWW, on which information, emotion or malware spreads, are directed networks. Part
II proposes two algorithms to generate directed networks with a given directionality. We
declare that the epidemic threshold could be enlarged by raising the directionality of a
directed network, via link rewiring or link resetting.

Finally, we conclude the main results, list the contributions of this thesis and suggest
some research problems for further works.

Cong Li
Delft, April 2014
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CHAPTER 1

Introduction

“Everything existing in the universe is the fruit of chance and
necessity.”

Democritus, c. 460 - c. 370 B.C.

1.1 Why Studying Complex Networks

The whole universe is organized by all kinds of systems. Scientists are interested in
what the systems are composed of, how the components in the systems are connected

together, how the systems behave, etc. However, the systems are too complicated to be
understood, since a component in a system might be a complex system. To make the
problems simpler, researchers ignore the intricacy of individuals and consider a given sys-
tem as a network, by presenting the components as the nodes and the connections as the
links. The profound knowledge of complex networks will provide a strong foundation for
understanding the systems, or even the universe. Scientists analyze, model and under-
stand networks by using tools from wide range of research fields, such as mathematics,
computations, statistics, or even medicine and engineering. The six degree of separation
theory has revealed the small-world phenomenon in our life. The “rich get richer” gener-
ative model has been proposed as mechanism to explain the power-law degree distribution
in real networks. The average shortest path length in the human functional brain net-
work has been shown to be negatively correlated with IQ. The casualty of power outage
caused by a cascading failure has inspired researchers to investigate how to strengthen
the robustness of systems in our daily life. Although researches of complex networks are
various, they all illuminate that the complex network theory is a useful tool to explore
the unknown world. Therefore, if you are interested in a system, you can transform it
into a network, then you will find out that a number of methods are available to help you
analyze and understand your system.
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Figure 1.1: (a) Map of Königsberg’s in Euler’s time, with seven bridges joining the mainlands.
The seven bridges of Königsberg problem was to find a walk through the city that would cross
each of the seven red bridges once, and only once. Every bridge must be crossed completely every
time. The starting point and the ending point can be any mainland. (b) Euler simplified the
problem into a graph traversal problem and proved that the problem has no solution. To fulfill
the requirement, every node in the graph, except possibly the starting and the ending nodes visited,
should be connected by an even number of bridges. However, the numbers of links passing through
the four nodes in (b) are all odd.

1.2 History of Complex Networks
From the communication networks to electric power grids, from the interconnected com-
puter networks (Internet) to the World Wide Web (WWW), and from the social networks
to the economic networks, complex networks have been pervading all of our daily life. The
structure of complex networks has been mainly studied by mathematical graph theory.
The basic idea is that a network consists of a set of items, which we call nodes, with
connections between them, called links.

Graph theory was born in 1735, when Leonhard Euler published the solution of the
Königsberg bridge problem, as illustrated in Fig 1.1. The historically notable problem
shows the strength of graph theory, simplifying the complex real-world networks into a
basic model. The study of graph theory usually focuses on the strong relation between
the network structures and the network properties. In the 1960s, two Hungarian math-
ematicians, Paul Erdős and Alfréd Rényi, successfully combined the concepts of graph
theory with probability theory, and established a new branch of graph theory—random
graph theory [1, 2].

Meanwhile, besides the developments of mathematical graph theory, researchers had
made breakthrough in unraveling the properties of social networks with experimental
methods. The most famous one is the small-world experiment conducted by Stanley
Milgram, which concluded that people in the United States are separated by six people
on average in a 1969’s report [3]. The “six degrees of separation” suggests that human
society has a small-world property. To verify the accuracy, some small communities, such
as mathematicians and actors, had also done some small-world experiments. In the same
year, a mathematician Casper Goffman defined the Erdős number1, which describes the

1Erdős number can be calculated on website: http://www.oakland.edu/enp/compute/
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“collaborative distance” between a mathematician and Paul Erdős. The distribution of
Erdős number is that, with a mean Erdős number of 4.65, almost everyone has an Erdős
number of less than 8.

Table 1.1: Kevin Bacon Number

Kevin Bacon No. # of People
0 1
1 2822
2 327146
3 1132453
4 283932
5 21784
6 2324
7 260
8 20

The Kevin Bacon Number2 is an applic-
ation of the same idea to the movie industry,
connecting actors to Kevin Bacon in the
smallest number of links possible. Two act-
ors are linked together if they’ve been in
one movie together. For instance, Jackie
Chan and Gary Oldman both appeared in
the movie “Kong Fu Panda 2 (2011)”, Gary
Oldman and Kevin Bacon cooperated in the
movie “Criminal Law (1988)”, but Jackie
Chan and Kevin Bacon have never acted to-
gether, thus, Jackie Chan has a Kevin Bacon

number of 2. The average Kevin Bacon number is only 3.002. The following decades had
witnessed the crucial conversion of the exploration of complex networks. The research
interests were shifting from small networks to large-scale networks, and from regular and
static networks to irregular, complex and dynamic real-world networks. The most striking
motivation is the Internet [4] and WWW [5] use, which is an essential part of our life,
increased rapidly from the middle of 1990s. Thanks to these changes, the approaches for
network analysis had very fruitful improvements. The development of statistical methods
and computer technology provided supports for analyzing the large-scale networks. At
the end of twentieth century, two papers, that by Watts and Strogatz on small-world
networks [6], appeared in Nature in 1998, and that by Barabási and Albert on scale-free
networks [7], stood out as one of the notable milestones in the field of network theory.
These two master pieces in network theory offer the possibility to study the properties of
large databases of real-world networks.

Since the beginning of 2000s, thousands of papers and several popular scientific books
[8, 9, 10, 11, 12, 13, 14] have appeared on the modern theory of complex networks. These
books mainly focused on the following aspects: the structure and function of complex
networks, the modeling of real-world networks, and various dynamical processes in net-
works. A large number of new measures have been developed to characterize network
properties, including the clustering coefficient [15, 16, 13], the assortativity [17, 18], the
spectral properties (such as the graph resistance [19]) and the centrality measures (such
as the k-shell [20, 21], the leverage [22] and the degree masses [23]). These measures lead
to a better understanding of the structure of complex networks, as well as give important
insights into the dynamical and functional behaviors in networks. Moreover, the net-
work science has been applied to broader fields. Statisticians apply the opinion model to
predict the results of US presidential elections [24]. Neurologists create functional brain
networks with brain magnetic activity records and use properties of brain networks to
predict brain functioning such as cognitive performance [25, 26, 27, 28]. Epidemiologists
are interested in the virus spreading processes in populations [29, 30, 31]. Recently, the
study of complex networks has been expanded to networks of networks [32]. The topology
[33], the spectral measures [34, 35] and the robustness [32, 36] of interdependent networks
are studied.

2Kevin Bacon Number can be calculated on website: http://www.cs.virginia.edu/oracle/
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1.3 Problem Statement
Researchers have proposed abundant various metrics to characterize networks from dif-
ferent perspectives. Previous studies of the network metrics contribute insights into the
properties of complex networks. However, we can not take into account all properties of a
real network when we characterize a network. We also have no idea which metrics are the
most important and essential ones for characterizing a network. Thus, we are interested
in how to select a set of representative metrics to characterize networks both efficiently
and sufficiently. Moreover, characterizing the nodes in a network is also essential for
understanding the structure of networks. How to characterize nodes efficiently is still an
open problem. This thesis will explore the low-complexity metrics that can be used to
approximate a high-complexity centrality metrics. Furthermore, the structure of a net-
work affects the functions of the network, which are quantified by the metrics. Hence,
we aim to design the structure of networks to make networks possess better functions
(such as the ability of suppressing virus spreading). The goal of this thesis is to produce
a framework to help address the mentioned issues.

1.4 Thesis Outline
The outline of the thesis is schematically illustrated in Figure 1.2. The thesis consists
of eight chapters and is structured into two main parts: network characterization and
network design.

• Chapter 1 (current) first presents the reasons for studying complex networks and the
history of complex networks. The problem statement for the research of this thesis is
also given. Then, we introduce our framework to study the network characterization
and design.

• Chapter 2 is meant as an introductory chapter to complex networks. It exposes the
necessary primary knowledge to understand complex network theory. The network
metrics, network models and dynamic processes are introduced in this chapter.
The metrics are classed into three taxonomies: the structural metrics, the spectral
metrics and the centrality metrics. The models used in the thesis are introduced in
detail. Moreover, two dynamic processes discussed in this thesis are also presented
in this chapter.

1.4.1 Part I: Network Characterization

In this part, we study how to characterize a network with a given degree distribution
both sufficiently and effectively, and which high-complexity centrality metric could
be approximated by a strongly correlated low-complexity one. We also try to point
out which approximation for the epidemic threshold is better.

• Chapter 3 investigates the correlations between structural and spectral metrics.
We present how to choose a representative set of metrics to characterize a network
with a given degree distribution. The spectral metrics are shown to be essential
for network characterization. We also verify the metric correlations in unweighted
functional brain networks.
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Figure 1.2: Schematic depiction of the present thesis.

• Chapter 4 further explores the correlations between centrality metrics by the Pear-
son correlation coefficient and the centrality similarity. The properties of the prin-
cipal eigenvector are studied. We find the conditions under which the degree vector
and the principal eigenvector are strongly correlated. A novel centrality, the degree
mass, is proposed in this chapter. The strong correlation between certain metrics
are shown and theoretically proven. The centrality metrics are applied to study the
opinion model.

• Chapter 5 focuses on comparing two susceptible-infected-susceptible (SIS) mean-
field approximations, with the ε–SIS spreading model as a benchmark, for different
network types. We examine the epidemic threshold and the steady-state fraction of
infected nodes of the mean-field approximations and the ε–SIS model in networks
with different degree distributions.

1.4.2 Part II: Network Design

In this part, we focus on how to design a network with a high epidemic threshold.
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• Chapter 6 studies how to alter a network to enlarge the epidemic threshold of the
network. The minimization of the spectral radius by removing m links (or nodes) is
shown to be an NP-complete problem. The strategy that removes that link l = i ∼ j
with largest product (x1)i(x1)j of the components of the principal eigenvector x1

belonging to the largest adjacency eigenvalue is presented to be superior to other
strategies in most cases. The bounds for the decrease of the spectral radius by link
(or node) removals are provided.

• Chapter 7 introduces two algorithms to generate directed network with a given dir-
ectionality ξ. The effects of ξ on spectral properties are studied. Important findings
are that the spectral radius λ1 decreases with the increase of the directionality ξ.
Thus, we could use the rewiring or resetting methods to increase the directionality,
equivalently, to enlarge the epidemic threshold.

Finally, Chapter 8 concludes the present thesis, highlights the main contributions and
provides the directions for future work.



CHAPTER 2

Complex Networks: Characteristics,
Structures and Dynamics

“Nothing in life is to be feared, it is only to be understood.
Now is the time to understand more, so that we may fear less.”

Marie Curie, 1867 - 1934

Traditionally complex networks have been studied in the form of mathematical
graph theory and statical mechanics. As the developments in complex networks have

taken place in areas, such as social networks, the dynamical evolution of network topology
has also been researched extensively. This chapter first introduces the essential aspects
that describe a network: the graph metrics and the network models. Next we mainly
elaborate the dynamic processes on networks that will be investigated through this thesis.

2.1 Characteristics of Complex Networks: Graph Metrics
A complex network is represented as a graph G = (N , L), which consists of a set of nodes
N interconnected by a set of links L. The number of nodes is denoted by N = |N | and
the number of links is represented by L = |L|. When nodes i and j are linked, i is said to
be a neighbor of j. The number of neighbors of a node j is called its degree dj . The basic

law for the degree is
∑N

j=1 dj = 2L. The degree of an arbitrary node is denoted by D.
The graph G can be represented by an N ×N adjacency matrix A, consisting of elements
aij that are either one or zero depending on whether there is a link between nodes i and
j. The adjacency matrix of an undirected graph is symmetry, on the contrary, a directed
graph owns an asymmetric adjacency matrix (see Figure 2.1). The graphs mentioned in
this thesis are simple, unweighted, without self-loops nor multiple links. The Laplacian
matrix of G is an N ×N matrix Q = ∆−A, where ∆ = diag(di).
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Figure 2.1: Examples of undirected and directed graphs and their adjacency matrices.

In this section, we introduce the network metrics that are widely studied in the lit-
erature, from the classical structural metrics to the spectral metrics (eigenvalue related
metrics), and to the centrality metrics.

2.1.1 Structural Metrics
• Degree diversity κ

The degree diversity κ is defined [11] as

κ =
E[D2]

E[D]
=

V ar[D] + E[D]2

E[D]
, (2.1)

where E[D] and V ar[D] are the mean and variance of D. Chung et al. [37] found that
the degree diversity approximates the largest adjacency eigenvalue λ1 in Erdős-Rényi
random graphs, if κ >

√
dmax lnN (dmax is the maximum degree). Scale-free networks,

where V ar[D] → ∞ as N → ∞, are characterized by κ → ∞, whereas regular networks,
where V ar[D] = 0, have κ = E[D]. Properties of dynamic processes on networks, such as
the synchronization threshold in the mean-field theory of coupled oscillators in networks
[38], the network percolation [13] and the epidemic thresholds [39], have all been stated

to be related to κ = E[D2]
E[D] , approximately.

• Assortativity ρD

“Mixing” in complex networks [18] refers to the tendency of network nodes to connect
preferentially to other nodes with either similar or opposite properties. The mixing of the
degree is computed via the degree correlation of connected node pairs, called assortativity
[40],

ρD = 1−
∑

i∼j (di − dj)
2

N∑
i=1

d3i − 1
2L

(
N∑
i=1

d2i

)2 . (2.2)
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Networks where high degree nodes preferentially connect to other high degree nodes, are
assortative in the degree correlation (ρD > 0), whereas networks where high degree nodes
connect to low-degree nodes, are disassortative (ρD < 0). Van Mieghem et al. [40, 14]
have reformulated the assortativity as follows

ρD =
N1N3 −N2

2

N1

∑N
i=1 d

3
i −N2

2

, (2.3)

where Nk = uTAku is the total number of walks with k hops. Newman [17] found
that technological and biological networks are disassortative while social networks are
assortative. The functional brain networks determined from EEG have also been found
to be assortative [41].

• Clustering coefficient CG

Two different clustering coefficients are frequently used. The first definition of cluster-
ing coefficient [13, 15, 16] CG of a graph is the average clustering coefficient of all nodes,
given as

CG =
1

N

∑
v∈N−N (1)−N (0)

cG(v), (2.4)

where N is the set of all nodes and N (k) is the set of nodes with degree k. The clustering
coefficient of a node cG(v) characterizes the density of connections in the environment of a
node v and is defined as the ratio of the number of links y connecting the dv > 1 neighbors

of v over the total possible dv(dv−1)
2 , thus cG(v) =

2y
dv(dv−1) . Note that cG(v) = 0, for a

node v with degree 0 or 1.
The second one is based on the following definition for undirected unweighted networks

[42]

CG =
3NG

NΛ
, (2.5)

where NG is the number of triangles in the network and NΛ =
∑N

i=1

(
di

2

)
is the number

of connected triples.
The difference between the two definitions is that Eq. (2.4) is the average of the

connection density among the neighbors of each node, while Eq. (2.5) is the average of
the probability that a triangle is formed upon each triple in the network. In this thesis,
we consider the effect of degree distribution, so we use the definition Eq. (2.4) to calculate
the clustering coefficient to each node.

• Average hopcount E[H] and Global efficiency E[ 1H ]

The hopcount Hij is the number of links or hops in the shortest path between node i
and node j. The maximal hopcount Hmax among all node pairs is the diameter of a graph.
If the average hopcount of a network approximates that of the corresponding Erdős-Rényi
random graph with same number N of nodes and link density p (E[HG] ≈ E[HGp(N)]),
and the clustering coefficient always CG > CGp(N), then, the network possesses the small-
world property.

When a network is disconnected, the shortest paths between some node pairs are
infinite, so the average hopcount of the network can not be computed. In this situation,



10 | CHAPTER 2. COMPLEX NETWORKS: CHARACTERISTICS, STRUCTURES AND DYNAMICS

we compute the average reciprocal hopcount E[ 1H ], which is called the global efficiency
and widely studied in neuroscience [15, 43]. In addition to the global efficiency in [15], a
local efficiency is defined as Eloc = 1/N

∑
i⊆G E(Gi), where Gi is the sub-graph of the

neighbors of i. The local efficiency plays a role similar to the first definition of clustering
coefficient CG.

2.1.2 Spectral Metrics
• Spectral radius (the largest adjacency eigenvalue) λ1

We denote the set of eigenvalues of the adjacency matrix A as λN ≤ λN−1 ≤ · · · ≤ λ1,
where the largest eigenvalue λ1 is called the spectral radius. The eigenvalues of the
adjacency matrix are real [15]. The largest eigenvalue λ1 is a powerful character of
dynamic processes on networks such as virus spreading and synchronization processes [38].
The inverse of the largest eigenvalue λ1 characterizes the threshold of the phase transition,
which specifies the onset of a remaining fraction of infected nodes and of locked oscillators
respectively, of both virus spreading [31] and synchronization of coupled oscillators [44] in
networks. Restrepo et al. [38] discovered that λ1 can be approximated by N3/N2, where
Nk is the total numbers of walks with k hops. Recently, Van Mieghem et al. [40] proved
that N3/N2 is a lower bound of the largest adjacency eigenvalue λ1.

• Effective graph resistance RG

The effective graph resistance (which is also called the Kirchhoff index) originated
from the field of electric circuit analysis [19, 45]. Assuming a network as an electrical
circuit where the resistance of each link is 1, the effective graph resistance is defined as
the accumulated effective resistance between all pairs of nodes. It measures the ease of
communication in a graph [19, 46]. The equivalent spectral expression for the effective
graph resistance is [14]

RG = N
N−1∑
k=1

1

µk
, (2.6)

where µk is the k-th largest eigenvalue of the Laplacian matrix Q.

• Algebraic connectivity µN−1

The eigenvalues of the Laplacian matrix Q are ordered as 0 = µN ≤ µN−1 ≤ · · · ≤ µ1,
and µN−1 > 0 if and only if the graph G is connected. The second smallest eigenvalue
µN−1 of Q is called the algebraic connectivity. It was first studied by Fiedler [47]. A
large value of algebraic connectivity characterizes strong network robustness regarding to
e.g. a) the difficulty to cut the network into separated sub-parts [48] and b) enhanced
synchronizability and fast convergence [49, 50].

• Ratio µ1/µN−1

The ratio of the largest eigenvalue µ1 and the second smallest eigenvalue µN−1 of Lapla-
cian is often claimed as an index of synchronizability of a graph [28]. The synchronizability
mainly indicates whether the synchronized state of a dynamic on a graph will be stable
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for a sufficiently large range of the parameters of the dynamic process [51, 52]. The larger
the ratio is, the more difficult it is to synchronize the oscillators and vice versa [51]. The
ratio is also referred to as the “paradox of heterogeneity”. It shows that (unweighted, un-
directed) networks with a more homogenous degree distribution synchronize more easily
than networks with a more heterogeneous degree distribution [28]. In [14], Van Mieghem
has explained that µ1 > Dmax and µN−1 ≤ Dmin. Hence,

µ1

µN−1
> Dmax

Dmin
implying that the

ratio µ1/µN−1 is larger for heterogeneous networks because Dmax/Dmin is larger, while
homogeneous networks have smaller ratios µ1/µN−1.

2.1.3 Centrality Metrics
• Degree mass D(m)

The degree of a node i in a network G is the number of its direct neighbors,

di =

N∑
j=1

aij = (Au)i,

where u = (1, 1, · · · , 1)T is the all-one vector. Here we propose a new set of centrality
metrics, the degree mass, which is a variant of degree centrality. The mth-order degree
mass of a node i is defined as the sum of the weighted degree of its m-hop neighborhood1,

d
(m)
i =

m+1∑
k=1

(
Aku

)
i
=

N∑
j=1

(
m∑

k=0

Ak

)
ij

dj ,

where m ≥ 0. The weight of the degree dj is the number of walks2 of length no longer
than m from node i to node j. The weight of dj is larger than the weight of dl when
node l is farther than node j from node i. The mth-order degree mass vector is defined

d(m) = [d
(m)
1 , d

(m)
2 , · · · , d(m)

N ]. The 0th-order degree mass is the degree centrality. The
1st-order degree mass of node i is the sum of the degree of node i and the degree of its
nearest neighbors. When m is large, the mth-order degree mass is proportional to the
principal eigenvector.

• Principal eigenvector x1

The largest eigenvalue of the adjacency matrix A is λ1, also called the spectral radius
[14]. The principal eigenvector x1 corresponding to the spectral radius λ1 satisfies the
eigenvalue equation

Ax1 = λ1x1.

The j-th component of the principal eigenvector is denoted by (x1)j . The X1 is the
element in the principal eigenvector corresponding to a random node.

• Betweenness Bn

1The m-hop neighborhood of a node i includes the node i and all nodes no further away than m hops
from i.

2A walk from i to j is any sequence of edges that allows back and forth movement and repeated visits
to the same node.
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Betweenness was introduced independently by Anthonisse [53] in 1971 and Freeman
[54] in 1977. The betweenness of a node i is the number of shortest paths between all
possible pairs of nodes in the network that traverse the node

bni =
∑

s̸=i ̸=d∈N

σsd(i)

σsd
,

where σsd(i) is the number of shortest paths that pass through node i from node s to node
d, and σsd is the total number of shortest paths from node s to node d. The betweenness
Bn incorporates global information and is a simplified quantity for assessing the traffic
carried by a node. Assuming that a unit packet is transmitted between each node pair,
the betweenness bni is the total number of packets passing through node i [55].

• Closeness Cn

The closeness [56] of a node i is the average hopcount of the shortest paths from node i
to all other nodes. It measures how close a node is to all the others. The most commonly
used definition is the reciprocal of the total hopcount:

cni =
N − 1∑

j∈N\{i} Hij
,

where Hij is the hopcount of the shortest path between nodes i and j, and
∑

j∈N\{i} Hij

is the sum of the hopcount of the shortest paths from node i to all other nodes. Closeness
has been used to identify central metabolites in metabolic networks [57].

• K-shell index Ks

The k-shell decomposition of a network allows us to identify the core and the periphery
of the network. The k-shell decomposition proceedure is as follows:

(1) Remove all nodes of degree d = 1 and also their links. This may reduce the degree
of other nodes to 1.

(2) Remove nodes whose degree has been reduced to 1 and their links until all of the
remaining nodes have a degree d > 1. All of the removed nodes and the links
between them constitute the k-shell with an index ks = 1.

(3) Remove nodes with degree d = 2 and their links in the remaining networks until
all of the remaining nodes have a degree d > 2. The newly removed nodes and the
links between them constitute the k-shell with an index ks = 2, and subsequently
for higher values of ks.

The k-shell is a variant of the k-core [58, 59], which is the largest sub-graph with minimum
degree of at least k. A k-core includes all k-shells with an index of ks = 0, 1, 2, · · · , k. An
O(m) algorithm for k-shell network decomposition was proposed in Ref. [20]. The k-shell
index of the original infected node is a better predictor of the infected population in the
susceptible-infectious-recovered (SIR) epidemic spreading process than other centrality
metrics, such as the degree [21].
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Figure 2.2: 0, 1, 2 and 3 shells (and cores) of a sample graph [20].

• Leverage Ln

Joyce et al. [22] introduced leverage centrality in order to identify neighborhood hubs
in functional brain networks. The leverage measures the extent of the connectivity of a
node relative to the connectivity of its nearest neighbors. The leverage of a node i is
defined as

lni =
1

di

∑
j∈Ni

di − dj
di + dj

,

where Ni is the directly connected neighbors of the node i. With the definition of lni
and the range [1, N − 1] of the degree di in connected networks, the leverage of a node
i is bounded by −1 + 2di

di+(N−1) ≤ lni ≤ 1 − 2
di+1 . Hence the range of the leverage lni is

[−1+2/N, 1−2/N ] and the equality occurs in star graphs and complete graphs KN . The
leverage of a node is high when it has more connections than its direct neighbors. Thus
a high-degree node with high-degree nearest neighbors will probably have a low leverage.

2.2 Structures of Complex Networks: Network Models
Network anatomy is such important to characterize, because the structure of networks
always affects the functions [60]. Numerous models of network structures have been
proposed for studying the topological properties of real-world networks. This section
presents the network models which will be frequently used throughout this thesis.

2.2.1 Bipartite Graphs
Bipartite graph is a graph whose nodes can be divided into two disjoint sets S1 and S2,
and each link connects a node in set S1 and one in S2. However, the nodes within a set
S1 (or S2) do not connect. Here we introduce some types of bipartite graphs. All graphs
in Figure 2.3 are bipartite graphs, when we consider the circle nodes are in one set and
the disc nodes are in the other set.

• Complete bipartite graph
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complete bipartite star graph 2D square lattice path graph 

Figure 2.3: Examples of bipartite graphs.

A complete bipartite graph KM1,M2 consists of two disjoint sets S1 and S2 containing
respectively M1 and M2 nodes. All nodes in S1 are connected to all nodes in S2, while
nodes within a set do not connect.

• Star graph

The star graph K1,N−1 is a special complete bipartite graph where one of the disjoint
sets contains only one node while the other set contains the rest of the nodes. The star
graph is the basic computer network model.

• Lattice graph

The square lattice graph is a two-dimensional grid. Ignoring the boundary nodes, the
square lattice can be regarded as a regular graph, where all nodes have the same degree
(di = 4). The lattice is the basic model of a transport network (Manhattan grid) and
is crucial in percolation theory [61, 62, 63]. Moreover, it is frequently used to study the
network traffic [64].

• Path graph

The path graph is an example of a tree graph, in which every root node has only one
branch and only the last root node is not branched at all.

2.2.2 Regular Graphs
A regular graph is a graph with all nodes having the same number of neighbors, i.e.
each node j has the same degree dj = r. The spectral radius λ1 = r, in regular graphs,
where r = E[D] = Dmax. The differences λ1 − E[D] and dmax − λ1 can be considered
as measures for the irregularity of a graph [14]. Before modeling real-world networks by
coupling dynamical systems with networks, the connection topology was assumed to be
either completely regular or completely random [6].

• Complete graph

The complete graph KN is a graph in which every node pair is connected. For a complete
graph with N nodes, the degree of each node is r = N − 1.

• Ring lattice graph

The ring lattice graph is a graph with N nodes and each node connects to its r nearest
neighbors by undirected links. The small-world network [6] was proposed basing on the
ring lattice graph.
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Figure 2.4: Examples of regular graphs.

2.2.3 Erdős-Rényi Random Graphs

The Erdős-Rényi (ER) random graph was first proposed by Paul Erdős and Alfréd Rényi
in 1959 and 1960 [1, 2]. Thanks to their contributions, the Erdős-Rényi random graph
Gp(N) has become a frequently occurring random complex network model, where N is
the number of nodes and p is the link density between any two nodes. The beauty of this
model lies mainly in its mathematical simplicity—almost everything about its structure
can be calculated analytically. The ER graphs are characterized by a binomial degree
distribution with

Prob [D = k] =

(
N − 1

k

)
pk(1− p)N−1−k. (2.7)

The average degree of nodes is E[D] = p(N − 1), in ER graphs, and the clustering coef-
ficient is CG = p. When p is small, the distribution converges on a Poisson distribution.
Thus, in the sparse ER graphs, the degree distribution is Prob [D = k] = e−E[D]E[D]k/k!.
Moreover, an ER random graph is connected, if p > pc ≈ lnN

N for large N , where pc is
the disconnectivity threshold.

2.2.4 Watts-Strogatz Small-world Graphs

A small-world graph refers to properties: (1) the average short path E[H] is small, like
that in Erdős-Rényi random graph; (2) the clustering coefficient CG is high, like that in
ring lattice. The structural properties of small-world networks have also been found in
real-world networks, including social networks [65], neural networks [66] and biological
oscillators [67]. The small-world graphs of Watts and Strogatz [6] can be generated from
a ring lattice with N nodes and k links per node, by rewiring each link at random with
probability pr (see Figure 2.5). We choose the rewiring probability pr = 0.01 in this
thesis to generate graphs that have small-world properties, because that: (1) in small-
world rewiring, C(pr) is the clustering coefficient of the small-world graph with rewiring
probability pr and C(0) is the clustering coefficient of the ring lattice without rewiring.
The dependence of the clustering coefficient ratio C(pr)/C(0) on N is very small, and
C(pr)/C(0) decreases with the fraction pr, as C(pr)/C(0) ≈ (1− p3r) [68]; (2) the average
shortest path E[H] is much small even when pr is small, as long as the size N of network
is large enough [68].
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Figure 2.5: A ring lattice graph has its links rewired with probability pr. Three realizations of
the small-world network generating process are shown, for different values of pr. For pr=0, the
network is regular, with large clustering coefficient CG and average shortest path E[H]; for pr=1,
the network is random, with small clustering coefficient CG and average shortest path E[H]. For
an intermediate value of pr, the graph is a small-world network: highly clustered like a regular
graph, yet with a small average shortest path E[H] like a random graph. The Figure is taken
from [6].

2.2.5 Bárabasi-Albert Graphs
The Bárabasi-Albert (BA) graph is one of the most studied network models since, when
N is large, it possesses a power-law degree distribution Prob [D = k] ∼ k−α, which is
a common property of many real-world networks, such as World Wide Web (WWW)
and citation patterns in science [7]. The BA graph is generated basing on two key rules:
growth and preferential attachment as follows. Starting with a small number m0 of nodes,
at each step a new node with m(≤ m0) links is added to the network. The m links are
connected to the nodes that have already been in the system. The probability Π that a
link will connect to an existing node i is linearly proportional to the degree of the node i:

Π = di/
∑
j

dj (2.8)

The high degree nodes have a higher probability to be connected to. This is known as a
“the rich get richer” phenomenon. Because every new node adds m links into the network,
the average degree of BA graphs is E[D] = 2m when N is large. The BA graph [7, 69]
owns a power-law degree distribution with an exponent α = 3.

2.2.6 Generalized Random Graphs
As the degree of a node is one of the most fundamental network characterizations, it is
interesting to generate networks with a given degree distribution. The configuration model
allows to built up random graphs with a given degree distribution. The probability of
any two nodes being connected does not depend on the degrees of the nodes. The model
is defined as follows. Given a degree distribution Prob[D = k], a degree sequence k =
{k1, k2, ..., kN} can be selected, by comparing N random numbers r(i) ∈ (0, 1] (where i =
1, 2, ...N) with the uniformed degree cumulative distribution function (CDF) Prob[D ≤
k]. For example, if Prob[D ≤ 3] = 0.2, Prob[D ≤ 4] = 0.3 and the random number
r(i) = 0.23, the degree ki is chosen as 4. We can write the index i of each node ki times
in a vector v of length 2L, when we consider that each node i is associated a number ki of
“stubs” (ends of links from a node). Then, the elements in vector v are randomly paired,
correspondingly, we obtain a random matching of the stubs. The stub-matching process
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is shown in Figure 2.6. The scale-free (SF) networks used in this thesis are generated by
the configuration model.

1  1  1  1  2  2  2  2  3  3  3  4  4  5  5  6 3  1  5  6  3  2  4  1  1  2  2  5  4  2  1  3  3  2 3 1 4  21  1  2

Figure 2.6: An example of the stub-matching process for building up a network by the configur-
ation model.

2.2.7 Directed Networks
In a network, if node i is connected to node j (denoted by i → j) then j is also linked
to i (denoted by j → i), one bidirectional link exists between nodes i and j; and if either
i → j or j → i exists, but not both in between the node pair i and j, a unidirectional link
exists. The networks containing at least one unidirectional link are directed networks,
whose adjacency matrix is asymmetric. Each node in a directed graph has a in-degree
din and a out-degree dout. The in-degree and out-degree of a node i are represented as
din (i) =

∑
j 1j→i and dout (i) =

∑
j 1i→j . The directionality [70] of a directed network

is defined as ξ = Lunidirectional/Larcs, where the number of arcs (the number of nonzero
elements in the adjacency matrix) Larcs =

∑
i

∑
j aij = uTAu, (u is the all-one vector),

can also be calculated by Larcs = Lunidirectional+2Lbidirectional. A directed network with
directionality ξ is denoted by G(ξ). The network G(ξ) reduces to a bidirectional network
or an undirected network, when ξ = 0. The network G(ξ=1) is a directed network without
any bidirectional link, when ξ = 1. Many important networks, such as the WWW and
the metabolic networks, are directed networks.

2.3 Dynamics of Complex Networks: Processes on Networks
The functions of a network are usually expressed through the dynamic processes on the
network. The percolation [71], synchronization [69], epidemics [69, 72, 73, 31], opinion
dynamics [74, 75, 76] and the cascading failures [32, 77, 78] are the most widely studied
dynamic processes. This section will only introduce the dynamic processes that will be
studied in this thesis.

2.3.1 Epidemics in Networks
In epidemiology, modeling has been used in arranging, implementing and evaluating vari-
ous prevention, therapy and control programs [79, 72]. Here we introduce two basic virus
spreading models: the susceptible-infected-removed (SIR) model and the susceptible-
infected-susceptible (SIS) model.

• SIR model

The SIR model assumes that each individual can be in one of three possible states,
susceptible, infected and removed. Susceptible individuals are healthy persons and can
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be infected by unhealthy individuals. Each infected individual can cure and become a
removed individual. A removed individual can not be infected anymore, since it is immune
to the virus.

• SIS model

In the SIS model, each node only has two states, healthy and infected. Healthy individuals
are susceptible to the disease and can be infected. The infected individuals can cure and
become healthy, but again susceptible after recovering from the disease.

The SIS epidemic process mentioned in this work is a simple continuous-time model
for the spreading of a virus in a network, which belongs to the SIS model. The SIS
epidemic process in network is described as follows. The arrival of an infection over a link
and the curing of an infected node are assumed to be independent Poisson processes with
rates β and δ, respectively. Only infected nodes can infect their healthy direct neighbors.
The effective spreading rate is defined as τ = β

δ . The viral state of a node i at time t
is specified by a Bernoulli random variable Xi(t) ∈ {0, 1}, where Xi(t) = 0 refers to a
healthy node and Xi(t) = 1 to an infected node. Every node i at time t is either infected,
with probability vi(t) =Prob[Xi(t) = 1] or healthy (but susceptible) with probability
1− vi(t).

2.3.2 Opinion Dynamics
There are a lot of opinion competitions in our life. For example, the Apple company
competes with Microsoft, the McDonald’s competes with Burger King and the two leaders
competition in election. Various versions of the opinion model have been proposed [74],
among which are the Sznajd model [80], the voter model [81] and the majority rule model
[82]. The steady state of these opinion models is either consensus of a single opinion or
equal concentrations of the two opinions [81, 82]. In real life, however, a stable coexistence
with unequal concentrations of two opinions is commonly seen [75]. We will introduce
two newly proposed opinion models [75, 76], in which stable coexistence of minority and
majority opinions occurs.

• Nonconsensus opinion (NCO) model

Two opinions are randomly assigned to all agents (nodes): an agent will be assigned
opinion A with a probability f and opinion B with a probability 1− f , when time t = 0.
Then, at each time step, each agent adopts the opinion of the majority in its nearest
neighbors and itself. In the case of a tie, an agent does not change its opinion. All of the
updates are made simultaneously in parallel at each step. The system will reach a stable
state, where the opinions A and B stably coexist, when f is above a critical threshold fc.

• Inflexible contrarian opinion (ICO) model

The ICO model is a variant of the nonconsensus opinion (NCO) model. The initial state
of the ICO model is the steady state of the NCO model. The ICO model further selects a
fraction po of agents with opinion A as the inflexible contrarians, which will hold opinion
B and never change their opinion again, but can influence the opinion of the other agents.
Then, the two opinions compete with each other by the update rules of the NCO model.
The system will reach a new stable state by following the above opinion dynamics rules.
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CHAPTER 3

Correlations Between Structural and
Spectral Metrics

“Everything should be made as simple as possible, but not
simpler.”

Albert Einstein, 1879 - 1955

An increasing number of network metrics have been applied in network analysis. If met-
ric relations would be known better, we could more effectively characterize networks

by a small set of metrics to discover the association between network properties/metrics
and network functioning. In this chapter, we investigate the Pearson correlation coeffi-
cients between widely studied structural and spectral network metrics in three network
models (Bárabasi-Albert graphs, Erdős-Rényi random graphs and Watts-Strogatz small-
world graphs) as well as in functional brain networks of healthy subjects. The metric
correlations, that we observed and theoretically explained, motivate us to propose a small
representative set of metrics by including only one metric from each sub-set of mutually
strongly dependent metrics. The following contributions are considered important: a)
A network with a given degree distribution can indeed be characterized by a small rep-
resentative set of metrics. b) Unweighted networks, which are obtained from weighted
functional brain networks with a fixed threshold, and Erdős-Rényi random graphs follow
a similar degree distribution. Moreover, their metric correlations and the resultant rep-
resentative metrics are as well similar. This verifies the influence of degree distribution
on metric correlations. c) Most metric correlations can be explained analytically. d)
Interestingly, the most studied metrics so far, the average shortest path length and the
clustering coefficient, are strongly correlated, thus, redundant. Whereas spectral metrics,
though only studied recently in the context of complex networks seem to be essential in
network characterizations. This representative set of metrics tends to both sufficiently
and effectively characterize networks with a given degree distribution. In the study of
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a specific network, however, we have to at least consider the representative set so that
important network properties will not be neglected.

3.1 Introduction
After about a decade of extensive research on complex networks, numerous metrics have
been introduced to quantify different features of complex networks [42, 27]. The com-
putational complexity of network metrics can be high. Actually, network metrics can
be strongly correlated in a certain type of graphs such as power-law graphs, indicating
redundancy among them. On the other hand, each metric only partially captures the
properties of a network. It would be helpful if it is possible to define a small repres-
entative set of network metrics that effectively characterize a given type of networks.
Understanding the relations between network metrics is essential, in general, for complex
network studies. In this chapter, we take neuroscience as an illustration.

Network science has recently been applied to neuroscience to understand the effect of
the network structure on its functioning. The average shortest path length in the human
functional brain network was shown to be negatively correlated with IQ [83, 84]. The
small-world pattern and modularity tend to disappear in the brain networks of patient
groups with e.g. brain tumors, epilepsy or Alzheimer [85, 86]. Well-studied metrics
like degree diversity (κ), assortativity (ρD), clustering coefficient (CG), average hopcount
(E[H]), global efficiency (E[ 1H ]), spectral radius (λ1), effective graph resistance (RG),
algebraic connectivity (µN−1) and ratio of µ1/µN−1, have been applied to functional
brain networks [27]. Is it redundant to consider these widely studied metrics to relate
network property/metric to network functioning? Which set of metrics at least have to
be considered? The understanding of the relation between network properties/metrics
enables neuroscientists to discover the most relevant topological features/metrics that
may characterize a certain brain disease or function [87].

This chapter investigates the correlations between structural and spectral network
metrics, aiming to identify a small representative set of metrics by including only one
metric from each sub-set of mutually strongly dependent metrics. Metric correlation was
studied via the Pearson correlation coefficient1 between network metrics in real-world
networks in [88]. However, that approach did not address the following challenges. First,
the correlation between network metrics is topology dependent. Consider, for example,
the correlation between the average shortest path length E[H] and the number of nodes
N . The average shortest path length E[H] is independent of the size N in the class of
dense Erdős-Rényi random graphs but is positively correlated with N in D-dimensional
lattices by E[H] ∼ (N1/D · D3 ). Thus, the correlation between two metrics can be different
in different types of networks. In other words, the representative set of metrics can be
different for different types of networks. Second, most network metrics are correlated with
the number of nodes N (or even the number of links L) of a network. This introduces
the difficulties in comparing networks [51, 89]. When the set of networks, like the set
of real-world networks studied in [88] are of different size N , two metrics may seem to
be strongly correlated, simply because they are both correlated with the size N . We
approach these difficulties in three steps. (i) We consider three network models: the
Erdős-Rényi random graphs [1] with a binomial degree distribution, the Bárabasi-Albert

1Pearson correlation coefficient is a measure of the extent of linear correlation between two variables.
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graphs [7] with a power-law degree distribution and theWatts-Strogatz small-world graphs
[6] where most nodes have the same degree. This allow us to understand the influence of
the degree distribution on metric correlations. Although other network properties may
as well influence metric correlations, we start with the degree distribution since it is
the most studied and usually the easiest to obtain in most complex networks. (ii) We
consider metric correlations in the instances of each model with a given size N and a given
link density p. Initial results have been discussed in [42]. Here, we further explore how
the metric correlations change with network parameters N and p to obtain the metric
correlation pattern in each network model. (iii) The metric correlations are explored in
the functional brain network of healthy subjects, which have the same network size N .

Sections 2.1.1 and 2.1.2 have introduced the network metrics [90] that we will explore in
this chapter. The Pearson correlation coefficients between network metrics are computed
in a large number of network instances of each model with various parameters in Section
3.3. The metric correlation patterns in network models as well as the corresponding
representative sets of metrics are considered important contributions of this chapter.
Surprisingly, the large set of metrics that we considered can be sufficiently represented
by a small number of metrics in Erdős-Rényi random graphs, Bárabasi-Albert graphs
and Watts-Strogatz small-world graphs. The analytic relations between network metrics,
presented in Section 3.2, support the correlations discovered via numerical experiments
in Section 3.3.

Finally, we study metric correlations in the functional brain networks of healthy sub-
jects in Section 3.4. We discuss how to derive unweighted functional brain networks via
fixed threshold or via fixed average degree [89]. First, with the fixed threshold, the un-
weighted functional brain networks are shown to follow approximately binomial degree
distribution. Interestingly, the metric correlation pattern in the studied functional brain
networks is consistent with what we found in the Erdős-Rényi random graph model.
Second, with the fixed average degree or link density, the degree distribution of un-
weighted functional brain networks has a heavy tail. The metric correlation patterns of
this two types of unweighted functional brain networks are different whilst their degree
distributions differ.

Our results suggest that a) the representative set of network metrics can indeed be
smaller than the originally considered set; b) the average distance and the clustering coef-
ficient, the most studied metrics so far especially in neuroscience, are strongly correlated,
thus, redundant; c) spectral metrics2 are only studied recently in the context of complex
networks. However, at least one spectral metric appears in the representative set, sug-
gesting the importance of spectral metrics in network characterizations. When we study
a class of graphs with a given degree distribution, these networks can be possibly char-
acterized by a small representative set of metrics instead of by the originally considered
set. However, in the study of a specific complex network, the representative set at least
has to be considered so as not to neglect any important network properties. In empir-
ical networks studies, we probably don’t know the true underlying topology but partial
network properties. Our understanding of the dependency of metric correlation pattern
on network properties opens up the possibility to use metric correlation as a topology
diagnostic for real networks.

2Spectral metrics are those involving in the eigenvalue computations, such as spectral radius (λ1),
effective graph resistance (RG), algebraic connectivity (µN−1) and ratio of µ1/µN−1.



24 | CHAPTER 3. CORRELATIONS BETWEEN STRUCTURAL AND SPECTRAL METRICS

3.2 Analytic Relations Between Network Metrics
In this section, we will analytically derive relations between the network metrics intro-
duced in Sections 2.1.1 and 2.1.2. Relations that have been proved in the literature will be
presented as well. These analytic relations partially explain the observations of numerical
experiments in Section 3.3.

3.2.1 General Relations
Lemma 3.2.1. In any connected graph, for N > 1, the effective graph resistance RG

obeys
RG

(N − 1)2
≥ 1

E[D]
≥ 1

λ1
(3.1)

Proof. From [14, p. 68], the sum of Laplacian eigenvalues equals

N−1∑
j=1

µk = 2L,

so that, for any graph with L > 0,

1∑N−1
j=1 µk

=
1

2L
. (3.2)

The Jensen’s inequality states that, if f(x) is a convex function, (see [16, sec 5.2])

f(E[X]) ≤ E[f(X)]. (3.3)

Since f(x) = 1/x is convex when x > 0, and nice in a connected graph, µk > 0, for
1 ≤ k ≤ N − 1, application of (3.3) to the left-hand side of (3.2) yields

1
1

N−1

∑N−1
j=1 µk

≤ 1

N − 1

N−1∑
j=1

1

µk
,

from which we obtain
N−1∑
j=1

1

µk
≥ (N − 1)2

2L
, (3.4)

invoking the definition (2.6) of the effective graph resistance,

RG

(N − 1)2
≥ N

2L
=

1

E[D]
. (3.5)

We note that (3.5) is another derivation of the inequality (7.25) in [14]. Using the classical
bound [14] of the spectral radius λ1 ≥ E[D], we arrive by combining 1

λ1
≤ 1

E[D] and (3.5)

at (3.1).

Inequality (3.1) supports the negative correlation between the effective graph resist-
ance and the spectral radius, if the inequality is close to an equality.
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Relation 1 For any connected graph,

λ1 ≥ N3

N2
(3.6)

Proof. see [40].

Restrepo et al. [38] have shown that the spectral radius λ1 can be approximated by
N3/N2. Hence, the inequality (3.6), proves the strong correlation ρ(λ1,

N3

N2
) ≈ 1. The

equality occurs in regular graphs, so the more irregular a graph is, the worse is (3.6)

Relation 2 In any connected graph,

µ1

µN−1
=

1

µN−1
· µ1 >

1

µN−1
(3.7)

Since µ1 ≥ N
N−1Dmax > 1 (see [14]).

The inequality (3.7) supports the strong negative correlation between µ1

µN−1
and µN−1.

Relation 3 It is immediate from the Jensen’s inequality (3.3) that 1
E[H] ≤ E[ 1H ].

Hence, the average hopcount E[H] is negatively correlated with the global efficiency
E[ 1H ].

Relation 4 As proved in [14, p. 207],

RG ≤
(
N

2

)
E[H] (3.8)

The inequality (3.8) supports the positive correlation between the effective graph
resistance and the average hopcount.

Relation 5 In any Erdős-Rényi random graph or approximately in Bárabasi-Albert
graphs

λ1 ≥ κ (3.9)

Proof. The assortativity of an Erdős-Rényi random graph equals to 0, as proved in [17, 40].
Via (2.3), we have

N2
2 = N1N3,

where, Nk = uTAku are the total numbers of walks with k hops. Using

E[D] =
N1

N

and
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E[D2] =
N2

N
,

we arrive to

κ =
E[D2]

E[D]
=

N2

N1
=

N3

N2
.

The bound in (3.6) yields (3.9).

The spectral radius λ1 can be approximated by its lower bound N3

N2
, equivalently by

κ in an Erdős-Rényi random graph (if p is high) or Bárabasi-Albert graph, which proves
the strong correlation between λ1 and κ.

3.2.2 Analytic Relations in Erdős-Rényi Random Graphs
Relation 6 In Erdős-Rényi random graphs Gp(N), we have

E[H] ≈
{

2− CG, when p = 1− o(ϵ) or N is sufficiently large
logN

logN+logCG
, when Np = ς (ς is a constant and N is sufficiently large)

Proof. The average clustering coefficient of an Erdős-Rényi random graph Gp(N) is

E[CG] = p. (3.10)

When the link density p is large in Erdős-Rényi random graphs, the average hopcount
[16] is

E[H] ≃ 2− p. (3.11)

From (3.10) and (3.11), we obtain

E[H] ≃ 2− CG.

In sparse Erdős-Rényi random networks, where Np = ς (ς is a constant), we have [16]

E[H] ≈ logN

logN + log p
≈ logN

logN + logCG
. (3.12)

Hence, Relation 6 explains why the average hopcount E[H] is negatively and strongly
correlated with the clustering coefficient CG in Erdős-Rényi random graphs.

Relation 7 In Erdős-Rényi random graphs Gp(N), we have{
E[λ1] ≈ (2− E[H])(N − 2), when p = 1− o(ϵ) or N is sufficiently large

E[H] ≈ logN
logE[λ1]

, when Np = ς (ς is a constant and N is sufficiently large)

Proof. The average of spectral radius λ1 in Erdős-Rényi random graphs can be expressed
as [14]

E[λ1] = p(N − 2) + 1 +O(
1√
N

). (3.13)
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When p is large, via (3.11), we have

E[λ1] ≈ (2− E[H])(N − 2) + 1 = CG(N − 2) + 1. (3.14)

In sparse Erdős-Rényi random networks, using (3.12)

E[H] ≈ logN

logN + log E[λ1]
N−2

=
logN

logN − log(N − 2) + logE[λ1]
≈ logN

logE[λ1]
.

Relation 7 supports the strong negative correlation between the spectral radius and
the average hopcount. In dense Erdős-Rényi random graphs, (3.14) shows the strong
positive correlation between the spectral radius and the clustering coefficient.

3.2.3 Analytic Relations in Bárabasi-Albert Graphs
Lemma 3.2.2. For Bárabasi-Albert graphs, it holds, that,

λ1 ≥ 2C
− 1

3

G (3.15)

Proof. In the Bárabasi-Albert graph, when m = 4, the clustering coefficient CG decreases
[91] with the network size N as

CG ≈ N− 3
4 . (3.16)

In addition, when the number of added links m is equal to the starting number of vertices
m0, the maximum degree of the Bárabasi-Albert can be given as

Dmax = mN
1
2 . (3.17)

The lower bound of the spectral radius λ1 can be given as the square root of the network’s
largest degree Dmax(see [14, art. 54, p. 55]), as

λ1 ≥
√

Dmax =
√
mN

1
4 . (3.18)

Hence, we arrive at (3.15).

Inequality (3.15) supports that the large Pearson correlation coefficient ρ(λ1,CG) in
Figure A.3.

Relation 8 In Bárabasi-Albert graphs,

E[H] <
1

CG
(3.19)

Proof. In Bárabasi-Albert graphs, the average hopcount approximates [91]

E[H] ≈ lnN

ln lnN
. (3.20)

When N > 4,
lnN

ln lnN
< N

3
4 .

with (3.16), we obtain (3.19).
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Figure 3.1: The correlation between the spectral radius and other metrics of Erdős-Rényi random
graphs

The inequality (3.19) supports the simulation results in the left bottom diagram of
Figure 3.1 and right bottom diagram of Figure A.3 that the average hopcount E[H] and
the clustering coefficient CG are negatively correlated.

3.3 Metric Correlations in Network Models
In this section, we compute the Pearson correlation coefficient ρ(i, j) between any two
metrics i and j defined in Sections 2.1.1 and 2.1.2 in a large number of network instances of
Erdős-Rényi random graphs, Bárabasi-Albert graphs as well as Watts and Strogatz small-
world graphs, which are introduced in Section 2.2. The matrix ρ is called the correlation
matrix. The absolute value 0 ≤ |ρ(i, j)| ≤ 1 characterizes the strength of the correlation
between the corresponding metrics i and j. If |ρ(i, j)| is close to zero, the two metrics
are almost uncorrelated whereas a |ρ(i, j)| close to 1 implies a strong correlation. We
don’t explore further the sign of ρ(i, j) which reflects whether the correlation is positive
or negative, because it is the strength |ρ(i, j)| indicates to which extent a metric can be
predicted from the other. Furthermore, we investigate how metric correlations change
with network parameters, specifically, the network size N and the link density p of Erdős-
Rényi random graphs and the network size N of Bárabasi-Albert graphs and Watts and
Strogatz small-world graphs.

3.3.1 Erdős-Rényi Random Graphs
The correlation ρ(i, j) between any two metrics is computed in the 103 realizations of
the Erdős-Rényi random graph Gp(N), where p = 5pc and N = 25, 50, 100, 200, 400,
800. This allows us to explore how the metric correlation ρ(i, j) evolves with the network
size N . Similarly, the metric correlations are also computed in the 103 instances of the
Erdős-Rényi random graph Gp(N) where N = 400 and p = αpc with α ∈ [1, 2, 5, 10, 20]
to examine the influence of link density p on metric correlations.

Figure 3.1 illustrates the Pearson correlation coefficient between λ1 and other metrics
for different size N and link density p. The correlation between λ1 and κ, N3/N2, E[1/H]
are positive and strong over all network sizes and link densities: ρ(λ1, κ) ≃ ρ(λ1, N3/N2) ≃
ρ(λ1, E[1/H]) ≃ 1. These three positive correlations are supported by analytic relations
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Relation 5, Relation 1, Relation 7 and 3 respectively. The correlation between λ1 and RG,
E[H] are negative and strong ρ(λ1, RG) ≃ ρ(λ1, E[H])| ≃ − 1 with the only condition
that the link density should not be too small, thus p ≥ 4pc. These observations can be
analytically explained by Lemma 3.2.1 and Relation 7, respectively. On the other hand, λ1

tends to be independent or weakly correlated with µN−1 and µ1/µN−1:
∣∣∣ρ(λ1,

µ1

µN−1
)
∣∣∣ <

0.2 and |ρ(λ1, µN−1)| < 0.2, when the network size is large. Similarly, the correlation
coefficient between any other two metrics as a function of the network size as well as the
link density has been given in Appendix A.

We consider two metrics i and j as uncorrelated if |ρ(i, j)| ≤ 0.2 and as strongly
correlated if |ρ(i, j)| ≥ 0.7, because most of the correlations |ρ(i, j)| are in the range [0,
0.2] and [0.7, 1]. Since the correlation ρ(i, j) changes with the network size N and link
density p, we claim two metrics are strongly correlated (or independent) if |ρ(i, j)| ≥ 0.7
(or |ρ(i, j)| ≤ 0.2) holds for a certain range of N and p and we will record the condition
on N and p, under which this strong (or weak) correlation is observed. In this way, we
could obtain the metric correlation pattern based on results in Figures 3.1, A.1 and A.2
and the correlation pattern is represented as a graph in Figure 3.2.

GC
GR

N p↑ ↓
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Figure 3.2: The metric correlation pattern in Erdős-Rényi random graphs.

In correlation patterns, each node represents a metric. Two nodes are connected by a
solid (or dotted) line if the corresponding metrics are strongly correlated (or independent)
with |ρ(i, j)| ≥ 0.7 (or |ρ(i, j)| ≤ 0.2). The boxes along the links specify the conditions, if
there are, under which the strong or weak correlation has been observed. The up (down)
arrow represents the value of N or p is large (or small). For example, when the size N
of the network is small and the link density p is large, the correlation between CG and
RG is strong. Metric λ1, κ and N3/N2 are strongly mutually correlated and they have
the same correlation coefficient with any other metric. Hence, we condense these three
metrics into one node. The same holds for E[H] and E[1/H].

Interestingly, our approach allows us to cluster the metrics into 2, as marked by
different shapes of nodes, when the size N of network is small and link density p is large.
Within each cluster, metrics are mutually strongly correlated (nodes are fully connected
by solid lines). Moreover, any two metrics from different clusters are independent (any
two nodes with different shapes are linked by a dotted line). Thus, it is sufficient to
characterize an Erdős-Rényi random graph by two metrics, each from a different cluster,
instead of by the 9 metrics studied. In large and sparse networks, the correlation between
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clustering coefficient and the metrics in circle is not strong any more. In that case, the
representative set should contain three metrics: the clustering coefficient CG, one metric
in rectangle ( µ1

µN−1
or µN−1) and one metric from the circle cluster (RG, λ1, κ, N3/N2,

E[H] or E[1/H]).
Those strong and weak metric correlations observed in Erdős-Rényi random graphs

are supported by the analytic relations between metrics in Section 3.2 as shown in Table
3.1. Note that, in tables, the Lemma and Relation in this section are written as L and R
for short, e.g. Lemma 3.2.1 is written as L1, and Relation 1 is represented by R1.

3.3.2 Bárabasi-Albert Power-law Graphs
The Pearson correlation coefficients between any two metrics are computed in 103 BA
graphs with each given set of parameters m and N , where m = 4 and N = 25, 50, 100,
200, 400, 800. The metric correlations as a function of the network size N are illustrated
in Figure A.3 in Appendix A. Based on these results, we obtain the metric correlation
pattern in Bárabasi-Albert graphs as depicted in Figure 3.3.
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N ↓
N ↓N ↑
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N ↓

N ↑

N ↑

[ ]E H

[1/ ]E H

1λ
3 2/N N

κ

1

1N

µ
µ − 1Nµ −

N ↑

GR

N ↑

Figure 3.3: Metric correlation pattern in Bárabasi-Albert graphs.

We first consider the case when the network size N is large. The metrics in circle are
mutually strongly correlated with each other and they are uncorrelated with the other
metrics. Hence, one and only one metric in the circle cluster should be included in the
representative set of metrics. On the other hand, the three metrics in rectangle, µ1

µN−1
,

µN−1 and RG are not strongly correlated in large networks. Thus, these three metrics
should all be included in the representative set. In summary, four metrics, the three
marked rectangle and one in circle, suffice to represent a power-law graph with a large
N . When the network size is small, it is sufficient to characterize a network by 3 metrics
κ (λ1 or N3/N2), E[H] (or E[1/H]) and one metric from the rectangle cluster ( µ1

µN−1
,

µN−1 and RG). This observed correlation pattern is supported by the analytic relations
between metrics in Section 3.2 as summarized in Table 3.2.
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3.3.3 Watts-Strogatz Small-world Graphs

We calculate the Pearson correlation coefficients between any two metrics in 103 instances
of the WS model with each given set of parameters k, pr and N , where k = 6, pr = 0.01
and N = 200, 400, 800, 1000, 2000. The correlation coefficient between any other two
metrics as a function of the network size has been given in Figure A.4 in Appendix A.
With these results, we obtain the metric correlation pattern in Watts-Strogatz small-world
graphs in Figure 3.4.

We first consider the case when the network size N is small. In the circle cluster, met-
rics, i.e. RG, κ (N3/N2), E[H] (E[1/H]) CG and µN−1, are mutually strongly correlated
with each other, except that µ1

µN−1
is uncorrelated with κ (N3/N2) and CG. Furthermore,

λ1 is only correlated with κ (N3/N2), and the assortativity ρD in triangle is not correlated
all other metrics in networks. Hence, four metrics should be included in the represent-
ative set: ρD, λ1,

µ1

µN−1
and another metric in the circle cluster. When the network size

is large, it is still enough to characterize a network by 4 metrics λ1,
µ1

µN−1
(or µN−1), one

from other metrics in circle and ρD.
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Figure 3.4: Metric correlation pattern in Watts-Strogatz small-world graphs.

The different metric correlation patterns observed in Erdős-Rényi random graphs (Fig-
ure 3.2), Bárabasi-Albert graphs (Figure 3.3) and Watts-Strogatz small-world graphs
(Figure 3.4) reflect that metric correlations depend on the graph, via the adjacency ma-
trix, e.g. the degree distribution. Both network models can be characterized by a small
set of 3 or 4 metrics instead of by the 9 metrics studied. Surprisingly, the average hop-
count E[H] and clustering coefficient CG, the most studied metrics so far especially in
neuroscience turn out to be strongly correlated3. On the other hand, spectral metrics,
which are investigated only recently, seem to be essential in network characterizations.
At least, spectral metrics always appear in the representative set in these three network
models.

3Note that this strong correlation is expected in a class of networks with the same degree distribution
as in the three models, but not in graphs with different degree distributions.
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3.4 Metric Correlations in Functional Brain Networks

It has become clear that properties (reflected by metrics) of brain networks may pre-
dict brain functioning such as cognitive performance [25, 26, 27, 28]. Moreover, brain
networks show systematic changes during development under genetic control and reveal
characteristic patterns of disruption in various types of neurological disease. In order to
understand which network property/metric is the most relevant to a certain brain func-
tioning, it is essential to understand the relations between network properties. In this
section, we investigate the metric correlation pattern in the functional brain networks of
22 healthy subjects. The correlation pattern observed in functional brain networks will
be compared with what we discovered in network models.

The concept of functional connectivity refers to the statistical dependencies between
physiological time series recorded in various brain areas, and is thought to reflect commu-
nication between several brain areas [92]. Magnetoencephalography (MEG), a recording
of the brains magnetic activity, is a method used to assess functional connectivity within
the brain. A functional brain network is created by regarding each MEG channel as
a node, and the functional connectivity between each pair of channels represents a link
whose weight reflects the strength of the connectivity or correlation. Correlations between
the time series of the channels were analyzed with the synchronization likelihood (SL),
a non-linear measure of statistical interdependencies [93, 94]. The functional brain net-
works were measured in 22 healthy people, whose mean age was 63.6, by the medical
ethics committee of the VU Medical Center, Amsterdam. More information about the
data can be found in [95]. Brain activity was measured by MEG with N = 149 recording
channels. With MEG, a loss of upper alpha-, beta-, and gamma-band synchronization
could be demonstrated in patients with Alzheimer’s disease, both during an eye-closed
state as well as during an eye-open state. In these studies, the 13− 30 Hz beta band
showed the most consistent abnormalities in the subjects [66]. Hence, we focus on the
13− 30 Hz band. The functional brain network was measured four times for each person
in 13− 30 Hz (beta) band. In total, we have 88 functional brain networks. Each network
is a weighted complete graph, where each link weight 0 ≤ wij ≤ 1.

Since we focus on metrics correlations in unweighted networks, each weighted network
is transformed to an unweighted network mapped as the union of links whose link weight
is above a threshold T . There are many methods to choose the threshold T [89]. In
this section, we use either a fixed threshold T for all networks or a network dependent
T which makes the link density p of all unweighted networks similar. The metric correl-
ation patterns are studied in the two resulting classes of networks with different degree
distributions.

3.4.1 Metric Correlations in Unweighted Functional Brain Networks Transformed
with Fixed Threshold T

Stam et al. [66] investigated the clustering coefficients and the shortest path lengths as a
function of the threshold T on functional brain networks, and gave some suggestions on
how to set the threshold T . When the threshold T is small, the corresponding unweighted
functional brain networks are almost fully connected. If T is large, the unweighted network
tends to be disconnected. Regarding to the studied functional brain networks, we find
that when T ∈ [0.001, 0.019], the corresponding unweighted functional brain networks are
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connected. When T ≥ 0.02, not all the networks are connected. In summary, to avoid
disconnected and fully connected graphs, we choose T = 0.019 to transform each weighted
functional brain network into an unweighted one, where we calculate the correlation
between those metrics mentioned above. As shown in Figure 3.5, the degree distribution
of the unweighted functional brain networks is close to a binomial distribution, as in
Erdős-Rényi random graphs.
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Figure 3.5: The degree distribution of unweighted functional brain networks (fixed T = 0.019)
as well as its binomial curve fitting.

The Pearson correlation coefficients between any two metrics in the unweighted func-
tional brain networks are shown in Table 3.3.

Table 3.3: Correlation coefficients between metrics in unweighted functional brain networks
(healthy people, beta-band, fixed threshold T = 0.019)

ρ(i, j) RG µN−1 λ1
µ1

µN−1
E[H] E[ 1H ] CG ρD κ N3/N2

RG 1.00 -0.77 -0.94 0.31 0.98 -0.97 -0.91 -0.33 -0.94 -0.94
µN−1 -0.77 1.00 0.66 -0.73 -0.73 0.72 0.60 0.23 0.67 0.67
λ1 -0.94 0.66 1.00 -0.11 -0.97 0.98 0.92 0.37 1.00 1.00
µ1

µN−1
0.31 -0.73 -0.11 1.00 0.20 -0.19 -0.16 -0.16 -0.12 -0.11

E[H] 0.98 -0.73 -0.97 0.20 1.00 -1.00 -0.88 -0.26 -0.97 -0.97
E[ 1H ] -0.97 0.72 0.98 -0.19 -1.00 1.00 0.90 0.27 0.99 0.99
CG -0.91 0.60 0.92 -0.16 -0.88 0.90 1.00 0.46 0.91 0.92
ρD -0.33 0.23 0.37 -0.16 -0.26 0.27 0.46 1.00 0.31 0.34
κ -0.94 0.67 1.00 -0.11 -0.97 0.99 0.91 0.31 1.00 1.00

N3/N2 -0.94 0.67 1.00 -0.11 -0.97 0.99 0.92 0.34 1.00 1.00

The corresponding correlation pattern is depicted in Figure 3.6. Since all the func-
tional brain networks have the same size N , no condition is associated to any correlation
or dependency. Instead, we place the correlation coefficient along each pair of metrics.

Both the functional brain networks and Erdős-Rényi random graphs possess a binomial
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Figure 3.6: The metric correlation pattern of unweighted functional brain networks(fixed
threshold T ).

degree distribution. Interestingly, the metric correlation patterns observed in both types
of graphs as given in Figures 3.2 and 3.6 are consistent with each other: a) the same set
of metrics in the circle cluster as well as in the rectangle cluster; b) the size of functional
brain networks N = 149 is small. In small Erdős-Rényi random graphs, the clustering
coefficient is strongly correlated with the other metric in circle, moreover, ρ(µN−1, RG)
and ρ(µN−1, E[H]) are not small, the same as observed in the functional brain networks.
The only difference is that the assortativity ρD is usually considered in real-world complex
networks but not in network models where ρD → 0. Actually, functional brain networks
are assortative ρD > 0. The representative set ρD, µ1

µN−1
and RG is preferable due to

the independence between µ1

µN−1
and metrics in circle as well as the strong correlation

between RG and many other metrics. The consistency in metric correlation patterns
(Figures 3.2 and 3.6) in networks with a same degree distribution verifies the crucial
influence of network property, specially the degree distribution, on the relations between
metrics. Importantly, both the degree distribution and the metric correlation pattern
suggest this particular class of MEG unweighted functional brain networks with a fixed
threshold are almost Erdős-Rényi graphs like, and not small-world.

3.4.2 Metric Correlations in Unweighted Functional Brain Networks Transformed
with Fixed Link Density p

Van Wijk et al. [89] claimed that graph measures can be influenced by the number N of
nodes and the link density p. It is easier to compare networks, such as the functional brain
networks, with the same size N and link density p. Thus, we choose a threshold T for
each weighted network such that when the average degree of the corresponding unweighted
network equals to a given constant value. In this section, we choose the threshold such
that the average degree equals to 15. Each unweighted network follows almost the same
degree distribution. The degree distribution of the unweighted functional brain networks
is shown in Figure 3.7, which has a heavy tail. It differs from the degree distribution
of any of the three network models mentioned in Section 3.3. The Pearson correlation
coefficients between any two metrics in the unweighted functional brain networks are
shown in Table 3.4. The corresponding correlation pattern is depicted in Figure 3.8.
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Figure 3.7: Degree distribution of unweighted functional brain networks (fixed link density p).

Table 3.4: Correlation coefficients between metrics in unweighted functional brain networks
(healthy people, beta-band, same size (L and N))

Cij RG µN−1 λ1
µ1

µN−1
E[H] E[ 1H ] CG ρD κ N3/N2

RG 1.00 -0.83 0.61 0.89 0.73 -0.69 0.54 0.47 0.64 0.68
µN−1 -0.83 1.00 -0.51 -0.85 -0.73 0.72 -0.63 -0.51 -0.47 -0.52
λ1 0.61 -0.51 1.00 0.56 0.48 -0.47 0.44 0.55 0.85 0.94
µ1

µN−1
0.89 -0.85 0.56 1.00 0.67 -0.61 0.46 0.41 0.55 0.59

E[H] 0.73 -0.73 0.48 0.67 1.00 -0.99 0.90 0.76 0.30 0.42
E[ 1H ] -0.69 0.72 -0.47 -0.61 -0.99 1.00 -0.94 -0.81 -0.25 -0.39
CG 0.54 -0.63 0.44 0.46 0.90 -0.94 1.00 0.85 0.19 0.34
ρD 0.47 -0.51 0.55 0.41 0.76 -0.81 0.85 1.00 0.19 0.39
κ 0.64 -0.47 0.85 0.55 0.30 -0.25 0.19 0.19 1.00 0.97

N3/N2 0.68 -0.52 0.94 0.59 0.42 -0.39 0.34 0.39 0.97 1.00

The metrics can be divided into three groups, which are shaped rectangle, circle
and triangle. Metrics in the same shape are strongly correlated with each other, while,
metrics in different shapes are not strongly correlated. We could choose one metric from
each shape group, therefore, three representative metrics can characterize the unweighted
functional brain networks.

3.5 Chapter Conclusions
In this chapter we have studied the correlations between widely studied structural and
spectral metrics in functional brain networks as well as in three classical complex network
models, namely Erdős-Rényi, Bárabasi-Albert graphs and Watts-Strogatz small-world
graphs. The metric correlation pattern in each of the three classes of graphs illustrates
the strong correlations and independencies between metrics, which indicates the possib-
ility to determine a small set of representative metrics by including only one metric from
each sub-set of mutually strongly dependent metrics. This representative set of metrics
tends to characterize both sufficiently and effectively a class of networks with a given
degree distribution. When we study a specific network, however, the representative set at
least has to be considered so that important network properties will not be overlooked.
Most of the metric correlations observed so far are supported/explained analytically by
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Figure 3.8: The metric correlation pattern of unweighted functional brain networks (fixed link
density p).

theorems developed in this chapter as well as in the literature. Furthermore, graphs with
a similar degree distribution such as the unweighted functional brain networks with fixed
threshold T and Erdős-Rényi random graphs, tend to possess a similar metric correlation
pattern, which verifies the influence of the degree distribution on metric relations. When
the degree distribution of networks are different, the metric patterns are also different.
Hence, a specific representative set of metrics should be determined for a particular degree
distribution. Luckily, degree distribution is the simplest metric to compute. Finally, two
observations are considered important especially for the applications of network science to
other disciplines: i) the average distance and the clustering coefficient, the most studied
metrics so far in neuroscience, are strongly correlated, thus, redundant; ii) spectral met-
rics, though only studied recently in the context of complex networks seem to be essential
in network characterizations. Note that the metric correlations are studied and observed
in networks with a similar degree distribution. These results can not simply be applied
to a class of networks with different degree distributions.





CHAPTER 4

Correlations Between Centrality
Metrics

“Measure what can be measured, and make measurable what
cannot be measured.”

Galileo Galilei, 1564 - 1642

The metrics studied in Chapter 3 are used to characterize the topology and the func-
tions of a network. In this chapter, we aim to understand the correlations between

centrality metrics, which have been proposed to rank the importance of nodes, so that
we could approximate a high-complexity centrality metric by a strongly correlated low-
complexity one. We first investigate the relation between the degree vector and the prin-
cipal eigenvector. The average E[x1] is shown to decrease with the assortativity ρD. The
difference between the principal eigenvector and the scaled degree eigenvector is smallest,
when λ1 = N2

N1
, where Nk is the total number walks in the graph with k hops. Moreover,

the principal eigenvector and the degree vector are uncorrelated when ρD is low in the
power-law networks, albeit they are strongly correlated in other networks. Next we study
the correlation between a number of centrality metrics (introduced in Section 2.1.3) by
their Pearson correlation coefficient and their similarity in ranking of nodes. In addition
to considering the widely used centrality metrics, we introduce a new centrality measure,
the degree mass. The mth-order degree mass of a node is the sum of the degree of the
node and the degree of its neighbors not further than m hops away. We find that the
betweenness, the closeness and the components of the principal eigenvector are strongly
correlated with the degree, the 1st-order degree mass and the 2nd-order degree mass,
respectively, in both network models and real-world networks. We then theoretically
prove that the Pearson correlation coefficient between the principal eigenvector and the
2nd-order degree mass is larger than that between the principal eigenvector and a lower
order degree mass. Finally, we investigate the effect of the inflexible contrarians selected
based on different centrality metrics in helping one opinion to compete with another in
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the inflexible contrarian opinion (ICO) model. Interestingly, we find that selecting the
inflexible contrarians based on the leverage, the betweenness, or the degree is more effect-
ive in opinion-competition than using other centrality metrics in all types of networks.
This observation is supported by our previous observations, i.e., that there is a strong
linear correlation between the degree and the betweenness, as well as a high centrality
similarity between the leverage and the degree.

4.1 Introduction
Recent research has explored social dynamics [60, 69, 11] by using complex networks
in which nodes represent people/agents and links the associations between them. Such
centrality metrics as degree and betweenness have been studied in dynamic processes
[96, 21, 97, 98], such as opinion competition, epidemic spreading, and rumor propagation
on complex networks. These studies used centrality metrics to identify influential nodes
[96, 21, 97], such as the source nodes from which a virus spreads and the nodes with
high spreading capacity, as well as to select which nodes are to be immunized when
a virus is prevalent [98]. Numerous centrality metrics have been proposed. Degree,
betweenness, closeness, and principal eigenvector are the most popular centrality metrics
[96, 99, 54, 100, 101, 102, 103]. Several new centrality metrics have been introduced
in a number of different fields recently. Kitsak et al. [21] studied the SIS and SIR
spreading models on four real-world networks and proposed that the k-shell index is
a better indicator for the most efficient spreaders (nodes) than degree or betweenness.
Reference [22] proposes a new centrality metric—leverage—for identifying neighborhood
hubs (the most highly-connected nodes) in functional brain networks. Leverage centrality
identifies nodes that are connected to more nodes than their nearest neighbors. In addition
to considering these widely-used centrality metrics, we here propose a new centrality
metric, degree mass. The mth-order degree mass of a node is defined as the sum of the
weighted degree of its m-hop neighborhood. If the degree of a node and of its neighbors
are all high, the node has a high degree mass.

Centrality metrics have been compared in various networks, such as sampled networks,
biological networks, food webs, and vocabulary networks in literature [96, 104, 105, 106,
107]. Comin et al. [96] compared the centrality metrics characterizing the performances
of nodes in such dynamic processes as virus spreading. Kim and Jeong [104] compared
the reliability of rank orders using centrality metrics in sampling networks. The cor-
relations between centrality metrics have been studied in biological networks [105, 106].
However correlations between centrality metrics are still not well understood. If correl-
ations between centrality metrics were better understood, we might be able to rank the
nodes in a network by using the centrality metrics with a low computational complexity
instead of the ones with a high computational complexity.

Van Mieghem et al. [108] have proved that to minimize the largest eigenvalue by
removing a set of links or nodes is an NP-hard problem and have shown that the best
strategy so far is based on the components of the principal eigenvector x1, which under-
lines the importance of the principal eigenvalue in characterizing the influence of link/node
removal on the spectral radius. We first investigate the relation between x1 and the de-
gree vector/sequence1 d, the computationally simplest and mostly studied property of a

1The degree vector/sequence is composed of the degree of each node, following the same ordering as
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network. The relation between the principal eigenvector and the degree vector is system-
atically investigated in networks with various degree distributions and degree correlations
(also called the assortativity, which is introduced in Section 2.1.1).

To investigate the correlation between any two centrality metrics introduced in Sec.
2.1.3, we compute their Pearson correlation coefficient and their similarity in ranking
nodes in both network models and real-world networks. In this work (i) we consider
the Erdős-Rényi (ER) networks [1] and the scale-free (SF) networks [7, 13]. Studying
these two network models allows us to understand how the degree distribution influences
correlations between the centrality metrics. (ii) We further explore correlations in 34
real-world networks with differing numbers of nodes and links. (iii) We theoretically
compare the Pearson correlation coefficients between the principal eigenvector and the
degree masses.

Recently there has been considerable interest in understanding how two competing
opinions [109, 74, 75, 110, 111] evolve in a population. In this work we apply our centrality
metrics to an inflexible contrarian opinion (ICO) model [76] in which only two opinions
(denoted A and B) exist, with the goal of helping one opinion (opinion B) as it competes
with with the other opinion (opinion A). At the initial time, opinions are randomly
assigned to all nodes (with a fraction f of nodes holding opinion A and a fraction 1− f
of nodes holding opinion B). At each step, each agent simultaneously and in parallel
adopts the opinion of the majority of its nearest neighbors and itself, and if there is
a tie, the agent does not change its opinion. After the system reaches a steady state, a
fraction po of agents with opinionA is placed among the inflexible contrarians permanently
holding opinion B, which can affect the opinion of their nearest neighbors. It is known
that the size of the giant component of agents with opinion A can be decreased or even
destroyed by the inflexible contrarians [76]. Li et al. [76] have selected the inflexible
contrarians in ER and SF networks either randomly or based on degree. Here we choose
inflexible contrarians using all the centrality metrics we have considered in both modelled
networks and real-world networks. We compare the efficiencies of these centrality metrics
in reducing the size of the largest opinion A cluster and find that strongly correlated
centrality metrics have approximately the same efficiency in both modelled networks and
real-world networks. Thus a high-complexity centrality metric could be approximated by
a strongly correlated low-complexity centrality metric.

4.2 Analyzing the Correlation Between Degree and Principal Eigen-
vector

In view of the importance of the principal eigenvector in characterizing the influence of
link/node on the spectral radius, in this section, we explore how the average E[x1] as well
the variance of x1 changes with the assortativity ρD when the degree vector, which may
follow the degree distribution of network models or of real-world networks, remains the
same. Moreover, we explore the difference and the Pearson correlation coefficient between
the principal eigenvector and the degree vector, the simplest and mostly studies network
metric, which as well provides important insights on under which condition the degree
vector/sequence well approximates the principal eigenvector [107].

the principal eigenvector.
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4.2.1 Properties of the Principal Eigenvector
Two types of degree distributions have been so far widely studied: the binomial and
power-law degree distribution. The binomial degree distribution is a characteristic of
an Erdős-Rényi random graph Gp(N), which has N nodes and any two nodes are con-
nected independently with a probability p. Such a random construction leads to a zero
assortativity as proved in [40]. However, the class of graphs G(N, p) with the same
binomial degree distribution Prob[D = k] =

(
N−1
k

)
pk(1 − p)N−1−k as Erdős-Rényi ran-

dom graphs Gp(N) and obtained, for instance, by degree-preserving rewiring feature an
assortativity that may vary within a wide range. The power-law degree distribution
Pr[D = k] = ck−α, where c = 1/

∑N−1
k=1 k−α has been widely observed in real-world

networks. Similarly, graphs with a given power-law degree distribution, for example, gen-
erated by the Barabási-Albert power model [7] can be altered by the degree-preserving
rewiring to obtain different assortativity.
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Figure 4.1: Components of the largest eigenvector in order. Images (a) (linear) (b) (semilogar-
ithmic) are binomial graphs with different assortativity. Images (c) (linear) (d) (semilogarithmic)
are power-law graphs with different assortativity.

We explore the principal eigenvector components (see Figure 4.1) as well as its average
E[x1] (see Figure 4.2) in graphs with the same degree distribution (i.e. binomial or power-
law) but with different assortativities ρD obtained by degree-preserving rewiring. Figure
4.1 shows that the variance of the principal eigenvector increases with assortativity ρD.
Furthermore, as shown in Figure 4.2, E[x1] decreases with the increase of assortativity
ρD. Similarly, we consider a set of 11 real-world networks. We apply degree-preserving re-
wiring to each real-world network to derive network instances with different assortativity.
In other words, we derive a class of networks that possess the same degree distribution
as a real-world network but different assortativities. Interestingly, we observe the same,
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Figure 4.2: Average of the components of the principle eigenvector versus the assortativity. (a)
in binomial and power-law graphs (b) in network instances derived from real-world networks via
degree-preserving rewirings.

E[x1] decreases with increasing assortativity (see Figure 4.2(b)).
The decrease of E[x1] and the increase of the variance of the principal eigenvector

components with increasing assortativity can be qualitatively explained as follows. As
defined, the principal eigenvector x1 corresponds to the largest eigenvalue λ1 follows

λ1(x1)j =
N∑
q=1

ajq(x1)q, (4.1)

where ajq = 1 if q is a neighbor of node j, or else ajq = 0. The j-th component of
the principal eigenvector (x1)j tends to be large if node j has a large degree (number
of neighbors) or if the components corresponding to its neighbors are large. When ρD
is large, high degree nodes prefer to link with other high degree nodes. In this case, a
high degree node possesses a large number of neighbors, whose corresponding eigenvector
components are again likely to be large, whereas a low degree node connects to a small
number of neighbors, whose corresponding components tend to be small. Both a large
variance in degree and a large assortativity ρD contribute to a large variance V ar[x1] of
the principal eigenvector x1. This explains why variance V ar[x1] of x1 increases with
ρD and with a given assortativity, the power-law graphs have a larger V ar[x1] than the
binomial graphs (see Figure 4.1). Furthermore, since V ar[X] = E[X2] − (E[X])2 and
xT
1 x1 = 1,

E[x1] =

√
1

N
− V ar[x1], (4.2)

Correspondingly, both a large variance in degree and a large assortativity ρD contribute
to a small E[x1] of the principal eigenvector x1. Hence, E[x1] decreases with increasing
ρD and tends to be smaller when the degree variance is larger. Moreover, considering Eq.
(4.2), we can deduce the upper bound E[x1] ≤ 1√

N
.

Figure 4.1 compares as well the principal eigenvector x1 with the normalized degree
vector d = d√

dT d
in binomial graphs and power-law graphs (N = 500, L = 1984) with

different assortativities. The components of x1 and d are plotted in the order of increasing
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magnitude. The difference between x1 and d is affected by ρD, which will be further
explored in the following part.

4.2.2 Relation Between the Degree Vector and the Principal Eigenvector
In this subsection, we investigate the relation between the principal eigenvector and the
degree vector by their difference and linear correlation coefficient. The degree vector has
to be first normalized to quantify its difference with the principal eigenvector. We propose
two scalings of the degree vector d = d√

dT d
and d̃ = α

λ1
d, where α is a constant. The

corresponding difference vector between x1 and the scaled degree vector is w = x1− d√
dT d

and y = x1 − α
λ1
d, respectively. The overall difference can be quantified by either the

relative difference uTw (or uT y) or the absolute difference wTw (or yT y), actually, the
sum of the components or the square sum in the difference vector respectively. The first
scaling of the degree vector d = d√

dT d
aims to obtain the same norm for the degree vector

and the principal eigenvector:

√
d
T
d =

√
xT
1 x1 = 1. The other d̃ = α

λ1
d is motivated by

(x1)j =
1
λ1

∑N
r=1 ajr (x1)r ≤ di

λ1
and the constant α is determined (see Theorem 4.2.1) as

the one minimize the absolute difference yT y. Note that both linear scalings of the degree
vector will not change the linear correlation coefficient between the principal eigenvector
and the degree vector.

Theorem 4.2.1. The absolute difference wTw (or yT y) between the principal eigenvector
and the degree vector is the smallest (wTw = 0 or yT y = 0) when the spectral radius
follows λ1 = N2

N1
, where Nk is the total number of k hop walks between any two nodes

which can be the same.

Proof. The absolute difference

wTw = (x1 −
d√
dT d

)T (x1 −
d√
dT d

) = xT
1 x1 − 2

dTx1√
dT d

+
dT d(√
dT d

)2 = 2− 2
dTx1√
dT d

. (4.3)

Moreover, the generalized form of (4.1) for the k-th largest eigenvalue λk and the corres-

ponding eigenvector xk follow (xk)j =
1
λk

∑N
r=1 ajr (xk)r = α

dj

λk
− 1

λk

∑N
r=1 ajr (α− (xk)r),

we will determine α so that yk = xk − α
λk

d has minimum norm. Hence,

yTk yk =

(
xk − α

λk
d

)T (
xk − α

λk
d

)
= 1− 2

α

λk
dTxk +

α2

λ2
k

dT d, (4.4)

is minimized with respect to α if − 2
λk

dTxk + 2 α
λ2
k
dT d = 0 or α

λk
= dT xk

dT d
. Let y = y1, we

obtain

yT y = 1− (dTx1)
2

dT d
, (4.5)

using the α derived in the last step. In both Eq. (4.3) and Eq. (4.5), wTw = 0 and

yT y = 0 if dTx1 =
√
dT d. In other words, when the principal eigenvector is proportion

to degree vector, w = 0 (or y = 0). Since Ax1 = λ1x1, d
Txk = λ1u

Tx1. The condition

dTx1 =
√
dT d implies

λ1u
Tx1 =

√
dT d =

√
N2
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where N2 = dT d. Since x1 = d√
dT d

, and uT d = N1, Lemma 4.2.1 follows.

Notice that in some approximate mean-field models for virus spreading [73], τc ∼ N1

N2
=

1
λ1
. Furthermore, wTw = 0 (or yT y = 0) is a special case of uT yk = 0, when λ1 = N2

N1
.
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Figure 4.3: Difference between the principal eigenvector and degree vector as a function of the
assortativity ρD.

The relative difference wTu = uTx1− dTu√
dT d

(yTu) is zero when the absolute difference is

zero. We explore the relative difference in general cases by considering the binomial graphs
as an example. The sum of the principal eigenvector uTx1 and the relative difference
wTu as a function of the assortativity are shown in Figure 4.3 to follow exactly the same

trend, since the degree of each node, thus, dTu√
dT d

remains the same when we change the

assortativity by degree-preserving rewiring. When the assortativity ρD = 0, the binomial
graphs are actually Erdős-Rényi random graphs, for which λ1 ≃ N2

N1
when the network

size is large [14]. Hence, both the absolute and relative difference are zero when the
assortativity is around zero. The sum of the principal eigenvector uTx1 decreases with
the assortativity ρD, as explained in Section 4.2.1.

4.2.3 Correlation Between the Principal Eigenvector and the Degree Vector

Recall that so far the best strategy to minimize the spectral radius by links/nodes removal
is based on the principal eigenvector. When the correlation ρ(x1, d) between the principal
eigenvector and the degree vector is positively strong, we may use the degree vector
instead of the principal eigenvector to determine which links/nodes to remove, which
will be further illustrated in Section 4.2.4. Here, we investigate the Pearson correlation
coefficient ρ(x1, d) between the principal eigenvector and the degree vector as a function of
ρD. Linear scaling of the degree vector will not change the Pearson correlation coefficient.
Hence, we consider the original degree vector. When the absolute difference between the
principal eigenvector and the scaled degree vector is zero, the principal eigenvector is
proportional to the degree vector. In this case, ρ(x1, d) = 1, which seldom occurs in
real-world networks. A strong positive correlation, not necessarily to be one, is already
interesting with respect to approximate the eigenvector strategy by the corresponding
degree vector strategy in minimizing the spectral radius.
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Figure 4.4: Pearson correlation coefficient between the degree vector and the principal eigen-
vector as a function of the assortativity (a) in both binomial graphs (red marks and line) and
power-law graphs(blue marks and line); (b) in network instances derived from real-world networks
via degree-preserving rewirings.

Figure 4.4(a) depicts that ρ(x1, d) is mostly positively strong in the Erdős-Rényi ran-
dom graphs and Bárabasi-Albert graphs. However, ρ(x1, d) decreases dramatically when
the assortativity is decreased, actually around the minimal assortativity. Similarly, we
derive networks with different assortativities by applying degree preserving rewiring to
each of the 11 real-world networks. As in Figure 4.4(b), We are interested in how ρ(x1, d)
changes with the assortativity ρD in real-world networks. Figure 4.4(b) illustrates that,
the correlation ρ(x1, d) creases as the assortativity is decreased, especially around the
minimal assortativity, which is the same as observed in network models. In the simu-
lations of both network models and real-world networks, the most evident decrease is
observed in networks with a power-law degree distribution such as the C. elegans neural
network, the Gnutella 3 network and the WordAdj network.

These observations can be explained similarly as we explain the average/variance of
the principal eigenvector versus assortativity in Section 4.2.1. In general, if a node has
a large degree, its corresponding principal eigenvector component tends to be large even
when the assortativity is zero, due to (4.1). A large positive assortativity implying large
(or small) degree nodes tend to connect to other large (or small) degree nodes, further
enforces a large degree node to have more likely an even larger principal eigenvector com-
ponent compared to a small assortativity. Hence, a negative assortativity will weaken the
correlation ρ(x1, d). Note that the correlation coefficient is not necessarily the maximum
at the maximal assortativity as shown in Figure 4.4, because here we examine the Pearson
correlation coefficient but not the rank correlation.

4.2.4 Application: Degree vs. Principal Eigenvector Strategy in Minimizing the
Spectral Radius

In this part, we illustrate the possibility to replace the principal eigenvector strategy by
the degree vector in minimizing the spectral radius λ1 via an example of link removal in
power-law networks with different assortativities. As mentioned in [108], so far the best
link removal strategy removes the link l = i ∼ j with the largest product (x1)i(x1)j of the
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components of the principal eigenvector x1. A widely applied strategy to minimize λ1 by
removing m links (1) removes the set of m links with the highest degree product (d)i(d)j
in the original graph. The corresponding principal eigenvector strategy (2) removes the
set of m links with the highest component product in the principal eigenvector of the
original graph. We compare these two strategies in removing m ∈ [1, 200] links in graphs
with positive, zero and negative assortativity (see Fig. 4.5) but with the same power-law
degree distribution as in Fig. 4.4(a).
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Figure 4.5: Decrease of the spectral radius by successively removing m links in power-law net-
works. The square and circle dot dash lines show the decrease of the spectral radius by strategies
(1) and (2) separately.

Figure 4.5 shows that the decreases of λ1 by removing links with strategy (1) and
(2) are almost same when ρD is large. Strategy (2) decreases the spectral radius more
thus performs better than strategy (1) when the assortativity is small. When the assort-
ativity is large, the degree vector is positively and strongly correlated with the principal
eigenvector. In such a case, the degree vector strategy, the simplest to compute, well
approximates the principal eigenvector strategy in minimizing the spectral radius.

4.2.5 Section Conclusions

The principal eigenvector is essential in characterizing the influence of link/node on the
spectral radius, whereas its topological meaning is far from well understood. This work,
via both theoretical analysis and systematic simulations, contributes to the following
aspects: (a) the average E[x1] (or variance) of the principal eigenvector is shown and
explained to decrease (or increase) with the assortativity ρD; (b) the difference between
the principal eigenvector and the degree vector is proved to be the smallest, when λ1 =
N2

N1
and (c) we illustrate and explain why the correlation between principal eigenvector

and the degree vector decreases as ρD is decreased. In general, both a large variance
(heterogeneity) in nodal degree and a large degree correlation (homogeneity in connection)
contribute to a large average and a small variance of the principal eigenvector and a
strong correlation between the degree and the principal eigenvector. As a straightforward
application of these finds, we illustrate that when the assortativity is large, we could
approximate the well performance principal eigenvector based strategy (to minimize λ1 by
removing links/nodes) by the corresponding degree vector, which is the simplest network
property to compute.
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4.3 Analyzing the Correlations Between Centrality Metrics

We investigate the correlations between the centrality metrics introduced in Section 2.1.3,
in both network models and real-world networks. The network models include the Erdős-
Rényi (ER) networks and scale-free (SF) networks. We consider 34 real-world networks,
e.g., airline connections, power grids and coauthorship collaborations. The descriptions
and properties of these real-world networks are given in Appendix B. We study the
correlations between any two centrality metrics using the Pearson correlation coefficient
and the centrality similarity.

4.3.1 Pearson Correlation Coefficients Between Centrality Metrics

Here we explore the linear correlation between the centrality metrics using numerical
simulations in both ER and SF networks, as well as in real-world networks. The results
in Appendix C indicate that strong linear correlations do exist between certain centrality
metrics in both ER and SF networks, and that network size has little influence on the
correlations. Note that the k-shell index is weakly correlated with all the other centrality
metrics. This might be the case because the k-shell indices of all nodes are similar to each
other in binomial networks. We note the following seemingly universal relations between
the degree masses and three centrality metrics, the principal eigenvector x1, the closeness
Cn and the betweenness Bn, as


ρ(X1, D

(2)) > ρ(X1, D
(1)) > ρ(X1, D),

ρ(Cn, D
(1)) > ρ(Cn, D

(2)) > ρ(Cn, D),

ρ(Bn, D) > ρ(Bn, D
(2)) > ρ(Bn, D

(1)),

in most real-world networks(see Figs. 4.6a, 4.6b, and 4.6c). The same results can be found
in both ER and SF networks (see Appendix C). We theoretically prove the inequality
ρ(X1, D

(2)) > ρ(X1, D
(1)) > ρ(X1, D) in ER networks in Sec. 4.4.

Almost all of the Pearson correlation coefficients ρ(X1, D
(2)), ρ(Cn, D

(1)), and ρ(Bn, D)
are large (> 0.95) in both ER and SF networks (see Figs. C.1 and C.2) and are also large
(> 0.6) in most real-world networks (see Fig. A.1). The betweenness of a power-law
distributed network also follows a power-law distribution [112]. This supports the strong
linear correlation between the betweenness Bn and the degree D in SF networks [106].

4.3.2 Centrality Similarities MA,B(Υ) Between Centrality Metrics

Different centrality metrics rank the nodes in different orders within a network. The
centrality similarity was proposed in Ref. [113] to quantify the similarity of centrality
metrics in ranking nodes
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Figure 4.6: Pearson correlation coefficients (a) between the principal eigenvector and the de-
gree masses: ρ(x1, D) (in circle marks), ρ(x1, D

(1)) (in rectangle marks), and ρ(x1, D
(2)) (in

triangle marks); (b) between the closeness and the degree masses: ρ(Cn, D) (in circle marks),
ρ(Cn, D

(1)) (in rectangle marks), and ρ(Cn, D
(2)) (in triangle marks); (c) between betweenness

and degree masses: ρ(Bn, D) (in circle marks), ρ(Bn, D
(1)) (in rectangle marks), and ρ(Bn, D

(2))
(in triangle marks), in 34 real-world networks.

Definition In a graph G(N,L) assume we obtain two node rankings, [a(1), a(2), · · · ,
a(N)] and [b(1), b(2), · · · , b(N)], according to centrality metrics A and B, where a(j) or
b(j) is the node whose centrality metric A or B is the j-th largest in the networks. The
centrality similarity MA,B(Υ) is the percentage of the nodes in [a(1), a(2), · · · · · · , a(ΥN)],
which are also in [b(1), b(2), · · · · · · , b(ΥN)], where Υ ∈ [0, 1].

The measure MA,B(Υ) gives the percentage of overlapping nodes from the top 100Υ%
of nodes, ranked by the centrality metrics A and B, respectively. The range of MA,B(Υ)
is between [0, 1]. If the 100Υ% of nodes chosen by centrality metric A are not at all in
the 100Υ% of nodes chosen by centrality metric B, MA,B(Υ) = 0. It means that the
most important (top 100Υ%) nodes chosen by the two centrality metrics are completely
different, i.e., the centrality metrics A and B differ greatly. When all nodes are chosen
(Υ = 1) there is a full overlap, which indicates that MA,B(1) = 1. For a given Υ < 1,
a larger MA,B(Υ) represents a stronger correlation between the two centrality metrics A
and B.

Centrality similarities in network models

We study the centrality similarity MA,B(Υ) between any two centrality metrics2 in 103

network realizations of ER networks and SF networks with N = 104 and Υ = [0.001,
0.01, 0.1].

We observe that in both ER and SF networks, the MBn,D(Υ) is notably larger than
the centrality similarity between Bn and any other centrality metric; MCn,D(1)(Υ) >
MCn,D(2)(Υ) > MCn,D(Υ); and the centrality similarities Mx1,D(1)(Υ) and Mx1,D(2)(Υ)
are both large. In ER networks, Mx1,D(2)(Υ) > Mx1,D(1)(Υ) > Mx1,D(Υ). The k-shell
index has low similarity with other metrics in ER networks for the same reason mentioned
in Sec. 4.3.1. All these observations agree with what we have found using the Pearson
correlation coefficients in Sec. 4.3.1.

2Our study shows that the centrality similarity MA,B(Υ) increases with the increase of Υ in ER
networks, but decreases with the increase of Υ in SF networks. Note that this observation holds only for
small Υ and, if Υ is around 1, MA,B(Υ) = 1 in all networks.
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Figure 4.7: Centrality similarities between centrality metrics in network models: (a) for ER
networks and (b) for SF networks. The x-axis is the correlation index (see Appendix C).

Centrality similarities in real-world networks

For the 34 real-world networks the percentage Υ should be larger than 3%, since the
smallest network only has 35 nodes. We compare the similarity between each centrality
metric (e.g., Bn) and all other metrics to determine which metric is the closest to the
centrality metric (e.g., Bn). In Fig. 4.8 the height of each bar indicates the number of
networks in which MA,B(Υ) is the highest among the centrality similarities between A
and all the other centrality metrics. The bar chart shows that the D, D(1), and D(2)

are, respectively, most similar to Bn, Cn, and x1 in most real-world networks, which is
consistent with what is observed in the network models. We also observe that either
MLn,D(Υ) or MLn,Bn(Υ) is the largest among the centrality similarities between Ln and
all other metrics in most real-world networks.

Figure 4.8: Number of networks (among the 34 real-world networks), in which MA,B(Υ) is the
highest among the centrality similarities between A and all other centrality metrics, when Υ = 5%.
The centrality metric A is given by the x-axis label, and B is reflected by the pattern described
in the box on right side. Take the betweenness Bn as an example. The centrality similarities
between Bn and all the other metrics are compared with each other to find the largest similarity
in each real-world network. For instance, the MBn,Cn(Υ) is the largest centrality similarity in
‘Electric s208’ network, so that one is counted into the leftmost bar of Bn (with Cn).
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4.4 Theoretical Analysis
The above simulations indicate that the three lowest-order degree masses, with a low
computational complexity, are strongly correlated with the betweenness, the closeness,
and the components of the principal eigenvector, all of which are complex to compute. We
first apply the generating function method [16, 114] to analyze such statistical properties
of the degree masses as expectation and variance. We then prove that the high-order
(m → ∞) degree mass is proportional to the principal eigenvector x1 in any network.
Next we prove that when m is small the correlation between degree mass and the principal
eigenvector increases with an increase in m, i.e., ρ(X1, D

(2)) ≥ ρ(X1, D
(1)) ≥ ρ(X1, D).

4.4.1 Expectation and Variance of the Degree Masses
Lemma 4.4.1. In an Erdős-Rényi (ER) random network Gp(N), when N → ∞, the
average 1st-order degree mass is

E[D(1)] = N(2p+ p2N), (4.6)

and the variance is
V ar[D(1)] = N(2p+ 4p2N + p3N2). (4.7)

The average and the variance of 2nd-order degree mass are

E[D(2)] = N(2p+ 3p2N + p3N2), (4.8)

V ar[D(2)] = N(2p+ 14p2N + 17p3N2 + 7p4N3 + p5N4). (4.9)

Proof. The generating function for the probability distribution of node degree is defined
as

φD(z) =
N−1∑
k=0

zkProb[D = k],

and the generating function of the degree of the node that we arrive at by following a
randomly chosen link is ∑

k kProb[D = k]zk∑
k kProb[D = k]

= z
φ′
D(z)

E[D]
, (4.10)

where E[.] is the expectation. If we start at a randomly chosen node, the generating
function of the degree of a nearest neighbor of this node follows Eq. (4.10). The 1st-order
degree mass D(1) of a node equals the degree sum of the node and its neighbors. The
generating function has the ‘powers’ property [114], that the distribution of the 1st-order
degree mass of a node obtained from one nearest neighbor is generated by

φD(z)∗ = z2
φ′
D(z)

E[D]
,

then, the distribution of the total of the 1st-order degree mass over k independent realiz-
ations (k nearest neighbors) of the node is generated by kth power of φD(z)∗ as

φD(1)(z) = φD(φD(z)∗) =
∑
k

Prob[D = k]

(
z2

φ′
D(z)

E[D]

)k

. (4.11)
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For ER networks, E[D] = (N − 1)p is the average degree in an ER network Gp(N), and
φD(z) = (1− p+ pz)N−1, thus,

φD(1)(z) = ((1− p) + z2p(1− p+ pz)N−2)N−1, (4.12)

In addition, the generating function has the ‘Moments’ property [114], that E[
(
D(1)

)n
] =[

(z d
dz )

nφD(1)(z)
]
z=1

. Together with V ar[D(1)] = E[
(
D(1)

)2
]−E[D(1)]2, we arrive at the

(4.6) and (4.7), when N → ∞.
Similarly, the distribution of D(2) is generated by φD(φD(1)(φD(1)(z))). Hence, we

obtain the generating function of the 2nd-order degree mass as

φD(2)(z) = (1− p+ pz2(1− p+ pz)N−2(1− p+ pz2(1− p+ pz)N−2)N−2)N−1,

Thus, we can obtain (4.8) and (4.9).

4.4.2 Correlation Between the Degree Masses and the Principal Eigenvector
Lemma 4.4.2. The mth-order degree mass vector d(m) is proportional to the principal
eigenvector x1 in any network with a sufficiently large spectral gap when m → ∞.

Proof. The mth-order degree mass vector d(m) is

d(m) =
m+1∑
k=1

(
Aku

)
=

m+1∑
k=1

N∑
j=1

λk
jxj

(
xT
j u
)

=

N∑
j=1

(
λj

λm+1
j − 1

λj − 1

)(
xT
j u
)
xj

=

(
λ1

λm+1
1 − 1

λ1 − 1

)(
xT
1 u
)
x1 +

N∑
j=2

(
λj

λm+1
j − 1

λj − 1

)(
xT
j u
)
xj

=

(
λ1

λm+1
1 − 1

λ1 − 1

)(
xT
1 u
)
x1

1 +O

 N∑
j=2

(
|λj |
|λ1|

)m
 .

Literature [14] has proved that xT
1 u > xT

j u for all 1 < j ≤ N . Accordingly, the

term

N∑
j=2

(
λj

λm+1
j −1

λj−1

)(
xT
j u
)
xj is small in the graphs with a large spectral gap (λ1−λ2).

When m increases, d(m) →
(
λ1

λm+1
1 −1
λ1−1

) (
xT
1 u
)
x1. Moreover, when m is large, especially

when m → ∞, O
(∑N

j=2

(
|λj |
|λ1|

)m)
→ 0 in any graph. Thus we find that d(m) tends

to be proportional to x1 when m increases in networks with a large spectral gap, and

d(m) ∼ λ
(m+1)
1 (x1) in networks when m → ∞.

Lemma 4.4.3. In large sparse Erdős-Rényi (ER) networks, ρ(D(2), X1) ≥ ρ(D(1), X1) ≥
ρ(D,X1).
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Proof. The eigenvalue equation Ax = λx leads to λk
1x1 = Akx1, from which we obtain

uTx1

m∑
j=1

λj
1 = uT

 m∑
j=1

Aj

x1, where uTx1 = NE[X1] and uT

m+1∑
j=1

Aj =
(
d(m)

)T
. Hence,

the relation between the principal eigenvector and the mth-order degree mass vector can

be expressed as E[X1]N

m+1∑
j=1

λj
1 =

(
d(m)

)T
x1, leading to

E[D(m)X1] = E[X1]
m+1∑
j=1

λj
1. (4.13)

The Pearson correlation coefficient follows as

ρ(D(m), X1) =
E[D(m)X1]− E[D(m)]E[X1]√

V ar[D(m)]
√
V ar[X1]

=

m+1∑
j=1

λj
1 − E[D(m)]

E[X1]√
V ar[D(m)]

√
V ar[X1]

. (4.14)

The ratio of the two Pearson correlation coefficients is

ρ(D(1), X1)

ρ(D,X1)
=

√
V ar[D]√

V ar[D(1)]

(
1 +

(λ2
1 − E[D2])

(λ1 − E[D])

)
(4.15)

For large ER graphs, E[D] = (N−1)p → Np, E[D2] = (N−1)2p2−(N−1)p2+(N−1)p →
N2p2 −Np2 +Np and V ar[D] = (N − 1)p(1− p) → Np(1− p). From (4.7), we obtain√

V ar[D]√
V ar[D(1)]

=

√
(1− p)

(E[D] + 2)2 − 2
>

1

E[D] + 2
. (4.16)

When N → ∞ and Np = ς (ς is a constant and independent of N), the spectral radius
λ1 → ς, in sparse random graphs [115, 116]. With (4.15) and (4.16), ρ(D(1), X1) ≥
ρ(D,X1) is proved.

The ratio of the two Pearson correlation coefficients is

ρ(D(2), X1)

ρ(D(1), X1)
=

(
λ1 + λ2

1 + λ3
1 − E[D(2)]

)√
V ar[D(1)]

(λ1 + λ2
1 − E[D2]− E[D])

√
V ar[D(2)]

,

with (4.8) and λ1 → Np, when N → ∞ we arrive at(
λ1 + λ2

1 + λ3
1 − E[D(2)]

)
(λ1 + λ2

1 − E[D2]− E[D])
= 2E[D] + 1.

With (4.7) and (4.9), for large sparse random networks, ρ(D(2), X1) ≥ ρ(D(1), X1) is
proved.

4.5 Application to the Inflexible Contrarian Opinion (ICO) Model
In this section we apply the studied centrality metrics to select the inflexible contrarians
in the inflexible contrarian opinion (ICO) model [76] to help one opinion to compete with
another. Both network models and three social networks will be considered.
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4.5.1 The ICO Model
The ICO model is a variant of the non-consensus opinion (NCO) model [75]. The ICO
and NCO models are both opinion competition models in which two opinions exist and
compete with each other. In the NCO model opinions are randomly assigned to all agents
(nodes). At time t = 0 each agent is assigned opinion A with a probability f and opinion
B with a probability 1− f . At each subsequent time step each agent adopts the opinion
of the majority of its nearest neighbors and itself. When there is a tie, the opinion of the
agent does not change. All of the updates are made simultaneously in parallel at each
step. The system reaches a state in which the opinions A and B coexist and are stable
when f is above a critical threshold fc.

When the NCO model is in the stable state, the ICO model further selects a fraction
po of agents with opinion A to be the inflexible contrarians who will hold opinion B,
will never change their opinion, but will influence the opinion of other agents. The two
opinions then compete with each other according to the update rules of the NCO model.
The system will reach a new stable state by following these opinion dynamics.

We use S1 and S2 to denote the size of the largest and the second largest clusters of
agents with opinion A in the new stable state. A phase transition threshold fc separates
two different phases of the stable state. When f > fc, a giant component of agents with
opinion A exists and the coexistence of opinions A and B is stable. When f ≤ fc, no
giant component of agents with opinion A exists (S1 = 0). The fc depends on po. When
po = 0, the ICO model clearly reduces to the classical NCO model and they have the same
critical threshold fc. When 0 < po < p∗, the threshold fc of the ICO model increases with
po, but the size S1 for the finial stable state decreases with po. When p is above a certain
value p∗, the phase transition no longer occurs, and the giant component of agents with
opinion A is completely destroyed (S1 = 0).

4.5.2 Strategies of Selecting Inflexible Contrarians Using Centrality Metrics
The final stable state of the ICO model is affected not only by the percentage po, but also
by how inflexible contrarian agents are selected. Here we select the inflexible contrarians
based on their centrality metrics. Li et al. [76] studied the ICO model by choosing
the inflexible contrarian agents with opinion A either randomly or according to highest
degree. The degree strategy is significantly more effective than the random strategy in
reducing the size S1 of the largest opinion A cluster in the stable state when po is the same.
Here we want to determine which centrality metric used to pick the inflexible contrarians
reduces S1 most efficiently. We also want to determine whether the S1 decrease is similar
when the inflexible contrarians are chosen based on two strongly correlated (with a large
Pearson correlation coefficient or a high centrality similarity) centrality metrics. Here the
inflexible contrarians are chosen as nodes with highest (i) betweenness, (ii) degree, (iii)
1st-order degree mass, (iv) 2nd-order degree mass, (v) eigenvector component, (vi) k-shell
index, or (vii) leverage or (viii) chosen randomly.

4.5.3 Comparison of Inflexible Contrarian Selection Strategies
We first compare the efficiency in decreasing the size S1 of the largest opinion A cluster
in ER and SF networks when choosing the inflexible contrarians using different centrality
metrics. We consider ER networks (N = 104 or 105) with E[D] = 4, and SF networks
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(N = 104 or 105) with α = 2.5, and perform all the simulations on 103 network realiza-
tions.
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Figure 4.9: An example: the results of leverage strategy. Plot of s1 ≡ S1/N as a function of
f for different values of po for ER networks with E[D] = 4 and N = 104. We denote by S1 the
size of the largest A opinion cluster in the steady-state. Different marks show the results of ICO
model with different po: po=0(◦), po=0.1(�), po=0.2(⋄), po=0.3(△), po=0.4(∗), po=0.5(♢),
po=0.6(�). The insets plot the s2 ≡ S2/N , where S2 is the size of the second largest A opinion
cluster, as a function of the f for different values of po.
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Figure 4.10: Plot of fc as a function of po for strategies 1 to 8: (a) in ER graphs with N = 104,
E[D] = 4; (b) in SF graphs with N = 104, Dmin = 2, α = 2.5.

Figure 4.9 shows a plot of s1 = S1/N as a function of f for different values of po in
ER networks (with N = 104) using a leverage strategy. The size s2 = S2/N shows a
sharp peak, a characteristic of a second-order phase transition, in the insets of Fig. 4.9.
As po increases, fc shifts to a larger value and the largest cluster becomes significantly
smaller. When p > p∗, the giant component with opinion A disappears, i.e., S1 = 0. For
example, the p∗ value for the leverage strategy is between 0.3 and 0.4 (see Fig. 4.9). A
small p∗ implies that the inflexible contrarians can efficiently destroy the largest opinion
A cluster. We can compare the efficiency of the strategies in decreasing S1 by the value
of p∗. When we compare strategies in the ICO model with the same po, a larger phase
transition fc for a strategy indicates that the inflexible contrarians chosen using this
strategy decreases S1 more efficiently. Figure 4.10a plots the phase transition fc as a
function of po. Note that the efficiency of each strategy is ranked in decreasing order as:
Leverage, Degree, Betweenness, 1st-order Degree mass, 2nd-order Degree mass, k-shell
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index, Principal Eigenvector, and Random. The same result can be also found in ER and
SF networks with N = 105.
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Figure 4.11: Plot of fc as a function of po for strategies in social networks: (a) in network
of coauthorships between scientists posting preprints on ConMat E-Print Archives between 1995
to 1999; (b) in network of coauthorships between scientists posting preprints on ConMat E-
Print Archives between 1995 to 2003; (c) in network of coauthorships between scientists posting
preprints on Astrophysics E-Print Archives between 1995 to 1999.

We find that all strategies are more efficient in SF networks than in ER networks of
the same size. We base this on two observations. First, the relative change of fc with po
for all strategies in SF networks is larger than it is in ER networks. Second, the p∗ for
all strategies in SF is much smaller than it is in ER networks. The reason for this may
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be that (i) hubs can be readily selected as inflexible contrarians when using centrality
metrics in SF networks, and (ii) hubs can strongly influence the opinion of their large
number of nearest neighbors.

Figure 4.11 compares these centrality metrics in real-world networks, i.e., the ConMat
95-99 network, the ConMat 95-03 network, and the Astro Ph network. Note that the
inflexible contrarians selected using the leverage Ln, the betweenness Bn, and the degree
D are the most efficient in helping opinion B win the competition. The similar behaviors
of the three strategies are supported by the large Pearson correlation coefficient ρ(Bn, D)
and the large centrality similarities MBn,D(Υ), MLn,D(Υ) and MLn,Bn(Υ).

In both network models and real-world networks, strongly correlated centrality met-
rics tend to perform similarly. For example, we have discovered both numerically and
theoretically that ρ(D(2), X1) ≥ ρ(D(1), X1). Correspondingly, the principal eigenvector
x1 strategy performs closer to the 2nd-order degree mass D(2) than the 1st-order degree
mass D(1) in the ICO model.

4.6 Chapter Conclusions
In this chapter we have studied the correlation between widely studied and recently pro-
posed centrality metrics in numerous real-world networks as well as in network models,
i.e., as in Erdős-Rényi (ER) random networks and scale-free (SF) networks. A strong
correlation between two centrality metrics indicates the possibility of approximating one
centrality metric, usually the one with a higher computational complexity, using the other.
We find a strong correlation between the degree and the principal eigenvector. When the
assortativity is large, we could approximate the well performance principal eigenvector
based strategy by the corresponding degree vector. We also study the correlations between
the centrality metrics introduced in Sec. 2.1.3 using the Pearson correlation coefficient and
the centrality similarity. An important finding is that the degree D, the 1st-order degree
mass D(1), and the 2nd-order degree mass D(2) are strongly correlated with the between-
ness Bn, the closeness Cn, and the principal eigenvector x1, respectively. This observation
is partially supported by our analytical proof that ρ(X1, D

(2)) > ρ(X1, D
(1)) > ρ(X1, D).

We have introduced the degree massD(m) as a new network centrality metric. The 0th-
order degree mass is the degree and the high-order (m → ∞) degree mass is proportional
to the principal eigenvector x1. We also find that the influence of network size (the number
N of nodes) on the Pearson correlation coefficients is small. In addition, the leverage Ln

has high centrality similarities with the degree D and the betweenness Bn. We use these
centrality metrics to select the inflexible contrarians in the ICO model to help one opinion
to compete with the other. The leverage Ln turns out to be the most efficient strategy
in both network models and real-world networks. We also find that strongly correlated
metrics perform similarly in the ICO model. This suggests that the metrics with a low
computational complexity, such as the degree D and the leverage Ln, could be used to
approximate more complex metrics, e.g., the betweenness Bn, to locate important nodes
in complex networks. Examples of important nodes would include inflexible contrarians in
opinion propagation networks and nodes that should be immunized in disease transmission
networks.





CHAPTER 5

Network Metrics for Epidemic
Thresholds of SIS Approximations

“I learned very early the difference between knowing the name
of something and knowing something.”

Richard P. Feynman, 1918 - 1988

Metrics characterize the functions of a network, in the meanwhile, the functions are
usually expressed through the dynamic processes on the network. In this chapter, we

introduce the ε–SIS spreading model, which is taken as a benchmark for the comparison
between the N-intertwined approximation and the Pastor-Satorras & Vespignani HMF
approximation of the SIS model. The N-intertwined approximation, the HMF approxim-
ation and the ε–SIS spreading model are compared for different graph types. We focus
on the epidemic threshold and the steady-state fraction of infected nodes in networks
with different degree distributions. The epidemic thresholds of the approximations can
be described by the metrics introduced in Section 2.1. Overall, the N-intertwined ap-
proximation is superior to the HMF approximation. The N-intertwined approximation
is exactly the same as the HMF approximation in regular graphs. However, for some
special graph types, such as the square lattice graph and path graph, the two mean-field
approximations are both far away from the ε–SIS spreading model.

5.1 Introduction
As a spreading model we use the susceptible-infected-susceptible [117] (SIS) epidemic
process, which is described in Section 2.3.1. A fundamental question in the study of
epidemics is, whether a virus will spread through the entire network, or will die out.
The answer to this question is the epidemic threshold τc, which separates two different
phases of the dynamic spreading process on a network: if the effective infection rate τ
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is above the threshold, the infection spreads and becomes persistent in time; if τ < τc,
the infection dies out exponentially fast. Many authors (see [79, 11, 118, 72, 119, 73,
29, 30]) mention the existence of an epidemic threshold τc. Since an exact solution for
any network has not been found yet, several approximations of the SIS epidemics have
been developed. Here, we focus on the steady-state of two mean-field approximations
of SIS epidemics: the N-intertwined approximation [31, 120] and the Pastor-Satorras &

Vespignani approximation [73]. A first order mean-field epidemic threshold τ
(1)
c = 1

λ1(A) ,

where λ1(A) is the largest eigenvalue of the adjacency matrix A, was first proposed
by Wang et al. [30], and rigorously proved by Van Mieghem et al. in [31, 120] and
later appeared in the physics community [121]. Van Mieghem et al. [31] also showed
that this mean-field threshold lower bounds the “in reality observed” epidemic threshold,

τ
(1)
c = 1

λ1(A) ≤ τc. A more accurate lower bound (the secondorder mean-field threshold)

τc ≥ τ
(2)
c ≥ τ

(1)
c has been derived in [122]. Pastor-Satorras & Vespignani [73] proposed

the heterogeneous mean field (HMF) approximation, whose epidemic threshold [118, 73]
is given by τHMF

c = E[D]/E[D2], where D is the degree of a randomly chosen node in G

and E[D2]
E[D] is the degree diversity, which has been introduced in Section 2.1.1.

Here we present a detailed comparison of the two mean-field approximations. Usually,
the quality of an approximation is assessed by two criteria: 1) which approximation is
closer to the exact SIS model, and 2) which approximation’s epidemic threshold is nearer
to the epidemic threshold of the exact SIS model? A direct comparison to the SIS model is,
however, not possible, because the steady-state of the exact SIS model in a finite network
is, as shown in [31], the overall-healthy state, which is equal to the absorbing state of
the SIS Markov chain. The presence of an absorbing state is a major complication in
the analysis of the SIS model. The steady-state of both above mean-field approximations
corresponds, in fact, to the meta-stable state in the SIS model, which is not clearly defined
for finite networks [31]. Therefore, we define here the meta-stable state of the SIS model
via the steady-state of the ε–SIS model for a prescribed value of ε. The ε–SIS process
generalizes the SIS model by adding a nodal component to the infection. We assume
that each node i can be infected spontaneously. The spontaneous infection process is a
Poisson process with rate ε. Hence, besides receiving the infection over links from infected
neighbors with rate β, the node i can also itself produce a virus with rate ε. All involved
Poisson processes are independent. For ε > 0, the ε–SIS has no absorbing state and
Markov theory guarantees a unique steady-state. When ε = 0, the ε–SIS model clearly
reduces to the “classical” SIS model. Hence, for small values of ε > 0, the ε–SIS spreading
model can be used to approximate the exact SIS model. Here, the ε–SIS spreading model
with small value of ε is used as a benchmark to compare the steady-state of the N -
intertwined approximation and the HMF approximation on different network types.

This chapter is organized as follows. Section 5.2 overviews the N-intertwined approx-
imation, the Pastor-Satorras & Vespignani HMF approximation and the ε–SIS spreading
model in detail. The steady-state of infection in the ε–SIS model and these two approx-
imations are described in Section 5.3. Section 5.4 compares the steady-state fraction of
infected nodes in various types of graphs: complete graphs, star graphs, Erdős-Rényi ran-
dom graphs, small-world graphs, and Bárabasi-Albert graphs. An analytic comparison
of the epidemic thresholds of the two mean-field approximations is shown in Section 5.5.
Conclusions are summarized in Section 5.6.
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5.2 Description of the ε–SIS Model and the Mean-field Approxima-
tions

5.2.1 The ε–SIS Spreading Model

The ε–SIS spreading model was proposed recently by Hill et al. [123] in their analysis of
emotions as a form of infection in a social contact network and earlier in [124] where ε
is defined as the driving field conjugate to the density of infected nodes. Here, we will
explain the simulation process, but defer to [125] for an analysis of the ε–SIS model.

In our simulations we take a nodal central, event driven approach. An event can
either be the curing of a node or the spreading of the infection from one node to another.
Events are stored in a timeline as tickets. A ticket contains, besides the time and the
event type (spreading or curing), the owner of the ticket. The ticket owner is usually a
node, but can also be the system to allow for scheduling of administrative tasks. Tickets
are continuously taken from the timeline and passed on to the owner.

If the ticket owner is a node, the ticket either indicates a curing or spreading event.
In case of a curing event, the node simply changes its state from infected to healthy; in
case of a spreading event, it will spread the infection to the neighbor mentioned in the
ticket. If the neighbor was not already infected, it will now become infected and create
one or more tickets.

A newly infected node will always create a ticket for its own curing event. According
to continuous-time Markov theory (see [16]), the time between infection and curing is
exponentially distributed with rate δ and is stored by the node for future reference. An
infected node also generates spreading times at which it will spread the infection to its
neighbors. The spreading times are again exponentially distributed but now with rate β.
If the spreading time does not exceed the node’s curing time, a ticket is created for the
spreading event. All newly created tickets are stored in the timeline. Finally, the owner of
the original ticket generates a new spreading time, which, if not exceeding its own curing
time, creates a new spreading ticket for the same neighbor.

If the ticket is not owned by a node, it is a system ticket. System tickets are used to
cause the spontaneous infections in nodes. Every node becomes infected spontaneously
at a rate ε, but to minimize the number of tickets in the timeline, the system creates one
spontaneous infection ticket at the time. The time between spontaneous infection tickets
is exponentially distributed with rate Nε. When the system receives a spontaneous
infection ticket, it selects a random node and tries to infect it. If the node is already
infected, nothing will change, whereas a healthy node will become infected and create the
tickets described above.

During the simulation, for each possible number of infected nodes (0 to N) how long
the network was in a state with that many nodes infected, is recorded. The average
number of infected nodes during the simulation can be determined by multiplying the
number of infected nodes by the fraction of time spent in that state, and sum over all the
states.

5.2.2 The Pastor-Satorras & Vespignani HMF Approximation

Pastor-Satorras & Vespignani [73] studied the SIS epidemics on networks and proposed the
heterogeneous mean-field (HMF) approximation, in which the degree distribution plays
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an important role. Highly connected nodes are statistically significant and the strong
fluctuations in the degree distribution cannot be neglected. Consider the relative density
ρk(t) of infected nodes with given degree k, i.e., the probability that a node with k links
is infected. The fraction of infected nodes in a network is denoted by ρ. The dynamical
mean-field reaction rate equation can be written as

∂tρk(t) = −δρk(t) + βk[1− ρk(t)]Θ (ρ(t)) ,

where Θ (ρ(t)) is the probability that any given link points to an infected node. In steady-
state, y∞ = limt→∞ ρ(t) is only a function of τ , and as consequence, so is Θ (ρ(t)). By
imposing stationarity [∂tρk(t) = 0], when t → ∞, the relative density reduces to

ρk(τ) =
τkΘ(τ)

1 + kτΘ(τ)
, (5.1)

where τ = β
δ is the effective infection rate and

Θ(τ) =
1

E[D]

N−1∑
k=1

kProb[D = k]ρk(τ). (5.2)

Clearly, if τ = 0, then Θ(0) = 0. Substituting (5.1) into (5.2) leads to a self-consistent
relation, from which Θ(τ) can be determined as

Θ(τ) =
τΘ(τ)

E[D]

N−1∑
k=1

k2Prob[D = k]

1 + kτΘ(τ)
. (5.3)

Eq. (5.3) has a trivial solution Θ(τ) = 0. For a nontrivial solution Θ(τ) > 0 to exist, Eq.
(5.3) must satisfy the following condition:

E[D]

τ
=

N−1∑
k=1

k2Prob[D = k]

1 + kτΘ(τ)
. (5.4)

Next, we introduce the following expansion,

1

1 + kτΘ(τ)
=

∞∑
j=0

(−1)j(kτΘ(τ))j

valid when kτΘ(τ) < 1 for all k,

E[D]

τ
=

∞∑
j=0

(−1)j

{
N−1∑
k=1

Prob[D = k]kj+2

}
τ jΘj(τ)

=
∞∑
j=0

(−1)jE
[
Dj+2

]
τ jΘj(τ),

where the latter series converges for Θ(τ) < 1/(Dmaxτ). Since τ = 0 leads to Θ(0) = 0,
the non-trivial solution Θ(τ) > 0 occurs when τ > τHMF

c ≥ 0 by the definition of the
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epidemic threshold. When Θ(τ) is sufficiently small (Θ(τ) < 1/(Dmaxτ)) and Θ(τ) > 0,
we can write the above expansion up to first order as

E[D]

τ
= E[D2]− τΘ(τ)E[D3] +O(Θ(τ)2), (5.5)

in which τΘ(τ)E[D3] > 0. Hence, when τ > τHMF
c , but Θ(τ) is small enough to ignore

the second order terms O(Θ(τ)2), with Eq. (5.5) we have

E[D]

τ
< E[D2].

It holds that τ > E[D]
E[D2] , implying that for all τ > τHMF

c . Thus, the epidemic threshold of

the HMF approximation is

τHMF
c =

E[D]

E[D2]
.

The same result was also deduced differently in [126]. For a regular graph [73] with degree
r, E[D2] = E[D]2 = r2, the epidemic threshold is τHMF

c = 1
r = 1

λ1
.

Finally, we can evaluate the fraction y∞(τ) of infected nodes using the relation

y∞(τ) =
N−1∑
k=1

Prob[D = k]ρk(τ). (5.6)

5.2.3 The N-intertwined Approximation

The HMF approximation considers the relative density ρk(t) of infected nodes with given
degree k during the epidemic process. However, the state of each node is not taken into
account. The N-intertwined epidemic approximation [31, 127] is derived by separately
observing each node. Every node i at time t in the network is in one of two states:
infected, with probability Prob[Xi(t) = 1] and healthy, with probability Prob[Xi(t) = 0].
Since a node can only be in one of two states, Prob[Xi(t) = 0]+Prob[Xi(t) = 1] = 1. Since
the curing and infected processes are Poisson processes, the whole epidemic process is a
Markov process. If we apply Markov theory straightforwardly, the infinitesimal generator
Qi(t) of this two-state continuous Markov chain is

Qi(t) =

[
−q1;i q1;i
q2;i −q2;i

]
,

with q2;i = δ. Markov theory requires that the infinitesimal generator is a matrix whose
elements are not random variables. However, this is not the case in our simple approx-

imation: q1;i(t) = β
N∑

k=1

aij1{Xk(t)=1}. Using a mean-field approximation [31] so that

E[q1;i] = β
∑N

j=1 aijProb[Xj(t) = 1], the effective infinitesimal generator becomes

Qi(t) =

[
−E[q1;i] E[q1;i]

δ −δ

]
.
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Then, in accordance with Markov theory in [16, pp. 182], denoting vi(t) =Prob[Xi(t) = 1]
and Prob[Xi(t) = 0] = 1− vi(t), the set of nodes obey the differential equations

dv1(t)
dt = β

N∑
j=1

a1jvj(t)− v1(t)(β
N∑
j=1

a1jvj(t) + δ)

dv2(t)
dt = β

N∑
j=1

a2jvj(t)− v2(t)(β

N∑
j=1

a2jvj(t) + δ)

...

dvN (t)
dt = β

N∑
j=1

aNjvj(t)− vN (t)(β
N∑
j=1

aNjvj(t) + δ)

written in matrix form,

dV (t)

dt
= βAV (t)− diag(vi(t))(βAV (t) + δu), (5.7)

where the vector V (t) = [v1(t) v2(t) · · · vN (t)]T . The average number of infected nodes
in G is equal to y(t) = uTV (t), where u is the all-one vector.

For the N-intertwined approximation, the largest eigenvalue λ1 of the graph’s adja-

cency matrix rigorously defines the first order epidemic threshold τ
(1)
c = 1

λ1
. A second

order epidemic threshold τ
(2)
c ≥ τ

(1)
c is studied in [122] that also presents a different de-

rivation of the N-intertwined equations. The threshold arises as a consequence of the
mean-field approximation. A major property, proved in [31] as well as in [122], of the
N-intertwined approximation is that Vi(t) ≥ Vi (t) |exact. Hence, the N-intertwined ap-

proximation upper bounds the SIS epidemics and, consequently, τ
(1)
c < τc.

5.3 The Steady-state Infection in the Model and Two Approximations

5.3.1 The ε–SIS Spreading Model
In this chapter, we use the ε–SIS model as a benchmark to compare the two mean-
field approximations. Whereas the classical SIS model has an absorbing state, the ε–SIS
model does not for ε > 0. The non-zero steady-state of the ε–SIS model is reached
as time progresses. We believe that the steady-state fraction of infected nodes in the
ε–SIS model is the simplest way to determine the number of infected nodes in the meta-
stable state of the SIS model. The meta-stable state of the classical SIS model, although
easily recognized, is difficult to define precisely. One approach would be to run many
independent instances of the virus spreading process and calculate the average number
of infected nodes at sampled points in time and look for a plateau. This will, however,
lead to too low an average number of infected nodes as a function of time as for smaller
values of the effective spreading rate, many instances of the virus spreading process die
out very quickly. These died-out instances have a large impact on the average number
of infected nodes as a function of time. Since instances of the virus that die out quickly
do not reach a meta-stable state they have to be filtered out, but that would require an
assessment of how long a “reasonable” outbreak lasts. Such a reasonable outbreak will
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Figure 5.1: Meta-stable state of classical SIS model (solid yellow line) and the steady state of
the ε-SIS model (dashed blue line) in ER graphs (ε = 10−3).

be dependent on the effective spreading rate and on the network topology which makes
it infeasible as a simulation method.

As the ε–SIS model has a well defined steady-state, the steady-state number of infec-
ted nodes can be computed precisely. We start our simulations with no nodes infected
and continue to run for a specified warm-up period. After the warm-up period, the meas-
urement period starts during which we record the average number of infected nodes. For
all simulations we have taken the warm-up and measurement period to be 107 time units
and ε = 10−3 time units. We have chosen for a duration of 107 time units after careful
experimentations. The accuracy of the ε–SIS simulations have been compared to the
exact ε–SIS Markov chain (see [125]) for small (N ≤ 10) networks, where more than 3
digits were accurate for all the considered τ - ranges.

The steady-state number of infected nodes of the ε–SIS model will be close to the
average number of infected nodes in the meta-stable state of the SIS model for small values
of ε. In Figure 5.1, we show a “reasonable” instance of a virus outbreak together with
the steady-state number of infected nodes of the ε–SIS model. These examples illustrate
that steady-state average number of infected nodes of the ε–SIS model is precisely the
line around which the number of infected nodes in the SIS model varies.

5.3.2 The Pastor-Satorras & Vespignani HMF Approximation

From (5.1) and (5.2), we obtain the set of nonlinear equations



τ
∑N−1

k=1 kProb[D=k]ρk

E[D]+τ
∑N−1

k=1 kProb[D=k]ρk
− ρ1 = 0

2τ
∑N−1

k=1 kProb[D=k]ρk

E[D]+2τ
∑N−1

k=1 kProb[D=k]ρk
− ρ2 = 0

...
(N−1)τ

∑N−1
k=1 kProb[D=k]ρk

E[D]+(N−1)τ
∑N−1

k=1 kProb[D=k]ρk
− ρ

N−1
= 0

(5.8)

From the nonlinear set (5.8), the densities ρ1, ρ2,· · · ρN−1
can be calculated, and after

using (5.6), we obtain the steady-state fraction y∞(τ) of infected nodes.
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5.3.3 The N-intertwined Approximation
The steady-state of the N-intertwined approximation is obtained from (5.7), after letting

t → ∞ and limt→∞
dvj(t)
dt = 0, as

βAV (t)− diag(vi(t))(βAV (t) + δu) = 0. (5.9)

Written as a nonlinear equation for a single node i, leads to

vi∞ =
β
∑N

j=1 aijvj∞

β
∑N

j=1 aijvj∞ + δ
= 1− 1

1 + τ
∑N

j=1 aijvj∞
. (5.10)

The steady-state fraction y∞(τ) of infected nodes can be calculated using (5.10).
For example, for the complete graphs KN , with τ > τc = 1

N−1 , when t → ∞, vi∞ =
y∞, from which the fraction of infected nodes (5.10) reduces to

y∞ = 1− 1

1 + τ(N − 1)y∞
,

or

y∞ = 1− 1

(N − 1)τ
, (5.11)

which is exactly the same as for the HMF approximation in (5.8) when ρk = ρN−1 = ρ =
y∞, as also illustrated in Fig 5.5.

5.3.4 Asymptotics for Large τ

We present the exact steady-state asymptotics of the epidemic for large τ . If τ is suf-
ficiently large, the infection state vj∞ = limt→∞Prob[Xj (t) = 1] of a node j with dj
neighbors tends to be independent of the viral state of its dj neighbors, because the
neighbors are with overwhelming probability infected. Hence, the nodal viral state of
node j is not intertwined anymore with that of its neigbors, but independent and is ex-
ceedingly well described by a two-state continuous Markov process with infection rate β
and curing rate δ, where vj∞ =

βdj

δ+βdj
= 1

1+ 1
τdj

= 1
1+ s

dj

, where s = 1
τ . The derivative for

large τ or, equivalently s → 0, is

dvj∞ (s)

ds

∣∣∣∣
s=0

= − 1

dj
.

The average steady-state fraction of infected nodes is thus y∞ (s) = 1
N

∑N
j=1 vj∞ (s) and

has a derivate at s = 0 equal to

dy∞
ds

∣∣∣∣
s=0

= − 1

N

N∑
j=1

1

dj
= −E

[
1

D

]
,

which is precisely equal to that computed in [128] for the N -intertwined mean-field ap-
proximation.
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For the HMF approximation, we obtain by substituting (5.1) into (5.6) and using the
transform s = 1

τ ,

y∞;HMF(s) =
N−1∑
k=1

Prob[D = k]

1 + s
kΘ(s−1)

,

from which, using lims→0 Θ(s−1) = 1,

dy∞;HMF(s)

ds

∣∣∣∣
s=0

= − lim
s→0

N−1∑
k=1

Prob[D = k](
1 + s

kΘ(s−1)

)2 1

k

(
1

Θ(s−1)
− s

Θ2(s−1)

dΘ(s−1)

ds

)

= −
N−1∑
k=1

Prob[D = k]

k
= −E

[
1

D

]
,

because dΘ(s−1)
ds

∣∣∣
s=0

is finite. Indeed, taking the derivative of the self-consistent relation

(5.4)

E[D] =
N−1∑
k=1

k2Prob[D = k]

s+ kΘ(s−1)
,

yields

0 =

N−1∑
k=1

k2Prob[D = k]

(s+ kΘ(s−1))
2

(
1− k

dΘ(s−1)

ds

)
,

or

dΘ(s−1)

ds
=

∑N−1
k=1

k2Prob[D=k]

(s+kΘ(s−1))2∑N−1
k=1

k3Prob[D=k]

(s+kΘ(s−1))2

,

from which dΘ(s−1)
ds

∣∣∣
s=0

= 1∑N−1
k=1 kProb[D=k]

= 1
E[D] .

Hence, both mean-field approximations return both lims→0 y∞(s) and the derivate
dy∞(s)

ds

∣∣∣
s=0

correctly in the large τ -regime.

5.4 Comparison of the Steady-state Fraction of Infected Nodes Versus
τ

This section compares the ε–SIS model and two approximations for different graph types.
We take the following topologies into account: the bipartite graph, the star graph, the
complete graph, the lattice graph, the path graph, the Erdős-Rényi random graph, the
Bárabasi-Albert scale-free graph and the small-world graph. These network models are
introduced in Section 2.2. The steady-state fraction y∞(τ) of infected nodes is calculated
for increasing effective spreading rates τ and ε = 10−3. The values of the N-intertwined
approximation, the HMF approximation and the simulations of the ε–SIS spreading model
are shown in purple, blue and pink lines respectively. The different markers indicate the
size of the graphs, e.g. circles in Figure 5.2 indicate the results for graphs with N = 10
nodes.
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5.4.1 Complete Bipartite Graphs
Here we consider complete bipartite graphs KM1,M2 with M1 = N/4 and M2 = 3N/4.
The steady-state fraction y∞(τ) of infected nodes as a function of τ are computed in
bipartite graphs with N = 10, 20, 40, 80, 160 and 320 nodes. Figure 5.2 shows that the
epidemic thresholds for the HMF approximation and the N-intertwined approximation
are close to that of the ε–SIS spreading model (ε = 10−3) in complete bipartite graphs.

Since, τ
(1)
c of the N-intertwined approximation is nearer to τc than τHMF

c of the HMF

approximation, τ
(1)
c provides the better epidemic prediction for the SIS model in the

complete bipartite graph KM1,M2
. Moreover, in [122] it is proved that τc ≥ τ

(2)
c ≥ τ

(1)
c ,

which means that the second order N-intertwined approximation is closest to the ε–SIS
spreading model, and therefore the best in bipartite graphs.
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Figure 5.2: Comparison in bipartite Networks

Three interesting results can be observed by zooming in on Figure 5.2 as shown in Fig-
ure 5.3. First, the N-intertwined approximation is an upper bound of the ε–SIS spreading
model. Second, the difference between the N-intertwined approximation and the ε–SIS
spreading model decreases with N . We observe that the N-intertwined approximation
almost overlays the ε–SIS spreading model, when N = 320. Third, the HMF approxim-
ation is lower than the ε–SIS spreading model, showing that the HMF approximation is
not upper bounding the SIS model.

5.4.2 Star Graphs

The epidemic threshold for the first order N-intertwined approximation equals τ
(1)
c =

1
λ1
. For any connected graph, the spectral radius is bounded [14] from above by λ1 ≤√
2L−N + 1, and equality is reached for the complete graph KN , and the star K1,N−1.

As a star graph contains L = N − 1 links, we obtain

τ (1)c =
1√

2L−N + 1
=

1√
N − 1

. (5.12)

The second-order mean-field threshold for the star was estimated in [122] to be τ
(2)
c =

1√
0.53N−1.3

, while exact computations indicate that τc =
1√
N

√
1
2 logN + log logN +O (1)

for large N .
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Figure 5.3: Zoom in the comparison in the bipartite graphs

Recall that the epidemic threshold of the HMF approximation is given by τHMF
c =

E[D]
E[D2] . For star graphs it holds that E[D2] = N2−N

N and E[D] = 2(N−1)
N , so the HMF

threshold reduces to

τHMF
c =

2

N
. (5.13)

Equalities (5.12) and (5.13) indicate that, for N > 2, the epidemic threshold of the
N-intertwined approximation is always larger than that of the HMF approximation in star
graphs. Figure 5.4 shows the superiority of the N-intertwined approximation, especially
when N is large. Nevertheless, the two epidemic thresholds are both quite far from the
threshold of the ε–SIS spreading model (ε = 10−3) in star graphs.
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Figure 5.4: Comparison in star graphs

5.4.3 Complete Graphs

For a complete graph τHMF
c = E[D]

E[D2] =
N−1

N(N−1)2/N = 1
N−1 , at the same time λ1 = N − 1.

Hence, the epidemic threshold of the N-intertwined approximation τ
(1)
c = 1

λ1
is equal
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to the threshold of HMF approximation τHMF
c = E[D]

E[D2] . For KN , both approximations

are very close to the ε–SIS spreading model (ε = 10−3) (see Figure 5.5). This is to be
expected, since the mean-field approximation in the N-intertwined approximation is best
for dense graphs, as explained in [31]. Moreover, for KN , the steady-state equations (see
Sections 5.3.3 and 5.3.2) in the N-intertwined and HMF approximation are the same.
The steady-state fraction y∞(τ) of infected nodes as a function of τ has been deduced in
(5.11).
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Figure 5.5: Comparison in complete graphs

5.4.4 Square Lattice Graphs

For square lattice graphs, the equations of N-intertwined approximation and the HMF
approximation are almost the same, as verified from the simulations of the two approx-
imations. Our simulations (see Figure 5.6) show that the epidemic threshold of the ε–SIS
spreading model (ε = 10−3) decreases with the size N of the network. The HMF ap-
proximation performs a bit better than the N-intertwined approximation in approaching
the ε–SIS spreading model in lattice graphs. The simulation illustrates that both the
N-intertwined approximation and the HMF approximation do not predict the epidemic
threshold for epidemic processes in lattices. We remark that, in the related process of
percolation, the critical probability [61, 62, 63] on the square lattice is equal to 1/2.

5.4.5 Path Graphs

As shown in Figure 5.7, the steady-state fraction y∞(τ) of infected nodes of the N-
intertwined approximation and the HMF approximation are far from that of the ε- SIS
spreading model (ε = 10−3). The epidemic thresholds of the N-intertwined approximation
and the HMF approximation are both near 0.5, since the average degree of the path graph
is 2, ignoring boundary nodes. However, the steady-state fraction y∞(τ) of infected nodes
of the ε- SIS spreading model increases very slowly with τ between 0 ≤ τ ≤ 1, and seems
to always be around 0 in the range of network sizes that we considered.
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Figure 5.6: Comparison in lattice graphs
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Figure 5.7: Comparison in path graphs

5.4.6 Erdős-Rényi Random Graphs
In this section we investigate the thresholds in Erdős-Rényi (ER) random graphs, which
have a binomial degree distribution [1]. An Erdős-Rényi random graph is connected
with high probability, if p > pc ≈ lnN

N for large N , where pc is the disconnectivity
threshold. All the graphs in the simulations are generated with p = 2pc, and checked for
connectivity. Figure 5.8 shows that the steady-state fraction y∞(τ) of infected nodes of
the N-intertwined approximation and the HMF approximation for ER graphs N = 10,
20, 40 and 80, are extremely close. However, they both differ from the epidemic threshold
of the ε–SIS spreading model, especially when N is small. When N is large, the two
approximations are close to the ε–SIS spreading model (ε = 10−3) (see Figure 5.9).

5.4.7 Bárabasi-Albert Scale-free Graphs
The Bárabasi-Albert (BA) graph [7] is a characteristic model for complex networks be-
cause of its power-law degree distribution. Power-law degree distributions are widely,
though approximately, observed in real-world complex networks. The steady-state frac-
tion of infected nodes as a function of the effective spreading rate y∞(τ) is computed in
a BA graph with N = 1000 and m = 4 and shown in Figure 5.10. The N-intertwined
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Figure 5.9: Comparation among the N-intertwined approximation, Pastor-Satorras approxim-
ation and the ε- SIS model in ER network (N = 160) .

approximation is close to the HMF approximation, but a little superior. This is to be
expected, since the N-intertwined approximation is better than the HMF approximation
in star graphs as explained in Section 5.4.2, and the BA model can be regarded as a set
of hubs with star graph features.

5.4.8 Watts-Strogatz Small-world Graphs
Watts-Strogatz small-world (WS) graphs [6] have two main properties: a small average
hopcount E[H], similar to Erdős-Rényi random graphs, and a high clustering coefficient
CG, similar to a ring lattice. The structural properties of small-world graphs have been
found in various real-world networks, including social networks [65], neural networks [66]
and biological oscillators [67]. In this section, the WS graphs are generated with N = 40
and 80, ks = 6 and p = 0.1 and 1. In Figure 5.11 the steady-state fraction y∞(τ)
of infected nodes, as predicted by the two approximations are shown together with the
ε–SIS simulations. The N-intertwined approximation and the HMF approximation are

quite close to each other, but far away from the ε–SIS spreading model. The τ
(1)
c = 1

λ1

and the τHMF
c = E[D]

E[D2] in small-world graphs are near to each other no matter what N
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Figure 5.10: Comparation in Barabasi-Albert Scale-free networks

and p are. This can be explained by observing that most nodes have the same degree in

WS graphs, justifying the approximation of E[D2] by E[D]2 and τHMF
c = E[D]

E[D2] by
1

E[D] .

Another consequence of the similar node degrees in WS graphs is that E[D] is close to
Dmax. Since λ1 is bounded from below and above as E[D] ≤ λ1 ≤ Dmax [14, art. 43, pp.

46 and art. 48, pp.52], we can approximate λ1 by E[D], and τ
(1)
c by 1

E[D] , just as τ
HMF
c .
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Figure 5.11: Comparation in WS Small-world networks

5.5 Analytic Comparison of the Epidemic Thresholds τ
(1)
c and τHMF

c

In this paragraph, we analyse the relation between the first order epidemic threshold of

N-intertwined approximation τ
(1)
c = 1

λ1
and the epidemic threshold of the HMF approx-

imation τHMF
c = E[D]

E[D2] . From the comparison in Section 5.4, we find that the relation

between the two epidemic thresholds strongly depends on the graph types. The two epi-
demic thresholds are equal to each other in regular graphs where each node has degree r
increasing with N . Indeed, since λ1 = E[D] = r (see [14, art. 43, pp. 46]), and τHMF

c = 1
r ,

we find that τ
(1)
c = τHMF

c . There are graphs for which τ
(1)
c < τHMF

c , while in most cases,
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our simulations in Figures 5.2, 5.4, 5.8 and 5.10 demonstrate that τ
(1)
c > τHMF

c .

Cases τ
(1)
c < τHMF

c : The epidemic threshold τHMF
c is larger than the first order

threshold τ
(1)
c = 1

λ1
, when the assortativity ρD is zero. In [90], we have proved that

λ1 ≥ N2

N1
= E[D2]

E[D] = 1
τHMF
c

, when ρD = 0 (see Eq. (3.9)).

Cases τ
(1)
c > τHMF

c : Newman [18] pointed out that the assortativity ρD of the ER
graph and the BA graph is zero when N is large. However, in most ER and BA graphs
with finite size, the assortativity is only approximately zero. Our simulations in Figures

5.8 and 5.10 show that τHMF
c ≤ τ

(1)
c in ER and BA graphs, demonstrating that the precise

ρD = 0 condition in (2.3) that led to N1N3 = N2
2 is not valid. Moreover, we have already

proved τHMF
c ≤ τ

(1)
c in star graphs (see Sec. 5.4.2).

It would be interesting to find all or the most prominent graph classes in which τ
(1)
c >

τHMF
c and in which τ

(1)
c < τHMF

c .

5.6 Chapter Conclusions
Many approximations of the SIS model have been proposed to understand SIS epidemics.
In this chapter, we studied which mean-field approximation, the N-intertwined or the
HMF, is better in approaching the SIS epidemic model. A direct comparison to the SIS
model is, however, not possible, because the steady-state of the exact SIS model in a
finite network is the overall-healthy state. Although an infection in the SIS model will
eventually die out, for high enough effective spreading rates the fraction of infected nodes
as a function of time is meta-stable. We proposed to define the number of infected nodes
in the meta-stable state of the SIS model via the number of infected nodes in the steady-
state of the ε–SIS model for a prescribed small value of ε. From the comparison between
the N-intertwined and HMF approximations with the ε–SIS spreading model, we conclude
that, overall, the N-intertwined approximation is better than the HMF approximation,
except for square lattice graphs and path graphs. We have seen that the N-intertwined
approximation can approach the ε–SIS epidemic model well in most graph types. The
simulations show that the N-intertwined approximation almost overlaps with the ε–SIS
spreading model, when the size of network is large enough. While the HMF approximation
is better than the N-intertwined approximation in the square lattice and path graphs, the
difference between the two is small. Moreover, they are both far away from the ε–SIS
spreading model. We also showed that the N-intertwined approximation and the HMF
approximation are exactly the same in regular graphs with the degree of nodes increasing
with N , such as complete graphs, and are similar in small-world graphs. In addition to
our simulation results, we showed analytically the conditions under which the epidemic
threshold of the N-intertwined approximation is larger than, smaller than or equal to that
of the HMF approximation.
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CHAPTER 6

Increasing the Epidemic Threshold by
Link or Node Removals

“What goes up must come down.”

Isaac Newton, 1642 - 1727

Chapter 5 has shown that the largest eigenvalue λ1 (A) of the adjacency matrix A
plays an important role in dynamic processes in networks, e.g. virus spreading [31]. In

a SIS type of network infection, the steady-state1 infection of the network is determined
by a phase transition at the epidemic threshold τc = 1

λ1(A) : when the effective infection

rate τ > τc, the network is infected, whereas below τc, the network is virus-free. Beside
virus spread, the same type of phase-transition threshold [44] in the coupling strength
gc ∼ 1

λ1(A) occurs in a network of coupled oscillators. Motivated by a 1
λ1(A) threshold

separating two different phases of a dynamic process on a network, we want to design
networks in order to enlarge the network’s epidemic threshold τc, or, equivalently, to lower
λ1 (A). In this chapter, we concentrate mainly on the following problems: removing m
links from a graph G and removing m nodes from a graph G.

The minimization of the spectral radius by removing m links is shown to be an
NP-complete problem, which suggests to consider heuristic strategies. Several greedy
strategies are compared and several bounds on the decrease of the spectral radius are
derived in [108]. The strategy that removes that link l = i ∼ j with largest product
(x1)i (x1)j of the components of the eigenvector x1 belonging to the largest adjacency ei-
genvalue is shown to be superior to other strategies in most cases. Furthermore, a scaling
law where the decrease in spectral radius is inversely proportional to the number of nodes

1In the exact SIS model, the steady-state is the healthy state, which is the only absorbing state in
the Markov process. However, in networks of realistic size N , this steady-state is only reached after
an unrealistically long time. The steady-state in the N -intertwined virus spread model refers to the
meta-stable state, which is reached exponentially rapidly and which reflects real epidemics more closely.
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N in the graph is deduced. Another sublinear scaling law of the decrease in spectral
radius versus the number m of removed links is conjectured.

We also present a new type of lower bound for the spectral radius of a graph in which
m nodes are removed [129]. Moreover, we present a lower bound and a upper bound for
the components of the principal eigenvector. As a corollary, Cioabă’s theorem [130], which
states that the maximum normalized principal eigenvector component in any graph never
exceeds 1√

2
(with equality for the star), appears as a special case of our more general

result.

6.1 Introduction

We are searching for a strategy so that, after removing m links (or nodes), λ1 is minimal.
Earlier, Restrepoet al. [131] have initiated an instance of this problem: “How does λ1

decrease when links are removed?” They introduced a new graph metric, called the dy-

namical importance Ix = λ1(A)−λ1(A\{x})
λ1(A) , where x either denotes the removal of a link

x = l or of a node x = n. The dynamical importance was further investigated by Milanese
et al. [132]. Both Restrepo et al. and Milanese et al. have approached the problem by
using perturbation theory. However, they did not consider optimality of their removal
strategy.

We first introduce the notations used in this Chapter. We consider a graph G = (N ,
L), where N is the set of nodes and L is the set of links. The number of nodes is denoted
by N = |N | and the number of links is represented by L = |L|. Let x1 be the eigenvector
of A belonging to λ1 (A) in the original graph G and normalized such that xT

1 x1 = 1.
Let Lm (or Nm) denote the set of the m links (or nodes) that are removed from G, and
Gm(L) = G\Lm (or Gm(N ) = G\Nm) is the resulting graph after the removal of m links
(or nodes) from G. We denote the adjacency matrix of Gm(L) (or Gm(N )) by Am(L) (or
Am(N )), which is still a symmetric matrix. Similarly, let w1 be the normalized eigenvector
(as in [108]) of Am(L) (or Am(N )) corresponding to λ1(Am(L)) (or λ1(Am(N ))) in the
graph Gm(L) (or Gm(N )) (such that wT

1 w1 = 1). By the Perron-Frobenius theorem
[14], all components of x1 and w1 are non-negative (positive if the corresponding graph
is connected).

In this chapter, we complement their study by first showing in Section 6.2 that the
Link Spectral Radius Minimization (LSRM) problem and the Nodal Spectral Radius Min-
imization (NSRM) problem, defined in Problem 1 and Problem 3, are NP-hard, which
means in practice, that an optimal solution in a large network cannot be computed and
that good approximate algorithms or heuristics need to be devised. The NP-completeness
of LSRM and NSRM is demonstrated by reducing the problem to an equivalent problem,
namely finding a Hamiltonian path in a graph, that is known to be NP-complete [133].
Since LSRM and NSRM are NP-complete, we cannot hope to find exact analytic formulae
for the decrease in the spectral radius. However, in Section 6.3.1, we provide a general
analytic description, bounds, several lemmas and we study the effect of node and link
removal on closed walks and the influence of assortativity on the spectral radius. This
developed theory direct us to find good heuristics. Section 6.3.2 proposes eight differ-
ent strategies (or heuristics) for removing one link in a network and these strategies are
benchmarked with the optimal strategy via extensive simulations. The removal of the
link l between nodes i and j with highest product (x1)i (x1)j of the eigenvector compon-
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ents belonging to the largest eigenvalue λ1 (A) of the adjacency A is demonstrated to
be the best heuristic. However, it is not always the best heuristic when more than one
link is removed as illustrated in Figures 6.1-6.3. The scaling law (6.12) for removing one
link in Section 6.3.3 demonstrates, presumably for all graphs, that a decrease in λ1 is
inversely proportional to the size N of the graph. Hence, small graphs show the effect of
link removals on λ1 more clearly than large graphs. The scaling law (6.9) is much less
accurately known, but indicates a sublinear decrease in λ1 with the number m of removed
links. We also claim that the optimal way to remove m links is to make the resulting
graph as regular as possible, because a regular graph has the lowest spectral radius among
all graphs with N nodes and L links. Section 6.4 studies the bounds for the decrease of
the spectral radius by node removals.

Another type of strategy to prevent the outbreak of a virus is to quarantine infec-
ted nodes. Omic et al. [134] have studied immunization via modularity partitioning,
where inter-community links are removed such that intra-community communication is
preserved. Taylor and Restrepo [135] investigated the effect of adding a subgraph to
a network on its largest adjacency eigenvalue λ1. Inspired by network synchronization,
Watanabe and Masuda [50] have investigated a similar problem as the NSRM but with
a different object function: remove nodes in a graph to maximize the second smallest ei-
genvalue of the Laplacian of the graph, also coined the algebraic connectivity [14]. They
have presented several strategies comparable to ours, and also found that the eigenvector
strategy performed overall the best. Related to [50], but based on a weighted, asymmetric
Laplacian of a graph, Nishikawaa and Mottera [136] point to the non-trivial effect of link
removals on network synchronization.

6.2 The Spectral Radius Minimization Problem is NP-hard
In this section, we prove that optimally decreasing the largest adjacency eigenvalue (the
spectral radius) of a graph by a fixed number of link or node removals is NP-hard. It
is widely believed that NP-hard problems cannot be solved exactly in a time complexity
that is upper bounded by a polynomial function of the relevant input parameters (N and
L).

6.2.1 The Link Spectral Radius Minimization Problem is NP-hard
Let us first formulate the Link Spectral Radius Minimization (LSRM) problem precisely:

Problem 1 (Link Spectral Radius Minimization (LSRM) problem). Given a graph G(N ,
L) with N nodes and L links, spectral radius λ1(G), and an integer number m < L. Which
m links from the graph G need to be removed, such that the spectral radius of the reduced
graph Gm of L − m links has the smallest spectral radius out of all possible graphs that
can be obtained from G by removing m links?

Theorem 6.2.1. The LSRM problem is NP-hard.

To prove this theorem, we rely on the following lemmas, but first we need the definition
of a path Ph with h hops or links. A path Ph with h hops starting from a node n0 and
ending at node nh is defined as Ph = n0 ∼ n1 ∼ n2 ∼ . . . ∼ nh−1 ∼ nh, where each link
ni ∼ nj between nodes ni and nj as well as each node ni occurs once in the sequence
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defining the path Ph, in contrast to a walk Wh = n0 ∼ n1 ∼ n2 ∼ . . . ∼ nh−1 ∼ nh with
h hops, where a node ni can appear more than once.

Lemma 6.2.2. The path PN−1 visiting N nodes has a strictly smaller spectral radius

than all other connected graphs with N nodes. Furthermore, λ1(PN−1) = 2 cos
(

π
N+1

)
.

Proof: [137, p. 21][14, p. 125] �

Lemma 6.2.3. The eigenvalues of a disconnected graph are composed of the eigenvalues
(including multiplicities) of its connected components.

Proof: [14, p. 73-74] �

Lemma 6.2.4. Among all possible graphs of N nodes and N − 1 links, the path PN−1

visiting N nodes has the smallest spectral radius.

Proof: A connected graph of N nodes and N−1 links is a tree, of which the path is a
special case. According to Lemma 6.2.2 the path has a spectral radius strictly smaller than
2, which is the smallest spectral radius possible in connected graphs. Hence, we need to
demonstrate that the Lemma also holds for disconnected graphs. For ease of presentation,
we assume that the disconnected graph consists of two connected components A1 and A2:
A1 of x nodes and A2 of N − x nodes. Our arguments also apply to multiple connected
components. Now, A1 contains at least x − 1 links, otherwise it is not a connected
component, and A2 contains at least N − x− 1 links. Since the sum of these links equals
N − 2, either A1 or A2 must contain one extra link, thereby creating a cycle in that
component. A graph that contains a cycle (i.e., which is not a tree) has a spectral radius
larger than or equal to two. This component will, according to Lemma 6.2.3, contribute
to an overall spectral radius that is larger than that of a path, which is smaller than 2. �

To prove Theorem 6.2.1, we will use the NP-complete Hamiltonian path problem [133].

Problem 2 (Hamiltonian path problem). Given a graph G(N ,L) with N nodes and L
links, a Hamiltonian path is a path that visits every node exactly once. The Hamiltonian
path problem is to determine if G contains a Hamiltonian path.

We are now ready to prove Theorem 6.2.1:
Proof: In our proof we will demonstrate that if we could solve the LSRM problem

in polynomial time, then we would also be able to settle the NP-complete Hamiltonian
path problem. Assume we have a graph G of L = N − 1 +m links. Removing m links
will result in a graph Gm of N − 1 links. According to Lemma 6.2.4, a path is the
only graph structure of N − 1 links that has the smallest largest adjacency eigenvalue

and that eigenvalue equals λ1 = 2 cos
(

π
N+1

)
. Moreover, a path of N − 1 links in a

graph of N nodes, is a Hamiltonian path. If, after solving the LSRM problem we obtain

λ1 = 2 cos
(

π
N+1

)
(smaller is not possible) then we have found a Hamiltonian path (Gm).

If λ1 > 2 cos
(

π
N+1

)
, then the original graph G does not contain a Hamiltonian path.

The LSRM problem is therefore at least as hard as the Hamiltonian path problem. �
We have to interpret Theorem 6.2.1 with care. Computing the largest eigenvalue can

be done in polynomial time. Consequently, the number of possible combinations
(
L
m

)
of

m links that we could check (by computing in polynomial time the largest eigenvalue
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of the graph Gm resulting after the removal of that specific set of links) is bounded by
O(Lm), which is a polynomial function in L. For instance, if m = 1, by checking the
spectral radius reduction induced by the removal of each of the L links, we can obtain a
solution with a complexity of L times the complexity of computing the largest eigenvalue.
However, in that case m is fixed and not part of the input N,L,m as defined in problem 1.
In other words, m should have been replaced with a fixed integer number in the problem
definition to make it clear that m is not part of the input and that its fixed value holds
for all problem instances. In problem 1, m is part of the input and, as in our proof, may
for instance depend on the number of nodes and links (it makes sense to remove more
links in larger networks). The previous argument therefore does not apply to problem 1,
which is NP-hard as proved in Theorem 6.2.1. In fact, in our proof m = L − N + 1 so
that the worst-case complexity of checking all possibilities is O(LL−N+1), which is now
clearly non-polynomial in the input N,L,m. Similar NP-complete problems, in which the
input does not only rely on N and L, but also on another metric k, are the Independent
Set problem (defined in problem 4 below) and the Disjoint Connecting Paths problem
[133], where k mutually node-disjoint paths need to be found between k corresponding
source-destination pairs. This problem also can be solved in polynomial time if k is fixed
and thus not part of the input [138], while it is NP-complete if k is part of the input. In
general, NP-complete problems that can be solved by algorithms, that are exponential
only in the size of a fixed parameter while polynomial in the size of the (remaining) input,
are called fixed-parameter tractable, because those problems can be solved efficiently for
small values of the fixed parameter.

As an example to illustrate the NP-completeness of the LSRM problem, Figures 6.1-
6.3 show, in a topology of N = 10 nodes and m = 3 link removals, that the “best single
step strategy” is not always optimal in the end. The “best single step strategy” consists
of removing the link that lowers λ1 (A)−λ1 (A1) = y1 most in the first step. Next, in the
second step, the link that lowers λ1 (A1) − λ1 (A2) = y2 most is removed and finally, in
the third step, the link that lowers λ1 (A2)− λ1 (A3) = y3 most is removed. The optimal
situation depicts the removal of m = 3 for which λ1 (A)−λ1 (A3) = y∗ is maximal. Hence,
y1 + y2 + y3 ≤ y∗.

In addition, 106 instances of Erdős-Rényi (ER) random graphs with N = 10 and link
density p = 2 lnN

N have been generated. In each instance, the “best single step strategy”
and the global optimum have been computed. In 63185 (6,3%) instances, there was no
overlap in links, in 332262 (33,2%) ER graphs, there was one link in common, in 97944
(9,8%) ER graphs, we found 2 links in common and in the remaining 506609 (50,7%)
ER graphs, all 3 links in the “best single step strategy” were the same as in the global
optimum. Moreover, Figure 6.4 illustrates that the global optimum is not always unique.
The global optimum may not be unique, as it is possible that the removals of different
sets of m links will lead to cospectral or even isomorphic smaller graphs, as indicated in
Figure 6.4.

The minimum number m of links that need to be removed from G to ensure that λ1

in Gm is lowered below some given value χ is

m ≥ L− χ2 +N − 1

2
,

which is derived from the bound [14, (3.48) on p. 54], due to Yuan Hong [139],

λ1 ≤
√
2L−N + 1, (6.1)
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Figure 6.1: An example of a graph with N = 10 nodes, where none of the links in the greedy ap-
proach appears in the optimal set of links. The numbers indicate the change in largest eigenvalue
λ1 (A)− λ1 (A\ {l}) after removal of link l.

for connected graphs, else λ1 ≤
√
2L
(
1− 1

N

)
.

6.2.2 The Node Spectral Radius Minimization Problem is NP-hard
Removing nodes to maximally lower the largest eigenvalue may seem an easier problem
than removing links. For, when we remove the highest degree node, λ1 (A) is likely
reduced most (because L is reduced most). This suggestion follows from bounds in [14,
p. 48] and the bounds

2L

N

√
1 +

Var [D]

(E [D])
2 ≤ λ1 ≤ min

{√
2L (N − 1)

N
, dmax

}
, (6.2)

where D is the degree of an arbitrary node in G. Unfortunately, this intuition is wrong.
The eigenvalues of the adjacency matrix Al(G) of the line graph l (G) of G and A are
related [14, (2.9) on p. 20]. Since links in G are nodes in l (G), and since there is a
one-to-one relation between l (G) and G, removing nodes in l (G) according to a certain
strategy, results in a corresponding strategy for removing links in G. Since the link
spectral radius minimization (LSRM) problem is NP-hard (Theorem 6.2.1), the problem
of removing m nodes from a graph G is NP-hard as well. We will provide a proof for
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Figure 6.2: An example of a graph with N = 10 nodes, where only 1 link in the greedy approach
appears in the optimal set of links.

general graphs and subsequently demonstrate that it is also NP-complete in the subclass
of line graphs. Let us first formally define the problem:

Problem 3 (Nodal Spectral Radius Minimization (NSRM) problem). Given a graph
G(N ,L) with N nodes and L links, spectral radius λ1(G), and an integer number m < N .
Which m nodes from the graph G need to be removed, such that the spectral radius of
the reduced graph Gm of N −m nodes has the smallest spectral radius out of all possible
graphs that can be obtained from G by removing m nodes?

Theorem 6.2.5. The NSRM problem is NP-hard.

We provide a proof by reducing the NP-complete independent set problem [133] to
NSRM.

Problem 4 (Independent set problem). Given a graph G(N ,L) with N nodes and L
links and a positive integer k ≤ N , is there a subset N ′⊆ N , such that |N ′| ≥ k and such
that no two nodes in N ′ are joined by a link in L?

Proof of Theorem 6.2.5: The lowest spectral radius of a graph equals λ1(G) = 0,
which is obtained for a graph without any links. Removing nodes that are not part of
an independent set, will result in an independent set of nodes that are not linked to each
other. Hence, to solve the independent set problem it suffices to remove m = N−k nodes
from the graph G, such that the spectral radius of the reduced graph Gm is smallest
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Figure 6.3: An example of a graph with N = 10 nodes, where two links in the greedy approach
appear in the optimal set of links.

possible. If we get λ1(Gm) = 0, then Gm constitutes an independent set of k nodes. If
λ1(Gm) > 0, then no independent set with at least k nodes exists. �

Line graphs are a specific class of graphs and not all problems that are NP-complete
for general graphs are also NP-complete for line graphs (e.g., according to Roussopoulos
[140], the clique problem is not hard in line graphs, while it is an NP-complete problem in
general). Hence, we proceed to demonstrate that the NSRM problem remains NP-hard in
line graphs. We use similar arguments as for the proof of Theorem 6.2.1. A Hamiltonian
path in the graph G corresponds to a path of N − 1 nodes in the line graph l(G) of G.
A line graph l(G) contains L nodes and can be generated in polynomial time from G.
According to Lemma 6.2.2, the graph structure of N − 1 nodes that has the smallest
largest eigenvalue is the path. Hence, removing L − N + 1 nodes from the line graph
l(G) such that the spectral radius is reduced most, should correspond to a path of N − 1
nodes (if it exists), which corresponds to a Hamiltonian path in G. Solving the NSRM
problem in a line graphs l(G) is therefore as hard as finding Hamiltonian paths in the
corresponding graph G.

Finally, let l be the removed link that maximizes λ1 (G)−λ1 (G\ {l}). Let the node n
be the transform of link l in the line graph l (G). Then, λ1 (l (G))−λ1 (l (G) \ {n}) is not
always the maximum. Simulations on 100 Erdős-Rényi random graphs show the “success
rate”, the percentage of graphs in which the best link l in G corresponds to the best node
n in l(G) in the table 6.1.
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Figure 6.4: An example where the global optimum is not unique. The original λ1 (A) = 5.065310
and, after removal of three links, the smallest largest eigenvalue is λ1 (A3) = 4.312414. Con-
sequently, the largest λ1 (A)−λ1 (A3) = 0.752896 is obtained after removal of the three red links.

6.3 Removing the Links to Decrease the Spectral Radius

6.3.1 Spectral Graph Theory

We derive a theoretical underpinning to deduce the best heuristic for the LSRM problem.
We first introduce the basic spectral graph theory. Let ej be a base vector in the N -
dimensional space, where the i-th component equals (ej)i = δij and δij is the Kronecker
delta, i.e. δij = 1 if i = j and otherwise, δij = 0. Then, the adjacency matrix that
represents the single link between nodes i and j equals

Âij = eie
T
j + eje

T
i (6.3)

p 0.1 0.2 0.3
N

10 67% 80% 83%
20 65% 76% 81%
30 59% 76% 81%
40 70% 79% 81%
50 63% 75% 82%
60 67% 82% 86%

Table 6.1: Success rate in line graphs.
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Thus, Âij equals the zero matrix, except that
(
Âij

)
ij

=
(
Âij

)
ji

= 1. Clearly, det
(
Âij − λI

)
=

(−1)N λN−2
(
λ2 − 1

)
, such that the largest eigenvalue of Âij is 1. Also, for any vector z,

zT Âijz = zT
(
eie

T
j + eje

T
i

)
z = zT eie

T
j z + zT eje

T
i z = 2zizj . (6.4)

By invoking 0 ≤ (zi − zj)
2
, we observe that 2zizj ≤ z2i + z2j ≤

∑N
i=1 z

2
i = zT z. Hence,

when considering normalized vectors such that zT z = ∥z∥22 = 1, we obtain the upper
bound

2zizj ≤ 1.

After these preliminaries, we now embark on the problem.

The difference λ1 (A)− λ1 (Am)

With the normalization xT
1 x1 = 1 and wT

1 w1 = 1, the Rayleigh relations [14] become

λ1 (A) = xT
1 Ax1,

λ1 (Am) = wT
1 Amw1.

Writing out the quadratic form

λ1 (A) = xT
1 Ax1 =

N∑
i=1

N∑
j=1

aij (x1)i (x1)j = 2
N∑
i=1

N∑
j=i+1

aij (x1)i (x1)j (6.5)

= 2
∑

l=(i∼j)∈L

(x1)i (x1)j = 2

L∑
l=1

(x1)l+ (x1)l− ,

where a link l joins the nodes l+ and l−, shows that λ1 (A) can be written as a sum of
positive products over all links in the graph G.

We now provide a general bound on the difference between the largest eigenvalues in
G and Gm = G\Mm, where m links are removed.

Lemma 6.3.1. For any graph G and Gm = G\Mm, it holds that

2
∑

l∈Mm

(w1)l+ (w1)l− ≤ λ1 (A)− λ1 (Am) ≤ 2
∑

l∈Mm

(x1)l+ (x1)l− (6.6)

where x1 and w1 are the eigenvectors of A and Am corresponding to the largest eigenvalues
λ1 (A) and λ1 (Am), respectively, and where a link l joins the nodes l+ and l−.

Proof: Since Am = A−
∑

l∈Mm
Âl+l− where the left-hand side (or start) of the link

l is the node l+ and the right-hand side (or end) of the link l is the node l− and with the
normalization xT

1 x1 = 1, the Rayleigh relations [14] yield

λ1 (A) = xT
1 Ax1 = xT

1

(
Am +

∑
l∈Mm

Âl+l−

)
x1

= xT
1 Amx1 +

∑
l∈Mm

xT
1 Âl+l−x1.
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Using (6.4) yields xT
1 Âl+l−x1 = 2 (x1)l+ (x1)l− and we arrive at

λ1 (A) = xT
1 Amx1 + 2

∑
l∈Mm

(x1)l+ (x1)l− .

The Rayleigh principle states that, for any normalized vector w with wTw = 1, it holds
that wTAw ≤ λ1 (A) and equality is only attained if w equals the eigenvector of A
belonging to λ1 (A). Since x1 is not the eigenvector of Am belonging to λ1 (Am), we have
that xT

1 Amx1 ≤ λ1 (Am) and

λ1 (A) = xT
1 Amx1 + 2

∑
l∈Mm

(x1)l+ (x1)l− ≤ λ1 (Am) + 2
∑

l∈Mm

(x1)l+ (x1)l− ,

from which the upper bound in (6.6) is immediate. When repeating the analysis from the
point of view of Am rather than from A, then

λ1 (Am) = wT
1 Amw1 = wT

1

(
A−

∑
l∈Mm

Âl+l−

)
w1

= wT
1 Aw1 − 2

∑
l∈Mm

(w1)l+ (w1)l− .

By invoking the Rayleigh principle again, we arrive at the lower bound. �
For connected graphs G and Gm, it is known that λ1 (A)−λ1 (Am) > 0 (see Lemma 7

in [14]). The same conclusion also follows from Lemma 6.3.1 because the Perron-Frobenius
theorem [14] states that all vector components of w1 (and x1) are positive in a connected
graph Gm. Lemma 6.3.1 indicates that, when those m links are removed that maximize
2
∑

l∈Mm
(x1)l+ (x1)l− , then the upper bound in (6.6) is maximal, which may lead to

the largest possible difference λ1 (A) − λ1 (Am). However, those removed links do not
necessarily also maximize the lower bound 2

∑
l∈Mm

(w1)l+ (w1)l− . Hence, the greedy
strategy of removing consecutively the link l with the highest product (x1)l+ (x1)l− is not
necessarily guaranteed to lead to the overall optimum. The fact that the SRM problem
is NP-hard, as proved in Section 6.2, underlines this remark.

Lemma 8 in [14] states that

λ1 (A)− λ1 (Am) ≤ λ1 (A−Am) .

Since A−Am =
∑

l∈Mm
Âl+l− , it remains to find a close upper bound for λ1

(∑
l∈Mm

Âl+l−

)
.

Using the bounds [14, (3.48) on p. 54], gives

λ1

( ∑
l∈Mm

Âl+l−

)
≤ min

(√
2m−N + 1, dmax (A−Am)

)
1{A−Am is a connected graph}

+min

(√
2m− 2m

N
, dmax (A−Am)

)
1{A−Am is not a connected graph}.

In general, it is difficult to find sharper bounds (see e.g. [141],[142]). If m = 2, then

λ1

(∑
l∈M2

Âl+l−

)
=

√
2 when the two links are connected and λ1

(∑
l∈M2

Âl+l−

)
=1

when the two links are disconnected. If m = 1, then λ1

(
Âl+l−

)
= 1 and we obtain

λ1 (A)− λ1 (A1) ≤ 1. (6.7)
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Lemma 6.3.2. For m = 1 link removed from G, equality in (6.7) is only attained for the
graph consisting of the complete graph KN with N = 2 nodes and a set of disjoint nodes.

Proof: Equality in (6.7) combined with (6.6) in Lemma 6.3.1 implies that

1 = λ1(A)− λ1(A1) ≤ 2(x1)l+(x1)l− .

Next, from 2(x1)l+(x1)l− ≤ (x1)
2
l+ +(x1)

2
l− ≤ xT

1 x1 = 1, we conclude that the equality in

(6.7) holds if and only if (x1)l+ = (x1)l− = 1/
√
2. Since in such case (x1)

2
l+ + (x1)

2
l− = 1,

we conclude that all other components of the eigenvector x1 are equal to zero. Recall
that x1 is the principal eigenvector which, according to the Perron-Frobenius Theory, is
positive if G is a connected graph. If G has more than two nodes (N > 2), the above
argument shows that G must be disconnected with K2 being the unique component with
the largest spectral radius. Therefore, the remaining components must be isolated nodes.
�

Closed walks in subgraphs

Let G be a connected graph with adjacency matrix A. From the decomposition [14, art.
156 on p. 226]

A =
∑
i=1

λixix
T
i ,

using xT
i xj = 0 for i ̸= j and xT

i xi = 1 for any i, we have that

Ak =
n∑

i=1

λk
i xix

T
i .

When k → ∞, the most important term in the sum above is λk
1x1x

T
1 , provided that G is

nonbipartite2. In such case, we have λ1 > |λi| for i = 2, . . . , n, and so, for any two nodes
u, v of G,

lim
k→∞

(Ak)uv
λk
1 (x1)u (x1)v

= lim
k→∞

∑n
i=1 λ

k
i (xi)u (xi)v

λk
1 (x1)u (x1)v

= 1 +
n∑

i=2

(xi)u (xi)v
(x1)u (x1)v

(
λi

λ1

)k

= 1.

In view of the above, we will deliberately resort to the following approximation:

For large k : (Ak)uv ≈ λk
1 (x1)u (x1)v .

2In case G is bipartite, let (U, V ) be the bipartition of nodes of G. Then λn = −λ1, (xn)u = (x1)u
for u ∈ U and (xn)v = − (x1)v for v ∈ V . Both λ1 and λn are simple eigenvalues, so that λ1 > |λi| for
i = 2, . . . , n− 1. Similarly as above we get

lim
k→∞

(Ak)u,v

λk
1 (x1)u (x1)v

= 1 + lim
k→∞

(−1)k
(xn)u (xn)v
(x1)u (x1)v

.

Obviously, the limit above exists if we restrict k to range over odd or even numbers only, in which case
the limit is either 0 or 2, depending on whether u and v belong to the same or different parts of the
bipartition. This suggests that the same strategy will extend to bipartite graphs as well, except that the
argument will have to take into account the nonexistence of odd closed walks.
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Under such approximation, the total number of closed walks of large length k in G is∑
u∈V (G)

(Ak)uu ≃
∑

u∈V (G)

λk
1 (x1)u (x1)u = λk

1

∑
u∈V (G)

(x1)
2
u = λk

1 .

We will demonstrate that removing the node u or the link u ∼ v with highest vector
component (x1)u or highest vector component product (x1)u (x1)v will decrease λ1 (A)
most.

The link whose deletion reducing λ1 most

We want to find out the deletion of which link u ∼ v mostly reduces the number of closed
walks in G of some large length k?

For fixed u, v and k, let Wt denote the number of closed walks of length k which start
at some node w and contain the link u ∼ v at least t times, t ≥ 1. Suppose that in such
walk, the link u ∼ v appears at positions 1 ≤ l1 ≤ l2 ≤ · · · ≤ lt ≤ k in the sequence
of links on the walk, and let ui,0 and ui,1 be the first and the second node of the ith
appearance of uv in the walk. Obviously, either (ui,0, ui,1) = (u, v) or (ui,0, ui,1) = (v, u).
Then

Wt =
∑
w∈V

∑
l1≤···≤lt

(Al1−1)wu1,0

(
t∏

i=2

(Ali−li−1−1)ui−1,1ui,0

)
(Ak−lt−1)ut,1w

≃
∑
w∈V

∑
l1≤···≤lt

λl1−1
1 (x1)w (x1)u1,0

×

(
t∏

i=2

λ
li−li−1−1
1 (x1)ui−1,1

(x1)ui,0

)
λk−lt−1
1 (x1)ut,1

(x1)w

=
∑
w∈V

(x1)
2
w

∑
l1≤···≤lt

λk−t
1

t∏
i=1

((x1)ui,0
(x1)ui,1

)2

=

(
k

t

)
λk−t
1 (2 (x1)u (x1)v)

t.

The term 2 (x1)u (x1)v appears in the last equation because there are two ways to choose
(xui,0 , xui,1) for each i = 1, . . . , t.

Now, the number of walks affected by deleting the link u ∼ v is equal to

Wuv =
∑
t≥1

(−1)t−1Wt

=
∑
t≥1

(−1)t−1

(
k

t

)
λk−t
1 (2 (x1)u (x1)v)

t

= λk
1 −

∑
t≥0

(−1)t
(
k

t

)
λk−t
1 (2 (x1)u (x1)v)

t

= λk
1 − (λ1 − 2 (x1)u (x1)v)

k.



90 | CHAPTER 6. INCREASING THE EPIDEMIC THRESHOLD BY LINK OR NODE REMOVALS

The last function is increasing in (x1)u (x1)v in the interval [0, λ1/2], and so most closed
walks are destroyed when we remove the link with the largest product of principal ei-
genvector components. Thus, the spectral radius is decreased the most in such case as
well.

Assortativity and lower bounds for λ1

A lower bound of the largest adjacency eigenvalue λ1 ≥ N3

N2
has been proved in [40], where

Nk is the total number of walks of length k. The lower bound N3

N2
appeared earlier as

an approximation in [38] of the largest adjacency eigenvalue λ1, and it is a perfect linear
function of assortativity ρD [40].

Let us first look at the decrease of N3

N2
by a link removal. We know [40] that

N3

N2
=

N∑
i=1

d3i −
∑

i∼j (di − dj)
2

N∑
i=1

d2i

.

We denote N3 and N ′
3 as the number of 3 hop walks in the original graph G and in the

graph G\ {lij} with one link l = i ∼ j less, respectively. Then, we have that

∆3 = N3 −N ′
3

= d3i + d3j − (di − 1)
3 − (dj − 1)

3 − (di − dj)
2 −

∑
l∈N (i),l ̸=j

(dl − di)
2 − (dl − di + 1)

2

−
∑

l∈N (j),l ̸=i

(dl − dj)
2 − (dl − dj + 1)

2
,

where di is the degree of node i in the original graph G and N (i) is the set of the neighbors
of node i. The decrease ∆3 can be simplified as

∆3 = 2− 3(di + dj) + 3(d2i + d2j )− (di − dj)
2 +

∑
l∈N (i),k ̸=j

(2dl − 2di + 1)

+
∑

l∈N (j),l ̸=i

(2dl − 2dj + 1)

= 2(d2i + d2j ) + 2didj + 2− 3(di + dj) + (di + dj − 2)− 2di(di − 1)

− 2dj(dj − 1) +
∑

l∈N (i),k ̸=j

2dl +
∑

l∈N (j),k ̸=i

2dl

= 2didj +
∑

l∈N (i),k ̸=j

2dl +
∑

l∈N (j),k ̸=i

2dl

= 2didj + 2(si + sj)− 2(di + dj),

where

si =
∑

l∈N (i)

dl (6.8)
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is the total degree of all the direct neighbors of a node i. Similarly, the decrease in the
number of two hop walks is denoted as

∆2 = N2 −N ′
2 = 2(di + dj − 1).

Note that ∆2 and ∆3 are only functions of a local property, i.e. the degree di and dj of
the two end nodes of a link lij . The complexity of computing ∆3 or ∆2 for all linked node
pairs is O(N2) in a dense graph, which is the worst case.

6.3.2 Strategies to Minimize the Largest Eigenvalue by Link Removal
This section discusses and compares various strategies in Figure 6.5, denoted by S.

The first strategy, as suggested in Section 6.3.1, is to remove the link with maximum
product of the eigenvector components. Specifically, this strategy is denoted by S = xixj

instead of S = (x1)i (x1)j to simplify the notation in the figures, and it removes that link
l = i ∼ j for which (x1)i (x1)j is maximal.

Section 6.3.1 hints that the spectral radius is possibly decreased the most by a link
removal that either reduces S = N3

N2
or the assortativity S = ρD the most. Strategy

S = N3

N2
will remove the link such that N3−∆3

N2−∆2
is minimized.

The other considered strategies S = didj and S = di + dj remove that link l = i ∼ j
with largest sum or product of the degrees of the link’s end points, whereas the strategies
S = si + sj and S = sisj remove the link with the largest sum or product of the total
degree si of the neighbors at both end points. Finally, we also considered the strategy
S = betweenness, that removes the link with highest link betweenness, i.e. the number
of shortest paths between all node pairs that traverse the link.

We define the performance measure ΞS of a particular link removal strategy S by

ΞS = (λ1 (A)− λ1 (A1))optimal − (λ1 (A)− λ1 (A1))Strategy S .

Figure 6.5 compares the above explained strategies. Figure 6.5 confirms that strategy
S = xixj is superior to all other strategies. There is a very small difference between the
strategies S = di + dj and S = didj and between S = si + sj and the corresponding
product S = sisj . In both cases the product strategy is slightly better (but the difference
is not observable from Figure 6.5).

Another strategy is to remove the link that possibly disconnects the graph G into two
disjoint graphs G1 and G2. However, this strategy is not always optimal as illustrated
in Figure 6.6. Only when both G1 and G2 are the same, we found that the removal of
the connecting link induces the largest decrease in ∆λ1. Since this strategy cannot be
applied always, we have further ignored this strategy.

Removing m > 1 links

In this section, we investigate the behavior of the several strategies when more than one
link is removed. We generated 104 Erdős-Rényi graphs with N = 10 nodes and L = 20
links, of which about two percent are disconnected. From each of the generated graphs, all
the links are removed one by one following the different “greedy” strategies. We compare
the decrease in λ1 for each strategy to the optimal solution found by removing all possible
combinations of m links. In Figure 6.7, the percentage of agreement between the greedy
strategies and the optimal strategy is shown.
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/

Figure 6.5: Various strategies applied to 106 instances of ER graphs with N = 20 and p =
2 lnN/N . The insert shows two additional strategies “assortativity” and “betweenness” that are
clearly worse than the others.
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Figure 6.6: All possible ∆λ1 are computed when one link is removed.

Figure 6.7 illustrates that strategy S = max1≤(i,j)≤N (x1)i (x1)j is nearly always (ex-
cept for m = 13) superior to strategy S = N3/N2 and S = sisj , which agrees with the
theory in Section 6.3.1. Figure 6.7 exhibits a regime change from m = 10 on, where the
connectivity of the graphs starts to decrease rapidly.

The peculiar regime for m > 10 can be understood as follows. The optimal solution
for m = 10 removals is a circuit, if the original graph contains a single connected circuit
on N = 10 nodes. If strategy S = max1≤(i,j)≤N (x1)i(x1)j finds the optimal solution for
m = 10 removals, the only possible solution for m = 11 removals is to cut the circuit to
form a path. This is also the optimal solution. The eigenvector components of a path
graph are symmetrical around the node(s) in the middle of the path and are maximal for
the center node(s). Strategy S = max1≤(i,j)≤N (x1)i(x1)j will, for the next link removal,
cut the path in the middle. The resulting graph is also the optimal solution. In the
next step, however, the strategy will cut one of the paths in two, resulting in three paths
of lengths one, two and four links, respectively. The optimal solution for m = 13 link
removals consists of a graph with three paths of lengths two and one of length three.
This graph can never be formed by strategy S = max1≤(i,j)≤N (x1)i(x1)j starting from
a circuit. The optimal solution for m = 14 consists of two paths of length two and two
paths of length one, which can be obtained in many different ways, including cutting the
longest path of the solution for m = 13. In almost 98% of the cases this solution is found
by strategy S = max1≤(i,j)≤N (x1)i(x1)j . The high success rate means, at the same time,
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Figure 6.7: Four strategies compared with the global optimum as a function of the number m
of removed links in ER random graphs with N = 10 nodes and L = 20 links, where 104 instances
are generated. The lines show the percentage of connected graphs per strategy after the removal
of m links.

that the optimal solution for m = 15 is almost never found because it cannot be reached
from the optimal solution of m = 14 by another link removal, regardless of the followed
strategy. The weaker performance of strategy S = sisj for m = 12 can be explained
by considering the optimal solution for m = 11 which is a path of nine links. Strategy
S = sisj removes the link that has the maximum product of the one hop neighbors of
its endpoints. Since a path has an even degree distribution, except for the endpoints, the
five links that form the center of the path have an equal probability of being removed.
Consequently, the optimal solution for m = 11 will result in the optimal solution for
m = 12 only one in five times. The other four possibilities lead to a graph with either a
combination of a path of length two and a path of length six or a combination of a path
of length three and a path of length five. Both these graphs will give the optimal solution
for m = 13 link removals, which explains the increased success rate for m = 13.

At m = 15, the graph consists of 5 links and N = 10 nodes, configured in separated
“cliques” K2 (i.e. line segments) and the largest eigenvalue is minimal at λ1 = 1. For
m > 15, the strategies are all the same: a clique K2 (i.e. disjoint link) is removed.

Figure 6.8 illustrates four strategies on a typical instance of a network with N =
10 and L = 20 links. While the strategy S = assortativity clear underperforms, the
three other strategies S = xixj , S = N3/N2 and S = sisj are competitive: for small
m, the strategy S = xixj excels (as shown in Figure 6.7), but for larger m the others
can outperform. Again, this phenomenon is characteristic for an NP-complete problem,
where the whole previous history of links removals affects the current link removal. The
considered strategies (except for the global optimum one) are greedy and only optimize
the current link removal, irrespective of the way in which the current graph Gm is obtained
previously.
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Figure 6.8: The performance λ1 (A) − λ1 (Am) of four strategies versus m link removals in a
typical instance of a graph with N = 10 and L = 20 links.

6.3.3 Scaling Law of (λ1 (A)− λ1 (Am))optimal

Another observation from Figure 6.8 is that

∆λm|optimal = λ1 (A)− λ1 (Am)|optimal = O
(
mβ
)
, (6.9)

where β ≤ 1. In other words, we conjecture that the scaling of λ1 (A)− λ1 (Am) with m
is sublinear in m (for non-regular graphs) and that the coefficient β is likely a function of
the type of graph. Obviously, ∆λm = 0, when m = 0. Applying the upper bound (6.1)
to λ1 (Am) shows that

∆λm ≥ λ1 (A)−
√
1− 1

N

√
2L− 2m

≥ λ1 (A)−
√
1− 1

N

√
2L+

√
1− 1

N

√
2m = O

(
m1/2

)
.

On the other hand, if Gm is a regular graph, then

∆λm = λ1 (A)− 2L− 2m

N
= O (m) .

In particular, if G and Gm are regular graphs, then

∆λm =
2m

N
. (6.10)

These arguments illustrate that 1
2 < β ≤ 1. Figure 6.8 shows that λ1 (A)− λ1 (Am)|optimal

is likely close to β = 1, which suggests that the optimal way to remove m links is to make
Gm as regular as possible, because the lowest possible λ1 (Am) with given N and L−m
is obtained for a regular graph (as follows from the Rayleigh inequality λ1 (A) ≥ 2L

N ).

While the law (6.9) is difficult to prove in general, we provide evidence by computing
the decrease in λ1 when m random links are removed in the class of Erdős-Rényi random
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graphs Gp (N). For sufficiently large Erdős-Rényi random graphs Gp (N), we know [14]
that

E [λ1] = (N − 2) p+ 1 +O

(
1√
N

)
.

When m random links are removed from Gp (N), we again obtain an Erdős-Rényi random
graph with link density

p∗ =
L−m(

N
2

) .

Hence,

E [∆λm] = E [λ1 (Gp (N))]− E [λ1 (Gp∗ (N))]

= (N − 2) (p− p∗) +Rp (N) ,

where the error term Rp (N) is unknown. Assuming that Rp (N) is negligibly small, we
find, for sufficiently high N ,

E [∆λm] ≃ (N − 2)m(
N
2

) =
2m

N
− 2m

N (N − 1)
.

Thus, the average decrease in λ1 (A)−λ1 (Am) after removing m random links in Gp (N)
is approximately, for large N ,

E [∆λm] ≃ 2m

N
, (6.11)

which is close to (6.10) for regular graphs.
For m = 1, simulations on various types of graphs in Figures 6.9 and 6.10 suggest the

scaling law

(λ1 (A)− λ1 (A1))optimal =
α

N
, (6.12)

where α is graph specific. In other words, N∆λ1 = α is independent of the size of the
graph.
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Figure 6.9: The scaling law of (λ1 (A)− λ1 (A1))optimal for ER random graphs as a function of
N.
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Ignoring the asymptotic nature of the analysis that led to (6.11), we observe that, for
m = 1, a maximum occurs at N = 2. Figure 6.11 shows the pdf of ∆λ for Erdős-Rényi
random graphs, where for each curve 106 ER graphs have been created in which one
random link was removed. The simulations agree with E [∆λ] ≃ 2

N and indicate that
Var[∆λ] ≃ 13 + 2E [∆λ]. Since a random link removal is inferior to the removal of the
optimal link, Figure 6.9 indeed illustrates that the coefficient of the inverse N scaling law
αGp(N) ≃ 2.75 > 2. Figure 6.10 shows that αlattice ≃ 3.9 > αGp(N) ≃ 2.75, which may
indicate that deviations from regularity causes λ1 to decrease more.

40

30

20

10

0

f D
l
(x

)

0.40.30.20.10.0

x

increasing N

 N = 10
 N = 20
 N = 30
 N = 40
 N = 50
 N = 60
 N = 70
 N = 80
 N = 90
 N = 100

Figure 6.11: The probability density function of ∆λ1 for ER random graphs of several sizes N .

6.4 Removing the Nodes to Decrease the Spectral Radius

6.4.1 The Node Whose Deletion Reducing λ1 Most
In order to find the node whose deletion reduces λ1 most, we will consider the equivalent
question: which deleted node u reduces the number of closed walks in G for some large
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length k most?
The closed walks in sub-graph have been discussed in Section 6.3.1. Of course, the

number of closed walks of length k which start at node u is equal to (Ak)uu ≈ λk
1 (x1)

2
u.

When we delete node u from G, then, besides the closed walks which start at u, we also
destroy the closed walks which start at another node v, but which contain u as well. Any
such closed walk that starts at v may contain several occurrences of u.

For fixed u, k and v, let Wt denote the number of closed walks of length k which
start at v and which contain u at least t times, t ≥ 1. Suppose that in such a walk,
node u appears after l1 steps, after l1 + l2 steps, after l1 + l2 + l3 steps, and so on, the
last appearance accounted after l1 + · · ·+ lt steps. Here l1, . . . , lt ≥ 1. Moreover, u must
appear for the last time after at most k − 1 steps (after k steps we are back at v), thus
we may also introduce lt+1 = k − (l1 + · · ·+ lt) and ask that lt+1 ≥ 1. Then, we have

Wt =
∑

l1,...,lt+1

(Al1)vu(A
l2)uu . . . (A

lt)uu(A
lt+1)uv

≃
∑

l1,...,lt+1

λk
1 (x1)

2
v (x1)

2t
u = λk

1 (x1)
2
v (x1)

2t
u

∑
∑t+1

j=1 lj=k;lj≥1

1.

Introducing l′1 = l1 − 1, . . . , l′t+1 = lt+1 − 1, the last sum is equal to the number of
nonnegative solutions to

l′1 + l′2 + · · ·+ l′t + l′t+1 = k − t− 1,

which is, in turn, equal to
(
(k−1−t)+t

t

)
=
(
k−1
t

)
. Therefore,

Wt ≃
(
k − 1

t

)
λk
1 (x1)

2
v (x1)

2t
u .

Consider now a closed walk of length k starting at v which contains u exactly j times.
Such walk is counted j times in W1,

(
j
2

)
times in W2,

(
j
3

)
times in W3, . . . ,

(
j
j

)
times in

Wj , and using the well-known equality

1 =
∑
t≥1

(−1)t−1

(
j

t

)
we see that this closed walk is counted exactly once in the expression

W v = W1 −W2 +W3 − · · ·+ (−1)t−1Wt + . . .

Thus, W v represents the number of closed walks of length k starting at v which will be
affected by deleting u. From the above expression for Wt, we have

W v ≃
∑
t≥1

(−1)t−1

(
k − 1

t

)
λk
1 (x1)

2
v (x1)

2t
u

= −λk
1 (x1)

2
v

∑
t≥1

(
k − 1

t

)
(− (x1)

2
u)

t

= λk
1 (x1)

2
v

[
1− (1− (x1)

2
u)

k−1
]
.
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Therefore, the total number of closed walks of length k destroyed by deleting u is equal
to

W ≃ λk
1 (x1)

2
u +

∑
v ̸=u

W v

= λk
1 (x1)

2
u + λk

1

∑
v ̸=u

(x1)
2
v

[
1− (1− (x1)

2
u)

k−1
]

= λk
1

[
(x1)

2
u + (1− (x1)

2
u)
[
1− (1− (x1)

2
u)

k−1
]]

= λk
1

[
1− (1− (x1)

2
u)

k
]
.

The last function is increasing in (x1)u in the interval [0, 1], and so we conclude that most
closed walks are destroyed when we remove the node with the largest principal eigenvector
component. Hence, the spectral radius (see (6.5)) is decreased the most in such case as
well.

6.4.2 The Bounds for λ1 When Nodes are Removed

Many inequalities for the spectral radius have been published (see e.g. [142] and [14]). The
search to improve the bounds for the spectral radius will continue due to the intimate
relation with dynamic processes such as epidemics and synchronization in networks as
explained in [108]. Our main result here is:

Theorem 6.4.1. For any graph G and corresponding graph Gm(N ) = G\Nm, obtained
from G by removing the set Nm of m nodes, it holds that(

1− 2
∑

n∈Nm

(x1)
2
n

)
λ1(A) +

∑
j∈Nm

∑
i∈Nm

aij(x1)i(x1)j ≤ λ1 (Am(N )) ≤ λ1 (A) (6.13)

where x1 is the eigenvector of A corresponding to the largest eigenvalue λ1 (A). In par-
ticular, if m = 1, then(

1− 2 (x1)
2
n

)
λ1(A) ≤ λ1 (A1(N )) ≤ λ1 (A) (6.14)

Proof: After removing a node n from graph G, we obtain A1(N ), which is a (N −
1)× (N − 1) matrix

A1(N ) =



a11 · · · a1(n−1) a1(n+1) · · · a1N
...

...
...

...
a(n−1)1 · · · a(n−1)(n−1) a(n−1)(n+1) · · · a(n−1)N

a(n+1)1 · · · a(n+1)(n−1) a(n+1)(n+1) · · · a(n+1)N

...
...

...
...

aN1 · · · aN(n−1) aN(n+1) · · · aNN


.
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Consider the N ×N matrix

Ã1(N ) =



a11 · · · a1(n−1) 0 a1(n+1) · · · a1N
...

...
...

...
...

a(n−1)1 · · · a(n−1)(n−1) 0 a(n−1)(n+1) · · · a(n−1)N

0 · · · 0 0 0 · · · 0
a(n+1)1 · · · a(n+1)(n−1) 0 a(n+1)(n+1) · · · a(n+1)N

...
...

...
...

...
aN1 · · · aN(n−1) 0 aN(n+1) · · · aNN


,

which has the same largest eigenvalue as A1(N ). In fact, all eigenvalues of A1(N ) are the

same as in Ã1(N ), that possesses an additional zero eigenvalue. In the following deduction,

we likewise consider Ã1(N ) instead of A1(N ) in order to have the dimension equal to
N ×N . The principal eigenvector w1 corresponding to λ1(Am(N )) is also extended to a
vector with N components, where the components corresponding to the removed nodes
are all zeros.

The Rayleigh principle states that xTAx ≤ λ1(A) for any normalized vector x with
xTx = 1 and equality is only attained when x = x1. Since x1 is an eigenvector of
A, but not necessarily an eigenvector of Ã1(N ) belonging to λ1(Ã1(N )), we have that

λ1(Ã1(N )) ≥ xT
1 (Ã1(N ))x1, where

xT
1 (Ã1(N ))x1 = xT

1 Ax1 − xT
1 (A− Ã1(N ))x1 = λ1(A)− xT

1 (A− Ã1(N ))x1. (6.15)

It remains to compute xT
1 (A− Ã1(N ))x1. We can write

A− Ã1(N ) = an · eTn + en · aTn ,

where an is the column vector (an1, an2, · · · , anN )T and en is the n-th basis column vector
(0, 0, · · · , 1, · · · 0)T , where only the n-th component is 1. Hence,

xT
1 (A− Ã1(N ))x1 = xT

1 (an · eTn + en · aTn )x1

= xT
1 ane

T
nx1 + xT

1 ena
T
nx1 = 2(x1)n

N∑
i=1

(x1)iain.

The eigenvalue equation written for the component n yields

N∑
i=1

(x1)iain = λ1(A)(x1)n,

so that we arrive at

xT
1 (A− Ã1(N ))x1 = 2(x1)

2
nλ1(A). (6.16)

Introduced in (6.15) yields the lower bound in (6.14).

We repeat the analysis from the point of view of Ã1(N ). Since w1 is an eigenvector

of Ã1(N ), but not necessarily an eigenvector of A belonging to λ1(A), we have λ1(A) ≥
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wT
1 Aw1. Similarly as above,

λ1(A) ≥ wT
1 Ã1(N )w1 + wT

1

(
A− Ã1(N )

)
w1 (6.17)

= λ1(Ã1(N )) + wT
1

(
A− Ã1(N )

)
w1

= λ1(Ã1(N )) + 2λ1(Ã1(N ))(w1)
2
n,

from which, with
N∑
i=1

(w1)iain = λ1(Ã1(N ))(w1)n and an = 0 in Ã1(N ) so that (w1)n = 0,

the upper bound in (6.14) follows.
Next, we extend inequality (6.15) in case m nodes are removed,

xT
1 (A−Am(N ))x1 = xT

1

 ∑
n∈Nm

an · eTn +
∑

n∈Nm

en · aTn −
∑

j∈Nm

∑
i∈Nm

aijeie
T
j

x1,

and obtain

λ1(Am(N )) ≥ λ1(A)− xT
1 (A−Am(N ))x1 (6.18)

= λ1(A)− 2λ1(A)
∑

n∈Nm

(x1)
2
n +

∑
j∈Nm

∑
i∈Nm

aij(x1)i(x1)j .

Similarly, when repeating the analysis from the point of view of Am(N ) rather than from
A, we can also extend inequality (6.17) in case m nodes are removed. With λ1(A) ≥
wT

1 (A)w1, we achieve

λ1(A) ≥ λ1(Am(N ))− wT
1 (Am(N )−A)w1

= λ1(Am(N )) + 2λ1(Am(N ))
∑

n∈Nm

(w1)
2
n −

∑
j∈Nm

∑
i∈Nm

aij(w1)i(w1)j .

With (w1)i = 0, if i ∈ Nm,
λ1(A) ≥ λ1(Am(N )). (6.19)

From the inequality (6.18) and (6.19), we arrive at the bounds (6.13) of λ1 (Am(N )). �
Theorem 6.4.1 implies that the decrease of spectral radius by removing a node or a

set of nodes is strongly related to the principal eigenvector components corresponding to
the removed nodes. Based on Theorem 6.4.1, we obtain a lower bound for components of
the principal eigenvector

(x1)n ≥

√
λ1(A)− λ1 (A1(N ))

2λ1(A)
. (6.20)

Motivated by Theorem 6.4.1, the eigenvector based one node removal strategy to minimize
the largest eigenvalue simply removes the node with the largest principal eigenvector
component (x1)n.

We perform further simulations to illustrate the importance of the principal eigen-
vector components in characterizing the influence of the link/node removal on λ1. We
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Figure 6.12: Spectral radius of graphs by removing a link (or node) as a function of corres-
ponding components of the principal eigenvector (a), (b) in binomial graphs,(c), (d) in power-law
graphs.

deduce networks with different assortativities but with a given degree vector, which may
follow a binomial or power-law degree distribution. Upon each network, we try all possible
one link (or node) removal and examine the largest eigenvalue λ1(G\(l)) (or λ1(G\(n)))
after removing one link (or node) as a function of (x1)l+ (x1)l− (or (x1)

2
n) corresponding

to the link (or node) removed. By the Perron-Frobenius theorem [14], all components of
x1 and w1 are non-negative (positive if the corresponding graph is connected). Interest-
ingly, λ1(G\(l)) (or λ1(G\(n))) decreases linearly as a function of increasing (x1)l+ (x1)l−

(or (x1)
2
n), as shown in Figure 6.12. In other words, the spectral radius will be decreased

more if the link (or node) removed has a larger (x1)l+ (x1)l− (or (x1)
2
n).

The addition of a node to a graph GN was discussed in [14, p. 60]. In particular, when
GN+1 is the cone of a regular graph GN , the spectral radius λ1(AN+1) of GN+1 equals
λ1(AN )

2

(
1 +

√
1 + 4 dn

λ1(AN )2

)
, where λ1(AN ) is the spectral radius of GN and dn = N is

the degree of the added cone node. Hence, the increase of the spectral radius is related to
the degree dn. Lemma 6.4.1 shows that the decrease of the spectral radius by removing
a node n is related to (x1)n and complements the lemma 6.3.1 on link removals, proved
in [108]. Lemma 6.3.1 relates the decrease of λ1 by m link removals to the product
(x1)i(x1)j . Moreover, the lower bound in (6.13) of the spectral radius by removing m
nodes contains the term ∑

j∈Nm

∑
i∈Nm

aij(x1)i(x1)j

illustrating that, if there are links between removed nodes (i.e. l+ = i and l− = j),
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the decrease of the spectral radius also depends on the product (x1)i(x1)j over links
corresponding to the connected nodes.

In addition, the upper bound in (6.13) of λ1 (Am(N )) states that the spectral radius
λ1 of a graph G is always larger than or equal to the largest eigenvalue of any subgraph
Gs of G,

λ1 ≥ max
all Gs⊂G

(λ1(AGs)),

which is another proof for Theorem 42 in [14, p. 246− 247].
Goh et al. [143] observed by simulations in Bárabasi-Albert graphs that the upper

bound of (x1)
2
max is 1

2 , where (x1)max is the largest component of the principal eigenvector.
Corollary 6.4.2 provides a rigorous proof of this observation.

Corollary 6.4.2. In any graph, any eigenvector component of the principal eigenvector
obeys

(x1)n ≤
√
2

2
(6.21)

Moreover, ∑
n∈Nm

(x1)
2
n ≤ 1

2

1 +
1

λ1(A)

∑
j∈Nm

∑
i∈Nm

aij(x1)i(x1)j

 (6.22)

Proof: Since all components of x1 and Ã1(N ) are non-negative by the Perron-

Frobenius Theorem, we have that xT
1 (Ã1(N ))x1 ≥ 0. Combining (6.15), (6.16) and

λ1(A) > 0, we obtain
(
1− 2(x1)

2
n

)
≥ 0, from which (6.21) follows. By the same argument

xT
1 (Ãm(N ))x1 ≥ 0 and(

1− 2
∑

n∈Nm

(x1)
2
n

)
λ1(A) +

∑
j∈Nm

∑
i∈Nm

aij(x1)i(x1)j ≥ 0

proving (6.22). �

Alternatively, the inequality in the proof also yields

λ1(A) ≥
∑

j∈Nm

∑
i∈Nm

aij(x1)i(x1)j

2
∑

n∈Nm
(x1)

2
n − 1

=

∑
l∈L∗

m
(x1)l+ (x1)l−

2
∑

n∈Nm
(x1)

2
n − 1

,

where L∗
m denotes the set of links among the set Nm of nodes removed from G. The

sharpest bound is likely reached when 2
∑

n∈Nm
(x1)

2
n ' 1.

We remark that equality in (6.21) is reached for the star, when the node n is the
central or hub node. Since scale-free graphs consists of few very high degree nodes, their
influence on the eigenvector is close to a star, which explains the observations of Goh et al.
[143]. When Nm is an independent set (i.e. there are no links between the nodes of Nm

such that aij = 0 for any i, j ∈ Nm), the non-negative double sum in (6.22) disappears
and we find that ∑

n∈Nm

(x1)
2
n ≤ 1

2
.

This special case of (6.22) has been proved earlier by Cioabă [130].
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Finally, the lower bound in (6.14) underlines the interpretation of a principal eigen-
vector component as an importance or centrality measure. For, the more important the
node n is, the higher the value of (x1)n, and the larger the possible decrease in spectral
radius when this node n is removed.

Recently, Felix Goldberg has found another lower bound for components of the prin-

cipal eigenvector (x1)n ≥ 1/
√
1 + dn

(λ1(A)−λ1(A1(N )))2 . His results show that his lower

bound works better than ours (see Eq. (6.20)) for high-degree nodes, and our lower
bound works for low-degree nodes.

6.5 Chapter Conclusions
The spectral radius is both fundamental in graph theory as well as in many dynamic
processes in complex networks such as epidemic spreading, synchronization and reaching
consensus [14, p. 200]. We have shown that the spectral radius minimization problem
(for both link and node removals) is an NP-hard problem, which opens the race to find
the best heuristic. In particular, in large infrastructures such as transportation networks,
where removing links can be very costly, a near to optimal strategy is desirable. We have
shown that an excellent strategy for link removal is S = xixj . On average, this strategy
outperforms most other heuristics, but it does not beat them at all times. Moreover,
removing the node u with the highest vector component (x1)u will decrease λ1(A) most.
Beside graph theoretic bounds and arguments that underline the goodness of the heuristic
S = xixj , two scaling laws (6.9) and (6.12) are found: these laws may help to estimate
the decrease in spectral radius as a function of the number N of nodes and/or the number
m of link removals. It may be worthwhile that further investigations compute or estimate
the scaling parameters β in (6.9) as well as α in (6.12).





CHAPTER 7

Increasing the Epidemic Threshold by
Link Rewiring or Resetting

“There is no intelligence where there is no need of change.”

H.G. Wells, 1866 - 1946

Epidemics have so far been mostly studied in undirected networks. However, many
real-world networks, such as the online social network Twitter and the world-wide web,

on which information, emotion or malware spreads, are directed networks, composed of
both unidirectional links and bidirectional links. We define the directionality ξ as the
percentage of unidirectional links in [70]. We propose two algorithms to generate directed
networks with a given directionality ξ. The effect of ξ on the spectral radius λ1, prin-
cipal eigenvector x1, spectral gap (λ1 − |λ2|) and algebraic connectivity µN−1 is studied.
Important findings are that the spectral radius λ1 decreases with the directionality ξ,
whereas the spectral gap and the algebraic connectivity increase with the directionality ξ.
The extent of the decrease of the spectral radius depends on both the degree distribution
and the degree-degree correlation (assortativity) ρD. In directed networks, the epidemic
threshold is larger and a random walk converges to its steady-state faster than that in
undirected networks with the same degree distribution.

7.1 Introduction
Much effort has been devoted to understand epidemics on networks, mainly because of
the increasing threats from cybercrime and the expected outbreak of new fatal viruses in
populations. Epidemics have been studied on undirected networks for a long time and
many authors (see [79, 11, 118, 72, 119, 73, 31]) addressed the existence of an epidemic
threshold τc in the susceptible-infected-susceptible (SIS) epidemic process[117]. Topolo-
gies of undirected networks have been mostly modeled by Erdős and Rényi [1, 144, 2] as
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Table 7.1: Percentage of unidirectional links in real-world networks

Real-world networks N Larcs ξ
Enron 69 , 244 276 , 143 84.29%

Ljournal-2008 5 , 363, 260 79 , 023 , 142 25.32%
Twitter-2010 41, 652, 230 1 , 468 , 365, 182 64.29%

WordAssociation-2011 10 , 617 72, 172 76.77%
cnr-2000 325, 557 3, 216, 152 70.33%
in-2004 1, 382, 908 16, 917, 053 60.68%
eu-2005 862, 664 1, 935, 140 67.80%

uk-2007-05@100000 100, 000 3, 050, 615 82.23%
uk-2007-05@1000000 1, 000, 000 41, 247, 159 79.71%

binomial networks, by Bárabasi and Albert [7] as power-law networks, or by Watts and
Strogatz [6] as small-world networks. More complicated static and dynamic models, such
as the configuration model [145, 146, 114], are also proposed to approximate real-world
networks. However, many real-world networks are directed networks, some examples are
shown in Table 7.1. The dataset of the real-world networks is obtained from [147, 148]
and the description of these networks is attached in the Appendix B.

Two kinds of links, namely bidirectional links and unidirectional links, exist in directed
networks. If node i is connected to node j (denoted by i → j) then j is also linked to i
(denoted by j → i), one bidirectional link exists between nodes i and j; and if either i → j
or j → i exists, but not both in between the node pair i and j, a unidirectional link exists.
Here, we define the directionality as ξ = Lunidirectional/Larcs, where the number of arcs
(the number of nonzero elements in the adjacency matrix) Larcs =

∑
i

∑
j aij = uTAu,

(u is the all-one vector), can also be calculated by Larcs = Lunidirectional+2Lbidirectional.
A directed network with directionality ξ is denoted by G(ξ). The network G(ξ=0) is a
bidirectional network or an undirected network, whose adjacency matrix is symmetric,
when ξ = 0. The network G(ξ=1) is a directed network without any bidirectional link,
when ξ = 1. A high directionality is observed in Twitter, as shown in Table 7.1. A link
runs from user A to user B if user A follows user B in Twitter, where user A is called
the ”follower” of user B. The fact that user A ”follows” user B, does not necessarily
mean that the reverse is also true. For example, a famous person could have millions of
followers but he/she may not follow many others. This explains the high directionality
ξ of Twitter. The virtual-community social networks, such as LiveJournal, have a low
directionality (see Table 7.1), mainly because they aim to construct virtual connections
in between real-life friends, and friendship relations are usually mutual.

There has been an increasing interest in the study of directed networks. Topological
properties of directed networks, such as the short loops, closure connectivity, degree,
domination and communities on realistic directed networks have already been studied in
[149, 150, 151, 152, 91, 153]. Garlaschelli and Loffredo [154] investigated the reciprocity
[12] in directed networks, where the reciprocity is equal to 1− ξ. Processes taking place
on networks, such as synchronization, percolation and epidemic spread, have also been re-
searched [154, 155, 156, 71, 157] in real directed networks. Percolation theory for directed
networks with ξ = 1 was firstly developed by Newman et al. [114, 158]. Then, Boguñá
and Serrano [159] pointed out that even a small fraction of bidirectional links suffices to
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percolate the network. Moreover, Meyers et al. [160] used a generating function method
to predict the epidemic threshold in directed networks with ξ < 1 and the size of the
infected cluster. Recently, Van Mieghem and van de Bovenkamp have proven that the

NIMFA epidemic threshold τ
(1)
c = 1

λ1
of the SIS epidemic process also holds for directed

networks [161]. Stimulated by the directed social networks with different directionalities,

here, we focus on the influence of the directionality ξ on the epidemic threshold τ
(1)
c = 1

λ1

and other spectral properties.

This chapter is organized as follows. In Section 7.2, we propose two algorithms that
could be applied to a bidirectional network to generate a directed network with an ar-
bitrary given directionality ξ, by rewiring or resetting links. The in- and out- degree
distribution of the generated directed network is the same as the degree distribution of
the original bidirectional network. Chen and Olvera-Cravioto [162] proposed an algorithm
to generate a directed network with a given in- and out-degree distribution, which is sim-
ilar to the configuration model. However, their algorithm in [162] cannot generate a
directed network with a given directionality ξ. In Section 7.3, we investigate the effect of
the directionality ξ on the spectral radius λ1, the principal eigenvector x1 (the eigenvector
corresponding to λ1), the spectral gap λ1 − |λ2| and the algebraic connectivity µN−1 in
both directed binomial1 and power-law networks, whose in-degree and out-degree both
follow a binomial (or power-law) distribution. Interestingly, we find that the spectral ra-
dius λ1 of networks G

(ξ=0) is larger than that of directed networks G(ξ=1) when the degree
distribution and the assortativity of these networks are the same. This means that the
epidemic threshold τc in undirected networks is smaller than that in directed networks
with the same degree distribution and assortativity. Furthermore, we explore the influ-
ence of the Pearson degree correlation coefficient ρD (also called the assortativity) on

the epidemic threshold τ
(1)
c in both directed binomial and directed power-law networks

with different ξ, in Section 7.4. The ρD is the Pearson correlation coefficient of degrees
[17] at either ends of a link and lies in the range [−1, 1]. Actually, there are four degree
correlations, namely the in-degree and in-degree correlation, the in-degree and out-degree
correlation, the out-degree and in-degree correlation and the out-degree and out-degree
correlation, in directed networks. We consider directed networks where the in-degree
and out-degree of each node are the same. In this case, the four degree correlations are
equal to each other and can be all referred as the degree correlation (or the assortativity).
The decrease of the spectral radius λ1 with ξ is large when the assortativity ρD is large
in directed binomial networks, whereas the opposite is observed in directed power-law
networks.

7.2 Algorithm Description
Here, we propose two algorithms, In-degree and Out-degree Preserving Rewiring Al-
gorithm (IOPRA) and Link resetting algorithm (LRA), which both can be applied to any
network to generate a directed network with a given directionality ξ. In this study, we
only apply these two algorithms to generate directed networks with the same in- and out-
degree distribution. The difference is that IOPRA preserves the in- and out- degree of

1For example, an Erdős-Rényi random network is a binomial network with the Pearson degree cor-
relation ρD = 0. A general binomial network could possibly have an assortativity ρD within a large
range.
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each node, while, LRA may change the in- and out-degree of any node. IOPRA is in-
spired by the degree preserving rewiring, which has been presented in [40, 163]. We firstly
introduce the degree-preserving rewiring, which monotonously increases or decreases the
assortativity ρD, while maintaining the node degrees unchanged, in undirected networks.
Afterwards, we describe IOPRA and LRA in detail.

7.2.1 Degree-preserving Rewiring
The degree-preserving rewiring [40] can either increase or decrease the assortativity of a
bidirectional network: (a) the degree-preserving assortative rewiring: randomly select two
links associated with four nodes and then rewire the two links such that the two nodes
with the highest degree and the two lowest-degree nodes are connected, respectively. If
any of the newly rewired links exists before rewiring, discard this step and a new pair
of links is randomly selected; (b) the degree-preserving disassortative rewiring: randomly
select two links associated with four nodes and then rewire the two links such that the
highest-degree node and the lowest-degree node are connected, and the remaining two
nodes are also connected, as long as the newly rewired links do not exist before rewiring.
Either rewiring step (a) or (b) can be repeated to monotonically increase or decrease the
assortativity in a bidirectional network.

7.2.2 In-degree and Out-degree Preserving Rewiring Algorithm (IOPRA)
IOPRA can be applied to change the directionality of networks. We define our In-degree
and Out-degree Preserving Rewiring Algorithm (IOPRA) as follows: randomly choose
two unidirectional links with four end nodes, and rewire the two unidirectional links.
In IOPRA, the head of one unidirectional link only can rewire with the head of the
other unidirectional link, in order to maintain both the in-degree and out-degree of the
four nodes unchanged (see Figure 7.1). We don’t rewire if such rewiring can introduce
duplicated links from any node to any other. We discard the rewiring step if this rewiring
step doesn’t change the directionality ξ towards the given directionality. In both cases, we
randomly reelect a pair of unidirectional links associated with four nodes. We illustrate
the process of IOPRA changing the directionality in Algorithm 1 (see Appendix D).
IOPRA actually changes the directionality ξ of a given network G without changing the
in- and out-degree of each node. If the original network G is an undirected network, the
in-degree sequence is exactly the same as the out-degree sequence in the directed network
G(ξ) generated by IOPRA.

IOPRA changes the directionality, as well as randomizing the connections of the ori-
ginal network, without changing the degree of any node. Hence, if the initial network is
a random network, e.g. an Erdős-Rényi (ER) network or a scale-free network generated
by the configuration model, where the connections are originally laid at random, IOPRA
changes only the directionality ξ. However, if we apply IOPRA to a nonrandom network,
e.g. a lattice, the resulting network has not only a different directionality but also a more
randomized structure.

7.2.3 Link Resetting Algorithm (LRA)
We start with a bidirectional network G, and use the Link Resetting Algorithm (LRA) to
change the directionality (see Algorithm 2 in Appendix D). We randomly choose a fraction
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(a) (b)(a) (b)(a) (b)

Figure 7.1: In-degree and out-degree preserving rewiring

ξ of the bidirectional link pairs from G. Then, we randomly choose only one unidirectional
link from each bidirectional link, and randomly relocate the selected unidirectional links
to a place without any link. In this work, we only apply LRA to ER networks. In this
case, the in- and out-degree of the generated directed network follow the same binomial
degree distribution as the original network. However, the in-degree and out-degree of any
node in the generated network may differ from those in the original network G. When
LRA is applied to other types of networks, such as the power-law networks, the original
in- and out-degree distributions are destroyed, and tend to be binomial.

In summary, two types of directed binomial networks can be generated: one is gener-
ated by IOPRA (called the IOPRA directed binomial networks), whose nodes have the
same in-degree and out-degree; the other, created by LRA (called the LRA directed bi-
nomial networks), has the same in- and out- degree distribution, while allowing the in-
and out- degree of any node to be different.

7.3 Spectral Properties in Directed Networks

7.3.1 Spectral Radius of Directed Networks
The adjacency matrix of a directed network is an asymmetric matrix, whose spectral
radius λ1 is still real by the Perron-Frobenius Theorem (see [14]). We generate directed
networks, with the directionality ξ ranging from 0 to 1, by applying IOPRA to the ER
(N = 1000, p = 2lnN/N) and the BA (N = 1000, m = 4) networks gradually. Here
we choose p ≥ 2pc to be sure that the original networks are connected. The influence of
the directionality ξ on the spectral radius λ1 and the assortativity ρD is studied in both
directed power-law networks and directed binomial networks (see Figure 7.2).

Apart from some wobbles, the spectral radius λ1 decreases almost linearly with the
directionality ξ. The same phenomenon can also be observed in large, sparse directed
networks [70]. Moreover, the assortativity ρD of the network fluctuates slightly around
0. We also have observed a similar phenomenon in large sparse networks. We observe
that the tiny leaps of spectral radius λ1 happen when the assortativity ρD has a rise,
which is understandable, because it has been shown in [40] that the spectral radius λ1

increases with the increase of the assortativity ρD. Figure 7.3 exemplifies that the spectral
radius λ1 may increase instead of decreasing when the directionality increases due to the
assortativity ρD. We will study the effect of the assortativity ρD on the decrease of the
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Figure 7.2: Plot of the spectral radius versus the directionality in (a) and (b), as well as the
assortativity versus the directionality in (c) and (d), in both directed binomial and power-law
networks generated by IOPRA.

spectral radius λ1 with the directionality ξ in Section 7.4.

With LRA, we generate directed binomial networks with directionality ξ from 0 to
1 with step 0.1. The assortativity ρD of all the directed binomial networks generated
by LRA is around 0. Hence, the effect of the assortativity ρD can be ignored here.
The spectral radius λ1 is calculated in directed networks with different directionality
ξ. We performed all the simulations for 103 network realizations. The spectral radius
λ1 is plotted as a function of the directionality ξ for directed binomial networks with
p = 2lnN/N and p = 0.05 in Figure 7.4. From the observation, the spectral radius λ1 is
inversely proportional to the directionality ξ with the factor ≃ −1, which is independent
from the link density p of the networks. This observation can be explained by the following
proposition.

Proposition 7.3.1. Let G(ξ=0) = Gp(N) be a connected Erdős-Rényi (ER) random graph
with a finite N , and let G(ξ) be a directed binomial network generated by LRA whose in-
and out-degree follow the same binomial distribution as Gp(N). The average spectral
radius satisfies

E[λ1(G
(ξ))] ≃ E[λ1(Gp(N))]− ξ (7.1)

Arguments:

A directed binomial network G(ξ) generated by LRA with link density p, can be
equivalently constructed by randomly adding 2pξ(N2 ) unidirectional links to a bidirectional
ER network Gp(1−ξ)(N) with size N and link density p(1−ξ). The average spectral radius
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Figure 7.3: Example: the spectral radius increases with the directionality ξ, because of the
increase of the assorativity (where ρD(Gleft) = −0.6190, ξ(Gleft) = 0.8333, and ρD(Gright) =
−0.5714, ξ(Gright) = 0.9167).
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Figure 7.4: Average spectral radius as a function of the directionality for directed binomial
networks generated by LRA with size N = 1000. Two values for the link density p are shown:
p = 2lnN/N (red circles) and p = 0.05 (orange diamonds).

[14, pp. 173, art. 137] of Gp(1−ξ)(N) is

E[λ1(Gp(1−ξ)(N))] = (N − 2)p(1− ξ) + 1 +O(
1√
N

).

The principal eigenvector of an adjacency matrix A is denoted by x1 obeying the nor-
malization xT

1 x1 = 1. Let C denote the adjacency matrix of the resulting network after
adding one unidirectional link to network G. The largest eigenvalue is increased due to
the addition of the link (i → j) [14, pp. 236, Lemma 7] as

λ1(C) ≃ λ1(A) + (x1)i(x1)j ,

where the increase is strict if the adjacency matrix A is irreducible. Hence, the average
increase of the spectral radius by adding m unidirectional links in random networks is
obtained as

E[λ1(C)− λ1(A)] ≃ mE[(x1)i(x1)j ].
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The sum of the product of components in the principal eigenvector of Erdős-Rényi net-
works is approximated by a function of link density p (see Figure 7.5). The fitting function
can be expressed as,

E

 N∑
j=1

N∑
i=1

(x1)i(x1)j

 = N − 1

p
+O(1),

when the network is connected. Since xT
1 x1 = 1 and since the expectation E[.] is a linear

operator, we obtain

E [(x1)i(x1)j ] =
N − 1

p − 1

N(N − 1)
+O(

1

N2
), (7.2)

when i ̸= j. Directed binomial networks generated by LRA from ER with N and p,
have the same E [(x1)i(x1)j ]. Hence, the average spectral radius of the directed network
obtained by adding m = 2pξ(N2 ) unidirectional links to the network Gp(1−ξ)(N) can be
approximated by

E[λ1(G(ξ))] ≃ E[λ1(Gp(1−ξ)(N))] + 2 (N(N − 1)/2) pξE [(x1)i(x1)j ] .

Using (7.2),

E[λ1(G(ξ))] ≃ (N − 2)p+ 1− ξ +O(
1√
N

),

which leads to (7.1). �

975

950

925

Σ i
Σ j

(x
1)

i(x
1)

j

0.140.120.100.080.060.040.020.00
p

ER networks (N = 1000, p = 2ln(N)/N : ln(N)/N : 20ln(N)/N  )
 The sum of product of components in principal eigenvector

fitting curve:
ysum = 1000-(1/p)±0.45

Figure 7.5: Sum of the product of components in the principal eigenvector as a function of the
link density p in ER networks (N = 1000).

Juhász [164] also pointed out that the largest eigenvalue λ1(G
(ξ=1)) of a directed ran-

dom network with link density p and size N is almost surely Np, when N is large. In ER
random networks, the spectral radius E[λ1(G

(ξ=0))] → Np+ 1, when N is large (see [14,
pp. 173, art. 137]). Both earlier results are consistent with Proposition 7.3.1, and support
that the proportionality factor between the spectral radius λ1 and the directionality ξ is
around −1.
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Proposition 7.3.1 also reveals the effect of the size N on the relative largest decrease

of the spectral radius Λ = λ1(G
(ξ=0))−λ1(G

(ξ=1))
λ1(G(ξ=0))

. We predict that Λ → 0 if N → ∞ for

directed binomial networks, because the decrease of the spectral radius (λ1(G
(ξ=0)) −

λ1(G
(ξ=1))) is almost a constant value, whereas the spectral radius λ1(G

(ξ=0)) of dense
directed binomial networks increases with the size of the networks. This implies that
the effect of the directionality ξ on the spectral radius is small in large dense binomial
networks.

7.3.2 Principal Eigenvector in Directed Networks
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Figure 7.7: Plot of the variance of the principal eigenvector versus the directionality (a) in
directed binomial networks (generated by LRA in yellow squares and by IOPRA in red triangles)
and (b) in directed power-law networks by IOPRA (103 network realizations)

The principal eigenvector x1 was first proposed as a centrality metric by Bonacich [165]
in 1987, to indicate the influence of each node. For example, the decrease of the spectral
radius [108, 129] by removing nodes, can be characterized by the corresponding principal
eigenvector components. In this section, we explore the principal eigenvector in directed
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networks. The principal eigenvector of the directed networks, with the directionality ξ
from 0 to 1 with step 0.1, are calculated. Then, the components of the principal eigen-
vector are sorted in an ascending order. For each ξ, we simulate 103 network realizations
and compute the average sorted principal eigenvector components. Figure 7.6 illustrates
that the components of the principal eigenvector are more uniform in directed binomial
networks: the principal eigenvector x1 → u√

N
as ξ → 1; moreover, the variance of com-

ponents of the principal eigenvector linearly decreases with the directionality ξ in both
directed binomial networks and the directed power-law networks (see Figure 7.7). The
observation implies that when the directionality is larger, the influence of each node on
the spectral radius is more similar. This experimental evidence suggests that increasing
the directionality enables all nodes to contribute more similarly to the robustness against
epidemic in directed networks.

The decrease of the variance V ar[x1] in directed binomial networks by LRA is larger
than that in directed binomial networks by IOPRA (see Figure 7.7(a)). The connections in
LRA directed binomial networks are more random than that in IOPRA directed binomial
networks, in the sense that LRA allows each node to have a different in- and out- degree,
although the in- and out- degree distribution are the same in both LRA and IOPRA
binomial networks. As a consequence, the principal eigenvector x1 is more uniform with a
smaller V ar[x1] in LRA directed binomial networks than that in IOPRA directed binomial
networks when the directionality is the same. Thus, nodes in LRA directed binomial
networks have more equal contributions to the spectral radius than nodes in IOPRA
directed binomial networks with the same directionality. Li et al. [107] have shown that
both a large variance of the degree and a large assortativity ρD contribute to a large
variance V ar[x1] of the components of the principal eigenvector x1. Here, we point out
further that a large directionality ξ leads to a small variance V ar[x1] of the components
of x1.

7.3.3 Spectral Gap of Directed Networks

The difference (λ1 − λ2) between the largest eigenvalue λ1 and the second largest eigen-
value λ2 is called the spectral gap. All eigenvalues of the symmetric adjacency matrix of
an undirected network are real. Here we focus on the directed networks, whose adjacency
matrix is asymmetric. The eigenvalues of directed networks can be complex numbers
(as exemplified in Figure E.1 in Appendix E). In directed networks, the spectral gap is
defined as λ1 − |λ2|, where |λ2| is the modulus of λ2. The spectral gap λ1 − |λ2| increases
with the directionality ξ in both the directed binomial networks and the directed power-
law networks (see Figure 7.8). As introduced in Sec. 7.3.1, the spectral radius decreases
with the directionality. Our observation implies that the second largest eigenvalue |λ2|
decreases with the directionality faster than the spectral radius. The larger the spectral
gap is, the faster a random walk converges to its steady-state [14, pp. 64]. Thus, the
dynamic process in a directed network reaches the steady-state faster than that in an un-
directed network with the same degree distribution. Figure 7.8 (a) implies that a dynamic
process is slightly faster to reach the steady-state in IOPRA directed binomial networks
than in LRA directed binomial networks. The existence of large spectral gap together
with a uniform degree distribution results in higher structural sturdiness and robustness
against node and link failures [166]. Hence, directed networks with high directionality ξ
and a uniform degree distribution are more robust than undirected networks with large
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variance of degree.
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Figure 7.8: Plot of the spectral gap as a function of the directionality (a) in directed binomial
networks (generated by LRA in yellow square and by IOPRA in red triangle) and (b) in directed
power-law networks (103 network realizations).

7.3.4 Algebraic Connectivity of Directed Networks
The Laplacian matrix [167] is defined as Q = 1

2BBT , where the incidence matrix B is an
N × L matrix with elements [14]

bil =

 1 if link el = i → j
−1 if link el = j → i
0 otherwise.

The Laplacian matrix can be equivalently expressed as Q = ∆−Ā, where ∆ = 1
2
(∆in +∆out),

∆in and ∆out are diagonal matrices which contain the in-degree and out-degree of each
node respectively, and Ā = 1

2 (A + AT ). If the network is an undirected network, Ā is
the adjacency matrix A and ∆ = diag(d1, d2, · · · , dN ) is the degree matrix. The second
smallest eigenvalue µN−1 of the Laplacian Q was named algebraic connectivity by Fiedler
[47]. The Laplacian Q is always symmetric as defined. Hence, the algebraic connectiv-
ity of a directed and connected network is a positive real number. The algebraic con-
nectivity, together with the spectral gap, quantifies the robustness and the network’s
well-connectedness. The larger the algebraic connectivity is, the more difficult it is to cut
the network into disconnected parts. Here, we study the influence of the directionality ξ
on the algebraic connectivity µN−1 of directed networks. As illustrated in Figure 7.9, the
algebraic connectivity increases with the directionality ξ in both the directed binomial
networks and the directed power-law networks. This suggests that the directed networks
with high directionality are more difficult to break into parts and synchronize faster. As
the directionality increases, the number of none-zero elements of Ā increases and the vari-
ance of the elements of Ā decreases. This could be one possible reason why the network
is better connected. Moreover, the algebraic connectivity µN−1 is greater in the LRA
directed binomial networks than in the IOPRA binomial networks (see Figure 7.9(a)).

The algebraic connectivity µN−1 approaches the spectral gap λ1 − λ2, as the network
tends to be regular bidirectional networks [14, pp. 71], which suggests the spectral gap
is related to the algebraic connectivity. Figures 7.8 and 7.9 show that both, the spectral
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Figure 7.9: Plot of the algebraic connectivity as a function of the directionality (a) in directed
binomial networks (generated by LRA in yellow square and by IOPRA in red triangle) and (b)
in directed power-law networks (103 network realizations).

gap and the algebraic connectivity, increase with the directionality ξ in directed networks,
which is consistent with the relation between the algebraic connectivity and the spectral
gap.

7.4 Effects of the Assortativity on λ1 of Directed Networks

In the directed networks generated by applying IOPRA to ER or BA networks, the in-
and in- degree correlation, the in- and out- degree correlation, the out- and in- degree
correlation and the out- and out- degree correlation are the same. Thus, the four cor-
relations are all referred as the degree correlation (or the assortativity). In Section 7.3,
we have discussed how the spectral properties change with the directionality in directed
networks, where the assortativity is always close to zero. Here, we study how the spectral
radius λ1 changes with the directionality ξ when the assortativity ρD is the same, and how
the change of the spectral radius λ1 with ξ is influenced by the assortativity in directed
networks. Two approaches are applied to investigate this problem.

• Approach 1: First, we perform degree-preserving rewiring on ER networks (or BA
networks) to obtain a set of bidirectional networks with assortativity ρD from −0.8 to 0.8
(or −0.3 to 0.3) with step 0.1. Second, we alter the directionality ξ of all bidirectional
networks with each assortativity using IOPRA. The directionality ξ is changed from 0 to 1
with step 0.1. IOPRA randomizes network connections, and thus pushes the assortativity
of the resulting directed network towards zero, if the original network has a non-zero
assortativity. Figure 7.10 plots the simulation results of one binomial network realization
and 102 binomial network realizations. The simulation of one realization is almost the
same as the result of a large number of network realizations, which points to almost sure
behavior [168]. The results in the directed power-law networks are shown in Figure 7.11.

• Approach 2: First, we generate ER networks (or BA networks) G(ξ=0) whose
directionality ξ = 0. Second, we apply IOPRA to ER (or BA) networks G(ξ=0) to generate
directed binomial networks (or directed power-law networks) G(ξ=1) with directionality
ξ = 1. Then, we change the assortativity of ER networks (or BA networks) G(ξ=0) and
directed binomial networks (or directed power-law networks) G(ξ=1) by degree preserving
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Figure 7.10: Spectral radius as a function of the assortativity in directed binomial networks
with ξ from 0 to 1 with step 0.1 is scatter plotted in different colorful (or grayscale) lines, from
the gray (upper) line to the pink (lower) line.
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with ξ from 0 to 1 with step 0.1, is scatter plotted in different colorful (or grayscale) lines, from
the gray (upper) line to the pink (lower) line.

rewiring and in- and out- degree preserving rewiring, respectively, without changing the
directionality. Note that the in- and out- degree preserving rewiring can be applied not
only to change the directionality, but also to change the assortativity. Figure 7.12 plots
the spectral radius of the networks G(ξ=0) and G(ξ=1) as a function of the assortativity.
The two approaches both change the assortativity and the directionality of the networks,
while, the order of change is different: Approach 1 changes the assortativity firstly and
then the directionality; Approach 2 is the opposite. Figures 7.10, 7.11 and 7.12, show
that the spectral radius λ1 always decreases with the directionality ξ when the networks
have the same degree distribution and the same assortativity ρD. Moreover, the degree
distribution of the network also influences the change range of the spectral radius λ1

with ξ. The decrement of the spectral radius λ1 with ξ increases with the assortativity
in directed binomial networks (see Figures 7.10 and 7.12 (a)). On the contrary, the
decrement of the spectral radius λ1 with ξ goes down with the assortativity in directed
power-law networks (see Figures 7.11 and 7.12 (b)). Furthermore, the decrease of the
spectral radius in directed power-law networks is larger than that in directed binomial
networks, when the assortativity is zero. Many real-world networks are directed power-
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Figure 7.12: Spectral radius as a function of the assoratativity (a) in directed binomial networks
(N = 1000, p = 2lnN/N) and (b) in directed power-law networks (N = 1000, m = 4) for 103

network realizations.

law networks, where λ1 could possibly be tuned within a large range by controlling the
directionality in real-world networks.

Summarizing, the spectral radius λ1 decreases with the directionality ξ when the
assortativity remains constant. In order to protect the network from virus spreading
via increasing the epidemic threshold, while maintaining the degree distribution and the
assortativity, increasing the directionality of networks is recommended. Meanwhile, the
spectral gap and the algebraic connectivity are also increased, which means that the
topological robustness is also enhanced in return.

7.5 Chapter Conclusions
In this chapter, two algorithms to generate directed networks with a given directionality ξ
are proposed. This allows us to study the influence of the directionality ξ on the spectral
properties of networks. The spectral radius λ1, which is the inverse of the SIS NIMFA

epidemic threshold τ
(1)
c , is studied in directed networks. A universal observation is that,

the spectral radius decreases with the directionality when the degree distribution and the
assortativity of the network is preserved. We may, thus, increase the epidemic threshold
to suppress the virus spread via increasing the directionality of the network. The possible
range to increase the epidemic threshold is relatively large in directed binomial networks
with a high assortativity and directed power-law networks with a low assortativity. The
variance of the components of the principal eigenvector decreases with the directionality,
which indicates that the influence of each node on the spectral radius is similar in networks
with a high directionality. Moreover, the spectral gap and the algebraic connectivity
increase with the directionality, implying that an increase of the directionality enhances
the connectivity of the network. Furthermore, we observe that the spectral gap increases
faster with the directionality in IOPRA than in LRA directed binomial networks, on the
contrary, the algebraic connectivity increases with the directionality faster in LRA than
in IOPRA directed binomial networks. This observation may be due to the fact that the
in- and out- degree of each node could be different in LRA directed binomial networks,
while, are exactly the same in IOPRA directed binomial networks.



CHAPTER 8

Conclusions and Future Work

“Learn from yesterday, live for today, hope for tomorrow. The
important thing is to not stop questioning.”

Albert Einstein, 1879 - 1955

8.1 Main Conclusions
The objective of researching complex networks is to provide deep insights into complex
systems in the real world. The real complex systems are abstracted as networks composed
of nodes and links. Network measurements are essential for many network investigations,
including representation, characterization, classification and modeling. In recent decades,
a number of metrics have been proposed to quantify the properties of networks. This
thesis first provides a comprehensive review of the main measurements, including the
structural metrics, the spectral metrics and the centrality metrics, in Chapter 2. How-
ever, we have no idea if the entire set of metrics is needed to characterize a network. We
expect to find a small set of representative metrics, which are not redundant but enough
for characterizing complex networks. The first part of this thesis is devoted to explore the
relationships between metrics. From the theoretical analysis and simulations, we learn
that there are correlations between certain network metrics and a network with a given
degree distribution can indeed be characterized by a small representative set of structural
and spectral metrics. We find that spectral properties are essential in network character-
izations. What is more, we could approximate a high-complexity centrality metric by a
strongly correlated low-complexity one. We gain new insight into the metrics/properties
that are applied to capture the functions of complex networks. The functions of a net-
work are usually expressed through the dynamic processes on the network. The notable
successes in this area so far have been studies of the virus spreading over networks. The
epidemic thresholds of SIS model can be expressed by metrics, which are studied and
compared in this thesis. The second objective of this thesis is to design a network. We
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change the topological structure of networks to reinforce certain functions (such as ro-
bustness, epidemic threshold and connectivity) of the networks, via three approaches, i.e.
the link removal, the node removal and the directionality changing. We summarize the
main findings of the research performed on the subject of characterization and design of
complex networks as follows:

Chapter 3 investigates the Pearson correlation coefficients between widely studied
structural and spectral network metrics in three network models (Bárabasi-Albert graphs,
Erdős-Rényi random graphs and Watts-Strogatz small-world graphs) as well as in func-
tional brain networks of healthy subjects. We find that the correlations between metrics
are topology dependent. Each class of networks can be characterized by a metric cor-
relation pattern, which illustrates the strong correlations and independencies between
metrics. The high correlation between a pair of metrics indicates that there are large
redundancies. Accordingly, we can determine a small set of representative metrics by
including only one metric from each subset of mutually strongly dependent metrics, to
characterize both sufficiently and effectively a class of networks with a given degree distri-
bution. Note that the representative set at least has to be considered so that important
network properties will not be overlooked, when we study a specific network. Most of
the metric correlations observed so far are supported/explained analytically by theor-
ems developed in chapter 3 as well as in the literature. Moreover, we observed that the
unweighted networks, which are obtained from weighted functional brain networks with
a fixed threshold, and Erdős-Rényi random graphs follow a similar degree distribution.
This finding verifies the influence of the degree distribution on metric relations. This rep-
resentative set of metrics tends to both sufficiently and effectively characterize networks
with a given degree distribution. In the study of a specific network, however, we have to
at least consider the representative set so that important network properties will not be
neglected. Furthermore, two important conclusions for the applications of network science
to other disciplines are drawn as: 1) the average distance and the clustering coefficient,
the most studied metrics so far in neuroscience, are strongly correlated, thus, redundant;
2) spectral metrics, though only studied recently in the context of complex networks seem
to be essential in network characterizations.

Chapter 4 studies the centrality metrics and their applications to the opinion model
and the link removal. First, we explore the properties of the principal eigenvector x1,
and find that: i) the average principal eigenvector E[x1] decreases with the increase of
assorativity ρD; ii) the upper bound of E[x1] is 1/

√
N ; iii) the component of the principal

eigenvector increases exponentially, when ρD is large. Second, the relation between the
principal eigenvector x1 and the degree vector d is studied. We prove that the difference
between the principal eigenvector x1 and the degree vector d is the smallest when λ1 =
N2/N1 and also find that x1 and d are strongly linear correlated when the assortativity is
not small. Third, we introduce a novel centrality metric, themth-order degree mass, which
is defined as the sum of the weighted degree of the node and its neighbors not further away
from m hops. The Pearson correlation coefficient and centrality similarity are applied to
study the correlations between centrality metrics. We find that the betweenness, the
closeness and the components of the principal eigenvector are strongly correlated with
the degree, the 1st-order degree mass and the 2nd-order degree mass, respectively, in
both network models and real-world networks. We theoretically prove that the linear
correlation between the 2nd-order degree mass and the principal eigenvector is stronger
than that between the principal eigenvector and the degree. In addition, we investigate
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the effect of the selected inflexible contrarians based on different centrality metrics in
helping one opinion to compete with the other in the inflexible contrarian opinion (ICO)
models. We observe that selecting the inflexible contrarians based on the leverage, the
betweenness or the degree is the most effective strategy in opinion-competition in all types
of networks. The strongly correlated centrality metrics perform similarly to each other in
applications, i.e. link removal and opinion model.

Chapter 5 compares two SIS mean-field approximations, the HMF approximation and
the N-intertwined approximation, with the ε-SIS as a benchmark, in different graph types.
We define the steady-state of ε-SIS spreading model as the meta-stable state of SIS model.
The steady-state fraction of infected nodes in the ε-SIS model is the simplest and best
way to determine the number of infected nodes in the meta-stable state of the SIS model.
We compare the epidemic threshold and the steady-state fraction of infected nodes of
the two approximations. The epidemic thresholds of the N-intertwined approximation

and the HMF approximation are τ
(1)
c = 1/λ1 and τHMF

c = E[D]/E[D2], respectively.

In most cases, our simulations show that τ
(1)
c > τHMF

c , which implies that the τ
(1)
c is a

better lower bound for SIS model. We also see that the N-intertwined approximation can
approach the ε-SIS epidemic model well in most graph types. Overall, the N-intertwined
approximation is superior to the HMF approximation. The N-intertwined approximation
is exactly the same as the HMF approximation in regular graphs. However, for some
special graph types, such as the square lattice graph and path graph, the two mean-field
approximations are both far away from the ε-SIS spreading model.

Chapter 6 designs networks in order to enlarge the network’s epidemic threshold τc,
or, equivalently, to lower λ1 (A). We perform two approaches, removing links and re-
moving nodes, to make networks becoming less vulnerable to a virus. We prove that the
minimization of the spectral radius by removing m links (or nodes) is shown to be an
NP-complete problem. We demonstrate that removing the node u or the link u ∼ v with
highest vector component (x1)u or highest vector component product (x1)u (x1)v will
decrease λ1 (A) most. We compare several greedy strategies for removing m links and
observe that the strategy that removes that link l = i ∼ j with largest product (x1)i (x1)j
of the components of the eigenvector x1 belonging to the largest adjacency eigenvalue is
superior to other strategies in most cases. We find two scaling laws, which may help to
estimate the decrease in spectral radius as a function of the number N of nodes and/or
the number m of link removals. We also present new bounds for the decrease of the
spectral radius of a graph in which m links (or nodes) are removed. In the meanwhile,
we find that maximum normalized principal eigenvector component in any graph never
exceeds

√
2/2.

Chapter 7 proposes two algorithms, IOPRA and LRA, to generate directed networks
with a given directionality ξ. We study the influence of the directionality ξ on the spectral
properties of networks. We observe that the spectral radius decreases with the increase
of directionality when the degree distribution and the assortativity of the network is
preserved. Hereby, we claim that increasing the directionality of directed networks could
increase the epidemic threshold to suppress the virus spread. The possible range to
increase the epidemic threshold is relatively large in directed binomial networks with a
high assortativity and directed power-law networks with a low assortativity. We also find
that the influence of each node on the spectral radius is similar in networks with a high
directionality. Moreover, we show that the spectral gap and the algebraic connectivity
increase with the directionality, implying that an increase of the directionality enhances
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the connectivity of the network. We conclude that in directed networks the epidemic
threshold is larger and a random walk converges to its steady-state faster than that in
undirected networks with the same degree distribution.

8.2 Contributions Summary
The most important contributions of this thesis are highlighted as follows:

• We find that a network with a given degree distribution can indeed be characterized
by a small representative set of metrics sufficiently and effectively. Most metric
correlations are explained analytically. Moreover, we find that the spectral metrics
seem to be essential in network characterizations.

• We study relation between the degree and the principal eigenvector, and find that
the difference between the principal eigenvector and the scaled degree eigenvector
is the smallest, when λ1 = N2/N1. What is more, the linear correlation between
the degree and the principal eigenvector is strong when the assortativity is large.

• A novel centrality measure, the degree mass, is introduced in this thesis. The correl-
ations between centrality metrics are studied via the Pearson correlation coefficient
and the centrality similarity. We find that the betweenness, the closeness and the
components of the principal eigenvector are strongly correlated with the degree, the
1st-order degree mass and the 2nd-order degree mass, respectively. Furthermore,
the ρ(x1, D

(2)) > ρ(x1, D
(1)) > ρ(x1, D) is theoretically proven for ER networks.

• Centrality metrics are applied to inflexible contrarian opinion (ICO) model to help
one opinion to compete with the other. We learn that the leverage, the betweenness
or the degree strategy is more effective in opinion–competition than using other
centrality strategies in all types of networks.

• An ε-SIS spreading model is proposed, and taken as a benchmark for the comparison
between two mean-field approximations, the NIMFA and the HMF approximation
of the SIS model. We find that, overall, the NIMFA is superior to the HMF approx-
imation. An analytic comparison of the epidemic thresholds of the two mean-field
approximations is studied.

• The decrease of the spectral radius, an important characterization of network dy-
namics, by removing links (or nodes) is investigated. The strategy that removes the
node u or the link l = i ∼ j with highest vector component (x1)u or largest product
(x1)i(x1)j of the components of x1 is superior to other strategies in decreasing λ1

in most cases.

• A new type of bounds for the spectral radius λ1 of a graph in which m nodes or
links are removed are presented.

• We propose two algorithms, IOPRA and LRA, to generate directed networks with
a given directionality ξ, which allow us to study the influence of the directionality
ξ on the spectral properties of networks. A universal observation is that, the spec-
tral radius decreases with the directionality when the degree distribution and the
assortativity of the network is preserved.
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8.3 Directions for Future Work
In this thesis we have thoroughly studied various problems related to characterizing and
designing complex networks. Although this work is a tip of the iceberg in complex network
field, we believe it will open a door to a wide range of related future works. Here we
identify several interesting research areas for future works, which can be direct extensions
of this thesis or independent work that may result in another thesis.

1. Chapter 3 shows that a small representative set of metrics can characterize a
network with given degree distribution. However, the representative set tends to be
larger when more than 9 metrics are considered. So far, we have explored the effect of
degree distribution on metric correlations. It is interesting to further examine a large set
of metrics and the metric correlation pattern in graphs with a given degree distribution
and a given degree correlation (assortativity).

2. Topologies of many complex networks such as the Internet at router level are not
known due to their large size or technical challenges, although some properties of their
sub-networks can be measured. The dependency of metric correlation pattern on net-
work properties opens up a new direction of reverse-engineering: infer possible universal
network properties or the possible suitable network model of a class of graphs from the
correlations of the measured network metrics.

3. The epidemic processes studied in Chapters 5-7 are homogeneous. The infection
rate on all links between infected and susceptible nodes is the same β, and the curing
rate for infected nodes is the same δ. An interesting research direction is to investigate
the heterogeneous epidemic processes, where the spreading rates for links are different
and the curing rates for infected nodes are different. Understanding how the epidemic
threshold alters with the spreading and curing rates would improve the knowledge of
epidemic processes.

4. In Chapter 7, the effect of the directionality on the spectral properties is studied
in directed networks with the same in- and out- degree distribution. The influence of
the difference between in- and out- degree of nodes on spectral properties for directed
power-law networks remains an open question.

5. Due to the critical effects of cascading failures, the study of network of networks
(also called the interdependent networks) has become a hot topic and caught the atten-
tion of the scientific community. To date, most studies focus on the network metrics,
the epidemic spreading, and the cascading failures in two-layer interdependent networks.
Many properties of multi-layer interdependent networks remain unexplored.

6. The need for exactly modeling real-world networks is particularly intense. There
is much to be done in developing more sophisticated models of networks. Better under-
standing the properties of networks can help to model the real-world networks better. For
example, brain networks often are small-world (high clustering; short path lengths) and
scale-free, but they have other properties that are not explained by these two models:
for example, the modularity and the assortativity. Building up a precise model for a
class of real-world networks is in hurry, since the model is the law governing the dynamic
processes.
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Structural Metric Correlations in
Network Models

The following plots offer additional material to that of Section 3. The images depict the
relation between the structral metrics of network models (Erdős-Rényi random graphs,
Bárabasi-Albert graphs and Watts-Strogatz Small-world graphs).
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Figure A.1: Metric correlations as a function of N in Erdős-Rényi random graphs (p = 5pc).
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Figure A.2: Metric correlations as a function of p/pc in Erdős-Rényi random graphs (N =
400).
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Figure A.3: Metric correlations as a function of N in Bárabasi-Albert graphs(m = 4).
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Figure A.4: Metric correlations as a function of N in WS Small-world graphs(k = 6, pr = 0.01).



APPENDIX B

Introduction of Real-world Networks

B.1 Descriptions of the undirected real-world networks studied in
Section 4.3

The real-world networks studied in Section 4.3 are described in Table B.1. The real-world
networks are indexed in the first column.

B.2 Properties of the undirected real-world networks studied in Sec-
tion 4.3

The properties of real-world networks are shown in the Table B.2. The definition of these
properties has been described in detail in Section 2.1.
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Table B.1: Descriptions of real-world networks.

Index Networks Descriptions

1 American airline The direct airport-to-airport American mileage a maintained by the
U.S. Bureau of Transportation Statistics.

2 American football This is the network of American football games between Division IA
colleges during regular season Fall 2000, as compiled by M. Girvan
and M. Newman.

3 ARPANET80 The Advanced Research Projects Agency Network as seen in 1980.
4 Celegensneural Network representing the neural network of C. Elegans.
5 Dophins An undirected social network of frequent associations between 62 dol-

phins in a community living off Doubtful Sound, New Zealand.
6 Dutch soccer Dutch football players represent the nodes. Two nodes are linked if

they played together a match.
7 Gnutella 1 Gnutella snapshots. Four different crawls are available.
8 Gnutella 2
9 Gnutella 3
10 Gnutella 4
11 Karate Social network of friendships between 35 members of a karate club at

a US university in the 1970.
12 LesMis Coappearance network of characters in the novel Les Miserables.
13 Surfnet SURFNET topology inferred from the switch interface interconnec-

tions.
14 Electric s208 ISCAS89 Sequential Benchmark Circuits. Each node represents a
15 Electric s420 logical operation implemented physically. Links between them relate
16 Electric s838 their inputs/outputs.
17 Epowergridl1 Power-grid infrastructure at three different levels of one city-area in
18 Epowergridl2 Western Europe.
19 Epowergridl3
20 Erailwayl1 Railway infrastructure at two levels of one Western-European country
21 Erailwayl2
22 WordAdj Adjacency network of common adjectives and nouns in the novel

David Copperfield by Charles Dickens.
23 WordAdjEnglish Word-adjacency networks of texts in English, French and Japanese
24 WordAdjFranch separately.
25 WordAdjJapanese
26 Internet AS (01’) Internet snapshot retrieved from the merge of different data sources

(BGP routing tables and updates: Route Views, RIPE, Abilene, CER-
NET, BGP View).

27 Astro Ph Network of coauthorships between scientists posting preprints on the
Astrophysics E-Print Archive between Jan 1, 1995 and December 31,
1999.

28 SciMet Web of Science C. The citation network was created using the Web of
Science database SciMet. Networks created with the tool HistCite.

29 HighE-th High Energy Theory C. Network of coauthorships between scient-
ists posting preprints on the High-Energy Theory E-Print Archive
between Jan 1, 1995 and December 31, 1999.

30 CondMat 95-03 Network of coauthorships between scientists posting preprints on the
31 CondMat 95-99 Condensed Matter E-Print Archive. We have two networks corres-

ponding to different periods of time. Periods are Jan 1, 1995 - Decem-
ber 31, 1999 and 2003 respectively.

32 Dutch Roadmap A graph representing the interconnection between cities in the Neth-
erlands.

33 Network Science C Coauthorship network of scientists working on network theory and
experiment, as compiled by M. Newman in May 2006.

34 Next Generation A typical Next Generation Transport network.
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B.3 Descriptions of the directed real-world networks studied in Chapter
7

• Enron:

This data set was made public by the Federal Energy Regulatory Commission during
its investigations: it is a partially anonymised corpus of e-mail messages exchanged
by some Enron employees (mostly part of the senior management). This data set
is a directed graph, whose nodes represent people and with an arc from x to y
whenever y was the recipient of (at least) a message sent by x.

• Ljournal-2008:

LiveJournal is a virtual-community social site started in 1999: nodes are users and
there is an arc from x to y if x registered y among his friends. It is not necessary
to ask y permission, so the graph is directed. This graph is the snapshot used by
Chierichetti, Flavio and et al. in “On compressing social networks.” Proceedings of
the 15th ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2009, and was kindly provided by the authors.

• Twitter-2010

Twitter is a website, owned and operated by Twitter Inc., which offers a social
networking and microblogging service, enabling its users to send and read messages
called tweets. Tweets are text-based posts of up to 140 characters displayed on
the user’s profile page. This is a crawl presented by Kwak, Haewoon and et al.
in “What is Twitter, a social network or a news media?”, Proceedings of the 19th
international conference on World wide web. ACM, 2010. Nodes are users and there
is an arc from x to y if y is a follower of x. In other words, arcs follow the direction
of tweet transmission.

• Word Association-2011

The Free Word Association Norms Network is a directed graph describing the results
of an experiment of free word association performed by more than 6000 participants
in the United States: its nodes correspond to words and arcs represent a cue-target
pair (the arc x->y means that the word y was output by some of the participants
based on the stimulus x).

• WWW networks

The networks, “cnr-2000”, “in-2004”, “eu-2005”, “uk-2007-05@100000” and “uk-
2007-05@1000000” are small WWW networks that were crawled from the Internet.
The “cnr-2000” is crawled from the Italian CNR domain. A small crawl of the
.in domain performed for the Nagaoka University of Technology is in data “in-
2004”. The “eu-2005” is a small crawl of the .eu domain. This network “uk-
2007-05@100000” and “uk-2007-05@1000000” have been artificially generated by
combining twelve monthly snapshot of the .uk domain and collected for the DELIS
project.
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Pearson Correlation Coefficient
Between Centrality Metrics

This appendix offers additional material to that of Section 4. The sequence of figures
shows the Pearson correlation coefficient between any two centrality metrics in network
models (Erdős-Rényi random networks and scale-free networks). The effect of the size of
SF and the link density of ER on the correlation coefficients is illustrated in the figures.
The following table displays the Pearson correlation coefficient between any two centrality
metrics in 34 real-world networks, which are described in Appendix B.

The correlation indexes mentioned in the following images and tables are the indexes
for pairs of centrality metrics: 1. (Bn, Cn); 2. (Bn, D); 3. (Bn, x1); 4. (Bn,Ks); 5.
(Bn, Ln); 6. (Bn, D

(1)); 7. (Bn, D
(2)); 8. (Cn, D); 9. (Cn, x1); 10. (Cn,Ks); 11.

(Cn, Ln); 12. (Cn, D
(1)); 13. (Cn, D

(2)); 14. (D,x1); 15. (D,Ks); 16. (D,Ln); 17.
(D,D(1)); 18. (D,D(2)); 19. (x1,Ks); 20. (x1, Ln); 21. (x1, D

(1)); 22. (x1, D
(2)); 23.

(Ks, Ln); 24. (Ks, D
(1)); 25. (Ks, D

(2)); 26. (Ln, D
(1)); 27. (Ln, D

(2)); 28. (D(1), D(2)).
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Figure C.1: Pearson correlation coefficient between any two centrality metrics as a function of
p/pc, in ER networks (N = 400). The number in the annotation is the correlation index.
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Figure C.2: Pearson correlation coefficient between any two centrality metrics as a function of
the size N of networks, in scale-free networks (α = 2.5). The number in the annotation is the
correlation index.
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Table C.1: Pearson correlation coefficients among the centrality metrics in the real-world net-
works. The horizontal index is the correlation index, and the vertical index is the real-world
network index.

Index 1 2 3 4 5 6 7 8 9

1 0.3667 0.5690 0.4119 0.3377 0.4027 0.4314 0.4224 0.7580 0.7684
2 0.8167 0.2813 0.1450 0.0871 0.3212 0.2230 0.2075 0.2913 0.2462
3 0.7129 0.7235 0.5358 0.3496 0.55585 0.7660 0.7593 0.4308 0.6851
4 0.4271 0.7805 0.5206 0.1822 0.4212 0.5388 0.6044 0.6997 0.7827
5 0.6657 0.5902 0.2835 0.4703 0.5639 0.5131 0.4850 0.7127 0.6979
6 0.3303 0.4909 0.0857 0.1523 0.4170 0.3807 0.3113 0.2701 −0.1604
7 0.4456 0.7292 0.4780 0.5182 0.4556 0.7575 0.7882 0.3973 0.5241
8 0.2196 0.9691 0.7006 0.2677 0.2679 0.3858 0.9416 0.2225 0.5469
9 0.2475 0.8839 0.4926 0.4667 0.4356 0.3533 0.8283 0.1763 0.5112
10 0.2338 0.9603 0.5848 0.3296 0.3880 0.2640 0.8839 0.1774 0.5733
11 0.8699 0.9651 0.8757 0.3782 0.8707 0.7999 0.9166 0.8853 0.9599
12 0.6287 0.7468 0.4231 0.2388 0.5317 0.5534 0.5468 0.7997 0.6812
13 0.7136 0.8743 0.7365 0.6345 0.6985 0.7999 0.7816 0.8290 0.9286
14 0.6408 0.7475 0.5595 0.2147 0.5551 0.7357 0.7227 0.6127 0.7987
15 0.5956 0.6933 0.5514 0.1583 0.4508 0.7084 0.7203 0.5541 0.7178
16 0.5323 0.7044 0.5410 0.1314 0.3913 0.6971 0.7661 0.4623 0.5633
17 0.2349 0.3843 0.1180 0.1189 0.1889 0.4101 0.4082 0.1082 0.0607
18 0.3210 0.7005 0.5517 0.0560 0.2686 0.6772 0.7144 0.2946 0.4627
19 0.3001 0.7081 0.4775 0.1060 0.2945 0.6371 0.6825 0.2395 0.4925
20 0.2664 0.1565 −0.0442 0.1979 0.1112 0.1805 0.1876 0.1477 0.0209
21 0.5022 0.3274 0.0364 0.3836 0.2548 0.2790 0.2540 0.2428 0.1141
22 0.6559 0.9150 0.8226 0.3517 0.6586 0.7891 0.8444 0.8410 0.9245
23 0.1880 0.9225 0.6525 0.2068 0.2642 0.4157 0.7765 0.3535 0.6528
24 0.1874 0.9714 0.8047 0.2729 0.2636 0.4403 0.9385 0.2625 0.6215
25 0.2747 0.9660 0.7859 0.3249 0.3584 0.5266 0.8972 0.3868 0.6880
26 0.1382 0.9826 0.7994 0.3292 0.2290 0.3441 0.9582 0.1631 0.5776
27 0.3764 0.6787 0.4353 0.2869 0.4631 0.5670 0.5270 0.6109 0.4220
28 0.4068 0.8185 0.6959 0.3147 0.4401 0.7143 0.7605 0.6741 0.7030
29 0.4526 0.7798 −0.0109 0.3574 0.5079 0.6700 0.5803 0.5774 0.0119
30 0.3801 0.7534 0.3753 0.3152 0.4488 0.5933 0.5173 0.5989 0.3906
31 0.4002 0.7225 0.2781 0.2607 0.4581 0.5718 0.4816 0.5616 0.3248
32 0.2214 0.1741 −0.0037 0.1619 0.1117 0.1719 0.1608 0.1450 −0.0221
33 0.4302 0.6883 0.1884 0.1917 0.4707 0.5630 0.4997 0.3468 0.2593
34 −0.1342 −0.0436 −0.6295 −0.9718 0.9538 −0.9051 −0.1342 0.0313 0.2446

Index 10 11 12 13 14 15 16 17 18 19

1 0.8174 0.5944 0.7903 0.7712 0.9592 0.8730 0.7259 0.9657 0.9643 0.9254
2 0.1742 0.2704 0.2826 0.2839 0.7501 0.3881 0.9181 0.9619 0.9314 0.2456
3 0.3807 0.2524 0.5598 0.5870 0.4650 0.5127 0.8914 0.9020 0.9079 0.1326
4 0.6861 0.5776 0.8680 0.7951 0.7810 0.5434 0.7886 0.8830 0.9311 0.5572
5 0.7498 0.6094 0.7475 0.7422 0.7196 0.8303 0.9050 0.9574 0.9417 0.5388
6 0.0680 0.2221 0.2381 0.1801 0.6237 0.7300 0.8963 0.9393 0.8801 0.7983
7 0.5073 0.2052 0.6184 0.6248 0.4660 0.5933 0.8117 0.8217 0.8573 0.3912
8 0.4015 0.0017 0.7515 0.3210 0.6523 0.3463 0.3888 0.3594 0.9132 0.1840
9 0.2377 −0.3534 0.8326 0.3544 0.5811 0.3316 0.4651 0.3050 0.9493 0.2032
10 0.2234 −0.2234 0.8594 0.2967 0.6366 0.2492 0.3751 0.2256 0.9481 0.0868
11 0.5492 0.7227 0.9606 0.9463 0.9392 0.5331 0.9390 0.8718 0.9714 0.6221
12 0.5622 0.6340 0.8375 0.7931 0.8467 0.7969 0.8474 0.9455 0.9380 0.8100
13 0.7311 0.3466 0.9330 0.9363 0.9046 0.8289 0.7598 0.9486 0.9391 0.8425
14 0.5670 0.3265 0.7388 0.7574 0.6757 0.4296 0.8184 0.9260 0.9225 0.3108
15 0.5257 0.2675 0.6964 0.7100 0.6147 0.3995 0.7980 0.9078 0.9200 0.2464
16 0.4949 0.1937 0.6534 0.6411 0.4120 0.3738 0.7690 0.8670 0.9055 0.1143
17 −0.0402 −0.0122 0.1651 0.1653 0.2143 0.4102 0.6878 0.7733 0.8456 0.0447
18 0.1582 0.1027 0.4752 0.4902 0.5040 0.1904 0.5901 0.8725 0.8851 0.0638
19 0.2490 0.2137 0.5599 0.5316 0.5183 0.2287 0.5911 0.7611 0.8338 0.0327
20 0.1649 0.0836 0.1829 0.2016 0.1031 0.7905 0.9247 0.9522 0.9241 0.1132
21 0.4880 0.0325 0.3314 0.3382 0.2678 0.4149 0.7508 0.8884 0.8524 0.0835
22 0.8194 0.7371 0.9451 0.9123 0.9575 0.6433 0.8327 0.9390 0.9707 0.7010
23 0.7195 0.3891 0.8312 0.5353 0.8704 0.4649 0.4862 0.6580 0.9504 0.7992
24 0.6355 0.0669 0.8167 0.4111 0.8733 0.4146 0.3627 0.5403 0.9779 0.6980
25 0.6814 0.2080 0.8410 0.5506 0.8911 0.5155 0.5048 0.6631 0.9694 0.7628
26 0.4291 −0.0707 0.7971 0.2788 0.8253 0.3935 0.2696 0.3771 0.9754 0.5413
27 0.5427 0.2819 0.5861 0.5264 0.7188 0.8070 0.5920 0.9352 0.8728 0.5695
28 0.8188 0.5093 0.7923 0.7456 0.8345 0.6962 0.7237 0.9204 0.9236 0.6212
29 0.4884 0.2103 0.6517 0.6022 0.1789 0.7311 0.7080 0.9080 0.8292 0.5171
30 0.6341 0.2404 0.6153 0.5392 0.6346 0.7339 0.6197 0.9035 0.8259 0.5001
31 0.5157 0.2077 0.6067 0.5300 0.5304 0.7166 0.6631 0.8941 0.8021 0.4229
32 0.1465 −0.0170 0.2033 0.2220 0.0364 0.5291 0.7674 0.9271 0.8880 0.0101
33 0.0926 0.0970 0.4562 0.4120 0.4748 0.6803 0.7723 0.8795 0.8415 0.4195
34 0.3609 −0.3531 0.3378 0.0649 0.7297 0.0866 0.0487 0.1570 0.9858 0.6768
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Index 20 21 22 23 24 25 26 27 28

1 0.6327 0.9978 0.9998 0.7122 0.9389 0.9245 0.6604 0.6405 0.9984
2 0.4881 0.8660 0.9134 0.4481 0.3467 0.3274 0.7771 0.7189 0.9929
3 0.1934 0.6460 0.7101 0.5798 0.4773 0.4407 0.6485 0.6530 0.9811
4 0.6130 0.9783 0.9885 0.7710 0.6277 0.5737 0.6605 0.6789 0.9813
5 0.4991 0.8285 0.8842 0.8506 0.8171 0.7668 0.7887 0.7535 0.9913
6 0.3684 0.8132 0.8867 0.6089 0.8563 0.8700 0.7478 0.6517 0.9864
7 0.2262 0.6736 0.7412 0.4906 0.6480 0.5920 0.5024 0.4922 0.9475
8 0 0.8135 0.8463 0.5030 0.3187 0.2061 −0.0050 0.1176 0.4936
9 −0.1161 0.7007 0.7440 0.3782 0.2365 0.2762 −0.3636 0.2134 0.4889
10 −0.1437 0.7414 0.8018 0.5184 0.1290 0.1398 −0.3598 0.1438 0.3751
11 0.8128 0.9837 0.9930 0.5722 0.6484 0.5928 0.7290 0.8623 0.9568
12 0.6520 0.9427 0.9691 0.7984 0.8524 0.8447 0.7713 0.7455 0.9924
13 0.4673 0.9841 0.9927 0.6005 0.8604 0.8512 0.5510 0.5248 0.9969
14 0.3310 0.8087 0.8589 0.2983 0.4885 0.4576 0.6007 0.5809 0.9839
15 0.2497 0.7503 0.8010 0.2684 0.4523 0.4137 0.5520 0.5475 0.9788
16 0.0562 0.5789 0.6656 0.2530 0.4262 0.3673 0.4862 0.4847 0.9533
17 0.0545 0.3371 0.3805 0.7626 0.1513 0.1393 0.2283 0.2760 0.9458
18 0.0501 0.6365 0.6794 0.3420 0.1429 0.1199 0.2204 0.2123 0.9812
19 0.0748 0.7433 0.7697 0.3351 0.1335 0.1077 0.0448 0.1010 0.9619
20 0.0564 0.1303 0.1454 0.6233 0.8541 0.8624 0.7665 0.7184 0.9907
21 0.0347 0.4062 0.4780 0.2918 0.4205 0.3829 0.4013 0.3398 0.9842
22 0.7490 0.9949 0.9983 0.8031 0.7300 0.6910 0.7541 0.7622 0.9888
23 0.6646 0.9320 0.9790 0.7406 0.8912 0.6890 0.6611 0.6156 0.8432
24 0.3912 0.8774 0.9476 0.5641 0.7939 0.5488 0.3408 0.3734 0.6794
25 0.5507 0.9242 0.9721 0.6990 0.8180 0.6646 0.4857 0.5386 0.8112
26 0.1486 0.8169 0.8977 0.4876 0.5646 0.4417 0.0699 0.1943 0.4845
27 0.2248 0.8789 0.9367 0.4761 0.7840 0.7124 0.3996 0.3245 0.9845
28 0.4680 0.9417 0.9682 0.7181 0.7457 0.6886 0.5866 0.5501 0.9877
29 0.0427 0.2885 0.3822 0.5164 0.7657 0.7361 0.4493 0.3477 0.9771
30 0.1765 0.8431 0.9205 0.5016 0.7344 0.6617 0.3726 0.2850 0.9795
31 0.1358 0.7641 0.8725 0.4877 0.7372 0.6597 0.3945 0.2903 0.9731
32 0.0063 0.0524 0.0629 0.3943 0.5167 0.4740 0.4892 0.4156 0.9878
33 0.1267 0.7062 0.8105 0.5701 0.7390 0.6966 0.5089 0.4324 0.9766
34 −0.5920 0.7797 0.8022 −0.9766 0.9347 0.1797 −0.9156 −0.0611 0.2549



APPENDIX D

Algorithms for Generating Directed
Networks with Given Directionality

This appendix provides two algorithms, In-degree and Out-degree Preserving Rewiring
Algorithm (IOPRA) and Link resetting algorithm (LRA), which both can be applied to
any network to generate a directed network with a given directionality.

Algorithm 1 IOPRA(G, ξ)

1: Create a bidirectional network G(N, L);
2: Save network G(N,L) as Gs and calculate the directionality ξs of network Gs;
3: while |ξs − ξ| > 10−5 do
4: Randomly select two unidirectional links i → j and k → l associated with the four nodes i, j, k, l ;
5: Rewire the link pair i → j and k → l into i → l and k → j. The new network Gn is obtained;
6: Calculate the directionality ξn of the network Gn;
7: if |ξs − ξ| > |ξn − ξ| then
8: Gs ← Gn;
9: ξs ← ξn;
10: else
11: Give up this rewired node pair;
12: end if
13: end while
14: return Gs

Algorithm 2 LRA(G, ξ)

1: Create a bidirectional network G(N, L);
2: Randomly choose ξ percentage of bidirectional link pairs;
3: Randomly choose one unidirectional link from each link pair;
4: Randomly reset the chosen unidirectional links to the locations without any link;
5: Save the new network as Gs;
6: return Gs





APPENDIX E

Eigenvalues of the Directed Networks

The spectral radius λ1 and the spectral gap (λ1−λ2) are considered as important metrics
for the percolation processes on networks. Here we also present all eigenvalues in directed
networks in a Image-Real figure. The eigenvalues are calculated on 103 simulation realiza-
tions. The changes of the eigenvalues λi with the directionality ξ from 0 to 1 with step 0.1
in directed binomial networks (N = 10, p = 0.25) are shown on Figure E.1. Surprisingly,
the real part of all eigenvalues tends to 0, when the directionality ξ increases.
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Figure E.1: Change of the eigenvalues with the directionality. When the directionality increases,
the real parts of the eigenvalues tend to 0.





List of Abbreviations

BA Barabási-Albert graph type
CDF Cumulative Distribution Function
ER Erdős-Rényi graph type

EEG Electroencephalograph
HMF Heterogeneous Mean-Field approximation
ICO Inflexible Contrarian Opinion model

IOPRA In-degree and Out-degree Preserving Rewiring Algorithm
IQ Intelligence Quotient

LRA Link Resetting Algorithm
LSRM Link Spectral Radius Minimization
MEG Magnetoencephalography
NCO Non-Consensus Opinion model

NIMFA N-Intertwined Mean-Field Approximation
NP Non-deterministic Polynomial-time

NSRM Node Spectral Radius Minimization
SF Scale-Free graph type
SIR Susceptible-Infected-Recovered epidemic model
SIS Susceptible-Infected-Susceptible epidemic model
SL Synchronization Likelihood

VIP Very Important Persons
WS Watts-Strogatz graph type

WWW World Wide Web





List of Symbols

A

 a11 · · · a1N
...

. . .
...

aN1 · · · aNN

 adjacency matrix of a graph with N nodes

diag(ak) diag(a1, a2, . . . , an): a diagonal matrix with diagonal elements
listed, while all off-diagonal elements are zero

AT transpose of a matrix, the rows of AT are the columns of A
B incidence matrix of a graph
Bn betweenness
CG average clustering coefficient
Ci closeness of node i
D degree, or diameter
di degree of node i
dmax (or dmin) maximum (or minimum) degree in a graph
dout (or din) in-degree (or out-degree) in a directed network
E[X] expectation of the random variable X
G = (N ,L): a graph
Gm(L) (or Gm(N )) resulting graph after the removal of m links (or nodes) from G
NG the number of triangles of a graph
H hopcount
Hij number of hops in the shortest path between nodes i and j
Hmax maximal hopcount among all node pairs
I = diag(1, 1, . . . , 1): identity matrix
KN the complete graph with N nodes
Kn,m the complete bi-partite graph with N = n+m nodes
ks k-shell index
L set of links of a graph
Lm set of links that removed from a graph
L = |L|: number of links in a graph
Ln leverage centrality
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l(G) the line graph of a graph G
MA,B centrality similarity
N set of nodes of a graph
N (k) set of degree k nodes
Nn set of nodes that removed from a graph
N = |N |: number of nodes in a graph
Nk = uTAku: total number of walks with length k

NΛ =
∑N

i=1

(
di

2

)
:the number of connected triples

P transition probability matrix (Markov process)
Prob[X] probability of event X
p link density
pc disconnectivity threshold of Erdős-Rényi random graphs
pr rewiring probability of Watts-Strogatz small-world graphs
Q = BBT laplacian matrix of a graph
Qi(t) infinitesimal generator of Markov chain
RG effective graph resistance
r degree of nodes in regular graphs
Si disjoint set i of a bipartite graph or the size of the i− th largest cluster
u all-one vector
Var[X] = σ2

X :variance of the random variable X
vi(t) probability of node i to be infected at time t
xi i-th largest eigenvector (of A or Q, depending on the context)
α exponent of a power-law degree distribution
β infection rate over a link in virus spreading
∆ diag(d1, d2, . . . , dN ): diagonal matrix of the nodal degrees
δ curing rate for an infected node in virus spreading
ε spontaneous infection rate for each node in ε-SIS virus spreading
κ degree diversity
λi i-th largest eigenvalue of the adjacency matrix
λ1 = maxx2=1x

TQx, spectral radius
µi i-th largest eigenvalue of the Laplacian matrix
µN−1 = minx2=1,xT x=0x

TQx, algebraic connectivity
ρ fraction of infected nodes in a network
ρD assortativity
ρ(i, j) Pearson correlation coefficient
ρk(t) probability that a node with k links is infected
σsd(i) number of shortest paths passing through the node i, from node s to node d
σsd total number of shortest paths from node s to node d
τ effective spreading rate
τc epidemic threshold of SIS model

τ
(1)
c epidemic threshold of N-intertwined approximation
τHMF
c epidemic threshold of HMF approximation
Θ (ρ(t)) probability that any given link points to an infected node
φX(z) probability generating function of X
ξ directionality in a directed network
1{x} indicator function: 1{x} = 1 if the event or condition {x} is true, else 1{x} = 0
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Samenvatting (Dutch Summary)

Heb je enig idee hoeveel netwerken je gebruikt wanneer je je Facebook of Twitter checkt
in de trein? Je hersen-netwerk bepaalt je gedrag en je metabolisch netwerk zorgt voor

je energie. Je vormt een sociaal netwerk met je medereizigers. Pas op, misschien verspreidt
zich wel een virus over het sociale netwerk door de coupe! Wanneer je je telefoon of
laptop gebruikt om Facebook of Twitter te bezoeken zijn ze verbonden met het Internet,
je gebruikersprofielen staan op het WereldWijde Web (WWW), en elektriciteit loopt via
het energienetwerk naar je apparaten. Bovendien worden Facebook en Twitter gezien
als een online sociaalnetwerk. Nu gaat je telefoon, inderdaad, je bent verbonden met
een communicatienetwerk! Maar wacht je zit in de trein, en die maakt deel uit van het
transportnetwerk. Het is ongelofelijk, maar complexe netwerken zijn onmisbaar geworden
in ons dagelijks leven. Dit proefschrift begint met een introductie in de geschiedenis van
complexe netwerken als onderzoeksveld en de benodigde achtergrondkennis, zoals netwerk
kengetallen, netwerk modellen en dynamische processen. Gemotiveerd door een beter
begrip van echte netwerken, verkennen onderzoekers de eigenschappen die gezien worden
in echte netwerken. Een veelvoud aan kengetallen zijn voorgesteld om de eigenschappen
van netwerken te kwantificeren, en verder te karakteriseren.

Een essentiële vraag die opkomt is: “Hoe kunnen we netwerken beter en efficiënter
karakteriseren?” We kunnen een netwerk bijvoorbeeld karakteriseren vanuit verschil-
lende aspecten: of het netwerk goed geconnecteerd is, of de knopen in het netwerk dicht
bij elkaar liggen, of de buren van een knoop ook onderling buren zijn, of knopen ver-
bonden zijn met andere knopen met soortgelijke graad, of het netwerk vatbaar is voor
een virusuitbraak, enzovoort. Als we meerdere kengetallen gebruiken om een netwerk te
karakteriseren, is er dan sprake van overtollige informatie? Als we, daarentegen, maar één
kengetal gebruiken, is dat dan voldoende om het netwerk volledig te beschrijven? Deel
I van dit proefschrift gaat in op het selecteren van een set representatieve kengetallen
die samen efficiënt en adequaat een netwerk karakteriseren. Het patroon van correlaties
tussen de kengetallen zoals bestudeerd in hersennetwerken blijkt consistent te zijn met dat
wat er voor Erdős-Rényi grafen gevonden is. Naast het karakteriseren van een netwerk
als geheel, is het belangrijk om de knopen in een netwerk te kwantificeren. Als bijvoor-



158 BIBLIOGRAPHY

beeld twee bedrijven elkaar beconcurreren om klanten, zullen ze proberen invloedrijke
klanten voor hun producten te winnen. Als de twee bedrijven verschillende marketing
strategieën gebruiken om invloedrijke klanten te selecteren, zal de uitkomst van de strijd
anders zijn. Welke klanten zouden geselecteerd moeten worden als “Very Important Per-
sons (VIP)”: klanten die veel vrienden hebben, klanten met een grote reputatie, klanten
met bëınvloedbare vrienden, of simpelweg willekeurige klanten? In deel I worden ook ken-
getallen bestudeerd die knopen rangschikken naar mate van hoe centraal in het netwerk
ze liggen. De correlaties tussen deze kengetallen wordt beschreven in netwerk modellen en
echte netwerken. Daarbij passen we centraliteit-kengetallen toe in een opinie dynamisch
proces om één van de twee opinies de competitie tussen twee groepen te helpen winnen.
We tonen aan dat de knopen in een netwerk efficiënt gekarakteriseerd kunnen worden met
behulp van een eenvoudig kengetal als benadering voor een complex centraliteit-kengetal.

Een beter inzicht in de eigenschappen van een netwerk kan leiden tot een beter be-
grip van het dynamische en functionele gedrag. We vergelijken twee Susceptible-Infected-
Susceptible (SIS) gemiddeldveldbenaderingen aan de hand van een ε–SIS model als maat-
staf. We tonen aan dat de N-intertwined mean-field approximation (NIMFA) benadering
de betere is. Een spectraal kengetal, het spectrale bereik, wordt verondersteld een betere
kwantificatie te zijn van hoe weerbaar een netwerk is tegen virusverspreiding dan de graad-
diversiteit. Deel II richt zich met name op hoe we netwerken minder gevoelig voor virussen
kunnen maken. Door het spectrale bereik te minimaliseren zou de epidemische drempel
verhoogd kunnen worden. In deel II worden verschillende manieren om de epidemische dr-
empel te verhogen gepresenteerd. Het minimaliseren van het spectrale bereik door middel
van het verwijderen van knopen of zijden is een NP-hard probleem. In de meeste gevallen
is de aanpak waarbij de zijden met het grootste product van de voornaamste eigenvector
componenten verwijderd worden superieur aan andere methodes. We stellen limieten aan
de afname van het spectrale bereik als gevolg van het verwijderen van knopen of zijden.
Tot op heden zijn epidemieën in netwerken vooral bestudeerd in ongerichte netwerken.
Echter, veel echte netwerken, zoals online sociale netwerken en het WWW, waarover in-
formatie, emoties, of malware zich verspreidt zijn gerichte netwerken. In deel II worden
twee algoritmen voorgesteld om netwerken te genereren met een bepaalde gerichtheid.
Wij tonen aan dat de epidemische drempel verhoogd kan worden door de gerichtheid van
een netwerk te vergroten via het verleggen van zijden of het resetten ervan.

Tenslotte trekken we de hoofdconclusies, geven een opsomming van de bijdragen in
dit proefschrift, en stellen enkele onderzoeksproblemen.

Cong Li
Delft, april 2014
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Things being investigated, knowledge became complete.
Their knowledge being complete, their thoughts were sincere.
Their thoughts being sincere, their hearts were then rectified.
Their hearts being rectified, their persons were cultivated.
Their persons being cultivated, their families were regulated.
Their families being regulated, their states were rightly governed.
Their states being rightly governed, the entire world was at peace.

— The Great Learning
(c.206 B.C.- c.9 A.D. in Han Dynasty)






