
Delft Center for Systems and Control

CONFIDENTIAL

Multi-Sensor Fusion of IMU,
LIDAR and Wheel Encoders
Towards Tightly-Coupled Odometry

Koushik Kumaran

M
as

te
ro

fS
cie

nc
e

Th
es

is

mscconfidential

Multi-Sensor Fusion of IMU,
LIDAR and Wheel Encoders

Towards Tightly-Coupled Odometry

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

Koushik Kumaran

August 16, 2023

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

The work in this thesis was supported by Loop Robots BV. Their cooperation is hereby
gratefully acknowledged.

Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.

Abstract

Loop Robots develops and operates the next generation of fully autonomous disinfection
robots in hospitals and healthcare settings. Accurate localization is essential in order to
navigate reliably and effectively disinfect the tight hallways and corners of a patient room,
operating room, or intensive care unit in a hospital. Odometry, or dead-reckoning, is the
process of estimating the robots pose with respect to a known initial pose. It forms the
backbone of the robots localization strategy, as well as being critical to many other processes
that run on the robot, such as control and mapping.

The current strategy of generating odometry using the wheel encoders is prone to drift due
to the integration of errors into the estimate. Moreover, the estimation takes place on the
horizontal plane due to the nature of the wheel encoders. To improve the odometry and
extend it to the full 3D space, a solution that makes use of all of the onboard sensors in a
tightly-coupled manner is required.

In this Thesis, we make the first steps towards this larger goal. The contributions of this
thesis include: (1) an Extended Kalman Filter (EKF) algorithm to fuse data from the Inertial
Measurement Unit (IMU) and wheel encoders to estimate position and orientation of the robot
in 6-DoF; (2) a line feature extraction and tracking methodology to extract primitives from
LIDAR data and (3) A Moving Horizon Estimation (MHE) scheme based on a factor-graph
formulation to perform pose estimation on the horizontal plane using LIDAR data and wheel
encoders.

We test the three modules individually using a combination of simulations and real-world
data wherever possible. We found that the MHE scheme was able to reduce drift over the
long term, but is sensitive to the effects of outliers in feature matching, motion distortion of
LIDAR scans, and wheel slip. The EKF scheme is able to reduce the overall drift and correct
for wheel slips.

Based on these results, promising avenues for the improvement of all the proposed modules are
given, along with recommendations on how to combine them all in a tightly-coupled fashion.

Master of Science Thesis Koushik Kumaran

ii

Koushik Kumaran Master of Science Thesis

Table of Contents

Acknowledgements ix

1 Introduction 1
1-1 Motivation . 1
1-2 Problem Statement and Key Challenges . 3
1-3 Summary of Contributions . 3

1-3-1 Thesis Outline . 4

2 Preliminaries 5
2-1 Coordinate Frames . 5
2-2 Pose and Twist Representations . 6
2-3 Motion Models . 7

2-3-1 Differential Drive Model . 8
2-4 Sensors . 8

2-4-1 Wheel Encoders . 9
2-4-2 Inertial Measurement Unit (IMU) . 10
2-4-3 LIDAR . 10
2-4-4 RGB-D Camera . 11

2-5 Related Work . 11

3 2D Pose Estimation 13
3-1 Line Feature Extraction . 14

3-1-1 Line Feature Model . 14
3-1-2 Identifying Line Feature Points . 14
3-1-3 Clustering . 15
3-1-4 Unweighted Initial Line Fitting . 15
3-1-5 Weighted Line Fitting . 17

3-2 Line Merging and Tracking . 18

Master of Science Thesis Koushik Kumaran

iv Table of Contents

3-2-1 Feature Tracking . 19
3-3 Fusing Line Features with Wheel Encoder Measurements 20

3-3-1 Line Factor . 20
3-3-2 Generating Encoder Factors . 21
3-3-3 Encoder Factor . 21
3-3-4 Maximum A-Posteriori Estimation . 21

4 Full 3D Motion Estimation 25
4-1 Dynamic Model . 25
4-2 Measurement Models . 27
4-3 Extended Kalman Filter . 27

4-3-1 Square Root Formulation . 28

5 Experiments and Results 31
5-1 Simulations . 31

5-1-1 Error Analysis . 33
5-1-2 Results and discussion . 33

5-2 2D Pose Estimation: Real World Experiments 34
5-2-1 Experiment 1: Straight-Line Trajectory 34
5-2-2 Experiment 2: Closed Loop Trajectory 36
5-2-3 Results and discussion . 36

5-3 Full 3D Motion Estimation . 40
5-3-1 Experiment 1: Wheel Slip . 40
5-3-2 Experiment 2: Rolling and Pitching . 41
5-3-3 Results and Discussion . 41

6 Conclusions and Recommendations 45
6-1 Future Work . 46

A Non-Linear Optimization 47
A-1 Linearisation . 47
A-2 Jacobians . 48

B Noise covariances and hyperparameters 51
B-1 2D Pose Estimation . 51
B-2 Full 3D Motion Estimation . 51

Bibliography 53

Glossary 57
List of Acronyms . 57
List of Symbols . 57

Koushik Kumaran Master of Science Thesis

List of Figures

1-1 SAM-UVC Disinfection Robot . 2

2-1 Visualization of the Roll, Pitch and Yaw around the Body Frame 6
2-2 The Standard Differential Drive Robot Model 8
2-3 The Difference between Filtering(top) and Smoothing(bottom) 12

3-1 The proposed pipeline for pose estimation on the horizontal plane. It includes the
feature extraction and feature tracking modules, followed by the MHE 14

3-2 Geometry of a single line feature and its associated L frame 15
3-3 Factor Graph Representation corresponding to the optimization problem in (3-32) 22

4-1 Structure of the EKF . 28

5-1 True trajectory of the robot(red) and the trajectory obtained from pure encoder
integration(blue) . 32

5-2 Pose estimation error for different window lengths for the first simulated dataset 33
5-3 Pose estimation error for different window lengths for the second simulated dataset,

with an added wheel slip at t = 10 . 34
5-4 Pose estimation error for different window lengths for the third simulated dataset,

with line outlier measurements added at t = 10, t = 20 and t = 30 35
5-5 Trajectory from integrating wheel encoder measurements for the straight line tra-

jectory . 35
5-6 Trajectory from integrating wheel encoder measurements for the closed loop trajectory 36
5-7 Feature Point Extraction at time t = 20 s for the straight line trajectory 37
5-8 Feature Point Extraction at time t = 37.53 s for the straight line trajectory . . . 38
5-9 Failure of the line tracking module at t = 37.53 s in the straight line trajectory.

Lines from the preceding scan are propagated forward using (3-18) and plotted
along with the lines at the current scan. Two lines of the same color imply they
are matched together. 39

Master of Science Thesis Koushik Kumaran

vi List of Figures

5-11 Results of the MHE on the closed loop trajectory 39
5-10 Results of the MHE on the straight line trajectory 40
5-12 The difference in yaw angle between the MHE and encoder estimates for the closed

loop trajectory . 41
5-13 Number of extracted and tracked features over time 42
5-14 Results of the EKF in the first experiment . 43
5-15 IMU bias estimates from the EKF in the first experiment 43
5-16 Results of the EKF in the second experiment 44
5-17 IMU bias estimates from the EKF in the second experiment 44

Koushik Kumaran Master of Science Thesis

List of Tables

2-1 SAM-UVC’s Sensor Suite . 9

5-1 Errors and Noise Parameters for the Simulated Datasets 32
5-2 Comparing the error metrics for results of the MHE on simulated data. A window

size of ∞ refers to a full trajectory smoother . 36
5-3 Percentage reduction of scan points of the feature point extraction scheme . . . 37

B-1 Feature Extractor and LIDAR noise settings . 51

Master of Science Thesis Koushik Kumaran

viii List of Tables

Koushik Kumaran Master of Science Thesis

Acknowledgements

I would like to thank my supervisor Per Slycke for his assistance during the writing of this
thesis, along with the entire team at Loop Robots for their support. I also would like to thank
my academic supervisors, Dr. Manuel Mazo and Dr. Manon Kok for their invaluable advice
and guidance.

Last but not least I would like to thank my friends, family and colleagues, without whom this
would not have been possible.

Delft, University of Technology Koushik Kumaran
August 16, 2023

Master of Science Thesis Koushik Kumaran

x Acknowledgements

Koushik Kumaran Master of Science Thesis

Chapter 1

Introduction

1-1 Motivation

Loop Robots develops the next generation of fully autonomous robots for UV based disinfec-
tion of rooms in hospital and healthcare settings, named SAM-UVC(See Figure 1-1). These
robots operate in unknown environments such as patient rooms, operating rooms, or intensive
care unit in hospitals, autonomously disinfecting the entire space using UV-C light. These
spaces are often cluttered and have very narrow pathways and tight corners for the robot to
map, navigate and disinfect.

For the disinfection of such rooms to be completely successful, it is critical that SAM-UVC
covers the entire area to be disinfected and keep track of all the areas that have been disin-
fected. Accurate and reliable localization and mapping is a key ingredient for the successful
operation of the SAM-UVC robot in the field.

Simultaneous Localization and Mapping (SLAM) is the process which involves the joint esti-
mation of a map of the environment and the pose of the robot with respect to said map. For
a robot to operate autonomously in an unfamiliar environment, precise and reliable SLAM
is essential. Over the past decade, both the academic and industrial research communities
have directed significant efforts to advance this field, striving for improved accuracy and
robustness[1].

A closely related problem to SLAM is the odometry, or dead-reckoning problem, where the
pose of the robot is estimated with respect to a known initial pose rather than the map. Most
SLAM algorithms use a source of odometry as input, or front-end [1]. The accuracy and
robustness of the odometry onboard is critical for the performance of the SLAM system and
by extension, the entire disinfection process.

SAM-UVC relies on odometry generated at a rate of 50 Hz as the front-end of its SLAM
system. Moreover, even when the SLAM system is disabled, the motion estimates from the
onboard odometry are critical to a number of other processes, such as control, planning,
collision detection, etc. Consequently, it is of utmost importance that odometry is generated

Master of Science Thesis Koushik Kumaran

2 Introduction

Figure 1-1: SAM-UVC Disinfection Robot

in real-time at a high frequency to ensure accurate and timely feedback for these critical
functionalities.

Presently, SAM-UVC estimates odometry by integrating measurements from the wheel en-
coders, which measure the angular position of each wheel. This estimation method is suscep-
tible to drift because it involves integrating errors that can arise from various sources, such as
wheel slip, discretization, linearization errors, and more. As a result, the odometry estimate
may deviate from the true position of the robot over time, compromising the accuracy of the
robot’s localization. Moreover, odometry generated using only the wheel encoders does not
provide information about motion outside the plane that occurs when the robot drives over
small bumps, ramps etc.

The wider research community has made many strides in improving the odometry estimation
process, by incorporating data from other sensors, such as Inertial Measurement Unit (IMU)s,
Laser Imaging Detection and Ranging (LIDAR) scanners, cameras, and so on [2] [3]. These
methods have come a long way in the last decade or so, resulting in very robust and accurate
systems that have succeeded in reducing the overall drift over long time periods by several
orders of magnitude.

These methods can be roughly classified into loosely-coupled and tightly-coupled. In a loosely-
coupled scheme, data from each sensor is processed separately and fused together to produce
odometry. In practice, loosely-coupled estimation schemes are easier to develop and iterate
upon, and are widely used.

However, tightly-coupled approaches have the advantage of being able to utilize the comple-
mentary nature of multiple sensors. These approaches have been gaining more traction in
recent years, and show promising results with respect to their robustness and accuracy[4] [5]

Koushik Kumaran Master of Science Thesis

1-2 Problem Statement and Key Challenges 3

[6] [7] [8] [9]. By nature, these are not easily generalizable, and must be meticulously designed
for each robot and its sensor suite.

The ultimate objective of this thesis is to design a tightly-coupled odometry solution, a goal
that lies beyond the scope of this study; nevertheless, we have taken multiple significant steps
toward its realization.

1-2 Problem Statement and Key Challenges

The overall design goal of this project is summarized as:

How can we fuse information from LIDAR, IMU and wheel encoders to generate
odometry with minimal drift while still being feasible for real-time computation?

This thesis was preceded by a literature study and internship by the author at Loop Robots,
where some of the key challenges and questions to be addressed were identified, along with
approaches to solve. In this work, we make a step towards developing a complete odometry
solution by answering the following sub-questions.

How does one exploit the LIDAR scanner to reduce drift?

Of the three sensory inputs that we consider in this work, only the LIDAR provides measure-
ments relating the external environment to the state. A common trend that was identified
in the literature was the exploitation of the structure of indoor environments to track line or
plane features in the environment [6] [10], thus minimizing drift. We take inspiration from
these works to develop a feature extraction and tracking scheme that extracts line primitives
from the LIDAR scans. We then implement a Moving Horizon Estimation (MHE) scheme
to fuse the extracted line measurements with the wheel encoder data to provide 2D pose
estimates using a factor graph formulation [11].

How does one reconcile the 2D and 3D nature of the different sensors?

Only the IMU provides information about the 6-DoF motion of the robot. The LIDAR and
the wheel encoders only provide information regarding movement in the instantaneous plane
of motion. To solve this problem, we design an Extended Kalman Filter (EKF) that is capable
of fusing velocity measurements from the wheel encoders to estimate the pose and twist of
the robot along with IMU biases.

How can the discussed solutions be implemented efficiently in real-time?

To reduce the scope of this thesis, we elected to partially ignore this problem. Only the EKF
was implemented on the onboard computer of the robot. However, the 2D pose estimation
is also expected to be feasible for a real-time implementation. This expectation stems from
successful implementations of similar work in real-time systems, and the existence of efficient
solvers for the type of optimization problem we solve to generate 2D pose estimates.

1-3 Summary of Contributions

In this work, we draw on the existing body of literature to design sensor fusion schemes for
the SAM-UVC robot. This thesis project follows from a prior internship and literature survey

Master of Science Thesis Koushik Kumaran

4 Introduction

by the author in collaboration with Loop Robots, where some of these ideas started to take
shape. The contributions of this thesis include:

1. A line feature extraction and tracking methodology adapted from [12], [13] and [2].

2. A method to fuse the line features and Wheel Encoder measurements to generate 2D
pose estimates at the LIDAR rate by optimizing a factor graph within a moving window.

3. An Extended Kalman Filter (EKF) for fusing Inertial Measurements with 2D velocity
measurements to provide estimates at the IMU rate.

4. Experimental analysis of the proposed designs with a mix of simulated and real-world
experiments.

1-3-1 Thesis Outline

With the key design questions and contributions defined, the remainder of this report is
structured as follows.

Chapter 2 discusses the notations and conventions used in this text, along with the relevant
models of the sensors and robot motion. It also briefly discusses some related work from
the literature. In Chapter 3, we elaborate on the line feature tracking and methodology.
We then formulate a Maximum A-Posteriori (MAP) estimation problem that allows us to
estimate the 2D pose of the robot at the LIDAR rate. In Chapter 4, we discuss the Extended
Kalman Filter (EKF) that we use to estimate the pose and twist of the robot at the IMU
rate Chapter 3. In Chapter 5 we analyze the performance of our algorithms by applying them
on simulated and real datasets, highlighting the strengths and weaknesses of the proposed
approaches. Finally, in Chapter 6, we summarize the findings of this thesis and propose ideas
for future extensions and implementations of this work.

Koushik Kumaran Master of Science Thesis

Chapter 2

Preliminaries

Before delving into the relevant estimation methodology, we first discuss the prob-
lem setting in more detail. This chapter familiarizes the reader with the notations
and conventions used in this text, as well as the relevant models for the robot
and its sensors
General Notation: These conventions apply throughout this document, unless specified
otherwise. Small letters represent scalars, bold letters represent vectors. Capital letters
represent matrices, unless stated otherwise. The superscript on the right denotes the time
stamp of a time-varying quantity. The superscript on the top left denotes the coordinate
frame in which a variable is expressed. Sets are denoted by calligraphic uppercase letters.
The bottom right subscript is reserved for any relevant indices, or other descriptors. ẋ denotes
the time derivative of the variable x. x̂ denotes the estimate of the variable x. ||x||2P denotes
the weighted two-norm of the vector x, such that ||x||2P = xT P −1x.

2-1 Coordinate Frames

We define the following frames of reference that are relevant to the problem:

1. World Frame(W): This is the fixed frame in which the robot pose is estimated, and
has its origin at the starting point of the the robot, with it’s x-axis along the robots
heading.

2. Body/Bot Frame(B): This frame has its origin at the center of rotation of the robot
and points its x-axis in the direction that the robot is heading.

3. IMU(I): This frame is aligned exactly with the IMUs sensing axes.

For this thesis, we assume that the extrinsics related to the sensor positioning on the robot
are all perfectly calibrated. This means that we know the exact rigid-body transformations
between the Body, IMU and LIDAR, and we estimate the transformation from the World to
Body Frame.

Master of Science Thesis Koushik Kumaran

6 Preliminaries

2-2 Pose and Twist Representations

The position of the robot in the world frame can be expressed as Wp =
(
x y z

)T
.

The orientation of a body in 3D space can be expressed with different parameterizations,
such as euler angles, axis-angle representations, quaternions, rotation matrices, etc. Each
come with their own advantages and disadvantages. In this work, we primarily employ euler
angles. This choice is sometimes discouraged when estimating orientation, owing to the fact
that euler angles have issues such as gimbal lock, etc [14]. However, as we expect to operate
close to zero roll and pitch at all times, these issues are not relevant in this work. In this
work, we use the euler angle parameterization as we expect to be quite close to zero roll and
pitch angles at all times.

X

Y

Z

Figure 2-1: Visualization of the Roll, Pitch and Yaw around the Body Frame

The orientation of the robot body in the world frame is expressed by

WBθ =
(
α β γ

)T
(2-1)

where α, β and γ are the roll, pitch and yaw angles respectively. The orientation of the robot
can be obtained by the three subsequent rotations around body axes, in the order Z-Y-X.
The orientation can be converted to a rotation matrix W BR [15] using

WBR =

cos γ cos β cos γ sin β sin α− sin γ cos r cos γ sin β cos α + sin γ sin α
sin γ cos β sin γ sin β sin α + cos γ cos r sin γ sin β cos α− cos γ sin α
− sin β cos β sin α cos β cos α

 (2-2)

This matrix can be used to convert a vector expressed in the body frame(Bv) to the world
frame(Wv) using

Wv = WBR · Bv (2-3)

Koushik Kumaran Master of Science Thesis

2-3 Motion Models 7

We denote the linear velocity of the robot in the world frame as W v = W ṗ =
(
ẋ ẏ ż

)T
,

and the angular velocity of the robot as seen in the body frame as Bω. The velocity of the
robot in the body frame can be obtained using (2-3).

Finally, we define the pose, linear and angular velocities of the robot on the horizontal plane
as

Wξ =
(
x y γ

)T

Wζ =
(
ẋ ẏ

)T

Bω = γ̇

(2-4)

On the horizontal plane, we can use the same equation (2-3) to transform vectors between
coordinate frames, with a different definition for the rotation matrix. With a slight abuse of
notation, this is given by

WBR =
[
cos γ − sin γ
sin γ cos γ

]
(2-5)

Through the rest of this document, it should be clear from context which rotation matrix
definition is used. Both of the rotation matrix definitions satisfy the properties,

det(WBR) = 1, WBRT ·WBR = WBR ·WBRT = I, WBR−1 = WBRT

2-3 Motion Models

In this work, we use multiple different motion models to describe the motion of the robot.
These models are tailored to specific use cases, such as 2D pose estimation and the imple-
mentation of the EKF. In this section, we describe these models.

The motion of SAM-UVC in 6-DoF can therefore be represented in continuous time as

WBṘ = WBR · Bω
Wv̇ = Wa
Wṗ = Wv

(2-6)

This model is unconstrained, i.e, it ignores the holonomic constraints of the robots motion.
This means that since SAM is a differential drive robot, it should ideally always have zero
lateral velocity. This is addressed in the differential drive model

Master of Science Thesis Koushik Kumaran

8 Preliminaries

2-3-1 Differential Drive Model

A simpler model that makes use of the holonomic constraints is the differential drive model,
which assumes that the robot operates on a plane, as shown in Figure 2-2. The corresponding
motion model is given by

Bζ =
(

Bvx 0
)

Wζ =
(

Bvx cos γ Bvx sin γ
)T

γ̇ = Bω

(2-7)

where Bvx is the linear velocity. Bω is the angular velocity of the robot around its center of
rotation.

Figure 2-2: The Standard Differential Drive Robot Model

2-4 Sensors

SAM-UVC is equipped with four sensors, each measuring different quantities with respect to
its motion and the environment. They can be classified as proprioceptive and exteroceptive.
Proprioceptive sensors provide information about the motion, while exteroceptive sensors
provide information about the environment and indirectly, motions.

Another way to classify them is by the type of information that is provided, 2D or 3D.
The wheel encoders and LIDAR provide information in the current plane of operation of the
robot, while the IMU and Camera provide information in all directions of motion. Table 2-1

Koushik Kumaran Master of Science Thesis

2-4 Sensors 9

presents the different sensors, and their differences. In this work, we disregard the presence
of the camera.

Sensor Measurements Information Type Rate

IMU Linear Acceleration
Angular Velocity 3D Proprioceptive 10-1000 Hz

Wheel Encoders Linear Velocity
Angular Velocity 2D Proprioceptive 50 Hz

LIDAR 2D Scan 2D Exteroceptive 10 Hz
RGB-D Camera RGB-D Image 2D Exteroceptive 30 Hz

Table 2-1: A Comparison of the different sensors present on SAM-UVC

2-4-1 Wheel Encoders

Each of the robots wheels is equipped with a wheel encoder that measures the angular position
of the wheel. Traditionally, odometry was calculated using only the wheel encoders by cal-
culating the global position of the robot using the angular positions of the wheels. However,
errors accumulate over time, causing large drifts in the estimate. It is therefore advisable to
work with relative measurements, i.e, linear and angular velocities instead. These may be
very slightly biased due to modeling inaccuracies but are not subject to drift.

If we denote the measured wheel rotations over an interval ∆t by ∆θl ∆θr, we can then
compute the linear and angular velocity of SAM-UVC in the Body frame using

Bvx = r(ωr + ωl)
2

Bω = r(ωr − ωl)
2b

(2-8)

where r and b denote the known wheel radius and base length, respectively, and ωl = ∆θl
∆t ,

ωr = ∆θr
∆t .

The noise that occurs when using encoder measurements is often(also in this work) modelled
as Gaussian noise, but in reality arises primarily from four sources:

1. Wheel slip: Integrating these measurements by using them in conjunction with (2-7)
makes the implicit assumption that the wheels undergo pure rotation on the grounds,
disregarding slip and wheel deformation. This is the main source of noise whenever
wheel encoders are used.

2. Linearization: When using these measurements, a linearised and discretised version of
(2-7) is typically employed. This introduces some error into any scheme that uses the
measurements.

3. Modelling inaccuracies: The wheel radius and base length are subject to some error due
to mechanical tolerances.

Master of Science Thesis Koushik Kumaran

10 Preliminaries

4. Quantization noise: The wheels absolute angle is measured with a accuracy of 8192
ticks per complete rotation. This translates to an angular resolution of 0.03◦ on ∆θl

and ∆θr

2-4-2 Inertial Measurement Unit (IMU)

SAM-UVC is equipped with an IIM-462340 Inertial Measurement Unit (IMU) from TDK
Invensense. This is a 6-DoF sensor that measures and reports the linear accelerations and
angular velocities of the sensor in its own frame of reference. These measurements are affected
by a slowly varying bias that should be taken into account to mitigate drift in any estimation
scheme. Slowly varying bias can be modeled as a random walk. The IMU measurements and
bias evolution can be modeled as

Bat
meas =

(
WBRt

)T (Wat −Wg
)

+ bt
acc + ηt

acc (2-9a)
Bωt

meas = Bωt + bt
gyro + ηt

gyro (2-9b)
ḃt

acc = ϵt
acc (2-9c)

ḃt
gyro = ϵt

gyro (2-9d)

,where Bat
meas ∈ R3 and Bωt

meas ∈ R3 denote the accelerometer and gyro measurements and
ηt

acc ∼ N (0, Qη,acc) , ηt
gyro ∼ N (0, Qη,gyro), ϵt

acc ∼ N (0, Qϵ,acc) and ϵt
gyro ∼ N (0, Qϵ,gyro)

represent the noise terms on the measurements, and the bias random walks respectively.

Although the sensor measurements are very accurate, they cannot solely be relied upon due to
the biases. Since these measurements need to be integrated to derive position and orientation,
relying solely on inertial sensors for extended periods leads to unreliable estimates.

The sensor in question can provide measurements at a configurable Output Data Rate (ODR)
from 10-1000 Hz. The measurements undergo a trapezoidal integration on board the device
to provide data at the requested ODR.

2-4-3 LIDAR

SAM-UVC is equipped with a LS-LIDAR N401 2D-LIDAR scanner. The scanner operates
at a rate of 10 Hz. At each sampling instant, the LIDAR scanner scans the environment in
2D. The scan at time t is given by a set of points, St := {p1, p2, . . . , pN}, with each point
expressed in polar coordinates as pi =

(
di ϕi

)T
.

These points can alternatively be expressed in cartesian coordinates as pi,c =
(
xi yi

)T
=(

di cos ϕi di sin ϕi

)T
. We omit the subscript t for brevity henceforth, except in places where

the notation may be ambiguous.

We follow the approach of [12], and model that both the range and the angle measurement
are perturbed by Gaussian noise, distributed as ϵd ∼ N

(
0, σ2

d

)
and ϵϕ ∼ N

(
0, σ2

ϕ

)
Koushik Kumaran Master of Science Thesis

2-5 Related Work 11

di = Di + ϵd

ϕi = Φi + ϵϕ

(2-10)

where (Di, Φi) is true location of the point in polar coordinaes.

We can then express the measured point pi in cartesian coordinates as pi,c using the relation

pi,c = (Di + ϵd)
[
cos (ϕi + ϵϕ)
sin (ϕi + ϵϕ)

]
(2-11)

Since ϵϕ is very close to zero in practice, we use the approximation ϵϕ → 0, to express the
measurement of pi,c in terms of the true point Pi,c.

cpi ≈ cPi + ϵp (2-12)

where the noise covariance Qi,p of the noise term ϵp ∼ N (0, Qi,p), is given by

Qi,p =
D2

i σ2
ϕ

2

[
2 sin2 Φi − sin 2Φi

− sin 2Φi 2 cos2 Φi

]
+ σ2

d

2

[
2 cos2 Φi sin 2Φi

sin 2Φi 2 sin2 Φi

]
(2-13)

In practice, we approximate the Qi,p matrix by using the measured range and angle.

2-4-4 RGB-D Camera

SAM is also equipped with a Realsens depth camera. This camera provides Red-Green-Blue-
Depth (RGB-D) images at a rate of 30 Hz. This is similar to a standard 3-channel RGB
image, with an extra channel that corresponds to the depth of the pixel, i.e, the distance of
the point from the camera. The device can be configured to provide this information in a
colored point-cloud form. In this sense, it acts like a 3D-LIDAR with a smaller field of view.
For this thesis, we we disregard the information from the camera to contain the scope.

2-5 Related Work

For 3D-LIDAR scanners, the prevailing method of feature extraction is derived from the
LOAM algorithm [2]. This algorithm begins by computing a smoothness metric for each
individual measured point. The points exhibiting the lowest and highest smoothness values
are categorized as plane and edge features, respectively.

The fitting of lines to these points can be done in many different ways. [12] provided a
stochastic representation of line features that models the noise of the scanner in its natural
polar coordinates. They used a Hough Transform [16] to simultaneously identify line feature
points and group them into lines. In our work, we chose to adapt this algorithm due to its
ability to provide uncertainty estimates along with the line estimates. Alternatively, there are
some algorithms such as RANdom SAmple Consensus (RANSAC) [17], which are by design
more robust.

Master of Science Thesis Koushik Kumaran

12 Preliminaries

Figure 2-3: The Difference between Filtering(top) and Smoothing(bottom). The state is esti-
mated at time T . The filtering scheme, uses the past measurements within the range t ∈ [t0, T]
while the smoothing scheme(bottom), uses the past and future measurements within the range
t ∈ [t0, t1]

For estimating odometry, there are two main approaches are popular in the literature. The
first is the filter-based approach which takes into account only the previous estimate of the
state when estimating the next state. Examples of this approach include most strategies based
on Kalman filters. A popular methodology for Visual-Inertial Odometry (VIO) is based on
the Multi State Constraint-Kalman Filter (MSC-KF). The original formulations of the SLAM
problem were based on non-linear filtering techniques such as an EKF [18]. In [19], the authors
improve the odometry of a wheeled rover, making use of zero-type updates to maintain the
filter states from diverging. We have adopted a similar approach in our work.

Another approach is to use a smoother, which processes all the data together and provides
an estimate of the entire trajectory. While these methods are more accurate, they come with
the drawback of being computationally intensive. In the literature regarding computer vision
a optimization based smoother is often used to refine trajectories after an initial estimate is
generated using a filter, in a process known as bundle-adjustment [20]

A middle ground between filtering and smoothing is fixed-lag smoothing, in which the trajec-
tory is optimized over a moving window. Figure 2-3 illustrates the difference between these
methods. Fixed-lag smoothing is also known as Moving Horizon Estimation (MHE) in the
sensor fusion literature. In fact, filtering schemes can be viewed as a special case of fixed-lag
smoothers with a window size of 1. In [21], the authors design MHE schemes centered around
the use of an IMU.

In [22], the authors investigate the differences between each strategy for VIO problems, and
experimentally show that, using a smoother results in an estimator that is more robust and
only slightly more accurate. In [8] [23] and [6], the authors propose a tightly-coupled odometry
system for a legged robot using factor graphs, with the usage of plane and line features in an
MHE scheme, further demonstrating the desirable properties of such systems. We hope that
the work in this project can be extended to such a scheme in the future, see Chapter 6 for a
more in-depth discussion.

Koushik Kumaran Master of Science Thesis

Chapter 3

2D Pose Estimation

This Chapter is dedicated to discusssing the working of the 2D Pose Estimation
based on the LIDAR and the wheel encoders. We begin by familiarizing the reader
with the methodology used to extract and track line primitives from the scan data.
We then formulate a Maximum A-Posteriori (MAP) problem that allows us to
generate pose estimates from the LIDAR and wheel encoders in 2D at the LIDAR
rate.

Figure 3-1 visualizes the different steps involved in processing the LIDAR scans to extract
line primitives. We first remove all points in the scan that are not part of a line feature. The
remaining points are then grouped together, and an initial line estimate is generated using a
least-squares method. The initial estimate is then optimized using the weighted line fitting
method, providing us with line features and their associated uncertainties. Finally, we match
the features across multiple scans using a chi-squared test.

The method we implement to extract and track line primitives is adapted from [12] and [2].
We reproduce and explain the relevant results and equations from these texts in this chapter.
The interested reader is directed to the original texts for more detailed derivations and proofs.

Simplifiying Assumption 1: In this chapter, we ignore the roll and pitch angles of the
robot, i.e, α, β ≈ 0. This assumption is expected to introduce some error into the estimation
prcoess. Proper modelling of the effect of these angles on the line feature estimation process
is outside the scope of this work.

Simplifiying Assumption 2: We also ignore the effects of motion distortion on the LIDAR
scans. The points in a single scan Stk are actually measured at different times between
(tk−1, tk) due to the rotating nature of the scanner. The scanner accumulates these points
over a single rotation and timestamps the entire set of points at the end of a rotation before
transmitting them over the network. If the robot is in motion during a scan, it can cause the
scan to be distorted, introducing errors into the estimation process if left unmodelled. Due
to the slow moving nature of the robot, we chose to disregard this effect.

Master of Science Thesis Koushik Kumaran

14 2D Pose Estimation

Feature Point
Extraction Clustering Initial Line Fit

Weighted Line FittingLine Merging

LIDAR Scanner

Wheel Encoders Feature Tracking

Line Feature Extraction

Moving Horizon Estimator

2D Pose Estimates

Encoder Constraint
Generation

Figure 3-1: The proposed pipeline for pose estimation on the horizontal plane. It includes the
feature extraction and feature tracking modules, followed by the MHE

3-1 Line Feature Extraction

3-1-1 Line Feature Model

We define a line feature as

Bl =
(
r α s

)T
(3-1)

with r as the normal distance to the line, α the angle of the normal to the line with respect
to the robot frame. The s parameter denotes the distance weighted mean of the points from
the origin, along the line. The superscript B denotes the reference frame of the measurement.
The superscript is dropped wherever the coordinate frame is evident from context for brevity.

Therefore, the r and α values parameterize the infinite line, while s provides information
about the measured segment.

As shown in Figure 3-2, we can define a reference frame L for each line, which is centered
with the body frame, rotated with an angle α. The pair (r, s) denotes the coordinates of the
center of the line segment in the L frame.

3-1-2 Identifying Line Feature Points

In this work, we adapt the feature point extraction method from [2] for use with a 2D scanner.
We use this extraction method to extract candidate line feature points from each scan. By

Koushik Kumaran Master of Science Thesis

3-1 Line Feature Extraction 15

Figure 3-2: Geometry of a single line feature and its associated L frame

applying this method, we remove any points in the observed scan that are not part of a line
feature.

For each point (di, ϕi), we calculate a smoothness coefficient ci using,

ci = 1
|Si| · di

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

j∈Si,j ̸=i

(
di cos ϕi − dj cos ϕj

di sin ϕi − dj sin ϕj

)∣∣∣∣∣∣
∣∣∣∣∣∣
2

(3-2)

where Si := {pj |pj ∈ S}, |θj − θi| ≤ θmax} and |Si| denotes the cardinality of the set Si.

The set of candidate line feature points is given by the points a smoothness less than a given
threshold, or Pt := {pi|ci ≤ cthresh, pi ∈ St}.

Using this method to extract only the salient points in a scan reduces the total number of
points to be clustered and fit by roughly 20% in our experiments, see Chapter 5.

3-1-3 Clustering

After extracting the line feature points, we separate them into clusters. We iterate over the
points in the scan and classify points together based on their distance to the previous point
as elaborated in Algorithm 1. At the end of this process, we are left with a set of clusters G.

Finally, we discard any cluster with a small number of points, as these are likely to be outliers
in the measurements.

3-1-4 Unweighted Initial Line Fitting

The weighted line fitting method that we use benefits from a good initial estimate of the line
parameters. To obtain such an estimate, we convert the set of points C := {p1, p2, p3, ..., pN},
to cartesian coordinates as xi = ri cos θi, yi = ri sin θi.

Master of Science Thesis Koushik Kumaran

16 2D Pose Estimation

Algorithm 1 Grouping Points
Input: Set of Line Feature Points P
Output: A Set of M Clusters G := {C1, C2, C3, . . . CM}

j ← 1
C1 ← {p1}
G ← {C1}
for pi ∈ P do

if ||cpi − cpi−1||2 > dmin then
j ← j + 1
Add new cluster Cj to G

end if
Add cpi to Cj

end for

We then fit these coordinates to a simplified slope-intercept line model given by

yi = mxi + c + ϵl

where ϵl ∼ N (0, σl). Now, all the measurements can be grouped together in the form,


y1
y2
...

yN


︸ ︷︷ ︸

Y

=


x1 1
x2 1
...

...
xN 1


︸ ︷︷ ︸

X

[
m
c

]
︸ ︷︷ ︸

Λ

+ϵL (3-3)

where ϵL ∼ N (0, σlIN). This model is a crude approximation that gives us acceptable initial
estimates for the line parameters in practice.
Assuming that each point measurement is independent, we can estimate the parameter vector
Λ as Λ̂ by minimizing the least-square error, giving us the estimator

Λ̂ =
(
XT X

)−1
XT Y (3-4)

This gives an initial estimate of the slope-intercept parameters of the infinite line, given by
m̂, ĉ which can be used to arrive at an initial estimate r̂, α̂ using the transformation

r̂ = ĉ√
1 + m̂2

α̂ = arctan m̂ + π

2

(3-5)

We can now also arrive at an initial estimate for the s parameter by using,

ŝ =
√

x̄2 + ȳ2 sin
(

α̂− arctan
(

ȳ

x̄

))
(3-6)

where x̄ = 1
N

∑N
i=1 xi, ȳ = 1

N

∑N
i=1 yi

Koushik Kumaran Master of Science Thesis

3-1 Line Feature Extraction 17

3-1-5 Weighted Line Fitting

For each point pi expressed in polar coordinates, we calculate the distance from the line as

δi,r = ui,r − r = di cos (α− ϕi)− r

δi,s = ui,s − s = di sin (α− ϕi)− s
(3-7)

where ui =
(
ui,r ui,s

)T
are the coordinates of pi expressed in the L frame. These errors can

be considered uncorrelated due to the choice of reference frame. Therefore, only δr needs to
be minimized to fit the infinite line parameters r and α, and only δs needs to be minimized
to find the center, s.

The covariance of the scalar errors in the RS reference frame are given by

Pi,r = Q11 cos2 α + 2Q12 sin α cos α + Q22 sin2 α

Pi,s = Q11 sin2 α− 2Q12 sin α cos α + Q22 cos2 α
(3-8)

where Q

[
Q11 Q12
Q21 Q22

]
is the noise covariance as defined in (2-13).

We use a maximum likelihood formulation to estimate the line parameters. Assuming the
measurements are all independent, the error distribution is given by

p (δ|l) =
N∏

i=1
p (δi|l)

p (δ|l) =
N∏

i=1

e− 1
2 (δi)T (Pi)−1δi

2π
√

detPi

(3-9)

where we omit the subscripts r and s, as the same equation applies to both error functions.
To find the optimal estimates for the line parameters, we minimize the negative log-likelihood
function

l = arg min
l
− log p (δ|l)

l = arg min
l

[
N∑

i=1

1
2(δi)T (Pi)−1δi +

N∑
i=1

ln
(
2π
√

det Pi

)] (3-10)

Since the Pi is a function of α, there is no exact closed form solution to this problem. Exploit-
ing the fact if α is fixed, then r and s have a closed-form solution, we use an iterative scheme
to optimize the line parameters. First, using the initial guess for the line orientation from
Section 3-1-4 , we calculate the optimal r, s parameters using (3-11). We then incrementally
update α using (3-13), and recalculate r, s. This procedure is repeated until convergence.
Finally, we calculate the uncertainty of the estimates using (3-14)

The optimal estimate for r and s is given by

Master of Science Thesis Koushik Kumaran

18 2D Pose Estimation

[
r
s

]
=
[
Prr 0
0 Pss

]
N∑

i=1

[Pi,r 0
0 P i,s

]−1 [
ui,r

ui,s

] (3-11)

where Prr and Pss are given by
Prr = 1∑N

i=1
1

Pi,r

Pss = 1∑N
i=1

1
Pi,s

(3-12)

The estimate α is updated as α← α + δα, where δα is given by

δα = −
∑N

i=1

(
δi,rδi,s

Pi,r

)
∑N

i=1

(
δi,sδi,s

Pi,r

) (3-13)

The covariance of the line estimates are given by

Pl =

Prr Prα 0
Prα Pαα 0
0 0 Pss

 (3-14)

where
Pαα = 1∑N

i=1

(
δi,sδi,s

Pi,r

)
Prα = −PrrPαα

N∑
i=1

(
δi,s

Pi,r

) (3-15)

3-2 Line Merging and Tracking

In various scenarios, having a metric to assess the similarity between two distinct line measure-
ments taken from the same line proves advantageous. This metric serves multiple purposes,
such as facilitating feature tracking over time and enabling the consolidation of redundant
measurements of a single line within a scan. Redundancy might arise due to obstacles ob-
structing the line, leading to its division into separate line segments.

To avoid redundant measurements, we merge multiple line segments that are pieces of the same
infinite line together into a single line feature by comparing each pair of lines based on their
squared Mahalanobis distance, and merge them if they are within a threshold determined from
a one sided χ2 distribution. Note that we compare only the r, α parameters that parameterize
the infinite line

The squared mahalanobis distance between two line measurements l1 and l2, with covariances
Pl1 and Pl2 respectively is given as

D2 = δT
l (Pl1 + Pl2)−1 δl (3-16)

Koushik Kumaran Master of Science Thesis

3-2 Line Merging and Tracking 19

where
δl = l1 ⊟ l2

and we define the ⊟ operator between two lines as l1 ⊟ l2 =

 r1 − r2
α1 − α2

0


If the distance is small enough, we merge the two lines to give lm as

Plm =
(
P −1

l1
+ P −1

l2

)−1

lm = P −1
lm

(
P −1

l1
l1 + P −1

l2
l2
) (3-17)

3-2-1 Feature Tracking

To use the measurements of the line features in a sensor fusion framework, we are required
to track the line features across multiple scans. If the robot undergoes a motion between two
time instants t1 and t2, and we have a transformation between them ξt1,t2 =

(
δx δy δγ

)T
,

the line parameters Blt1 and Blt2 are related by

rt1

αt1

st1

 = fforward(Blt2 , ξt1,t2) =

rt2 + δx cos(αt2 + δγ) + δy sin(αt2 + δγ)
αt2 + δγ

st2 − δx sin(αt2 + δγ) + δy cos(αt2 + δγ)

 (3-18)

or alternatively,rt2

αt2

st2

 = fbackward(Blt1 , ξt1,t2) =

rt1 − δx cos(αt1)− δy sin(αt1)
αt1 − δγ

st1 + δx sin(αt1)− δy cos(αt1)

 (3-19)

The uncertainty of the line measurement can be propagated as

P t2 = BP t1BT + KQt1,t2KT (3-20)

where B and K are obtained by linearising (3-18) and Qt1,t2 is the uncertainty associated with
the transformation ξt1,t2 .

B =

1 δx sin αt − δy cos αt 0
0 1 0
0 δx cos αt + δy sin αt 1


K =

− cos αt − sin αt 0
0 0 1

sin αt − cos αt 0


(3-21)

We then match the lines using the same criterion as (3-16)

Master of Science Thesis Koushik Kumaran

20 2D Pose Estimation

3-3 Fusing Line Features with Wheel Encoder Measurements

Our goal is now to fuse the obtained line measurements with the wheel encoder measurements.
To do this, we formulate an optimization problem for a window of past states at every instant
when a LIDAR measurement is received, which can then be solved by the use a non-linear
least squares solver to estimate the robots 2D pose.
Non-linear least squares problems such as the one we formulate are common in robotic control
and sensor fusion setups. Typically, these problems have a special sparse structure due to the
nature of the problem. Factor graphs are a probabilistic model that take advantage of this
sparse structure to represent the problem succinctly, opening the door to efficient incremental
solvers [24] [25] and a host of other techniques to efficiently solve these problems.
A factor graph is formally defined as a bipartite graph F = (U ,V, E).

1. ϕi ∈ U are nodes that represent factors.

2. xi ∈ V are nodes that represent variables.

3. eij represent edges that connect factor nodes and variable nodes.

In our case, the nodes within the factor graph correspond to the 2D pose of the robot at each
LIDAR time instance, while the factors represent the line and wheel encoder measurements.
Although we do not extensively explore the theory behind factor graphs and the associated
optimization in this work, it is worth highlighting that by structuring our problem in this
manner, we pave the way for potential future implementations using established solvers and
streamlined incremental techniques.
Note on Line Measurements: We drop the s measurements from the line estimates at this
point, and redefine a line as Bl =

(
r α

)T
. Since the errors in the s measurement are uncor-

related with the other errors, as shown in (3-14), we can also redefine the covariance matrix
by excluding the last row and column. Since the LIDAR scanner is affected by occlusion, it
is possible that over time the true value of the s parameter for an observed line segment can
change as different segments of the same infinite line are observed. For this reason, we remove
these measurements from the estimation process as we are only interested in improving the
pose estimates. Effectively, we only estimate the parameters of the infinite line.

3-3-1 Line Factor

A line in the world frame can be transformed to the body frame using

Bl = h(Wl, ξ) =
[

Wr − x cos(Wα)− y sin(Wα)
Wα− γ

]
(3-22)

The measurement model for the jth line feature at time t is given by

zj
t = h(Wl, ξt) + ϵl (3-23)

where ϵl ∼ N
(
0, P t

j

)
is the measurement uncertainty as given by Equation 3-14.

Koushik Kumaran Master of Science Thesis

3-3 Fusing Line Features with Wheel Encoder Measurements 21

3-3-2 Generating Encoder Factors

It is not computationally feasible to initialise a new node in the graph at each measurement
of the wheel encoders as they arrive at a higher rate than the LIDAR measurements. We
summarize the encoder measurements between the LIDAR nodes so that we do not add any
extra nodes.

More formally, we summarize N encoder measurements {zt1 , zt2 , zt3 , . . . , ztN }between two
time instants t0, tN , given by zti =

(
δxti δγti

)
as a single pose constraint denoted by ξt0,tN .

If the initial pose is ξt0 , we can recursively apply the following equation to obtain a single
pose transformation.

ξt0,ti+1 = f(ξt0,ti , zti+1) =


xt0,ti + δxti+1 cos

(
γt0,ti + δγti+1

2

)
yt0,ti + δxti+1 sin

(
γt0,ti + δγti+1

2

)
γt0,ti + δγti+1

 (3-24)

Using, Equation 3-24, we can summarize the encoder measurements between the LIDAR
measurement time stamps, thus preventing the addition of extra nodes.

3-3-3 Encoder Factor

The encoder, after the process described in Section 3-3-2 measures the transform between
two poses, given by ξt1,t2 =

(
δxt1,t2 δyt1,t2 δγt1,t2

)T

ξt1,t2 = f(ξt1 , ξt2) =

 cos γt1 sin γt1 0
− sin γt1 cos γt1 0

0 0 1


xt2 − xt1

yt2 − yt1

γt2 − γt1

 (3-25)

The measurement model is therefore given by:

zt1,t2 = f(ξt1 , ξt2) + ϵw (3-26)

where ϵw ∼ N (0, Qw) is the noise on the pose transformation, with

Qw =

σδx 0 0
0 σδy 0
0 0 σδγ

 (3-27)

3-3-4 Maximum A-Posteriori Estimation

At every time instant tk that a LIDAR scan is received, we formulate a MAP estimation
problem to estimate the trajectory within a window.

Master of Science Thesis Koushik Kumaran

22 2D Pose Estimation

Figure 3-3: Factor Graph Representation corresponding to the optimization problem in (3-32)

For the kth optimization problem, we estimate the trajectory from tk−M to tk. The value of
M is the length of the horizon, and can be chosen so as to keep the tk − tk−M as close to
constant as possible, given that the sampling rate of the sensors are not constant.

We define Kk as the set of LIDAR keyframe time instances for this kth optimization problem
and Lk as the set of the line landmark indices for the kth optimization problem. The set Xk

defines the set of poses and lines that are to be estimated.

Xk =

 ⋃
∀t∈Kk

ξt
⋃

∀j∈Lk

Wlj

 (3-28)

The set of prior, line and encoder measurements ZK is given by

Zk =

ztk−M
⋃

∀t∈Kk,j∈Lk

zt
j

k−1⋃
∀i=k−M

zti,ti+1

 (3-29)

We also have a prior given by ztk−M ∼ N
(
ξtk−M , Σtk−M

)
. We maximize the conditional

distribution to find the optimal trajectory.

X ∗
k ≜ arg max

Xk

p(Xk|Zk) (3-30)

We can alternatively minimize the negative log likelihood of the posterior as follows,

X ∗
k = arg max

Xk

p(Zk|Xk)p(Xk)
p(Zk) = arg min

Xk

[− log p(Xk;Zk)− log p(Xk)] (3-31)

Using the models from (3-22) and (3-25), this becomes a non-linear least squares problem:

Koushik Kumaran Master of Science Thesis

3-3 Fusing Line Features with Wheel Encoder Measurements 23

X ∗
k = arg min

Xk

∑
t∈Kk

∑
j∈Lk

(∣∣∣∣∣∣h(Wlj , ξt)− zt
j

∣∣∣∣∣∣2
P t

j

)

+
∑

t1,t2∈Kk,t1 ̸=t2

(∣∣∣∣∣∣f(ξt1 , ξt2)− zti,ti+1
∣∣∣∣∣∣2

P
ti,ti+1
w

)

+
∣∣∣∣∣∣ξtk−M − ztk−M

∣∣∣∣∣∣2
Σtk−m

(3-32)

We solve this non-linear least squares solver at every tk through the Levenberg-Marquardt
method to get a smoothed trajectory and its estimate. More details on how this is imple-
mented are provided in Appendix A.

The last state in the estimated trajectory ξtk is therefore the resultant optimized state at
each LIDAR instant, and is available as odometry at the LIDAR rate.

Master of Science Thesis Koushik Kumaran

24 2D Pose Estimation

Koushik Kumaran Master of Science Thesis

Chapter 4

Full 3D Motion Estimation

In this Chapter, we discuss our Extended Kalman Filter (EKF) and the associ-
ated models we use to fuse wheel encoders with the measurements from the IMU
to produce 6-DoF odometry. We begin by defining the state vector to be esti-
mated, along with relevant process and measurement models. We then present
the standard EKF, and a square-root formulation of the algorithm that we use
to alleviate the effect of numerical issues.

4-1 Dynamic Model

We define the state vector to be estimated as:

xT =
[

WpT WvT WBθT bT
acc bT

gyro

]
uT =

[
BF T BωT

] (4-1)

where we use the definitions from Section 2-2. u is the vector of observed linear accelerations
and angular velocities, that is, the IMU measurements. We also use the rotation WBR that
transforms a vector from the body to world frame, given by Equation 2-2. Henceforth, we
omit the superscript on the rotation matrix for brevity.
Finally, we also have an offset vector r⃗ ∈ R3 which denotes the offset between the IMU and
the center of rotation of the robot. We assume this vector to be known very accurately in
advance from the robots CAD models. When this offset is non-zero, as it is in our case,
centripetal accelerations can cause artefacts on the IMU measurements. This vector is known
in advance from the CAD model of the robot.
The IMU measurements can then be related to the true acceleration of the robot using the
equation,

BF = RT
(

Wa − g
)

+ Bω × Bω × r⃗ + bacc (4-2)

Master of Science Thesis Koushik Kumaran

26 Full 3D Motion Estimation

To derive our dynamic model, we start with the fundamental continuous time relations,

Wṗ = Wv
Wv̇ = Wa

Ṙ = R
[

Bω×
]

Wa = R
(

BF − bacc − Bω × Bω × r⃗
)

+ g

(4-3)

The IMU measurements are received at roughly 50 Hz. If we assume u to be constant over
the sampling interval T , from tk to tk+1, we arrive at the approximate discrete model,

Wptk+1 = Wptk + T Wvtk + T 2

2
Watk + ηp

Wvtk+1 = Wvtk + T Wa + ηv

Rtk+1 = Rtk exp
(
(Bω − Bδgyr,k)T

)
+ ηγ

btk+1
acc = btk

acc + ϵacc

btk+1
gyro = btk

acc + ϵgyro

(4-4)

We model that the accelerometer and gyro measurements are affected by a noise ηp ∼
N (0, Qη,acc), ηv ∼ N (0, Qη,acc), ηγ ∼ N (0, Qη,gyro). We also model the bias terms as being
affected by ϵacc ∼ N (0, Qϵ,acc), ϵgyro ∼ N (0, Qϵ,gyro).

This gives us the approximate state space model

xtk+1 = fI(xtk , utk) + ϵtk =



Wptk + T Wvtk + T 2

2
Watk

Wvtk + T Wa

log
(
Rtk exp

(
(Bω − Bδgyr,k)T

))
btk

acc

btk
gyro


+ ϵtk (4-5)

where ϵtk is the collection of all the noises, and is distributed as ϵtk ∼ N (0, Qi), with the
noise covariance matrix Qi given by

Qi =


Qη,acc 0 0 0 0

0 Qη,acc 0 0 0
0 0 Qη,gyro 0 0
0 0 0 Qϵ,gyro 0
0 0 0 0 Qϵ,gyro

 (4-6)

Koushik Kumaran Master of Science Thesis

4-2 Measurement Models 27

4-2 Measurement Models

The measurements from the wheel encoder are the angular velocity on the ground plane, and
the first component of the linear velocity (see (2-7)). We utilise the holonomic constraints of
the robots to augment the measurement model with two zero velocity pseudo-measurements
corresponding to lateral and vertical velocities. The addition of pseudo-measurementsis a
well-known technique [26] [19] to include some form of existing knowledge about the system
dynamics into the filter indirectly.

The velocity measurement is therefore

Bv =

Bvx

0
0

 (4-7)

The angular velocity measurement(ω) is expressed as a measurement of the yaw angle using
the relation,

Wγtk = Wγtk−1 + Bω ∗ T (4-8)

The encoder measurement model now becomes,

ytk = h(xtk) =

RT ·Wvtk

Wγtk

+ ϵh (4-9)

where ϵh ∼ N (0, Qh). The elements of the matrix Qh can be tuned to reduce or strengthen the
effect of the corrections from the wheel encoders and the zero-velocity pseudo measurements.

Note that this measurement model makes the implicit assumption that the robot is on a flat
plane in (4-8)

4-3 Extended Kalman Filter

The Extended Kalman Filter is arguably the most popular method for fusing data from
multiple sources. It involves a time update step and a correction step at each time step. We
use the IMU model to perform the time update, and the velocity measurements from the
wheel encoder for the correction. Figure 4-1 shows the standard predict and update cycles
for the filter. The notation x̂k|k−1 denotes the estimate of x at tk given all the measurements
upto tk−1.

Note: the relevant jacobians that we use in Algorithm 2 and Algorithm 3 were computed
numerically, through the use of a forward euler approximation.

A single time update and correction cycle of the Extended Kalman Filter is shown in Algo-
rithm 2

Master of Science Thesis Koushik Kumaran

28 Full 3D Motion Estimation

CorrectionTime Update

IMU Wheel Encoders

Time Delay

6-DoF Motion
Estimates

Figure 4-1: Structure of the EKF

Algorithm 2 Extended Kalman Filter
Input: Previous state xk−1|k−1, IMU Measurements uk−1, Encoder Measurements ytk , and

associated covariances Pk−1|k−1, Qi, Qh

Output: Next state xk|k and associated covariance Pk|k

F tk = ∂
∂xf(x, u))

∣∣∣
x̂k−1|k−1,uk−1

x̂k|k−1 = f(x̂k−1|k−1, utk)
Pk|k−1 = F tkPk−1|k−1F tk

T + Qi

Htk = ∂
∂uh(x)

∣∣∣
x̂k|k−1

ỹ = ztk − h(x̂k|k−1)
Stk = HPk|k−1HT + Qtk

h

Ktk = Pk|k−1HT S−1

x̂k|k = x̂k|k−1 + Ktk ỹ
Pk|k = (I −KtkH)Pk|k−1

4-3-1 Square Root Formulation

In practice, our EKF proved to be unstable due to numerical issues with very small covariance
matrices. To alleviate the numerical stability issue, we used a square root formulation of the
EKF equations, adapted from the method in [27]. In this formulation, all the covariance
matrices are represented with their square roots. This means that we store and update the
square root U instead of P , which are related by P = UT U . This technique has the advantage
of halving the bits of precision required to accurately store these matrices.

In order to rewrite our EKF equations to work directly with square-roots of covariances,
we must be able to add two matrices with just their square roots, i.e, we need to calculate√

A + B, without squaring
√

A and
√

B and adding them. This can be done as follows

Koushik Kumaran Master of Science Thesis

4-3 Extended Kalman Filter 29

A + B =
[√

A
T √

B
T
] [√A√

B

]

We can take the qr decomposition of the matrix on the right as,

Q, R = qr
([√

A√
B

])

Plugging this into the previous equation, we get

A + B = RT QT QR

A + B = RT R

Therefore, we get
√

A + B = qrr

([√
A√
B

])
where qrr is the operation that gives us only the R matrix of a QR decomposition.

Using this technique, the Extended Kalman Filter equations can be rewritten as in Algorithm
3. For a more detailed derivation, see [27].

Algorithm 3 Square-Root Extended Kalman Filter
Input: Previous state xk−1|k−1, IMU Measurements uk−1, Encoder Measurements ytk , and

associated covariance square roots
√

Pk−1|k−1,
√

Qi,
√

Qh

Output: Next state xk|k and associated covariance Pk|k

F tk = ∂
∂xf(x, u))

∣∣∣
x̂k−1|k−1,uk−1

x̂k|k−1 = f(x̂k−1|k−1, utk)
√

P k|k−1 = qrr

([√
P k−1|k−1F tk

T

√
Qi

])
Htk = ∂

∂uh(x)
∣∣∣
x̂k|k−1

ỹ = ztk − h(x̂k|k−1)

S̃tk = qrr

([√
P k|k−1Htk

T

√
R

])
Ktk =

[
S̃tk

−1 (
S̃tk

−1
Htk

)√
P

T
k|k−1

√
P k|k−1

]T
x̂k|k = x̂k|k−1 + Ktk ỹ

Pk|k = qrr

([√
P k|k−1(I −KH)T)√

RKT

])

Master of Science Thesis Koushik Kumaran

30 Full 3D Motion Estimation

Koushik Kumaran Master of Science Thesis

Chapter 5

Experiments and Results

This chapter describes the simulations and real-world experiments we conducted
to analyse the performance of the proposed methods. These experiments were
carefully selected to highlight the strengths of each algorithm, while also high-
lighting their weaknesses and situations under which they fail

Feature Extraction and Tracking: For the feature extraction and tracking, we do not
have an easy way to directly quantify performance and accuracy. However, from the results
of the 2D Odometry and simulations, we can make some inferences regarding its properties.

2D Pose Estimation: The 2D pose estimation was tested in isolation with a simulated
trajectory in a room with four walls. With this simulation, we analyze the results of the
Moving Horizon Estimation (MHE) approach. We pay special attention to the effect of the
horizon length and simulate cases with non-Gaussian errors such as wheel slip and outliers
in line matching. Next, we present two real-world datasets that allow us to demonstrate the
performance of the algorithm under real conditions.

Full 3D Motion Estimation: We tested this algorithm on two other datasets, one in which
a wheel slip occurs and another in which the robot was manually rolled and pitched to test
the algorithm when the horizontal plane assumption is violated.

Note on real-world experiments: We lack ground-truth data in all our real-world experi-
ments. We attempted to work through this through the use of waypoints, straight trajectories,
and closed-loop trajectories, which are sufficient for us to make qualitative inferences. How-
ever, due to experimental tolerance, it is difficult to provide metrics for these experiments.

5-1 Simulations

To validate the performance of the 2D pose estimation scheme and analyze it in isolation
from the feature extraction and tracking module, we simulated a room the robot moving in
a circular trajectory in a room with four walls, for 60 s. The ground truth trajectory and
trajectory from pure encoder integration are shown in Figure 5-1a. We assume that we get

Master of Science Thesis Koushik Kumaran

32 Experiments and Results

encoder and line measurements at a constant rate of 10 Hz, with uncorrelated Gaussian noise
affecting them both.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
XY Trajectory

Encoders
True Trajectory

(a) No slip

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
XY Trajectory

Encoders
True Trajectory

(b) Added Wheel Slip

Figure 5-1: True trajectory of the robot(red) and the trajectory obtained from pure encoder
integration(blue)

We tested our MHE scheme on three different variations of this experiment, which were
simulated as follows:

Experiment 1: We add Gaussian noise on the wheel encoder measurements and the line
measurements.

Experiment 2: In addition to the Gaussian noise, we simulated a wheel slip. The wheel
slip was modelled as a constant error in the ωl term from (2-8), present between t = 10
and t = 10.5. The trajectory obtained from purely integrating wheel encoders is shown in
Figure 5-1b

Experiment 3: The wheel did not slip in this experiment. We add outliers in the line
measurements of one of the lines at t = 10, t = 20 and t = 30.

The noise levels for all the simulations are specified in Table 5-1

We generate results with different horizon lengths of M = 2, M = 10, M = 50, along with
the results of a full trajectory smoother(M = ∞). Note that the full trajectory smoother
was run on the complete trajectory with all the measurements, and not incrementally at each
time instant.

Table 5-1: Errors and Noise Parameters for the Simulated Datasets

Experiment Prr Pαα σδx σδy σδγ Wheel Slip Outliers

1 10−2 10−3 10−3 10−2 10−3 None None
2 10−2 10−3 10−3 10−2 10−3 Yes None
3 10−2 10−3 10−3 10−2 10−3 None Yes

Koushik Kumaran Master of Science Thesis

5-1 Simulations 33

5-1-1 Error Analysis

For each test, we select four metrics to compare the estimators. These metrics are given by

e1 = 1
N

√√√√ N∑
i=0

∣∣∣∣∣
∣∣∣∣∣
[
x̂ti

ŷti

]
−
[
xti

yti

]∣∣∣∣∣
∣∣∣∣∣ (5-1)

e2 = 1
N

√√√√ N∑
i=0
||γ̂ti − γti || (5-2)

e3 = 1
4

√√√√ 3∑
j=1
||r̂j − rj || (5-3)

e4 = 1
4

√√√√ 4∑
j=1
||α̂j − αj || (5-4)

which are RMSE errors for the translational and rotational estimates of the estimated poses
and line parameters respectively. e3 and e4 give us a good measure of the long-term drift of
the estimator.

5-1-2 Results and discussion

The resultant error plots for the three experiments are shown in Figure 5-2, Figure 5-3 and
Figure 5-4 respectively. The corresponding error metrics are presented in Table 5-2.

0 10 20 30 40 50 60
Time (s)

0.050

0.025

0.000

0.025

0.050

0.075

0.100

0.125

X
(m

)

M = 2
M = 10
M = 50
M =
Encoders

0 10 20 30 40 50 60
Time (s)

0.25

0.20

0.15

0.10

0.05

0.00

0.05

Y
(m

)

M = 2
M = 10
M = 50
M =
Encoders

0 10 20 30 40 50 60
Time (s)

0.015

0.010

0.005

0.000

0.005

0.010

0.015

0.020

 (m
)

M = 2
M = 10
M = 50
M =
Encoders

Figure 5-2: Pose estimation error for different window lengths for the first simulated dataset

Master of Science Thesis Koushik Kumaran

34 Experiments and Results

0 10 20 30 40 50 60
Time (s)

0.6

0.4

0.2

0.0

0.2

X
(m

)

M = 2
M = 10
M = 50
M =
Encoders

0 10 20 30 40 50 60
Time (s)

0.4

0.3

0.2

0.1

0.0

0.1

0.2

Y
(m

)

M = 2
M = 10
M = 50
M =
Encoders

0 10 20 30 40 50 60
Time (s)

0.00

0.02

0.04

0.06

0.08

 (m
)

M = 2
M = 10
M = 50
M =
Encoders

Figure 5-3: Pose estimation error for different window lengths for the second simulated dataset,
with an added wheel slip at t = 10

From the error plots mentioned, it is clear that the Moving Horizon Estimation (MHE) scheme
is able to reduce the error in the pose estimates, especially with respect to yaw angles. We
notice a clear trend that the estimation error metrics decrease with larger horizon lengths.
This is to be expected, as more information is provided to correct the estimated trajectory.
Interestingly, in the case of wheel slip, the moving horizon scheme appears to perform worse
when the horizon length increases. We attribute this behaviour to the fact that the "wrong"
measurement is included in the estimation process for a longer period, causing each subsequent
estimate to be more biased. This effect is most noticeable on the estimate of the yaw angle
Overall, we conclude that the scheme is quite susceptible to violations of the Gaussian noise
assumption, but still shows some advantages in terms of reducing the drift. Especially in
terms of the yaw angle, the moving-horizon approach is successful in reducing the drift over
time.

5-2 2D Pose Estimation: Real World Experiments

We recorded data from all the sensors while manually controlling SAM-UVC at the Loop
Robots office. In both the datasets we collected, the final pose is known, up to a certain
experimental tolerance. We analyze the performance of our algorithms based on visual in-
spection and the final poses of the estimated trajectories.

5-2-1 Experiment 1: Straight-Line Trajectory

SAM-UVC was driven in a straight line for 5m. The trajectory obtained by integrating the
encoder measurements is shown in Figure 5-5. With this trajectory, we see a visible drift in the

Koushik Kumaran Master of Science Thesis

5-2 2D Pose Estimation: Real World Experiments 35

0 10 20 30 40 50 60
Time (s)

0.10

0.05

0.00

0.05

0.10

X
(m

)

M = 2
M = 5
M = 10
M =
Encoders

0 10 20 30 40 50 60
Time (s)

0.25

0.20

0.15

0.10

0.05

0.00

0.05

Y
(m

)

M = 2
M = 5
M = 10
M =
Encoders

0 10 20 30 40 50 60
Time (s)

0.06

0.04

0.02

0.00

0.02

 (m
)

M = 2
M = 5
M = 10
M =
Encoders

Figure 5-4: Pose estimation error for different window lengths for the third simulated dataset,
with line outlier measurements added at t = 10, t = 20 and t = 30

yaw angle in the first 15 or so seconds, when the robot was standing still. This is attributed
to the quantization noise on the wheel encoders, with the robot reporting an angular velocity
of Bω = 2.554× 10−4 rad/s when stationary. This small drift in yaw, when integrated, causes
the y estimate to drift off by about 20 cm.

1 0 1 2 3 4 5 6
x(in m)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y(
in

 m
)

Encoder Trajectory

(a) XY Trajectory Estimate

0 10 20 30 40 50 60
t(in s)

0.02

0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

(ra
d)

Yaw Angle

(b) Yaw Angle Estimate

Figure 5-5: Trajectory from integrating wheel encoder measurements for the straight line trajec-
tory

Master of Science Thesis Koushik Kumaran

36 Experiments and Results

Table 5-2: Comparing the error metrics for results of the MHE on simulated data. A window
size of ∞ refers to a full trajectory smoother

Dataset Window Size e1 e2 e3 e4

Dataset 1
2 0.0878 0.0032 0.0700 0.0062
10 0.0463 0.0040 0.0434 0.0084
50 0.0659 0.0045 0.0254 0.0051
∞ 0.0116 0.0009 0.0046 0.0006

Dataset 2
2 0.2151 0.0225 0.1152 0.0187
10 0.1042 0.0243 0.0767 0.0194
50 0.1234 0.0285 0.0943 0.0264
∞ 0.2417 0.0504 0.0040 0.0503

Dataset 3
2 0.0732 0.0047 0.0587 0.0062
10 0.0696 0.0162 0.0754 0.0277
50 0.0636 0.0063 0.0662 0.0080
∞ 0.0141 0.0058 0.0062 0.0011

5-2-2 Experiment 2: Closed Loop Trajectory

The robot finished in the same pose it as it started from. The trajectory obtained by inte-
grating the encoder measurements is shown in Figure 5-6. These estimates show a visible
drift, as the trajectory ends at a different point from where we started.

1.0 0.5 0.0 0.5 1.0 1.5 2.0
x(in m)

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y(
in

 m
)

Encoder Trajectory

(a) XY Trajectory Estimate

0 10 20 30 40 50 60 70 80
t(in s)

0

1

2

3

4

5

6

(ra
d)

Yaw Angle

(b) Yaw Angle Estimate

Figure 5-6: Trajectory from integrating wheel encoder measurements for the closed loop trajec-
tory

5-2-3 Results and discussion

In Figure 5-13, we show the number of line features that were extracted and tracked on both
the datasets. We notice that the number of features that are extracted and not tracked are
minimal. This implies that our association method works well, and tracks are rarely lost.

Koushik Kumaran Master of Science Thesis

5-2 2D Pose Estimation: Real World Experiments 37

Table 5-3: Percentage reduction of scan points of the feature point extraction scheme

Straight Line Trajectory Closed Loop Trajectory
22.02 % 18.5 %

0 2 4 6 8
x (in m)

1

0

1

2

3
y

(in
 m

)
Raw Scan

(a) Raw LIDAR scan

0 2 4 6 8
x (in m)

1

0

1

2

3

y
(in

 m
)

Feature Points

(b) Extracted Points

Figure 5-7: Feature Point Extraction at time t = 20 s for the straight line trajectory

The feature point extraction method we proposed in Section 3-1-2 succeeded in reducing the
number of points to cluster and fit by around 20% on both datasets. The exact percentages are
provided in Table 5-3. Figure 5-7, Figure 5-8 provide examples of the feature point extraction
scheme.

In the first experiment, from t = 0 s to t = 10 s, we see that the MHE scheme is able to
remove most of the drift caused by the wheel encoders. However, some amount of noise has
also been introduced on the estimates from the inclusion of the line measurements. Similarly,
for most of the trajectory, we see that the y coordinate drifts by only 5 cm. At two time
instants, at t = 37.53 s and t = 49.5 s, we see the disproportionate effect of outliers affecting
the estimates.

To understand better the spike at t = 37.53 s, we show the results of the feature tracking
process at this instant in Figure 5-9. In the zoomed plot, Figure 5-9b, we see that a small
group of points has been clustered with the orange line, causing the estimate to be rotated.
This kind of error is highly non-Gaussian, and is one example of the sources of these outliers.

Important to note is also the fact that althought the y and γ estimates seem to be corrected,
the x estimate has drifted by almost a meter. This is suspected to be due to a combination
of multiple effects: (1) for most of the trajectory, only two parallel lines corresponding to the

Master of Science Thesis Koushik Kumaran

38 Experiments and Results

2 0 2 4 6
x (in m)

3

2

1

0

1

2

3

y
(in

 m
)

Raw Scan

(a) Raw LIDAR scan

2 0 2 4 6
x (in m)

3

2

1

0

1

2

3

y
(in

 m
)

Feature Points

(b) Extracted Points

Figure 5-8: Feature Point Extraction at time t = 37.53 s for the straight line trajectory

room are visible to the scanner; (2) the effect of motion distortion on the LIDAR scan.

The second experiment shows a large amount of drift and the algorithm can be said to have
failed here. However, some interesting inferences can still be drawn from this experiment.
First, we note that the true trajectory is a combination of curves and straight lines. There
are significant sections of the trajectory that are straight lines. From Figure 5-11b, we deduce
that these sections are approximately given by the intervals t ∈ [0, 9], t ∈ [27, 33], t = [49, 57],
t = [59, 69] and t = [70, 77]. In Figure 5-12, we plot the difference in the yaw estimates
from purely integrating encoder values, and the MHE scheme. Interestingly, there is close to
zero growth in the difference in these time intervals. From this, we infer that the yaw angle
estimate is affected whenever the yaw angle of the robot changes.

In [28], the authors discuss how rotational motion of the robot can skew LIDAR scans. They
elaborate that the motion distortion is most severe when the LIDAR is simultaneously rotated
and translated. This explains the drift in our yaw estimates, and also why this drift was not
very noticeable in the straight-line trajectory. This suggests that the error seen in the results
is a result of our assumption that the motion distortion on the LIDAR scans are negligible

Koushik Kumaran Master of Science Thesis

5-2 2D Pose Estimation: Real World Experiments 39

2 1 0 1 2
x (in m)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y
(in

 m
)

Tracked Lines

(a) Tracked Features

2 1 0 1 2
x (in m)

2.60

2.65

2.70

2.75

2.80

2.85

2.90

2.95

y
(in

 m
)

Tracked Lines

(b) Zoomed image of the outlier. Note:
The image is skewed from zooming

Figure 5-9: Failure of the line tracking module at t = 37.53 s in the straight line trajectory.
Lines from the preceding scan are propagated forward using (3-18) and plotted along with the
lines at the current scan. Two lines of the same color imply they are matched together.

0.0 0.5 1.0 1.5 2.0
x(in m)

1.0

0.5

0.0

0.5

1.0

1.5

y(
in

 m
)

XY Trajectory
MHE
Encoders

(a) XY Trajectory Estimate

0 10 20 30 40 50 60 70 80
Time(in s)

0

1

2

3

4

5

6

7

8

An
gl

e(
in

 ra
d)

Yaw Estimate
MHE
Encoders

(b) Yaw Angle Estimate

0 10 20 30 40 50 60 70 80
Time(in s)

0.0

0.5

1.0

1.5

2.0

x(
in

 m
)

X Estimate
MHE
Encoders

(c) X coordinate estimate from the MHE and
encoders

0 10 20 30 40 50 60 70 80
Time(in s)

1.0

0.5

0.0

0.5

1.0

1.5

y(
in

 m
)

Y Estimate
MHE
Encoders

(d) Y coordinate estimate from the MHE and
encoders

Figure 5-11: Results of the MHE on the closed loop trajectory

Master of Science Thesis Koushik Kumaran

40 Experiments and Results

0 1 2 3 4 5 6
x(in m)

3

2

1

0

1

2

3

y(
in

 m
)

XY Trajectory
MHE
Encoders

(a) XY Trajectory Estimate

0 10 20 30 40 50 60
Time(in s)

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

An
gl

e(
in

 ra
d)

Yaw Estimate
MHE
Encoders

(b) Yaw Angle Estimate

0 10 20 30 40 50 60
Time(in s)

0

1

2

3

4

5

6

x(
in

 m
)

X Estimate
MHE
Encoders

(c) X coordinate estimate from the MHE and
encoders

0 10 20 30 40 50 60
Time(in s)

0.10

0.05

0.00

0.05

0.10

0.15

0.20

y(
in

 m
)

Y Estimate
MHE
Encoders

(d) Y coordinate estimate from the MHE and
encoders

Figure 5-10: Results of the MHE on the straight line trajectory

5-3 Full 3D Motion Estimation

To test the EKF and validate its performance, we conducted two experiments.

5-3-1 Experiment 1: Wheel Slip

In this experiment, we traversed a long trajectory, with a series of waypoints that were
measured and marked prior to the experiment. At the end of the experiment, the robot
returned to where it began. Around t = 44 s, the robot was driven over a bump, causing a
wheel slip. The results of this experiment are shown in Figure 5-14

Koushik Kumaran Master of Science Thesis

5-3 Full 3D Motion Estimation 41

0 10 20 30 40 50 60 70 80
Time(in s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

An
gl

e(
in

 ra
d)

Encoder and MHE Yaw Difference

Figure 5-12: The difference in yaw angle between the MHE and encoder estimates for the closed
loop trajectory

5-3-2 Experiment 2: Rolling and Pitching

This experiment was conducted to test the orientation estimation capabilities of the EKF
when the horizontal plane assumption is violated. The robot underwent the following series
of motions:

1. Very small motions on the plane

2. Pitched in the positive direction

3. Rolled in the positive direction

4. Small roll in the positive direction

5. Moved in a straight line

When the robot was lowered from the rolling or pitching motions, it was lowered a little bit
at a time so as to not drop it quickly onto the floor. The roll and pitch estimates from the
experiment are shown in Figure 5-16.

5-3-3 Results and Discussion

From the first experiment, we clearly see the benefit of fusing the IMU data with wheel
encoders. The filter is able to correct for most of the wheel slip, and we even see the slip
show up as a small spike in the pitch estimate at Figure 5-14b. However, we also see the roll
and pitch estimates drift after a while. On closer inspection, we note that this drift increases
along with the drift in the accelerometer bias estimates.

We hypothesize that is a result of the lack of observability of the system model. Observability
is a property of a system that determines if the states can be estimated with the available data

Master of Science Thesis Koushik Kumaran

42 Experiments and Results

0 10 20 30 40 50 60
Time (s)

0

1

2

3

4

5

6

7

Co
un

t

Feature Count
Extracted Features
Tracked Features

(a) Straight Line Trajectory

0 10 20 30 40 50 60 70 80
Time (s)

0

2

4

6

8

Co
un

t

Feature Count
Extracted Features
Tracked Features

(b) Closed Loop Trajectory

Figure 5-13: Number of extracted and tracked features over time

[29]. Typically, observability of a non-linear system is difficult to establish. We present an
argument here as to why the accelerometer biases along with roll and pitch are unobservable.

Using solely an IMU without any other source of information, the biases on the accelerometer
are not observable without the addition of extra information from other sources, even when
the sensor is stationary [15]. This is because the only source of information regarding the
roll, pitch and accelerometer biases come from the measurement of the gravity vector (2-9a).
However, there is no unique combination of biases, roll and pitch that satisfies this equation.
Over long periods of times, these estimates can therefore drift and be unreliable. In [19], the
authors use a similar formulation as we do for their EKF and use period zero-roll and pitch
updates to keep them from drifting.

The second experiment showcases the ability of the filter to estimate the orientation of the
robot even when the horizontal plane assumption is violated. Also in this experiment, we see
that the accelerometer biases vary, even though the filter remains stable. On close inspection,
we also notice that the stable value of the roll and pitch does not stay the same throughout
the trajectory, providing further evidence that these states are not observable in this model.

Koushik Kumaran Master of Science Thesis

5-3 Full 3D Motion Estimation 43

2 0 2 4 6 8 10 12 14
X Position (m)

6

4

2

0

2

4

6

8

Y
Po

sit
io

n
(m

)

XY Trajectory Comparison

Waypoints
EKF
Slip
Encoders

(a) Trajectory estimates on the horizontal
plane.

0 20 40 60 80 100 120
Time (s)

0.05

0.00

0.05

0.10

0.15

An
gl

e
(ra

d)

Roll and Pitch Estimates
Pitch
Roll

(b) Roll and Pitch Estimates

Figure 5-14: Results of the EKF in the first experiment

0 20 40 60 80 100 120
Time (s)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Bi
as

 (m
/s

^2
)

Accelerometer Bias Estimates
X
Y
Z

(a) Accelerometer bias estimates

0 20 40 60 80 100 120
Time (s)

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Bi
as

 (r
ad

/s
)

Gyroscope Bias Estimates
X
Y
Z

(b) Gyroscope bias estimates

Figure 5-15: IMU bias estimates from the EKF in the first experiment

Master of Science Thesis Koushik Kumaran

44 Experiments and Results

0.0 0.2 0.4 0.6
X Position (m)

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Y
Po

sit
io

n
(m

)

XY Trajectory Comparison
EKF
Encoders

(a) Trajectory estimates on the horizontal plane.

0 10 20 30 40 50 60 70
Time (s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

An
gl

e
(ra

d)

Roll and Pitch Estimates
Pitch
Roll

(b) Roll and Pitch Estimates

Figure 5-16: Results of the EKF in the second experiment

0 20 40 60
Time (s)

0.00

0.01

0.02

0.03

0.04

0.05

Bi
as

 (m
/s

^2
)

Accelerometer Bias Estimates

X
Y
Z

(a) Accelerometer bias estimates

0 20 40 60
Time (s)

0.02

0.01

0.00

0.01

0.02

0.03

Bi
as

 (r
ad

/s
)

Gyroscope Bias Estimates
X
Y
Z

(b) Gyroscope bias estimates

Figure 5-17: IMU bias estimates from the EKF in the second experiment

Koushik Kumaran Master of Science Thesis

Chapter 6

Conclusions and Recommendations

In this Chapter, we summarize the findings of this work, and propose ideas for
future improvements and implementations of this work

To goal of this thesis was to understand how we can fuse information from LIDAR, IMU and
wheel encoders to generate odometry with minimal drift while still being feasible for real-time
computation. Working towards this goal, we provide answers to the following subquestions.

How does one exploit the LIDAR scanner to reduce drift?

We developed an MHE framework that integrates LIDAR data with wheel encoder informa-
tion by extracting line primitives from the LIDAR scans. This framework was tested with
simulations, which demonstrated promising results; however, its performance was observed
to be sensitive to outliers and wheel slips. Similar conclusions were drawn from our analysis
of real-world data. We hypothesize that by incorporating a motion distortion model and
implementing outlier rejection strategies, this algorithm can achieve accurate pose estimation
for the robot on the horizontal plane.

How does one reconcile the 2D and 3D nature of the different sensors?

The EKF we designed successfully fused data from the wheel encoders with the IMU to
estimate the robot’s trajectory with a satisfactory level of accuracy, even managing to partially
mitigate the impact of significant wheel slip on the estimates. Our experimental results
also indicate that while the underlying models implicitly assume the robot’s movement on a
horizontal plane, the filter demonstrates robustness in handling substantial deviations from
this assumption.

How can the discussed solutions be implemented efficiently in real-time?

In this work, the EKF was implemented on the onboard computer of the robot as a Robot
Operating System (ROS) node, and the odometry we generate was done so in real-time.

We expect, based on implementations of similar works and the existence of efficient solvers,
that our MHE scheme will also be feasible for real-time implementations.

Master of Science Thesis Koushik Kumaran

46 Conclusions and Recommendations

6-1 Future Work

We expect that the contributions made in this work enable further work to explore fully
tightly-coupled odometry. We propose multiple avenues for future research that are expected
to allow the odometry system to achieve the necessary accuracy and robustness to be used in
practice.

Firstly, the effect of motion distortion on the LIDAR scans must be modelled and compensated
for in line feature extraction module.

Implementation of the line feature extraction module and the MHE in C++, with the use of
an efficient solver such as Ceres[30], g20 [31] or gtsam [11] is anticipated to enable real-time
application. Moreover, these libraries have built-in functionality to allow the use of robust
cost functions [32] which allow the optimizer to reject outlier measurements which currently
impact the MHE approach.

Finally, tightly-coupled estimation with the IMU, LIDAR and wheel encoder data becomes
achievable. To accomplish this, a crucial step involves extending the line features to 3D
space as done in [33]. Additionally, the integration of Inertial Measurement Unit (IMU) data
necessitates the utilization of preintegration techniques to keep the size of the graph small as
outlined in [3] and [34].

We expect that such a tightly-coupled system would be able to realize all the benefits of the
different estimators in this work.

Koushik Kumaran Master of Science Thesis

Appendix A

Non-Linear Optimization

In this Appendix, we briefly explain how the optimization problem in (3-32) can be solved by
iteratively linearising and solving a weighted-linear least squares problem. We also provide
the necessary jacobians to do so.

A-1 Linearisation

Linearizing the line measurements and poses around the current estimate, Wlj = W l̂j + δWlj ,
ξt = ξ̂t + δξt

h(Wlj , ξt)− zt
j ≈ h(W l̂j , ξ̂t) + Ht

jδWlj + Jδξt − zt
j

= Ht
jδWlj + J t

jδξt − et
j

(A-1)

f(ξti , ξti+1)− zti,ti+1 ≈ f(ξ̂t1 , ξ̂t2) + F ti,ti+1δξt1 + Gti,ti+1δξt2 − zti,ti+1

= F ti,ti+1δξt1 + Gti,ti+1δξt2 − eti,ti+1
(A-2)

where et
j = zt

j − h(W l̂j , ξ̂t), eti,ti+1 = zti,ti+1 − f(ξ̂t1 , ξ̂t2) are the line measurement prediction
error and the wheel encoder measurement error respectively. F ti,ti+1 , Ht

j and J t
j are obtained

by evaluating (A-6) and (A-5) at the current estimate. etk−M = ztk−M − ξ̂tk−M is the prior
error such that ξtk−M = ξ̂tk−M + δξtk−M

The problem then reduces to a weighted-least squares problem which we can solve recursively

δX ∗
k = arg min

δXk

∑
t∈Kk

∑
p∈Lk

(∣∣∣∣∣∣Ht
jδWlj + J t

jδξt − et
j

∣∣∣∣∣∣2
P t

j

)

+
∑

t1,t2∈Kk,t1 ̸=t2

(∣∣∣∣∣∣F ti,ti+1δξt1 + Gti,ti+1δξt2 − eti,ti+1
∣∣∣∣∣∣2

P ti,ti+1

)

+
∣∣∣∣∣∣δξtk−M − etk−M

∣∣∣∣∣∣2
Σ

tk−M
K

(A-3)

Master of Science Thesis Koushik Kumaran

48 Non-Linear Optimization

We can collect all the jacobians, residuals and weight matrices as A, b, Σ respectively, and
eliminate the weight matrix as follows:

δX ∗
k = arg min

δXk

||AδXk − b||Σ

= arg min
δXk

(AδXk − b)T Σ−1 (AδXk − b)

= arg min
δXk

(AδXk − b)T Σ−1/2Σ−1/2 (AδXk − b)

= arg min
δXk

(
Σ−1/2AδXk − Σ−1/2b

)T (
Σ−1/2AδXk − Σ−1/2b

)
= arg min

δXk

∣∣∣∣∣∣ÃδXk − b̃
∣∣∣∣∣∣

(A-4)

where Ã = Σ−1/2A and b̃ = Σ−1/2b

Slightly abusing our notation to express XK as vector, we can solve this iteratively and update
Xk using the Levenberg-Marquardt method as

Xk ← Xk +
(
λI + ÃT Ã

)−1
ÃT b̃

where λ is a hyperparameter used to control the convergence behaviour.

The uncertainty of the resulting state is given by the inverse of the hessian, which can be
approximated as

PXk
=
(
ÃT Ã

)−1

. The uncertainty associated with the last state in the window ξk can then be read off the
corresponding block of PXk

, which depends on the ordering of the variables in the vector.

A-2 Jacobians

The line factor in (3-22) can be linearised around an estimate W l̂, ξ̂ by using a first order
approximation. The relevant jacobians can be evaluated using

∂h(Wl, ξ)
∂Wl

∣∣∣∣∣
W l̂,ξ̂

=
[
1 x̂ sin α̂− ŷ cos α̂
0 1

]
∂h(Wl, ξ)

∂ξ

∣∣∣∣∣
W l̂,ξ̂

=
[
− cos α̂ − sin α̂ 0

0 0 −1

] (A-5)

Similarly, the jacobians for the pose factors in (3-25) are given by

Koushik Kumaran Master of Science Thesis

A-2 Jacobians 49

∂f
(
ξt1 , ξt2

)
∂ξt1

∣∣∣∣∣
ξ̂t1 ,ξ̂t2

=

− cos γt1 − sin γ̂t1 −
(
xt2 − xt1

)
sin γ̂t1 +

(
yt2 − yt1

)
cos γ̂t1

sin γ̂t1 − cos γ̂t1 −
(
xt2 − xt1

)
cos γ̂t1 −

(
yt2 − yt1

)
sin γ̂t1

0 0 1


∂f
(
ξt1 , ξt2

)
∂ξt2

∣∣∣∣∣
ξ̂t1 ,ξ̂t2

=

 cos γ̂t1 sin γ̂t1 0
− sin γ̂t1 cos γ̂t1 0

0 0 1


(A-6)

Master of Science Thesis Koushik Kumaran

50 Non-Linear Optimization

Koushik Kumaran Master of Science Thesis

Appendix B

Noise covariances and
hyperparameters

Here we present the tuning for the filters and estimators used in all the real-world experiments:

B-1 2D Pose Estimation

Table B-1: Feature Extractor and LIDAR noise settings

cthresh θmax dmin σd σϕ λ

10−2 10−2 10−1 10−2 10−4 10−2

Table B-1 provides the thresholds for the feature extraction scheme and the LIDAR noise
parameters.

The covariance of the noise affecting the encoder factor was tuned manually, and set to
Qw = 10−4 × I3.

B-2 Full 3D Motion Estimation

The IMU noise parameters are set according to the datasheet of the IMU [35] as√
Qη,acc = 1.39256× 10−3I3√

Qη,gyro = 1.309× 10−4I3√
Qϵ,acc = 6.86× 10−5I3√

Qϵ,gyro = 1.9896× 10−5I3

(B-1)

Master of Science Thesis Koushik Kumaran

52 Noise covariances and hyperparameters

The noise parameters for the measurement model were tuned manually, and set to

√
Qh =


1× 10−2 0 0 0

0 1× 10−1 0 0
0 0 1× 10−4 0
0 0 0 1× 10−2

 (B-2)

The initial estimate for the state was set to xt0 = 015×1, and the associated uncertainty was
set to

diag(
√

P0) =



10−15

10−15

10−15

10−15

10−15

10−15

10−3

10−3

10−15

10−1

10−1

10−1

10−1

10−1

10−1



(B-3)

where the diag operator extracts the diagonal elements of a matrix. The other elements were
all set to zero. Notice the large uncertainty on the last 6 states, which correspond to the bias
estimates. These uncertainties are larger than the rest since we have arbitrarily initialised
the filter with an estimate of 0 for these states.

Koushik Kumaran Master of Science Thesis

Bibliography

[1] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and J. J.
Leonard, “Past, present, and future of simultaneous localization and mapping: Toward
the robust-perception age,” IEEE Transactions on Robotics, vol. 32, pp. 1309–1332, 12
2016.

[2] J. Zhang and S. Singh, “LOAM: Lidar Odometry and Mapping in Real-time,” in Robotics:
Science and Systems X, Robotics: Science and Systems Foundation, 7 2014.

[3] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-Manifold Preintegration for
Real-Time Visual–Inertial Odometry,” IEEE Transactions on Robotics, vol. 33, pp. 1–21,
2 2017.

[4] W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang, “FAST-LIO2: Fast Direct LiDAR-Inertial
Odometry,” IEEE Transactions on Robotics, vol. 38, pp. 2053–2073, 8 2022.

[5] T. Qin, P. Li, and S. Shen, “VINS-Mono: A Robust and Versatile Monocular Visual-
Inertial State Estimator,” IEEE Transactions on Robotics, vol. 34, pp. 1004–1020, 8
2018.

[6] D. Wisth, M. Camurri, and M. Fallon, “VILENS: Visual, Inertial, Lidar, and Leg Odome-
try for All-Terrain Legged Robots,” IEEE Transactions on Robotics, vol. 39, pp. 309–326,
2 2023.

[7] X. Zuo, P. Geneva, W. Lee, Y. Liu, and G. Huang, “LIC-Fusion: LiDAR-Inertial-Camera
Odometry,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pp. 5848–5854, IEEE, 11 2019.

[8] D. Wisth, M. Camurri, S. Das, and M. Fallon, “Unified Multi-Modal Landmark Tracking
for Tightly Coupled Lidar-Visual-Inertial Odometry,” IEEE Robotics and Automation
Letters, vol. 6, pp. 1004–1011, 4 2021.

Master of Science Thesis Koushik Kumaran

54 Bibliography

[9] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus, “LIO-SAM: Tightly-
coupled Lidar Inertial Odometry via Smoothing and Mapping,” in 2020 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), pp. 5135–5142, IEEE,
10 2020.

[10] X. Zuo, Y. Yang, P. Geneva, J. Lv, Y. Liu, G. Huang, and M. Pollefeys, “LIC-Fusion
2.0: LiDAR-Inertial-Camera Odometry with Sliding-Window Plane-Feature Tracking,”
in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 5112–5119, IEEE, 10 2020.

[11] F. Dellaert and M. Kaess, “Factor Graphs for Robot Perception,” Foundations and
Trends in Robotics, vol. 6, no. 1-2, pp. 1–139, 2017.

[12] S. Pfister, S. Roumeliotis, and J. Burdick, “Weighted line fitting algorithms for mobile
robot map building and efficient data representation,” in 2003 IEEE International Con-
ference on Robotics and Automation (Cat. No.03CH37422), vol. 1, pp. 1304–1311, IEEE,
2003.

[13] S. T. Pfister, “Weighted line fitting and merging,” California Institute of Technology,
Tech. Rep, 2002.

[14] “REP 103 – Standard Units of Measure and Coordinate Conventions (ROS.org).”

[15] M. Kok, J. D. Hol, and T. B. Schön, “Using Inertial Sensors for Position and Orientation
Estimation,” Foundations and Trends® in Signal Processing, vol. 11, no. 1-2, pp. 1–153,
2017.

[16] R. O. Duda and P. E. Hart, “Use of the Hough transformation to detect lines and curves
in pictures,” Communications of the ACM, vol. 15, pp. 11–15, 1 1972.

[17] M. A. Fischler and R. C. Bolles, “Random sample consensus,” Communications of the
ACM, vol. 24, pp. 381–395, 6 1981.

[18] S. Thrun, “Probabilistic robotics,” Communications of the ACM, vol. 45, pp. 52–57, 3
2002.

[19] C. Kilic, J. N. Gross, N. Ohi, R. Watson, J. Strader, T. Swiger, S. Harper, and
Y. Gu, “Improved Planetary Rover Inertial Navigation and Wheel Odometry Perfor-
mance through Periodic Use of Zero-Type Constraints,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 552–559, IEEE, 11 2019.

[20] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle Adjustment
— A Modern Synthesis,” in Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 1883,
pp. 298–372, Springer Verlag, 2000.

[21] F. Girrbach, Moving horizon estimation for inertial motion tracking:: algorithms and
industrial applications. PhD thesis, Dissertation, Universität Freiburg, 2021, 2021.

[22] H. Strasdat, J. Montiel, and A. J. Davison, “Visual SLAM: Why filter?,” Image and
Vision Computing, vol. 30, pp. 65–77, 2 2012.

Koushik Kumaran Master of Science Thesis

55

[23] D. Wisth, M. Camurri, and M. Fallon, “Robust Legged Robot State Estimation Using
Factor Graph Optimization,” IEEE Robotics and Automation Letters, vol. 4, pp. 4507–
4514, 10 2019.

[24] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental Smoothing and Map-
ping,” IEEE Transactions on Robotics, vol. 24, pp. 1365–1378, 12 2008.

[25] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and F. Dellaert, “iSAM2:
Incremental smoothing and mapping using the Bayes tree,” The International Journal
of Robotics Research, vol. 31, pp. 216–235, 2 2012.

[26] M. Brossard, A. Barrau, and S. Bonnabel, “Ai-imu dead-reckoning,” IEEE Transactions
on Intelligent Vehicles, vol. 5, no. 4, pp. 585–595, 2020.

[27] K. Tracy, “A square-root kalman filter using only qr decompositions,” 2022.

[28] A. Al-Nuaimi, W. Lopes, P. Zeller, A. Garcea, C. Lopes, and E. Steinbach, “Analyzing
LiDAR scan skewing and its impact on scan matching,” in 2016 International Conference
on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–8, IEEE, 10 2016.

[29] P. J. Antsaklis and A. N. Michel, Linear Systems. Birkhäuser Boston, 2006.

[30] S. Agarwal, K. Mierle, and T. C. S. Team, “Ceres Solver,” 5 2022.

[31] R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard, “G2o: A general
framework for graph optimization,” in 2011 IEEE International Conference on Robotics
and Automation, pp. 3607–3613, IEEE, 5 2011.

[32] K. MacTavish and T. D. Barfoot, “At all Costs: A Comparison of Robust Cost Functions
for Camera Correspondence Outliers,” in 2015 12th Conference on Computer and Robot
Vision, pp. 62–69, IEEE, 6 2015.

[33] A. J. Trevor, J. G. Rogers, and H. I. Christensen, “Planar surface SLAM with 3D and
2D sensors,” Proceedings - IEEE International Conference on Robotics and Automation,
pp. 3041–3048, 2012.

[34] J. Henawy, Z. Li, W.-Y. Yau, and G. Seet, “Accurate IMU Factor Using Switched Linear
Systems for VIO,” IEEE Transactions on Industrial Electronics, vol. 68, pp. 7199–7208,
8 2021.

[35] TDK InvenSense, IIM-46234 and IIM-46230 Datasheet, 10 2022. 1.3.

Master of Science Thesis Koushik Kumaran

56 Bibliography

Koushik Kumaran Master of Science Thesis

Glossary

List of Acronyms

IMU Inertial Measurement Unit
LIDAR Laser Imaging Detection and Ranging
SLAM Simultaneous Localization and Mapping
RGB-D Red-Green-Blue-Depth
DoF Degrees-of-Freedom
RANSAC RANdom SAmple Consensus
ODR Output Data Rate
MHE Moving Horizon Estimation
MAP Maximum A-Posteriori
RMSE Root Mean Square Error
MSC-KF Multi State Constraint-Kalman Filter
VIO Visual-Inertial Odometry
EKF Extended Kalman Filter
ROS Robot Operating System

Master of Science Thesis Koushik Kumaran

58 Glossary

Koushik Kumaran Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements

	Main Matter
	Introduction
	Motivation
	Problem Statement and Key Challenges
	Summary of Contributions
	Thesis Outline

	Preliminaries
	Coordinate Frames
	Pose and Twist Representations
	Motion Models
	Differential Drive Model

	Sensors
	Wheel Encoders
	Inertial Measurement Unit (IMU)
	LIDAR
	RGB-D Camera

	Related Work

	2D Pose Estimation
	Line Feature Extraction
	Line Feature Model
	Identifying Line Feature Points
	Clustering
	Unweighted Initial Line Fitting
	Weighted Line Fitting

	Line Merging and Tracking
	Feature Tracking

	Fusing Line Features with Wheel Encoder Measurements
	Line Factor
	Generating Encoder Factors
	Encoder Factor
	Maximum A-Posteriori Estimation

	Full 3D Motion Estimation
	Dynamic Model
	Measurement Models
	Extended Kalman Filter
	Square Root Formulation

	Experiments and Results
	Simulations
	Error Analysis
	Results and discussion

	2D Pose Estimation: Real World Experiments
	Experiment 1: Straight-Line Trajectory
	Experiment 2: Closed Loop Trajectory
	Results and discussion

	Full 3D Motion Estimation
	Experiment 1: Wheel Slip
	Experiment 2: Rolling and Pitching
	Results and Discussion

	Conclusions and Recommendations
	Future Work

	Appendices
	Non-Linear Optimization
	Linearisation
	Jacobians

	Noise covariances and hyperparameters
	2D Pose Estimation
	Full 3D Motion Estimation

	Back Matter
	Bibliography
	Glossary
	List of Acronyms
	List of Symbols

