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SUMMARY

Music consumption has skyrocketed in the past few years with advancements in in-
ternet and streaming technologies. This has resulted in the rapid development of the
inter-disciplinary field of Music Information Retrieval (MIR), which develops automatic
methods to efficiently and effectively access the wealth of musical content. In general,
research in MIR has focused on tasks like semantic filtering, annotation, classification
and search. Observing the evolution of MIR over the years, research in this field has
been focusing on“what music is” and in this thesis we move towards building tools that
can analyse “what music does” to the listener. There is little research on building systems
that analyse how music affects the listener or how people use music to suit their needs.
In this thesis, we propose methods that push the boundaries of this perspective.

The first major part of the thesis focuses on detecting high-level events in music
tracks. Research on event detection in music has been restricted to detecting low-level
events viz., onsets. There is also an abundance of literature on music auto-tagging,
where researchers have focused on adding semantic tags to short music snippets. How-
ever, we look at the problem of event detection from a different perspective and turn to
social music sharing platform – SoundCloud to understand what events are of impor-
tance to the actual listeners. Using a case-study in Electronic Dance Music (EDM), we
design an approach to detect high-level events in music. The high-level events in our
case-study have a certain impact on the listeners causing them to comment about these
events on SoundCloud. Through successful experiments, we demonstrate how these
high-level events can be detected efficiently using freely available but noisy user com-
ments. The results of this approach inspired us for further research to investigate other
tasks that can give us more insight into how music affects the listener.

The second major part of the thesis concerns identifying music that can support dif-
ferent common activities – working, studying, relaxing, working out etc. A certain type of
music is suitable for enabling listeners to perform a certain task. We first investigate what
activities are important from a listeners’ perspective, for which music is sought, through
a data-driven experiment on YouTube. After illustrating how existing music metadata
like genre, instrument is insufficient, we propose a method that can successfully classify
music based on the activity categories. An important insight from our experiments is
that dividing the music track into short frames is not an effective method of feature ex-
traction for activity-based music classification. This task requires a longer time window
for feature extraction. Additionally, presence of high-level events like drop can affect the
classification performance.

After successful validation of our idea on activity-based music classification, we went
on to investigate what can potentially distract a listener while doing a task. For this, we
gathered valuable input from users of Amazon Mechanical Turk (AMT) on what musi-
cal characteristics distract them while doing their tasks. Based on this input, we built
a system that can automatically detect a derail moment in a given music track, where

xi



xii SUMMARY

the listener could potentially get distracted (derailed). Though this task seems to have
a likely subjective component, we demonstrated that there are universal aspects to it as
well. Through a literature survey and computational experiments, we demonstrate that
we can automatically detect a derail moment.

Throughout the thesis, we also stress on the importance of crowdsourcing platforms
like AMT and social media sharing platforms like SoundCloud, and YouTube in under-
standing the user’s requirements and gathering data. We believe that our proposed meth-
ods and their outcomes will encourage future researchers to focus on this breed of MIR
tasks, where the focus is on how music affects the listener. We also hope that the insights
gained through this thesis will inspire designers and developers to build novel user in-
terfaces to enable effective access of music.



SAMENVATTING

In de afgelopen jaren is men mede door de technische vooruitgang op het gebied van
internet- en streamingtechnologiën enorm meer naar muziek gaan luisteren. Dit had tot
gevolg dat de ontwikkeling van het interdisciplinaire onderzoeksgebied Music Informa-
tion Retrieval (MIR), waarin men automatische methoden ontwikkelt om een overvloed
aan muziekcontent efficiënt en effectief te kunnen benaderen, in een stroomversnel-
ling raakte. In het algemeen heeft MIR-onderzoek zich voornamelijk gericht op taken
als het semantisch filteren, annoteren, classificeren en zoeken van muziek. Als we be-
schouwen hoe het onderzoeksgebied zich over de jaren heeft geëvolueerd, zien we dat
MIR zich vooral bezig heeft gehouden met de vraag “wat muziek is”. In dit proefschrift
richten we de aandacht op een andere vraag en richten we ons op het ontwikkelen van
methoden om te kunnen onderzoeken “wat muziek met de luisteraar doet”. Tot nu toe
is er weinig onderzoek gedaan naar het bouwen van systemen die analyseren hoe mu-
ziek de luisteraar raakt of hoe men muziek gebruikt om in hun behoeften te voorzien.
In dit proefschrift stellen we methoden voor die de grenzen van dit perspectief zullen
verleggen.

In het eerste grote deel van dit proefschrift richten we ons op het detecteren van
veranderingen in muzieknummers, oftewel gebeurtenissen, op een hoger, semantisch
niveau, in tegenstelling tot eerder onderzoek dat zich vooral beperkte tot het detecte-
ren van veranderingen op laag niveau, namelijk het detecteren van onsets. Er is ook een
overvloed aan literatuur over het automatisch taggen van muziek voorhanden, waarin
onderzoekers zich hebben gericht op het toekennen van semantische labels aan korte
muziekfragmenten. Wij benaderen het vraagstuk van gebeurtenisdetectie echter van
vanuit een ander perspectief en keren ons tot het sociale muziekdeelplatform Sound-
Cloud om te leren begrijpen wat voor gebeurtenissen werkelijk interessant zijn voor luis-
teraars. Op basis van een casestudy over elektronische dansmuziek (EDM) ontwerpen
we een aanpak om hogere gebeurtenissen in muziek te kunnen detecteren. Deze ge-
beurtenissen in onze casestudy hebben een bepaalde impact op luisteraars die ervoor
zorgt dat zij hierover reacties achterlaten op het SoundCloud-platform. Door middel
van succesvolle experimenten tonen we aan hoe deze hogere gebeurtenissen efficiënt
kunnen worden gedetecteerd door gebruik te maken van de vrijelijk beschikbare, doch
met ruis gevulde gebruikersreacties. De resultaten van deze aanpak inspireerden ons om
verder onderzoek te plegen naar andere taken die ons meer inzicht kunnen geven in hoe
muziek de luisteraar beïnvloedt.

Het tweede grote deel van dit proefschrift behandelt het identificeren van muziek
dat algemene activiteiten, waaronder werken, studeren, ontspannen, sporten, enz., kan
ondersteunen. Bepaalde typen muziek zijn geschikt om gebruikers in staat te stellen om
bepaalde taken uit te voeren. We onderzoeken eerst via een datagedreven experiment op
YouTube wat voor activiteiten door muziekluisteraars belangrijk worden gevonden en
waarvoor ook muziek wordt gezocht. Nadat we hebben aangetoond dat reeds bestaande

xiii
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muziekmetadata zoals genre en gebruikte instrumenten tekortschieten, stellen we een
methode voor die succesvol muziek kan classificeren op basis van de eerder gevonden
activiteitscategorieën. Een belangrijk inzicht verkregen middels onze experimenten is
dat het opknippen van een muzieknummer in korte frames niet een effectieve manier is
om kenmerken te extraheren voor de classificatietaak in kwestie, maar dat deze op ac-
tiviteiten gebaseerde muziekclassificatietaak juist een groter tijdvenster vereist. Boven-
dien kan de aanwezigheid van hogere gebeurtenissen in muzieknummers zoals drops de
classificatienauwkeurigheid beïnvloeden.

Na het succesvol valideren van ons idee voor activiteiten gebaseerde muziekclassi-
ficatie onderzochten we wat luisteraars mogelijk kan afleiden terwijl zij bezig zijn met
een taak. Hiervoor verzamelden we waardevolle input van gebruikers van Amazon Me-
chanical Turk (AMT) over welke karakteristieke kenmerken in muziek hun van een taak
kunnen afleiden. Op basis van deze input bouwden we een systeem dat automatisch
een ’ontspoormoment’ in een gegeven muzieknummer, d.w.z. een moment waarop een
luisteraar mogelijk kan worden afgeleid of ontspoord kan raken, kan detecteren. Hoewel
deze taak aannemelijk een subjectieve component lijkt te bevatten, tonen we aan dat er
ook universele aspecten aan hangen. Met behulp van een literatuurstudie en computer-
simulaties tonen we aan dat het mogelijk is om zo’n ontspoormoment automatisch te
kunnen detecteren.

Door heel het proefschrift heen benadrukken we ook steeds hoe belangrijk crowds-
ourcing platforms als AMT en sociale mediadeelplatformen als SoundCloud en YouTube
zijn in het begrijpen van gebruikersbehoeften en het verzamelen van data. We geloven
dat onze voorgestelde methoden en bijbehorende resultaten toekomstige onderzoekers
zullen aanmoedigen om zich te concentreren op het type MIR-taken waarin de focus ligt
op hoe muziek de luisteraar raakt. We hopen ook dat de in dit proefschrift verkregen
inzichten ontwerpers en ontwikkelaars zullen inspireren om vernieuwende gebruikers-
interfaces te bouwen die effectieve toegang tot muziek mogelijk zullen maken.
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2 1. INTRODUCTION

1.1. THE MANY VALUES OF MUSIC
The ease of availability of music through various portable devices and online music
streaming services (e.g., Spotify, Pandora, YouTube) has led to an increase in music con-
sumption. A recent survey [1] indicates that music is the second most consumed type
of media after video. Consumption of music has also increasingly broadened in scope,
addressing a wide range of applications and contexts [2] and revealing a plethora of func-
tions of music listening [3], as illustrated in Figure 1.1.

Figure 1.1: Various functions of music listening [3]

Functions of Music
Listening

Cognittive

Eudaimonic

Goal attainment

Everyday listening

Music focused
listening Sleep aid

Creating a personal
space

Affective

Social

Background 
Passive
Entertainment
Dance

Motivation
Persistence
Task
Enjoyment

Transcendence
Motivation
Therapy
Awe

Cognitive stimulation
and enhancement

Mood
improve
positive affect
Reminiscence
Security

Atmosphere
group form
social
connect

To create a personal
space

Sleep aid
Music appreciation
Music education
Lyrics

Compared to the past where music-focused listening and everyday listening domi-
nated as the ways of consuming music, more and more insight has been gained regard-
ing other values music could bring to a listener. For instance, music can help a person
achieve a goal while performing an activity. An example of this is to help a person focus
while studying, or improve and maintain the motivation while working out. Hence the
“Music in Use” title of this thesis; in this thesis, we will illustrate how we can incorporate
this information in expanding Music Information Retrieval (MIR) research.

In parallel with the increasing awareness of broader value that music could have for
listeners, the research on the tools for automatically analysing music has gained tremen-
dous momentum over the past decade. This led to a rapid development of the interdisci-
plinary MIR research field. Observing the research in MIR in general [4], one can say that
most of the research has been focusing on extracting and understanding the information
from a music signal and investigating a variety of ways to interpret a music signal. The
tasks mostly addressed by this research are semantic filtering (e.g. event detection), an-
notation (e.g., auto-tagging [5][6][7][8][9], structure segmentation [10][11][12][13]), clas-
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sification (e.g., genre [14][15]/instrument [16][17]) and search (e.g., “give me more music
that is similar to this music track” [18][19]). From the perspective of the scheme in Fig-
ure 1.1, this research has been instrumental in facilitating mainly the traditional music-
focused listening and everyday listening as modes of music consumption.

The main question underlying the research reported in this thesis is how we can in-
corporate the other functions of music that can broaden its usefulness in terms of the
effect it has on the listeners. This perspective has garnered little attention from the MIR
research community so far, with only a few researchers in the music emotion recognition
field focusing on it [20] [21] and an exploratory study on music usage [22].

In order to provide an answer to the above question, we investigated how we can ex-
pand MIR research to address other functions in Figure 1.1 than the two mentioned be-
fore. In this investigation, we relied on insights from the fields of psychology and neuro-
science to build machine learning algorithms operating on music signals, that can make
music more useful to people. We note that the work reported in this thesis is not a vali-
dation of the various psychological theories on the functions of music listening; instead,
in our work, we use long-established theories as a motivation to design and build our
algorithms.

1.2. MOVING FROM WHAT MUSIC IS TO WHAT MUSIC DOES
In the context of this thesis, we group the tasks in MIR as illustrated in Figure 1.2. The
first two columns illustrate the tasks focusing on extracting low- or semantic-level infor-
mation from music signals. The third and fourth column respectively, address the tasks
that we refer to as “Affective” and “Music as Technology” tasks. Looking at the columns,
as we move from left to right in Figure 1.2, we see a gradual transition from “what music
is” to “what music does” to a listener. As indicated above and in [23], the previous re-
search in MIR has focused mainly on the first two columns, and lately also on the third
one. The least addressed is the “Music as Technology” column, which also defines the
scope of the research reported in this thesis.

In order to provide better understanding of what this fourth column stands for, we
note that event detection in music had so far been restricted to low-level events like note
onsets. There is little to no research in terms of detecting events at a higher abstraction
level. There is substantial research in identifying structural boundaries in a music track
[24] [25] [26], but it is still not exactly event detection. We attempt to detect such high-
level events that are recognisable by the listeners (Chapter 2.1 and 2.2).

Additionally, we also note that many of the online music streaming services offer
playlists to cater to different situations. Here are a few examples from YouTube (often
rated as the most used music streaming service [27]):

1. Music to help listeners to concentrate on their work on YouTube [28].

2. Music to help listeners to workout [29].

3. Music that can be played in a restaurant while people are having their dinner [30].

Such mixes/playlists are available on multiple platforms (e.g., Spotify, Pandora, Google
Play, Focus@will, Brain.fm) and attract a lot of attention. Increasing availability and pop-
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ularity of these options is an indication that listeners indeed use music as a tool (“music
as technology”) to accomplish another activity.

The research reported in this thesis was inspired by the many drawbacks to the ex-
isting “music as technology” services/playlists (Chapters 3 & 4). One of these disadvan-
tages is that most of the playlists are human-curated or the music is electronically re-
mastered. Studies in music listening behaviour indicate that people prefer self-created
music playlists to the ones automatically created or generated by another human, and
would like to have more control on the playlist creating process [2]. We therefore focused
on addressing these drawbacks and investigating new methods and algorithms that can
help listeners in their search for music to use as a tool in a given situation.

Figure 1.2: Classification of Music Information Retrieval tasks

Music track

What music is? What music does?

Low-level
e.g., note onsets

Semantic
e.g., genre

Affective
e.g., emotion

Music as Technology
e.g., activity classification

Music analysis scenarios Focus of the thesis

1.3. CONTRIBUTIONS OF THIS THESIS
In view of the information provided above, we can now reformulate the main question
underlying the research of this thesis as follows: How can we extend the MIR research
from analysing “what music is” and develop tools for automatically discovering “what
music does”, thereby increasing the value of music to people?

We searched for answers to this question by developing MIR methods and algorithms
that could potentially help listeners who use music as a tool to accomplish another ac-
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tivity. Specifically, we focused on the scenario in which people use music to get them
through common daily activities like relaxing, studying, working and workout. As a
case study to start the investigation on music as technology, we worked in Chapters 2.1
and 2.2 on detecting socially significant events in Electronic Dance Music (EDM). These
events are at a higher abstraction level than those typically targeted in the MIR literature
and serve to increase the (emotional) effect of EDM on the audience. We refer to these
events as “socially significant” because they are popular in social media circles, implying
that they are readily identifiable and contribute to a large extent to how listeners expe-
rience a certain music track or music genre. In addition to being popular, these events
affect the listeners by eliciting explicit emotional reactions on social media. In our inves-
tigation, we identified three events of particular interest in our Socially Significant Music
Events dataset: Drop, Build, and Break. These events can be considered to form the ba-
sic set of events used by EDM producers [31]. What makes the detection of these events
difficult, is their strongly varying temporal structure and complexity. Our initial work on
music event detection played a significant role in developing our subsequent research
directions.

In the spirit of using music as a tool to accomplish another activity, we then investi-
gated in Chapter 3 the possibility of classifying music in the categories suitable for dif-
ferent activities. Unlike the common practice and previous work [32], we did not pre-
define the activity classes ourselves. Instead, we resorted to the most commonly used
music streaming service, YouTube [27], to tell us what activities are the most common
for which music is sought. Through a data-driven approach, we identified the three
most common activity categories: Relax, Study, and Workout. Once we identified the
activity categories, we then looked at the possibility of classifying music for each of them
using existing metadata like genre, instrument, and artist. Our empirical results indi-
cate that this metadata is not sufficient for classifying music for different activities. We
then moved onto exploring the content-based classification of music using low-level and
high-level features.

It often happens that one is listening to a particular music track while working on a
task and it starts out fine. Suddenly, something happens in the music and one needs to
skip/change the track in order to continue working. We call the moment at which a track
becomes unsuitable for working a “derail” moment. Inspired by an end-user applica-
tion, which can automatically skip to the next song when there is an approaching derail
moment in the current track, we investigated in Chapter 4 the possibility for building a
derail moment detector. Additional inspiration comes from social media sharing plat-
forms like YouTube, where users can leave comments about the tracks. As an example,
people leave comments about music tracks titled as being instrumental, but in which
they encounter vocals they found to be disturbing for studying [33]. The biggest chal-
lenge in detecting derail moments in music is to discover the what constitutes such a
moment. In order to get more insight into this, we relied on literature from psychology
and neuroscience, but also on the information acquired from a large number of users via
the Amazon Mechanical Turk (AMT), an online crowdsourcing platform. Building upon
the insights from AMT and literature, we developed a method to automatically detect a
derail moment in a music track.

Another important contribution of this thesis is that we have made the datasets, used
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in our research, publicly available. We strongly believe and hope that releasing the anno-
tated data would encourage researchers to build upon our research and develop innova-
tive user-oriented applications. For event detection, we provide the IDs of music tracks
from SoundCloud and the corresponding timed comments mentioning the events (Mu-
sic events dataset). For our subsequent work on identifying music for common activities,
we collected a lot of YouTube mixes for the following three activities: studying, relaxing,
and working out. We have made the unique IDs of these YouTube tracks available online
(Music for activities dataset). A significant element of this dataset is that the mixes are
long and from a variety of genres, providing a wealth of information for researchers to
carry out varied experiments. Similarly, we also released the dataset we used for evaluat-
ing our method to automatically detect a derail moment in music tracks (Derail moment
dataset). As a part of this dataset, we released the IDs of YouTube music tracks and the
corresponding annotations provided by workers on Amazon Mechanical Turk.

1.4. HOW TO READ THIS THESIS
For the technical part of the thesis, original publications have been adopted as chap-
ters 2.1, 2.2, 3, and 4. The references to the corresponding publications are given in the
footnote at the beginning of each chapter. Since some of the papers have appeared in
conferences and some in scientific journals, the length and depth of the chapters also
varies accordingly. Since we retained the original form of the publications, there may be
variation in the notation and terminology across the chapters. Also, if chapters address
the same general topic, there may be similarity in the motivation, argumentation and
some of the material (e.g., sections on related work) they cover.
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2.1
DETECTING SOCIALLY

SIGNIFICANT MUSIC EVENTS

USING EXPERT ANNOTATIONS

In this chapter, we focus on event detection over the timeline of a music track. Such tech-
nology is motivated by the need for innovative applications such as searching, non-linear
access and recommendation. Event detection over the timeline requires time-code level
labels in order to train machine learning models. We focus on three events, which are
socially significant, and play a key role in a music track’s unfolding and are popular in
social media circles. These events are interesting for detection, and here we leverage the
annotations provided by experts manually listening to all the tracks. The conclusions we
draw during this study provide useful insights that motivates further research in the field
of event detection.

This chapter is part of a paper published in the IEEE Transactions on Multimedia [1].
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2.1.1. INTRODUCTION
Event detection in multimedia is an important field of research and has many applica-
tions, especially with the fast growing popularity of multimedia on the web. It has been
extensively studied in the context of videos, where currently a broad set of event cate-
gories at various levels of semantic complexity can be detected [2]. Research on event
detection in music has, however, so far focused mainly on topics like onset detection [3],
music structure segmentation [4] and auto-tagging [5].

In this chapter, we look at the problem of event detection in music from a different
perspective, guided by two fundamental questions:

1. What events are most interesting to detect?

2. How to detect these events effectively?

Answering these questions can be approached guided by the following considera-
tion. A machine learning approach to event detection typically requires a large number
of labels in order to train machine learning models [6]. In this chapter, we focus on pro-
viding the necessary background information on event detection and then propose a
method to automatically detect these events on the timeline of a music track.

We focus on the domain of electronic dance music (EDM) as a testbed for developing
and evaluating our approach. This domain is interesting for investigation due to a num-
ber of socially significant event categories, as elaborated in more detail in Section 2.1.2.
We discuss the related work in Section 2.1.3, and then proceed towards explaining our
approach and its methodological steps in Section 2.1.4. We present an analysis of our
dataset in Section 2.1.5, while the experimental setup and results of the method are de-
scribed in Section 2.1.6.

2.1.2. CASE-STUDY: EVENTS IN EDM
Electronic Dance Music (EDM) is an umbrella term for different genres of electronic mu-
sic, like Techno, Dubstep, House, Electro. Producers of EDM tracks use different musical
elements, like beat, tempo, sound energy or loudness, to shape the music tracks and the
events occurring in them. For the purpose of this chapter, we use the following set of
events: Break, Drop and Build. They are defined as follows [7]:

• Break: A section in an EDM track with a significantly thinner texture, usually marked
by the removal of the bass drum.

• Drop: A point in the EDM track, where the full bassline is re-introduced and gen-
erally follows a recognisable build section.

• Build: A section in the EDM track, where the intensity continuously increases and
generally climaxes towards a drop.

These events can be considered to form the basic set of events used by the EDM
producers [7]. They have a certain temporal structure internal to themselves, which can
be of varying complexity. Their social significance is apparent from the presence of a
large number of timed comments, related to these events, on SoundCloud. Listeners
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react to these events after they occur, or anticipate these events and react to them even
before they occur. As an example of the latter case, the timed comment in this track1

with the text “Here comes the drop” comes at the timestamp 00:50, while the actual drop
happens at 01:00.

2.1.3. RELATED WORK
In this section, we provide an overview of the previous work related to audio event de-
tection. Here, we explain to which extent we rely on the state-of-the-art, and what is new
in our approach.

2.1.3.1. AUDIO EVENT DETECTION
Research related to audio event detection can broadly be divided into three categories:
environmental sound recognition, music event detection and music structure analysis.
Environmental sounds that can be detected in a given audio stream include, for exam-
ple, bell ringing, applause, footsteps or rain. Various features and learning methods
have been proposed to model the typically non-stationary characteristics of the envi-
ronmental sounds [8]. We mention here as an example the usage of image processing
techniques on a spectrogram image, as proposed in [9], for this purpose. These events
typically come from a different acoustic source other than the background audio, while
in our case, the musical events in question are part of the continuous music stream.
In this chapter, we use the same spectrogram image to extract features. In addition to
the spectrogram image, we also explore other image representations: self-similarity ma-
trix, auto-correlation matrix. Some other methods look specifically for the presence of
speech in a given audio stream [10]. Given an audio stream, such methods also try to
locate segments that contain speech and also identify attributes of speech like fricatives
or non-fricatives [11], [12]. Speech related event detection in audio supports automatic
speech recognition.

Event detection in music has generally focused on detecting low-level events like on-
sets [3]. Music onset detection is a well-studied problem in music information retrieval
(MIR) and it serves as a task in the MIREX benchmark evaluation every year. Another
way of approaching music event detection is music auto-tagging [5], which assigns de-
scriptive tags to short segments of music. It is also addressed by a task in MIREX, under
the name Audio Tag Classification2, where descriptive tags needs to be associated with
10-second music segments. These tags generally fall into three categories: musical in-
struments (guitar, drums, etc.), musical genres (pop, electronic, etc.) and mood based
tags (serene, intense, etc.).

In music structure analysis [13], the objective is to divide a given piece of music into
its various sections and later group them based on their acoustic similarity. It is an im-
portant task since structural elements give to a piece of music its identity. For example,
in popular music tracks these structural elements could be the intro, the chorus, and the
verse sections. Different aspects of musical expression have been deployed for analysing
the musical structure, such as homogeneity (e.g., in instrumentation), repeating patterns

1Link active if viewed online.
2http://www.music-ir.org/mirex/wiki/2015:Audio_Tag_Classification

https://soundcloud.com/spinninrecords/ummet-ozcan-lose-control-original-mix
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(e.g., in rhythm or melody) and novelty (e.g., through a change in tempo or tonality).
Regarding temporal analysis of the music track and event modelling using audio-

visual features, in our approach we largely build on the state-of-the-art methods dis-
cussed above, as explained in more detail in Section 2.1.4.3. Specifically, we deploy ex-
isting structure segmentation methods that give us an indication of the probable posi-
tion of events and we use this information to distinguish between event and non-event
segments. For feature extraction and event modelling, we build on spectrogram-based
signal representation and on a number of proven audio features.

2.1.4. PROPOSED FRAMEWORK FOR EVENT DETECTION
We propose a machine learning algorithm that learns a model per event category, which
will later be used to detect the event in a new track. We apply this algorithm to our three
events of interest: drop, break and build. In addition to predicting whether an event
occurs in a music segment, we also locate the start point of the event.

Figure 2.1.1 illustrates our approach and its main methodological steps. The stage
of “Filters” in the highlighted part of Figure 2.1.1 is to filter the noisy timed comments
and pass only the selected timed comments to the training stage. In this chapter, we
concentrate on building a method relying only on expert annotations and the method
using the timed comments is explained in detail in the next chapter (Chapter 2.2).

Feature 
Extraction 

Model 
Training 

Timed 
comments 

Expert 
labels 

Classification Evaluation 

Training Data 

Test Data 

Segment 
extraction 

Feature 
Extraction 

Segment 
extraction 

Filters 

Figure 2.1.1: A schematic view of the different steps in our approach. Note the two different sources of labels:
timed comments and expert labels. Changes occur within the part of the model enclosed by the dashed line

depending on the source of training labels used.
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2.1.4.1. SEGMENT EXTRACTION

In this step, we use two different strategies used to to obtain a unit of classification:
Music structure segmentation (MSS) and Fixed-length segmentation (FLS). For MSS, we
perform music structure segmentation on the music track and then extract fixed length
classification windows centred at the segment boundaries. These windows are the unit
that is used further for feature extraction, training, and prediction. The motivation be-
hind choosing to perform structure segmentation is that the structural boundaries in a
track can potentially give us start point of the events. For example, a break is a part of an
EDM track where the texture is considerably thinner compared to the rest of the track.
We hypothesise that the point where the texture becomes thin will be associated with a
structural boundary, and for this reason we take our unit of classification to be a window
around this boundary. This hypothesis that music events occur at or near boundaries is
validated later with an analysis of the dataset in Section 2.1.5.1. Exploratory experiments
indicated that the music structure segmentation method proposed in [4] gives a good
first approximation of the event positions in an EDM track, when compared to other
segmentation methods proposed in [14] and [15]. For this reason, we use the method of
[4] for MSS.

For FLS, we divide the track into fixed length segments of duration t seconds with
an overlap of t/2 seconds between successive segments. Here, we use the full segment
of t seconds as the classification unit, unlike MSS where we extract a classification win-
dow after segmentation. For this strategy, we do not have the prior knowledge provided
by MSS, which means that when we use it our event detection approach becomes com-
parable to music auto-tagging. Figure 2.1.2 illustrates the two different segmentation
strategies.

Fixed length segmentation Music structure segmentation

Fixed length segments Variable length structural segments

Figure 2.1.2: Two different strategies for segmenting a music track: structure segmentation and fixed-length
segmentation.
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2.1.4.2. STRATEGIES FOR DEPLOYING TRAINING LABELS
We have the timestamps of our three events of interest from two different sources: ex-
perts and timed comments (the procedure to acquire these labels is explained in detail in
Section 2.1.5). Each segment coming from the segment extraction algorithm is given two
labels depending on whether the timestamp given by an expert or a timed comment falls
within the segment. We use four different strategies to obtain a trained model: training
using expert labels (EL), training using timed comments (TC), training after combining
expert labels with timed comments (CELTC) and training after combining expert labels
with filtered timed comments (CELFTC). Expert labels are gold standard labels that can
be relied upon and timed comments serve as weak labels. The part of Figure 2.1.1 en-
closed by the dashed line changes based on which of the above strategies we use for
training.

In the EL strategy, we label a segment as a positive example for an event if an expert
label falls within the segment, while the other segments are taken as negative examples.
Recall that segments here refer to the classification window extracted around the struc-
tural boundary for MSS and the whole segment of t seconds for FLS. We consider this
strategy (EL) to be the best possible scenario because we have labels given by experts
and the model trained on these labels should be able to make a reliable prediction. We
take the performance of this strategy as an upper limit and refer to the EL strategy as the
baseline event detector (Section 2.1.6.3). Other strategies (TC, CELTC and CELFTC) are
deemed successful if their performance is close to the performance of the baseline event
detector. These strategies are explained in detail in Chapter 2.2.

2.1.4.3. FEATURE EXTRACTION
The input to the feature extraction module is a fixed-length music segment (obtained
from the following two strategies: MSS and FLS) and the output is a feature vector, which
is then used for training a model. We explored image and audio information to choose
what features to extract. Here, we provide details about the features from different sources
and their corresponding dimensionality.

IMAGE FEATURES

The time-frequency representation of the music signal (spectrogram) has been used in
sound event recognition [16]. Figure 2.1.3 shows the pattern representing a drop in the
spectrogram. Observing Figure 2.1.3, we can see a sweeping structure indicating the
buildup of intensity followed by a sudden drop (red vertical line). We are interested in
capturing such patterns, which are unique for certain events in the music. We are not
looking for specific frequency values, but rather for patterns that can help us distinguish
between music segments containing the event and segments not containing the event.
In addition to the spectrogram, we also explore other image representations of an audio
signal: auto-correlation and the self-similarity matrix, visualised as images.

In order to calculate image features, we divide each image into rectangular cells of
equal size and extract second- and third-order statistical moments from these cells. We
divide an image of size 738×927 into 9×9 rectangular cells of size 82×103 to compute the
features. We compute the second and third order moments for all three channels: red,
green and blue. Moments from cells of each channel are then concatenated to construct
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Figure 2.1.3: Spectrogram of a segment containing a drop. One can observe a sweep-like structure on the left
side of the figure. The red vertical line indicates the position of the drop.

a feature vector with a dimensionality of 486 (9×9×2×3), which is further used to train
a model. The central moment of order k (mk ) of a distribution is defined as follows: mk

= E(x −µ)k .

We use the following sets of features with the specified dimensionality: second and
third central moments with rectangular cells on spectrogram (486), second and third
central moments with rectangular cells on auto-correlation (486), second and third cen-
tral moments with rectangular cells on self-similarity matrix from spectrogram (486),
second and third central moments with rectangular cells on self-similarity matrix from
auto-correlation (486).

AUDIO FEATURES

When choosing a set of audio features that will help in distinguishing a segment contain-
ing an event and a segment not containing the event, we consider the general character-
istics of an audio event and focus on rhythm, timbre and dynamics as feature categories.
We use the following features to capture the component of rhythm as explained in [17]:
rhythm patterns (RP), rhythm histogram (RH), temporal rhythm histogram (TRH) and
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statistical spectrum descriptors (SSD)3. In addition to these, we also use other features:
tempo (measured in beats per minute), number of beats in a segment, average and stan-
dard deviation of the difference between the locations of successive beats4. In order to
capture the timbral variations, we compute the statistics from the frame-wise MFCC and
frame-wise zero-crossing rate (ZCR). The dynamics of the signal change over the course
of the build-up towards the drop. To capture these dynamics, we use the statistics (mean,
std, var, average of first order derivative, average of second order derivative) computed
from the frame-wise RMS energy.

In summary, we use the following set of features with the corresponding dimension-
ality: RMS energy (5), MFCC (65), ZCR (5), RP (1440), RH (60), TRH (168) and SSD (420).

2.1.4.4. FEATURE SELECTION AND TRAINING
As observed in the previous section, the dimensionality of the features is high and this
in-turn could lead to problems like over-fitting or longer training times. In order to avoid
such problems, we perform feature selection on the combined features from each of the
two modalities (audio and image). We use a feature ranking method, where a score is
computed for each dimension of the feature vector and the features are ranked based
on this score. We compute the score by measuring the statistical dependency (SD) of
the feature values on the corresponding class labels as done in [18]. SD is a measure
that quantifies whether the feature values are dependent on the class labels or they co-
occur by chance. Since we obtain a ranking of the features using this method, we need to
determine which of the top-k features need to be included and we use cross-validation
to make this choice.

Another important choice to make is the type of model to use. We choose a Sup-
port Vector Machine with a Radial Basis Function kernel because of its discriminative
nature, simplicity and wide applicability. Here, we say a few words about why Hidden
Markov Models, a common model used for time series data, are inappropriate for our
problem. Hidden Markov Models work well for tasks like speech recognition and pho-
netic segmentation [19]. The strength of HMMs for these tasks is twofold: their ability
to predict in the face of the uncertainty of event boundaries (word and phone bound-
aries) in the speech signal and their ability to model sequence information. In contrast,
for our music event detection task, we have a high degree of certainty that an event will
be located around a structural boundary. The challenge we face is uncertainty with re-
spect to identification, rather than with respect to segmentation. In our problem, the
amount of sequential information is limited to the fact that non-events alternate with
events. This information is well captured by our segmentation approach, which also
enforces constraints with respect to how closely two detected events can occur to each
other. Although HMM architectures can be designed to capture long-distance depen-
dencies, such designs, would come at the cost of an explosion in the number of param-
eters. Apriori we can anticipate such architectures to be ineffective since they ignore the
constraints inherent to the structure of our problem.

With an RBF kernel, there are two parameters, which need to be optimised in an
SVM: C and γ. The cost parameter C controls the trade-off between complexity of the

3http://www.ifs.tuwien.ac.at/mir/musicbricks/index.html#RPextract
4https://acousticbrainz.org/static/download/essentia-extractor-v2.1_beta2-1-ge3940c0-win-i686.zip
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decision rule and the frequency of error, while γ is the Gaussian kernel parameter [20].
We perform a grid-search for these parameters using cross-validation and obtain the pa-
rameters that give the best performance. We use the cross-validation data set (80% of the
data) for this experiment. We carry out a nested cross-validation, which first determines
the k to use for selecting the top-k features, and the determines C and γ.

1. Compute SD score for each feature dimension.

2. Pick k = 50,100,150,200,250,300,350,400, where k indicates how many of the top-
k ranked features are to be picked for training.

3. For each value of k, follow these steps:

• Pick the top-k features.

• Randomly split the cross-validation data into two sets: X tr ai n (90%) and Xval

(10%).

• Take X tr ai n as the new training set and perform cross-validation (grid-search
for C and γ) to obtain the best performing model. Use this model to predict
labels in Xval .

• Repeat these steps ten times to obtain average validation performance.

4. Choose the k with the best average validation performance.

5. Select the top-k features and perform 10-fold cross-validation on the cross-validation
data to obtain the best parameters: C and γ. Now train an SVM on the actual train-
ing set using these parameters, which is further used for evaluation.

This procedure is followed while training a model for the four different strategies (EL,
TC, CELTC, CELFTC), as explained earlier.

2.1.4.5. CLASSIFICATION

While testing, we follow the same procedure: we first create classification units (using
FLS and MSS), which yields a set of segments. We then extract features, and represent
each segment using the k features that were obtained while training the model. Using
the trained model, we predict labels for the segments. Since we have three events of in-
terest: drop, break, and a build we use three binary classifiers, one for each event. The
choice of having three binary classifiers, rather than a single classifier which can predict
three classes of events, was made so that we can investigate the utility of timed com-
ments as training labels for each event individually. We train models with four different
strategies as explained in Section 2.1.4.4, and predict labels for each test segment. For
the models that use MSS, we predict the location of the event to be the mid-point of the
segment, which corresponds to a structural boundary in the original segmentation. As
we will see in Table 2.1.2, majority of the events start at a segment boundary and hence
we use the segment boundary as the start point of the event.
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Timestamp Comment
00:32 That vocal is great.. give ev-

eryone goosebump
01:01 Amazing melody
01:28 loved the drop

Table 2.1.1: Examples of timed comments on SoundCloud: text and timestamp.

2.1.5. DATASET AND ANALYSIS
Traditional music tagging datasets like MajorMiner5 use short music clips and collect
labels through crowdsourcing/gamification, while other datasets, like the million song
dataset [21], consist of whole tracks and tags collected in the wild on social networks.
The focus of this chapter is to build a machine learning model that can localise events
on the timeline and we want to achieve this goal while minimising the labelling effort.
In contrast to the existing auto-tagging datasets (mentioned above), we need data that
provides time-code level labels generated by listeners through social participation. In
our work, we therefore rely on SoundCloud as a source of music and the correspond-
ing social data in the form of timed comments. SoundCloud is an online social music
sharing platform that allows users to upload, record and share their self-created mu-
sic. Our goal is to exploit timed comments, which refer to a particular time-point in the
track, and could contain useful information about the presence of events. Specific exam-
ples of comments from SoundCloud that refer to musical phenomena are given in Table
2.1.1. Using timed comments on SoundCloud as a source also provides an additional
advantage over independent labelling of segments: the user has more context to listen
to before they react to certain parts of the music track.

We deploy the SoundCloud API6 to collect our data. Via the search functionality we
search for tracks during the year 2014 that have a Creative Commons license, which re-
sults in a list of tracks with unique identification numbers. We search the timed com-
ments of these tracks for the keywords: drop, break and build. We keep the tracks whose
timed comments contain a reference to these keywords and discard the other tracks.

We use the resulting 500 music tracks to evaluate our proposed method. Most com-
monly occurring genres in our dataset are the following: dubstep, electro and progres-
sive house. We have a total of 640 drops, 760 builds and 550 breaks in our dataset. These
numbers indicate the actual number of events in our dataset i.e., the events are counted
based on the expert labels (procedure to obtain expert labels explained later in this sec-
tion). Associated with the dataset , there are 720 comments with the word “drop”, 750
comments with the word “build” and 600 comments with the word “break”. Note that
the statistics indicate the number of timed comments that have a reference to the spe-
cific events, meaning that there could be multiple timed comments for a single event
posted by different users. We use the timestamps of these timed comments, contain-
ing reference to our events of interest, as training labels in the following strategies: TC,
CELTC, and CELFTC.

5http://majorminer.org/info/intro
6https://developers.soundcloud.com/docs/api/guide
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Event 0 sec 1 sec 2 sec 3 sec 4 sec 5 sec 6 sec
Drop 80% 1% 0% 1% 1% 0% 1%
Build 56% 4% 6% 2% 2% 3% 10%
Break 60% 10% 5% 2% 4% 6% 2%

Table 2.1.2: Percentage of different events that are t = 0,1,2,3,4,5,6 seconds close to structure segment
boundaries.

To create the expert labels, we ask a panel of 3 experts to listen to the tracks in the
dataset and mark our three events of interest on the timeline of the music track. Each
expert marks the events on the timeline of a subset of the music tracks individually. In
order to make sure that all the experts have a common understanding of the events and
the annotation procedure, we gave them a set of 20 music tracks that are not part of this
dataset, but are from the same source (SoundCloud). We ask the experts to mark the
events for these 20 tracks and we find that the three experts agree on more than 90%
of the annotations. After this check we then ask the experts to mark the timestamps of
the events on the timeline of the music tracks. After this process, we have timestamps
from two different sources: experts and timed comments, which we employ in our ex-
periments. The dataset, containing the mp3 files, timestamps of the events (both expert
labels and timed comments), is hosted on the Open Science Framework and can be ac-
cessed here: https://osf.io/eydxk/.

2.1.5.1. STRUCTURE SEGMENTATION

As indicated earlier, we hypothesise that the events would happen in the vicinity of the
structural boundaries. In order to validate our hypothesis, we look at the distance be-
tween the timestamps of the boundaries and the events in our training set. The training
set constitutes 60% of the whole dataset and contains 411 drops, 567 builds and 345
breaks. We perform MSS on the tracks in the training set and obtain the timestamps of
the boundaries. On an average, there are 13.6 segments per track in our training set.

The segment boundaries can exactly coincide with the event or can occur in the
vicinity of the event. In order to have an estimate of the distance between the event
and the segment boundary, we count the number of events at a fixed distance of s sec-
onds, where s = {0,1,2,3,4,5,6} and report our observations in Table 2.1.2. For example,
if s = 0 seconds then we count the number of events which coincide with the segment
boundaries. Similarly, if s = 3 seconds we count the number of events that are 3 seconds
away from a segment boundary. Examining Table 2.1.2, we see that a large portion of
the events (≥ 80%) are within a distance of 6 seconds from segment boundaries. It is
also interesting that 80% of the drops actually coincide with segment boundaries. These
statistics support our hypothesis that the events occur within striking distance (≤ 6 sec-
onds) of the structural boundaries.

2.1.6. EXPERIMENTAL SETUP AND BASELINE
In this section, we explain the experimental setup and report the results of our baseline
event detector. Recall that the baseline event detector is trained on expert labels and

https://osf.io
https://osf.io/eydxk/
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serves as a comparison for other proposed strategies (Section 2.1.4.2). We first explain
how we split our dataset for the different experiments. We then explain how we tune
different parameters in our approach. We also explain our choice of evaluation metrics
in this section.

We split our data at the track level into three sets: 60% training data (already men-
tioned), 20% development data and 20% test data. We do it this way in order to ensure
that we do not draw the training and testing material from the same track. This split is
used for most experiments.

2.1.6.1. PARAMETERS
In this sub-section, we look at how we choose values for different parameters in our
method. We have two different strategies: MSS and FLS. For MSS, we first segment the
track and then extract a classification window centred at the segment boundary for fea-
ture extraction. The parameter that must be set for MSS is the size of the classification
window. We explore the following values: 5, 10, 15, and 20 seconds for the size of the
classification window. For each value, we follow the procedure of feature selection and
training as explained in Section 2.1.4.4. Using this trained model, we predict the events
for tracks in development set and compute the f-scores. By following this procedure, we
obtain an optimal performance with 15 seconds as the size of the classification window.
For FLS, we divide the track into fixed length segments of duration t seconds and use the
entire segment as the classification window. We follow a similar procedure, as discussed
for MSS, and obtain an optimal performance on the development data at t = 15 seconds.

For the audio features, we use the standard configuration provided by the tools we
use for feature extraction. For the image features, we extract the spectrogram for a 15-
second music segment by dividing it into 50 ms frames with no overlap. We cap the
frequency at 1500 Hz, since we find a clear visible pattern for our musical events be-
low this frequency level. Using MIRToolbox [22], we compute the spectrogram with the
above-mentioned parameters and save the result as an RGB image that is further used
for feature extraction. Please recall that we divide the image into 9×9 rectangular cells
[9], with a cell size of 82×103 and ignore the border pixels on all 4 sides (Section 2.1.4.3).
We compute the second and third order moments from the RGB pixel values of each
cell and concatenate them to obtain a single feature vector, which is further used in the
classification procedure.

2.1.6.2. EVALUATION METRICS
We use different evaluation metrics to understand various aspects of the proposed ap-
proach. As indicated earlier, we use two different scenarios: the traditional classification
and a use case (non-linear access). For the traditional classification, we use f-score for
the positive ( f s+) and negative class ( f s−) as well as the average f-score ( f sav g ). Since
we are also marking the events on the timeline, we assess jump-in points by measuring
the distance between start point of the actual event and the predicted event. For this we
use two different distance measures: 1. Absolute distance (abs_di st ), measured as the
difference in timestamps of predicted position and ground-truth; 2. Event anticipation
distance (ea_di st ), measured as the difference in timestamps of ground truth and the
most recent preceding prediction. The distance metric, ea_di st , indicates the useful-
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ness of our method in applications like non-linear access, where the user would like to
skip to the next event. If there is no previously predicted event, ea_di st chooses the be-
ginning of the track. However, because of the length of EDM tracks and the distribution
of events, this situation does not occur in practice. The other distance metric, abs_di st ,
is only used for the purpose of comparison across the different strategies. Visualisation
of the event anticipation distance is illustrated in Figure 2.1.4

Timeline 

Actual event 

Predicted event 

ea_dist 

Figure 2.1.4: Visualisation of the event anticipation distance (ea_di st ) metric useful to evaluate jump-in
points provided to the listener in a non-linear access scenario.

2.1.6.3. BASELINE EVENT DETECTOR
We now report the results of our baseline event detector that uses only expert labels for
the entire dataset. Tables 2.1.4 and 2.1.5 report the f-scores: f s+, f s−, f sav g . Similar
results are also reported for MSS in tables 2.1.6 and 2.1.7. Observing the scores, we can
say that the features extracted from the three image representations (Table 2.1.4 and
2.1.6) perform better than the audio features (Table 2.1.5 and 2.1.7). Of all three events,
the scores for detecting the build are lower, which is understandable because it is quite
difficult, even for human listeners, to locate the start point of a build.

Here, we also report the number of features that were selected for each event. Ta-
ble 2.1.3 lists the number of features selected and the top features. We observe that the
rhythm-related features dominate the audio features while spectrogram and similarity
matrices dominate the image features.

In addition to the f-scores, we also report two other metrics, abs_di st and ea_di st
(Tables 2.1.6 and 2.1.7). We report these metrics only for MSS and not for FLS, because
the 15-second segments in FLS do not hold any specific meaning while the structural
segments in MSS are hypothesised to be the start points of our events of interest (due to
Table 2.1.2). Here, it is important to note that ea_di st considers predictions that pre-
cede the actual events on the timeline i.e., the predicted start point of the event comes
before the actual start point. After manual inspection, we observe that a majority of the
detected events precede the actual events. We use the ea_di st metric in order to quan-
tify how close the detection is to the actual event. The values of ea_di st and the above
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Event Image features Audio features
Drop 150, Auto-correlation, Spectro-

gram, Similarity matrix from
spectrogram

200, RP, ZCR, RMS, SSD, MFCC

Break 100, Spectrogram, Similarity ma-
trix from spectrogram

150, MFCC, SSD, RMS, RP

Build 200, Similarity matrices from
auto-correlation and spectro-
gram, Spectrogram

200, SSD, RP, BPM,

Table 2.1.3: Number of selected features and the top selected features.

f s+ f s− f sav g

Drop 70.3 96.1 83.2
Break 71.6 94.2 82.9
Build 69.8 89.9 79.8

Table 2.1.4: F-scores for the baseline event detector EL: FLS using image features.

findings suggest that we can direct the listener to a few seconds before the actual event
is heard. Further analysis and discussion on the significance of ea_di st is presented in
Section 2.2.7 (Chapter 2.2).

In this chapter, we discussed our music event detection approach. Our proposed ap-
proach was guided by two fundamental questions: What events are interesting to detect?
and How can we detect them effectively? In order to scope our research, we considered
EDM as our testbed and investigated the interesting events in this genre. We resorted to
social music sharing platform - SoundCloud for deciding what events are interesting to
detect. By analysing the timed comments on SoundCloud, we found that the following
events are interesting: Drop, Build, and Break. We then proposed and evaluated a ma-
chine learning algorithm to automatically detect these events in a given music track. One
of the important building blocks of our algorithm was identified as the music structure
segmentation algorithm and we utilised audio as well as image features for event detec-
tion. We trained our models on manually acquired labels from experts and consider this
as an ideal situation. We take the results presented in this chapter as a baseline to in-
vestigate the utility of timed comments as training labels. In the subsequent chapter, we
will present our findings on using timed comments to detect these high-level events of
interest (Chapter 2.2).
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2.2
DETECTING SOCIALLY

SIGNIFICANT MUSIC EVENTS

COMBINING EXPERT ANNOTATIONS

AND TIMED COMMENTS

In the previous chapter, we discussed the generic event detection approach using expert
annotations. In this chapter, we focus on how we can use timed comments for detecting
the three events of interest. We use timed comments from SoundCloud, a modern social
music sharing platform, to obtain these labels. While in this way the need for tedious and
time-consuming manual labelling can be reduced, the challenge is that timed comments
are subject to additional temporal noise, as they are in the temporal neighbourhood of
the actual events. We investigate the utility of such noisy timed comments as training la-
bels through a case study, in which we investigate three events of interest in EDM: drop,
build and break. These events are interesting for detection, and here we leverage the timed
comments generated in the course of the online social activity around them. In the exper-
iments reported in this chapter, we focus in particular on investigating to which extent
noisy timed comments can replace manually acquired expert labels. The conclusions we
draw during this study provide useful insights that motivates further research in the field
of event detection.

This chapter is part of a paper published in the IEEE Transactions on Multimedia [1].
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2.2. DETECTING SOCIALLY SIGNIFICANT MUSIC EVENTS COMBINING EXPERT

ANNOTATIONS AND TIMED COMMENTS

2.2.1. INTRODUCTION
Event detection in multimedia is an important field of research and has many applica-
tions, especially with the fast growing popularity of multimedia on the web. It has been
extensively studied in the context of videos, where currently a broad set of event cate-
gories at various levels of semantic complexity can be detected [2]. Research on event
detection in music has, however, so far focused mainly on topics like onset detection [3],
music structure segmentation [4] and auto-tagging [5].

In the previous chapter, we identified three events of interest in EDM. We then pro-
posed an automatic method to detect these three events in a music track and evalu-
ated the method using a dataset from SoundCloud. To propose an automatic method,
we stressed on the importance of structure segmentation [6] and also identified a list of
content-based features that can be extracted from the audio signal. The method utilised
the expert annotations as training labels to build a machine learning model in the previ-
ous chapter. We now turn our focus on how we can make use of the “timed comments”
that accompany a music track on SoundCloud.

A machine learning approach to event detection typically requires a large number
of labels in order to train machine learning models [7]. Acquiring these labels is ex-
pensive and time consuming process, as observed in the previous chapter (2.1). We can,
however, benefit from the increasing contextualisation of music in online social commu-
nities in order to address this problem. Users listen to music on different social music
sharing platforms, such as SoundCloud or YouTube, which allow them to express their
opinions/reactions to the music in the form of comments. SoundCloud, for example, of-
fers the possibility to its users to insert timed comments while listening to a music track.
These comments are similar to usual user comments, however, with an associated times-
tamp so that they refer to a particular part of the music track. Not only could such timed
comments serve as training labels, reducing the need for dedicated manual annotation,
but they also allow us to identify the types of events that are interesting for detection in
the first place. We refer to such events as being socially significant: as a consequence of
their recognisably, popularity and anticipation. Listeners talk frequently about them in
their comments. In this chapter, we choose to focus on detecting these socially signif-
icant events using the “timed comments”. As in the previous chapter, we focus on de-
tecting these three events: build, drop, and a break in EDM. For detecting these events,
we choose to deploy timed comments as training labels in order to improve the training
efficiency.

Usage of timed comments as training labels, however, comes with its own challenges,
in particular, the noisy nature of these comments: temporal noise. The timed comment
(referring to an event) can occur precisely at the location of the actual event, in the tem-
poral neighbourhood, or far away from the location of the actual event. Figure 2.2.1
illustrates a few possibilities of the distances between the actual event and the corre-
sponding timed comment. Because of their noisy nature, we consider timed comments
to be weak labels.

Considering the above-mentioned challenges, we propose an approach using timed
comments independently as well as in combination with manually acquired expert la-
bels to build robust machine learning models for detecting socially significant events.
Specifically, we aim to answer the following research questions:
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Figure 2.2.1: Timed comments can have temporal noise. A timed comment can be in the temporal
neighbourhood of the actual event or precisely at the location of the actual event. Event/timed-comment

pairs are in the same colour.

1. (RQ1) Are timed comments helpful in detecting socially significant events?

2. (RQ2) How helpful are timed comments in reducing the number of expert labels
needed to train detectors?

To the best of our knowledge, our work is one of the first to use timed comments as
a source of training labels for event detection in music. We explain our contributions
in Section 2.2.2 and the methodology is explained Section 2.1.4 in Chapter 2.1. The ex-
perimental setup and results for the baseline method are described in Section 2.1.6 and
Section 2.2.5 presents the overall results. We then explain how the model generalised
in Section 2.2.6 and evaluate our method from the perspective of a user application in
Section 2.2.7. Finally, we summarise our findings and provide an outlook for further re-
search in Section 2.2.8.

2.2.2. CONTRIBUTION
As reflected by our research questions in Section 2.2.1, the main goal of this chapter is
to investigate the usefulness of timed comments as labels for training event detection
models in the music audio domain. In order to provide answers to these questions, a
framework is needed in which a music track is analysed for the presence of events for
which timed comments are available. There, we first identify candidate start points and
then select a candidate as the predicted start point of the event using a machine learning
step that is trained with noisy timed comments independently. We also combine the
timed comments with expert labels. The framework uses music structure segmentation
[6]. We build our framework by drawing on previous work where possible and proposing
innovations where needed. The link between the previous work and the realisation of
our event detection framework is explained in Section 2.2.3.

The framework serves as a vehicle for obtaining insight on the helpfulness of timed
comments for event detection. Our findings are communicated in the analysis and dis-
cussion of our experimental results in Sections 2.1.6 and 2.2.5. The framework design
choices, such as filtering social data based on expert labels, described in Section 2.2.4.1,
are made in order to make it possible to answer our research questions.
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In this chapter, we consider the helpfulness of timed comments from two different
perspectives, which correspond to two different evaluation scenarios. The first is the
signal perspective and this is represented by the conventional performance metric: f-
score. We analyse changes in f-score to determine whether we have improved the ability
of our approach to detect and exactly localise an event. The second is a user perspective
and this reflects the ability of an event detector to support user-facing applications. We
choose the application of non-linear access to represent this perspective. A non-linear
access system places markers for predicted events on a timeline, which allows a user to
jump into the content at a particular time point. The key quantity impacting the user
perception of the helpfulness of the event detection is the amount of time a user, who
clicks on the marker, must wait in order to encounter an occurrence of the event. We
refer to this distance as the event anticipation distance (ea_di st ) and use it as an eval-
uation metric reflecting how users would experience the predicted start points (Figure
2.1.4). Section 2.2.7 further discusses how timed comments and a few expert labels can
enable non-linear access.

2.2.3. RELATED WORK
In the previous chapter, we looked at audio event detection (Section 2.1.3.1) and now we
look at machine learning with noisy labels, usage of timed comments.

2.2.3.1. MACHINE LEARNING WITH NOISY LABELS

Finding effective ways of dealing with noisy labels is a critical aspect of our machine
learning approach. As already mentioned, a segment containing a timed comment re-
ferring to an event might not actually coincide with the actual occurrence of that event.
Consequences of this temporal noisiness of the labels could be diverse. Noisy labels
could decrease classification performance, increase the complexity of the learning mod-
els or cause difficulties in identifying relevant features. A detailed survey of different
techniques to address the challenge of developing machine learning algorithms in the
presence of noisy labels is provided in [8]. We address the issue of noisy labels in two
ways. We use different sources of features and also propose strategies to filter the noisy
labels.

2.2.3.2. USAGE OF TIMED COMMENTS

Timed comments have been explored in [9] to obtain shot-level tagging of videos. In this
work, a topic model is built that can link the audiovisual content of a video shot to the
topic of a timed comment. The main difference with our method is that we investigate
the association between the timed comments and the signal, while the authors of [9]
only analyse the timed comments to achieve video shot-level tagging. A thorough inves-
tigation was conducted on timed tags used on an online video platforms in [10], where
the authors investigate the differences between timed and timeless tags.

YouTube allows users to mention a timestamp in a comment, which is then con-
verted into a link to that particular part of the video. These comments are called deep–
link comments and have been exploited to provide non-linear access to videos [11]. To
the best of our knowledge, however, these comments have not yet been deployed for
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video event detection. The first attempt to do so in the music domain, which used the
timed comments on the SoundCloud platform, was reported in our previous work [12]
for the case study of drop event detection. The method presented in this chapter, ex-
plained in detail in Section 2.2.4, is an extended and improved version of the work pre-
sented in [12]. We note that it was observed in [10] that timed tags for videos are charac-
terised by a phenomenon of temporal noise, which can considered to be comparable to
the temporal noise of the timed comments in our music dataset (Figure 2.2.1).

2.2.4. PROPOSED FRAMEWORK FOR EVENT DETECTION
We propose a machine learning algorithm that learns a model per event category, which
will later be used to detect the event in a new track. We apply this algorithm to our three
events of interest: drop, break and build. In addition to predicting whether an event
occurs in a music segment, we also locate the start point of the event.

Figure 2.1.1, in Section 2.1.4, illustrated our approach and its main methodological
steps. The stage of “Filters” in the highlighted part of Figure 2.1.1 is to filter the noisy
timed comments and pass only the selected timed comments to the training stage.

2.2.4.1. STRATEGIES FOR DEPLOYING TRAINING LABELS

We have the timestamps of our three events of interest from two different sources: ex-
perts and timed comments (the procedure to acquire these labels is explained in detail in
Section 2.1.5). Each segment coming from the segment extraction algorithm is given two
labels depending on whether the timestamp given by an expert or a timed comment falls
within the segment. We use four different strategies to obtain a trained model: training
using expert labels (EL), training using timed comments (TC), training after combining
expert labels with timed comments (CELTC) and training after combining expert labels
with filtered timed comments (CELFTC). Expert labels are gold standard labels that can
be relied upon and timed comments serve as weak labels. The part of Figure 2.1.1 en-
closed by the dashed line changes based on which of the above strategies we use for
training.

In the EL strategy, we label a segment as a positive example for an event if an expert
label falls within the segment, while the other segments are taken as negative examples.
Other strategies (TC, CELTC and CELFTC) are deemed successful if their performance is
close to the performance of the baseline event detector. In the second strategy (TC), we
label a segment as a positive example for an event if a timed comment referring to that
event falls within the segment and the other segments are taken as negative examples.
In the other two strategies, we divide the training data into two subsets of m and N −m
tracks, where N is the total number of tracks in the training set and m = p×N represents
a proportion of N for p = {20%,40%,60%,80%}. For example, if p = 20% then m = 0.2×
N and N −m = 0.8× N represents a portion of the training data. We use expert labels
for the m tracks and use timed comments as labels for the remaining N −m tracks. In
CELTC, we directly combine expert labels for the m tracks and timed comments for the
N −m tracks to train a model. For CELFTC we use a different approach that includes a
step of filtering the noisy timed comments (Figure 2.2.2). More specifically, we train a
model using expert labels for m tracks and test if the timed comments from the N −m



2.2

30
2.2. DETECTING SOCIALLY SIGNIFICANT MUSIC EVENTS COMBINING EXPERT

ANNOTATIONS AND TIMED COMMENTS

Expert labels  
(m songs) Train classifier 

Classify social 
comments 

(N-m) songs 

Positive 
segments 

(Low fidelity) 

Trained model 

Figure 2.2.2: CELFTC: Pipeline for combining expert labels with timed comments. This strategy involves the
step of verifying the timed comments before adding them to the training data. The thicker, green arrows refer

to the training after filtering the timed comments.

tracks actually refer to the event. We then take positively classified examples from the
N −m tracks and add them to the existing training data labelled with expert labels i.e., m
tracks. The training procedure applied to all four strategies using the corresponding sets
of training labels is explained in Section 2.1.4.4. In all the four proposed strategies: EL,
TC, CELTC, and CELFTC, we use all the positive and negative examples for training i.e.,
we do not take an equal number of positive and negative examples for training.

2.2.5. EXPERIMENTAL RESULTS
In this section, we report the results of the experiments that help us in addressing the
two research questions as introduced in Section 2.2.1. We also introduce a naive event
detector that randomly picks segment boundaries as start points of our events of inter-
est.

2.2.5.1. NAIVE DETECTOR
In this sub-section, we describe a naive detector which picks x number of events from
each tracks where x is the average number of events in the training set. In our training
set, we have 1.4 drops, 1.6 builds and 1.5 breaks per track, on average. We follow these
steps for the naive classifier:

• Perform MSS on each track. Recall that there are 13.6 segments, on an average, per
track (Section 2.1.5.1).

• Randomly pick x number of segment boundaries as the start points of our three
events of interest, where x is as explained above for each event.

• Repeat the above step 10 times to reduce the effect of biases.

• Compute all the evaluation metrics as explained in 2.1.6.2

The performance of the naive detector is reported in Table 2.2.1 and we observe that
the average f-scores are very low. We consider the performance of this naive detector as
the lower bound and that of the baseline event detector (Section 2.1.6.3) as the upper
bound for comparing the proposed strategies (TC, CELTC, and CELFTC).
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f s+ f s− f sav g abs_di st ea_di st
Drop 5.9 71.4 38.6 29.1 32.6
Build 4.9 61.4 37.6 28.7 33.4
Break 6.5 68.7 37.6 31.4 34.9

Table 2.2.1: F-scores and distance metrics for the naive classifier: randomly pick x number of events from
each track.

f s+ f s− f sav g

Drop 29.4 60.1 44.7
Break 34.2 59.4 46.8
Build 27.9 58.6 43.2

Table 2.2.2: F-scores for the strategy TC: Timed comments as training labels and FLS using image features.

2.2.5.2. USING TIMED COMMENTS AS TRAINING DATA

We now investigate the utility of timed comments as training labels, which helps us in
addressing the first research question (RQ1 from Section 2.2.1). We follow the same pro-
cedure as in the baseline event detector, except for the source of labels. We use timed
comments instead of expert labels for training our models. Tables 2.2.2, 2.2.3, 2.2.4, and
2.2.5 report the results. Observing the tables, we can say that the timed comments per-
form very well in comparison to the naive classifier (Table 2.2.1), but not so well when
compared to the baseline event detector (Tables 2.1.4, 2.1.5, 2.1.6, 2.1.7). We observe
a significant improvement in f s+, abs_di st , and ea_di st , when compared to the naive
classifier. However, we see a decline in f-scores for the negative class. The classifier strug-
gles to identify non-events, which probably have less regularity than events. We surmise
that the noisy nature of timed comments makes it even harder to learn non-events. In or-
der to ensure that the classifier is not over hypothesising, we count the number of events
that the classifier hypothesises per track. From Section 2.1.5.1, we know that there are
13.6 segments, on average, per track in our training set. Consider the drop event detec-
tor, we use a classifier trained on timed comments alone to count the number of segment
boundaries that are classified as a drop, in each track of the test set. Then we take an av-
erage of the number of drops across all the tracks in the test set. By repeating this process
for the other two events, we observe that the classifier hypothesises 3.1 drops, 3.6 builds
and 2.6 breaks per track on an average. These numbers are not overly high compared to
the actual average number of events per track: 1.3 drops, 1.5 builds and 1.1 breaks. In an
application scenario in which the average number of events expected per track is highly
stable, the prior information that is used here by our naive classifier could also be inte-
grated into our event detection models. However, here, we will continue to assume a use
scenario in which that information is not available, and not add it to our models. We can
see that the timed comments are indeed useful in detecting socially significant events
and thus we have an answer for RQ1. Now, we will explore the combination of timed
comments and expert labels to address the next research question, where we investi-
gate whether the presence of timed comments can reduce the number of expert labels
needed to detect socially significant events.
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f s+ f s− f sav g

Drop 27.2 61.5 44.3
Break 30.8 56.4 43.6
Build 29 58.4 43.7

Table 2.2.3: F-scores for the strategy TC: Timed comments as training labels and FLS using audio features.

f s+ f s− f sav g abs_di st ea_di st
Drop 28.1 66.3 47.2 21.5 18.1
Break 33.2 52.1 42.6 24.3 21.2
Build 28.4 59.1 43.7 26.6 22.3

Table 2.2.4: F-scores and distance metrics for the strategy TC: Timed comments as training labels and using
MSS using image features.

2.2.5.3. COMBINING EXPERT LABELS AND TIMED COMMENTS

The main contribution of this chapter, as presented in Section 2.2.2, is the investiga-
tion of the utility of timed comments as training labels. In the previous sub-section, we
saw that using timed comments alone as training labels yielded lower scores because
of the noisy nature of timed comments. Here, we investigate how the addition of timed
comments used as labels can reduce the number of expert labels needed for detecting
socially significant events. We investigate this by performing a series of experiments fo-
cusing on the strategies: CELTC and CELFTC, introduced in Section 2.2.4.1. In these
strategies, we divide the training data into two subsets of m tracks and N −m tracks, N
being the total number of tracks in the training set and m = p%×N . We use the following
values for p = {20%,40%,60%,80%}, which controls the proportion of the training data
(N ) that is used. In CELTC, we directly combine the expert labels for the m tracks and
timed comments for the N −m tracks to train our model.

In CELFTC, we train a model using the expert labels on m tracks and use the model
to filter the timed comments on the N −m tracks. It is important to note that CELFTC re-
quires more training time than the other strategies because it involves a two-step process
of first filtering the timed comments and then re-training the model using the additional
data from the filtering step. Since we use the top-k features computed in the first step
of the algorithm (Section 2.1.4.4), the additional training time in the second step is not
very high. For example, when p = 60%, the overall training time of CELFTC is a mere
6% more than that of CELTC. After filtering the timed comments, we add the positively
labelled examples from the N−m tracks to the actual training set of m tracks to build the
final model (illustrated in Figure 2.2.2). For each value of m, we repeat the experiment
10 times and report the average results in order to minimise the chance of interference
of incidental characteristics of the data.

In order to provide a further basis for comparison, we report the results of training
with m tracks (EL@p) i.e., we use only a part of the training data with expert labels cor-
responding to the value of p = 20%, 40%, 60%, 80%. For example, if p=40%, then we use
40% of the training data with expert labels to train the model. This model then predicts
the positions of the events in the test set and we compute the f-scores as usual.
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f s+ f s− f sav g abs_di st ea_di st
Drop 23.1 61.2 42.2 29.4 24.6
Break 24.1 59.1 41.6 25.2 20.3
Build 31.1 56.1 43.6 31.2 29.4

Table 2.2.5: F-scores and distance metrics for the strategy TC: Timed comments as training labels and using
MSS using audio features.

Tables 2.2.6, 2.2.7, 2.2.9 and 2.2.8 report the average f-scores ( f sav g ) for each of the
strategies (CELTC, CELFTC and EL@p) at different values of p. Similarly, Tables 2.2.10
and 2.2.11 report the distance metrics for each strategy. Observing the tables, we can
say that image features are more effective than audio features. Filtered timed comments
(CELFTC) perform better than the unfiltered timed comments (CELTC) when combined
with the expert labels. This can be observed in the results for CELFTC and CELTC, where
the f-scores for CELFTC are higher than those for CELTC. When the CELFTC’s perfor-
mance is greater than that of EL@p, results are highlighted in bold.

Filtering the timed comments (CELFTC) seems to improve the performance beyond
just using the expert labels (EL@p) at certain proportions of the training data. For exam-
ple, the average f-score for detecting a drop using CELFTC, at p = 60% and p = 80%, is
greater than that of EL@60 and EL@80% respectively (Table 2.2.6). Similar observations
can be made for the break at 60% and 80% of the training data. For the event build, the
average f-scores of CELFTC come very close to the f-scores of EL at 80% of the training
data. The distance metrics abs_di st and ea_di st reported in Tables 2.2.10 and 2.2.11
indicate that the scores for CELFTC at 60% are very close those for EL at 60%.
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Next, we further investigate the performance of CELFTC, at different proportions of
expert labels, by comparing its performance with that of the baseline event detector,
which represents an ideal situation. Recall that the baseline event detector was trained
with expert labels on the entire training set (Section 2.1.6.3). For the baseline event de-
tector, we choose the following combination for all the events as it was shown to result
in the best performance: MSS and Image features. For the same combination, we report
the results of CELFTC and also add results for EL@p at different proportions of expert
labels. The results are depicted in Figures 2.2.3 (drop), 2.2.4 (build), and 2.2.5 (break).
The blue horizontal line in the figures represents the performance of the baseline event
detector (Table 2.1.6). Observing the figures, we can see that with 60% of the training
data labelled with expert labels we already achieve a performance very close to the base-
line event detector, especially for break. For example, observing Figure 2.2.5 at 60%,
the performance of CELFTC and the performance of the baseline break event detector
are almost the same. For the other two events: drop and build, we observe that with
p = 80%, we get a performance equal to that when p = 100%. This is a bit lower when
compared to the performance of break detection, but at the same time we should note
that drop and build are difficult events to detect. From this result, we can conclude that
if we have a training set labelled with expert labels, then, it will improve our classifier to
add additional training data labelled with filtered timed comments, so long as we have
a minimum amount of expert-labelled data. On this basis of this conclusion, we can say
that the timed comments are helping in reducing the number of required expert labels,
which represents a positive answer to RQ2.

2.2.6. GENERALISATION OF THE MODEL

2.2.6.1. CROSS-VALIDATION
A 5-fold cross-validation was performed on the cross-validation data (80% of the entire
dataset) and the average f-scores and standard deviation are reported in Table 2.2.12.
One of the reasons to perform a cross-validation experiment is that the dataset is rela-
tively small and we want to investigate whether the trained model overfits. Results of the
cross-validation are good but lower when compared to the ones reported in Tables 2.1.4,
2.1.5, 2.1.6 and 2.1.7.
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Figure 2.2.3: Average f-scores ( f sav g ) for detecting a drop for CELFTC: FLS and image features at different
proportions of expert labels. The horizontal blue line indicates the performance of the baseline event

detector with 100% expert labels.
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Figure 2.2.4: Average f-scores ( f sav g ) for detecting a build for CELFTC: MSS and audio features at different
proportions of expert labels. The horizontal blue line indicates the performance of the baseline event

detector with 100% expert labels.
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Figure 2.2.5: Average f-scores ( f sav g ) for detecting a break for CELFTC: MSS and image features at different
proportions of expert labels. The horizontal blue line indicates the performance of the baseline event

detector with 100% expert labels.
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Event F-score for 60% expert labels F-score for 100% expert labels
Drop 73.2 76.4
Break 74.9 77.1
Build 71.4 73.5

Table 2.2.13: Average F-scores for CELFTC on data from a new source (YouTube) for different proportions of
expert labels.

This effect can be related to our sampling method. For the purpose of cross-validation,
the folds are created at the track level, and not at the event level. This is necessary in or-
der to ensure that it is never the case that training and testing material is drawn from
the same track. However, the track-level sampling makes the folds sensitive to the pres-
ence of one or two tracks with a style of event that is overall more “difficult” (applies in
particular to short events). For this reason, the variance between the folds is higher than
expected and the average is lower. The lower average raises a question on the generali-
sation capability of the model and in order to answer this question, we turn to another
dataset. Specifically, we next report the results of the experiment on an unseen dataset
that provide an insight into the generalisability of the model.

2.2.6.2. PERFORMANCE ON DATA FROM A NEW SOURCE

In order to check for the generalisability of the model, we conduct another experiment
where we take the test set from another source. YouTube contains many EDM tracks
and can be used as another source of music data. We download 70 tracks from YouTube
and manually marked the positions of our three events in the tracks. We use this as the
test set and the corresponding ground-truth in order to evaluate the performance of the
detector. We chose our best model in order to predict the events on the new test set. We
use MSS and image features for evaluation. We use two different trained models that use
60% and 100% expert labels respectively. Table 2.2.13 presents the results of the event
detection on the YouTube test set. Please note that we use the same model trained for
CELFTC at 60% expert labels (Section 2.2.5.3) and EL with 100% expert labels (Section
2.1.6.3) for the two columns in Table 2.2.13.

Observing the scores, we can see that the performance of the event detector is rea-
sonable and similar trends can be found when compared to the performance on the test
set from SoundCloud. For example, the f-scores for both 60% and 100% expert labels are
very close together.

2.2.7. EVALUATION WITH USER-PERSPECTIVE METRICS
In this section, we turn to a deeper discussion of the implication of our results for a real-
world application. Specifically, we consider a non-linear access system, i.e., a system
that would allow a listener to browse through the events in a track. Such a system would
involve a play bar in which music events are marked, making it possible for listeners
to listen specifically to certain events, without having to listen to the track entirely. For
example, such a system would be useful to a DJ who is interested in quickly reviewing all
the drops in a particular EDM track.
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In order to understand the usefulness of our music event detection approach to users
of a non-linear access system, we make use of the metric event anticipation distance,
ea_dist, introduced in Section 2.1.2, where it is illustrated in Fig. 2.1.4. Recall, that ea_dist
is the time that a listener would need to wait before jumping into a music stream, and
hearing the event that is marked on the play bar. For comparison, we also discuss the ab-
solute distance, abs_dist. Note that we do not consider abs_dist to be a user-perspective
metric, since it has the same value whether the listener is dropped into the stream be-
fore or after the event. A music event that occurs before a user jumps into a stream will be
missed, and can, for this reason, be considered useless in a non-linear access application
scenario.

When we consider this application scenario, and ea_dist, the full potential of timed
comments becomes clear in a way not directly reflected by the f-score that has been the
focus of the previous sections. We would like to draw attention to the condition in which
the music event detector is trained only with timed comments as training labels and in
which MSS with image features is used. This condition was presented in Table 2.2.4 (Sec-
tion 2.2.5.2). From Table 2.2.4 we see that using timed comments only, we can provide a
jump-in point, on an average, 18.1 seconds before the actual drop. We point out that an
error of 18.1 seconds may not be substantial enough to impact user experience signif-
icantly. Statistics calculated on our dataset as a whole reveals that a typical build-drop
combination can last somewhere between 6 and 20 seconds. If we can direct the user
to 18.1 seconds before the drop, there is a good chance that the build will have already
started and it will be obvious to listeners that they are moving towards the drop. An inter-
esting future research would be to conduct a user study with DJs if this result can already
help them in finding these events in a given EDM track.

In the rest of this section, we make some other observations about our results from
the perspective of our distance-based evaluation metrics abs_dist and ea_dist. These
results are reported in Tables 2.2.4 and 2.2.5 (training on timed comments only) and Ta-
bles 2.2.10 and 2.2.11 (mixing expert labels and timed comments.) Note that in Tables
2.2.10 and 2.2.11 results are given in the order abs_dist, ea_dist, separated by a comma.
Overall, the image features are more effective than the audio features. This observation
is consistent with the observations that we have made using the average f-score in pre-
vious sections. Further, we note that ea_dist is systematically smaller than abs_dist. This
observation is interesting, since it means that our approach to music event detection
tends to detect an event before it occurs, rather than after it occurs. In other words, it
shows a tendency away from the sort of error that would be most detrimental to the user
experience.

Finally, we make another observation about Tables 2.2.10 and 2.2.11. We see that
in general, if expert labels are available, it is most advisable to train with expert labels.
Adding examples labelled with timed comments to the expert-labelled training data can
add another performance boost, or at least will not hurt the performance substantially.
It is interesting to consider the implications of the performance that can be achieved
with a relatively limited number of expert labels. For example, using 60% expert labels
we see that ea_di st for the build reaches a value of 8.6 seconds for image features (Ta-
ble 2.2.11). This value is very close to the minimum length of a build-drop combination,
again as estimated by statistics calculated on our dataset as a whole. This example sug-
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gestions that listeners might not notice further improvement of ea_dist. It also suggests
that careful attention should be paid to whether further improvements of ea_dist actu-
ally hurt the user experience by cutting off context that users need to fully recognise and
appreciate certain music events.

2.2.8. CONCLUSION AND OUTLOOK
This chapter has demonstrated the utility of timed comments as a source of labels to
train models to detect socially significant music events. Through experiments, we show
how timed comments can be utilised as training labels independently as well as in com-
bination with expert labels. The important conclusions of our chapter are summarised
here:

• Timed comments, on their own, can potentially be used as training labels to detect
socially significant events. A model trained on timed comments alone performs
better than a random baseline in terms of f-scores. In applications like non-linear
access, where the listener wants to jump through different events in the music
track without listening to it in its entirety, timed comments can already get you to
around 20 seconds before the event.

• Adding expert labels improves the performance. Our experiments demonstrate
that with a combination of 60% expert labels and 40% timed comments, we can
potentially obtain a performance very close to the performance when we have
100% expert labels for training data. Again, this can be viewed from two perspec-
tives. In terms of f-scores, we observe that a break event detector performs well
at a combination of 60%-40%, while drop and build detectors perform well at a
combination of 80%-20%. More importantly, in terms of the user based distance
metrics, all the three event detectors perform well at a combination of 60%-40%.

• The performance of the event detection is not dependent on the source of data,
as we obtain a good performance on an unseen test set, from YouTube, by using a
model trained on SoundCloud data.

In this chapter, we have presented an extended case-study on using timed comments to
detect events in the music signal. We looked at three specific events that are important
in the EDM community: drop, build and a break. A cursory glance at other kinds of com-
ments listeners mention on tracks reveals that these timed comments have a great po-
tential for other tasks in MIR as well. For example, there are many comments that men-
tion different structural parts of a track: “intro”, “bridge”, “instrument solo” and these can
be used in generating more training data for music structure segmentation. Moreover,
these timed comments can be used in music auto-tagging and emotion recognition at
the temporal level and they could be a source of more natural training labels because of
the vocabulary used by the listeners. For example, we find this comment “groovy tune”
on a lot of music tracks, which could be a more useful tag while searching for music
rather than genre/instrument/artist.

Our work is one of the first to utilise timed comments as training labels to develop
an event detector. We hope that our results would encourage researchers to explore the
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usefulness of timed comments for other media. We do not claim that the exact segment-
based approach that we take here will transfer directly to videos. However, we would
like to point out that our work has demonstrated that the impact of temporal noise can
be overcome and that the contribution of timed comments to video event detection is
worth investigating further.
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3
ON THE AUTOMATIC

IDENTIFICATION OF MUSIC FOR

COMMON ACTIVITIES

In this chapter, we address the challenge of identifying music suitable to accompany typ-
ical daily activities. We first derive a list of common activities by analysing social media
data. Then, an automatic approach is proposed to find music for these activities. Our
approach is inspired by our experimentally acquired findings (a) that genre and instru-
ment information, i.e., as appearing in the textual metadata, are not sufficient to dis-
tinguish music appropriate for different types of activities, and (b) that existing content-
based approaches in the music information retrieval community do not overcome this
insufficiency. The main contributions of our work are (a) our analysis of the properties
of activity-related music that inspire our use of novel high-level features, e.g., drop-like
events, and (b) our approach’s novel method of extracting and combining low-level fea-
tures, and, in particular, the joint optimisation of the time window for feature aggrega-
tion and the number of features to be used. The effectiveness of the approach method is
demonstrated in a comprehensive experimental study including failure analysis.

Parts of this chapter have been published in the International Conference on Multimedia Retrieval, 2017 [1].
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3.1. INTRODUCTION
In addition to “just” listening to music as a part of our leisure, we can also use music to
facilitate our daily activities. For example, listening to appropriate music while studying
can help us focus better [2]. While there exist online music services specialised in this
direction (e.g., Focus at will and Brain FM), the mechanisms underlying their offerings
are either automatic music generation or fully manual curation. Moreover, they only
cover a limited scope of activities (e.g., focus only). A recent study on using “music as
a technology” [3] to accomplish a goal highlights how little research has been done on
developing music recommender systems for daily activities. This chapter delves into
this area and investigates the main challenges in automating the process of identifying
existing music for different daily activities.

The first challenge we face is deriving a list of daily activities for which music is
sought. Instead of simply predefining this list, as is typically done in the existing work
(e.g., [4]), we mine a social media sharing platform (YouTube) to derive a list of popular
activities i.e., those activities that are found to have frequent mention when searching for
activity-related music. Our mining approach is similar to that taken by recent work [5]
on identifying common user-intent categories in online video search.

The second challenge we address in this chapter is to find an appropriate approach
to automatically recognise activity-related music categories. We start by looking at the
available textual metadata that we typically find associated with the music tracks that are
posted on YouTube and promoted as being suitable for a particular activity. Specifically,
the fact that the titles of these music tracks in many cases contain genre/instrument
information, leads us to investigate the usability of this specific information first.

Since our findings indicate that relying on music genre or presence of particular in-
struments is not a reliable approach to link a music track to a particular activity, we pro-
ceed by investigating how to develop an approach that works well for the posed prob-
lem. For this purpose, we look into the existing content-based approaches in the field
of music information retrieval (MIR) and encounter several issues that need to be ad-
dressed. The first issue is the temporal variation of musical content in a given track. We
hypothesise that the time resolution for feature extraction in standard MIR tasks is not
appropriate to capture the variations for activity-based music classification. Traditional
MIR tasks typically extract features at a resolution of 10-100 ms and then aggregate them
over the entire music track (e.g., for emotion detection [6]) or a segment sampled from
the track (e.g., for genre recognition [6]). In this chapter, we propose to aggregate fea-
tures over windows of different time resolution and identify the temporal resolution that
can give optimal classification performance.

A related issue we address in this chapter is how to represent a music track in the fea-
ture space in order to enable effective activity-based classification. We take as our start-
ing point a standard set of low-level features that can be extracted from the music signal.
Additionally, we also consider some other sources of information that we, either intu-
itively or through exploratory experiments, found relevant for the task. Specifically, we
consider different dimensions of affect (arousal, valence and tension [7]) and the pres-
ence of events like onsets and drops [8]. We encode this information in an additional
set of high-level features. Finally, we design a classifier with which we investigate the
possibility of identifying different activity-related music categories, and the usefulness

https://www.focusatwill.com/
https://www.brain.fm/
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of different low- and high-level features for the task. Specifically, in parallel with opti-
mising the time window for feature aggregation as explained above, we also optimise the
number of low-level features to be used.

In summary, the main contribution of this chapter consists of the answers to the
following research questions:

1. RQ1: Which activity categories are popular? We mine music on YouTube to derive
common categories of activities. By analysing the textual metadata related to the
activity-related music tracks, we identify the top-3 activity categories to focus on
(Section 3.3).

2. RQ2: Is genre or instrument information helpful in predicting an activity-related
music category? This research question is addressed in Section 3.4 by using the tex-
tual metadata of the music tracks, and in particular the presence of genre/instrument
related keywords.

3. RQ3: How to automatically identify music for a specific activity? In Section 3.5,
we investigate two aspects to dealing with this question, viz. the temporal resolu-
tion at which we should aggregate features and the types of features that would be
helpful for the task.

The contributions listed above are presented after an analysis of the existing work
on automatically associating music with daily activities, as well as different feature ex-
traction strategies in Section 3.2. Experimental results assessing the performance of our
proposed classification method and a failure analysis are presented and discussed in
Section 3.6. Section 3.7 concludes the chapter.

3.2. RELATED WORK
In this section, we look at two different aspects dealt in this chapter: associating music
with activities and different feature extraction strategies used in the MIR literature.

3.2.1. ASSOCIATING MUSIC WITH ACTIVITIES
Wang et al. proposed a method that associates music with specific activities [4]. The
authors use a predefined list of activities: running, walking, sleeping, working, study-
ing and shopping, for which they recommend music. Sensors on the mobile phone are
used to infer whether the user is in the middle of one of these activities, and then suit-
able music is recommended based on an analysis of low-level features extracted from
the signal. To train the recommender system, playlists for specific activities are collected
from an online music sharing platform. Next, a subset of 1200 songs is picked from these
playlists and manually labelled with one or more activities as tags. A classification prob-
lem is then set up where a model is trained for each activity based on the mean and
standard deviation of low-level features extracted from a 512 sample frame extracted
every 30 seconds of the song. Wang et al. use the following features for classification:
Zero crossing rate, Centroid, Rolloff, Flux, Mel-Frequency Cepstral Coefficients (MFCC),
Chroma, Spectral Flatness Measure (SFM) and Tempo. The trained model then predicts
activity-based tags for new songs. Similar work is reported by Dias et al. [9], where the
system “Improvise” is designed to associate music with daily activities mentioned above.
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In our approach, we focus on the categories of activities derived from social media
data and base the classification process on a novel feature extraction approach that, as
we will explain and demonstrate experimentally, is more suitable for the task.

3.2.2. FEATURE EXTRACTION
Typical MIR tasks, like genre recognition, mood classification or instrument recognition,
have been addressed frequently in the past [6]. Characteristic for these tasks is the way
of extracting audio features, namely at the frame (time interval) level and with typically
rather small frames, e.g., 10-100 ms for timbre features. In order to extract temporal fea-
tures, like rhythm, a larger time window with a couple of seconds in length is used. Re-
cently, the research community working on extracting emotion from music argued for
using longer time windows and tracking emotions over “emotionally stable” segments
[10], [11]. We take this discussion a step further by investigating segments of differing
lengths while aggregating features for music-to-activity mapping. Additionally, we en-
rich the set of common audio features by new high-level features that we find especially
useful for the task.

3.3. WHICH ACTIVITIES ARE POPULAR?
In this section, we address RQ1, i.e., we identify types of activities during which users
commonly listen to music. Many daily activities are potential occasions for listening
to music. A priori, examples include commuting, taking a shower, cooking, cleaning
the house, studying or working out. However, compiling an exhaustive list of music-
accompanied activities would require difficult-to-acquire behavioural information. For
this reason, we focus on activities that are publicly mentioned, and can be assumed to be
important to a substantial portion of general population. We turn to social media plat-
forms as an information sources. Specifically, we analyse textual metadata on YouTube
for common mentions of activities, which we take as providing indication of their popu-
larity and wide-spread importance to users seeking music online.

When listeners are searching music for specific activities, we assume that search
queries could take on various common forms, e.g., “Music for *”, where the wildcard *
could refer to a specific activity (e.g., studying, workout or jogging). Our metadata analy-
sis is based on the observation that this query consists of a conjunction or a preposition
connecting the other two words. In order to construct queries that would allow us to
identify common activities, we looked at all possible prepositions1 and conjunctions2

that can follow the word “music”. In this way, we arrived at five different word pairs:
“music for”, “music to ”, “music when ”, “music while” and “music during”. By enclos-
ing the word pairs in quotations, we created a query that could be matched with track
metadata (i.e., title and description).

YouTube is a rich source of music, and offers a wealth of music intended for different
activities, e.g., Study3 or Workout4. In general, such music takes form of long tracks with
duration typically exceeding 30 minutes. We use the queries just discussed to identify

1https://www.englishclub.com/grammar/prepositions-list.htm
2http://www.english-grammar-revolution.com/list-of-conjunctions.html
3https://www.youtube.com/user/StudyMusicProject
4https://www.youtube.com/user/WorkoutMusicService
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Figure 3.1: Cloud from Relax track titles

Figure 3.2: Cloud from Study track titles
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Figure 3.3: Cloud from Workout track titles

Figure 3.4: Cloud from Other track titles
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these tracks on YouTube. For each of the 5 queries, we follow these steps to collect the
tracks and the corresponding metadata:

1. Using a web crawler, go through all the pages returned by YouTube for a given
query and collect the unique identifiers of the videos as well as the titles.

2. Download the mp3 audio of the videos and the corresponding metadata, e.g., title,
description and likes.

3. Remove duplicates in the search results and also remove the results that are not
music tracks.

We accumulated a total of 2589 music tracks from YouTube and their textual meta-
data using our search queries. We used the titles of the collected music tracks to identify
the most frequently occurring activities. We rely on the title of a track because it ap-
peared to be the most informative about the music-type of the track. For example, the
title “Workout Music - Best Workout Rock Music 2016 for GYM and Fitness” indicates
that this track can be used while working out in the gym and it contains rock music re-
leased in the year 2016. We pre-process the titles by changing them into lower case,
converting the -ing forms to their root words (e.g., studying is changed into study) and
removing unicode characters, the standard English stop words, genre-related keywords,
and numbers (e.g., years).

After this pre-processing, we counted the most frequently occurring terms in the ti-
tles, and arrived at the following top-3 activity-related keywords: “relax”, “study” and
“workout”. Note that these keywords can be seen more as activity categories rather than
single activities. Examples of single activities, e.g., for study music, include keywords
like “work” and “office”. Similarly, we find keywords like “run” and “exercise” in the titles
of workout music. Our response to RQ1, is the top-3 activity categories, which we will
focus on in the remainder of this chapter. To provide an impression of these categories,
we provide a list of associated keywords:

• Relax: relax, calm, soothe, peaceful, chill, meditation, stress relief, sleep

• Study: study, focus, concentration, office, work

• Workout: workout, training, exercise, gym, run

Our final dataset contains a total of 1272 ( 49%) Relax tracks, 567 ( 22%) Study tracks
and 450 ( 17%) Workout tracks. The remaining 300 ( 12%) tracks were found not to belong
to any of the above three categories of activity-related music, despite the presence of the
relevant keywords. Although this set of tracks is not used as a classification target, we
keep it as Others and use it for analysis later in this chapter. In order to check for bias
towards a particular Internet source, we also inspected the names of the channels from
which the tracks were collected. We observed that the Relax, Study and Workout tracks
were collected from 12, 10 and 9 different channels respectively, which gives a reasonable
diversity of sources.

As a supplement to the keyword information above, Figures 3.1 - 3.3 show word
clouds, which visualise the term clusters corresponding to our activity categories, which
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were generated using the titles of the tracks, as described above. Common stop words,
numbers, urls have been removed and stemming has been applied. The word clouds
allow us to observe the difference in terms that characterise each of the three main ac-
tivity categories we found. The word cloud for relaxation music contains keywords like
“relax”, “calm”, “sleep”, “heal”, “meditate”, “calm”, “zen”, “relief” and “lullaby”. Similarly,
“workout”, “training”, “gym”, “fit” and “running” are the most frequently used keywords
in the titles of workout music (Figure 3.3). Additionally, we observe the word cloud for
the tracks not belonging to any of the above three categories labelled as “Others” in Fig-
ure 3.4. Observing Figure 3.4, we can say that there is a lot of music for babies, playing
games, pets (Dogs) etc.

3.4. IS GENRE OR INSTRUMENT INFORMATION ENOUGH?
In this section, we address RQ2 and investigate whether genre or instrument information
is helpful for predicting music for the top-3 activity categories identified in the previous
section. For this investigation we do not develop nor implement any existing genre or
instrument detection method. Rather we rely on the textual metadata carrying infor-
mation about the music genre or instruments present in the titles and descriptions of
the music tracks we crawled from YouTube. Our hypothesis is that if the link between
the genre- or instrument-related textual metadata and a particular activity category is
unambiguous, then it is meaningful to focus on the development, implementation and
optimisation of the corresponding content-based methods and algorithms as the means
to solve the activity-related music classification problem.

The next question to answer is whether the specific genre- and instrument-related
terms found in the term clusters are also distinctive per activity category. In order to an-
swer this question, we pick the genre- and instrument-related keywords from the titles
of tracks in each of the four term clusters and arrange them in Table 3.1. Please note that
there is no particular order in which the genres or instruments are laid out in the table.
Since the dataset contains both electronic and acoustic music, we list the instruments
found only in acoustic music. Observing the table, we can say that investigating genre
or instrument is not enough to associate music to activities. We can see that genres like
classical music, electronic music and ambient music are present in three of the four clus-
ters. In particular, house music is present in all the four clusters, thus also in the Others
cluster consisting of the tracks for a wide range of activities other than the three targeted
in this chapter. Similarly, piano, guitar and violin are present in three of the four clusters.

We now take a look at example music tracks for genres and instruments that are com-
mon between different activity categories. First, we compare genres in Relax and Study
categories and pick one of the common genres present in both the categories: Trance.
Listening to the examples of Trance music in Relax and Study, one can immediately
identify a difference in texture where a Study music example has a slightly higher density
than a Relax music example. Another difference is the presence of drop-like events [8]
in a Study music example and a complete absence of such events in the Relax example.
We refer to drop-like events as those that follow similar acoustic and rhythm patterns
as drop events that are typically associated with electronic dance music (EDM). Drop
events generally occur as combinations of two different events, viz. drop and build, de-
fined as follows:

https://www.youtube.com/watch?v=W25ZBzA3s70
https://www.youtube.com/watch?v=Zk26FUe38y0&t=1943s
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1. Drop: A point in the EDM track, where the full bassline is re-introduced and gen-
erally follows a recognisable build section.

2. Build: A section in the EDM track, where the intensity continuously increases and
generally climaxes towards a drop.

These events are associated with the increasing intensity of the music and reaching
a climax before the beat returns. We investigate these events because they represent the
building up of intensity and changing of rhythm, which could be important for music for
study (to not let the listener zone out) or workout (to push the listener to intensify the
workout). Finally, the Study music examples were completely devoid of vocals, unlike
the Relax music examples that have vocals at certain points in the track. This analysis
revealed that even within one genre (Trance), some musical properties could make one
track of that genre suitable for the Relax and the other track for the Study category.

Music for Relax is bound to be very different from the music for Workout as they are
activities at the extremes of physical exertion with Relax requiring least physical activity
and Workout requiring high level of physical activity. Even though we expect the two cat-
egories to be related to completely different music, they still have some genres in com-
mon, like dubstep and hip hop. Listening to an example for both the Relax and Workout
category in the dubstep genre, one can clearly observe a difference in terms of tempo
and texture. As expected, the tempo is higher and the music is more dense for the Work-
out example as compared to the Relax example. Listening to the Workout example, one
can observe the prominence of the bassline, which is at times “naked” without melodic
layers. In contrast, in the Relax example the bass is much less prominent. As indicated
earlier, Relax music does not contain drops but there are many drops in the Workout ex-
ample. Our conclusion here is therefore the same as above. Though the tracks belong to
the same genre, there are significant variations that make it challenging to rely on genre
information alone to distinguish between music for Relax and Workout.

Finally, we look at two examples from the same genre (progressive house), but from
different activity categories: Study and Workout, and notice the presence of vocals in the
Workout track. Another key difference is the presence of many drop-like events in the
Workout track and limited number of such events in the Study track.

Based on the analysis reported above, we can conclude that genre- and instrument-
related information alone is not sufficient to predict suitability of a music track for an
activity. Observing the individual examples, we see the main reason for this is the local
properties of a music track, i.e., localised variations in low-level features. In the subse-
quent section, we therefore propose a method which segments the tracks into windows
of different time resolutions in order to investigate how to optimally capture these local
variations for the posed classification task. Furthermore, the insights presented above
motivate our decision to consider the presence/absence of drop-like events as one of
the features in the design of activity-related music classification framework, as stated in
Section 3.1.

https://www.youtube.com/watch?v=h3VCxPRJM-g&t=3209s
https://www.youtube.com/watch?v=skt-GagDoVw
https://www.youtube.com/watch?v=LGcP_7p89lE&t=2068s
https://www.youtube.com/watch?v=FrGVI0hSF0M
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3.4.1. ADDITIONAL EXPERIMENTS ON UTILITY OF EXISTING METADATA
Previously, we qualitatively analysed how existing metadata like genre and instrument
is not enough for activity based music classification. Table 3.1 summarised our insights
where we find that the same genre/instrument labels occur across activity categories. In
this sub-section, we provide a more quantitative evidence to support our hypothesis. We
take advantage of the recent advances in deep learning to learn a feature descriptor that
encodes genre and instrument information from a music track. We fine-tune the model
trained by Choi et al. for music auto-tagging [12] using another auto-tagging dataset
MagnaTagaTune [13]. We take the top-50 most popular tags from the MagnaTagATune
dataset that includes various genres and instrument related tags5. After fine-tuning the
model, we do a forward pass using our data and combine the features of the all layers
of the model to obtain a 256-dimensional feature vector [14]. From each of our tracks,
we extract a 29 second snippet from the middle of track. We train a k-NN classifier, and
predict the activity category of the music tracks that are part of the test set (explained in
further experiments). We obtain the following f-scores for each of the activity category:
0.44 (Relax), 0.49 (Study), 0.58 (Workout), and 0.50 (Average). Comparing with the results
that are reported in subsequent experiments (Table 3.3), we observe that the f-scores are
lower with this set of features. This provides additional results that support our hypoth-
esis that genre/instrument information is not sufficient for activity based music classifi-
cation.

3.5. HOW TO IDENTIFY MUSIC FOR ACTIVITY CATEGORIES
In this section, we describe our approach to developing an automatic classification method
for activity-to-music mapping. Since the information on genre or instruments is not
helpful in detecting music for a given activity, classification based on other and more
relevant information needs to be developed.

We start off by noting that recent advances in deep learning, such as [15], may en-
able unsupervised extraction of relevant features. However, we would like the features
that we identify as contributing towards identifying music for activities to be explain-
able, and we would also like to carry out an assessment of the temporal resolution that
is appropriate for feature extraction. Explainability of deep learning pipelines for music
currently still is in a pioneering phase [16]. For these reasons, we choose to investigate
features and models that are already well understood and reflect different musical char-
acteristics. More specifically, we take as input a basic set of low- and mid-level (rhythm
and tonality related) features known from the MIR field. These features and their corre-
sponding dimensionality (in parenthesis) are listed in Table 3.2.

5https://github.com/emarkou/Audio-auto-tagging
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In addition to the problem of understanding what features are suitable for the task
in the first place, the main open issue related to how the features are extracted is the
selection of the time window t to optimally aggregate the feature values in order to cap-
ture the above mentioned informative local signal variations in the best possible way. In
order to discover the best value for t , we devise an algorithm that we run on our train-
ing data set and that uses repeated random sub-sampling validation [18] to test different
values of t . In the same algorithm, we also embed the search for the best value of an-
other parameter d , which stands for the number of most discriminative features used
for classification. We use a simple k-nearest neighbour (k-NN) classifier and repeat the
algorithm to identify the combination of d and t that gives the best classification perfor-
mance. The proposed algorithm is defined as follows:

1. Consider the range of t = 0.5,1,5,10,15,20,25,30 seconds

2. For each value of t , follow these steps:

(a) Extract features for each segment and combine them into a single feature
vector.

(b) Randomly divide the training data into X tr ai n (90%) and Xval (10%).

(c) Select a value of d from the set 10, 11, 12 ... to 50 features.

(d) Use X tr ai n for feature selection and pick the top-d most discriminating fea-
tures. Before feature selection, we normalise each feature.

(e) Use X tr ai n with selected features to build a training model.

(f) Use this model to predict labels in Xval .

(g) Aggregate the segment-level labels using a majority vote to obtain a single
label for a track and then compute the f-score.

(h) Repeat steps 2 (d) – (g) for the whole range of d .

(i) Repeat the whole process ten times for different X tr ai n and Xval each time
to obtain average validation performance.

3. Choose the t with the best average validation performance.

In this chapter, we aim to understand the phenomena underlying the activity-related
music classification and not to optimise the classification itself. This is the reason for
which we chose a simple and standard k-NN classifier, which has minimal number of
parameters to be tuned. Regarding the range we considered for t , we also investigated
the window sizes beyond 30 seconds (up to 60 sec) and found that the performance does
not improve. For feature selection, we use a method that deploys mutual information
and that is available in the feature selection toolbox [19]. Once we identify the best values
of d and t , we evaluate the performance on the test set to predict the links between the
music tracks and the activity categories.

The other features we introduce are based on intuition, informed by the analysis in
Section 3.4. Here, we consider three affect dimensions, namely arousal, valence and
tension, and assess their impact to activity-related music classification experimentally,
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using conventional scores [7]. We do the same with the feature encoding the number
of drop-like events [8] found in a music track: while the consideration of this feature
initially was also based on intuition, the potential of this feature has been strengthened
by the analysis reported in the previous section. The affect scores are extracted over non-
overlapping segments of duration t seconds (result of the algorithm described above)
and for the events feature, we count the number of drop-like events in the entire music
track.
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3.6. EXPERIMENTAL EVALUATION
In this section, we evaluate our proposed method and also compare its performance
to a number of existing methods and approaches that we found related to the problem
addressed in this chapter. Additionally, we report which features are the most discrim-
inative for our classification task. Finally, we summarise the insights we gained from a
failure analysis, based on which we propose topics for future research in this direction.

3.6.1. EXPERIMENTAL DESIGN AND RESULTS
For the experiment, we have a training set, containing 300 relax tracks, 250 study tracks
and 250 workout tracks. For the test set, we use 50 each of relax, study and workout
tracks. We focus on tracks that are specific for a single activity category, as reflected in
our labels. Music suitable for multiple categories is an interesting topic for future work,
but we do not look at it here.

For finding t and d according to the algorithm described in the previous section,
we set k = 10 for the k-NN classifier after evaluating different values of k on a smaller
development set (not included in the train and test set). For extracting low-level, tonal
features and most of the rhythm related features, we use the Essentia framework [20]. For
statistical spectrum descriptors and rhythm histogram, we use the source code provided
by Lidy et al. [17]. For extracting the low-level features, we use a non-overlapping frame
size of 100 ms. Regarding the high-level features, we use the method proposed in [8]
to detect the drop-like events in a given music track. We rely on the dataset released by
Yadati et al. [21] to train models and predict the presence of events in our dataset. Finally,
for computing the affect scores, we use the MIRtoolbox [7] that gives us a 3-dimensional
feature vector with one score per dimension.

Table 3.3 shows the f-scores per activity category obtained while executing the al-
gorithm for optimising the values of t and d , as introduced in the previous section. We
note again that the classification here is performed using the low- and mid-level features
only. It can be observed that the best classification performance was obtained at a win-
dow size of 25 seconds. Examining the f-scores obtained at this window size, we can say
that the simple classifier performs reasonably well in distinguishing between music for
the three different categories.

As indicated in the last column, for the window size of 25 seconds, the best number
d of discriminative features to use is 25. Here, we list the features (and their dimension-
ality) that are found to be most discriminative in this case: tempo (1), dynamic com-
plexity (1), danceability (1), onset rate (1), spectral centroid (1), spectral flux (1), image
moments (6), PCP (4), rhythm pattern (4), rhythm histogram (3) and MFCC (2). This is
a mix of rhythm features, low-level features and tonal features, with a majority of them
being rhythm-related and with PCP being the only representative of the tonal features.
A key observation here is that most of the selected features (tempo, danceability, rhythm
pattern etc.) generally need longer time segments to be computed. We therefore believe
that the flexibility we allowed in the selection of the time window t was critical for push-
ing these features forward as being most informative for classification and therefore also
critical for getting the most out of the signal and achieving the best possible classification
performance.

We also performed the classification based on the high-level features, first separately
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and then integrated with low- and mid-level features. We computed the affect features
in the time interval corresponding to the optimal value of t , namely 25 seconds. Exper-
iments using other window sizes showed, however, that this parameter is not critical,
resulting in relatively constant classification performance. Computation of the event
feature is not dependent on the time window as this is solely the number of drop-like
events found in a music track. The classification results for different features and their
combinations are presented in Table 3.4. We observe that the high-level features gen-
erally perform worse than low- and mid-level features. An interesting exception is the
result obtained for the events feature and Relax category. The detector of the drop-like
events that we adopted from [8] is namely known for its high precision and low recall.
This is beneficial for the Relax music tracks having no drops and less beneficial for the
tracks from other two categories where drop-like events are present, but because of the
detector deployed, not well detectable. This result shows the potential of this feature to
improve the overall classification performance upon the one obtained by using low- and
mid-level features, however, under the condition that the detector of drop-like events
performs well. We discuss this further in the next section.

So far, we looked at the performance of our method in isolation. We now compare
our method with existing methods which classify music tracks into activities. Specifi-
cally, we compare it with the method proposed by Wang et al. [4] and also with two other
methods that we devised as being representative of common approaches deployed in
standard MIR classification tasks. The four methods entering a comparative analysis
are:

1. Our method: As a representative of our proposed approach we choose the method
variant deploying low- and mid-level features with the best performance in Table
3.3, namely for the time window of 25 seconds and 25 features.

2. Full track: We aggregate the low-level features, extracted from 50ms frames, over
the entire track by computing the mean and variance. We then combine these
features with other rhythm and tonal features extracted from the whole track. We
perform feature selection and select the most discriminative features (51 in this
case). Using a k-nearest neighbour classifier, we predict the labels of the music
tracks in the test set and compute the f-scores for the three categories. Such a
method is inspired from the field of static emotion recognition [6], which aggre-
gates the features over the entire music track in order to give an affect score for a
track.

3. One segment: We select one 25-second segment from each track in the training
data and extract the features as before. We then perform a feature selection and
obtain the most discriminative features (49 in this case). We divide each music
track in the test set into 25-second segments and select these 49 most discrimina-
tive features. Using a k-nearest neighbour classifier, we predict the labels of each
25-second segment in the test set and use a majority vote to get a single label for
a track. We then compute the f-scores for the three categories. This method is in-
spired by existing MIR approaches, especially genre recognition [6], where a short
segment taken from the track is used for feature extraction and classification.
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4. Wang et al.: Wang et al. extract features from a 512-sample frame every 30 sec-
onds and compute the mean and variance of these features over the entire track.
Then, they use an adaboost classifier to predict the labels of music tracks in the
test set. We follow this procedure on our dataset and compute the f-scores for the
individual categories.

Figure 3.5 summarises the results of all four methods for the three target activity cat-
egories. We can clearly see that our method outperforms other methods. We further
observe that the Full track method that aggregates features over the entire track per-
forms better than the One segment method and the Wang et al. method at least in two
categories: Relax and Study. From Table 3.3 and Figure 3.5, we can conclude that aggre-
gating over a longer window size helps in classifying the music track into one of the three
activity categories and, based on the experiments on our dataset, the best window size
is 25 seconds.
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Figure 3.5: Comparison of performance for three activity categories across different methods.

3.6.2. FAILURE ANALYSIS AND OUTLOOK
Through different experiments, we have shown that we can distinguish between mu-
sic for different activities and that our method performs better than the related existing
methods. However, even the best results are not perfect. In this section, we focus at these
imperfections by analysing the failure cases where music tracks belonging to a certain
activity category are assigned a wrong label.

Figure 3.6 illustrates the confusion matrix for the predicted labels on the test set and
the numbers in the boxes indicate the number of correctly/wrongly classified samples.
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The first observation we make is that there is considerable confusion between the Re-
lax and Study categories. Here, we take a look at individual examples and try to find
patterns that lead to this confusion between Relax and Study. Using a majority vote to
aggregate the labels seems to be the reason behind some of the misclassifications. One
of the tracks in the relax category, which had 72 segments in total, is misclassified as a
Study track because 33 segments are classified as Relax, 34 segments are classified as
Study and the remaining segments are classified as Workout. A majority vote clearly
finds that the track is Study, but the competition between Relax and Study categories
was close. We also found many other examples where the difference between the num-
ber of segments classified as Relax and those classified as Study is low. There was even
an example in the Study category that contained equal number of segments classified as
Relax and Study, but the max operator chose the category of the track as Relax. In order
to investigate this phenomenon further, we measured the mean and standard deviation
of the difference between the number of segments in the top two categories for each ex-
ample. For correctly classified examples, the mean is 48.6 while the standard deviation is
16.2. For incorrectly classified examples, the mean is 26 while the standard deviation is
6.1. We clearly see lower values for incorrectly classified examples, indicating that there
is a closer competition between categories for incorrectly classified examples. Clearly,
deploying majority vote has drawbacks as it does not reflect how strong the majority is.
This calls for investigating different aggregation strategies that can combine the labels
of individual segments into a single label for the track in a more robust fashion. Alter-
natively, we would also like to explore whether we could choose the segments in a smart
way (analogous to feature selection) that are most discriminative for an activity cate-
gory, which removes the need for an aggregation step. Another possible direction could
be to consider the labels for the segments as a sequence instead of considering them as
a bag of segments (current method). The temporal ordering could provide additional
information that could reduce the misclassfication rate.

We initially hypothesised that drop-like events are completely absent in Relax music,
while they are present in the other two categories. This is confirmed by the classification
results reported in Table 3.4, in particular by a high f-score for Relax music when events
feature is used. As explained in the previous section, this effect is additionally empha-
sised due to a strong bias of the event detector used towards high precision. However,
there is more to it. Some of the Study music tracks also do not contain drop-like events
and this resulted in a confusion between Relax and Study categories. Furthermore, there
are similar numbers of drop-like events in some Study music and Workout music tracks,
which results in lower f-scores for these two categories. Another reason for failure is that
there are more subtle drop-like events in Study music while Workout music has more
pronounced events and the drop detector missed detecting some of the subtle events.

Mapping between low-level features and affect is a difficult proposition and we have
used an off-the-shelf toolbox to compute the affect scores for the music tracks. Observ-
ing the results reported in Table 3.4, the affect based classifier performs reasonably well,
but there is a scope for improvement. We could look at different strategies to compute
affect scores in the future and investigate its impact on the classification performance.

An aspect of activity-based music that needs further attention is the presence of dis-
tractors, which are musical characteristics that might distract the user from his/her ac-
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tivity. For instance, one of the observations in Section 3.4 was that Study music did not
have any vocals while the other two types of music could contain vocals. In the future,
one could investigate to which extent the presence/absence of vocals is informative as
a feature for this classification task. In general, one could search for additional sources
of information, e.g., user comments, that can help identify the distractors for different
activities. Here are some examples of user comments that can be used to identify if the
track is really useful for an activity:

• Comment on a relax music track: “There is a jarring piano sound in the middle!”

• Comment on a study music track: “This track contains vocals and distracting while
working”

The biggest challenge we see when relying on user comments is to spot the comment
with the relevant information among plenty of (largely noisy) comments posted by the
users.

27
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Figure 3.6: Confusion matrix for the best performing case of t = 25 seconds

3.7. CONCLUSION AND OUTLOOK
In this chapter, we have addressed the challenge of identifying appropriate music for
common daily activities. In this way, we made a critical step towards developing a music
recommender system that takes into consideration both the aspects of what music is
and what it can do for a listener. We have focused on the three activity categories that we
found to be be common via a study of textual metadata on YouTube: Relax, Study and
Workout.
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One of our key findings is that the presence of standard musical metadata, like genre,
instrument, do not seem to be enough for addressing the problem of activity-based mu-
sic classification. We demonstrated this through multiple experiments: using genre/instrument
information to classify and using the feature extraction strategy inspired by these tasks.
However, we have used a standard techniques: k-NN classifier, standard features and
feature selection in our multi-class classification problem as our focus was not on op-
timising for performance but validating our idea of activity based music classification.
Future work could involve experimenting with more advanced classifiers/techniques.
Another important finding is that this task requires more timeline information (25 sec-
onds) for feature extraction from an audio track, i.e., the window size must be longer
than what is currently conventional in the MIR literature.

Based on these findings we have developed a method that identifies the time reso-
lution at which the low-level features should be aggregated and also the best number of
discriminative features to be used. Using the features extracted at the identified tempo-
ral resolution, our classifier could successfully distinguish between music for the three
different activity categories and also outperform existing methods.

This chapter opens interesting perspectives for future work. From the musical con-
tent perspective, we plan to investigate additional information to improve the identifi-
cation of music for activities. Here, we have taken a bag-of-segments approach. Moving
forward, however, we anticipated that incorporation of the temporal order of the seg-
ments could, as mentioned above, provide further insight. Further, also as mentioned
above, users post comments on YouTube for different music tracks. Some of these touch
on the suitability of a music track is for a specific activity. These comments are a promis-
ing source of information. Additionally, high-level features, e.g., presence/absence of
vocals, could also improve classification.

Our work here is based on the insight that there are general characteristics of music
which have a similar reception across a broad population. In pursuit of these general
characteristics, we focus on information about music tracks provided by uploaders. We
adopt an assumption used recently in work on video uploader intent [22]: the fact that
uploaders are publishing on a public platform, accessible to millions of users, makes it
likely that they are taking the musical reception of the general population into account.
The fact that we focus on here on broad consensus on which music is appropriate for
which purposes, should not preclude future study of the role played by individual pref-
erences in users’ choices of music for different activities. Individual preferences should
also be understood as preferences of groups of users who pattern together, such as intro-
verts and extroverts, as studied by [23]. Moving forward, understanding where universal
music preferences fall short of being useful will allow us to gain further insight into the
performance of the classifier. Specifically, we would like to investigate the relatively large
confusion between the music for the Relax and Study categories from a user’s perspec-
tive. Such a user study would allow us to determine whether the classifier should be
further improved, or whether the category labels must be refined to make it possible to
cater for finer-grained preferences within the population.



3

68 REFERENCES

REFERENCES
[1] K. Yadati, C. C. Liem, M. Larson, and A. Hanjalic, On the automatic identification of

music for common activities, in Proccedings of the ACM International Conference on
Multimedia Retrieval (2017).

[2] S. Bottiroli, A. Rosi, R. Russo, T. Vecchi, and E. Cavallini, The cognitive effects of lis-
tening to background music on older adults: processing speed improves with upbeat
music, while memory seems to benefit from both upbeat and downbeat music, in
Frontiers in Aging Neuroscience, Vol. 6 (2014) p. 284.

[3] A. Demetriou, M. Larson, and C. C. S. Liem, Go with the flow: When listeners use
music as technology, in Proceedings of the conference of International Society for Mu-
sic Information Retrieval (2016).

[4] X. Wang, D. S. Rosenblum, and Y. Wang, Context-aware mobile music recommen-
dation for daily activities, in Proceedings of the ACM International Conference on
Multimedia (2012).

[5] A. Hanjalic, C. Kofler, and M. Larson, Intent and its discontents: The user at the
wheel of the online video search engine, in Proceedings of the ACM International
Conference on Multimedia (2012).

[6] Z. Fu, G. Lu, K. M. Ting, and D. Zhang, A survey of audio-based music classification
and annotation, in IEEE Transactions on Multimedia, Vol. 13 (2011) pp. 303–319.

[7] O. Lartillot and P. Toiviainen, MIR in Matlab (II): A Toolbox for Musical Feature Ex-
traction from Audio, in Proceedings of the conference of International Society for Mu-
sic Information Retrieval (2007).

[8] K. Yadati, M. Larson, C. C. S. Liem, and A. Hanjalic, Detecting drops in electronic
dance music: Content based approaches to a socially significant music event, in Pro-
ceedings of the conference of International Society for Music Information Retrieval
(2014).

[9] R. Dias, M. J. Fonseca, and R. Cunha, A user-centered music recommendation ap-
proach for daily activities. in Proceedings of the ACM Workshop on Content based
Recommender Systems (2014).

[10] A. Aljanaki, F. Wiering, and R. C. Veltkamp, Emotion based segmentation of musical
audio, in Proceedings of the conference of International Society for Music Informa-
tion Retrieval (2015).

[11] L. Lu, D. Liu, and H.-J. Zhang, Automatic mood detection and tracking of music au-
dio signals, in IEEE Transactions on Audio, Speech, and Language Processing, Vol. 14
(2006) pp. 5–18.

[12] K. Choi, G. Fazekas, and M. B. Sandler, Automatic tagging using deep convolutional
neural networks, in Proceedings of the conference of International Society for Music
Information Retrieval (2016).

http://dx.doi.org/10.1109/TMM.2010.2098858


REFERENCES

3

69

[13] E. Law, K. West, M. Mandel, M. Bay, and J. S. Downie, Evaluation of algorithms using
games : The case of music tagging, in Proceedings of the conference of International
Society for Music Information Retrieval (2009).

[14] K. Choi, G. Fazekas, M. B. Sandler, and K. Cho, Transfer learning for music classifi-
cation and regression tasks, in Proceedings of the conference of International Society
for Music Information Retrieval (2017).

[15] H. Lee, P. Pham, Y. Largman, and A. Y. Ng, Unsupervised feature learning for audio
classification using convolutional deep belief networks, in Proceedings of the Inter-
national Conference on Neural Information Processing Systems (2009).

[16] J. Pons, T. Lidy, and X. Serra, Experimenting with musically motivated convolutional
neural networks, in Proceedings of the International Conference on Content based
Multimedia Indexing (2016).

[17] T. Lidy and A. Rauber, Evaluation of feature extractors and psycho-acoustic transfor-
mations for music genre classification, in Proceedings of the conference of Interna-
tional Society for Music Information Retrieval (2005).

[18] W. Dubitzky, Fundamentals of Data Mining in Genomics and Proteomics (Springer-
Verlag, Berlin, Heidelberg, 2009).

[19] G. Brown, A. Pocock, M.-J. Zhao, and M. Luján, Conditional likelihood maximisa-
tion: A unifying framework for information theoretic feature selection, in Journal of
Machine Learning Research, Vol. 13 (2012) pp. 27–66.

[20] D. Bogdanov, N. Wack, E. Gómez, S. Gulati, P. Herrera, O. Mayor, G. Roma, J. Sala-
mon, J. R. Zapata, and X. Serra, Essentia: an audio analysis library for music infor-
mation retrieval, in Proceedings of the conference of International Society for Music
Information Retrieval (2013).

[21] M. Larson, K. Yadati, M. Soleymani, and P. S. N. Chandrasekaran Ayyanathan, Me-
diaeval 2014 crowdsourcing task: Crowdsorting multimedia comments, (2014).

[22] C. Kofler, S. Bhattacharya, M. Larson, T. Chen, A. Hanjalic, and S. F. Chang, Up-
loader intent for online video: Typology, inference, and applications, in IEEE Trans-
actions on Multimedia, Vol. 17 (2015) pp. 1200–1212.

[23] G. Russell, Preferred stimulation levels in introverts and extroverts: Effects on arousal
and performance. in Journal of Personality and Social Psychology, Vol. 46 (1984) pp.
1303–1312.

http://osf.io/h92g8
http://osf.io/h92g8




4
AUTOMATIC IDENTIFICATION OF

DERAIL MOMENTS IN FOCUS MUSIC

Listening to music while engaging in another activity is a common phenomenon. Many
times, however, the listener finds that a music track starts out fine for a task, but suddenly
something happens in the music that completely distracts the listener from the task. We
call such a moment in a music track a “derail moment”. We investigate the different as-
pects of derail moments and propose a method to detect them. This work represents the
first step towards a music player that could automatically detect an upcoming derail mo-
ment and smoothly blends into the next track before it arrives. Our work is motivated by
evidence that derail moments are not purely personal experiences, but that they have ele-
ments of universality. Two sources provide evidence of the existence of such elements. First,
a survey of neuro-, cognitive-, and social- psychology literature reveals potential causes of
derailment. Second, an exploratory user study on Amazon Mechanical Turk (AMT) among
people who listen to music while working reveals commonalities in the self-reported ex-
perience of distracting moments in music. Building on this evidence, the chapter then
proposes an automatic method to detect derail moments. We create a dataset by collect-
ing music tracks from real users who work on AMT while listening. We draw on their
experience to train and evaluate a model than can automatically detect a derail moment.
Through experiments, we demonstrate the effectiveness of our method. Analysis and dis-
cussion of our results sheds light on which aspects of derail moment detection remain par-
ticularly challenging.

This chapter is in preparation for submission to the Transacations of International Society for Music Informa-
tion Retrieval [1].
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4.1. INTRODUCTION
Listening to music is a daily activity for many, and a large amount of music is readily
available via today’s online platforms. Although listening to music can be considered an
activity in itself, it can also support another activity that the listener is simultaneously
engaged in. For example, you might be studying for an exam, working in your office, or
commuting to your workplace, and you could potentially listen to music during any of
these activities. This chapter opens a new perspective on what makes music appropriate
for focusing on work. Specifically, we introduce the concept of a derail moment, which is
a point at which a listener loses focus due to something that happens in the music signal.
We propose an automatic approach that makes it possible to detect these moments in a
music tracks, with the goal of helping listeners to avoid them.

The motivation for our work comes from two directions. First, we are motivated by
research evidence that has revealed that people listen to music in the course of activi-
ties other than deliberate music listening. This observation was made by [2], who found
that when people are listening to music by themselves, in about 20% of the cases they
reported it was helping them listener to concentrate or think. Recently, [3] have argued
that more music retrieval research should focus on situations in which listeners use mu-
sic as a tool to achieve certain psychological effects. This work points out that people
effectively use music “as technology" while performing another activity in order to help
themselves achieve mental states in which their attention is focused on their task. We
build on this work by diving more deeply into specific moments in music that cause lis-
teners to lose focus on their task.

Second, we are motivated by research evidence that it is important for listeners to
be able to control the music that they listen to. In particular, we point to a research
study by [4], which concludes that users want to have the possibility to manipulate as-
pects of their experience, including how distracting tracks are. Although listeners prefer
more control, they would also prefer, in general, to have a minimal amount of interac-
tion with their music players. Further evidence of the importance of control in playlists
and streams is covered by [3].

The experience of a “derail moment" is described with the following scenario. Many
times, it happens that you start listening to a music track thinking that it is suitable for
the task you are doing at that moment, and that the track will not distract you. The track
starts out fine, but suddenly something occurs in the music that distracts you from the
task you are doing, and you stop what you are doing to skip the track manually in order
to continue working. The “derail” moment is the moment that the music causes your
concentration to break. A track that contains a derail moment is not useful for listening
while working because you cannot simply play the track, ignore it and focus on your
task. This chapter investigates the nature of derail moments, their characteristics, and
the automatic detection of a derail moments in music tracks.

The context of our work is a growing number of music services that provide music for
focus (e.g., Focus@Will, Brain.fm) and relaxation (e.g., Brain.fm). Additionally, there are
music playlists/mixes available on popular music streaming services like YouTube, Spo-
tify, Google Play music. This context supports our position that music retrieval should
help users to find focus music. However, to our knowledge, until now, research on fo-
cus music has addressed the track level, and has not looked at the effects of disruptive
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moments with tracks. As mentioned above, control of music choice is known to be im-
portant for listeners. We believe that not only should listeners have a large choice of
music tracks available, but they should also be able to choose to avoid certain moments
in these tracks.

As a step towards building such tools, we envision a smart music player that can con-
tinuously play music without distracting listeners from their tasks. Listeners can create
their playlists with music tracks of their choice, and the smart music player automati-
cally detects the positions of any derail moments present in the music tracks. When the
derail moment is approaching in the current track that is playing, the player smoothly
blends into the next track so that the listener is not distracted by it. Such a smart music
player would build on research in automatically creating playlists while considering dif-
ferent factors, such as the order of the tracks and different blending strategies, e.g., [5].
The primary focus of this chapter is to develop a method that can automatically detect
derail moments in a music track, and, as such, we leave the development of the specific
method for creating playlists to future work.

We start with a minimal assumption: a listener experiences a derail moment due to
something that has shifted or is shifting within the music. On the basis of this assump-
tion, we conceptualise a derail moment as the start of a new music event potentially
associated with a number of different properties. The event may start gradually or may
start suddenly. The duration of the event may be long or may be short. After the event,
the music may go back to be suitable for focus, or it may evolve in ways not suitable
for focus. The assumption that a derail moment is a start of an event allows us to con-
sider derail moment detection as a type of event detection. We do not, however, make
assumptions about which of the properties holds for any given derail moment.

Motivated by this reasoning, this chapter proposes an approach to derail moment
detection that is based on approaches known to be effective for music event detection.
Specifically, we adopt the insight of [6] that effective event detection can be carried out
with a two step approach, which first segments the music track and then identifies seg-
ment boundaries as events. We adopt a segment-based approach to automatically detect
a derail moment in a given music track, and explore features that are effective for derail
moment detection.

Although we base our approach on event detection, it is important to clarify the ways
in which derail moment detection is conceptually a different problem from standard
event detection. Typically, an music event is conceptualised as occurring in the audio
signal, and people creating or listening to music have a high level of agreement on the
occurrence of events. A derail moment, on the other hand, is conceptualised as occur-
ring in the listener’s mind. It is triggered by a shift in the audio signal, but there is not
necessarily a high level of agreement among creators and listeners on the occurrence of
derail moments. Within a given music track there may be two moments that are iden-
tical from the point of view of the audio signal. Under an event detection viewpoint, a
successful detector would need to detect both moments as accurately as possible. Under
a derail moment detector viewpoint, a successful detector must only detect the first mo-
ment. The second moment is not actually a derail moment, since the user has already
lost focus and switched to another track. Also, detection should be accurate. However,
a derail moment detector is successful if it predicts the moment somewhat earlier in the
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music stream than it occurs, but fails completely if it predicts it later than it occurs. This
sort of asymmetry does not arise with conventional music event detection.

The main contribution of this chapter is to explicitly identify the concept of a derail
moment, point out its importance for music listeners, and to demonstrate a productive
way forward in creating automatic detectors of derail moments that would be useful
for music recommendation systems. To our knowledge, we are the first to work studying
derail moments, and to create a detector that can automatically predict their occurrence.
Because we are entering new territory, there are a number special challenges that we
must face in studying derail moments and in creating a detector that can automatically
predict their occurrences. Here, we summarise these challenges, and briefly describe
how we tackle them:

1. Not all users will experience the same derail moments. We expect that what causes
listeners to lose focus will not be identical for all listeners. We address this chal-
lenge, by investigating whether there are any aspects of derail moments that are
potentially shared among users. We find evidence, through a literature survey and
a user study, that there are elements of universality to a derail moment. This evi-
dence motivates us to continue to study derail moments, with the idea that a de-
tector that focuses on this element of universality could be beneficial for a wide
range of listeners.

2. Not all derail moments are punctual, some are gradual. Although we do expect
that some derail moments will be triggered by sudden events in the signal (such
as a sudden clash of cymbals), other derail moments will triggered by gradually
evolving events (such as a crescendo). We address this challenge by asking the
listeners who create the ground truth for our experiments to provide us with the
first moment in the track at which they think that the music becomes distracting.
In this way, we are able to circumvent variation in the exact moment at which the
user decides to stop listening to a music track. We also ask our listeners to tell us
whether they experienced the derail moment as a very clear point in the track or
as the start in the change of a track. We then analyse the performance of our derail
moment detector taking these differences into account.

3. No existing dataset supports the study of derail moments. Studying derail moments
requires input for a large number of people on how they experience music. Since
different tasks require different types of focus, creating a dataset for studying de-
rail moments requires controlling for the type of tasks that people are doing while
listening to music. We address this challenge, my turning to Amazon Mechanical
Turk (AMT) in which we are able to request input from a large group of people who
regularly listen to music while carrying out a specific type of data set.

It is our hope, that this work will inspire researchers in the future to work on the problem
of derail moments. In order to make our work reproducible and support future research,
we release the text of our user study questionnaires, the dataset that we created, and
the code of our classifier on the Open Science Framework to promote further research
(https://osf.io/n3zmp/).

This chapter is organised around a set of research questions, which our research
strives to answer:

https://osf.io/n3zmp/
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1. Are derail moments purely listener-specific or do they have an element of univer-
sality?

2. Can we automatically detect the position of a derail moment based on features
extracted from the music signal?

3. Given a track, can we detect whether there is a derail moment in it?

The chapter is structured as follows. After having introduced our problem and the
challenges that it presents in this section, we proceed to survey literature pertinent to
the task of derail moment detection in Section 4.2. We then move on in Section 4.3 to
answering the first research question on elements of universality of derail moments by
carrying out a survey of existing neuro-, cognitive-, and social- psychology literature and
also a user study among music listeners on AMT. We explain the procedure to collect
our dataset and analyse it in Section 4.4. Next, we present our method to detect derail
moments in a music track in Section 4.5. We describe the experimental setup in Section
4.6 and discuss our results in Section 4.7. We then provide further insights into the results
in Section 4.8, before proceeding to conclude the chapter in Section 4.9.

4.2. RELATED WORK
In this section, we look at different aspects related to the challenge of detecting a derail
moment in a given music track. Since we consider derail moments to be music events,
we start off by reviewing the field of audio event detection. We then review literature in
the field of music for activities.

4.2.1. AUDIO EVENT DETECTION
Research related to audio event detection can broadly be divided into three categories:
environmental sound recognition, music event detection, and music structure analysis.
Environmental sounds that can be detected in a given audio stream include, for exam-
ple, bell ringing, applause, footsteps, or rain. Various features and learning methods
have been proposed to model the typically non-stationary characteristics of the envi-
ronmental sounds [7].

Event detection in music has typically focused on detecting low-level events, such
as onsets [8]. Music onset detection is a well-studied problem in music information re-
trieval (MIR), and it is offered as a task in the MIREX benchmark evaluation every year.
A slightly related task at MIREX is music auto-tagging [9], which assigns descriptive tags
to short segments of music. These tags generally fall into three categories: musical in-
struments (e.g., guitar and drums), musical genres (e.g., pop and electronic) and mood-
based tags (e.g., serene and intense).

Recent work on music event detection has extended from low-level events to high-
level events [6], where the authors propose methods to detect and localise high-level
events in a given music track. They use a case study on events in Electronic Dance Music
(EDM): Drop, Break, and Build, to illustrate that these high-level events can be detected
using temporally noisy labels. The presence of these high-level events may help us in
identifying whether there is a derail moment in a given music track. An important part
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of the high-level event detection pipeline is music structure segmentation [10], which
divides the music track into its structural segments.

In music structure analysis [10], the objective is to divide a given piece of music into
its various sections and later group them based on their acoustic similarity. Structural
elements are a very important characteristic to the identity of a piece of music. For ex-
ample, in popular music tracks, these structural elements could be the intro, the chorus,
and the verse sections. Different aspects of musical expression have been deployed for
analysing the musical structure, such as homogeneity (e.g., in instrumentation), repeat-
ing patterns (e.g., in rhythm or melody) and novelty (e.g., through a change in tempo or
tonality).

In this chapter, we consider a derail moment to be an event that occurs in a music
track and triggers a reaction from the listener. It is a higher level event than a drop, as a
drop is only one kind of event that can distract the listener. Hence, we need to follow an
approach that is different from low-level event detection (onsets). Unlike auto-tagging,
we are dealing with the stream of a music track to detect a derail moment. We use the
output of music structure segmentation to get an indication of the probable position of
a derail moment, as we hypothesise that a derail moment could be closer to a structural
segment boundary.

4.2.2. MUSIC FOR ACTIVITIES

Recently, interest has arisen in the research community for the challenge of automati-
cally identifying music for various daily activities. Wang et al. proposed a method that
associates music with specific activities [11]. The authors use a predefined list of activ-
ities: running, walking, sleeping, working, studying and shopping, for which they rec-
ommend music. Sensors on the mobile phone are used to infer whether the user is in
the middle of one of these activities, and then suitable music is recommended based on
an analysis of low-level features extracted from the signal. To train the recommender
system, playlists for specific activities are collected from an online music sharing plat-
form. Next, a subset of 1200 tracks is picked from these playlists and manually labelled
with one or more activities as tags. A classification problem is then set up where a model
is trained for each activity based on the mean and standard deviation of low-level fea-
tures extracted from a 512 sample frame extracted every 30 seconds of the track. Wang
et al. use the following features for classification: Zero-crossing rate, Centroid, Rolloff,
Flux, Mel-Frequency Cepstral Coefficients (MFCC), Chroma, Spectral Flatness Measure
(SFM) and Tempo. The trained model then predicts activity-based tags for new tracks.
Dias et al. reports similar work. [12], where the system “Improvise” is designed to asso-
ciate music with daily activities mentioned above.

Recently, Yadati et al. [13] provided an alternate perspective on automatic identifi-
cation of music for common activities. Instead of defining a list of activities in advance,
they proposed a data-driven approach that identifies the most common activity cate-
gories for which music is sought. They rely on a social media sharing platform (YouTube)
to identify the following common activity categories: Relax, Study and Workout. The au-
thors investigate a variety of low-level, high-level features in addition to the metadata
provided by the media uploaders to categorise a music track into one of the three activ-
ity categories. One of the main findings of the authors was that the metadata like genre,
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instrument, or artist does not provide a useful classification. However, presence of musi-
cal events had a significant role in classifying music into the three activity categories. The
events considered by Yadati et al. [13] were drop-like events from Electronic Dance Mu-
sic (EDM) that attracted a listener’s attention towards the music. This attraction towards
music is a distinguishing factor in identifying music for focus and workout. In focus mu-
sic, you want to limit this attraction and in workout music you want to maximise this
attraction. Another significant finding is that the window size needed to extract features
should be longer ( 25 seconds) than what is state-of-the-art practice ( 100ms) in music
information retrieval research.

Our investigation in this chapter is different from the approaches as mentioned above.
The existing approaches investigate what kind of music is suitable for specific activities,
while we study what musical events can distract a user from performing his/her task.
Many times, it could be the case that a majority of a music track may be suitable for fo-
cusing on a specific task, but it has a particular segment or a moment in the track that
can completely distract the listener. In this chapter, we are trying to find such events in
a given music track and warn the user before he/she chooses a specific track for working
on a task.

4.3. ON THE ELEMENTS OF UNIVERSALITY OF DERAIL MOMENTS
In this section, we address our first research question: Are derail moments purely listener-
specific or do they have an element of universality? Upon first consideration, it might be
tempting to assume that what causes a derailment of concentration is dependent only
on the specific listener. In the introduction we have already mentioned the assump-
tion that derail moments are subjective to be a factor that has held previous researchers
back from looking at this topic. We were initially triggered to revisit this assumption
by the observation that distraction has its roots in basic brain functions. If distraction
has a dependence on the nature of our brains, it is to be expected that at least some
elements contributing to what listeners identify as a derail moment must be universal,
i.e., shared among all listeners. This section first surveys the neuro-, cognitive-, and
social- psychology literature and develops an argument for rejecting the assumption
that derail moments are completely listener-dependent. This argument motivates our
guiding assumption that there is enough listener-independence to derail moments to
make it worthwhile studying them from the perspective of their elements of universality.
The survey also provides motivation for choosing the features to extract from the mu-
sic signal in order to build machine learning models that can automatically detect derail
moments. Next, the section turns to analyse an exploratory survey that we carried out
among listeners who use music for a specific type of task. Here, again we find evidence
that

4.3.1. NEUROSCIENCE PERSPECTIVE
Our survey on the neuro-, cognitive-, and social- psychology literature starts from the
assumption that derailment is a form of distraction. For this reason, we focus on features
of music tracks that might result in

1. attention being drawn to the music, and
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2. an increase in physiological arousal.

To guide our hypotheses, we turn to the BRECVEMA model of musical emotions [14],
which reviews literature concerning the different ways music has been shown to elicit
emotion in a listener. We include emotions in our discussion, as lower order emotions
are theorised to be automatic responses to stimuli that were relevant to survival in the
ancestral environment. We draw on three of the lower order components of the BRECVEMA
model: brain stem reflexes (B), rhythmic entrainment (R), and emotional contagion,
specifically as regards the presence or absence of vocals in a musical piece (C). [14]
hypothesise that all three components occur involuntarily and automatically, and are
therefore free from cultural impact. These components, therefore, may guide the auto-
matic extraction of features that universally affect the individuals listening to them.

MUSICAL EVENTS

We tie brain stem reflexes to the presence of events within a music track. It is hypothe-
sised that loud, dissonant, low frequency, sudden onset or changing sound signal to the
brain stem that something urgent may have occurred, and that this event may demand
immediate attention and reaction [14]. In the ancestral environment, for example, one
can imagine such sounds occurring as the result of the movement of something signif-
icant, or because of a dominant force (e.g., falling boulders, or the roaring of a large
predator). While the effect from music is likely far less pronounced, pieces that contain
“events” that meet these criteria may result in a) the attention of the listener being di-
verted to the music and b) an increase in arousal of the listener. We would thus hypoth-
esise that the larger the number of such incidents in the piece, and the more frequent
the presence of noisy and dissonant sounds, the better suited the piece might be for ac-
tivities where arousal is desired, and the attention being paid to the activity is minimal
(e.g., alleviating boredom during a morning commute, housework, exercise involving
repetitive actions like running). However, such noisy music may be distracting when the
person is attempting to focus on task. Moments where dramatic changes in the audio
signal occur, such as “drops” in electronic music [6], might be expected to draw atten-
tion to the music, arousing the listener in the process, and causing distraction.

PULSE CLARITY

Music that has a clear pulse may be more likely to lead to entrainment, e.g. electronic
dance music which is characterised by a conspicuous and steady bass drum. Entrain-
ment is typically defined as the synchronisation of two systems caused by their interac-
tion: musical pieces can be considered oscillating systems, as can various physiologi-
cal processes in the human body (e.g., neuronal oscillations, cardiac activity, respiration
etc. [15] posit that entrainment between these various physiological processes and a mu-
sical signal occurs at different levels. Perceptual entrainment, or the cognitive process
underlying the recognition of the meter in a musical piece (i.e. recognising the “beat”)
can be expected to be greater when the pulse is clear (i.e., when the notes occur on down-
beats, and when the last downbeat is accented) and when the meter is easy to recognise
and predict (i.e., a standard, even, simple time signature as opposed to an unfamiliar,
odd, complex time signature). Physiological entrainment is typically considered to be
the tendency of respiratory and cardiac activity to adapt to the perceived pulse of the
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music, although it may involve other biological systems that are less convenient to mon-
itor. As a result, musical pieces with a salient rhythm result in a higher likelihood that
perceptual and physiological entrainment will occur to the perceived tempo of the piece.
Given that the brain stem is likely to react to a sudden onset, low-frequency sound [14],
and sounds that appear consistently on the downbeat are likely to lead to perceptual and
physiological entrainment [15], we focus on the frequency and salience of bass drum
notes in the piece. We further expect faster tempos to result in increased arousal, and
lower speeds to result in decreased arousal. However, when these beats are constant we
would not expect them to distract a listener, even though the listener may use such mu-
sic to keep themselves aroused. On the other hand, if the drum beats were to suddenly
change or disappear entirely, this may result in a derail moment.

VOCALS

It has been shown that the brain reacts differently to music when there are vocals vs.
when there are no vocals, and when the vocals contain lyrics vs. vocalisations without
words [16]. Similarly, physiological arousal has been shown to be higher for music with
vocals vs. music without vocals (e.g. [17]). Specifically, [17] showed that the presence of
vocals correlated with pupil dilation, which in turn is associated with the locus coeruleus
(LC). The LC is a region of the brain that has been shown to affect both attention and
arousal (see [18]). As such, we would expect the presence of vocals in a musical piece to
draw more attention and to be more arousing when compared to compositions that do
not have vocals. Therefore when working on a task, it may be the case that music with
vocals may be more distracting and likely to derail than music without vocals. Further-
more, the BRECVEMA model [14] suggests that the presence of vocals may also result
in emotional contagion. Thus, if the vocals convey a relaxed emotional state it is sug-
gested the listener will also feel more relaxed, e.g. as a child would when listening to the
mother sing a lullaby. On the other hand, vocals that convey a high level of arousal, such
as screaming, may also result in the listener being aroused. As such, music that con-
tains vocals whose perceived emotions vary, or where the vocals appear suddenly, may
be more likely to derail the listener.

Furthermore, it is possible that the presence of music with lyrics will interfere with
concentration on tasks that require cognitive engagement, mathematics, or the process-
ing of language, such as reading or writing (e.g., [19]). As such, the presence of lyrics may
be distracting when the task at hand involves similar kinds of processing. Therefore, a
song with lyrics may result in a difficulty being able to process what is being read, which
may derail the listener.

In summary, experiments in neuro-, cognitive-, and social- psychology literature
suggest the existence of basic brain behaviours that draw a listener’s attention towards
the music. Since these behaviours can be expected to be common for all listeners, their
existence supports our position that it is worthwhile to assume that derail moments
have a universal component that makes it worthwhile to investigate them in a user-
independent manner. Additionally, we use these findings to compile a list of musical
features that we can extract from the signal for building our machine learning models:
presence/absence of drop-like events, pulse clarity, tempo, and the features represent-
ing the characteristics of vocals. We will use these features while we discuss our second
research question in the subsequent sections.
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4.3.2. USER STUDY AMONG MUSIC LISTENERS
In our quest to find whether there exists an element of universality to the phenomenon
of derail moments in music tracks, we now turn to hear directly from people who use
music as a tool to support their work. We carry out a user survey on Amazon Mechanical
Turk (AMT), where we can find a large number of users performing similar tasks and
listening to music while doing so.

Based on literature [20], [21] and our investigation on AMT, we found that text tran-
scription HITs are ubiquitous and popular among AMT participants. In these HITs, the
participants are given an image of a receipt or an invoice and are asked to transcribe the
contents into a web form. These HITs are well-defined and this is important because
literature provides evidence that listening to music while performing well-defined tasks
makes them more enjoyable [22]. While designing our HIT to collect responses from
participants, we wanted to control for the variability in what people consider appropri-
ate focus music by looking at a single type of task, which is also an important type of
task. We then designed our HIT asking participants to provide us insight into what kind
of music they would listen to while doing a text transcription task. Another reason for
choosing this particular task is because it is a well-defined task and has no ambiguity
about it. We asked the user study participants the following questions to understand
what kind of music they would listen to, and what type of music they would avoid listen-
ing to, while working on text transcription tasks.

1. Please describe the type of music that you think people generally listen to while
doing transcription HITs. We are interested in how the music sounds (in other
words, try to describe what you hear in the music, rather than giving artists or
genres).

2. People sometimes have the experience that they are listening to a new music track,
and it starts out being fine for working. But then something happens in the music
making the track not good for working anymore. In your experience, please tell us
what ruins a music track for work.

3. Finally, go to YouTube and provide us with a link to a video of a music track that
you would like to have in a transcription HIT playlist.

4. Please explain why you chose this example.

In addition to these four main questions, we also asked the participants for an appro-
priate name for this moment in the music track where you get distracted from the task.
We gave the following options to the participants: Track crash, Deal breaker, Derail mo-
ment, Track fail, others. A vast majority of participants (80%) responded that they would
call the moment a derail moment and hence we decided to call it a “derail” moment.

The overall goal of the HIT was to understand the main reasons why a moment in a
track ruins it for work. We performed a card-sorting process on the answers we got for
the second question on distracting elements in a music track. We printed the responses
on rectangular strips of paper and timed the card-sorting process. For card-sorting, we
manually read through the responses from the participants and categorise them into dif-
ferent clusters. We start with the first response as the first cluster, and as we read through
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Category Examples
Signal-oriented Songs that go from fast to slow or slow to fast can also disrupt rhythm

when working. A bass drop would ruin the track. A sudden shift from
the rest of the piece would also throw me off.

Artist-oriented When the lyrics become too dark or violent. When the lyrics become
too dark or violent

Listener-oriented Any music that is going to make you think about things other than
work at that moment will ruin music for work by doing to opposite
of what you seek in helping you focus. Music that invokes too much
emotion or thought ruins the work focus and motivations. Well, I was
listening to Tom Petty quite a bit in my playlist as I love "Face in the
crowd" and "Into the Great Wide Open". But, after he died this week,
I find it hard to listen to those tracks because I begin thinking about
his death and it makes me a little upset.

Table 4.1: Examples for the different categories of participant responses on AMT.

the answers, we either create a new cluster or merge the response into an existing cluster.
Three of the authors participated in this process, and it took us approximately 3 hours to
converge on a stable clustering of responses.

Our card-sorting process resulted in three major categories of responses to distract-
ing elements in a music track: signal oriented characteristics, artist-oriented charac-
teristics, and personal preferences. There were different sub-categories under each of
the three major categories. For the signal oriented characteristics, responses included
comments on loudness, sudden changes in tempo or volume or style, bass drops, repet-
itiveness, complexity. For the artist-oriented characteristics, people commented on the
high pitch of the singer, screaming, foul language, wordiness, and in general presence
of vocals. While discussing their personal preferences, participants talked about liking,
familiarity, emotion, memory (good/bad). You can see some representative example re-
sponses in Table 4.1. For a full list of the responses and their corresponding categories,
read the following document: participant responses. We also generated a visual repre-
sentation of the various comments from the user study participants on AMT in the form
of a word cloud (Figure 4.11).

Observing the three main categories, we can say that personal preferences or sub-
jectivity in a derail moment is only a part of the phenomenon. There are other more
universal characteristics which define a derail moment, and these are identifiable by a
general audience.

From neuro-, cognitive-, and social- psychology literature, we found suggestions that
the following characteristics should be very important in selecting music that is not dis-
tracting: tempo, vocals, events, pulse clarity. If we carefully observe the responses from
participants, we see confirmation of the suggested characteristics. Additionally, other
characteristics emerge viz., loudness, dynamic complexity. Multiple participants men-
tion these characteristics while responding to the question of distracting elements of

1https://wordart.com/

https://osf.io/n3zmp/
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Figure 4.1: Word cloud of all the responses from the participants on AMT.

music while working on a specific kind of task. From the responses, we could filter out
personal preferences and concentrate on the signal oriented characteristics. Our exper-
imental findings (categorisation) on AMT and our neuro-, cognitive-, and social- psy-
chology literature survey provides support for the expectation that there is an element
of universality to the phenomenon of a derail moment. Once the methods to automati-
cally identify these universal elements are developed, future research could progress to
the addition of personal preferences

4.4. DATASET AND ANALYSIS
As indicated earlier, we turn to AMT to collect data on music tracks and the correspond-
ing derail moments. We created a new HIT on AMT asking the participants to give us
examples of music tracks with derail moments. The HIT gathered the following infor-
mation from the participants:

1. YouTube URL for a music track

2. Timestamp of the derail moment in hh:mm:ss format

3. Explanation on what exactly distracted the participant,

4. If the derail moment was a point where the participant lost focus or if the music is
starting to get distracting at a particular moment.

We conducted pilot HITs for the following regions: USA, India, and Europe, as these
are the regions where most of the participants on AMT come from. Compared to India
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and Europe, we got responses of higher quality from the USA as well as faster response
time, and hence we chose to go with the USA for our primary data collection HIT. We
published 1000 HITs for the USA region to collect our dataset.

We collected 1000 music tracks and their corresponding derail moments. Apart from
the timestamp and reason for it being labelled a derail moment, we also asked the par-
ticipants to tell us if the music immediately became so unbearable that he/she had to
change the track, or if the music had slowly started to become distracting. This helps us
in keeping the events happening in the music signal and the reaction event from the lis-
tener separate. By keeping these events separate, we obtain a stable set of training labels
which can be used for training robust machine learning models for detecting a derail
moment.

Another aspect we want to investigate in our dataset is the distribution of derail mo-
ments across the timeline of a music track. We divide each music track into 10 parts and
label the part containing the derail moment. By counting the number of derail moments
in each of the ten parts, we observe that a derail moment occurs during the initial 30%
(std: ±4) of the track on an average. There are approximately 200 tracks in our dataset
that have a derail moment in the first 10% of the timeline, while there are around 20
tracks that have a derail moment towards the final 10% of the track.

To gain a clearer picture of the variety of the music that we collected, we performed
genre recognition on the tracks using a state-of-the-art deep learning model [23]. We
used the model and the weights provided by the authors to recognise the genres of our
music tracks. Figure 4.2 illustrates the genre distribution of our dataset. Although we can
see that many tracks belong to the pop genre, there is variety in terms of other genres
like hip-hop, metal, classical, rock etc. This suggests that derail moments are not genre
specific.

In general, we hypothesise that the derail moments are closer to structural segment
boundaries. To prove this, we perform structure segmentation on our development set
and measure the distance between the segment boundary and the derail moment in
seconds. We then compute the average distance, and we observe that derail moment is
approximately 4 seconds away from the segment boundary. This experiment demon-
strates that the derail moments are indeed close to the segment boundaries. We use this
finding to identify the appropriate segmentation algorithm in the next sub-section.

4.4.1. SEGMENTATION

Structure segmentation plays a significant role in our method, as indicated in Section 4.1.
For structure segmentation, we use the Music Structure Analysis Framework (MASF) [24].
The framework provides implementations of the various structure segmentation algo-
rithms, and these algorithms are divided into two categories: boundary algorithms and
labelling algorithms. Boundary algorithms identify the segment boundaries in the track,
while labelling algorithms also label the segments according to their similarity with each
other. For a list of the available algorithms, please visit the tutorial page of MSAF. Addi-
tionally, different features can be explored: Mel-Frequency Cepstral Coefficients (MFCC),
Constant Q-Transform (CQT), Pitch Class Profiles (PCP), and Tempogram. These algo-
rithms take the music track as an input and produce a sequence of segments (boundary
algorithms) with similar segments being clustered together (labelling algorithms). Table

https://msaf.readthedocs.io/en/latest/tutorial.html
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Figure 4.2: Genre distribution of the tracks in our dataset.
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Start time End time Label
0 0.3 0
0.3 11.3 1
11.3 28.7 2
28.7 44.1 3
44.1 53.2 2
53.2 64.4 1

Table 4.2: Snapshot of the output of segmentation algorithm on a music track.

4.2 illustrates the segmentation algorithm on a music track. Each row represents a seg-
ment, giving the start time, end time and the label of the segment. Observing the table,
we can say that segments having the same label are similar to each other (e.g., third and
fifth segments are labelled as 2).

We explore all possible combinations of boundary algorithms, labelling algorithms,
and features on the development set. For all possible combinations, we measure the
average distance between the segment boundaries and the derail moments. Finally, we
select the combination that results in the least average distance. For our dataset, we
found that the following combinations give the least average distance: Structural fea-
tures [25], Convolutional Non-Negative Matrix Factorization [26], and MFCC. The out-
put of the segmentation algorithm is a list of segment boundaries and the corresponding
labels. The labels correspond to the similarity of the segments i.e., segments having the
same label are considered to be similar to each other.
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One of the segmentation algorithms in MSAF is the novelty detection algorithm pro-
posed by Foote [27]. From our experiments with MSAF, we found that the segments pro-
vided by the novelty detection algorithm do not give a good approximation of the derail
moments. This provides evidence that derail moment detection requires analysis be-
yond novelty detection.

After segmentation, we also need to assign training labels to these segments so that
we can pass them onto the machine learning model. Figure 4.3 illustrates how we map
our ground-truth labels, which are provided in the form of timestamps by the partici-
pants of our user study, onto the segment boundaries. Observing the figure, we can say
that we map the ground-truth timestamps of derail moments to a segment boundary
that occurs prior to the derail moment. The reason for doing this is that we do not want
to predict a derail moment after it has actually passed. To make sure that we predict a
derail moment before the actual derail moment occurs, we follow this mapping proce-
dure.

Figure 4.3: Mapping the ground-truth to segment boundaries.
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segment boundaries 

4.5. AUTOMATIC DETECTION OF DERAIL MOMENTS
The previous section has motivated the existence of an element of universality to the
derail moment, which motivates us to develop automatic methods to detect these in
music tracks, and we also identified a list of features that can be used to build machine
learning models to detect derail moments. We also took a look at our dataset collected
from AMT and performed some analysis on it to judge the variety of tracks and how we
map the ground-truth to structural segment boundaries. In this section, we will focus on
developing a method that, given a music track, can identify a derail moment in it. Using
the dataset collected from AMT participants, we report the performance of our method
in identifying derail moments.

4.5.1. APPROACH
We consider a derail moment to be an event that happens in the music track and we de-
sign our pipeline accordingly. The method has several steps, performed in the following
sequence: structure segmentation, feature extraction, training, testing, and evaluation.
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Figure 4.4 illustrates the steps involved in training a model that can predict derail mo-
ments in a music track. We will briefly describe each of the steps mentioned above.

Figure 4.4: Block diagram illustrating the proposed approach with the following steps: Structure
segmentation and mapping, feature extraction inspired by the neuro-, cognitive-, and social- psychology

literature survey and user study, and training a model.
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The first step in our method to detect a derail moment is structure segmentation.
The intuition behind a segment-and-then-classify approach is that we hypothesise an
underlying event structure in a music track and that some of these events distract the
listener. Music structure segmentation provides an indication of the structure within a
music track and we hypothesise that the derail moment would occur close a segment
boundary. We make the assumption that segment boundaries represent either the be-
ginning of the event, or the point at which it becomes unbearable. Following up on this
observation, we segment the music track into its structural segments using a structure
segmentation algorithm. In addition to segmentation, we also map the ground-truth
timestamps to these segment boundaries, as illustrated in Figure 4.3.

From each of the segments (from the structure segmentation algorithm), we per-
form feature extraction that will further be used for training a machine learning model.
For feature extraction, we rely on the findings from our neuro-, cognitive-, and social-
psychology literature survey and the AMT user survey. Some of the features were moti-
vated from the neuro-, cognitive-, and social- psychology literature: pulse clarity, pres-
ence/absence of events (drops or drop-like events), vocals. Some other features were
motivated from our findings on the AMT survey: tempo, dynamic complexity, loudness.
Apart from the two features on detecting events and vocals, the other features can be
obtained from standard feature extraction libraries like essentia 2.

To assess the presence/absence of drop-like events, we use the model trained on
music data from SoundCloud [6]. Figure 4.6.1 illustrates the different steps in the test-

2http://essentia.upf.edu/documentation/introduction.html
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ing/evaluation procedure. We provide the individual segments as input to this model
and acquire a binary label indicating the presence/absence of a drop-like event in the
segment. Similarly, for the other feature on vocals, we use the feature proposed by Lehner
et al. [28].

Figure 4.5: Block diagram illustrating the evaluation procedure.
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We model the task as a sequence-to-sequence labelling problem, where we algorith-
mically assign a label to each element of a sequence. The final output is a timepoint at
which a derail moment has occurred. This is chosen to be the first derail moment in the
sequence. We model the music track as a sequence of segments, where all segments un-
til the derail moment are labelled as positive examples. For labelling the segments after
the derail moment, we follow a slightly different strategy.

It is possible that the music after a derail moment can become appropriate for focus
again. We take this aspect into consideration while labelling the segments for training
and we describe the training procedure here. Considering this aspect, we utilise the out-
put of structure segmentation algorithm (explained in Section 4.4.1) to assign training
labels to the segments after the first occurrence of the derail moment. If any of the seg-
ments after the derail moment have a label that is the same as that of a segment before
the derail moment, we consider it as a positive training example. Otherwise, we consider
the segment as a negative training example.

We train a conditional random field (CRF) [29] for our task. Exploratory experiments
demonstrated that classifying individual segments is not effective and hence we need to
exploit the temporal information. Once we have a trained CRF model, we predict the
labels of the sequence of segments in new tracks (test set).
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4.6. EXPERIMENTAL SETUP
Until now, we discussed the approach for detecting a derail moment in a given music
track. In this sub-section, we discuss the experimental setup in the form of evaluation
strategy, vocal detection, and the baseline algorithm.

4.6.1. EVALUATION
We evaluate our proposed method in two different scenarios, addressing two research
questions. For the second research question on detecting a derail moment in a given
track, we need to evaluate how accurate the predicted derail moments are and how close
they are to the actual derail moments (provided by AMT participants). We use two differ-
ent evaluation metrics: accuracy and distance. For measuring accuracy, we consider the
correct labelling as the one explained in the training procedure (Section 4.5.1). Accuracy
measures the percentage of segment boundaries that are labelled correctly. Distance
measures the gap between the predicted derail moment and the actual derail moment.
The distance measure would be useful in judging the utility of our method in building a
user-oriented application where the player automatically detects the derail moment and
moves to the next track before the actual derail moments kicks in.

For the third research question on predicting whether there is a derail moment in a
given music track (RQ3), we perform a qualitative experiment by feeding tracks without
any derail moments (“clean” tracks) to the model and the above metrics would not be
informative. To evaluate how well we answer RQ3, we manually check the number of
tracks where our model predict or does not predict a derail moment. Additionally, we
also check the position of the predicted derail moment to see if it is at the beginning or
end of the track.

4.6.2. VOCALS DETECTION
In our user study, people report that vocals are something they notice when listening
to music and there is indirect evidence that the vocals are processes uniquely in the
brain [30]. We investigate the role vocals play in determining whether a moment in
the music is distracting. Examining research on detecting vocals in music tracks in the
MIR community, we observe that there are two different directions: Singing voice de-
tection [31] and Source separation [32]. Singing voice detection tackles the problem of
identifying where there are vocals in a music track, while source separation algorithms
aim to separate the vocal and the instrumental parts of the track. In this chapter, we con-
centrate on singing voice detection as we want to use it as a feature to identify the derail
moments in a given music track. There have been multiple approaches proposed in the
MIR community for singing voice detection and an excellent survey of these approaches
is presented by You et al. [31].

In this chapter, we use the features proposed by Lehner et. al. [28]. Lehner et. al.
propose a set of features for singing voice detection: fluctogram, spectral flatness, spec-
tral contraction, MFCC, and vocal variance. The Fluctogram is basically an extension of
a feature suggested by Sonnleitner et al. [33] for speech detection in mixed audio sig-
nals. The basic idea behind their feature is to detect sub-semitone fluctuations of par-
tials by using the cross correlation. Spectral flatness provides a way to quantify how
noise-like a sound is, as opposed to being tone-like. The other feature on spectral con-
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traction measures how much of the energy in the spectrum resides in the centre. The
Vocal variance comprises 5 values, computed on the first five MFCCs only. For each
of these 5 first coefficients, we compute its variance over 11 successive frames centred
on the current frame. The features are computed at the resolution of 200 ms and dimen-
sionalities of the individual features are as follows: fluctogram (17), spectral flatness (17),
spectral contraction (17), MFCC (30 + 30 delta), and vocal variance (5). More details are
provided in [28] and we use the code provided by the authors to extract these features.
On the 116-dimensional feature vector, we apply dimensionality reduction (Principal
Component Analysis) to obtain a feature vector that has 4 dimensions. Hence we have
a 5-dimensional feature vector for each segment for capturing characteristics related to
vocals.

4.6.3. BASELINE

Our method focuses on detecting the first derail moment that occurs in a music track.
AMT participants indicated that any sudden change would result in distraction, which
informed our baseline strategy. We built our baseline strategy on these lines. We identify
the segment boundaries using the best possible combination of segmentation, labelling
algorithms, and features identified in Section 4.4.1. We ignore the first segment because
it usually is a very short segment (< 1 second). From the remaining segments, we pick
the first segment boundary, where the label of the segment changes (obtained from the
labelling algorithm), as the derail moment.

We measure the accuracy and distance metrics as explained previously and compare
it against our proposed method.

We also propose to use another baseline strategy for comparison. From Section 4.4.1,
we observe that MFCC emerges as a good feature for structure segmentation. We pro-
pose to use this insight in our second baseline strategy, where we use MFCC features for
training our CRF model. The model is trained as per the training procedure described in
Section 4.5.1, but using MFCC features instead of features discovered from our neuro-,
cognitive-, and social- psychology literature survey and user study on AMT. We evaluate
the model by testing it on our test set of music tracks.

4.7. RESULTS
In this section, we report the performance of our method and compare it against the
baseline detector. In total, we have 864 music tracks in our dataset, and we use 608 tracks
for training, 100 tracks as development set and the remaining 156 tracks for evaluation.
As indicated earlier, we use two different evaluation metrics: accuracy and distance to
evaluate how our proposed approach answers our research question (RQ2). Figures 4.6
and 4.7 report the performance of our method and compares it against the two base-
line strategies. We observe that our method performs much better than the baseline in
terms of both the metrics. Our method obtains an accuracy of 92.6%, while the baseline
achieves an accuracy of 76%. Observing the distance metric, which measures the aver-
age distance between the actual derail moment and the predicted derail moment across
the test set, is also much better when compared to that of the baseline. On an average,
our method detects derail moments 7.9 seconds before the actual derail moment, while
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the baseline detects 20.1 seconds before the actual derail moment. We also outperform
the other baseline strategy using MFCC as a feature for building the model, as observed
in Figures 4.6 and 4.7. Though we improve upon the baseline strategy, MFCC features
still fall behind the different features, in terms of accuracy and distance, motivated from
our neuro-, cognitive-, and social- psychology literature survey and the user study. Look-
ing at this result from the perspective of our envisioned music player, we are very close to
the actual derail moment and we can make a switch to the next track before the listener
hits the derail moment.

Figure 4.6: Comparison of accuracies for the two baseline strategies and our proposed method.
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While collecting our dataset from AMT, we asked an additional question to the par-
ticipants on the nature of the derail moment they are providing i.e., if the timestamp
mentioned by the participant is “the” derail moment or does the music at the timestamp
just starting to distract the listener. In other words, if the derail moment is a punctual
one or a gradual one (Section 4.1). Here, we want to investigate how the presence of ex-
amples with this information in the training set can affect the performance of the derail
moment detector. We have two separate experiments in which we carry out our investi-
gation.

In the first experiment, we remove examples labelled as gradual derail moments i.e.,
remove the example tracks where the listeners say that the music is starting to distract
them. From the training set of 608 tracks, 110 tracks ( 19%) are labelled to have a gradual
derail moment as per our user study participants. We remove the 110 derail moments
from our training set and retrain the model. We train the model as mentioned in Section
4.5.1 and perform the evaluation on our test set, which remains the same as the one used
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Figure 4.7: Comparison of distance (in seconds) for the two baseline strategies and our proposed method.

P
er
fo
rm
an
ce
	-	
D
is
ta
nc
e

20.1

11.6

7 .9

Series 1

Baseline Baseline	-	MFCC Our	method
0	seconds

5	seconds

10	seconds

15	seconds

20	seconds

25	seconds

meta-chart.com

in our previous experiments. Removing these examples from the training set provided a
slight improvement in the performance on the test set. We obtain an accuracy of 94.2%
while the distance between the predicted and the actual derail moment is 7.4 seconds.
There is an improvement of 1.2% in terms of accuracy and the average distance between
the actual and predicted derail moment goes down by 0.5 seconds.

In the second experiment, we investigate another aspect of the derail moment i.e.,
since there are examples labelled as gradual derail moments, the actual derail moment
(timestamp provided by the participant) might occur at some point after the indicated
timestamp. Considering this information and the observation that derail moments oc-
cur close to the segment boundaries, we label the segment boundaries after the men-
tioned timestamp as the actual derail moment. We perform multiple sub-experiments
where we mark the actual derail moment i segments after the derail moment mentioned
by the participant, where i = {1,2,3}, in the training set. Through this experiment, we in-
vestigate if we improve the predicting capability of the trained model by using the infor-
mation that for some examples, the derail moment can occur a while after the reported
timestamps.

We report the results of this experiment in Figures 4.8 and 4.9, where we report the
two evaluation metrics for different values of i . Observing the figure, we see that the
results almost remain the same for i = 1, in comparison to the results reported for our
method in Figure 4.6.3. However, for values of i greater than 1, there is a drop in the
performance of our method as illustrated in the figure. This could be because the actual
derail moment is very close to the reported timestamps and labelling the succeeding
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segments as derail moments is hampering the performance of our model.

Figure 4.8: Comparison of Accuracy by predicting derail moments i = {0,1,2,3} segments after the
ground-truth segment boundary.

P
er
fo
rm
an
ce
	-	
D
is
ta
nc
e

92.6 92.7

86.2

80.4

Series 1

i	=	0 i	=	1 i	=	2 i	=	3
0

20

40

60

80

100

meta-chart.com

4.8. RESULTS ANALYSIS

In this section, we further analyse the results in order to understand their implications
for possible applications and future work.

4.8.1. ABLATION ANALYSIS

In this section, we investigate how the performance of our method varies when we sys-
tematically remove certain features. Our feature set is motivated from the neuro-, cognitive-
, and social- psychology literature survey and the user study. The feature set contains
the following broad categories of features: low-level features, events, vocals. We com-
pare our method by first removing the events feature, then the vocals feature and finally
both these features. We evaluated the approach on the dataset collected from AMT and
measured the following metrics: Accuracy and Distance. The results are reported in Fig-
ures 4.10 and 4.11. Observing the figures, we see a decline in performance, in terms of
distance and accuracy, when we remove the vocal and event features. This provides an
indication that each set of features adds information to the model that is useful to im-
prove the performance.
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Figure 4.9: Comparison of Distance (in seconds) by labelling derail moments i = {0,1,2,3} segments after the
reported timestamps.
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4.8.2. FALSE ALARM ANALYSIS

Until now, we have experimented on tracks that have a derail moment during its play-
time as indicated by the participants on AMT. For our method to be useful for a user-
oriented application, like the one introduced in Section 4.1, we want to investigate how
our method fares when we provide clean tracks (i.e., tracks without any derail moment)
as input. When we were to run our detector on a large music collection, we do not want it
to detect a derail moment when there is none. An alternative scenario to our envisioned
smart music player could be that we don’t play a particular track if there is a derail mo-
ment in the track. In order to verify the performance of our method on music that does
not have a derail moment, we analyse a set of clean tracks.

Our training set does not contain any such tracks, and hence we collect such clean
tracks from friends and colleagues. We asked them to give us music tracks that they use
while working on a task and which do not distract them. We collected 40 such tracks,
without any derail moments, from 16 people who frequently listened to music while
working.

We first perform structure segmentation on the clean tracks and extract features from
each segment. We use the model trained on structural segments of music tracks used in
our previous experiments and provide the clean tracks as input. Of the 40 tracks, we ob-
serve that our method does not detect a derail moment for 12 tracks, which is impressive
considering that we did not have any clean tracks in our dataset. Such a performance
indicates that the trained model has tried to learn the right characteristics of a derail
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Figure 4.10: Comparison of Accuracy for our approach indicating the importance of events and vocals
features.
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moment.
Of the remaining 28 tracks, our method says there is a derail moment at the last seg-

ment boundary for 14 tracks. Again, this is impressive as the segments in the end are
usually short, and there is a high chance that the artist wants to end the track with a
bang. Manually listening to these tracks indicated that some of these had a very loud
ending when compared to the rest of the track.

For ten tracks, our detector predicted a derail moment approximately after 50% of
the track had been played out. For our envisioned application, where the music player
smoothly blends into the next track when it sees a derail moment approaching, this per-
formance is good as the player will be able to play a significant part of the clean music
tracks. For the remaining four music tracks, we detect a derail moment within the first
few seconds.

This experiment provides an analysis of our training model when we see a different
kind of data than it has been trained on. Using the results of this experiment, we answer
our third research question on recognising derail moments in a given music track. In the
future, we will further perform a large-scale investigation in this direction.

4.8.3. FAILURE ANALYSIS
In the chapter, we proposed a method to detect a derail moment in a given music track
where a listener might get distracted from his/her work. There are several components
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Figure 4.11: Comparison of distance (in seconds) for our approach indicating the importance of events and
vocals features.
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in our method which may effect the performance of our method. In this section, we
investigate the failure cases, where the derail moment was not rightly detected.

We begin by investigating the effect of high-level events on the performance of the
derail moment detector. Drop-like events are high-level events, and hold a certain struc-
tural significance in a music track i.e., drops play a major role in the unfolding of a dance
music track and are of a certain length. In addition to the participants mentioning a
drop being a derail moment, we also listened to some music tracks in our dataset look-
ing for drop-like events. One of our observations was that a drop-like event is not always
a derail moment as we have two examples in our dataset where the listener has marked
the derail moment after the drop. In one of the examples, which is an electronic music
track, the listener marked the vocals (occurring after a drop) as a derail moment instead
of the drop itself. In this example, the drop is a very subtle one but the vocals after the
drop start with screaming. Other scenarios include a particular drop-like event that is
not detected by the drop detector [6].

There are a few other situations where the performance of our drop detector is affect-
ing the performance of our derail moment detector. There are short and subtle drop-like
events in our dataset and sometimes these subtle events are detected by the drop detec-
tor. Many times, these subtle events are missed by the drop detector. According to our
observations on the dataset, there is no guarantee that the subtle drop-like events would
occur close to the derail moments and hence affects the performance of our method.



4

96 4. AUTOMATIC IDENTIFICATION OF DERAIL MOMENTS IN FOCUS MUSIC

From our survey of the literature on the effects of music on the brain and also as per our
intuition, drop-like events form a major part of musical characteristics that can attract a
listener’s attention towards the music. However, there is comparatively little direct men-
tion about drop-like events from the participants on AMT. A few participants mention
directly about the drop being a distracting element, but many participants mention the
characteristics of a drop indirectly. For example, a sudden change in tempo is one of the
frequent comments from the participants and this occurs as part of a drop.

Structure segmentation is an integral part of our derail moment detector and we in-
vestigate how it effects the performance of our method. As we indicated earlier, a major-
ity of the derail moments are very close to a segment boundary and there are three pos-
sibilities: the derail moment occur before, after, or coincide with the segment boundary.
When the derail moment coincides with the segment boundary, or if it happens after the
segment boundary we do not have a problem. There were a few cases (14% of the test
set) in which the derail moment occurred just before the segment boundary. In these
cases, the machine learning model predicted a derail moment at the segment bound-
ary preceding the actual derail moment. This had a negative effect on our evaluation
metric measuring distance between the predicted and actual derail moment. Consider-
ing the average segment size to be around 20 seconds, the predictions where the model
predicted a derail moment before the actual derail moment adds a higher value to the
metric. Having these examples in the test set increases the overall distance metric by 1.3
seconds.

4.9. CONCLUSION AND FUTURE WORK
The aim of this chapter was to 1) determine whether we can justifiably infer an element
of universality in the nature of derail moments, and 2) to develop a method to possibly
detect the derail moments automatically. Our first task was to identify a large user base
and a specific kind of task that people perform on a daily basis. AMT proved to be an
ideal setting in our case, as there are specific tasks and a large number of users work-
ing on these tasks. We tapped into this user population and asked them questions on
the kind of music that would distract them from their task. We focused on a specific
kind of task: text transcription task, which is a well-defined type of task and a popu-
lar one on AMT. This gave us a reasonably sized dataset which we could use to eval-
uate our proposed method. The dataset comprising the YouTube ids of music tracks
and their corresponding annotation of a derail moment is publicly available on OSF
(https://osf.io/n3zmp/).

Once we identified the AMT task, we moved towards answering our research ques-
tions. We conducted a neuro-, cognitive-, and social- psychology literature survey look-
ing for models which can explain how music attracts the attention of the listener (e.g.,
BRECVEMA [14]). Different dimensions of this model suggest different musical charac-
teristics that can potentially attract the attention of the listener. Our assumption is that,
if the listener’s attention is diverted towards the music, they are distracted from the task
they are performing. Studying the BRECVEMA model gave us an indication about the
musical characteristics that are possibly independent of the listeners’ background and
preferences. We also conducted a user study on AMT about the distracting elements of a
music track and performed a card sort of the responses from participants. A number of
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categories emerged from the card sorting process and correspond to the different ways
a listener can get distracted. Combining the results of the card sorting and literature sur-
vey, we find further evidence in favour of our hypothesis on the existence of an element
of universality to the phenomenon of derail moment.

The literature survey and the user study provided us with a list of musical features
that we could use to guide the building of a machine learning model to automatically
detect derail moments. We conceptualised the derail moment as a musical event, and
used features discovered from the literature survey to train a conditional random field
model to detect these events. Experimental results indicated that our model performs
well in comparison to a baseline and can be utilised in our envisioned music player to
skip to the next track when approaching a derail moment. A significant finding from our
experiments is that our method is very good at detecting a punctual derail moment with
a very high accuracy and a minimal distance score. We also performed a qualitative ex-
periment to analyse what happens if we feed “clean” tracks, without any derail moments,
into our trained model. The results of our experiments are encouraging and inspire our
future work towards building user-oriented applications.

An immediate direction of research would be to include “clean tracks” in our training
set, which will help improve the performance of derail moment recognition for any given
music track. This will be the next step towards building our envisioned music player
as we would have to tackle a large of variety of music tracks that may or may not con-
tain derail moments. Currently, we make a binary decision on the position of a segment
boundary but assigning a confidence score to each segment boundary would be more
useful for the envisioned music player. This could be another interesting direction of re-
search and a possible way to improve the detection performance. Similarly, the output
of the labelling algorithm also plays an important role in our training procedure (Section
4.5.1). In this chapter, we did not optimise for the cluster quality but that could be an
important and interesting direction of research.

The main focus of this chapter was to investigate what musical characteristics play
an important role while detecting a derail moment. It is a proof-of-concept that inves-
tigates the nature of a derail moment and proposes a method to automatically detect
it. While building this proof-of-concept, we did not optimise for the best machine lean-
ing model. Our choice of CRF was based on the insights that temporal information is
important while predicting a derail moment. However, we could also investigate more
sophisticated models, like Recurrent Neural Networks (RNN), to predict derail moments.
This could be a potential future research direction, where we can investigate the correla-
tion between the low-level musical features and the individual responses of the neurons
in the neural network.

A noticeable property in our dataset is that the derail moments mostly occur during
the initial part of the track (first 30% of the track). This could be because it is relatively
easier to re-find the derail moments that occur during the beginning of the track. This
property could have translated into predicting derail moments in the beginning of the
track. However, our small-scale experiment on 40 clean tracks provided an indication
that there is not a big effect of this property on the final outcome. We observe that the
model predicts a derail moment at the end of the track for some examples. This result it
encouraging but we need further experiments to how this property can effect the perfor-



4

98 REFERENCES

mance of our method.
An important direction of future research is to incorporate user’s preferences for

certain kind of music while working. A recent work by [34] proposed and evaluated a
system—FocusMusicRecommender—which can recommend music for focusing on a
specific task. One of the important findings of Yakura et al. is that the music which is
neither liked nor disliked can help listeners to focus on their work. Collecting users’ mu-
sical preferences is done via manual input by providing buttons like “keep listening” and
“skip”. Our method to automatically detect a derail moment can potentially reduce the
manual input from the listener by having it as a plugin in such a music player.

An important aspect of listening to music while working is to ensure that the user re-
mains in a flow state [3]. Some of the existing services, like Focus@Will, gradually change
the music after a fixed period of time. An interesting and useful future research direction
could be to automatically identify music that can keep a user in this flow state.
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In this thesis, we presented the results of our investigation on how we can extend
MIR research from analysing “what music is” to support “what music does”, thereby in-
creasing the value of music to people. To address this challenge, we looked at two re-
lated tasks: music event detection and identifying music for activities. We presented
our methodology, findings, and empirical results in the three technical chapters of this
thesis. Here, we reflect on our results and provide future recommendations to take this
research forward.

5.1. MUSIC EVENT DETECTION
In Chapter 2.1 and 2.2, we presented our approach to detect high-level events in a music
track. We identified EDM as a test bed and picked the three most important events in
this genre: Drop, Build, and Break. These events have a certain emotional impact on the
listener and elicit reactions on social media platforms: in other words, they are socially
significant, and invite actions in users. As a consequence, the detection of these types of
events can be seen as a first step into investigating “Music as Technology” tasks. Upon
identifying the events we want to detect, we moved onto answering the question how to
effectively and efficiently detect them. We utilised manually acquired annotations and
the timed comments on SoundCloud to build machine learning models that can detect
the three events of interest.

Regarding the effectiveness of the event detection, one of our important findings is
that structural segmentation is an important step towards detecting high-level musical
events. As structural segments indicate a change in texture of the track, we identified that
the starting points of the events are very close to, or sometimes coincide with, the seg-
ment boundaries. We also explored a variety of audio and image features for classifying
the segments into events. In addition to the image features proposed in the literature
[1], we also explored other image features in our experiments. Our finding that image
features perform better than the audio features is consistent with the literature [2].

Regarding the efficiency of event detection, we explored the usability of timed com-
ments as training labels to, at least partially, replace expensive and tedious manual an-
notation. Though noisy in nature, the timed comments were found to be useful in this
respect. Our experiments demonstrate that using timed comments alone as training la-
bels outperform a naive baseline, especially in terms of the metric ea_di st , which mea-
sures the distance between the starting point of the actual event and the predicted event.
Though the ea_di st is still big (around 18 seconds for a drop), it is reasonable for an ap-
plication like non-linear access because these events are longer in duration. However, an
interesting future work could be to conduct a user-study with DJs to further investigate
whether this value of ea_di st is good.

When we combine a certain proportion (40%) of these noisy timed comments with
manually acquired expert annotations, we obtain results that are very close to the ones
we would expect if we had the expert annotations for the whole training set, especially for
break event in terms of f-scores. For the other two events, the combination is 20% - 80%
to get an f-score close to that of a model trained with 100% expert annotations. However,
in terms of the distance metric (ea_di st ) all three events obtain a good performance at a
combination of 40% - 60% (for non-linear access application). Our experimental results
demonstrate that we can reduce the manual labelling effort by utilising the freely avail-
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able timed comments as weak training labels. A part of the dataset used in Chapter 2.1
is uploaded on the Open Science Framework, to encourage other researchers to utilise
timed comments in their research.

Looking ahead, we identify some interesting directions of research based on our ex-
perimental findings. We chose EDM as a test bed for our experiments, and the three
events of interest were a natural choice looking at the data. However, our findings could
be useful in other music domains as well. In movies, for example, music is used as a
tool to build up anticipation in a scene and the structure of such music is very similar to
a buildup in EDM. Another observation from SoundCloud data was that the comment
density is higher around a drop, though these comments do not explicitly mention the
word “drop”. We can exploit such patterns in users’ feedback to identify other popular
events in music and in a broader variety of music genres.

Another important aspect which we could further investigate are the methods to de-
noise the training labels. We proposed one strategy that can be considered as a combi-
nation of classification filtering and ensemble methods. There are few other strategies
[3] that can help us denoise the training labels, like boosting based methods, graph-
based methods or kNN based methods. We can explore these strategies to check how
they improve the classification performance. One of the challenges in our dataset is that
the noise is two-fold. There is a temporal noise in addition to the semantic noise of the
timed comments. We need to come up with label denoising strategies that can help us
in this scenario.

Deep learning has been garnering a huge amount of attention in music analysis.
There is also recent literature on how we can train Convolutional Neural Networks (CNNs)
with noisy labels [4]. Most of this recent literature is about noisy labels for images from
social media platforms, while our case is different because of the two-fold noise. A direc-
tion of research could be to work on developing models and strategies to deal with this
kind of noise.

5.2. MUSIC FOR COMMON ACTIVITIES
In Chapter 3, we explored the idea of using music as a tool to accomplish another activity.
Our hypothesis was that we need to extend existing MIR methods for such a task. We
provide empirical results that proves our hypothesis to be correct.

Through a data-driven approach, we establish the following common activity cate-
gories, for which music is available on social media sharing platforms (YouTube in our
case): Workout, Study, and Relax. One of the major findings from our research is that ex-
isting metadata like genre, artist, or instrument do not help in classifying a music track
into one of the activity categories. Listeners could prefer multiple genres of music across
different activities. We presented both qualitative and quantitative evidence to support
our hypothesis that genre and instrument information is not sufficient for out task.

Another important finding is that the traditional way of feature extraction i.e., ex-
tracting features from a small window ( 50-100 ms), does not give good classification
performance. We explored different window sizes for extracting features and found that
a 25-second window gives a good classification performance, which is way more than
the traditional window size ( 50-100 ms). Through carefully designed experiments, we
also showed that other existing approaches, like extracting a fixed length segment from
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the middle of a track and using it for classification (genre recognition) instead of using
the whole track, is not helpful. Our focus was entirely on identifying the appropriate
window size for feature extraction and we chose a simple classifier (k-NN). Future work
could involve investigating more advanced classification and feature selection strategies.

Additionally, we explored a variety of low-level and high-level features for classifica-
tion. Our findings indicate that features related to rhythm are very important in classi-
fying a music track into an activity category. Presence/absence of events like “drop” also
makes a lot of difference in the classification performance. This is an interesting result
because our previous model, which could detect drops in a given music track, can also
be used as a feature to classify music tracks into activity categories. Workout music had
more drop-like events than the other two activity categories: study and relax. Intuitively,
this result makes sense: people sometimes need to push themselves physically while
working out, and a drop-like event can motivate them to do so. On the other hand, one
would not want to listen to a drop-like event when one is relaxing.

5.3. DERAIL MOMENTS IN FOCUS MUSIC
Taking inspiration from our work on identifying music for common activities, we wanted
to delve deeper into the phenomenon of “music as technology”. One of the limitations of
our previous work on identifying music for common activities was that we did not have
any negative examples for the three activity categories. Given any music track, we would
put it into one of the three activity categories. Additionally, people have different musical
tastes (in terms of genre, artist etc.) and prefer to create their own playlists while doing an
activity, rather than using an automatically created mix or playlist [5]. These limitations
brought us to a user scenario, in which the user wants to listen to his/her own music
collection, but does not know if a specific track is suitable for the chosen activity or not.
We define our end user application as follows: The user has created a playlist of his/her
favourite tracks and started working on a task. Our system will identify the point in each
music track when it starts becoming unsuitable for the task (derail moment) and before
that point arrives in a track, the player smoothly blends into the next track.

We used Amazon Mechanical Turk (AMT) as our test bed, because it contains a vari-
ety of well-defined tasks and thousands of users working on those tasks. Through a text
transcription task on AMT, we asked users to give us examples of derail moments they
find while working online. We hypothesised and found evidence that the concept of a
derail moment has a universal element to it in addition to the listeners’ personal prefer-
ences from the following sources: neuroscience/psychology literature and a pilot study
on AMT.

One of the major findings from our research reported in Chapter 4 is a list of musi-
cal characteristics that can create a derail moment in a given music track. We surveyed
literature in neuroscience and came up with a list of features that form the basis for our
machine learning model that can automatically detect a derail moment. Through our
experiments, we found that we can indeed automatically detect a derail moment from
the features extracted from the music signal.

Based on our experimental findings in Chapters 3 and 4, we list potential future di-
rections to pursue. An immediate direction to investigate further would be to expand the
research on automatic playlist generation to address the playlist suitability for a given
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task [6]. Combining the users’ taste data with our work on identifying music for com-
mon activities, we could build a hybrid recommender system that can be of help to lis-
teners with specific needs. In our investigation, we looked at very specific activities, like
working, to provide a proof of concept that we can indeed automatically identify mu-
sic suiting a specific situation. We can look at a host of other activities/situations where
music can help people to move forward.

An exciting opportunity to build automatic systems that make music more useful to
people would be to talk to human curators who create playlists for specific situations
(Google Play, Spotify, Apple Music). By understanding the characteristics they base their
selection of tracks for a particular situation, we can devise automatic ways of extracting
such information from music tracks. This will exponentially scale up the choice of tracks
to choose from while building a playlist for a specific situation/activity. A good way to
start in this direction could be to look at the playlists/mixes created by DJs/artists on
YouTube, Spotify, or SoundCloud on similar lines as our work in Chapter 3.

Our work involved building a proof of concept for identifying music for common
activities, and identifying a derail moment where a music track could potentially become
distracting for an activity. When we started off with this research, we did not know what
to expect and we wanted to thoroughly understand different musical characteristics that
can affect the classification performance. With the recent development on explainable
deep learning models [7], we could explore these complex architectures to see if we can
improve our classification performance further. One of the limitations, at least in the
work on detecting a derail moment, is the limited availability of data as it is expensive
and time consuming to acquire. Many of these deep learning models require a large
amount of data and this is a limitation in exploring these models. For this purpose, we
could investigate transfer learning approaches [8].

5.4. FINAL REMARKS
Ubiquitous availability of music and the unprecedented growth of the internet has made
music more accessible than ever. People can listen to music anywhere, anytime with
just the click of a button or simply touching the screen of their phones. This has led to
an increased use of music in a variety of situations. Nowadays, people not only listen
to music for entertainment, but use it as a tool to accomplish another activity they are
simultaneously involved in. While traditional music analysis methods have focused on
understanding the meaning of music, in this thesis, the focus was on researching how
retrieval systems can incorporate the effect music has on its listener.

The results presented in this thesis are promising and we have answered our initial
research question “how to develop automatic music analysis tools that can broaden the
usefulness of music in terms of the effect it has on the listeners?”, by developing meth-
ods and demonstrating the experimental results in our technical chapters. Through our
methods and experiments, we highlight the significance of social media sharing plat-
forms (SoundCloud, YouTube) and crowdsourcing platforms (AMT) in understanding
the needs of the user while consuming music. These platforms provide us with an op-
portunity to collect both implicit and explicit feedback that can help us in building sys-
tems useful for the consumer. The research proposed in this thesis can be considered as
a basis to building a more holistic music recommendation system that can recommend
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music for specific situations.
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