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Preface

In our current turbulent and war-filled world, one may easily forget about that other enormous challenge
of this century: the energy transition. While well underway in terms of renewable energy production, this
is only the start. And the challenge lies much further than the energy system. How do we decarbonize
our plastic products? How do we reduce CO2 emissions in the building sector?

Fortunately, | can leave these questions to other scientists. As an electrical engineer my focus does
lie in the power system. Throughout my studies one word kept on returning: flexibility. We need it on
the power production side, and we need it on the power consumption side. We need it very quickly to
prevent congestion, and we will need it forever to balance the variable power production of renewable
power sources.

At one point in my master, it struck me: why do we not use the flexibility of electric vehicle charging?
On paper it is perfect: electric vehicles have large batteries, they use much power for charging, and
most importantly, they are connected to chargers often without charging—at least in the Netherlands
with our high share of AC chargers and short trips.

During my thesis, | learned why this potential is barely utilized today. The electric vehicle charging sector
is young and quite complex. There are numerous active players, some taking care of one specific part,
others trying to fulfill the whole charging service. As is typical for any brand-new technology industry in
the past 50 years (microprocessors, the internet, digital wireless telecommunication), the beginning of
the industry is characterized by chaos and an unforeseeable future.

The result, in my opinion, is a fantastic playground for innovation and impact. Players who, in this
phase, look three steps ahead of the rest have a chance to shape an entire sector. And in the case
of electric vehicle charging, they can unlock all potential benefits for the energy transition. |1 am very
happy to have been able to dive deep into these topics for my master’s thesis.

| want to express sincere gratitude to my supervisor, Dr. Pedro P. Vergara, and daily supervisor, Stavros
Orfanoudakis. They have efficiently guided me through the thesis, always stimulating me to ask the right
questions and to keep moving forward. | want to thank Pedro especially for the interesting discussions
about the broader unfolding of the energy transition. | want to thank Stavros for his huge patience in
helping me with the coding. Surely, without him, | would never have been able to learn this much about
applied EV charging optimization and Reinforcement Learning.

Now, with a job related to smart charging, | will continue to work on harnessing the full potential flexibility
of electric vehicle charging. We need it as much as possible, as soon as possible.

Ruben Eland
Roftterdam, June 2025
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Abstract

As the number of Electric Vehicles (EVs) and renewable energy sources (RES) increases rapidly, power
grids struggle to adapt. In the coming years, power system flexibility is urgently required to use the lim-
ited capacity of the existing infrastructure efficiently. Over the long term, flexibility will remain essential
to account for the variable and uncertain electricity production from RES. EVs have large batteries
that are often only partly used for daily travel, particularly in densely populated areas. Smart charging
and Vehicle-to-Grid (V2G) can harness the flexibility of EVs to support grid balancing and congestion
management.

This thesis investigates the smart charging and V2G potential for EV aggregators, with a focus on
workplace charging. State-of-the-art Reinforcement Learning (RL) techniques are applied to a case
study involving a business parking lot. The objective is to maximize the profits of the EV aggregator
while satisfying EV user and transformer power limit constraints. The modeled EV behavior is based
on data from real EV measurements in the Netherlands. The real-time charging optimization problem
is characterized by high uncertainty. RL is widely considered a promising algorithm for solving highly
uncertain problems. However, the latest Deep RL algorithms often struggle to guarantee constraint-
satisfying behavior. Safe RL, an emerging subfield, aims to reduce constraint violations in the learned
behavior, thus making algorithms ‘safer’. This thesis applies recent Safe RL algorithms and compares
their performance to Deep RL baselines and conventional As-Fast-As-Possible (AFAP) charging.

The proposed method, Constrained Variational Policy Optimization (CVPO), achieved performance
comparable to that of the optimal offline Gurobi solver in simulation scenarios where sufficient trans-
former capacity was available and overloads could not occur. The learned behavior generalized well
to unseen levels of charger occupation. However, in scenarios with more inflexible loads and a smaller
transformer power limit, transformer overloading risk made the problem more constrained, resulting in
a decline in CVPOQO'’s performance.

The code used to generate the results of this thesis is publicly available at
https://github.com/rubeneland/EV2Gym_safeRL.
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Introduction

The global pursuit of a fossil-free future has accelerated investments in renewable energy technologies,
leading to unprecedented transformations in the energy and transportation sectors. Renewable Energy
Sources (RES), such as PV, wind, and hydro, are projected to contribute 35% to global electricity
generation by 2025, surpassing coal as the dominant energy source [1]. Similarly, electric vehicles
(EVs) have surged in popularity, with their share of global vehicle sales increasing from 4% in 2020 to
18% in 2023 [2]. These rapid adoptions create new challenges within the power grid.

The energy production from RES is variable, uncertain, and often has a locational mismatch to energy
demand [3]. Furthermore, their scattered distribution requires a revision of the current power network.
The large electricity needs of EVs also require upgrades of the power grid. The pace of the transforma-
tions within the energy and transportation sectors troubles the adaptation of the grid, where upgrading
existing infrastructure can take several years.

Many experts argue that a new approach to the operation of the power system is crucial to continue the
progress of adopting RES in the energy mix [3] [4] [5] [6]. Besides enhancing transmission capacity,
proper integration of RES means increasing flexibility and energy storage [3]. EVs are often incorpo-
rated into the challenges because of their large electricity needs. However, proper management could
make them part of the solution. As EVs typically spend a lot of time connected to chargers but without
charging [7], EV aggregators—entities controlling the charging of groups of EVs—could use their large
batteries to provide part of the energy storage and flexibility which the power system desperately needs.
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1.1. The power system

To improve the relevance of this thesis, the research is implemented in the context of the power system
of the Netherlands. This chapter introduces key actors, market forces, and challenges within the Dutch
power system.

1.1.1. Network operators

The operation of a power grid is usually divided between Transmission System Operators (TSOs) and
Distribution System Operators (DSOs). In the Netherlands, TenneT acts as the sole TSO and is in
charge of the high-voltage part of the grid. In addition to maintaining and expanding the high-voltage
grid, TSOs are responsible for grid balancing, i.e. ensuring power production equals power consump-
tion. Furthermore, the TSO facilitates the national power market and the TSOs in Europe work together
in a European market to efficiently allocate energy resources throughout the continent [8].

Each DSO maintains and operates a section of the low- and medium-voltage grids. In the Netherlands
Stedin, Enexis and Liander are some of the DSOs. DSOs also connect new producers and consumers
to the power system. While grid balancing is a function of Tennet only, both the TSO and DSO are
responsible for avoiding congestion in the grid [8]. Together, the TSO and DSOs facilitate the trans-
portation of electricity from source to consumer.

The power grid of the Netherlands is highly congested as of 2025. A simple solution to this congestion
would be to upgrade the existing infrastructure. While TenneT invests more than € 6 billion each year
to upgrade the grid [9], the duration of projects is too long to solve congestion issues promptly. The
construction of a high-voltage substation typically takes five to ten years [9].

1.1.2. Electricity market

In the liberalized Dutch electricity market, energy is traded on the scale of MWh. In the day-ahead
market, players can buy or sell electricity for the next day on an hourly basis. After the day-ahead
market closes, the hourly prices are shared with market participants. The players can adjust their spot
positions on the delivery day up to five minutes before the physical delivery in the intraday market.
However, buying electricity is usually more expensive in the intraday market, compared to day-ahead
[10].

In practice, electricity production and consumption forecasts will never be completely accurate, so there
will always be some imbalance. The goal of the imbalance market is to solve imbalances before they
can cause damage. TenneT can buy or sell energy in this market to solve any imbalance issue [10].

1.1.3. Key actors

Besides the TSO and DSO, several actors help keep the power system functioning properly. The Bal-
ance Responsible Partner (BRP) helps the TSO to maintain the power system’s balance. Each BRP
manages a portfolio with producers and consumers and tries to minimize the gap between production
and consumption in their portfolio. TenneT charges or rewards the BRPs based on their performance.
The Balancing Service Provider (BSP) offers balancing capacity or energy reserves, which TenneT
can activate when required [8].

Electricity suppliers produce or buy power and sell it to consumers. The dominant contract form
used to be a fixed-pricing scheme, in which suppliers charge consumers a fixed tariff per consumed
kWh. In recent years, dynamic or time-of-use (TOU) pricing has emerged as an alternative. In dynamic
electricity pricing, suppliers offer tariffs close to the day-ahead market prices, only adding a marginal
compensation cost.

Figure 1.1 shows boxplots of average day-ahead market electricity prices in the Netherlands. Figure 1.1
was created with data from the ENTSO-E open data platform [11]. The data was downloaded with the
Python package entsoe-py [12]. The script can be found in the Appendix: A.1. The electricity prices
are first grouped by the hour to improve readability. Afterwards, the average hourly prices for each
year are calculated and the boxplots are created. The Python script for creating the boxplots is also
available in the Appendix: A.2. Figure 1.1 shows that after years of very stable electricity prices around
50 €/MWh, the prices skyrocketed up to 300 €/MWh around 2022 as a result of the war in Ukraine.
Figure 1.1 also shows that although the mean electricity price has been cooling down in 2023 and 2024,
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Figure 1.1: Boxplots of average electricity prices in the Netherlands show increased volatility. Created with open data from
ENTSO-E [11].

the volatility of electricity prices remains. This can be explained by the increase of RES in the energy
mix and the resulting imbalance between electricity production and consumption. Consequently, more
than ever dynamic tariffs offer incentives to change one’s electricity consumption.

The Congestion Service Provider (CSP) is a new entity in the power system. The CSP offers con-
gestion management services to the TSO or DSO. Congestion can be relieved by actively changing
the amount of power that flows through a congested area. These services are location-bound, unlike
balancing services [8]. Since June 2022, a modification in the legislation allows four possible methods
for CSPs to provide congestion services. GOPACS, a joint venture between TenneT and the DSOs,
facilitates three of these four methods [13].

First, GOPACS implements congestion redispatch bids in a market environment, from now on referred
to as the congestion market. Network operators can submit intraday redispatch bids in GOPACS in a
congested situation. CSPs operating in the area with congestion can respond by placing a buy or sell
order on an energy trading platform connected to GOPACS. If called, a buy order is coupled to a sell
order outside the congested area and vice versa to prevent imbalance [13].

A CSP can also conclude an intraday bid obligation contract or a day-ahead capacity limitation contract
with a grid operator. The first obliges CSPs to participate in redispatch bids. The limitation contract al-
lows network operators to lower the capacity of a CSP the next day in return for monetary compensation.
The contracts yield more certainty to both the operator and the customer, as congestion prevention is
guaranteed and fees are agreed upon in the contract. [13].

The Aggregator is a relatively new actor in the power system as well. Aggregators combine multiple
small consumers and producers in a portfolio and put the combined demand or production on the
wholesale, balancing, or congestion market. Consumers allow aggregators to manage their assets,
e.g. control the charging process of their EV, in return for financial compensation. An aggregator may
also become a CSP, employing their aggregated capacity to mitigate local grid congestion [8]. The
increasing penetration of RES and EVs into the grid makes the role of aggregators more important.

1.2. Flexibility

Several articles emphasize flexibility as a key factor in coping with many of the impacts of variability and
uncertainty of RES [3] [4] [5] [6]. Flexibility can be defined as "the ability of a power system to reliably
and cost-effectively manage the variability and uncertainty of supply and demand across all relevant
timescales” [3].
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In the coming years, more flexibility is required to prevent congestion while we continue the adoption of
RES and EVs in anticipation of scheduled grid expansions. However, flexibility will always stay a key
element in solving imbalances in the long term. TSOs still rely on conventional fossil-fuel power plants
for grid balancing [6]. These plants’ large inertia and easy controllability can be regarded as flexibility.
In the future, as they are replaced with the uncertainty and scattered distribution of RES, flexibility has
to be found in other areas, e.g. in energy storage or aggregators providing flexibility with their portfolio
of EVs [6].

1.2.1. Demand response

Demand response implements flexibility on the consumer side: consumers shift flexible consumption
from periods with power shortage to periods with excess power [6]. There are three main strategies to
gain financial rewards from demand response.

The first and for consumers easiest strategy is through dynamic electricity tariffs. As dynamic tariffs
follow the market price, low prices represent periods of power shortage and vice versa. Consumers with
dynamic electricity contracts can thus easily provide flexibility without participating in market bidding
processes. While this strategy is simple to implement and helps reduce peaks in the aggregated load of
a country, it does not support grid operators in solving unforeseen imbalances or managing congestion.
Therefore, only relying on this approach does not seem sustainable.

The second strategy is the imbalance market. Actors can receive payments through the imbalance
market for shifting their flexible consumption to moments with power oversupply. This strategy is already
implemented by energy-intensive industries [6]. Since the imbalance market is location-independent,
this strategy could result in or worsen congestion issues.

Congestion services are the third strategy to monetize flexibility. Aggregators and consumers can
receive compensation from the TSO or DSO for lowering their consumption during congestion events.
As any congestion service is combined with an opposite power modification outside the congested area,
this strategy will not create new imbalance issues. Aggregators could receive payments by actively
participating in the congestion market. However, they could also eradicate the need to participate in
bidding events by concluding a capacity limitation contract.

1.3. Electric vehicles

EVs have an electric motor and a means of energy storage, usually a battery or a fuel cell. However,
the adoption of Fuel Cell Electric Vehicles (FCEVs) is negligible compared to battery EVs [2]. Battery
EVs can be distinguished between Battery Electric Vehicles (BEVs) and Plug-in Hybrid Electric Vehicles
(PHEVs). PHEVs have an Internal Combustion Engine (ICE), a gas tank, and a smaller battery than
BEVs. This study focuses on BEVs because PHEVs still rely on fossil fuels and thus are considered
transition venhicles.

1.3.1. EV batteries

In recent years, lithium-ion EV batteries have been predominantly produced with Nickel Cobalt Man-
ganese (NMC) compositions. However, Lithium Iron Phosphate (LFP) batteries are becoming more
popular. In 2023, of all global EV sales over 40% of the battery capacity was supplied by LFP, more
than doubling the share from 2020 [2]. LFP batteries only require lithium as a critical mineral, making
them more than 20% cheaper to produce than NMC batteries [2].

In anticipation of breakthroughs that may improve lithium-ion batteries’ performance, e.g. stable compo-
sitions with silicon anodes, NCM batteries still yield the largest energy density. However, LFP batteries
are safer and their average lifetime is longer. Furthermore, LFP batteries are in general more suitable
for fast-charging [14] [15] [16].

1.3.2. Smart charging and V2G

In 2025, the typical practice for charging EVs is uncontrolled and as quickly as possible. Smart charging
is an alternative strategy that involves managing EV charging to reduce the impact on the power grid.
Besides charging EVs’ batteries from the grid, EVs could potentially give energy back to the grid. This
concept is known as Vehicle-to-Grid (V2G) or bi-directional charging. Currently, few EVs and chargers
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have V2G capabilities. However, most Dutch EV drivers want V2G to become a legally required feature
of EVs [17].

A recent study for the European Federation of Transport and Environment shows V2G-enabled smart
charging has the potential to save EU energy systems € 22 billion a year by 2040. Furthermore, it could
reduce battery storage needs up to 92% while allowing an extra 40% of installed solar PV capacity [18].
European EV drivers using V2G at home could save 4-52% on annual electricity bills, ranging from € 31
to €780 per year, excluding payment through the congestion and balancing markets [18]. However,
social acceptance is an important challenge of V2G. Money is not the only motivator and range anxiety
fuels the desire for EV owners to be able to control the V2G process [18].

Battery degradation is often noted as a drawback of V2G. Some studies indicate that smart charging
with V2G could lead to less battery degradation than conventional As-Fast-As-Possible (AFAP) charg-
ing [18]. Furthermore, battery degradation may become less significant in the near future, as the shift
toward LFP increases the cycle life of EV batteries. It remains an active research question whether
the benefits of V2G outweigh challenges like social acceptance and drawbacks such as battery degra-
dation. Although battery degradation is an important aspect, it is considered outside the scope of this
research, as addressing it would complicate the optimization problem too much.

1.3.3. Charging impact on the grid

Figure 1.2 shows day-ahead electricity prices in the Netherlands for two days in 2023. The figures
are created with data from the ENTSO-E open data platform [11]. The prices are related to electricity
production and demand. One can observe typical peaks around 7:00 - 9:00 AM when people wake
up and 5:00 - 9:00 PM when people get home from work. The electricity demand is high during these
hours as people turn on the lights, cook, etc. As a result, electricity prices become higher. The low
prices on the first of June during afternoon hours are probably caused by a large amount of PV power
generation. Similarly, the low prices in the early morning of December 11 may indicate much wind
power generation. These days again illustrate how the penetration of RES results in more electricity
price volatility.

The yearly electricity demand of all EVs in the Netherlands is estimated to be 7.8 TWh by 2030 [7],
while the total electricity demand of the Netherlands was approximately 110 TWh in 2022 and 2023
[19]. The impact of electric driving on the total electrical energy consumption will thus be marginal.
However, as EVs are typically plugged into chargers at work around 9:00 AM and at home around 6:00
PM, by 2030 the two peaks of the typical daily load (Figure 1.2) could increase [7], resulting in even
higher electricity prices and a greater risk of congestion.

150 Electricity Prices on Thursday, 1st of June 150 Electricity Prices on Monday, 11th of December
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Figure 1.2: Day-ahead electricity prices of two days in the Netherlands in 2023. Created with open data from ENTSO-E [11].

1.3.4. EV aggregators and the flexibility potential

The rapid adoption of EVs means EV aggregators can have a significant impact. First, EVs consume
a vast amount of electricity all year round; an average EV consumes more electricity than an average
house in the Netherlands [7]. Furthermore, demand response could be implemented almost impercep-
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tibly, as EVs spend much time connected to a charger without charging [7]. Finally, EVs have large
batteries; usually around 60 kWh (see Table 3.3). Therefore, especially in a small country such as the
Netherlands, minor deviations in an EV battery’s State Of Charge (SOC) at departure will have little
consequences.

By 2030, in the Netherlands, 55% of charging is expected to be done at public chargers, 19% at home
chargers, 17% at workplaces, and 9% at DC fast chargers [7]. Smart charging at home was already
applied commercially in the Netherlands in 2023. Jedlix, a Dutch smart charging company, showed it
could effectively reduce the charging peak of home chargers by 50% with its technology [7].

The simplicity of addressing one EV and the large connection times probably make home chargers
the most practical option for smart charging. Moreover, in 2020 until 2023, most EV charging in the
Netherlands occurred at private home chargers [17]. Since locality is key for congestion services and
a portfolio of home chargers may well be distributed throughout the country, supplying congestion
services with home chargers is more challenging. Home chargers will mostly provide flexibility at night,
as EVs are typically connected to home chargers at night.

Workplace charging points can provide flexibility during the day. Furthermore, as chargers in one
company parking lot are all in the same part of the low-voltage grid, fulfilling congestion services is more
feasible for EV aggregators operating in workplace scenarios. The typical load peaks in the morning
and afternoon, in combination with the cheapest electricity around noon when PV power generation is
at its highest (Figure 1.2a), suggest there is a potential for EV aggregators to profit by implementing
smart charging and V2G during the day.

Public charging perhaps has the greatest flexibility potential because of its expected charging share of
55% by 2030. Public chargers in residential neighborhoods may provide flexibility at night, while public
chargers near offices may provide flexibility during the day. However, the implementation of smart
charging at public chargers is more difficult. The large variation in arrival and departure times at public
charging points intensifies the uncertainty [7]. Furthermore, as anyone can connect to public chargers,
smart charging algorithms may be less effective due to a lack of trends in charging behavior.

1.4. Research objectives

While the potential to provide flexibility with EVs is evident, optimizing real-time charging control can
be challenging. This thesis aims to investigate and develop state-of-the-art algorithms to maximize the
profits of an EV aggregator that coordinates the charging of V2G-enabled EVs in a business building
parking lot. This study assumes that an EV aggregator does not model or monitor the grid. Instead, its
algorithms use dynamic electricity prices as inputs, effectively placing the responsibility of monitoring
the grid on the network operators. Furthermore, this thesis does not address how the EV aggregator
prices its customers and may increase profit by adding a margin to charging costs.

The most important constraints used in the problem are the transformer power limit and EV user pref-
erences. In most related articles the EV behavior is modeled unrealistically and charging efficiency is
assumed to be constant, while this efficiency varies for different currents. In this thesis, EV behavior is
based on real-world data. Furthermore, current-dependent charge and discharge efficiencies are con-
sidered. While RL is a promising algorithm for complicated optimization problems with high uncertainty,
it often does not ensure that constraints are satisfied. In the problem formulation of this thesis, con-
straint satisfaction is crucial to prevent unhappy EV users or damaging transformer overloads. Safe RL
aims to improve constraint satisfaction and the most recent Safe RL algorithms have yet to be applied
to real-time EV charging control. The contributions of this thesis can be summarized as follows:

» Safe RL for EV charging. Apply the latest Safe RL algorithms to optimize V2G-enabled EV
charging control.

* Realistic scenario. Address many constraints and EV behavior based on measured data.

» Charging efficiency. Consider current-dependent charge and discharge efficiencies.
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The main research question is:

How can an EV aggregator’s charging and V2G profits be maximized using Reinforcement Learning,
considering transformer limits, EV user preferences, current-dependent charging efficiencies, and un-
certainty?

Furthermore, the following subquestions are addressed:
1. How to model the transformer limit and EV user constraints?
2. How to model current-dependent charging and discharging efficiencies?
3. How to define the profit maximization problem as a Constrained Markov Decision Process (CMDP)?
4.

How does the proposed method perform compared to baseline methods in experiments?

1.5. Thesis outline

In Chapter 2, the EV charging optimization problem is introduced and the literature review on related
articles is given. In Chapter 3, the specific problem of this thesis is formulated, the simulation environ-
ment is presented, and the proposed method and baseline methods are described. In Chapter 4, the
proposed methods are verified with simulations. Finally, the conclusions and limitations are discussed
in Chapter 5.



Coordinated EV charging: literature
review

The coordination of EV charging can result in complex optimization problems. In recent years, many
scenarios, algorithms, and constraints have been researched. This chapter introduces the charging
optimization problem and summarizes recent related literature. First, Section 2.1 explains different
charging control strategies. Then, Section 2.2 introduces the charging optimization problem. The
discussed algorithms are grouped in metaheuristic methods (Section 2.3), mathematical optimization
(Section 2.4), and Reinforcement Learning (Section 2.5).

2.1. EV charging control schemes

There are three main strategies to control the charging behavior of EVs, as shown in Figure 2.1: cen-
tralized, decentralized, and hierarchical control [20] [21]. In the centralized scheme, one central en-
tity collects the inputs and lets its algorithm direct the charging. In the decentralized scheme, each
EV (user) decides when to charge or discharge without a central controller. Hierarchical or hybrid
centralized-decentralized control places EVs, aggregators, and possibly network operators in a tree
structure [21].

S 9
P J
s s | O T ARt Oleen
(a) Centralized (b) Decentralized (c) Hierarchical

@

. = direct aggregator
© =local controller

network operator / indirect aggregator —— =direct control
--- =indirect control

Figure 2.1: Charging control of EVs can occur in several charging schemes. Based on Figure 3 from [21].
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Each strategy has its benefits and drawbacks. Centralized control usually finds better charging sched-
ules [20] [21]. However, centralized systems are less robust as one error will lead to a failing system
[21]. Additionally, centralized control lacks scalability [20] [21]. Decentralized control is more robust
and scalable, but struggles to create good charging schedules due to the uncertain nature of the dy-
namic EV charging problem [20] [21]. Furthermore, as the EVs are not controlled directly, it is difficult
for an EV aggregator to implement demand response with decentralized control.

Hierarchical control combines the best of centralized and decentralized strategies. The scalability issue
of centralized control is mitigated by delegating computational load and communication to multiple
aggregators [21]. Each aggregator controls a group of EVs. A group may be bounded by location, like
EVs chargers at a parking lot [21]. Because aggregators control the charging of their groups of EVs in
a centralized manner, results will be better than with decentralized control. Also, it will be feasible to
implement demand response. In recent literature, most authors focus on hierarchical control [20] [21].

2.2. Coordinated EV charging optimization

Coordinated EV charging optimization problems aim to optimize the charging of EVs. The problems
can have one or multiple objectives and often are subject to various constraints. Typical inputs are bat-
tery SOC or battery energy, electricity prices, on-site renewable energy generation, and total charging
load [20] [22]. Some articles also include power flows and node voltages. However, considering grid
simulations lessens the feasibility of centralized control due to the larger computation requirements
[20].

The charging optimization problem can be considered from the perspective of the grid operator, the
aggregator, or the EV user [20] [23]. Typical objectives are minimizing charging costs, maximizing
profits, maximizing customer satisfaction, maximizing PV self-consumption, or balancing the load pro-
file [20] [22] [23]. Often multi-objective problems are defined, combining several of these objectives
into one optimization problem. Typical constraints are EV user preferences, battery capacity, charging
limits, transformer load, and node voltage deviations [20]. However, few articles consider all these
constraints in one problem definition.

In reality, coordinated EV charging faces a lot of uncertainty. An EV aggregator does not know ex-
actly when EVs will arrive, how long they will stay, and how long it will take to charge their batteries.
Considering this uncertainty makes the problem more realistic but difficult to solve. The EV charging
scheduling problem can be static or dynamic [24]. The static problem definition assumes that the arrival,
charging, and departure times are known beforehand. Static problem definitions lead to algorithms that
can only perform offline planning. Because in reality these parameters cannot be known beforehand,
these models are not adequate to control the charging of EVs in real-time. Algorithms trained to solve
dynamic problems are suitable for real-time control. They recalibrate many times throughout the day,
iteratively processing new input data when it becomes available.

2.3. Metaheuristic methods

Metaheuristic methods are approximate solvers that are not guaranteed to find an optimal solution.
Often inspired by natural phenomena, their approach applies well to non-linear, non-convex, and high-
dimensional optimization problems [23]. For EV charging problems, some consequences are that meta-
heuristic methods scale well and may better handle scenarios with large fleets of EVs. However, they
are not guaranteed to find optimal solutions and to satisfy constraints. Metaheuristic methods are more
suitable for offline planning than real-time control.

In [25], an Ant-based Swarm Algorithm (ASA) and Particle Swarm Optimization (PSO) were used to
reduce peak loads of EV charging. Simulation results from a scenario with 500 EVs showed ASA and
PSO reduced peaks compared to uncontrolled charging with similar performance. In [24], an Atrtificial
Bee Colony (ABC) algorithm that minimizes tardiness was implemented. The work considered single-
phase charging, making the load imbalance of the three lines their main constraint. Numerical results
from scenarios with 180 EVs showed their algorithm outperformed two other metaheuristic methods
in most simulations. More recently, a genetic algorithm (GA) was applied in [26] to minimize the total
charging cost of a logistics company while ensuring all heavy-duty EVs are fully charged. The algorithm
considers dynamic energy tariffs and a limited nhumber of chargers for the amount of EVs. Several
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numerical simulations with 4 up to 10 chargers and 15 up to 30 EVs showed the proposed method
reduced charging cost compared to uncontrolled charging. The authors of [27] implemented PSO and
GA to minimize grid loading. They considered demand response events by decreasing the power limit
of the charging station at predefined times. The charging behavior of the EVs was based on real data.
In their simulation with 100 EVs the GA slightly outperformed PSO.

2.4. Mathematical optimization

Many studies address the charging optimization problem as a mathematical programming problem
and use classic optimization techniques. Stochastic optimization can address the charging problem dy-
namically, thus without knowing EV arrival, charging, and departure times beforehand. Many consider
dynamic programming (DP) the only tool to solve stochastic control optimization problems adequately
[28]. However, DP suffers from “the curse of dimensionality”, which describes how computations grow
exponentially with the number of variables [28]. Mathematical programming is suitable for offline plan-
ning, but Model Predictive Control (MPC) is required to apply it to real-time EV charging control.

The authors of [29] applied Linear Programming (LP) to minimize the EV charging cost of 100 EVs
in a residential neighborhood. The study addresses dynamic electricity prices, battery degradation,
and charger and transformer power limits. The work showed the potential for cost and load peak
reduction. In [30], Mixed-Integer Programming (MIP) was used to reduce charging cost and increase
RES utilization in scenarios with up to 150 EVs. Constant prices for electricity from RES and the grid
were assumed, the latter being slightly larger. RES utilization was increased by introducing a virtual EV
that encourages connected EVs to store renewable energy for EVs that may arrive later. The authors of
[31] applied Mixed-Integer Linear Programming (MILP) to maximize the profits of an off-grid EV charging
station powered by PV panels and a BESS. The proposed method slightly increased the profit of the
charging station. The study is partly stochastic by addressing the arrival of EVs as a distribution. In
[32], an automatic demand response strategy was implemented with DP. The goal was to maximize
an EV aggregator’s profit while considering onsite PV power generation, EV user preferences, and
grid voltage deviations. The authors proposed a dynamic price vector formation method that predicts
electricity prices. Simulation results with 60 EVs showed increased profits and PV power consumption
while ensuring customer satisfaction.

2.4.1. Model predictive control

Model Predictive Control (MPC) implements mathematical programming into real-time control. Being
a dynamic approach that constantly reconfigures strategies toward optimal solutions, MPC can handle
complex V2G-enabled EV charging problems with multiple constraints like EV user preferences and
grid constraints [33] [34].

The authors of [35] proposed a stochastic MPC-based Energy Management System (EMS) for inte-
grating PV power, EV charging, and BESS within residential complexes. The proposed EMS controls
the charging and discharging of the BESS. Furthermore, the EMS can provide voltage regulation. Sim-
ulations with 100 homes under various scenarios showed that the proposed method results in higher
profits and lower battery degradation than two other systems. In [36], a robust MPC algorithm was used
to maximize the profits of a charging station. The decision-making was modeled by Mixed-Integer Non-
Linear Programming (MINLP) problems. Dynamic energy prices, PV power generation prediction, EV
charging forecasts, and grid voltages are some of the inputs used in the problems. In [34], four compre-
hensive MPC algorithms were implemented. They are available in the EV charging and V2G simulation
tool EV2Gym [33], the environment used in this thesis. The algorithms aim to maximize the profit of an
EV aggregator while accounting for dynamic electricity prices, inflexible loads, PV power generation,
transformer power limits, demand response events, EV user preferences, and EV battery degradation.
MILP models the decision-making. The same algorithms can readily be employed in various scenarios
with different parameter values.

Although MPC can be used for real-time V2G-enabled EV charging control, it requires significantly more
computation time when problems become more complex. Furthermore, as MPC suffers from the curse
of dimensionality, computation times increase sharply when either the number or size of parameters is
increased [33] [34] [37]. As a result, the scalability of MPC is limited.
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2.5. Reinforcement learning

Reinforcement Learning (RL) is a subfield within Machine Learning and is an alternative technique
to unsupervised and supervised learning. RL is considered a model-free method, i.e., the algorithm
does not model the environment. Instead, a learning agent is set free in the environment without prior
knowledge and gathers experiences by iterating through the environment. The agent is not told which
actions to take, but it should learn the best strategy from past experiences [28]. One major advantage
of RL is that it can break the curse of dimensionality by its approximation [28]. Deep RL algorithms
use neural networks as approximate functions that optimize during training. With proper training, the
neural networks can partially generalize to unseen states, increasing scalability.
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Figure 2.2: Markov Decision Process. An agent obtains new states and rewards from the environment after choosing actions.

2.5.1. Introduction

A Markov Decision Process (MDP) is an effective mathematical framework for the problem of learning
from interactions [28]. In an MDP, an agent interacts with the environment at discrete time steps ¢ =
0,1, 2,3 ... At each time step ¢, the agent sees the environment’s state S; and chooses an action A,.
Subsequently, the agent receives a reward R;; and finds itself in a new state S; ;. Figure 2.2 shows
an illustration of this process. MDPs represent a traditional approach to decision-making over time, in
which actions affect both short- and long-term rewards, resulting in a trade-off [28]. The trade-off can
be tuned by adjusting the discount rate ~ € [0, 1]. The total return G, of all steps is discounted by ~:

Gi=Rip1+YRiya + VR + - = YV Rignpa. (2.1)
k=0

RL algorithms aim to find the best policy m;(a|s), which technically is a probability of choosing action
A; = a given the agent is in state S; = s [28]. The optimal policy is thus a strategy that selects a
sequence of concurrent actions that yields the agent the most reward. The agent chooses actions A,
to maximize J(r), which is the expected return given the agent follows policy =

max J(m) = E,

Z '7th+1€+1‘| (2.2)
k=0

Additionally, most RL algorithms estimate value functions, to approximate the value of the current state
or the value of choosing an action given the current state. This value is determined by how much future
reward can be expected. State values are determined by the state-value function V:
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Vi(s) =Ex [Gi | so =s] = Ex lz Y Riykir | 0= 5] , (2.3)

k=0

denoting the expected return, given the agent follows policy 7 and starts in state s. State-action values
are determined by the action-value function Q.:

Qr(s,a) =E,[G¢ | Sy =s,Ar =a] =E, lz VkRHkH | so = s,a0 = a] , (2.4)
k=0

denoting the expected return, given the agent follows policy = and starts by choosing action a from
state s. RL uses value functions to improve the search for the theoretical optimal policy [28]. The
theoretical optimal policy, ., is defined to have a larger expected return than any other policy for all
states. Therefore, the optimal policy is accompanied by an optimal state-value function and an optimal
action-value function [28]:

Vi(s) = max Ve (s), (2.5)

Q«(s,a) = m;LXQW(s,a), (2.6)

forall s € S and a € A(s). The optimal action-value function Q.. can be written into terms of V, in the
optimal Bellman equation:

Qi(s,a) = Ex [Ri1 +yVi(Se41) | S0 = s,a0 = a] . (2.7)

2.5.2. Challenges

Every RL implementation encounters a trade-off of exploitation versus exploration. To optimize the
policy, an agent prefers to be ‘greedy’, i.e. choose actions that provide a good reward. However, the
agent should also try unseen actions to find new valuable states and actions. The agent thus has to
exploit what it has experienced to maximize total return, but simultaneously has to explore new actions
[28]. The € — greedy method is an example of dealing with this trade-off. This method chooses random
unseen actions with a small probability ¢, usually smaller than 0.1. Greedy actions are selected with
the probability 1 — ¢, the majority of chosen actions.

A second option that improves exploration is the off-policy search. It is a key characteristic of RL algo-
rithms whether they use on-policy or off-policy methods. On-policy means one policy simultaneously
has to exploit and explore. The ¢ — greedy method is an example of an on-policy search. Off-policy al-
gorithms have two policies. The behavior policy focuses on exploring new valuable states and actions,
the target policy on improving the final policy as much as possible. On-policy searches are simpler to
implement, while off-policy searches often generalize better [28].

Another challenge that often arises is the problem of sparse rewards. Delivering non-zero rewards
frequently enough to steer the agent in the right direction can be challenging even for simple goals [28].
Typically, only long, specific sequences of actions will result in large rewards. If the agent chooses
a wrong action somewhere before the end of the sequence, it will correlate the full sequence to low
rewards or even penalties. However, many actions from the sequence may have been in the right
direction. This is one of the reasons why RL usually needs huge numbers of iterations to converge.

To mitigate the problem of sparse rewards and to increase learning speed, implementing RL often
includes reward shaping. The design of the reward function is usually a trial-and-error process until re-
sults are satisfying [28]. The need for custom reward shaping for different problems is a time-consuming
effort and an often-mentioned drawback of RL.

Finally, safety is a challenge for RL. Typically, some constraints cannot be enforced because this would
reduce the learning flexibility of the RL agents too much. Agents are allowed to violate these constraints
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and have to learn not to violate them from reward subtractions. Consequently, obtaining a ‘safe’ policy
that guarantees constraint satisfaction is difficult. Furthermore, the approximation of deep RL can lead
to unexpected behavior. An unseen state close to a very valuable state does not necessarily have to
be valuable and may even result in a penalty when constraint limits are exceeded.

2.6. Reinforcement Learning for coordinated EV charging

Much research has been done on Deep RL applied to EV charging optimization. One advantage is
that RL can be readily employed for real-time charging. Another is that its approximation can handle
the uncertain nature of the dynamic EV charging optimization problem without experiencing the curse
of dimensionality. This section summarizes related articles using RL to solve the problem. The articles
have been divided into three segments: Classic Deep RL, Multi-Agent RL (MARL), and Safe RL.

2.6.1. Classic Deep RL

Deep RL algorithms implement techniques to improve the learning of the agent. For example, many use
an experience replay buffer to store experiences from off-policy searches. This reduces the likelihood of
forgetting knowledge from old transitions, thus increasing stability. In recent years, many new methods
have been proposed, each aiming to outperform the others.

The authors of [38] proposed using a Deep Q-Network (DQN) to minimize the charging cost of one EV
at home, considering battery degradation and V2G. Their algorithm uses a Long Short-Term Memory
(LSTM) network to process trends from previous dynamic electricity prices. Simulations showed the
method outperforms benchmark MPC algorithms. A similar LSTM-based network was used in [39].
Additionally, two replay buffers were implemented to mitigate the result of sparse rewards. The au-
thors used a Deep Deterministic Policy Gradient (DDPG) algorithm to minimize charging cost while
satisfying users’ target SOC. Simulations showed the proposed method outperforms DQN and regular
DDPG. The authors of [37] applied double DQN (DDQN), parametrized DQN (PDQN), and DDPG to
an EV charging problem with one charger. The goal was to increase PV self-consumption and SOC at
departure. The algorithms’ performance was compared against several benchmarks, including MPC.
Simulations showed the MPC algorithms slightly outperformed the RL algorithms. In [40], a custom
deep policy gradient algorithm based on Proximal Policy Optimization (PPO) was proposed. The aim
was to flatten the load profile of the charging EVs. In the proposed method invalid actions outside the
viable action space are penalized. The superiority of this strategy compared to a related method that
adjusts invalid actions to the nearest viable action was proven in simulations with 15 and 20 EVs.

2.6.2. Multi-agent RL

As the name implies, MARL considers multiple agents instead of one. In the coordinated EV charging
problem, MARL could be implemented by controlling every charger with a separate agent instead of
having one agent address all chargers simultaneously. For the EV charging problem of this thesis,
customer satisfaction may be improved with MARL compared to single-agent RL. Since each MARL
agent controls a single charging session, user preferences are easier to address. However, it would
probably be more difficult to respect the transformer’s power limit because the total power consumption
is now a result of the actions of multiple agents instead of one.

In [41], MultiAgent Selfish-COllaborative (MASCQO) was proposed, closely related to Distributed W-
Learning (DWL). The objectives were to maximize battery SOC, minimize charging cost, and mini-
mize transformer overload. In addition to DWL, an adjustable preference vector implements EV user
preferences. Simulations with 30 chargers showed better performance than DWL. The algorithm of
[42] addresses the same three objectives. The algorithm was based on the actor-critic method and
a Communication neural Network (CommNet). Numerical experiments showed increased scalability
compared to DQN. The authors of [43] applied Multi-Agent DDPG (MADDPG) and Multi-Agent DQN
(MADQN) to minimize the charging cost of a charging station. Furthermore, the study included fairness
of charging, battery degradation, and on-site PV power generation. A noisy network was employed to
increase training speed.
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2.6.3. Safe RL

Safe RL is a subfield that aims to improve constraint satisfaction. Safe RL often employs an additional
cost function that generates a cost based on the severity of constraint violations. This detachment
from the reward function allows for stricter constraint enforcement. According to [44], three types of
safe RL are primarily used. The first type is Lagrangian-based and also known as primal-dual policy
optimization. The second is a trust-region-based method. Constrained Policy Optimization (CPO) [45]
is a traditional algorithm of this type. The third type includes external knowledge as shields.

In [46], the same authors of [38] extended their work by implementing CPO. In their new work [46], they
no longer included battery degradation. Simulations showed CPO yielded adequate charging cost
while sharply improving constraint satisfaction. The authors of [47] proposed AL-SAC: an algorithm
that combines off-policy soft-actor-critic (SAC) with an augmented Lagrangian method. The proposed
method achieved the lowest charging cost compared to many baseline algorithms, including CPO.
Furthermore, the authors demonstrated a huge increase in learning speed compared to CPO, mainly
because AL-SAC is off-policy while CPO is on-policy. Of all examined studies, the content of [46] and
[47] align best with this thesis. In [44], an EV charging problem was formulated as a partially observable
CMDP (PO-CMDP). The work also modeled node voltages and power flows of the distribution grid.
Their Multi-Agent PPO (MAPPO) algorithm is forced to prioritize safe actions by local and global shields.
Simulations showed the proposed method outperformed CPO and other safe RL algorithms.

2.6.4. Overview of related articles

In Table 2.1, related articles that use RL are summarized. Note that constraints embedded in the
environment to make it work properly, such as the maximum battery capacity, are omitted from the
constraints column. Furthermore, it is assumed that every article addresses a target constraint for the
battery level at departure, either in terms of SOC or energy. Therefore, this target constraint is also not
included in the constraints column of Table 2.1.

RL is a promising method for real-time coordinated EV charging because it can handle the large uncer-
tainties inherent to the problem and has fast real-time execution. However, it is difficult for RL agents
to learn charging behavior that complies with constraints. Safe RL is a promising extension of RL that
improves constraint satisfaction. Although some traditional safe RL algorithms have been applied to
EV charging optimization problems, to the author’s best knowledge, there are no studies that use the
newest safe RL algorithms in a problem setting similar to this thesis.

Furthermore, many related articles make unrealistic assumptions in their environment models. The
arrival time, departure time, and SOC at arrival are often sampled from simple distributions that are not
based on real measurements. Furthermore, most related articles consider only one EV model with one
EV battery size. Finally, the charging and discharging efficiency is usually assumed to be constant. This
thesis makes the environment model more realistic by sampling the EV user behavior from distributions
based on real measurements. Moreover, this thesis considers multiple EV models with different battery
sizes and current-dependent charging efficiencies based on real measurements for each EV model.



Reference Objective Charger Type n Chargers Method States Constraints V2G
Wanetal.,2019[38] Min cost Residential 1 DQN SOC, past 24h elec- Battery degradation, Yes
tricity prices range anxiety
Silva et al.,, 2019 Max SOC, min cost, Residential 30 MASCO SOC, transformer Transformer power No
[41] min transformer load limit
overload
Wanetal.,2020[46] Max profit EV own- Residential 1 CPO SOC, past 24h elec- - Yes
ers tricity prices
Zhang et al.,, 2020 Max profit EV own- Public 1 DQN, DDPG, cus- Residual energy - Yes
[39] ers tom DDPG demand, previous
electricity prices
Dorokhova et al., Max PV self- Residential 1 DDQN, DDPG, SOC, PV genera- - No
2021 [37] consumption PDQN tion, total load
Zhang et al.,, 2022 Max SOC, min cost, Residential 6-60 Custom MARL SOC, load of EV, Transformer power No
[42] min transformer past 24h electricity limit
overload prices
Jiang et al.,, 2022 Flatten the load pro- Workplace 15, 20 Custom algorithm Residual energy de- - No
[40] file based on PPO mand
Chen et al.,, 2022 Min cost Residential 1 MPC, DDPG, SAC, SOC, past 24h elec- Transformer power Yes
[47] CPO, AL-SAC tricity prices limit
Fan et al., 2023 [43] Min cost Not Specified 20 MADDPG, MADQN  Residual energy Fairness, battery Yes
demand, electricity degradation
prices, PV oversup-
ply
Guan et al.,, 2024 Min cost Not Specified 10 MAPPO with safety SOC, PV power, Node voltage devia- Yes

[48]

shields

electricity prices

tions

Table 2.1: Overview of Related Articles that use Reinforcement Learning to optimize Coordinated EV Charging.

ButhIeyo A9 pe1euIpIO0d I0] HUTUILST 1USWL2I0JUIRY ‘97

a1



Methodology

This chapter presents the optimization problem addressed in this thesis in Sections 3.1 and 3.2. The
modeling of EV behavior, current-dependent charging efficiency, and PV & inflexible loads are de-
scribed in Sections 3.3, 3.4, and 3.5. The MDP and the constrained MDP (CMDP) are defined in
Sections 3.6 and 3.8. Finally, baseline algorithms and the proposed method are discussed in Sections
3.7 and 3.9.

3.1. Problem formulation

An EV aggregator is responsible for coordinating the charging and discharging of a group of V2G-
enabled EVs at a business parking lot. Each charging station consists of a single-port charger, simpli-
fying the electrical modeling by avoiding the need to account for port power limitations. The chargers
are connected to a low-voltage grid that facilitates the power distribution between the chargers, inflex-
ible loads, PV panels, and one transformer. The aggregator’s objective is to maximize profits while
ensuring EV user preferences are met and the power limit of the transformer is not exceeded. It is
assumed that, upon arrival, each EV user shares their intended departure time and desired SOC for
departure. The actual SOC of each EV is known during charging. Additionally, the aggregator has
access to dynamic electricity prices, as well as forecasts of PV power generation and inflexible load
demand. Historical data is used to train an RL agent, which is then deployed for real-time charging
control.
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Figure 3.1: Problem overview: An EV aggregator uses RL for charging control of V2G-enabled EVs at a workplace parking lot.
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The problem is modeled in the simulation environment EV2Gym [33], a framework implemented in
Python that offers a wide range of simulation settings and baseline algorithms for EV charging research.
EV2Gym is selected primarily because of its compatibility with RL implementations, support for V2G
functionality, and its realistic modeling of EV behavior based on empirical measurement data. Several
extensions and modifications have been made to the environment for this study. First, the electricity
price dataset is expanded to include hourly prices from 2023 and 2024 using the ENTSO-E open data
[11]. Second, the collection of EVs is revised to the ten most commonly registered EV models in the
Netherlands as of December 2024. Third, the functionality for current-dependent charging efficiencies
is implemented. Finally, the option to train and evaluate Safe RL algorithms is added. Figure 3.1 pro-
vides an overview of the setup, where an EV aggregator uses RL algorithms trained within EV2Gym
to control EV charging and discharging at a workplace parking lot, subject to transformer power con-
straints, inflexible load consumption, and on-site PV power generation.

Table 3.1 lists key parameters of EV2Gym and the corresponding values used in this thesis. The
maximum three-phase charging power and current are assumed to be 11 kW and 16A, respectively,
following the standard of ElaadNL, a Dutch EV research organization [7]. Although V2G functionality is
not yet widely deployed in three-phase AC chargers, it is expected to become a standard feature in the
near future. Therefore, the discharging is also modeled as three-phase, with power and current limits
equal to those of charging.

Model Input Parameters Symbol Value
Timescale At 15 minutes
. . Simulation Length T 60 steps - 15 hours
Simulation )
EV Properties (Table 3.3)
Scenario (Residential, Workplace, or Public) Workplace
Time of Arrival & Time of Departure ¢ar ¢dep [5:00 am - 8:00 pm]
Min. Time of Stay 120 minutes
Min. & Max. Charging Power (kW) PAC POY 0,11
Min. & Max. Discharging Power (kW) PAC A 0,11
Min. Battery Capacity (kWh) E 5
EV Max. Battery Capacity (kWh) E (Table 3.3)
Battery SOC at Arrival socar (Figure 3.5)
Target SOC for Departure SOC* 100%
Min. V2G SOC SOCminV2G - 50%
Charge & Discharge Efficiency n°h, ndis (Figure 3.7)
Binary EV Coefficient Uit 0,1
Min. & Max. Charging Current (A) o 7 0, 16
Min. & Max. Discharging Current (A) f“sjdis 0, 16
Voltage (V) & Phases V, ¢ 230, 3
Charging Point  Type of Chargers (AC or DC) AC
Charging & Discharging Prices (€/kWh) N = dis
Binary Charging Variable wdh 0,1
Binary Discharging Variable wde 0,1
Min. & Max. Transformer Power (kW) Py = —Pt} 90
Inflexible Loads (kW) Pt
Transformer PV Power Generation (kW) PPV
Demand Response Event (kW) PPR
Set of Connected Charging Points C 10, 30

Table 3.1: Key parameters of EV2Gym with corresponding symbols and values used in this thesis.
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3.2. Objective function and constraints

The objective function and most constraints in this work are obtained from the profit maximization
problem formulation introduced in EV2Gym [33]. The goal is to maximize the EV aggregator’s profits
under dynamic charging & discharging prices ¢, c¥i* by choosing suitable charging and discharging
actions for all connected EVs at time step ¢:

ch ch dis . dis
1o pds Z Z (P77 - cfh + Pig - i) - dt, (3.1)
Lt e T 4eC

subject to soft constraints (3.2) and (3.3), and hard constraints (3.4) - (3.18).

Table 3.2 shows the classification of constraints between hard constraints and soft constraints. Hard
constraints are embedded in the environment and cannot be violated. Forinstance, the SOC of each EV
will always be within its minimum and maximum bounds, as defined in (3.8). The soft constraints are not
strictly enforced, but RL agents should learn not to violate them from reward subtractions or constraint
violation costs. The EV target SOC for departure (3.2) and the transformer power limit (3.3) are treated
as soft constraints. The soft constraints can also be interpreted as objectives, giving RL agents a multi-
objective optimization problem: the agent must not only maximize profits but also maximize EV user
satisfaction and minimize transformer overloads. The soft constraints could be added as components
to the objective function, through Lagrangian relaxation, for example. This is unnecessary for hard
constraints since they cannot be violated.

The minimum V2G SOC constraint (3.18) was added to the default constraint set from EV2Gym [33].
Without this constraint, an agent may discharge an EV to its technical minimum SOC. If an EV user
unexpectedly needs their EV before the set departure time—for instance, if an emergency happens—a
near-empty battery would be undesirable. Constraint (3.18) ensures that EVs are never discharged
below the minimum V2G SOC, thus eliminating this risk. The minimum V2G SOC is set at 50% in this
thesis. This constraint has several implications. On the one hand, it helps reduce battery degradation
by limiting the depth of discharge. On the other hand, it restricts the agent’s flexibility in selecting
discharging actions, which may hinder its ability to fully explore the potential benefits of V2G. To simplify
the optimization problem, the minimum V2G SOC was implemented as a hard constraint.

Soft Constraint ‘ Hard constraint
(3.2),(33) | (34)-(3.18)

Table 3.2: Classification of constraints between hard and soft constraints.

Soft constraints '

At the time of departure t4ep, the battery SOC should be larger than or equal to the target SOC for
departure:

SOC;, > SOC;, Wi, Vi|t =} (3.2)
The total power being consumed or generated should not exceed the limits of the transformer:
PY<PFS 4+ PE4+ PPV <Pr—PPR wt (3.3)

Hard constraints
The charging power consumed from each charging point i at each time step ¢ is calculated by:

PR =IN Voo Vi (3.4)

The discharging power injected into each charging point i at each time step ¢ is calculated by:

"Soft constraints are not strictly enforced, but violations are incorporated in the RL process through costs (Safe RL) or reward
subtractions (Classic RL).
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PEsS =19V /oS WP i vt (3.5)

The charging efficiency is a function of the charging current If’t‘ as per Figure 3.7:

ey = FUIS) (3.6)
Again, for the discharging efficiency:
0l = FI5F) (37)

The battery capacity of each EV connected to charging point i is bounded by the lower and upper
capacity limits of that EV:

E,<E;<E; ViVt (3.8)
The battery capacity of each EV connected to charging point i at time step ¢ is calculated by:
Eiy = Eiyq + (P + PY) - dt ViVt (3.9)
At the time of arrival 2", the battery capacity of each EV is set equal to £2";
Eiy= EJY Vi, V|t =13 (3.10)
The charging current at each charging point i is bounded by the lower and upper charging current limits:
I <IN <T" i vt (3.11)

The discharging current at each charging point i is bounded by the lower and upper discharging current
limits:

1% > 19 > T3° i, vt (3.12)

The binary variables wfﬂ and w;’fts make sure charging and discharging can not happen simultaneously
at one charging point:

W 4wl <1 ViVt (3.13)
7,t 7t
wift = WS =0 Vi, Yilui, =0 (3.14)
Wi Wi € {0,13 (3.15)
155 = (I - o + IS5 - ) Vi v (3.16)

The total power consumed from or injected into the EVs is calculated by:

PEYS =" (PR + P) Vi, vt (3.17)
ieC

The battery SOC must be above the minimum V2G SOC before the EV is allowed to discharge:

SOC;, > SOCT™?C Vi, vit|wds =1 (3.18)

21
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3.2.1. EV aggregator profit

The objective function (Equation 3.1) is formulated from the perspective of the EV aggregator. The
aggregator aims to increase profits by applying charging schemes that leverage price valleys in dynamic
electricity prices. In this thesis, the dynamic electricity prices are based on day-ahead market prices
and exclude taxes or profit margins. Furthermore, both EV charging and discharging prices are set
equal to these prices. These modeling choices reflect the assumptions that tax policies vary across
countries and that the tax rates for purchasing and selling electricity are approximately equal. Figure 3.2
illustrates the difference between the electricity prices used in this thesis (Figure 3.2a), those charged
by energy companies in practice (Figure 3.2b) and those passed on to EV users by the aggregator
(Figure 3.2c). According to the objective function defined in Equation 3.1, the EV aggregator incurs
charging costs equal to market prices multiplied by charged energy and earns revenue equal to market
prices multiplied by discharged energy. This formulation allows RL agents to increase profit by charging
EVs less or discharging them more.

Profit margin

EV aggregator
Profit margin _< [ ] Profit margin _<
energy company - energy company —
Tax Tax
Market price Market price Market price
(a) This thesis (b) Charge by energy companies (c) Charged by the EV aggregator

Figure 3.2: Dynamic electricity prices

In reality, however, the aggregator’s economic incentives are different, as the EV users would typically
bear the cost of charging. The aggregator would pass on the charging cost and discharging profit to
the EV users, potentially adding a small margin to the cost or subtracting a small margin from the profit.
In such a setting, charging EVs less would reduce—rather than increase—the aggregator’s profit, as less
revenue would be collected from margins on charging transactions. This discrepancy is a limitation of
the simplified problem formulation of this thesis. In future work, this limitation could be overcome by
considering more realistic aggregator revenue models that incorporate pricing strategies. This issue
is discussed more in Section 5.2. Until such problem formulations are adopted, the results obtained
under the current objective function should be carefully interpreted: policies that increase profit by
undercharging EVs may not reflect desirable charging behavior for aggregators in practice.

3.3. EV user behavior

Uncertainty plays a central role in real-time EV charging control. In EV2Gym, several parameter val-
ues are sampled from distributions of ElaadNL to make simulations more realistic. These distributions
are created from measured EV charging sessions in the Netherlands and are publicly available [49].
Each EV transaction is initialized with the following parameters: arrival time (¢2"), departure time (t9P),
battery SOC at arrival (SOC?"), target SOC at departure (SOC*), and EV type. To simplify the op-
timization problem, all EV users are assumed to desire a departure SOC of 100%. Table 3.3 lists
the ten most frequently registered EVs in the Netherlands as of December 2024, based on data from
RVO-NL [50]. The battery capacities and three-phase charging power ratings were obtained from [33].
The EV type is sampled with a probability proportional to the number of registrations in Table 3.3, giv-
ing the Tesla Model 3 the highest likelihood of being selected. The weighted mean battery capacity
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of the EV types listed in Table 3.3 is 59.8 kWh. This value was computed in Python with the script
weighted_mean_EV_battery.py, which is provided in Appendix A.3.

EV Type Registrations E (kWh) P (kW)
Tesla Model 3 47783 57.5 11
Tesla Model Y 39216 57.5 11

Kia e-Niro 28028 64.8 11
Volkswagen ID.3 23033 58 11
Skoda Enyaq 21186 58 11
Hyundai Kona 19815 64 11
Volvo XC40 19307 66 11
Peugeot e-208 17785 46.3 7.4
Volkswagen ID.4 16449 77 11
Renault Zoe 14545 52 11

Table 3.3: Top 10 EVs in the Netherlands with battery capacity and max. three-phase charging power. Data from [33], [50].

The ElaadNL measurements were obtained between 2018 and 2020 for all electric vehicles in the total
fleet of the Netherlands, thus also including PHEVs. For most of the period from 2018 to 2020, there
were more PHEVs than BEVs in the Netherlands [50]. As described in Section 1.3, this thesis focuses
on BEVs because PHEVs are regarded as temporary in the transition towards a fully electric fleet.
PHEVs are assumed to have arrival and departure times similar to BEVs. However, the ElaadNL data
is a limitation for the SOC at arrival (SOC?™) because of the smaller batteries of PHEVs. Consequently,
this thesis does not accurately represent a parking lot where most of the charging sessions are with
BEVs. However, it can act as a starting point for further research that applies more accurate BEV data
or compensates for the PHEVs in the ElaadNL data.

Figure 3.3, adopted from [33], displays the distributions of arrival and departure times for public, work-
place, and residential chargers. Figure 3.3 shows that EV users usually arrive in the morning and leave
in the evening at workplace chargers, while the opposite trend is observed at home chargers. Public
charger behavior appears to be a mixture of the two. As this thesis focuses on workplace charging, 3"
and t%P are sampled from the middle distribution, “Work”.

Public

Qp\@ I i l i I & i i i i Il Arrival Time:
N

& | ' I I I I I I | I EEm Departure Time

Probability Probability Probability
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Figure 3.3: Distribution of arrival and departure times of EVs in the Netherlands. Figure obtained from [33].

The parameter min_time_of _stay imposes a lower bound on the duration of EV charging sessions.
EVs with a stay time shorter than this threshold are assumed to be as charged as fast as possible
because there is not enough time to do smart charging or V2G. In reality, these charging sessions
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would be added to the inflexible loads. In EV2Gym, however, EVs with a shorter stay time have their
departure time adjusted to ensure their duration matches min_time_of_stay. The default value for this
parameter in the profit maximization setting of EV2Gym is 180 minutes. For this thesis, it was reduced
to 120 minutes to increase the proportion of EV sessions with shorter stay times and better reflect the
variability observed in real-world EV charging behavior.

The initial SOC of EVs (SOC?") is derived from an ElaadNL dataset containing the mean energy re-
quired at arrival to get a full battery. The dataset provides mean energy demand values for each
half-hour interval between 05:00 and 18:30. As these discrete mean values are too sparse for direct
sampling, EV2Gym converts them into distributions. For each EV arrival SOC?", the energy demand
is sampled from a normal distribution N (y, §), where 1 is the mean energy demand for the nearest
lower half-hour time block in the dataset. For example, an EV arriving at 9:27 would be assigned a
sample from the 9:00 distribution. The sampled energy value is then converted to the corresponding
SOC?". Figure 3.4 shows the probability density function for energy demand at arrival when p = 14.87
kWh, the mean energy demand at 9:00. By default, EV2Gym imposes a minimum energy demand
of 5 kWh. However, to avoid truncating the distribution excessively, this thesis reduces the minimum
energy demand to 1 kWh.

EV energy demand for arrival at 9:00
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Figure 3.4: The probability density of energy demand for EV arrival at 9:00; n = 14.87

Figure 3.5 presents the distribution of energy demand at arrival for EVs at home and workplace charg-
ers. Figure 3.5 was created from the ElaadNL data [49]. Figure 3.5 shows that the measured energy
demand upon arrival at home chargers was significantly larger than the demand at work—twice as high
at the 20th percentile: 40 kWh at home compared to 20 kWh at work. This difference may come due
to national charging behavior trends in the Netherlands. According to [17], around 50% of charging oc-
curred at home in recent years, whereas only 10-20% took place at workplace chargers. This suggests
that EV users who charged at work often also charged at home, resulting in lower energy demand upon
arrival at the workplace. However, another possible explanation is the share of PHEVs in the ElaadNL
data. If a larger part of the charging sessions at workplace chargers compared to home chargers were
from PHEVSs, the energy demand at arrival would become lower at workplace chargers because of the
smaller batteries.

Figure 3.5 indicates that 80% of EVs arriving at workplace chargers require less than 20 kWh of energy.
For the problem of thesis without PHEVs, this is equivalent to 33% SOC on average, based on the
weighted mean of 59.8kWh of the collection of BEVs from Table 3.3. This implies that most EVs arrive at
work with an SOC?™ above 67% SOC, creating a substantial opportunity for V2G at workplace chargers
in the setting of this thesis, even under the minimum V2G SOC constraint of 50%. However, since
the ElaadNL data contains more data of PHEVs than BEVs, this conclusion cannot be extended to
workplace chargers in general. The V2G potential at a workplace parking lot where predominantly
BEVs come to charge may be different.

The number of EVs arriving at the parking lot can be adjusted using the EV spawn_multiplier in
EV2Gym. This parameter scales the base EV spawn probability, such that a higher value increases
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Distribution of EV energy demand at arrival
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Figure 3.5: Distribution of EV energy demand at arrival in the Netherlands. Data obtained from [49].

the likelihood of an EV arriving at a charger during each simulation step. Figure 3.6 compares charger
occupancy levels for a spawn multiplier of 1, 5, and 10. Figure 3.6 is based on 500 simulation days
in a workplace setting, with each day running from 05:00 to 20:00. For each day, the total number of
EVs connecting to a charger was counted. EV spawn events are independent across chargers and
time steps. As a result, increasing the simulation time window (e.g., from 09:00-17:00 to 07:00-19:00)
would generally result in a higher number of daily EV arrivals, even if the spawn_multiplier remains
constant.

200 EVs served per day for spawn multiplier = 1 200 EVs served per day for spawn multiplier = 5
175 175
150 150
125 125
o o
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o o
© s © s
50 50
25 25
ol ol
0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Total number of EVs served Total number of EVs served
(a) Low charger occupancy level (b) High charger occupancy level

EVs served per day for spawn multiplier = 10
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Total number of EVs served
(c) Very high charger occupancy level

Figure 3.6: Comparison of charger occupancy level for different values of EV spawn multiplier.

Figure 3.6a shows that with a spawn multiplier of 1, usually 1-3 EVs arrive during the day. The charger
occupancy level thus is defined as low for a spawn multiplier of 1. Figure 3.6b indicates that with a
spawn multiplier of 5, usually 6-8 EVs arrive during the day, reflecting a high charger occupancy level.
When the spawn multiplier is set to 10, usually 9-10 EVs arrive per day as shown in Figure 3.6c, thus
corresponding to a very high charger occupancy level. Overall, Figure 3.6 demonstrates that the spawn
multiplier serves as an effective modeling tool for different EV behavior trends in the parking lot. It is
noteworthy that in Figure 3.6a there is never a day with zero EVs arriving, even though one could expect
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this based on the count of only one EV arriving. Indeed, the option of no EVs arriving throughout a day
is restricted in EV2Gym. Although there may be zero EVs arriving in reality, algorithms can only control
the charging and discharging of EVs, so it is not interesting to simulate a day without any EV.

3.4. Current-dependent charging efficiency

By default, charging and discharging efficiencies are assumed to be constant in EV2Gym. This thesis
extends the environment by adding the functionality of having current-dependent efficiencies. The im-
plemented charging efficiencies are based on empirical measurements from [51]. The variation of the
charging efficiency for different current levels is the largest for single-phase charging, where the differ-
ence between the worst and best efficiency exceeds 10% for many EVs. With three-phase charging,
there is typically a 3% difference between the worst and best efficiency. Despite the smaller variation,
this thesis investigates the impact of modeling the three-phase current-dependent efficiency, as even
modest differences may influence the obtained profits or constraint satisfaction.

The three-phase charging efficiencies for different charging currents are obtained from [51]. When an
EV type appears multiple times in [51], the most recent version is chosen. The standard range, single-
motor version of the Tesla Model 3 (Tesla Model 3 SRSM) is used in this thesis. Two EV types from
Table 3.3 are excluded. The Volvo XC40 is omitted because it is not included in [51]. The Renault Zoe
is excluded due to its inability to charge at currents below 6A. The remaining eight EVs of Table 3.3 are
included. Figure 3.7, created using data extracted from [51], shows the charging efficiencies of these
eight EV types across different current levels.

In [51], the efficiencies are displayed as ranges rather than precise values. For example, the efficiency
of the Peugeot e-208 for currents between 5 and 7A lies somewhere between 83% and 86%. To sim-
plify the modeling, this thesis assigns fixed efficiency values to each color band: yellow corresponds
to 84%, light green to 87%, mid green to 90%, and dark green to 93%. For currents below 5A, the
same efficiency as the 5 - 7A range is assumed. These modeling assumptions are not sufficient to
claim accurate modeling of current-dependent charging efficiencies. However, they are considered
adequate for the exploratory purpose of this study: to evaluate whether incorporating variable charging
efficiency has a meaningful impact. If significant performance differences are observed between the
constant and current-dependent efficiency settings, future work should incorporate more precise mod-
eling. Conversely, if the observed differences are minimal, this simplified approach may be sufficient to
demonstrate that the added value of current-dependent efficiency modeling for three-phase charging
in this context is limited.

Charging Efficiency vs. Charging Current
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Figure 3.7: Charging efficiency versus current for the eight EVs used in the problem. Data obtained from [51].

This study assumes three-phase AC charging and discharging. However, this reflects an ideal setting
as V2G functionalities have hardly been implemented in AC chargers yet. Due to the lack of empir-
ical data, it is assumed that the three-phase AC discharging efficiencies are equal to the charging
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efficiencies obtained from [51]. This assumption is partly supported by [52], an article that measured
efficiency curves for a DC-DC charger under varying charging and discharging currents. The authors
of [62] showed that the discharging efficiency curve was approximately the inverse of the charging ef-
ficiency curve, both showing lower efficiency at lower currents. While this data was obtained from a
DC-DC charger, the similarity in the curves suggests that using symmetric charging and discharging
efficiencies is a reasonable approximation for the purpose of this study.

3.5. PV power generation and inflexible loads

EV2Gym includes on-site PV power generation and inflexible load functionalities by default. The PV
data is derived from the GitHub repository renewables-ninja [53], which provides historical PV gener-
ation data. The aggregated PV power generation in the Netherlands is scaled down to fit the power
transformer limit in the simulation. The inflexible load data is based on the Pecan Street dataset [54],
which offers randomized load data from real measurements of households. An EV aggregator can
never have perfect forecasts of the PV or inflexible loads. To include this uncertainty, EV2Gym allows
the forecast accuracy to be adjusted. The default mean error is 30% for the loads with a standard de-
viation of 5%. The default mean error is 20% for PV, also with a standard deviation of 5%. The default
accuracy is not adjusted in this thesis.

The severity of the PV power generation and inflexible loads can be adjusted in the EV2Gym with
the PV and load capacity_multiplier_mean. This parameter defines the expected magnitude of PV
output or load demand relative to the transformer’s rated power. For example, setting the mean load

capacity multiplier to 0.5 yields load multiplication factors sampled from the distribution A/(0.5,0.1) -?t},
where Ft} is transformer’s power limit.

Figure 3.8 shows the probability density function for the load multiplication factor with mean 0.5 and
standard deviation 0.1. If a value of 0.5 is sampled, the Pecan Street load profile is scaled such that
the peak load on that day reaches 50% of the transformer’s capacity. To prevent overloads from PV
or loads alone, the sampled multiplication factors are truncated at 1. To avoid them from becoming
negative, they are also truncated at 0. The default distribution’s standard deviation of 0.1 has been
adjusted to 0.05 for the PV multiplication factor, as a small mean PV capacity multiplier is applied in
this thesis. Figure 3.9 displays the probability density of the PV multiplication factor for a mean of 0.1
and standard deviation of 0.05.
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Figure 3.8: Probablity of load multiplication factor for a mean capacity multiplier of 0.5 and standard deviation equal to 0.1.

In practice, an EV aggregator operating at a business parking lot would likely encounter inflexible loads
from office buildings rather than residential neighborhoods. Additionally, the variability in PV generation
at a single parking lot is expected to be higher than in nationally aggregated data, where localized
weather fluctuations are averaged out. Moreover, the forecast errors for both PV generation and the
loads are not derived from real data. Consequently, the load and PV inputs considerably limit how
realistic simulations will be. Nevertheless, in the absence of more representative data, this thesis
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Figure 3.9: Probablity of PV multiplication factor for a mean capacity multiplier of 0.1 and standard deviation equal to 0.05.

adopts the default load and PV profiles provided by EV2Gym.

3.6. Markov Decision Process

The MDP used in this thesis is based on the default configuration of EV2Gym [33]. Through extensive
simulation, the state function was iteratively updated in a mostly trial-and-error process. A key guiding
concept was the normalization of input parameters, which was found to improve learning stability and
efficiency. The following state function yielded the best performance in scenarios without transformer
overloading:

tder —
SOC;, T

Vi, (3.19)

3 It
St = |:T’C§’7£+}L:| U

where ¢ is the current time step, T' = 60 is the total number of steps per episode, h = 28 is the electricity
price horizon c;;’;% is the sequence of charging and discharging prices from the current step up to
h steps ahead, SOC; is the current SOC of connected EV i, tfep is the time step where the EV will
depart. As the number of SOC; and tfe” increases with i, the state size grows with the number of
chargers modeled. In more complex scenarios that include PV, loads, and transformer overloading,
the following state function proved most effective:

t Py PhL,, — PHY tdeP ¢
Se = | 7o llion —p Lith Lk | | SOC, - 7 Vi, (3.20)
PT PT

where the horizon i = 20 now applies to the electricity prices as well as PV and load forecasts, P/}

is the transformer loading in the previous step, Py is the transformer power limit, PL_, and PLY,
are the load and PV power forecasts for the current step up to » = 20 steps ahead. The horizon of
Equation 3.20 is smaller than that of Equation 3.19, as the agent’s learning ability is reduced by larger
horizons. The smaller horizon h = 20 was found to be more appropriate for the more complicated

problems of scenarios related to Equation 3.20.

The latest EV chargers can provide smart charging with continuous power control [40]. As continuous
power control can yield better solutions through increased flexibility, the actions of the RL agent are
chosen to be continuous. The following action function is used in both experiments:

a; = [-1,1] (3.21)
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The agent controls the charging power through the current. If a, = 1, an EV will be charged with
the maximum charging current of 16A, or maximum charging power of 11kW. Conversely, a; = —1
represents maximum discharging at 16 A. Intermediate values yield proportionally scaled current levels.

Shaping the reward function is a critical design step in any classic RL implementation. As the reward is
the only feedback in the agent’s training process, the reward function should adequately incorporate all
learning goals. In the optimization problem of this thesis, defined in Section 3.2, this means the reward
function should direct agents toward high profit. However, agents should also learn to respect the soft
constraints: the target SOC of EV users and the transformer power limit. The following reward function
is the default reward function of EV2Gym:

re = —100- € | + Z Tit—1 — 100 - exp (—10 . e;’ir) , (3.22)
€C

for any time step ¢, where €, is the transformer overloading in kWh, 7;_; is the charging profit of
connected EV i, and €/*" is the user satisfaction score of EV i at departure. The user satisfaction score
is determined by:

S0CHe®
= (3.23)

the actual SOC at departure divided by the desired SOC at departure. Since all EVs in this thesis
request a full battery at departure, a vehicle departing with 90% SOC yields a user score of €' = 0.9.
The reward function of this thesis was based on the default function of EV2Gym and was improved in a
trial-and-error process. As pointed out in [33], the default reward function of EV2Gym did not lead the
classic RL algorithms to desirable behavior in the V2G profit maximization problem. Most algorithms
showed relatively high profits but low user satisfaction. A likely cause is the user satisfaction term of
the default reward function (3.22), which takes the form:

usr

—a - exp(b - ). (3.24)

Figure 3.10 plots the default user satisfaction term for all possible values of the user score. Figure 3.10
reveals that agents only incur a substantial penalty when the departure SOC of an EV is below 40%. To
improve the agent’s sensitivity to insufficient charging, two adjustments were made to the default user
satisfaction term. First, the value of b was increased from —10 to —3, flattening the curve to increase the
penalty for moderate user scores. Second, the value of a was increased from 100 to 1000, amplifying
the overall magnitude of the penalty. After extensive experimentation, the following revised reward
function was found to be most effective:

ry = Zmiﬂ —1000 - exp (—3 - ) 4 1000 - exp (—3), (3.25)
ieC

for any time step ¢, where the term +1000 - exp(—3) counters the offset reward subtraction —1000 -
exp(—3 - 1) = —49.8 for a user satisfaction score ¢"S" = 1. Figure 3.11 visualizes the proposed reward
subtraction across the full range of user scores. Figure 3.11 shows that by corresponding to a flatter
curve, the revised reward function indeed increases the penalty of moderately low user scores. More-
over, comparing Figure 3.10 with Figure 3.11, overall scores result in more severe penalties in the
proposed user satisfaction term. For example, a score of ¢¥*" = 0.2 results in a reward subtraction of
approximately —500 under the proposed reward function, whereas the same score incurs a penalty of
around —15 under the default formulation.

In scenarios with transformer overloading, a reward subtraction for transformer overloading also has
to be considered. The proposed reward function for scenarios with transformer overloads is:

re =—100- € + > mi¢1— 1000 - exp (=3 - /) + 1000 - exp (—3) (3.26)
ieC

for any time step ¢, where €| is the transformer overloading in kWh, 7;_, is the charging profit of
connected EV 4, and €/*" is the user satisfaction score of EV i at departure.
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Figure 3.10: User satisfaction term in default reward function for all values of user satisfaction score
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Figure 3.11: User satisfaction term in proposed reward function for all values of user satisfaction score

3.7. Baseline methods

SAC, TD3, and PPO were selected as Classic RL methods to solve the MDP. These algorithms are
widely considered among the most stable and sample-efficient Deep RL algorithms. Furthermore, they
can be applied in environments with continuous state and action spaces. In EV2Gym, agents can be
trained with these algorithms in the Python script train_stable_baselines.py, which makes use of
Deep RL implementations from the package stable-baselines3 [55]. In experiments without transformer
overloading, the state function defined in Equation 3.19 and reward function defined in Equation 3.25
are used for the Classic RL agents. In experiments with transformer overloading, agents are trained
with the state function defined in Equation 3.19 and reward function defined in Equation 3.25.

In addition to the RL baselines, AFAP charging, and the offline Gurobi solver are also applied as bench-
marks. AFAP represents the current conventional charging strategy and thus serves as a practical
baseline. The Gurobi solver provides an offline solution under full knowledge of future events and is
used as a reference for optimal performance. As discussed in the literature review in Chapter 2, MPC
has demonstrated comparable performance to RL in real-time EV charging control. A comparison be-
tween MPC and RL would therefore be interesting. While EV2Gym includes several implementations of
MPC, all these implementations consider the unrealistic static problem with knowledge of future events.
Consequently, including these MPC results would not provide meaningful insights into the real-world
performance of MPC.
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3.8. Constrained Markov Decision Process

Most Safe RL algorithms incorporate a cost function related to constraint violation, enabling the agent
to learn constraint satisfaction detached from reward maximization. In this framework, the agent is not
only tasked with maximizing expected reward but must also ensure that the expected cost is below a
predefined cost limit. The agent’s new objective is:

max J.(7), st J(r) <d, (3.27)

where d is the cost limit, J,.(7) = E, [Z?:O ytv't} is the expected discounted reward over the simulation

day, and J.(7) = E, [ZtT:o fytct] is the expected discounted cost over the simulation day [56]. In the

rest of this thesis, the term ‘cost’ corresponds to constraint violation costs, not to be confused with the
cost of charging, which is referred to as charging cost.

By formulating constraint violations into an actual inequality constraint through a cost function, rather
than penalizing them in the reward function, the Safe RL approach allows more strict constraint adher-
ence than Classic RL. To enable the application of Safe RL algorithms in EV2Gym, the MDP formulation
must be extended to a CMDP, which requires the original reward function to be decoupled into separate
reward and cost components.

In the problem formulation of this thesis, as defined in Section 3.2, the cost emerges from violations
of the two soft constraints: the target SOC for departure and the transformer power limit. The cost
function for this scenario is based on the reward subtraction terms of the MDP related to constraint
violations, and updated in a trial-and-error process. The following function had the best performance:

ce=5-ef |+ 20-exp(—3-eY) —20-exp(-3), (3.28)
ieC

for all transformer overloads €!"_, attime step t—1 and user scores " at time step ¢. The compensation
term —20-exp(—3) is now negative because the cost function is positive. In a problem formulation where
there is plenty of capacity available, transformer overloading cannot happen, thus making the target
SOC for departure the only constraint that results in a cost when violated. For these scenarios the
following cost function was found to be most effective:

cy = Z 20 - exp (—3 - ") — 20 - exp(—3), (3.29)
ieC

for all user scores €/*" at time step ¢. As the cost limit restricts the allowed cost during training, the
transformer overloading and user satisfaction terms in the cost function can be defined at a smaller
scale than in the reward function of the MDP. Decoupling these terms from the reward function removes
the need to scale them artificially high to steer the agent toward constraint-satisfying behavior. The
reward function in the CMDP is the total charging profit, effectively making profit maximization the only
reward objective for Safe RL agents:

re=» i1 (3.30)

icC

According to Equation 3.27, the Safe RL algorithms aim to keep the expected, discounted sum of all
costs in a simulation day below the cost limit. Figure 3.12 shows the CMDP cost function as defined in
Equation 3.29. When the cost limit is equal to 1 and a user score of 0.7 is obtained, or the departure
SOC of a single EV is 70%, the resulting cost exceeds the limit. Therefore, when the cost limit is equal
to 1, the departure SOC of each EV in a simulation day is expected to rarely be below 70% for good
Safe RL policies. To verify this, the number of occurrences of a minimum departure SOC below 70% is
added as a metric in the final evaluation. Figure 3.12 shows that a cost limit of 2 is less strict, as lower
user scores are possible within the limit. The expectation is that agents trained with higher cost limits
will achieve more reward at the cost of worse user satisfaction.
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Figure 3.12: CMDP cost function without the transformer overloading term for all values of the user satisfaction score

3.9. Proposed method: CVPO

This thesis proposes the state-of-the-art Safe RL algorithm Constrained Variational Policy Optimization
(CVPO) to solve the coordinated EV charging problem formulated as a CMDP. CVPO was selected
because of its superior sample efficiency, training stability, and constraint satisfaction, as demonstrated
in [56]. The algorithm learns new policies with a trust-region updating method similar to CPO. However,
unlike CPO, CVPO formulates the objective as a probabilistic inference problem and improves policies
in an off-policy fashion. CVPO splits the constrained problem into a convex optimization phase, the
Expectation step (E-step), and a supervised learning phase, the Maximization step (M-step). The
E-step aims to find the optimal variational distribution q that maximizes reward, is part of a feasible
distribution family, and is within the trust region of the previous policy. The E-step is formulated as a
regularized convex optimization problem and is solved analytically. After the distribution q is obtained
in the E-step, a new policy is trained on this distribution in a supervised learning fashion in the M-step,
effectively making the training process off-policy [56].

The Python script train_safe_RL.py was added to EV2Gym to facilitate the training of CVPO and
other Safe RL algorithms. The implementation makes use of the Fast Safe Reinforcement Learning
package, fsrl, developed by the authors of [56] and available on GitHub [57]. In addition to CVPO,
fsrl offers implementations of alternative Safe RL algorithms, including CPO and custom Deep RL
methods that incorporate a PID-based Lagrangian relaxation method as proposed in [58]. In this thesis,
CPO, SAC with the Lagrangian function (SAC-L), and PPO with the Lagrangian function (PPO-L) are
applied and compared to CVPO and the benchmarks. In all experiments, the reward function defined in
Equation 3.30 is used for the Safe RL agents. In experiments without transformer overloading, the Safe
RL agents use the state function defined in Equation 3.19 and cost function defined in Equation 3.29.
In experiments with transformer overloading, they use the state function defined in Equation 3.20 and
cost function defined in Equation 3.28.

In some training results of [56], the implementation of SAC-L converged to rewards exceeding those
achieved by CVPO with only slightly higher costs, thus proving that SAC-L can be a viable alternative for
CVPO. However, across all experiments of [56], CVPO converged to a lower cost. These observations
lead to the hypothesis that SAC-L policies may favor reward more in the reward versus cost trade-off,
whereas CVPO yields stricter constraint satisfaction. In Chapter 4, numerical simulations investigate
how this hypothesis holds in the coordinated EV charging problem of this thesis.

Some parts of the CVPO and SAC-L algorithms are comparable. Both methods use critics that estimate
future returns of cost and reward, and both explore new policies in an off-policy fashion. However, other
elements are very different, particularly how each algorithm handles constraints. SAC-L employs the
conventional primal-dual approach, approximating the constrained problem as unconstrained through
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Lagrangian relaxation. The cost is added to the RL objective—maximizing expected reward—as a penalty
term, scaled by a Lagrange multiplier: A. This multiplier is adjusted dynamically: it increases when the
observed cost exceeds the cost limit and decreases when the cost remains below the cost limit.

In contrast, CVPO embeds the cost constraint in a constrained optimization problem that is solved
analytically, instead of approximating the constraint violation cost as a penalty term. The E-step en-
sures the policy is updated exclusively on an explored action distribution shown to respect the cost
limit. As the constraint handling of CVPO is more strict than SAC-L, CVPO will generally find safer poli-
cies. However, the dynamic updating of the Lagrangian method of SAC-L may yield more rewarding
performance than CVPO. This fundamental difference in constrained handling explains the observed
difference between CVPO and SAC-L in the training results of [56].

Equation 3.28 combines the violation cost of two constraints into one cost function, as the algorithms
of fsrl have one cost function implemented. Alternatively, it is possible to formulate a CMDP where
each constraint is associated with a distinct cost function. For future work, it may be interesting to
consider a cost function for each constraint. This thesis investigates whether the fsrl implementations
with one cost function can learn behavior that finds good profit while respecting both the target SOC
and transformer power limit constraints.



Results

This chapter introduces the setup of two experiments, discusses Safe RL training, and compares
CVPO'’s performance in the experiments to several benchmarks.

4.1. Experimental setup

Experiment 1 represents a simplified scenario where transformer capacity is abundant. As transformer
overloading cannot occur in this setting, inflexible loads and PV power generation are excluded. The
objective is to maximize the EV aggregator’s profit while ensuring the EV users are satisfied with their
departure SOC. Experiment 2 is a more constrained scenario that includes PV, inflexible loads, and
transformer overloading.

In each experiment, all algorithms were evaluated over the same set of 100 randomly sampled simula-
tion days. The RL results were averaged over five agents trained with different random seeds. During
training, the dynamic electricity prices were sampled from the 2023 prices. To make the evaluation
more realistic, trained RL agents were tested on unseen electricity prices from 2024. In addition to
the main performance comparisons, sensitivity analyses and ablation studies were conducted for the
best-performing algorithms.

Algorithms Chargers ChargeTr Tlcharge > Tldischarge Cost Limit
Occupation
TD3, SAC, PPO,
Exp. 1.1 CPO, PPO-L, 10 High Variable 1, 10 (SAC-L)
SAC-L, CVPO
Exp. 1.2 CPO, SACL, 10 Low, very high Variable 1, 10 (SAC-L)
CVPO'!
Exp. 1.3 | SAC-L, CVPO 30 High Variable 2,20 (SAC-L)
Exp. 1.4 | SAC-L, CVPO 10 High Variable 1.2,3(CVPO)
10, 20, 30 (SAC-L)
Exp. 1.5 CVPO 10 High Constant = 0.9 1

Table 4.1: Experiment 1 setup including sensitivity analyses and an ablation study.

Table 4.1 lists the five sub-experiments of Experiment 1. Experiment 1.1 was the main experiment,
in which the performance of all algorithms was compared in a scenario with 10 chargers and an EV
spawn multiplier of 5. As discussed in Section 3.3, this spawn multiplier resulted in a high charger
occupation level. In reality, charger usage may fluctuate throughout the year. For example, during

"The trained agents from Exp. 1.1 were evaluated in the environment setting of Exp. 1.2.

32
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vacation, parking lots will probably experience much lower charger occupation. To discover how the
best-performing algorithms from Experiment 1.1 would perform in periods with deviating EV behavior,
their agents were evaluated in Experiment 1.2 in situations with different levels of charger occupation.
As discussed in Section 3.3, a low charger occupation was modeled by an EV spawn multiplier of 1, and
a very high charger occupation by a spawn multiplier of 10. In Experiment 1.2, the aim was to examine
how well the charging behavior of an agent trained on a certain charger occupation level generalized
to days when the occupation is very different.

In Experiment 1.3, new CVPO and SAC-L agents were trained and evaluated in a scenario with 30
chargers to research the scalability of CVPO and SAC-L. The cost limit was increased in Experiment
1.3 to give the agents more flexibility. In experiment 1.4, new agents of CVPO and SAC-L were trained
with the cost limit equal to 2 and 3, to study their sensitivity to the cost limit. In Experiment 1.5, the
effect of the introduced variable charging and discharging efficiencies was investigated in an ablation
study with constant 7charge = 7discharge = 0.9. New CVPO agents were trained with = 0.9 and evaluated
in the setting of Experiment 1.1.

Table 4.2 summarizes the two sub-experiments of Experiment 2. In both experiments, the charging
and discharging efficiencies were modeled as current-dependent. The cost limit was increased to 2
to give agents more flexibility in their learning process. Experiment 2.1 evaluated the performance of
CVPO against SAC and SAC-L. SAC was included to have one Classic RL algorithm for comparison.
SAC-L was selected because of its strong performance in Experiment 1.

Algorithms Chargers Charg('ar Tr limit Load PV Qo§t

occupation factor | factor | limit
Exp. 2.1 | SAC, SAC-L, CVPO 10 High 90 kW 0.5 0.1 2
Exp. 2.2 | SAC, SAC-L, CVPO 2 10 High 90 kW | 0.6, 0.7 0.1 2

Table 4.2: Experiment 2 setup including a sensitivity analysis for the mean load capacity multiplier.

Experiment 2.1 was conducted in a setting with 10 chargers, an EV spawn multiplier of 5, a transformer
power limit of 90 kW, a mean inflexible load capacity multiplier of 0.5 (standard deviation: 0.1), and a
mean PV capacity multiplier of 0.1 (standard deviation: 0.05). This PV multiplier in theory corresponds
to a small PV system, which can produce a maximum of approximately 9 kW—equivalent to about 20
PV panels, assuming 450Wp per PV panel. As discussed in Section 3.3, an EV spawn multiplier of 5
typically resulted in 6-8 EVs arriving at the parking lot. Given the maximum charging power of 11 kW
per EV, the peak demand from 7 EVs could reach 77 kW. Combined with the peak inflexible load being
45 kW on average, transformer overloads were likely in this setting.

In Experiment 2.2, the agents from 2.1 were evaluated in scenarios with increased inflexible load levels.
The goal was to assess how the obtained policies under a mean load capacity multiplier of 0.5 would
generalize to a more constrained setting. The agents were tested in scenarios where the mean load
multiplier was increased to 0.6 and 0.7.

4.2. Safe RL training

In fsrl, experiences can be collected from parallel train environments before updating the policy. The
episode_per_collect parameter specifies the number of steps collected from the train environments.
By adjusting episode_per_collect and the number of train environments, a balance between explo-
ration and learning frequency can be tuned. Increasing these parameters will make the algorithm
collect more episodes before updating the policy, thus increasing the exploration per gradient step and
decreasing the learning frequency.

After every epoch, the policy is evaluated in test simulation days collected from parallel test environ-
ments to get insight into the policy’s performance. The EV2Gym environment is very dynamic because
every simulation day involves new samples of electricity prices, EV behavior, PV generation, and in-
flexible load consumption. Consequently, the environment changes considerably after every reset.

2The trained agents from Exp. 2.1 were evaluated in the environment setting of Exp. 2.2.
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Therefore, to better represent the agents’ performance, a large number of test environments is recom-
mended, preferably at least 50. In the final training runs for the experiments of this thesis, the number
of test environments was set at 100.

By default, fsrl saves new best policies in the following manner: if the mean test cost is below the
cost limit and the mean test reward is better than that of the previously best-performing policy, the
policy is saved as the new best policy. Until the algorithm learns policies that achieve costs below the
cost limit, a new best policy is saved when the current reward is better than the previous best reward,
regardless of the cost. Therefore, if algorithms throughout the training run never obtain costs below the
limit, algorithms are assumed to be inadequate to solve the constrained optimization problem, since
the best policy will be unsafe.

Most parameter values of the Safe RL algorithms were kept at the default configuration values of fsrl.
Table 4.3 lists the adjusted parameters with the new values. The number of simulation steps per epoch
was reduced from 10,000 to 3000 steps in Experiment 1 to get more frequent insight into the agents’
learning. In Experiment 2, 9000 simulation steps per epoch were used because more steps were
required to learn the more complicated problem. As one simulation day consists of 60 steps, one epoch
contains 2300 = 50 simulation days in Experiment 1. One epoch contains 223° = 150 simulation days
in Experiment 2. The repeat per collect parameter of PPO-L was adjusted from 4 to 10 to increase
learning speed. The buffer size was increased to 400,000 in Exp 1.3 because more epochs were
required to learn adequate behavior. In Experiment 2, transformer overload costs occurred much less
frequently than user satisfaction costs. To prevent the agent from forgetting the sparse transformer
overload costs, the buffer size was increased to 5 million.

Discount factor ~ 0.99
3000 (Exp 1)
9000 (Exp 2)

Steps per epoch

Repeat per collect
(PPO-L only)

10

Random seed 1025, 1918, 1986,

3894, 6651
200,000 (Exp 1)
Buffer size 400,000 (Exp 1.3)
5,000,000 (Exp 2)
Train environments 10
Test environments 100

Table 4.3: Safe RL parameters with different values than the default configurations of fsrl.

Experiment 1.1, 1.2, 1.4, and 1.5 Safe RL training runs were executed on 2 CPU cores with 24GB of
allocated memory on Delft University of Technology’s supercomputer [59]. It took 3.5 hours to run 300
epochs, or 900,000 simulation steps, of Exp 1.1 training with CVPO and SAC-L. The Deep RL baselines
were trained on 1 CPU core with 10GB of memory for 1 million simulation steps. TD3 and SAC training
took 7 hours, PPO training 3.5 hours. Experiment 1.3 and Experiment 2.1-2.3 Safe RL training runs
were executed on 4 CPU cores with 48GB of allocated memory. It took 12 hours to run 500 epochs,
or 4,500,000 simulation steps, of Exp 2.1 training with CVPO and SAC-L. Experiment 2 SAC training
runs were executed on 2 CPU cores with 24GB allocated memory for 3 million simulation steps and
took around 17 hours. The seeds 1025, 1918, 1986, 3894, and 6651 were sampled randomly from the
interval [1, 10,000]. These seeds were used to train five distinct agents for the final results.

4.2.1. Experiment 1.1: no transformer overloading

The number of train environments turned out to have a crucial effect on the learning performance
of the safe RL agent. Through many simulations, it was found that in Experiment 1, CVPO usually
converged to AFAP charging behavior, thus limiting the cost to zero and missing potential reward. When
CVPO adopted AFAP behavior, it usually became trapped in this overly conservative policy and did not
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Experiment 1.1: CVPO Training Curves
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Figure 4.1: CVPO test cost and reward in Exp 1.1 training for different seeds and numbers of train environments. The data is
averaged over a rolling window of 10.

discover behavior that may yield better profits at an acceptable higher cost. However, in some training
runs, CVPO learned desired behavior in earlier stages before converging to AFAP. Desired behavior
means having a cost just below the cost limit, and a reward substantially larger than AFAP charging.

Figure 4.1 visualizes the test cost and reward achieved by CVPO during Experiment 1.1 training for dif-
ferent seeds and train environments. Each graph represents a rolling average over the last 10 epochs
of that run, with the center line representing the mean and the shaded area indicating one standard
deviation above and below the mean. For all runs, 100 test environments were used, and the value
of episode_per_collect was set equal to the number of train environments. Figure 4.1 shows training
performance with 4, 8, and 12 train environments is superior to training performance with 1 train envi-
ronment: the plots on the left stay close to the cost limit from the 50th to the 250th epoch while exploring
valuable states that yield reward up to 0 €. All training runs with 1 train environment, the plots on the
right, converge to AFAP before the 130th epoch for 5 different random seeds, while the best policies
achieve no rewards higher than -4 €. Figure 4.1 shows that training performance with 8 and 12 train
environments is slightly superior to the training performance with 4 train environments: the reward is
higher, while the cost is still below the cost limit. As the difference between 8 and 12 train environments
is minor, 10 train environments were used in all final training runs.

The reward potential of any simulation is dependent on the environment’s initialization. Large fluctua-
tions in electricity prices throughout the day offer promising conditions for a smart-charging algorithm,
while flat price profiles offer limited reward potential. In contrast, by charging EVs to a higher SOC,
the agent can always reduce cost regardless of the electricity prices. It is hypothesized that the re-
duced learning performance observed with a lower number of train environments is caused by the
environment’s dynamics. When the number of train environments is too low, the agent may see too
few valuable state-action combinations to learn profitable behavior. Instead, policies would quickly
converge to overly conservative policies by only focusing on cost reduction.

The scale of the cost function was also found to affect the training performance of Safe RL agents.
Figure 4.2 shows the test cost and reward of CVPO'’s final Experiment 1.1 training runs for different
scales of the cost function. The parameter values as defined in Table 4.3 were used for these runs.
Each curve shows the mean of the five seeds, with the shaded area indicating one standard deviation
above and below the mean. In the plots on the left, a cost limit of 2 was used and the factor of the user
cost was 20, making the user satisfaction term of the cost function:

—20 - exp(—3 - €*) (4.1)



42. Safe RL training 36

In the plots on the right, the cost limit was 20 and the factor of the user cost was 200, making the user
satisfaction term of the cost function:

—200 - exp(—3 - ") (4.2)

Experiment 1.1: CVPO Training Curves
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Figure 4.2: CVPO test cost and reward in Exp 1.1 training for different scales of user cost. The data is averaged over five
random seeds.

Apart from scaling, these configurations are theoretically identical. However, as shown in Figure 4.2, in
practice CVPO achieved better policies with a smaller scale. The grey dashed line approximates the
mean best policy found with both configurations. In the plots on the left for the smaller scale of the cost
function, the mean test reward was -2 € and the mean cost was 1.7 for the best policy. In the plots on
the right, they were -6 € and 20 for the best policy. Again, with the larger scale of the cost function,
CVPO quickly converged to AFAP and missed the opportunity to learn profitable charging behavior.

As discussed in Section 3.9, CVPO handles constraints very strictly. The absolute cost values become
a magnitude larger when the factor of the user term is set to 200 (Equation 4.2), while the reward scale
remains unchanged. This may cause CVPO to heavily penalize actions with any cost, thus resulting
in overly conservative behavior. These observations support the suggestion that, at least for CVPO in
this problem setting, it is beneficial to have the cost function on a similar scale as the reward function.

However, this suggestion did not apply to all Safe RL agents. Figure 4.3 shows the training curves
obtained by SAC-L in Experiment 1.1 with parameters as defined in Table 4.3. Except for some outliers
in early epochs, SAC-L with the user term factor equal to 20 failed to produce policies that satisfied
the cost limit. The algorithm converged to positive rewards with the cost above the limit of 2, thus
indicating increased profit by not charging EVs sufficiently. In contrast, the right-hand plots in Fig-
ure 4.3—corresponding to a user term factor of 200 and cost limit of 20—show that SAC-L found policies
yielding a cost lower than the limit with an adequate reward in many of the 300 epochs, thus proving in
these training runs SAC-L performed better with the user satisfaction term as defined in Equation 4.2
and cost limit equal to 20.

A possible explanation is that SAC-L, under the default configuration of fsrl, creates less aggressive
penalization for cost limit violations than CVPO. Consequently, SAC-L may benefit from the larger cost
scale, which better amplifies cost penalties relative to the reward. PPO-L and CPO showed better
learning performance with a user term factor of 20 and cost limit equal to 2. Table 4.4 lists the cost
function and cost limit used for each Safe RL algorithm in Experiment 1.
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Experiment 1.1: SAC-L Training Curves
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Figure 4.3: SAC-L test cost and reward during Exp 1.1 training for different scales of user cost. The data is averaged over five
random seeds.

Algorithm Cost function Cost limit
SAC-L | ¢t =2 ;¢ 200 exp (=3 - €) — 200 - exp(—3) 10
PPO-L Ct = icc20-exp (=3 - €) — 20 - exp(—3) 1

CPO Ct = icc20-exp (=3 - €°) — 20 - exp(—3) 1
CVPO Ct = icc20-exp (=3 €) — 20 exp(—3) 1

Table 4.4: Cost function and cost limit of the Safe RL algorithms in Experiment 1.

4.2.2. Experiment 1.3: scalability

Figure 4.4 shows the training runs of CVPO and SAC-L for Experiment 1.3, which investigates scalability
in a setting with 30 chargers. The left-hand plots show the average of five CVPO runs trained under the
random seeds defined in Table 4.3. CVPO demonstrated stable performance across the five random
seeds. While for all seeds, CVPO converged towards AFAP charging in the end, the algorithm seemed
to explore desired behavior with costs near the cost limit between epochs 500 and 600.

On the right-hand side of Figure 4.4, the SAC-L runs are plotted separately because of the considerable
deviation between different runs. Although SAC-L managed to get the cost below the cost limit faster
than CVPO for seeds 6651, 3894, and 1025, it did not achieve costs below the cost limit for seeds 1918
and 1986. Instead, SAC-L seemed to value reward improvement over cost reduction for these seeds,
as it reached rewards up to 40 €. However, these rewards came at costs exceeding 500, over 25 times
the cost limit. Undoubtedly, the SAC-L agents achieved very low customer satisfaction at these costs.
These unstable training results indicate that SAC-L with the cost function and limit defined in Table 4.4,
is not scalable to a scenario with 30 chargers.

4.2.3. Experiment 2: with PV, inflexible loads, and transformer overloading

Figure 4.5 presents the training curves obtained by CVPO and SAC-L in Experiment 2. A comparison
between the CVPO and SAC-L curves with the load multiplier equal to 50% of the transformer power
limit reveals that SAC-L reached costs below the limit earlier than the CVPO. However, CVPO demon-
strated more stability, with lower variance across training runs and more consistent convergence to
policies that respected the cost limit. Furthermore, from epoch 300 to 500, CVPO runs rarely experi-
enced a cost value greater than 4. For all 500 epochs, the SAC-L runs maintained a constant frequency
of costs above 40. These results suggest that CVPO may be more suitable for the constrained setting
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Experiment 1.3 CVPO versus SAC-L Training Curves
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Figure 4.4: CVPO versus SAC-L test cost and reward during Exp 1.3 training. SAC-L results are averaged over a rolling
window of 10.

of Experiment 2.1, as it offers a more stable learning process.

Experiment 2: CVPO versus SAC-L Training Curves
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Figure 4.5: CVPO versus SAC-L test cost and reward during Exp 2 training. The data is averaged over five random seeds.

In addition to the final training runs of Experiment 2.1 with a mean load capacity multiplier of 50%,
Figure 4.5 also shows CVPO’s training performance in more constrained scenarios where the mean
load capacity multiplier is 60% and 70% of the transformer power limit. The observation that CVPO with
a load capacity multiplier of 50% only began achieving costs below the cost limit after approximately
400 epochs, proves that CVPO struggled to find good behavior in the setting of Experiment 2. Two
hypotheses were formulated to explain this increased complexity compared to Experiment 1. The first
hypothesis argued that, given the sparse nature of the transformer overload costs, the agent may have
experienced too few transformer overloads to learn how to manage charging effectively around peaks
in the inflexible load. The second hypothesis speculated that the optimization problem became overly
complex due to the transformer overloads, and CVPO could not learn rewarding behavior.
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If the first hypothesis were true, increasing the mean load capacity multiplier would improve training
performance because the agent would experience transformer overloads more frequently. Figure 4.5
shows that training performance deteriorated substantially with higher load multipliers. For a multiplier
of 60%, CVPO was barely able to achieve costs below the limit. When the load capacity multiplier
was increased to 70%, none of the CVPO training runs learned policies yielding costs below the cost
limit. These training results thus support the second hypothesis, and a load capacity multiplier of 60%
was identified as an approximate upper limit for CVPO. If the load capacity multiplier becomes 60% or
higher, the optimization problem under the parameters of Experiment 2 becomes too complicated for
CVPO to learn constraint-satisfying behavior in the problem formulation of this thesis.

4.3. Evaluation

Table 4.5 presents the evaluation results of Experiment 1.1. The reported metrics are profit, the mean
user score across all EV users, the mean minimal user score (i.e., the lowest individual departure SOC),
the percentage of simulation days where the minimal score was below 0.7, the total energy charged,
the total energy discharged, and the execution time per simulation day. Except for the metric eyt < 0.7,
the displayed values are the mean and standard deviation across the 100 simulation days. For RL, the
results are first averaged over the five seeds before taking the mean and standard deviation.

Algorithm  Profit (€) ¢S5 (%) < (%) el < 0.7 Energy Energy Execution
’ (%) Ch. (kWh) Dis. (kWh)  Time (s)

AFAP -6.4+47 1000 100 0 0.0 100 +28 0.0 +0 0.02 +0.01
TD3 567.3 74 %10 51 +8 97.6 44 +25 118 +t67  0.23 +0.11
PPO 3.1+64 75110 51 16 97.4 40 +24 73 £54 0.21 £0.12
SAC 2146 7819 51 7 98.0 47 +23 72 +44 0.20 +0.08
PPO-L 34122 81119 69 +21 58.0 85 +60 145 +103  0.06 +0.01
CPO 51145 974 86 +18 24.0 110 £33 31 £33 0.08 +0.03
SAC-L -54+39 9813 91 +14 10.8 136 +41 59 +45 0.10 £0.03
CVPO -5014.0 9913 92 +14 11.6 125 +40 42 +40 0.05 +0.01
Optimal -4.9+4.7 9910 98 +1 0.0 116 £33 22 +11 1.10 £0.65

Table 4.5: Experiment 1.1 evaluation results from 100 simulation days, RL results averaged over five random seeds.

The execution time was measured to assess the feasibility of deploying the agents in real-time appli-
cations. Since all agents completed the 60 steps of a simulation day well under one minute, these
results indicate that the RL agents determine actions fast enough for real-time EV charging scenarios.
As the optimal offline Gurobi solver, denoted as ‘Optimal’ in Table 4.5, cannot be applied in real-time,
its execution time has limited meaning. Nonetheless, it was added to the table to facilitate comparison
with the RL agents. Table 4.5 shows that the optimal solver did not achieve perfect user satisfaction,
i.e. it did not reach 100% SOC for all EVs at departure. This is due to a modeling simplification: the
current-dependent charging and discharging efficiencies are not modeled in the Gurobi solver to reduce
the computational burden. Instead, fixed efficiencies ncharge = 7discharge = 0.9 are used.

Table 4.5 shows the Classic RL algorithms—TD3, PPO, and SAC-achieved the highest and only pos-
itive mean profits. However, these profits came at a low mean user satisfaction. Furthermore, for all
Classic RL agents, almost every day at least one EV user had an unacceptable low departure SOC of
50%. While an average departure SOC of 75% might appear acceptable at first, these outcomes must
be interpreted in the context of the problem formulation described in Section 3.2. As the formulation
allows profit to increase unrealistically when EVs are insufficiently charged, only agents that achieve
an average user satisfaction close to 100% can be meaningfully compared to the AFAP and optimal
benchmarks. These results indicate that even in the simplified setting of Experiment 1, the Classic
RL algorithms fail to effectively balance the trade-off between profit and user satisfaction, despite the
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strong reward subtractions for low user scores in the reward function. This is further demonstrated
by the charged and discharged energy values of Table 4.5: for TD3, PPO, and SAC, total discharged
energy exceeds charged energy.

Table 4.5 shows that only CPO, SAC-L, and CVPO, on average, charged more than they discharged,
had a user satisfaction close to the desired 100%, and charged all EVs to a departure SOC above
70% in most of the simulation days. These findings indicate that CPO, SAC-L, and CVPO are the only
algorithms capable of learning constraint-satisfying charging behavior in the problem of Experiment
1.1. Among them, CVPO performed best overall, achieving the highest mean profit and mean user
satisfaction. Compared to AFAP, CVPO had a mean profit improvement of 22% while the mean user
score was only reduced by 1%. Although SAC-L had on average 0.3 € less profit than CPO, it showed
better compliance with the user satisfaction constraint by yielding a minimum departure SOC below
70% in only 10.8% of the simulation days versus 24.0% for CPO. Thus, SAC-L in Experiment 1.1 is
concluded to be superior to CPO.

However, CVPO did not guarantee a full EV battery for every user. In 11.6% of simulation days, one EV
user had a departure SOC below 70%. This shortcoming is attributed to the approximation of RL, which
remains in Safe RL algorithms. As a result, it is challenging to enforce strict constraint satisfaction in RL.
Nevertheless, the results of Table 4.5 indicate that Safe RL’s addition of a cost function and cost limit
significantly improves constraint satisfaction compared to Classic RL algorithms. In real applications,
an EV aggregator could force EVs to be at least 70% with a fallback mechanism, also referred to as
a shield, that charges an EV at maximum power to 70% whenever the departure SOC risks falling
below 70%. However, new evaluations would have to be done in this setting, as these interventions
would likely reduce profit. Moreover, the reduced flexibility due to the shield might affect overall learning
performance.

Algorithm A Profit(€) AL (%) A (%) A Energy A Energy

’ Ch. (kWh) Dis. (kWh)
AFAP 1504111 +0.010.00 +0.02%0.01 —16+10  —22 +11
TD3  +10.5648.04 —0.24+0.04 —047+0.04 —7222  +95435
PPO  +8.07$8.00 -023:005 0464004 -7623  +51 32
SAC  +7.0146.01 021003 -047%0.03 —69+22  +50 424
PPOL  +83347.56 —-017$0.02 -020%0.07 -31+18  +123 447
CPO  -017#152 —0.01%0.02 -011%0.07 —6+11  +9#15
SACL 043584 —000:0.01 —-0.07+0.07 +20+49  +37 434
CVPO  —005+235 +0.00%0.02 -0.05%0.08  +9+21  +20 35

Optimal 00 0 0 0 0 0 0 0 0

Table 4.6: Experiment 1.1: Mean difference per simulation day compared to optimal case.

The standard deviation of most results in Table 4.5 is large. Take, for example, the profit of CVPO,
which is on average —5.0 €. Still, because of the standard deviation of 4.0 €, it may just as well be
0 € one day and —10 € another. In static environments, the standard deviation should be as small
as possible to ensure that algorithms perform consistently. However, in the dynamic environment of
this thesis, this is not the case. Each simulation day requires a different charging strategy and has
a substantially different reward potential. The standard deviation is still reported because it provides
some information about the distributions. For instance, the profit distribution of CVPO is more similar
to the optimal distribution than the PPO-L profit distribution, as its standard deviation of 12.2 € is much
more than the standard deviation of 4.7 € of the optimal profits.

Table 4.6 presents the results of Experiment 1.1 in a different format. First, for each metric, the algo-
rithms’ difference per simulation day from the optimal case is calculated. Then, the differences are
averaged across the five seeds and 100 simulation days. While the standard deviation is still very
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large, CVPQO’s mean daily profit difference of 0.05 € suggests that CVPQO’s charging schemes are
most similar to the optimal offline solver.

Figure 4.6 presents example charging schemes for a random simulation day generated by SAC, TD3,
CVPO, SAC-L, AFAP charging, and the optimal offline solver. The simulation day is sampled from the
set of simulation days used for Experiment 1.1. Therefore, as there are no PV power generation or
inflexible loads, total transformer power equals the parking lot’s total EV charging power. The electricity
price profile, shown in Figure 4.6b, displays a significant price drop early in the day. Prices are mostly
negative, meaning that discharging during these periods results in a net cost, and agents should favor
charging actions to make a profit.

Total Transformer Power
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(a) Charging schemes of SAC, TD3, CVPO, SAC-L, AFAP charging, and the optimal offline solver.
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Figure 4.6: Different algorithms’ charging schemes for an exemplary simulation day of Experiment 1.1.

Figure 4.6a shows that the Classic RL algorithms fail to find effective charging schemes. Both SAC
and TD3 constantly choose discharging actions, leading to low user satisfaction and a net cost. The
agents do not incorporate prices into their policies and fail to value user satisfaction, despite the heavy
reward subtraction imposed in the reward function. These results further demonstrate the unsuitability
of Classic RL algorithms for the EV charging task addressed in this thesis. Figure 4.6a demonstrates
that the CVPO and SAC-L agents achieve more promising charging behavior by choosing primarily V2G
actions in the morning and charging actions in the afternoon. This reflects a better balance between
user satisfaction and profitability. However, Figure 4.6b shows that the electricity price was negative
during all their discharging actions. Therefore, Figure 4.6 indicates that Safe RL agents may also fail
to process price information in their decision-making and merely learn one charging strategy that, on
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average, leads to good results.

Charger ) , et < 0.7 Energy Energy
Algorithm  Profit (€)  egig (%)  emin avg (%)
Occupation ' (%) Ch. (kWh) Dis. (kWh)
AFAP -2.14+25 100 +0 100 0 0.0 31118 0.0 10
CPO -1.5425 9719 93 +15 11.8 32 +20 10 £18
Very low
SAC-L -16124 9816 95 +11 6.2 41 +25 19 £22
(Spawn = 1)
CVPO 15122 9717 94 +13 8.8 40 +24 19 +20
Optimal -1.5+25 990 98 +1 0 33 +21 4 +6
AFAP -9.11+56 100 +0 100 £1 0.0 135 £28 0.0£0
CPO 74152 9813 88 +16 17.8 154 +34 40 +33
Very high
SAC-L -69+46 9942 91 +13 10.4 190 +42 82 +50
(Spawn = 10)
CVPO 65444 9942 93 +14 9.8 173 41 59 £52
Optimal —-6.5+5.7 990 98 +1 0 158 £31 31110

Table 4.7: Experiment 1.2 evaluation results from 100 random simulation days, RL results averaged over five random seeds.

Table 4.7 presents the results of Experiment 1.2, where the best-performing RL agents from Experiment
1.1 were evaluated on unseen EV arrival distributions. Regardless of the charger occupation level, all
Safe RL algorithms have mean profit and user satisfaction close to the optimal solver. These results
indicate that the Safe RL algorithms, at least for smaller parking lots up to 10 chargers, learn behavior
that generalizes well to unseen levels of charger occupation. The mean profit improvement of CVPO
compared to AFAP is 29% for both cases of charger occupation. For all Safe RL agents, the average
user satisfaction in the case of the very high charger occupation is larger than in the case of the very
low charger occupation. Furthermore, the standard deviation of the mean user satisfaction is smaller.
This further demonstrates that while the agents on average deliver full EVs at the end of they, they fail
to do so for every EV user.

ust < 0.7 Ener Ener
Chargers Algorithm  Profit (€)  ea5g (%)  emsr o (%) €min % oy

min.avs (%)  Ch. (kWh) Dis. (kWh)
% AFAP  -188#122 100#0 100 +0 0.0 297 +49 0.0 0
SAC-L 151209 8810 6120 75.6 243+93 245 172
(Cost limit = 2)
CVPO  -17.0+10.6 98+2 77 £19 39.6 351465 98 +58
Optimal -13.9+12.6 99 +0 97 12 0.0 33854 59 +21

Table 4.8: Experiment 1.3 evaluation results from 100 random simulation days, RL results averaged over five random seeds.

Table 4.8 shows the results from Experiment 1.3, the scalability study with 30 chargers. The cost limit
was increased to 2 in this experiment to provide the agents more flexibility in the learning process.
Although the CVPO agents improved the mean profit compared to AFAP by 10%, in 39.6% of the
simulation days, CVPQO’s charging behavior resulted in at least one EV having a departure SOC below
70%. This can be explained by Figure 3.12, which shows that user scores below 0.7 are allowed under
a cost limit of 2. Still, as the profit improvement compared to AFAP is lower than CVPQO’s improvement
of 22% in Experiment 1.1, and user satisfaction was guaranteed less, the scalability of CVPO to much
larger parking lots seems to be limited. However, with a mean user satisfaction 10% lower than CVPO,
SAC-L performed significantly worse in the scalability experiment. As Figure 4.4 showed, SAC-L failed
to find constraint-satisfying behavior for every random seed in Experiment 1.3. These results indicate
that, in the context of this thesis, CVPO has limited scalability, but is more scalable than SAC-L.
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- . ) usr 1o usr o el < 0.7 Energy Energy
Cost Limit  Algorithm  Profit (€)  ezig (%) emin avg (%)
' (%) Ch. (kWh) Dis. (kWh)

AFAP —-6.4+4.7 100 +0 100 0 0.0 100 28 00

Optimal —4.9%4.7 990 98 +1 0.0 116 £33 22 +11
10 SAC-L -54+39 9813 91 +14 10.8 136 41 59 45
1 CVPO -5.0+4 99 £3 92 +14 11.6 125 +40 42 +40
20 SAC-L -28#%33 9710 81 x17 27.4 151 +45 109 63
2 CVPO 34142 96 %1 86 +18 23.8 129 41 67 +61
30 SAC-L -17%39 9515 82 £17 246 157 +44 130 £70
3 CVPO 2154 95 7 83 +20 30.2 131 +43 83 £76

Table 4.9: Experiment 1.4 evaluation results from 100 random simulation days, RL results averaged over five random seeds.

Table 4.9 lists the results of Experiment 1.4, where the sensitivity of SAC-L and CVPO to the cost
limit was researched. Table 4.9 shows that for both algorithms, the mean profit was improved for
higher cost limits, but user satisfaction was reduced. After proving that the cost function and limit of
Safe RL compared to Classic RL algorithms greatly improved constraint satisfaction in Experiment 1.1,
Experiment 1.4 demonstrates that the cost limit is an effective tool for adjusting the trade-off between
reward and constraint satisfaction.

Table 4.9 also shows that CVPO only outperforms SAC-L in the most constrained scenario with a
cost limit of 1 (10 for SAC-L): SAC-L has a higher mean profit and similar user satisfaction in the other
scenarios. This indicates that SAC-L may have better learning performance in less constrained problem
settings, while CVPO is more suitable for very constrained scenarios.

ews < 0.7 Energy Energy

Algorithm Profit (€)  eig (%) e avg (%) min .
(%)  Ch. (kWh) Dis. (kWh)
AFAP —-6.4+4.7 100 %0 100 +0 0.0 100 £28 0.0 0
CVPO (variablen) -5.024.0 9913 92 +14 11.6 125 40 42 +40
CVPO (n =0.9) -5.0+4.0 9943 93 15 1.4 122 +38 39 +£39
Optimal 4947 990 98 +1 0.0 116 £33 22 11

Table 4.10: Experiment 1.5 evaluation results, the simulation days from Experiment 1.1 are used. RL results are averaged
over five random seeds.

Table 4.10 shows the results from Experiment 1.5, where CVPO agents were trained in the same setting
as Experiment 1.1 but now with a constant charging and discharging efficiency of n = 0.9. Afterward,
the agents were evaluated on the set of simulation days used for Experiment 1.1, where the efficiencies
were current-dependent. Table 4.10 shows that the agents trained with constant efficiency had the exact
same average user satisfaction and profit, improved the average minimum user score by 1%, and had
a minimum user score below 70% in 0.2% less of the simulation days. These results indicate that
modeling current-dependent charging efficiencies for a parking lot with three-phase chargers does not
result in significant performance changes. In fact, RL algorithms may even find better behavior when
a constant efficiency is assumed.

Table 4.11 presents the results of Experiment 2.1. With a mean user satisfaction of 83%, SAC still
did not value user satisfaction sufficiently. SAC did not experience any transformer overloads, but this
can be explained by the charging behavior of SAC shown in Figure 4.6. As SAC primarily chooses
discharging actions, transformer overloads will rarely happen.
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Algorithm  Profit(€) <55 (%) iaig (6) i <07 (R . OV.T(r%)
AFAP  —7.3456 10020 100 £1 0.0 018+14 3.0
SAC -1.0+4 4 83 19 55 +12 87.4 0.00 £0.0 0.0
SAC-L -18454 055 82414 21.2 164468 132
CVPO -39455 9535 78418 35.4 008410 1.0
Optimal  -52465 990 97 £2 0.0 0.00£00 0.0

Table 4.11: Experiment 2.1 evaluation results from 100 random simulation days, RL results averaged over five random seeds.

Table 4.11 shows that by having a minimal departure SOC below 70% in 21.2% of the simulation days,
compared to 35.4% of CVPO, SAC-L guaranteed better user satisfaction in Experiment 2.1. On the
other hand, by having transformer overloads in 1.0% of the simulation days versus 13.2% for SAC-
L, CVPO guaranteed better transformer power limit compliance. As the mean user satisfaction for
CVPO and SAC-L is equal, and preventing transformer damage is assumed to be more important than
guaranteeing a high departure SOC for a single EV, the performance of CVPO in Experiment 2.1 is
concluded to be superior to SAC-L. This confirms the earlier notion based on Figure 4.5 that CVPO
found better policies in the constrained problem setting of Experiment 2. CVPO seems especially more
capable of learning to respect the transformer limit constraint.

Although Table 4.11 shows that CVPO compared to AFAP improved the mean profit by 47% and re-
duced the number of transformer overloads by 2%, the mean user satisfaction was reduced by 5% and
in 35.4% of the simulation days at least one EV had a departure SOC below 70%. The training results
shown in Figure 4.5 suggested that CVPO for a mean load multiplier of 50% of the transformer limit
was capable of finding rewarding and constraint-satisfying behavior and a multiplier of 60% could be
an upper limit. However, based on the low user satisfaction in Table 4.11, it was concluded that the
load multiplier of 50% may already be an upper limit for CVPO.

Load Mult. . . usr o usr o usr o Tr Tr
) Algorithm  Profit (€)  exig (%)  eminavg (%) €min < 0.7 (%) Ov. (kWh)  Ov. (%)

AFAP —-6.2+4.2 100 £0 100 +0 0.0 0.28 £1.5 6.0

SAC -0.4 £3.8 82 19 54 +10 92.0 0.00 £0.0 0.0

60% SAC-L -2.1+3.5 97 4 85 +14 16.2 2.46 £8.1 17.0

CVPO —4.1 3.5 96 +4 8118 29.4 0.19+1.4 3.2

Optimal  —4.5 +4.1 98 +0 97 +1 0.0 0.0 +0 0.0

AFAP -74164 100 0 100 +0 0.0 2.46 £10.5 10.0

SAC 0.0+6.0 8119 55 +11 89.6 0.06 +0.6 1.2

70% SAC-L -05%172 9516 83 +14 17.4 8.59 +22.5 334

CVPO 291128 9516 78 £18 36.4 0.68 +4.1 6.8

Optimal  -5.7 5.9 99 10 98 +1 0.0 0.00 0.0 0.0

Table 4.12: Experiment 2.2 evaluation results from 100 random simulation days, RL results averaged over five random seeds.

Table 4.12 presents the results of the final experiment, Experiment 2.2. By having substantially fewer
transformer overloading than SAC-L and higher customer satisfaction than SAC, CVPO also had the
best performance in Experiment 2.2. CVPO compared to AFAP had 47% and 32% less transformer
overloads for the situation with a mean load multiplier of 60% and 70%, respectively. As the learned
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behavior with a mean load multiplier of 50% seems to scale well to situations with higher inflexible load,
EV aggregators could perhaps use CVPO policies trained with a lower level of inflexible loads than they
are experiencing in practice, if the real level of inflexible load would constrain the learning of CVPO so
that it cannot find policies yielding cost below the cost limit.

As CVPO does not guarantee transformer limit satisfaction, in practice a shield should be implemented
to prevent the agents from creating transformer overloads. In this case, the fall-back mechanism would
curtail the charging power of EV chargers when the aggregated power consumption exceeds the trans-
former’s power limit. As user satisfaction is already suboptimal, and this shield will further reduce the
performance of CVPO, more research is required to conclude whether CVPO could be applied in real
EV charging scenarios similar to the setting of Experiment 2.



Conclusion

5.1. Answers to the research questions

How can an EV aggregator’s charging and V2G profits be maximized using Reinforcement Learning,
considering transformer limits, EV user preferences, current-dependent charging efficiencies, and un-
certainty?

The thesis’s main research question was raised after an introduction to the need for flexibility in the
power grid and the potential flexibility of EV charging. Furthermore, workplace EV charging was identi-
fied as a good candidate for applying smart charging algorithms in general, but especially for congestion
services. The following chapter, Chapter 2, summarized an extensive literature review on related stud-
ies. The most important findings from the literature review were that many articles oversimplify the
EV charging optimization problem, and many RL algorithms have been used to address the problem.
However, few of the articles applied Safe RL. Thus, the act of applying the most recent Safe RL algo-
rithms to real-time charging control of an EV aggregator was identified to be promising in terms of profit
improvement and constraint satisfaction, and was researched only to a limited extent in related works.

In the methodology chapter, the optimization problem was formulated in the context of a workplace park-
ing lot. The objective was to increase the EV aggregators’ profits while complying with user satisfaction
and power transformer constraints. The EV behavior was modeled by distributions based on real-life
measurements, increasing the relevance of the results by considering the uncertainty. Furthermore,
the following subquestions were addressed:

1. How to model the transformer limit and EV user constraints?

The transformer power limit and EV target SOC for departure were modeled as soft constraints. The
constraints were not strictly enforced by the environment, as doing so could hinder the learning capabili-
ties of the RL agents. Instead, the agents had to learn to comply with them through reward subtractions
(Classic RL) or constraint violation costs (Safe RL).

2. How to model current-dependent charging and discharging efficiencies?

The charging and discharging efficiencies were extracted from an article measuring the real three-phase
charging efficiencies of the EVs used in this thesis. The discharging efficiencies were set equal to the
measured charging efficiencies.

3. How to define the profit maximization problem as a Constrained Markov Decision Process (CMDP)?

The MDP was based on an article researching a similar optimization problem. However, the state and
reward functions were updated through many iterations in a trial-and-error process. A key finding was
that normalizing the terms in the state function improved the RL agents’ learning capabilities. The soft
constraints were included by heavy reward subtractions in the MDP in an attempt to guide the Classic RL
agents toward constraint-satisfying behavior. The MDP was transformed into a CMDP by addressing
constraint violations through a cost function and cost limit instead of reward subtractions. The cost
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function was based on the reward subtractions due to constraint violations of the MDP reward function.
Adequate factors for the cost function and cost limit were found through extensive experimentation.

Finally, in Chapter 4, the training and evaluation results were presented. Two experiments were per-
formed, both with subexperiments such as sensitivity and scalability studies. In the setting of Experi-
ment 1, PV power generation and inflexible loads were omitted. Consequently, transformer overloads
could not happen. In the setting of Experiment 2, PV, inflexible loads, and transformer loads were
included. Chapter 4 answered the last research subquestion:

4. How does the proposed method perform compared to baseline methods in experiments?

Safe RL algorithms were compared to Classic Deep RL algorithms, conventional AFAP charging, and
an optimal offline solver in a case study of a business place parking lot with ten chargers. The proposed
method, the Safe RL algorithm CVPO, proved superior to the other algorithms in terms of constraint
satisfaction and scalability across the experiments. However, results indicate that SAC-L may perform
better in less constrained problems. CVPO, CPO, and SAC-L all learned behavior that generalized
well to unseen levels of charger occupation. In the training process, it was discovered that CVPO
can be overly conservative in the constrained problem setting of this thesis. As a result, steering the
algorithm towards profitable behavior required careful tuning of the cost function and the number of
train environments.

No Classic RL algorithm achieved satisfactory user satisfaction in the more trivial case of Experiment
1, even when low user satisfaction was heavily penalized in the MDP reward function. As each Safe
RL algorithm had higher user satisfaction than the Classic RL baselines, it is concluded that in the
EV charging problem, Safe RL strongly improves constraint satisfaction compared to Classic Deep RL.
Furthermore, the cost limit introduced by Safe RL proved to be an effective controllability tool for the
trade-off between profit and constraint satisfaction. The modeling of the current-dependent three-phase
charging efficiencies resulted in no added value in this thesis and may be omitted in further research.

CVPO showed a profitimprovement of 22% in Experiment 1, the scenario where transformer overloads
cannot happen. It is thus concluded that in such a setting, an EV aggregator could improve its profits
compared to AFAP charging by applying a CVPO agent as a real-time charging controller. As the CVPO
agents in Experiment 1 had a mean user satisfaction of 99% compared to 100% with AFAP, the EV
aggregator would, on average, still have happy customers. However, in 11.6% of the 100 evaluation
days of Experiment 1, at least one EV user had a departure SOC below 70%. Therefore, aggregators
would have to implement a shield to guarantee high user satisfaction for every EV user in practice.

In Experiment 2, the problem became more complex not only because of an extra constraint, but also
because transformer overloading events were sparse. CVPO proved more effective in learning to re-
spect the transformer load from the sparse costs than SAC-L. Still, the optimization problem easily
became too complicated for CVPO to learn rewarding and constraint-satisfying behavior. Therefore,
more research should be done to conclude whether CVPO could improve real-time charging in scenar-
ios with a possibility of transformer overloading.

5.2. Limitations and future work
The following limitations are recommended for consideration in future related work:

* Modeling of the EV aggregator’s profit. The main limitation of this thesis is the modeling of
the EV aggregator’s profit. By using market electricity prices directly as charging and discharging
prices, the real source of profit for the EV aggregator is excluded: the EV aggregator’s margin
on the charging cost or discharging profit. In future work, a pricing strategy would have to be
considered to include the EV aggregator’s profit margin on dynamic electricity prices in the prob-
lem formulation. For instance, a varying profit margin dependent on the electricity price could be
formulated. The margin should be minimal if EVs are charged at a high price. The margin should
increase for lower prices. Vice versa, when EVs are discharged at low electricity prices, the profit
margin of the aggregator should be smaller than when EVs are discharged at high prices. Such a
strategy would encourage algorithms to find charging schemes that benefit both the EV aggrega-
tor and the EV users. As a result of modeling the profit of EV aggregators more realistically, the
interpretation of the results of numerical simulations would become more intuitive. Furthermore,
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the profits would better translate to an EV aggregator’s real profits.

» Charging behavior of Safe RL. Figure 4.6 showed that for at least one agent evaluated on one
simulation day, CVPO and SAC-L did not correctly incorporate electricity price information in their
policies. It should be investigated whether all Safe RL agents fail to process daily price signals,
and merely learn one charging strategy—V2G in the morning, charging in the afternoon—that, on
average, leads to good results.

» Fairness of the algorithm. The fairness of the algorithm is an important topic not mentioned in
this thesis. EV aggregators may be interested in whether every EV user benefits equally from
smart charging algorithms. Furthermore, the fairness of the profit distribution between aggregator
and EV users could be interesting to examine.

* One cost function. As the Safe RL implementations of fsr/ have one cost function, in this thesis,
the two main constraints were addressed with one cost function. The performance of the Safe
RL agents may increase when each constraint is handled by a distinct cost function.

» EV Data. A substantial part of the ElaadNL data comes from PHEVs. These vehicles’ arrival and
departure times are probably similar to those of BEVs. However, as these vehicles have smaller
batteries, the SOC at arrival parameter is not representative of a parking lot where most charging
sessions correspond to BEVs. This thesis may be a starting point for future work where a fleet of
only BEVs is more accurately modeled. If the researchers of these works also fail to find more
accurate BEV data, ElaadNL could be approached to determine how much of the workplace data
is from PHEVs. Then, the PHEV data could be compensated by increasing the average energy
demand with a scaling factor.

+ Battery degradation. Also, battery degradation is not considered in this thesis. The impact on
battery degradation should be researched before Safe RL agents can be applied in practice.

+ Different target SOC for departure. In this thesis, it is assumed that every EV user desires a
departure SOC of 100%, while in reality this may vary per EV user. The effect of different desired
departure SOC values, sampled from a distribution between 80% and 100%, for instance, could
be interesting to investigate.

* Minimum V2G SOC. The minimum V2G SOC prevents EV users from having near-empty bat-
teries in case of unexpected emergencies. It should be at a balance between good V2G profit
potential and low range anxiety. This thesis assumed 50% to be an effective minimum V2G SOC,
but this was not based on other articles.

* Modeling of the inflexible loads and PV power generation. The modeling of the inflexible loads
and PV power generation severely limited how realistic Experiment 2 was. The load data was
based on households instead of office buildings, the forecast errors for both the PV generation
and the loads are not derived from real data, and the PV data was based on the aggregated PV
power of the Netherlands instead of a small local PV system. If possible, future work should base
the modeling of the loads and PV on more suitable data.

» Size of the case study. In reality, EV aggregators regularly encounter large parking lots with
more than ten charging points. While the results of Safe RL applied to this case study are promis-
ing, the scalability of CVPO to parking lots with 30 chargers seems limited. In future work, more
experiments should be conducted in settings with a larger number of chargers to research CVPO’s
performance at parking lots with more chargers.
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Appendix: python scripts

Some Python scripts used to generate figures or values for this thesis are shown here.

A.l. entsoe_loader.py
This script loads all 2024 electricity prices from the ENTSOE-E dataset.

from entsoe import EntsoePandasClient
import pandas as pd

client = EntsoePandasClient (api_key='INSERT API KEY')

start = pd.Timestamp('20240101', tz='Europe/Brussels')
end = pd.Timestamp('20250101', tz='Europe/Brussels')
country_code = 'NL'

type_marketagreement_type = 'AO1'
contract_marketagreement_type = "AO1"

ts = client.query_day_ahead_prices(country_code, start=start, end=end)
ts.to_csv('prices_2024.csv')

df = pd.read_csv('prices_2024.csv')
print (df .head ())

mean_price = df['0'].mean()
print ('mean price;2024:', mean_price)

A.2. boxplotter.py
This script generates Figure 1.1.
import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns

def boxplots(
file_path,
datetime_col='Datetime (Local) ',
price_col='Price (EUR/MWhe) '

df = pd.read_csv(file_path)

# Convert the datetime column to a proper datetime object
df [datetime_col] = pd.to_datetime(df [datetime_col], format='mixed')

# Drop rows with invalid or missing dates
df .dropna(subset=[datetime_col], inplace=True)
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A.3. weighted_mean_EV_battery.py

df ['Year'] = df [datetime_col].dt.year
df = df [(df['Year']l > 2016) & (df['Year']l < 2025)]

# Group by year and hour, then calculate the mean price per hour

df ['Hour'] = df [datetime_col].dt.hour

grouped = df.groupby(['Year', 'Hour']) [price_col].mean().reset_index()
plt.figure(figsize=(10, 6))

sns.boxplot (data=grouped, x='Year', y=price_col, palette='Set2')

plt.title('Average electricity prices_in,the Netherlands', fontsize=16, family='Arial')

plt.xlabel('Year', fontsize=12, family='Arial')
plt.ylabel('Day-Ahead Price (EUR/MWh)', fontsize=12, family='Arial')
plt.tight_layout ()

plt.show ()

boxplots(file_path='Netherlands_day-ahead-2015-2024.csv')

A.3. weighted_mean_EV_battery.py

This script computes the weighted mean battery size of the EVs used in this thesis.

import numpy as np

registrations = np.array([47783, 39216, 28028, 23033, 21186, 19815, 19307,
14545])
capacities = np.array([57.5, 57.5, 64.8, 58, 58, 64, 66, 46.3, 77, 52])

weighted_mean = np.sum(registrations * capacities) / np.sum(registrations)
print (weighted_mean)
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