Recursive Tensor Network
Bayesian Learning of Large-

Scale LS-SVMs

Delf
U De I ft Uﬁivtersity of
I Technology Delft Center for Systems and Control






Recursive Tensor Network Bayesian
Learning of Large-Scale LS-SVMs

MASTER OF SCIENCE THESIS

For the degree of Master of Science in Systems and Control at Delft
University of Technology

Maximilian Javier Lucassen

August 14, 2020

Faculty of Mechanical, Maritime and Materials Engineering (3mE) - Delft University of
Technology



Delft
e t University of
Technology

Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.




DELFT UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF
DELFT CENTER FOR SYSTEMS AND CONTROL (DCSC)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis
entitled

RECURSIVE TENSOR NETWORK BAYESIAN LEARNING OF LARGE-SCALE
LS-SVMs

by
MAXIMILIAN JAVIER LUCASSEN
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE SYSTEMS AND CONTROL

Dated: August 14, 2020

Supervisor(s):

Dr.ir. K. Batselier

Reader(s):
Dr.ir. M. Mazo

M.E. C. Menzen






Abstract

Least-squares support-vector-machines are a frequently used supervised learning method for
nonlinear regression and classification. The method can be implemented by solving either its
primal problem or dual problem. In the dual problem a linear system needs to be solved,
yet for large-scale problems this can be impractical as current methods suffer from the curse
of dimensionality. This phenomena causes the computational and memory requirements to
exceed the capabilities of standard computers for large datasets. In this thesis, a tensor
network Bayesian learning method was developed to avoid these burdensome complexities.
The developed method performs competitively with the current state-of-the-art, and unlike
other low-rank approximation methods, allows for incorporation of user-knowledge, noise,
early stopping, and yields confidence bounds on the obtained model.

Master of Science Thesis Maximilian Javier Lucassen



Maximilian Javier Lucassen Master of Science Thesis



Table of Contents

Acknowledgments ix
1 Introduction 1
1-1 Context . . . . . . . e 1
1-2 Problem Statement and Objective . . . . . . . . ... ... ... ... 2
1-3 Layout . . . . . . 2
1-4  Notation and Abbreviations . . . . . . . . . ... Lo 3
2 Background
2-1 Why Nonlinear Modeling? . . . . . . . . . . . ..
2-2  Least-Squares Support-Vector-Machines . . . . . . .. ... oL
2-3 Methods to Solve the LS-SVM Dual Problem . . . . . ... ... ... ... .. 10
2-3-1 Preliminary . . . . . . 11
2-3-2 Direct Methods . . . . . . . ... 11
2-3-3 lterative Methods . . . . . . . . ... 12
2-3-4 Low-Rank Approximation Methods . . . . . . . ... .. ... ... ... 12
2-4 Proposed Solution . . . . . . ... 16
2-4-1 Bayesian Learning . . . . . .. .. 16
2-4-2  Tensor Network Reformulation of the Kalman Filter . . . . . . . . . . .. 19
3 Approach and Results 23
4 Discussion 37
4-1 Results and Properties of the Tensor Network Kalman Filter . . . . . . ... .. 37
4-1-1 Avoiding the Curse of Dimensionality . . . . . . . . ... .. ... .... 37
4-1-2 Including User-Knowledge . . . . . . . . . . . . ... ... ... 38
4-1-3  Applicability of the Tensor Network Kalman Filter . . . . . . . . ... .. 38

Master of Science Thesis Maximilian Javier Lucassen



iv Table of Contents

4-1-4 Accuracy-Complexity Trade-Off . . . . . . . . ... ... ... ... ... 39
4-1-5 Tuning of the Hyperparameters and TT-ranks . . . . . .. ... ... .. 40
4-1-6 Stability of the Tensor Network Kalman Filter . . . . . . . ... ... .. 40

4-2 Improvements . . . . . ... 41
4-2-1 Computational Improvements . . . . . . . . . . . .. ... ... ... .. 41
4-2-2 Improvements in the Formulation . . . . . . . . . .. ... ... ... .. 42

5 Conclusion and Future Work 45
Bibliography 47
Glossary 51
List of Acronyms . . . . . . . . . L 51

List of Symbols . . . . . . . .. 52

Maximilian Javier Lucassen Master of Science Thesis



List of Figures

2-1 Example Data set for Regression . . . . . . . .. .. ... ... L.
2-2 Visual Explanation of the Nonlinear Mapping Function . . . . . .. .. ... ..
2-3 Example Regression Model . . . . . . . ... oL

2-4  Support-Vector Selection with the Renyi Entropy . . . . . . .. .. .. ... .. 15
2-5 Diagrammatic Tensor Notation . . . . . . . . . . .. .. .. ... ... ..., 20
2-6 Tensor Network Representation of the SVD . . . . . . . . . ... ... .. ... 20
2-7 Diagrammatic Representation of a Tensor Train Vector . . . . . . . .. ... .. 21
2-8 Diagrammatic Representation of a Tensor Train Matrix . . . . . .. .. ... .. 21
4-1 Sequential Tensor Network Contraction Procedure . . . . . . . . .. .. ... .. 42

Master of Science Thesis Maximilian Javier Lucassen



vi

List of Figures

Maximilian Javier Lucassen

Master of Science Thesis



List of Tables

1-1 Used Notation . . . . . . . . . . . . e 3
1-2 Used Abbreviations . . . . . . . ... 3
2-1 LS-SVM: Advantages and Disadvantages . . . . . . .. .. ... ... .. .... 10
2-2  Approximate Computational and Memory Complexities of Direct Methods . . . . 12
2-3 Approximate Computational and Memory Complexities of lterative Methods . . . 12
2-4 Computational and Memory Complexities of the Nystrom Method . . . . . . . . 14
2-5 Computational and Memory Complexities of the FS-LSSVM Method . . . . . . . 15
2-6 Variables of the Tensor Network Kalman Filter . . . . . . . . .. .. .. ... .. 22

Master of Science Thesis Maximilian Javier Lucassen



viii List of Tables

Maximilian Javier Lucassen Master of Science Thesis



Acknowledgments

I would like to express my gratitude to my supervisor Kim Batselier for his support and
guidance during my thesis. His help and kindness have really allowed me to flourish in the
pursuit of my academic goals.

Special thanks go out to my family. Mama, Papa, Benne and Karlijn, thank you for your
support, the laughter, and love you give. I would not be where I am today without you.

A shout-out to my friends, who encourage me to challenge myself with a smile on my face.

Delft, University of Technology Maximilian Javier Lucassen
August 14, 2020

Master of Science Thesis Maximilian Javier Lucassen



X Acknowledgments

Maximilian Javier Lucassen Master of Science Thesis









Chapter 1

Introduction

1-1 Context

Least-squares support-vector-machines (LS-SVM) are a commonly used algorithm for nonlin-
ear classification and regression, and are widely applied in the machine learning [37], control
[34], and signal processing [35] disciplines. LS-SVM is a kernel method set in a supervised-
learning framework, based on the least-squares reformulation [35] of Vapnik’s support-vector-
machines [38]. One can choose to solve either the LS-SVM primal, presented in Chapter 2,
or the dual problem. The dual problem

Dual problem:

0 17 ]
1 QN+IN/’7 al

can be advantageous over the primal problem as it merely requires solving of an unconstrained
linear system instead of a quadratic programming (QP) problem. Additionally, often the pri-
mal problem is not even possible because an explicit nonlinear feature mapping function is
typically unknown to the user. Nevertheless, the advantage of solving the LS-SVM dual prob-
lem diminishes for large-scale applications. The non-parametric nature of the dual problem
forces a polynomial or even exponential computational and memory scaling with the number
of data points N. As a result, direct and iterative methods to solve the linear system quickly
become unpractical or infeasible for large data sets, approximately when N > O(10000). Low-
rank approximation methods are the next best alternative, in which a degree of accuracy-loss
is accepted in order to estimate a solution of the dual problem. These low-rank methods use
a subset of the data, but can still suffer from prohibitive scaling and poor accuracy. Thus, a
substantial bottleneck of LS-SVM is their application to large-scale problems.

0
y

(1-1)

I

This thesis is concerned with solving large-scale LS-SVM dual problems for nonlinear regres-
sion and classification tasks. When the number of data points becomes exponentially large,
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2 Introduction

modeled as N — n¢, the dual problem becomes infeasible. Due to the memory scaling O(nQd),
explicit representation of the dual problem in matrix form becomes impossible. Additionally,
common methods, such as direct matrix inversion, are too burdensome to implement due to
their computational scalings, O(n??) or O(n??). The exponential computational and mem-
ory complexities demonstrate a phenomena called the curse of dimensionality, which is when
complexities scale exponentially with the number of dimensions d. This phenomena currently
limits the application of LS-SVMs to large-scale problems.

1-2 Problem Statement and Objective

Due to the exponential computational and memory complexities of current state-of-the-art
methods to solve large-scale LS-SVM dual problems, the capabilities of standard computers
are rapidly exceeded. The main reason for this is because current methods require an explicit
representation and work directly on matrices, which can be impractical or infeasible for large-
scale problems. The only remaining option is to approximate the dual problem solution with
low-rank matrix approximation methods. However, low-rank methods are error-prone and
can still suffer from exponential scaling.

The objective of this thesis is to investigate whether large-scale LS-SVM dual problems can
be solved with use of tensor networks, a compressed mathematical format that can avoid the
burdensome exponential memory and computational complexities by representing (’)(nd) in
O(nd). It is proposed to rewrite the dual problem to a tensor train (TT) format by rewriting
vectors to tensor train vectors, and matrices to tensor train matrices. Additionally, within this
TT formulation, an alternative method to current low-rank matrix approximation methods is
built in context of recursive Bayesian learning. Bayesian learning is a probabilistic framework
based on Bayes’ rule, in which prior (initial) distributions are updated by witnessing data to
form posterior (new) distributions. A recursive Bayesian learning procedure has a number
of advantages. First, user-knowledge can be incorporated, such as a prior distribution, mea-
surement noise, and early stopping. Secondly, the probabilistic framework yields confidence
bounds on the obtained dual problem solution, informative of the accuracy. Thirdly, in the
recursive scheme only individual rows of the dual problem need to be worked with, signifi-
cantly decreasing the computational and memory complexities. It is desired that the method
performs competitively with state-of-the-art low-rank approximation methods and that the
curse of dimensionality is avoided. To realize this goal, a recursive TT Bayesian learning
framework is developed that iteratively updates the solution distribution of the dual problem
through a prediction-observation procedure.

1-3 Layout

The thesis is divided into four chapters. First, the background theory is covered in Chapter 2.
Concepts relevant to this thesis are described in the background, covering the LS-SVM, low-
rank matrix approximation methods, Bayesian learning and tensor networks. In Chapter 3,
the approach and main results of this thesis are given, which is the latest version of a journal
paper that is planned to be submitted to IEEE later in 2020. In Chapter 4, the approach,
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1-4 Notation and Abbreviations 3

results, and proposed method of this thesis are discussed. Lastly, conclusions and future work
are presented in Chapter 5.

1-4 Notation and Abbreviations

The notation and abbreviations used in this report is summarized in Table 1-1 and Table 1-2,
respectively.

Table 1-1: Used Notation

Scalars (a,b,...)
Vectors (a,b,...)
Matrices (A,B,...)
Tensors (A,B,...)
Tensor Train of A TT(A)
Matrix transpose (a7, A7,...)
Identity of size N by N In

Kernel matrix of size N by N | Qn

Table 1-2: Used Abbreviations

FS-LSSVM | Fixed size least-squares support-vector-machines
KKT Karush-Kuhn-Tucker

LS-SVM Least-squares support-vector-machines

QP Quadratic programming

RBF Radial-basis-function

SVM Support-vector-machines

SVD Singular value decomposition

TT Tensor train

TNKF Tensor network Kalman filter
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Chapter 2

Background

This chapter contains the necessary background for the thesis. First, in Section 2-1 a brief
overview is given on why nonlinear modeling is necessary. In Section 2-2, the least-squares
support-vector-machine (LS-SVM) theory is given. Thereafter, methods to solve or approx-
imate LS-SVM dual problems are presented in Section 2-3. An introduction to Bayesian
learning and this thesis’ approach are covered in Section 2-4-1. Lastly, an introduction to
tensor networks is given in Section 2-4-2, which is used to reformulate the Bayesian learning
procedure to a compressed mathematical format.

2-1 Why Nonlinear Modeling?

In many modeling applications a linear model is desirable because these are easy-to-use and
insightful. In practice, however, linearity can be too strong an assumption to sufficiently
describe the underlying problem. Many phenomena abide to strong nonlinear behavior. For
example, friction, inseparability of data, time-variation, and compound interest [28]. In these
cases, nonlinear models can prove useful, and as a consequence nonlinear modeling is necessary
and widely used in a variety of fields such as, control [2] [27], signal processing [19][9], and
machine learning [26] [21]. Due to the higher-order descriptive power associated with nonlinear
modeling, very accurate fits can be achieved. Yet, this comes at a cost. Nonlinear models are
not insightful and are generally difficult to work with.

Master of Science Thesis Maximilian Javier Lucassen



6 Background

2-2 Least-Squares Support-Vector-Machines

An overview the LS-SVM is given in this section based on [35]. For convenience, all derivations
and theory are presented for the regression case. The equations can easily be modified for
classification tasks, which is also covered in the paper presented in Chapter 3.

Consider a data set {x;, 9}, with x; € R/ and y; € R for regression, shown in Figure 2-1.
For simplicity and illustrative purposes the input data is assumed to be one-dimensional f =1
here, but for generalization to higher-dimensions the bold vector notation for @ is used.

Example dataset
T T

Figure 2-1: An example data set used for a regression task. A linear model would fit the data
poorly, which is why a nonlinear model has to be found.

For regression, the task is to fit a function through the shown data set. From the figure it
is clear that a linear model would not suffice, and that a nonlinear model is required for an
accurate description.

In the LS-SVM formulation, developed by J. Suykens in the early 2000’s [35], a regression
model in the form of

y(x) = wip(x) +b (2-1)

has to be found to fit the data. In this model the input data is first mapped to a high-
dimensional or possibly infinite-dimensional f, feature space by a nonlinear mapping function
@(x): Rf — R/». The idea behind this mapping is that in the higher-dimensional feature
space linear regression can be performed, accomplished by finding a suitable weight vector w
and a bias term b for the linear offset. Visually, the regression model can be understood as
illustrated in Figure 2-2. In the input space a highly nonlinear regression model would have
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2-2 Least-Squares Support-Vector-Machines 7

to be found, but by mapping the data to a high-dimensional feature space the task is reduced
to finding a linear model.

p(z)

ety

Input space

Feature space

Figure 2-2: The input data is mapped to a higher-dimensional feature space in which linear
regression can be performed [35].

With a known nonlinear mapping function, the model weights and bias term can be solved
for in a minimization problem known as the primal problem

N
. 1 g
min  Jprima(w, e) = inw + 5 Z e’
i=1

w,b,e
subject to:
yi=wle(x;))+b+e, i=1,...,N.

The primal problem is parametric and scales with the number of features of the input data, as
w has to weigh each feature of ¢ (). Because the data can not be fit perfectly, as this leads to
overfitting, modeling errors e are inevitable. In the illustrated data set, it is clear that fitting
each data point perfectly would not yield a good overall model, which is why errors have to
be accepted. These errors mean that the regression model needs to be modified to prevent
overfitting, this is described by the constraint in the primal problem. However, by introducing
errors to the regression model there is also a danger of underfitting the data, which occurs
if the errors are allowed to be too large. Underfitting the data would lead to a model that
barely fits the shape of the plotted data set. To prevent overfitting and underfitting, the
weights and errors in the model to be balanced, as given by the quadratic cost function of
the primal problem .J,.;mq. The « variable is a regularization parameter that balances the
trade-off between over- and underfitting by weighting the relative importance of the sum of
squared errors. An important result and advantage of the quadratic cost function is that
the minimization is convex, meaning that the nonlinear regression task can be solved with
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8 Background

simple quadratic programming (QP) solvers. Also due to convexity a global optimal solution
is obtained for the nonlinear modeling problem.

Nevertheless, there are significant drawbacks to the primal problem [35]. First, if an infinite-
dimensional feature space is used the primal problem can not be solved, as the weight vector
is then also infinite-dimensional. Secondly, the computational cost of QP can make the primal
problem too burdensome to solve for high-dimensional input data as it scales with the number
of features f. Thirdly, usually an explicit nonlinear mapping function is unknown which makes
it impossible to solve the primal problem.

Fortunately, the primal problem can be recast by use of the Lagrangian

N
L(w,b,e;a) = Jp(w,e) = > ap {wTp (zx) + b+ e, — yi} (2-3)
k=1

and application of the Karush-Kuhn-Tucker (KKT) optimality conditions yield

9L — 0= w =11, arp (k)

oL __ N —
%—Oﬁzkzlak—o

%:O%ak:q/ek, k=1,...,N

oL
day,

=0—>wTp(xk)+b+er—y=0, k=1,...,N.

By rewriting the equations through elimination of w and e the dual problem is obtained

Dual problem:

0 17 b]
1 QN—FIN/’)/ ol

which offers an alternative to the LS-SVM primal problem [35]. A linear system needs to
be solved instead of a QP problem to obtain a regression model of the data set, which
can be much cheaper. The dual weights «, which are directly related to each data point’s
error variable by the KKT condition aj = e, are solved for. As a consequence of this
KKT condition, the dual problem scales non-parametrically, meaning that the memory and
computational complexities scale directly with the number of data points IN. In the derivation
of the dual problem, which is not presented entirely here, inner-products of the nonlinear
mapping function ¢ (x)T ¢ (zy) are replaced by a user-defined kernel function k (x,x;). The
kernel function implicitly computes the inner-products in the feature space without needing
to explicitly map the input data to this space. Replacing the inner-products of the nonlinear
mapping function by a kernel function is known as the "kernel-trick". Due to the kernel
function, no explicit feature mapping function is needed for the dual problem, and even when
the primal is impossible the dual problem can still be solved [35]. In the presented dual
problem, Equation 2-5, the kernel matrix is defined as Qy := k(X, X), where X represents

0 (2-5)

y

Maximilian Javier Lucassen Master of Science Thesis



2-2 Least-Squares Support-Vector-Machines 9

the input data matrix containing all @;. By definition the kernel matrix is symmetric positive
(semi)-definite, which induces convexity and therefore the dual problem yields a global optimal
solution. Common kernel functions include the linear kernel, polynomial kernel, and the
radial-basis-function (RBF) kernel. Due to reformulation from the primal to the dual problem,
the regression model is also recast. The resulting LS-SVM regression model for the dual
problem becomes

N
y(x) = Z aik (x,%x;) + b (2-6)
i=1

where a and b can be found be solving the linear system, Equation 2-5.

Whether the primal or dual problem is solved, a regression model for the data is obtained.
If suitable regularization and kernel parameters (hyperparameters) are specified the model
should fit the data well, without significant over- or under-fitting. Equivalently, a good balance
between the local and global descriptions of the data is found to fit a general regression model
over the domain. For the previously shown data set, a regression model is illustrated in
Figure 2-3.

Regression of the example dataset
T T T T T

0.8 —

0.6 —

0.2 -

-2.5 -2 -15 -1 -0.5 0 0.5 1 1.5 2 2.5

Figure 2-3: An example regression model (red) for the example . The model generalizes the
data set well as there is a good balance between local and global fit. (RBF, v =1, 0% = 0.5)

The shown regression model for the data set was designed with the RBF kernel, which is used
frequently in this thesis and given by

2
|l — 2’|

k(x,2') = exp (—W> . (2-8)
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10 Background

The hyperparameter o2 describes how similar the data paints are over the domain, and can
be interpreted as a similarity measure that needs to be tuned. Tuning of kernel function hy-
perparemeters is commonly done with iterative grid searches or higher-level Bayesian learning
procedures [35] [10].

In the regression model plot, Figure 2-3, it can be deducted that there is a fair balance
between the errors and weights as there is good fit, with no significant signs of overfitting or
underfitting of the data. Overfitting and underfitting can be caused by multiple factors, such
as the chosen hyperparameters, large outliers in the data, or solver properties such as early
stopping. Additionally, the LS-SVM can be sensitive to extreme outliers as the dual weights
are proportional to their associated error magnitudes through the KKT condition. Because
of the dual error-weight relationship, the LS-SVM dual solution is non-sparse, meaning that
every data point error e; contributes to the regression model.

The popularity of the LS-SVM is due to its linear dual problem. Nonlinear modeling can be
performed by merely solving a linear system that yields a global optimal solution. The dual
problem is simple to solve for small- and medium-scale problems, for which many methods and
solvers available, such as matrix inversion techniques or iterative methods such as conjugate
gradient [13]. For large-scale applications, however, the LS-SVM dual problem becomes
burdensome or infeasible to solve. The topic of this thesis is how the LS-SVM dual problem
can be implemented on large-scale problems. In this thesis, by "large-scale" it is meant that
the number of data points N is exponentially large, N — n¢ > O(10000). For such size
data sets, solving of the LS-SVM dual problem can exceed capabilities of modern computers
as it grows directly with the number of data points. First of all, the memory necessary for
the dual problem scales O(n??). For large data sets it is very difficult or even impossible to
explicitly construct or work with the dual problem matrix. Secondly, common solvers are
very expensive to implement for such large-scale problems because of their computational
scaling O(n??). Common solver methods require explicit storage and work directly on the
dual matrix making them infeasible. For large-scale applications, it is usually only possible to
an estimate a solution of the dual problem by employing low-rank approximation methods.

Table 2-1 summarizes the advantages and disadvantages of the LS-SVM dual problem. More
on solvers for the LS-SVM dual problem is presented in Section 2-3.

Table 2-1: Advantages and Disadvantages of the LS-SVM Dual Problem [35] [32][40].

Advantages Disadvantages

e Solve a linear system for nonlinear modeling | e Large-scale problems are difficult

e Fasy to use and many solvers available e Solution is not sparse

e Flexibility with kernel choice e Can be sensitive to outliers in the data
e Global optimal solution(s)

2-3 Methods to Solve the LS-SVM Dual Problem

In this section, an overview of methods for solving the LS-SVM dual problem is given. They
can be divided three categories, direct methods, iterative methods, and low-rank approxima-
tion methods. Most attention is given to low-rank approximation methods, as these are most
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2-3 Methods to Solve the LS-SVM Dual Problem 11

relevant for large-scale problems. The other methods are briefly covered for context. Direct
methods show the expense of computing an inverse of a matrix, which has to be avoided in
the thesis’ implementation as it is expensive or impossible to compute for large matrices. The
iterative methods, have similarities with the thesis’ proposed solution, as both are recursive in
nature. The presented low-rank approximation methods are the state-of-the-art in solving, or
approximating, the solution of large-scale LS-SVM dual problems. The two covered low-rank
approximation methods are compared to the thesis’ proposed solution.

2-3-1 Preliminary

Before going straight into solvers, which are methods to solve the linear system, some addi-
tional background has to be given. Recall the dual problem

0 17 b 0
3 ovt ) o) =)

The applicability of a solver is dependent on the matrix properties. Solvers attempt to
utilize matrix properties for computational and/or memory efficiencies. The most important
properties of the dual problem matrix are that it is positive (semi)-definite and symmetric.
The dual problem can also be recast to a positive definite form to allow implementation of
solvers that require this property, as given by, as given by

U = (QN -l-IN/"}/) > 0,
1Tv1 0 b -
0 U la+b0 11| —

which can lead to convergence and computational benefits [33] [35]. For large-scale problems
however, N — n?, computing and storing the inverse of the kernel matrix is usually infeasible.
For the upcoming methods, it is assumed that the dual matrix is dense, positive (semi)-
definite, and symmetric. Only the methods that are most relevant to this thesis are discussed.

1Tvly (2-10)

y

)

2-3-2 Direct Methods

Direct methods are the usual solvers for small-scale problems. For modern computers, these
methods are applicable for data set sizes in the low thousands O(1000) because of their
burdensome computational and memory complexities, O(n3?) and O(n??) [14]. They need
explicit storage and work directly on the matrix, thus quickly become impractical to apply.
As a result, these can not be used to solve large-scale LS-SVM dual problems. There are
three popular methods in this class: direct matrix inversion, Gaussian elimination, and the
LU decomposition. In Table 2-2, the approximate costs of direct methods are presented,
which scale rapidly with the dimension d.
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12 Background

Table 2-2: Approximate computational and memory complexities direct methods [13] [1] [14].

e Computational scaling | O(n3?) (for solving one linear system)
e Memory requirements | Requires the entire (explicit) dual matrix O(n??)
e Dual solution a: Scales non-parametrically O(n?)

2-3-3 Iterative Methods

The computational complexity of direct methods can make them impractical to use for
medium-scale problems. The next best alternative is to implement iterative methods. Based
on an initial guess, a sequence of solutions is generated by updating previous estimates. Be-
cause in a single iteration only a row of the considered matrix is needed, iterative methods can
have a lower memory cost than direct methods O(n?), and can therefore be applied to larger
problems. However, the total computational scaling O(n??L) to obtain a solution is only
significantly advantageous if few iterations L, (L < n?), are needed until convergence (termi-
nation) [41] [13]. For large-scale applications, iterative methods also become too burdensome
to implement, especially due to their computational complexities.

Two classes of iterative methods exist: stationary and non-stationary iterative methods. In
stationary iterative methods only the solution vector is updated throughout the iterations, all
other variables are constant (’stationary’). Common methods for this class include the Jacobi
method, Gauss-Seidel method, and the Successive Overrelaxation method. These are the
simpler but less efficient than their non-stationary counterparts, as their convergence can be
up to an order of magnitude slower. In non-stationary methods, more than just the solution
vector is changed per iteration. With newly obtained information, variables are adjusted in
the equations to update the solution. The most important non-stationary methods belong to a
class called Krylov methods, such as the conjugate gradient or minimum residual methods [13]
[3]. Krylov methods are known to possess faster convergence rates and are computationally
more efficient than stationary methods [36]. The general complexities of iterative methods
are presented in Table 2-3.

Table 2-3: Approximate Computational and Memory Complexities of Iterative Methods [41] [13].

e Computational scaling | O(n??L)
e Memory requirements | Requires the rows of the dual matrix O(n?)
e Dual solution a: Scales non-parametrically O(n?)

2-3-4 Low-Rank Approximation Methods

Low-rank approximation methods are necessary when direct or iterative methods are not
feasible, as the computational or memory costs become too burdensome, and can even exceed
the capabilities of standard computers. Low-rank approximation methods of kernel matrices
are especially applicable to this thesis. Typically some estimate of the eigensystem is used
to solve or decompose the matrix or estimate a nonlinear mapping function. The underlying
idea of low-rank approximation methods is that some accuracy can be sacrificed in order to
make a problem feasible, thus inherently there is always a trade-off between complexity and
accuracy. Here, two methods are covered, the Nystrom method and the fixed size LS-SVM
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2-3 Methods to Solve the LS-SVM Dual Problem 13

(FS-LSSVM). These methods are the most applicable to the LS-SVM dual problem and are
used to benchmark the performance of this thesis’ proposed solution in Chapter 3.

The Nystréom method and FS-LSSVM operate on a centered large-scale kernel matrix. The
bias can be calculated separately by computing the mean of the output data. The dual
problem is therefore reduced to finding an approximate solution to

(Qpa + /7)) =y, (2-11)

as the bias term is removed from the Lagrangian, Equation 2-3.

The Nystrom Method

The Nystrom method is probably the most applied low-rank approximation technique for
symmetric positive (semi)-definite matrices. The method is a spectral reconstruction tech-
nique and is applicable in many nonlinear modeling methods, such as Gaussian processes,
LS-SVMs, and principal component analysis for example [35]. With the Nystréom method it
possible to estimate a solution of the dual problem with low computational and memory costs
[35][17][30].

The Nystrom method is based on the eigendecomposition of a kernel subset. First, by sam-
pling S input samples x; a smaller kernel matrix Wgxgs and a rectangular kernel matrix
C)dxg, which compares the s samples to the n data points, are constructed. Sampling of the
data points can be done with random uniform sampling, or according to some user-specified
sampling procedure if computationally feasible, such as ridge leverage scores [23], k-means
clustering [42], determinant based sampling [18], norm and adaptive sampling procedures
[30]. By calculating the eigendecomposition of W, the approximate eigenvectors Uq and

eigenvalues A of the large kernel matrix can be estimated by

0o ~ 1|2 CUwA! A ~1dA (2-12)
Q~ nd w 9 Q ~ S w- -

The underlying assumption for the approximation is that the number of samples S is large
enough such that the scaled eigensystem of W can accurately represent the eigensystem of
Q,a. The size of the subset directly impacts the trade-off between the accuracy and the
complexity of the Nystrom method. Note that in the approximation, the inverse of the
eigenvalue matrix is simple to compute due to its diagonal structure. With the obtained
estimates of the eigenvectors and eigenvalues of the kernel matrix the dual problem can then
be solved, in the approximate sense. An approximation for the dual weights can be calculated
by applying the Sherman-Morrison-Woodbury formula

~ 1 AN oA oA ~ A
a=rv (y — UQ(75 + AQU&UQ)lAQUgZy) , (2—13)

which generally requires less memory and computational cost than applying a direct or it-
erative method. Nevertheless, the Nystrom method can become infeasible if many samples
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are needed to approximate a solution. For large S, the inverse in the Sherman-Morrison for-
mula becomes the main computational bottleneck. Also, the memory required to explicitly
represent the eigenvector matrix Ugp can exceed the computer’s capabilities. The memory
and computational complexities of the Nystrom method with uniform random sampling are
presented in Table 2-4.

Table 2-4: Computational and Memory Complexities of the Nystrém Method [14].

e Computational scaling | O(S?n? + S3)
e Memory requirements | Sample matrix C, O(Sn%)
e Dual solution &: Scales non-parametrically O(n?)

Fixed Size LS-SVM

FS-LSSVM is a low-rank approximation technique that estimates a nonlinear mapping func-
tion ¢ in the dual space to then solve the primal problem [35][10]. Usually a nonlinear
mapping function is unknown for the primal problem, which is why it has to be estimated.
FS-LSSVM can be beneficial for large-scale applications because solving the primal problem
scales with the number of features f rather than the number of data points n?. If the number
of features of the input data is small, the primal problem can be advantageous. FS-LSSVM
is based on the Nystrom method and is therefore applicable for symmetric positive (semi)-
definite kernel matrices. First a subset of input data points has to be constructed. Usually
the Renyi entropy criterion

HRenyi = - log/p(x)2da:
. 1

is implemented as a sampling criterion, as is done in this thesis. The criteria attempts
to include the S most informative data points in the subset by iteratively minimizing the
Renyi entropy HRenyi. The entropy is calculated with the subset’s kernel matrix W. In each
iteration, a random data point from the subset and training pool are swapped for which
the Renyi entropy is evaluated. If the entropy increases the swap is undone, and if the
entropy decreases the swap is permanent and the subset updated. Over the iterations, the
subset becomes more informative by the swapping procedure, terminating when a stopping
condition is satisfied. When a final subset has been found, an eigendecomposition of the small
kernel matrix Wg g is computed to obtain the eigenvector matrices, just as in the Nystrom
method [35]. The nonlinear mapping function can then be approximated with the obtained

(2-14)

eigenvectors u, as given by

S
vi () = \/;zqu (z') = \/\//\E > K (zp, ) (2-15)
i =1

With an estimate of the nonlinear mapping function, the primal can be solved with a QP
solver. The implementataion of the FS-LSSVM method with a Renyi entropy sampling pro-
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cedure is pictured in Figure 2-4, in which intermediate subsets are plotted to demonstrate
the increase in informativeness.

Vo—r - - 1 — o

Figure 2-4: The selection of data points with the Renyi entropy sampling criteria. The fat-dots
represent the data points in the subset, also called "support-vectors", which are used to find a
regression model. These data points are swapped to increase the informativeness of the subset,
leading to better model fits of the data [35].

The FS-LSSVM method has two advantages due to its shared primal-dual formulation. A
much smaller solution is obtained that scales with the number of samples S, and the memory
requirement only scales quadratically due to explicit construction of W. Thus if the number
of samples can be chosen small with respect to the obtained model’s accuracy the FS-LSSVM
is advantageous over the Nystrom in terms of memory scaling, however does generally require
more computational work. In Table 2-5, the computational and memory requirements of
FS-LSSVM are summarized.

Table 2-5: Computational and Memory Complexities of the FS-LSSVM Method [20] [10] [14].

e Computational scaling | O(S*n? 4 253)
e Memory requirements | Subset kernel W, O(S5?)
e Primal solution w: Scales parametrically O(.S)

Drawbacks of State-of-the-Art Low-Rank Approximation Methods

Even though the Nystrom and FS-LSSVM methods allow large-scale application of LS-SVMs,
there are still a number of issues due to which the methods can perform poorly. First, the
methods suffer from the curse of dimensionality, as can be understood from their respective
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computational and memory complexities. Even though a subset of the data is used, the
methods can still become infeasible if many samples are required. For current low-rank
approximation methods the assumption is that S < n¢ which does not always hold. Secondly,
as a consequence of their sampling nature, only statistical sampling-based performance bounds
can be established. The accuracy of the methods are entirely dependent on which samples
are included in the approximation. Lastly, in the Nystrom and FS-LSSVM methods, it is
impossible to incorporate user-knowledge of the particular application, such as measurement
noise, an initial dual weight solution «, and confidence bounds.

2-4 Proposed Solution

To overcome the drawbacks of current low-rank approximation methods it is proposed to
develop a Bayesian framework to solve the LS-SVM dual problem. A Bayesian framework
has a number of advantages. First, prior knowledge of problem can be incorporated into
the learning process, such as measurement noise and an initial distribution. Secondly, the
framework generates a solution distribution from which confidence bounds can be obtained,
informative of how well the data is described by the mean. Lastly, Bayesian learning is a
flexible and easy-to-use framework, which can be easily adjusted to a certain problem format,
and modified to suit computational and memory requirements. Unfortunately, the Bayesian
framework still suffers from the curse of dimensionality as explicit matrices and vectors need to
be stored and worked with. To avoid this curse, it is proposed recast the Bayesian framework
to a tensor network formulation. With tensor networks no explicit vectors or matrices need
to be constructed, and due to their compressed mathematical format reduce exponential
complexities to polynomial ones O(n?) — O(dn).

In this section the background theory for the proposed solution is covered. First an overview
of Bayesian learning is given in Section 2-4-1, presenting the context in which the dual prob-
lem is proposed to be solved. Afterwards, a brief introduction to the relevant tensor network
theory is presented in Section 2-4-2, used to reformulate and compress the Bayesian learn-
ing framework. Additional explanations can be found in the preliminaries and background
sections of the paper, Chapter 3.

2-4-1 Bayesian Learning

A Bayesian approach is taken to approximate the large-scale LS-SVM dual problem solution.
Bayesian learning is a probabilistic procedure in which observations of the data are used to
update a solution distribution. A brief introduction is given to Bayesian learning based on
[29], and is presented in the context of Bayesian regression for the LS-SVM dual problem. In
this explanation the dual problem is rewritten for convenience

Ca =7, (2-16)
where C' is the dual problem matrix, @ = [b;a], and y = [0;y]. The formulation of the
Bayesian regression case can easily be modified for Bayesian classification, but this is left to

the literature [22].
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Bayesian Regression

Consider the case that a linear sample-varying (I) regression model has to be found for the
data set
Y = o + u. (2-17)

For the LS-SVM dual problem, "sample-varying" is equivalent to "row-dependent", for this
reason the subscript [ is used. In the model, y; is an output data point, ¢; is the [-th row of
the dual problem, & is the dual solution, and u ~ A(0,w?) is an .I.D Gaussian measurement
noise. The measurement noise is a robustness variable to prevent overfitting, and weighs how
valuable observations of the data are.

In Bayesian learning, it is desired to update the & distribution by observing a set of 1" data
points. The update can be understood as generating a new (posterior) distribution that takes
into account all previously witnessed data, but also all newly observed data. The learning
process is summarized by Bayes’ rule

T
P(a|grr) < P(a| mo, Bo) [[ P (W | e, u), (2-18)
k=1
given linguistically by
posterior distribution & o prior distribution a x normalized likelihood 71.7. (2-19)

The posterior distribution of & is calculated by multiplying the old (prior) distribution with
the normalized likelihood of the T observed outputs. Bayes’ rule can be considered a hypoth-
esis test, an evaluation of how well the observed data is described by the prior distribution.
But to apply Bayes’ rule, a prior distribution P needs to be specified for &. In this thesis’, the
prior distribution is also specified as a Gaussian, in which it is assumed that the dual weights
adhere to such a distribution. Specifying both the prior and measurement noise as Gaussian
distributions is advantageous because Bayes’ rule simplifies to a product of Gaussians. The
posterior and likelihood then become Gaussian distributions too because products of Gaus-
sians yields a Gaussian. Additionally, due to the Gaussian formulation, an analytical solution
for the distribution update is available. The posterior distribution mean and covariance after
observing T" output data points can be calculated in batch (matrix) form by

-171
mr = [P + CTC} LUQCT@ + Pg_lmo
(2-20)

-1
Pr=|Py'+ wQCTC’} :

Even though a posterior distribution for the solution vector is obtained by these batch equa-
tions, & ~ N(mr, Pr), it is required to calculate multiple matrix inverses. Inversions of
large matrices are impractical and often impossible because of the burdensome computa-
tional complexity O(n3?). Large-scale Bayesian learning with large batch updates (T is too
big) is therefore undesirable. Fortunately, Bayesian learning can also be cast into a recursive
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framework, in which smaller batches or single observations can be used to update the prior
distribution. In this thesis, single output observations ¥ are used to update the dual weight
distribution because this allows for the smallest computational and memory complexities.
The linear regression model is modified to

Y =coy+u (2—21)

to denote its iterative nature and dependence on the rows. By reconsidering Bayes’ rule,
Equation 2-18, it can be understood that every posterior distribution can serve as prior
distribution when a new observation needs to be learned. Bayes’ rule is rewritten as

P(ay | yia) x P(ay—1 | y1.-1) P (U | cioy—1,u) (2-22)

to represent this recursive framework. An update model of the dual weights and output
predictions can be designed in this recursive Bayesian framework as well, such as a state space
system. An update model allows incorporation of user-knowledge, such as update dynamics
and noise ratios. In this work it is considered that the previous distribution for &; serves as
the best approximation of the next solution ;1. A update noise term q is introduced, and
can used to model a "forgetting-factor" in the updates as done in [15, pg.240]. The output
data equation is simply the dual regression model, Equation 2-21, with the measurement noise
term used to denote imperfections in the observations. The resulting linear update equations
are given by

Linear update model:
a1 =0;+q (2-23)

:ljl = Cl&l + u.

Leading and directly derived from the recursive Bayesian framework and a user-specified
linear update model, the Kalman filter equations are obtained

Prediction step:
m; =my_ (2-24)
Pr=P1+Q
Measurement step:
v =Yy —om;
s1=c P e +w?
k = Pl_clTsl_1
m;=m; + kjy
P =P~ — kisik].

(2-25)

The Kalman filter is the optimal closed-form filter to approximate the solution (or state) of
a linear Gaussian system [39]. By recursively predicting and measuring the outputs gy, the
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distribution of the dual weights is updated. The filter only requires the inverse of a scalar
sfl, O(1), avoiding the expensive matrix inverses from the batch equations, and is therefore
computationally much cheaper for large-scale problems. The variables of the Kalman filter are
as follows: m; € R™ and the P e R %1 are the mean vector and covariance matrix of the
a distribution after iteration [. In iteration [, the solution is given by m;, and the uncertainty
in the solution by the covariance P,. The noise covariance matrix (), is a weighting term to
describe the confidence in the update of covariance matrix. If @) is used as a "forgetting" term
an equivalent formulation would be: P~ = AF;_1, which can induce an (artificial) exponential
convergence with A < 1 [15, pg.240]. The prediction error is given by v; € R. Variable s; €
R is the prediction-error variance, which is also dependent on the measurement noise, and
determines the confidence in the [-th observation. Lastly, k; € R is the Kalman gain, which
influences the degree to which the distribution of & is updated. The Kalman filter terminates
in iteration L when either all rows of the dual problem have been iterated through, or if
user-specified stopping criteria have been satisfied. These stopping criteria can be designed
arbitrarily, common specifications are based on the covariance norm or the KKT conditions.
The final distribution &, ~ N (my, Pr) contains the solution and confidence for the training
stage, and can be used as a basis for regression of new points.

For large-scale applications, however, the Kalman filter is too costly to apply. The filter
requires explicit storage and works directly on matrices, therefore rapidly becomes infeasible
for large data sets. The memory and computational complexities of the presented Kalman
filter equations are O(n??) and O(n??), which suffer from the curse of dimensionality. To
reduce the complexities, a different mathematical format is needed, in which the matrices and
vectors can be represented with smaller complexities. Fortunately, tensor networks offers a
mathematical framework to achieve these lower complexities, presented in Section 2-4-2.

2-4-2 Tensor Network Reformulation of the Kalman Filter

In order to recast the Kalman filter to a tensor network form for large-scale problems, some
basic theory has to be covered first. Thereafter, a high-level introduction to the proposed
solution is given, with more elaborate explanations and derivations covered in the paper in
Chapter 3.

Tensors Basics and the Diagrammatic Tensor Notation

Tensors are higher-dimensional generalizations of matrices, and are described by the number
of dimensions they have ("order"). A d-dimensional tensor has d indices, e.g. T (i1,i2,...,iq)-
Working with tensors in mathematical notation is complicated and uninsightful. A dia-
grammatic framework was developed to make working with tensors easier, as visualized in
Figure 2-5. In the diagrammatic framework, tensors are represented by circles ("cores") with
d outgoing lines representing the respective indices ("edges") [7]. Often, the specific index is
written next to the edge to clarify which index is specified.

With the visual tensor notation covered, the concept of tensor networks can be explained. A
tensor network is a higher-order equivalent of a matrix decomposition, represented by a num-
ber of cores interconnected by their edges. Interconnected edges denote tensor contractions,
loosely speaking higher-order multiplications. An easy and familiar example is the singular
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Figure 2-5: Diagrammatic tensor notation of a scalar (a), a vector (a), a matrix (A), and a
3-dimensional tensor (A). Each core represents a tensor, with the edges denoting its indices.

value decomposition (SVD), which can be represented in tensor network form as shown in

Figure 2-6.
19 T1 ro =T1
O O
11 21 )

12

Figure 2-6: Tensor network representation of the singular value decomposition. Each core
represents a matrix as they have two edges. The cores are interconnected through the indices
of the singular value matrix (.5), representing the matrix multiplications. The free edges are the
indices of the matrix A, with i; denoting the rows and i, the columns.

In the SVD tensor network the interconnected edges are simply the dimensions of the singular
value matrix, which can be truncated (reduced) to influence the reconstruction/decomposition
accuracy. The number of free edges of a tensor network, such as (i1,42) for the SVD, is the
order of the resulting tensor if the network is reduced to one core, accomplished by contracting
all interconnected edges (71, 72).

The memory cost of explicitly representing a tensor scales exponentially with its dimensions
O(n?), thus also suffers from the curse of dimensionality. For higher-order tensors, tensor net-
works can resolve the burdensome scaling. A tensor network attempts to reduce the memory
complexities, and indirectly computational complexities, by representing a tensor in a com-
pressed and implicit format through a higher-order decomposition. One such decomposition
is the easy-to-use and robust tensor train format, which will be used to recast the Kalman
filter.

Tensor Train Decomposition

The tensor train (TT) decomposition is implemented to recast the Kalman filter to a com-
pressed mathematical format. The choice of the TT format to recast the Kalman filter is
because it is easy-to-use, flexible, and robust [25][24]. Additionally, alternative tensor net-
works typically suffer from NP-hardness, require expensive optimization procedures, or still
suffer from exponential scaling [16][8]. The T'T decomposition creates a chain of cores inter-
connected by shared indices called the "T'T-ranks". Two types of TT are used in this thesis,
the TT vector and the TT matrix, displayed in Figures 2-7 and 2-8 respectively.

Tensor trains can be understood as coarse graining procedures, in other words, a TT vector
can be understood as vectors inside vectors, and a TT matrix, as matrices inside matrices.
The resulting representation of a tensor in TT form is dependent on the TT-ranks. Similarly
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Figure 2-7: Diagrammatic representation of a tensor train vector decomposition of a 3-
dimensional tensor. Each core A*) can be understood as a vector as they have one free edge.
The cores are interconnected through the TT-ranks r;.
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Figure 2-8: Diagrammatic representation of a tensor train matrix decomposition of a 6-
dimensional tensor. Each core A®*) can be understood as a matrix as they have two free edges.
The cores are interconnected through the TT-ranks r;.

to the SVD, the TT-ranks govern the accuracy-complexity trade-off, and can be truncated
in order to achieve a more compressed representation. For T'T vectors the memory require-
ment is O(ndr?), and for TT matrices O(nd?r?), where r can be understood as the largest
TT-rank. If small TT-ranks can be used without significant loss of accuracy, as the ranks
determine how accurately the tensor is decomposed /reconstructed, the TT format can allow
for much smaller memory complexities relative to the exponential memory complexity O(n?)
of explicitly representing a tensor.

Without going into technicalities, the T'T decomposition is constructed by iteratively applying
the SVD for each dimension of a tensor. To apply the SVD in each tensor-dimension, the
tensor is first 'unfolded’ to a matrix. The leading singular vectors of U are used to construct
a core, with the number of vectors determining the size of the TT-rank. More details, such
as operations, construction, and rounding of T'Ts are given in Chapter 3.

The Tensor Network Kalman Filter

The Kalman filter variables are rewritten to a TT format in order to avoid the curse of
dimensionality, resulting in the tensor network Kalman filter (TNKF) [5]. By working with
TTs, no explicit vectors and matrices of the filter have to be explicitly represented or worked
with. The approach is as follows, matrices are recast to TT matrices, vectors are recast as
TT vectors, and scalars remain scalars. The TNKF variables and their memory complexities
are summarized in Table 2-6.

At this point, one might wonder how exactly the Kalman filter variables are recast, and how
come the tensor can be applied on vectors and matrices. To answer the question, the concepts
of tensorization and super compression have to be explained. A tensorization folds a vector
or matrix into a higher-dimensional tensor, after which they can be decomposed with tensor

Master of Science Thesis Maximilian Javier Lucassen



22 Background

Table 2-6: Variables of the Tensor Network Kalman Filter

Variables | Recast to | TT variable ngnn;l:zi ties
P, TT matrix | TT(F) O(dn®r?)

c, my,k; TT vector | TT(c;), TT(my), TT(k;) | O(dnr?)

Y1, vy, S;, w | Scalar Unchanged o)

networks, such as the tensor train decomposition. The tensorization process only changes the
representation of the data. For example, a vector of length IV can be folded to a tensor with
indices of size n and dimension d, which only changes the memory complexity notation from
O(N) to O(n?) as they still have the same number of elements. The benefit of artificially
representing a vector or matrix as a tensor is that tensor networks can then be applied to
achieve high compression ratios. Applying the tensor train decomposition after tensorizing a
vector or matrix reduces the exponential complexity O(n?) to a polynomial one O(dni{2}r2)
for example, which is a technique called "super-compression" [7].

In context of solving the LS-SVM dual problem with the TNKF, only the (explicit) dual
problem rows have to be tensorized in each iteration. The rows are calculated in row-form
because of the kernel function, after which they have to be recast to TT vector. In the
process of recasting the dual problem row, all kernel-data is used. No sampling procedure is
required as its iterative and tensor network formulation allows it to assess all kernel-data in
compressed form, unlike current low-rank approximation methods. All other TNKF variables,
can be initialized and worked with in T'T form during the iterations. Noteworthy is that never
in the TNKF is an explicit covariance matrix constructed, limiting the memory complexities
that of the tensor trains and dual problem rows.

The TNKF includes the advantages of Bayesian learning and tensor networks. Due to its re-
cursive tensor network Bayesian formulation, prior knowledge can specified, confidence bounds
can be obtained, the curse of dimensionality is avoided, and all kernel-information of the
large-scale problem is utilized. With the mentioned properties, the TNKF overcomes and
exceeds the deficiencies of current low-rank approximation methods. In Chapter 3 the TNKF
is presented in more detail, its performance evaluated, and compared to the Nystréom and

FS-LSSVM methods.
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Chapter 3

Approach and Results

In this chapter the approach and results of my thesis are given. Currently, I am collaborating
with K. Batselier and J.A. Suykens, the inventor of the LS-SVM method, to submit a journal
paper to IEEE: Neural Networks and Learning Systems later in 2020. Here, the current draft
of the paper is presented, covering the outcomes of this thesis.

In the paper, more background theory is given, especially with respect to the implementation
of tensor networks. Additionally, the tensor network Kalman filter (TNKF) is analyzed and
derived in more detail. The TNKEF is applied on four benchmark datasets, two regression
and two classification problems, and compared to the performances of the Nystrom and FS-
LSSVM methods. A short discussion and conclusion of the results are also given, with further
details covered in Chapters 4 and 5.
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Recursive Tensor Network Bayesian Learning of
Large-Scale LS-SVMs

Maximilian Lucassen’, Kim Batselier'

Abstract—Least squares support vector machines are a com-
monly used supervised learning method for nonlinear regression
and classification. They can be implemented in either their primal
or dual form. The latter requires solving of a linear system, which
can be advantageous as an explicit mapping of the data to a
possibly infinite-dimensional feature space is avoided. However,
for large-scale applications, current low-rank approximation
methods can perform inadequately for a number of reasons.
Their sampling nature, poor approximation power due to the
low-ranks, or because they become infeasible due to the curse
of dimensionality. In this paper, a recursive Bayesian learning
framework based on tensor networks and the Kalman filter is
presented to alleviate the demanding memory and computational
complexities associated with solving large-scale dual problems.
The proposed method is iterative, does not require explicit storage
of the kernel matrix, and allows the formulation of early stopping
conditions. Additionally, the framework allows incorporation of
prior knowledge, measurement noise, truncation of variables,
and yields confidence estimates of obtained models, unlike its
alternatives. The performance is tested on two regression and
two classification experiments, and compared to the Nystrom
and fixed size LS-SVM methods. Results show that it can
achieve high performance and is particularly useful in cases of
high nonlinearity or when alternative methods are deficient or
impractical.

Index Terms—Supervised learning, Bayesian learning, large-
scale, Is-svm, fixed size ls-svm, Nystrom, dual problem, tensor
network, Kalman filter, recursive least-squares, regression, clas-
sification, kernel method.

1. INTRODUCTION

Kernel methods are a class of nonlinear modeling meth-
ods based on mapping the nonlinear input data to a high-
dimensional feature space. In this high-dimensional feature
space, the inner product of the data is implicitly computed
by a user-defined kernel function, correlating the data points
through their similarity. Due to their formulations, the non-
linear data can be modeled with the simplicity of linear
algorithms [1] [2] [3]. As a result, kernel methods are an
attractive modeling class because of the insight and ease they
provide, and are widely applied in numerous disciplines such
as control [4], machine learning [5] and signal processing [6].

Support vector machines (SVM) is a popular supervised
learning kernel method. The SVM theory was initially pro-
posed by Vapnik [1], in which a cost function is minimized
by solving either the parametric primal problem or the non-
parametric dual problem. Either case, the modeling is solved
with quadratic programming, generating a unique global so-
lution. The least-squares SVM (LS-SVM) theory reformulates

T Delft Center for Sytems and Control, Delft University of Technology,
Mekelweg 2 2628 CD, Delft, The Netherlands

the original SVM minimization problem [7] [8]. By changing
the cost function to a least squares form, and altering the
inequality constraints to one equality constraint, the dual
problem is recast to a linear system. This makes the LS-
SVM dual problem much easier to solve compared to its SVM
counterpart.

Solving of the LS-SVM dual problem, (’dual problem”),
scales with the number of data points (/N). For small and
medium-scale problems, general solvers from the direct and
iterative methods classes are applicable [9] [10]. However,
for large-scale problems, these can not be used because the
memory and computational requirements are too demanding
as the number of data points can become exponentially large
N — n¢. This demonstrates a phenomena called the “curse
of dimensionality”, in which the exponential scaling with d,
the dimension, makes a problem too difficult to solve. One
approach of solving such large dual problems is with low-
rank approximation methods, such as the Nystrom method
[11], and fixed-size LS-SVM (FS-LSSVM) [12]. These aim
to work around the prohibitive scaling by training on a subset
of the data and by employing the primal-dual relationship of
LS-SVM. Numerous drawbacks to current low-rank approx-
imation methods exist. Firstly, no confidence bounds of the
approximate solution are obtained, only theoretical statistical
guarantees can be given. Secondly, it is not possible to include
prior knowledge and noise into the solution for more robust
modeling. Lastly, the size of the subset significantly impacts
the performance, in accuracy, but also the memory and compu-
tational complexity. Other approaches to deal with large-scale
linear systems commonly focus on parallel computation. For
example, in [13] a parallel GPU implementation is used for
kernel machines. The linear scaling associated with increasing
batch sizes is extended with adaptive kernels to speed up
training times and more efficient parallelization.

Bayesian learning is a probabilistic framework in which
prediction-observation procedure is used to gradually learn a
model [14]. An initial distribution is updated by witnessing
instances of the data, yielding posterior distributions that
incorporate the observations of the data through a mean and
variance. This framework has some advantages. First, user
knowledge can be incorporated into the algorithms, such as
measurement noise or in the prior distribution. Secondly, the
resulting model is also a distribution, from which confidence
bounds can be established. Lastly, the algorithms are gen-
erally easy to implement and can be designed in a flexible
manner. For example, they can be used as a direct method,
or alternatively, recursive schemes can be created. Numerous
methods exist in this framework, applicable dependent on the
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task. There are filtering algorithms, such as Kalman filters and
particle filters, which iteratively update a solution vector of a
model [15] [16]. Comparably, there are also kernel Bayesian
learning methods. One popular of such is Gaussian processes
[17], in which a multivariate normal distribution is found
over the set of functions that describe the input-output data.
Additionally, common kernel methods can be expanded to
Bayesian learning, as has been done with the LS-SVM in [7].

In this paper, the curse of dimensionality associated with
solving the large-scale dual problem, and deficiencies of cur-
rent low-rank approximation methods are addressed. The dual
problem is cast to a tensor train (TT) form, in which substantial
compression ratios can be achieved. In this form, the dual
matrix never has to be constructed explicitly, nor any other
matrix. A recursive Bayesian procedure is developed to solve
the large-scale dual problem in TT form by implementation
of a tensor network Kalman filter (TNKF). The contributions
of this work are:

o Circumventing the curse of dimensionality of solving
large-scale dual problems by using a low-rank TT rep-
resentation.

e A non-sampling based algorithm, that evaluates the entire
dual matrix to construct low-rank approximations of it,
and offers an alternative or supplement to current low-
rank approximation methods.

o Implementation of a recursive Bayesian filtering proce-
dure in which, unlike current low-rank approximation
methods, prior knowledge and measurement noise can
be specified, and prediction confidence bounds are gen-
erated.

This paper is organized as follows. In Section II the basics of
LS-SVMs and tensor networks are covered, including required
operations and the TT decomposition for the TNKF algorithm.
In Section III, the Kalman filter is introduced in the context
of recursive Bayesian learning. The final TNKF algorithm
is presented in Section IV and Section V how the compute
its performance on the four datasets in Section VI. Lastly,
conclusions and further work are discussed in Section VIIL.

The notation and abbreviations used in this paper are given
in Table I and Table II, respectively.

TABLE I: Used Notation

Scalars (a,b,...)
Vectors (a,b,...)
Matrices (AB,...)
Tensors (AB,...)
Tensor Train of A TT(A)
Matrix transpose (aT,AT,..)
Identity matrix of size N In
Kernel matrix of size N by N | Qp

TABLE II: Used Abbreviations

TT Tensor train

SVM Support-vector-machines

LS-SVM Least-squares support-vector-machines
FS-LSSVM | Fixed size least-squares support-vector-machines
KKT Karush-Kuhn-Tucker

SVD Singular value decomposition

TNKF Tensor network Kalman filter

II. PRELIMINARIES

A. Least-Squares Support Vector Machines

In a supervised learning setting, the input and output data
are known, from which a model can be derived. Consider the
training set {x;,y; }I¥ ;, with x; € R/, y; € R for regression,
and y; € {—1,1} for classification. The primal formulations
of the LS-SVM are given in Equation 1 and Equation 2, which
can be solved with quadratic programming.

E

1
g}ég JPT'imal(Wa e) = §WTW + g p e?
subject to: 1)
yi:WT(p(Xi)+b+eia Z:LaN
Primal regression model:
y(x) =wTo(x) +b
1 vy N
. 2
v{{l})g Jprimal (W, €) = §WTW + 9 ; €;
subject to: ?)

yi (Wl (x;) +b) =1 —e;,
Primal classifier model:

y(x) = sign (WTp(x) +b)

i=1,...,N

In the primal models, ¢(x) is a nonlinear mapping function
from the f-dimensional input space to the f;,-dimensional
feature space, ¢(x): R/ — R/», w is the primal weight vector,
v is a regularization parameter, e; are the model error terms,
and b the bias term.

The primal problems can be advantageous to solve for
large-scale problems if the number of features is small,
since it is parametric. However, the primal problem is often
impossible because a suitable nonlinear mapping function is
usually unknown, difficult to determine, and possibly infinite-
dimensional. Fortunately, the dual problem can be solved
alternatively, derived by rewriting the inner-products of the
nonlinear functions in the feature space by a user-defined
kernel function k (x’,x). This is known as the “kernel trick”,
which implicitly computes the inner-product in the feature
space without ever needing an explicit nonlinear mapping
function [7]. In Equation 3 and Equation 4 the dual problems
for regression and classification are shown, which require
solving of a linear system instead of quadratic programming.
In the dual form, the o weights are related to the error
variables through aj = ~ey, and are solved for to obtain a
regression or classification model.

¥
y

0 17 b|
|:1 QN +IN/’}/:| |:Cl:| o
Dual regression model:
N 3)
y(x) = Z aik (x,%x;) +b
i=1
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Dual classification model: 4)
N

y(x) = sign (Z yioik (x,%;) + b)
i=1

B. The Large-Scale Dual Problem and Low-Rank Approxima-
tion Methods

For small problems, the dual is simple to solve. Many
direct and iterative methods are applicable, such as the LU
decomposition and conjugate gradient [10] [18]. Large-scale
problems become difficult or infeasible because these meth-
ods need explicit storage of - and directly operate on the
kernel matrix. Due to the O(n??) memory requirement and
computational complexities, O(n>?) for direct methods and
O(n?) for iterative methods (I iterations), the curse of
dimensionality limits their application. A common way to
deal with this difficulty is to employ low-rank approximation
methods. Utilizing a subset of the data by sampling S columns,
it is possible to approximate the solution. A trade-off between
the obtainable accuracy, and the associated computational
and memory requirements is made for the problem to be
feasible. Two well-known low-rank approximation techniques
for LS-SVMs are the Nystrom method and FS-LSSVM [11]
[12]. Both are sampling-based methods that implicitly rely on
the eigendecomposition of the kernel matrix. The Nystrom
method solves the LS-SVM in the dual with computational
and memory complexities of O(S?n? + S3) and O(Sn?).
FS-LSSVM estimates a nonlinear mapping function in the
dual, then solves the primal problem. The computational and
memory costs of FS-LSSVM are O(S?n? +253) and O(S?)
[9]. For both methods, the sampling procedure has a significant
impact on the performance. Many procedures exist for this,
such as uniform (random) sampling, or if computationally
achievable, more advanced adaptive techniques can be used,
such as sparse greedy matrix approximation [19], leverage-
scores [20], column-norm sampling [21], and Renyi-entropy
sampling [7].

C. Tensor Network Basics

Tensors are multidimensional extensions of vectors and
matrices to higher dimensions, relevant in many fields: signal
processing, machine learning, and quantum physics [22] [23].
In this article, we define a tensor 7 € R™ *™2-"d gs having an
order d and dimensions n1,...,nq. The elements of a tensor
are given by its indices, (i1,¢2,...,i4), for which the MATLAB
notation is used: 1 < 45 < ng. Even though tensors can be
worked with in their mathematical form, it is easier to use
a visual representation, as shown in Figure 1. A tensor is
illustrated as a core (circle) with a number of outgoing edges
(lines) equal to its order.

Tensor networks are factorizations of tensors, analogous
to matrix factorizations of matrices. In fact, it is a general-
ization of matrix decompositions to higher orders. An easy
introduction is given through the singular value decompo-
sition (SVD) of a matrix A into two orthogonal matrices

13
@ @ : : g : : g
1 11 11

Fig. 1: Diagrammatic tensor notation of a scalar (a), a vector
(a), a matrix (A), and a 3-dimensional tensor (A).

(U,V) and a diagonal matrix (X). It is one specific type of
matrix factorization, and can therefore also be represented
as a tensor network. Visually, this is shown in Figure 2.
The interconnected edges represent multiplications between
the SVD matrices. The sizes of the shared edges (r1,r2) are
determined by the number of singular values and are the
dimensions of matrix ¥. Generalized for higher orders, the
shared edges between tensors represent tensor contractions,
which are summations over shared indices as defined in
Definition 1. Tensor contractions can be understood as a higher
order generalization of matrix multiplications.

1 11

Fig. 2: Tensor network representation of the SVD.

VT

12

Definition 1 (Tensor contraction [24]). Without loss of gen-
erality, a tensor contraction of two tensors over two shared
indices io and i3 is mathematically defined as:

na ns

Cliv,iais,ig) = Y Alir,iz,i3)Bia, is, ia, i5,16) (5)

ia=11i3=1

In Figure 3, the visual representation of Definition 1
is given, in which tensors .4 and B are contracted over
two indices. As can be seen, more than one edge can be
interconnected and contracted. The number of free edges of
a tensor network determines the order of the resulting tensor.
For this reason, the contraction results in a 4-way tensor.

14 7
- - E me g
i3
i6 i6

Fig. 3: Diagrammatic representation of a tensor contraction
over the shared indices 5 and 3.

An important concept in tensor learning is reshaping. Ten-
sors can be folded and unfolded to be represented in different
dimensions. It is useful for concepts like matricization and ten-
sorization. A matricization unfolds a tensor into a matrix, and
is commonly implemented to allow straightforward application
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of concepts from linear algebra. A tensorization folds a vector
or matrix into a higher-dimensional tensor, after which it can
be decomposed with tensor networks. These operations are
shown in Figure 4. The right arrow displays a matricization
operation, in which the indices are joined together to form
a new artificial combined index. The left arrow denotes the
tensorization operation, in which indices are split to form
more producing a higher-dimensional tensor. Both operations
are accomplished through the reshape operation presented in
Definition 2.

Definition 2 (Reshape operation [25]). We adopt the MAT-
LAB reshape operation, which reshapes a d-dimensional ten-
sor into a tensor with dimensions ni X ng X ... X ng by
“reshape( A, [ni,n2,n3,...])". The total number of elements
of the reshaped tensor must be the same as the initial one
N1 X ng X ... X Ng.

12 U4 1g

% i1i2i3
«-—

11 13 15

141576

@

Fig. 4: Arrow to the right: matricization of a 6th-order tensor
over its index i3. Arrow to the left: tensorization of the matrix
to a 6th-order tensor.

D. Tensor Trains

In their high-dimensional form, tensors can be difficult to
work with. Firstly, the computational and memory complexi-
ties are burdensome because of the exponential scaling with
the order d, O(nd). Secondly, concepts from linear algebra
are not directly applicable, making analysis difficult. Tensor
networks give more flexibility, as the tensor is factorized into
a number of lower-dimensional tensor network components,
also called cores. These factorizations can alleviate the adverse
scaling and offer more insight. The CP and Tucker decom-
positions are two well-known tensor network structures, but
have significant drawbacks, such as NP-hardness and poor
scaling [24]. The tensor train (TT) decomposition avoids these
issues and can therefore be a more easy-to-use and robust
format [26] [27]. As the name suggests, a TT decomposition
factorizes a tensor into a chain of cores, which are linked
through their ”TT-ranks” (r, rx < r) as shown in Figure 5
and 6. These ranks signify the amount of correlation between
the dimensions of a tensor, and determine the complexities of
the representation. In this paper, two types of tensor trains are
used: tensor train vectors, illustrated in Figure 5, and tensor
train matrices in Figure 6. Intuitively, these can be thought of
as a coarse graining procedure. TT vectors can be understood
as vectors inside vectors, and TT matrices as matrices inside
matrices. For small TT-ranks, this format yields significant
compression ratios as the memory complexities scale with the
ranks. The storage cost scales O(dnr?) for a TT vector, and
O(dn?r?) for a TT matrix.

13
i1 i1 19 )

13

Fig. 5: Diagrammatic representation of a tensor train vector
decomposition of a 3-dimensional tensor. Each core (A*))
can be understood as a vector as they have one free edge.

192 i4 16 .
22 2 L6
r1 A\ 9
= (4o %? A®)
. 11 i3 ’L'5
11 13 15

Fig. 6: Diagrammatic representation of a tensor train matrix
decomposition of a 6-dimensional tensor. Each core (A®)) can
be understood as a matrix as they have two free edges.

Essential operations performed with the TTs in this paper
and summarized as following. A contraction between two
TTs is accomplished by contracting the k-th core of one
TT with the k-th core of the other TT, and denoted by
”Contract(T'T(A), TT(B))”. In Figure 7 this is visualized for
a contraction between two TT vectors, which in this case
is equivalent to an inner-product as there are no free edges.
Similarly, the outer product between two TTs can be com-
puted by taking the outer product between individual cores,
given by “Out-Prod(TT(A),TT(B))”, shown in Figure 8.
The Hadamard product is calculated by applying the Khatri-
Rao product between respective individual cores. For these
operations, the order in which the TTs are written matters, as
only adjacently written TTs have shared indices. Addition and
subtraction in TT form is done by a concatenation procedure
between respective cores. Multiplication between a scalar and
a TT is executed by multiplying the elements of one of the
TT cores by the scalar. These operations are denoted by their
regular mathematical notation. For more detailed explanations
see [24] [26] [27].

A A A
i1 12 13 (7
B rB rB
B 2) (3) B®

&Y
Fig. 7: Diagrammatic representation of an inner product be-

tween two tensor train vectors. As there are no free edges, the
result is a scalar.

In this paper, the "TT-SVD” and “TT-rounding” algorithms
from [26] are used for the construction and rounding of
the TTs. In the TT-SVD algorithm, a J-truncated SVD is
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ER
ry

Fig. 8: Diagrammatic representation of an outer product be-
tween two tensor train vectors. Each dotted line represents an
outer product between the respective cores. In this particular
case, the result is a TT matrix.

o
©-

iteratively applied on matricizations according to each tensor
dimension to form a TT. According to a specified maximum
rank and/or norm (e, ), the TT “truncation parameters”, the
smallest singular values are removed. The remaining singular
values determine the respective TT-ranks between the k-th and
(k+1)-th cores, and therefore also the computational and mem-
ory requirements of the resulting TT. The TT-SVD constructs
a TT as seen in Figure 5 and Figure 6 with a computational
cost of O(dnr3). The TT-rounding algorithm is necessary
to limit the memory and computational complexities, when
the TT-ranks grow too large. Rank growth is caused by
mathematical operations, such as contractions and additions,
and can cause the TT representation to become burdensome.
The algorithm first computes QR decompositions of the TT
cores, then performs core contractions, and lastly employs
the TT-SVD algorithm to reconstruct the TT. Its computa-
tional cost is O(dnr? + dr*). Even though TT-rounding can
limit rank growth, it can also be a computational bottleneck
due to the quartic scaling with the ranks. Fortunately, with
quantization, it is also possible to restrain the TT-ranks.
Quantization is the process of reshaping a large-dimensions-
low-order tensor into a small-dimensions-large-order tensor
O(nlarg ml) — O(n, Smal‘f‘“). Computing a TT after quantization
generally requires much smaller TT-ranks in its representation.
Very high compression ratios can be achieved this way, making
it possible to store and work with extremely large datasets [28].

III. BAYESIAN LEARNING AND THE KALMAN FILTER

A Bayesian learning approach is adopted to solve the LS-
SVM dual problem, which has numerous benefits. First, prior
knowledge can be incorporated, such as measurement noise
for imperfect observations, and the specification of an initial
distribution for the solution. Secondly, the learning process
yields confidence bounds, informative of how well the data is
described by the mean. Lastly, Bayesian learning is a flexible
and easy-to-use framework, and can readily be adopted to
solve the LS-SVM dual problem.

A regression task is considered in this derivation, but the for-
mulation can easily be modified for a classification case. Here,
the dual problem is simplified to C& = y for convenience.
C' is the dual problem matrix, @ = [b; ], and y = [0;y].
It is desired to obtain a linear model to fit the kernelized
data by finding a suitable &, as presented in Equation 6. A
zero-mean Gaussian variable u ~ N(0,w?) is introduced to

model observation noise, and serves as a robustness measure
to prevent overfitting. Each output value is associated with a
row of the dual problem ¢;, as given by the subscript /.

I =ca+u (6)

The Bayesian learning process is summarized by Bayes’
rule Equation 7 [15].

T
P (e |yrr) o P(a| mo, Po) [[ P @k | cio,u) — (7)
k=1

By witnessing 1" observations of the data, a posterior
distribution can be computed based on updating the prior.
In this paper, it is assumed that the dual weights adhere to
a Gaussian distribution such that the prior can be specified
as & ~ N(mg, P,). Because the prior and measurement
noise are Gaussian, the likelihood and posterior distributions
are also Gaussian. As a consequence, from Bayes’ rule an
analytic solution can be derived to calculate the posterior batch

distribution & ~ N'(m7, Pr), given in Equation 8.

mr

-1
[Pol + ECTC] {12(;@ + Py lmg

~1
Pr [Po_l + ECTC]
w

The matrix inverse computations in the batch equations pose
a significant problem for large-scale Bayesian learning, as they
scale O(n3?). By realizing that posterior distributions can also
serve as prior distribution for each succeeding observation,
a recursive framework can be developed that avoids matrix
inversions. In this paper, single observations are used to
update the & distribution, which is equivalent to solving the
dual problem row-by-row. Linear update equations can be
designed for this iterative procedure, that can incorporate user-
knowledge of the update-dynamics, as shown Equation 9.
For the classification case, the iterative model is modified by
changing 9, to [0;1] = 1, presented in Equation 10.

Regression model:
a1 =a;+q )
Yy =coy+u

Classification model:

a1 =0;+4q (10
I, =cqay+u
In the update equations of the dual weights, a Gaussian
noise term g ~ A (0, Q) is introduced to model uncertainties
in the updates. The recursive Bayesian learning procedure is
written in Equation 11.

an

The designed recursive Bayesian framework directly leads
to the Kalman filter equations, an optimal-closed-form algo-
rithm for linear stochastic models [15] [16]. By recursively

P (o | g1a) x P(a—1 | J1a—1) P Uk | c10u—1,u)
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predicting and measuring the output values, or labels, the
&1 distribution is updated for each row. The Kalman filter
equations are presented in Equation 12 and 13, split into a
prediction and update (observation) step. The Kalman filter
requires a number of assumptions. First, all distributions are
Gaussian, and the observation noise v is LLD with w? > 0.
Secondly, linear iterative prediction and update models are
required, which can be modeled differently than in this paper
if desired [15].

Prediction step:

m; =m;_ (12)
Pr=P_1+Q
Update step:
v =@ —cm;  (Regression)
v =1, —¢m;  (Classification)
s1 =P ] +w? (13)

kg = Pl_clTsl_l
m;=m; + kv
B = ]Dl_ - klslkir

The Kalman filter is summarized as follows: m; € RY
and the P, € RY*N are the mean vector and covariance
matrix of & after iteration [, &; ~ N (m;, P;). The covariance
matrix can be understood as a measure of uncertainty in &,
which theoretically converges to zero over the iterations. The
noise covariance matrix () is a weighting term to describe the
confidence in the update of covariance matrix. If it set to zero,
or used as a “forgetting” term (P~ = AP;_;), the recursive
least squares algorithm is obtained for the specific iterative
models from Equation 9 and 10. A forgetting term can induce
an exponential convergence in of the covariance [29, pg.240].
The prediction error, dependent on whether classification or
regression is performed, is given by v; € R. Variable s; € R,
is the prediction-error variance, which is partially dependent
on the variance of the observation noise. Lastly, k; € RN
is the Kalman gain, which influences the degree to which
observations are used to update the distribution of &;. Termi-
nation (L) occurs when all rows of the dual problem have been
iterated over, or if user-specified stopping conditions have been
satisfied. Stopping criteria can be designed arbitrarily, and
can help prevent overfitting and save training time. Common
specifications are based on the covariance norm, but for appli-
cation on LS-SVM dual problems, the Karush-Kuhn-Tucker
(KKT) conditions can also be used. The final distribution
(ap, ~ N(myp, Pr)) is the obtained solution (posterior) for the
training stage. The final mean m, is the obtained model for
regression or classification, for which confidence bounds can
be calculated with its covariance (Pr,), similarly to Gaussian
processes [4][17]. New points can be learned with the Kalman
filter in similar fashion, by using the obtained solution as the
new prior distribution.

IV. TENSOR NETWORK KALMAN FILTER

The Kalman filter gives a simple iterative method for
solving the dual problem, but the covariance matrix limits its

feasibility for large-scale problems. Its explicit representation
demands an O(n2?) complexity. Fortunately, recasting the
Kalman filter to a tensor network Kalman filter (TNKF) form
avoids this problem, as has been done similarly in [30] and
[31]. The reformulation is simple, vectors are represented
as TT vectors, matrices as TT matrices, and scalars remain
scalars. To generate the TTs, the Kalman filter variables are
quantized and reshaped to tensors by a user-defined n and d.
After choosing a quantization, the variables can then be given
in their TT form, resulting in the compressed representation
in Table III.

TABLE III: Variables of the TNKF

Variables Recast to | TT variable g/zzrl?l?;y
P TT matrix | TT(P;) O(dn?r?)
c, my, ky TT vector | TT(c;), TT(my), TT(k;) | O(dnr?)
Y1, vy, S;, w | Scalar Unchanged O(1)

The operations of the Kalman filter also easily translate
to the TT format. As described in Subsection II-D, these
are simply done by performing sequences of contractions
or concatenations. The TNKF algorithm is summarized in
Algorithm 1.

Algorithm 1 Tensor Network Kalman Filter

Require: 7T (my), TT(Py), w?, k(x', ), {zi, v } 1, 7 A\,
n, d, (e, 7).
while Termination conditions not met do
1.TT(m; ) =TT(m;—1)
TT(P) = TT(Py) + Q
. Construct [-th dual row ¢;, with k (x;, ;) and ~
. Reshape ¢; to a n?-tensor, Cj.
. TT(CI) = TT—SVD(CI, €c, ’I“c).
. vy = y—Contract(TT(C;), TT(m;)) or
v = 1—Contract(TT(C;), TT(m;))
7. s1 = Contract(TT(¢;), TT(P),TT(¢;)T) + w?
with intermediate TT-rounding , (€5, 7s)
8. TT(k;) = Contract(TT (P, ), TT(c;)) s; "
9. TT(k;) = TT-rounding(TT (k;), €k, %)
10. TT(ml) = TT(mf) + TT(kl) - UL
11. TT(my) = TT-rounding(TT (7)), €m, 'm)
12. TT(P,) = TT(P; )+Out-Prod(TT(k;), TT (k;))s; *
13. TT(P;) = TT-rounding(TT(P,),ep,rp)
end while

(o) NV, IO I

The initial distribution of & is supplied in TT form as
the explicit construction of the covariance matrix can be
impractical or even impossible for large datasets. In [30],
a more detailed explanation is given on how a TT-rank-1
initial distribution can be supplied for the TNKF. In each
iteration, a row of the dual is constructed with the training
data and kernel function. The dual row is then reshaped to
a tensor, after which it is decomposed to a low-rank TT
vector. The necessity of storing more than one row of the
dual matrix is thereby avoided, and permits application of very
large datasets. During the iterations, the ranks of the TTs have
to be truncated after operations because their growth quickly
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diminishes the computational and memory advantages of this
format. For each TT variable, truncation parameters can be
defined, for convenience, a vector notation is used to refer to
all of them (e, r). These govern the size of the ranks, and
therefore determine trade-off between accuracy and algorithm
complexity. In Table IV, the complexity of each step is
presented. Two assumptions are made in this, Q is designed as
a forgetting factor (A # 1) with cost O(n?rp), and that kernel
functions need at least O(n??) operations per row to compare
the data points. From the overall TNKF complexity, which
includes the construction of the [-th dual row, it is clear that the
ranks heavily influence scaling. Especially the ranks of 77(¢;)
and TT'(P,) determine much of the algorithm’s computational
cost, as they are required in many of the steps, and impact the
ranks of the other variables. It is also evident that construction
of the dual rows can be a dominating factor for large datasets.
Neglecting the complexity of this, and of lower order terms,
training with the TNKF scales approximately O(ldnr®), where
r can be considered the largest achieved rank in the algorithm.

TABLE IV: Complexities of the TNKF

w2

=

[e-]
-1

Computational complexities
o)

O(rpn?)

O(= n*!) = (O(= N?))
o)

O(dnrd)

O(dnr2r2,

O(dnriry)

O(dn?r2r2,

O(dnri +dr})

O(nr)

O(dnr2, +drd))
O(dn?ry)

13. O(dnr2 + dr)

Overall ~ O(I(n?? + dn2r? 4 dnrird))
Only TNKF | ~ O(ldnr%)
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V. COMPUTATION OF CONFIDENCE BOUNDS

The output of Algorithm 1 is the posterior distribution of
the dual weights and bias, P(a|{y;},) ~ N(TT(my),
TT(Pr)), which can then be used for validation and testing.
The notation for test data and variables is a superscript ¢. The
dual models, from Equation 3 and 4, can be implemented in TT
form to keep working with lower computational and memory
complexities. Consider N* test points, which can also be

. t . t
exponentially large (Nt — n®), {x!}N, for which {y!}¥,
are to be predicted. Similarly to Algorithm 1, dual rows based
on the training and test data are constructed and transformed
to a TT vector TT'(c}), with indices of size n and d cores.
Then, depending on the task, are eventually contracted with
TT(mp), yielding the predictions. To obtain the confidence
bounds of the predictions, step 7. from Algorithm 1 is repeated
with TT(c}). TT(Py) is used to construct the +30 (99.73%)
confidence bounds by incoporating the standard deviations
into the model. The bounds describe how well the kernel

regression or classification models fit the data, thus are still
very dependent on the hyperparameters. The TT test regression
and classification procedures are given in Algorithm 2 and 3,
respectively.

Algorithm 2 TNKF Regression - Prediction and computation
of confidence bounds of new inputs.

Require: 7T (my), TT(Pr), w?,
{x 3N v, n, d, (e, 7)
for j=1:(N'+1)do

1. Construct j-th dual row ¢}, with k (2}, ;) and ~

. Reshape cﬁ» to a n-tensor, C;.

.TT(c}) = TT-SVD(C}, e, 7e).-

. gt = Contract(TT(my,), TT(c}))

. 07 = Contract(TT(c), TT(Pr), TT(ct)) + w? with
intermediate TT-rounding (€yar, Tvar)

end for

yt = gt

Yooy = ' 30

k($/733), {xi}ilil’

[T SO I )

Algorithm 3 TNKF - Classification and computation of
confidence bounds of new samples.

Require: TT(myz), TT(PL), w? k(z' ), {x;vi}},,
{& 3, v, n, d, (e, 1)
1. Reshape y to a n?-tensor.
2. TT(y) = TT-SVD(y, €y, Ty).
3. Compute T'T(3) = Hadamard(TT (y),TT(my)),
for j=1:(N'+1)do
4. Construct j-th dual row, c?, with & (x;v, x,-) and 7.
. Reshape c§» to a n-tensor, C;.
. TT(c!) = TT-SVD(C!, €0, 7).
. g% = Contract(TT(8), TT(c})
. 07 = Contract(TT(ct), TT(P), TT(c}))) + w? with
intermediate TT-rounding (€yar, Tvar)
end for
y' = sign (¥°)
Y50 = sign (§' +30)

00 J O\ W

In comparison to the other considered low-rank approxi-
mation methods, Nystrom and FS-LSSVM, the TNKF can be
advantageous if the data admits to a low-rank TT structure.
Without considering the computational cost of sampling pro-
cedures and construction of dual matrices or rows, the TNKF
is favorable when the alternatives require many samples for the
problem, as given in Table V. If this is the case, the compu-
tational and memory benefits of the TNKF can be significant
because the Nystrom and FS-LSSVM methods require storage
of and operate on matrices. Additionally, for small TT-ranks,
the final dual model complexity produced by the TNKF can be
significantly smaller because of the TT format. If the number
of needed support vectors is small, then the Nystrom and FS-
LSSVM are favorable. This is simply because the subset is
small and informative enough to compensate for evaluating
the entire dual matrix, like TNKF does. On the other hand,
because the TNKF evaluates the entire dual to construct a J-



JOURNAL OF IIEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
truncated TT, it incorporates the most essential information

and is deterministic, unlike the other methods.

TABLE V: Complexities of Low-rank
Approximation Methods [9].

Method Comput?tional Memory. Model .
complexity complexity complexity
Nystrom 0(S%n? + S3) O(Sn%) O(n?)
FS-LSSVM | O(S?n? +253%) | O(S?) O(f)
TNKF O((J + L)dnr®) | O(n?) or O(dn?r?) | O(dn?r?)

* Here, N is written as n?, f is the number of features of a,
and J the number of iterations in Algorithm 2 or 3.

VI. EXPERIMENTS

In this section, the TNKF algorithm is applied to a number
of large-scale regression and classification problems and com-
pared to the FS-LSSVM and Nystrom methods. In the first
regression problem a sinc function corrupted with Gaussian
noise needs to be estimated, as done in [7]. In the second
regression problem, the F16 nonlinear benchmark dataset, the
vibration dynamics of a dummy-load equipped wing needs
to be modeled from a sine-sweep input signal [32]. A large-
scale version of the two-spiral problem is the first classification
problem, as considered in [7], but here with over 90 turns
around the center. Lastly, the Adult classification problem [33]
is used to determine whether a person’s annual income is
greater, or less than, $50k per year. Table VI gives an overview
of the datasets.

TABLE VI: Considered datasets in this paper

# Training and | # Test and

Datasets Quantization Quantization # Features
Noisy sinc 16384, (214) 8096, (213) 1

F16 Benchmark | 16384, (214) 16384, (214) | 13
Two-spiral 65536, (216) 65536, (216) | 2

Adult 19683, (39) 2187, (37) 16 — 99

Because of the differences between the considered low-rank
approximation methods, comparison is not straightforward.
The following steps and assumptions are made to simplify
the process.

e The Nystrom method uses a uniform random sampling
procedure and the FS-LSSVM uses the Renyi-entropy
criterion.

e The number of Renyi sampling iterations for FS-LSSVM
is chosen equal to the number of iterations of the TNKF.

e Multiple performance measures are shown for each
method, including different truncation parameters and/or
samples (S).

e The same hyperparameters are used to compare the
methods. These are found by grid searches and iterative
tuning of the TNKF.

« For regression, the root-mean-square error (RMSE) and
fit percentage based on the normalized root-mean-square

error (NMRSE) are used as performance measures, shown
in Equations 14 and 15.

(14)

NMRSE = 100 - (1

bo-dl_Ys as

B lly — mean(y

« For classification, the performance is given through the
percentage of correctly assigned labels. The confidence
(%) is based on the total number of misclassifications
by considering the (30) confidence bounds as decision
models.

In the upcoming subsections, the following conventions are
used: All datasets are centered, effectively removing the bias
term and first column of the dual problem. This means that
only the dual weights are solved for (c). The bias term can
simply be computed by calculation of the mean and added
to the final model if desired. To visualize the performance
of the TNKF, for the purpose of clarity, local snapshots of
the centered or normalized large-scale problem are used. In
all figures, the data points are printed blue, the TNKF mean
is printed red, and the confidence bounds in green. In the
performance tables, "NA” stands for “not applicable”. This
is when the algorithm is impractical or infeasible because
of computational or memory requirements. The truncation
parameters for the TNKF are given below the performance
tables. The number of samples for Nystrom and FS-LSSVM
is given through “# S” after their names.

All experiments were conducted in MATLAB - version
R2019b, and performed on a laptop with an Intel 6-Core i7
processor running at 2.6 GHz and 16GB of RAM. The Matlab
code can be downloaded from https://github.com/mlucatud/
LS-SVM_Dual_TTKF. For the FS-LSSVM and Nystrom
methods the “Is-svmlab” toolbox was used, freely available
at https://www.esat.kuleuven.be/sista/lssvmlab/.

A. Noisy Sinc Function

To find an approximation of ¢, the TNKF needs to be
initialized. The sinc function is corrupted with noise dis-
tributed as N'(0,0.1%). It is assumed that this is known, and
therefore w is equal to this noise. The initial distribution of
a is N(0,diag[5...5]), supplied in TT form, to emphasize
little confidence uncertainty in the initial solution. The RBF
kernel function is used and hyperparameter values chosen
as: (y = 0.005, 0%z = 0.005). Lastly, the output data is
sorted in ascending order according to the input values to help
achieve small TT-ranks. It should be noted that sorting the data
can prohibit implementation of early stopping in the TNKF,
as consecutive observations are typically much more local.

The performance of the TNKF is dependent on its ranks,
which are affected by the truncations and selected kernel
hyperparameters. If both are appropriately specified, the TNKF
can obtain near-optimal RMSE and fit values, that are de-
termined by the noise’s standard deviation (0.1). The perfor-
mance is poor when the truncations are specified too large, as
expected, proven by TNKF ¢.
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TABLE VII: Test performance of the approximation methods
on the noisy sinc function (RBF, v = 0.005, 0% = 0.005)

(a) Performance values

Method aming | et | Fit %
TNKF ¢ 0.1994 0.1998 65.1
TNKF? 0.1042 0.1044 74.8
FS-LSSVM 20 S 0.2605 0.2600 25.5
FS-LSSVM 100 S | 0.0998 0.1019 75.3
FS-LSSVM 500 S | 0.0991 0.0994 | 76.0
Nystrom 10 S 0.7877 0.7862 31.6
Nystrom 50 S 0.1463 0.1482 60.2
Nystrom 250 S 0.1397 0.1402 56.0
(b) Truncation values for the TNKF
€m €c €p €K €s €var
0.005 0.1 0.02 0.005 0.1  0.001
b0 0.003 0.015 0.0075 0 0.015

For this experiment the number of samples does not need
to be very large for the FS-LSSVM and Nystrom methods.
These methods may therefore be preferable over the TNKF
in terms of complexity. FS-LSSVM also manages to realize
near-optimal results. Like the TNKF, FS-LSSVM is also less
sensitive to the chosen hyperparameters. With the Renyi-
sampling criterion, this method can select the most informa-
tive columns with sampling to acquire a nonlinear mapping
function. The Nystrom method is generally more sensitive
for the hyperparameter values. The selected values are not
entirely suitable as they lead to a degree of overfitting. For
this reason, the Nystrom method has a moderate performance.
If the hyperparameters were tuned per method, however, the
Nystrom method would perform better and be the easiest
computationally.

One advantage the TNKF has is that the truncation-
parameters allow it to be less sensitive to overfitting. This
is espically the case when the kernel variance is chosen small,
as is the case here, as the truncations act as generalization
measures. Truncations are easiest and most beneficial when
the hyperparameters are small because this produces a rapidly
decaying singular value spectrum for which low TT-ranks
can be achieved in the TT-SVD. However, the selection of
truncation and kernel parameters is interdependent. A balance
needs to be found between them in order to fit the data
well, with reasonable complexities. A corollary of performing
truncations, or generalizations, is that the confidence region
becomes wider, allowing for more uncertainties in the prob-
lem. The regression of TNKF® exemplifies this, shown in
Figure 9. The mean (red) describes the data well, but as can
be seen from the peaks of the confidence bounds (green), local
variances can still be large. This means that the covariance has
not completely converged to zero, due to truncations, and that
local confidence can be smaller.

The TNKF performance is also impacted by the specified
noise variance w? and the initial distribution. If w? is chosen
differently than its true value the measurements are considered
less, or more, informative. This influences the balance between
generalization and overfitting, affecting both the width of

Test performance TNKF - noisy sinc
T T

o

data
*  mean
confidence bounds

0.5

-0.5 -

-2.5 -2 -15 -1 -0.5 0 0.5 1 1.5 2 25
X

Fig. 9: Regression performance of TNKF®. Local confidence
can differ depending on truncations and initialization, and
denotes the accuracy of the approximation.

the confidence bounds and the accuracy of the mean. In
the supplied initial distribution, the mean does not impact
regression. The first row of the dual problem is a KKT
optimality condition (3 o; = 0) that resets the mean to zero.
The initial covariance does impact the regression, but only if
significant truncations are performed or early stopping is used
in the TNKEF, such that local variances (var;) do not converge
to w?. Therefore the initial covariance influences the width of
the covariance bounds. In Figure 10, the initial distributions of
« in TNKF? are set equal to the noise distribution. This results
in smoother confidence bounds because the local variance
peaks from Figure 9 are iteratively set equal to w?.

Test performance TNKF - noisy sinc - Initial distribution « equal to noise
T T T T T T

data
#*  mean

confidence bounds | |

-2.5 -2 -15 -1 -0.5 0 0.5 1 1.5 2 25
X

Fig. 10: Regression performance of TNKF?, but with the initial
distribution set to equal to the noise, u ~ N(0,0.1?)

B. F-16 Ground Vibration Test

In this paper, the sine-sweep force data is considered as
the input signal, containing a frequency range [15-2] Hz with
a rate of —0.05 Hz/s. It is generated from a shaker located
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underneath the wing of an F-16 fighter jet. The acceleration
of a dummy payload at the edge of the wing is used as output
data. Two separate sine-sweep tests are used, one serving as a
training set, the other as a test set. For each, a linear subset is
used starting from the 5000-th sample, = € [5000:5000+24].
A linear kernel is implemented with regularization (y = 0.05),
and based on an auto-regressive structure that includes the
previous input, no input delays, and the 12 last output values.
In the dataset the noise is estimated from the first 1600-
samples, giving u ~ N0, 3 - 1079). The initial distribution
of a is N(0,diag[1...1]). The performances are given in
Table VIIIL.

TABLE VIII: Test performances of the approximation methods
on the F16 Ground Vibration Test (Linear, v = 0.05)

(a) Performance values

Trainin, Validation .
Method RMSE g RMSE Fit %
TNKE @ 0.0981 0.0976 90.7
TNKF? 0.0327 0.0322 94.3
FS-LSSVM 5 S | 0.0190 0.0177 982
FS-LSSVM 10 S | 0.0142 0.0130 987
FS-LSSVM 20 S | 0.0099 | 0.0083 99.2
Nystrém 3 S 0.0819 0.0743 86.2
Nystrém 5 S 0.0180 0.0141 975
Nystrém 10 S 0.0141 0.0119 97.9

(b) Truncation values for the TNKF performances

€Em Te €Ep Tk €s €var
0.001 6 0.025 6 0.005  0.001
b. 0.001 3 0.05 3 0.05 10-6

This dataset is difficult to learn with the TNKF. Even though
the frequencies are learned perfectly, which can be accom-
plished with very low TT-ranks due to the auto-regressive
structure, the amplitudes are not. To correctly learn the
amplitudes, the TNKF requires large TT-ranks, which are
computationally expensive. Therefore truncations had to be
performed at a cost of significant descriptive power.

The Nystrom and FS-LSSVM methods have the benefit of
approximating the kernel with its eigensystem. Due to the
similarities, the kernel matrix is easily described in a low-rank
form with few eigencomponents. Therefore these methods can
applied with very few samples required.

C. Two-spiral Classification Problem

A large-scale version of the two-spiral problem is consid-
ered, a well-known and difficult machine learning problem.
The task is to classify two identical, but phase shifted, spirals
from each other. The data is separable, but a highly nonlinear
decision boundary has to be found [7]. No noise is considered
to act on the data, but has to be chosen greater than zero
due to the Kalman filter assumptions. It is therefore initialized
with distribution u ~ AN(0,1076). The RBF kernel is used,
and the hyperparameters are: (y = 0.0045, 0%5 = 0.005).
The initial distribution for the weights is chosen as, o ~
N(0,diag[1...1]). The data is sorted according to the labels,
which allows for very small ranks, even TT-rank-1 structures.
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TABLE IX: Test performance of the approximation methods
on the large-scale two-spiral problem (RBF, v = 0.0045,
0% 5 = 0.005)

(a) Performance values

Method E:;:::(tlly% Confidence %
TNKF ¢ 100 100

TNKF? 100 100
FS-LSSVM 50 S 0.9 NA
FS-LSSVM 500 S | 94 NA
FS-LSSVM 800 S | 15.25 NA

Nystrom NA -

(b) Truncation values for the TNKF

em/Tm €clre  €p €L/TE €s €var
0.001 0.005 0.01 0.005 0.005 0.01
rm=1 re=1 0.001  7g=1 0 0.05

The TNKF manages to distinguish the two spirals perfectly,
as displayed in Figure 11. Additionally, confidence bounds of
the decision function are also found. An example of decision
confidence bonds is shown for a small scale problem with
sorted data, Figure 12. Because of the small TT-ranks the
TNKF only requires about 20 minutes for the classification,
and does this without the explicit storage of a matrix. The
Nystrom method could not be used, because the memory
complexities needed to construct the matrices and solve for
o exceeded the RAM capabilities. Computing a nonlinear
mapping function in the FS-LSSVM is also difficult for this
particular problem, due to the many turns. Many support
vectors have to be used in order to estimate an accurate
function, but the number quickly makes the method infeasible,
approximately the case when S >1000. This problem demon-
strates that the TNKF is especially suitable in cases where the
Nystrom and FS-LSSVM methods can’t be used or perform
poorly.

Fig. 11: The two classified spirals classified with the TNKF “.
A sub-domain is shown for clarity.
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TNKF confidence bounds - two-sprial problem
T T T

#*  Mean
Bounds

0.04

Class decision value of sorted data
o

I I I .
0 100 200 300 400 500
instance

Fig. 12: Confidence bounds for a two-spiral decision function.
A small-scale example is used for clarity.

D. Adult Dataset

The classification problem is to predict whether a person
makes over $50k a year. Fourteen features, numeric and
categorical, are available. In this paper, all variables are
utilized. Categorical variables are converted to numeric by use
of dummy variables, therefore the total number of features
artificially increases to 99. The RBF kernel is used, and the
chosen hyperparameters are: (y = 0.0015, 0%, = 0.5).
TNKF® and TNKF? are trained on data sorted according to
their labels. TNKF ¢ is trained on unsorted data to demonstrate
early stopping, which needs observations of both classes
before termination. The TNKFs are implemented with initial
distributions, v ~ AN(0,diag[1...1]) It is assumed that the
noise is irrelevant to the consensus data, therefore it is chosen
very small u ~ N(0,1076).

TABLE X: Test performance of the approximation methods
on the Adult dataset (y = 0.0015, 0% 5, = 0.5)

(a) Performance values

Method E:;::gy% Confidence %
TNKF ¢ 83 98.2

TNKE? 84.5 99.2

TNKF ¢ 814 96
FS-LSSVM 50 S 443 NA
FS-LSSVM 500 S | 73.2 NA
FS-LSSVM 800 S | 76.2 NA

Nystrom 5 S 84.4 NA

Nystrom 25 S 84.4 NA

Nystrom 100 S 84.4 NA

(b) Truncation values for the TNKF

€m €c/re €p Tks €k €s Cvar
@ 0.001 =0 0.005 0.005 0.001 0.001
b 0001 €=0.01 0.003 0.003 0.001  0.001
¢ 0.001 re=30 0.001 =0 0.001 0.001

The TNKEF is capable of achieving performances equal to
that found in the literature for SVM’s and LS-SVMs [7]
[34]. The sorted data adheres to small TT-ranks, therefore
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severe truncations are unnecessary. TNKF® and TNKF® show
this. TNKF ¢, which employed early stopping and a forgetting
factor, managed to reach decent labeling power. For the
chosen termination conditions and forgetting factor, described
in Appendix A, only 2200 rows had to be iterated over.
This reduced training time by around 90%, but yields a
lower classification accuracy. The chosen kernel hyperparam-
eter (0%pp) generates a kernel matrix that can easily be
approximated with a low-rank matrix structure. The Nystrom
method is particularly suitable for this, and achieves very high
performance values with few sampled columns. The nonlinear
mapping function, however, is difficult to approximate. FS-
LSSVM requires many support vectors and is computationally
the most demanding in this problem.

VII. CONCLUSION

This paper presents a recursive Bayesian learning frame-
work with the tensor network Kalman filter to solve large-
scale LS-SVM dual problems. To the best of our knowledge,
it is the first non-sampling based algorithm for large-scale
LS-SVM dual problems. The recursive Bayesian framework
allows incorporation of prior knowledge, measurement noise,
early stopping and yields confidence bounds on the predicted
dual functions. Current low-rank approximation methods lack
such properties. Also, the curse of dimensionality is avoided
in this work because the method is iterative and has a tensor
train representation. The TNKF is especially advantageous
in situations with high nonlinearities, when the kernel data
conforms to a low-rank TT structure, or when many samples
are required for alternative methods. It attains high accuracies
on all considered problems and matches performances of other
low-rank approximation and kernel methods.

A. Future Work

The TNKF computational complexities can be further re-
duced. The algorithm can easily be extended to a parallel
implementation and a batch framework to reduce training
times. Additionally, directly constructing the dual rows in
TT form can save a significant portion of the computational
complexity for extremely large problems and problems with
many features. A big obstacle in the use of the TNKF is
the selection of the truncation parameters and kernel hyper-
parameters, which are interdependent. Inference methods can
be developed to determine these parameters and would save a
lot of tuning work, currently done by exhaustive grid searches.
Lastly, the TNKF can be readily adopted to other linear kernel
methods and fields involved with solving large-scale linear
systems.

APPENDIX A
EARLY STOPPING ADULT DATASET

The forgetting factor and early stopping conditions imple-
mented for TNKF ¢ are described below. These were designed
arbitrarily and in consideration of the classification perfor-
mance. Termination occurred when all stopping conditions
were satisfied.
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Forgetting factor A = 0.9975

Norm of TT(P) had to be smaller than 1 - 10729

The change in T7T(P)-norm had to at least -3 - 10~ for
at least 2 iterations.

The KKT condition (for classification) has to be smaller
than one, (Zgzl aryr | <1
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Chapter 4

Discussion

In this Chapter, the results and properties of the tensor network Kalman filter (TNKF) are
further discussed. In Section 4-1, the results and contribution of the thesis work are covered.
Additionally, some elaboration on the TNKF properties is given too. Thereafter, in Section 4-
2, improvements on how the TNKF was implemented in this thesis are presented.

4-1 Results and Properties of the Tensor Network Kalman Filter

In this section the thesis work and the TNKF discussed in more depth. First the outcomes of
the thesis are presented, then progressively more in depth material of the TNKF is covered,
such as tuning and filter stability.

4-1-1 Avoiding the Curse of Dimensionality

The primary goal of this thesis was to develop a low-rank approximation method that avoids
the curse of dimensionality associated with solving least-squares support-vector-machine (LS-
SVM) dual problems. Current low-rank approximation methods suffer from burdensome
computational and memory scalings due to which they can become impractical or infeasible
to apply for large-scale applications. The developed TNKF can circumvent the prohibitive
scalings if the data set adheres to small tensor train (TT)-ranks. The main objective of the
thesis has therefore been realized for low TT-rank data sets. Because the TNKF complexity
is data-dependent through the TT-ranks O(ldnr), its application is really dependent on
the data. For example, for the F16 benchmark data set the TNKF required very large ranks
making it computationally impractical, yet for the two-spiral problem TT-rank-one structures
could be used with very little accuracy-loss. The F16 sine-sweep data is very uncorrelated and
requires large ranks for the TNKF variables, which had to be truncated for computational
feasibility. In such cases the TNKF can be a poor choice, and is solved much more easily
with other low-rank approximation methods. On the other hand, if the TT-ranks can be
small, the TNKF can be far more advantageous than the alternative methods. Frequently,
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low TT-ranks are possible when the data is very correlated, these have a rapid decay in the
singular value spectrum for which the truncation-error is generally much smaller. The large-
scale two-spiral problem is the ideal example where the curse of dimensionality is avoided by
the TNKF, in which the FS-LSSVM and the Nystréom are not even applicable due to their
required computational and memory costs.

4-1-2 Including User-Knowledge

The second goal of this thesis was to develop a low-rank approximation method that can
include user-knowledge of the application, such as measurement noise, an initial solution, and
confidence terms. In current low-rank approximation methods specification of user-knowledge
is not possible, additionally, they do not yield confidence bounds on the obtained solution. The
TNKF has a distinct advantage due its Bayesian formulation, due to which user-knowledge
can be incorporated and confidence bounds on the solution are found. Thereby, the second
objective of thesis is also realized. For many problems where noise corrupts the data, it
can be advantageous to explicitly specify a noise variable, such as for the noisy sinc prob-
lem, in which it effectively acts as a generalization measure to prevent overfitting. An initial
distribution on the dual weights can be used to include prior knowledge of a dual solution,
useful for when new data points become available for example. The Bayesian formulation is
also advantageous, especially with regards to other low-rank approximation methods, because
deterministic confidence bounds are obtained. Other low-rank approximation methods use
sampling-procedures, and can only give statistical sampling-based error estimates of the ap-
proximation. The TNKF evaluates all kernel data points to obtain a solution, due to which it
obtains deterministic confidence bounds that include the effects of performed TT-rank trun-
cations, hyperparameter choices, and early stopping. In other words, the TNKF approximates
a solution to the dual problem, and can inform the user of how informative the approximation
is (locally and globally), unlike other low-rank approximation methods.

4-1-3 Applicability of the Tensor Network Kalman Filter

The TNKEF is particularly suitable in applications in which other, or current, low-rank approx-
imation methods do not work well. These applications are focused towards large-scale and
highly nonlinear problems, distinguishing itself from the state-of-the-art low-rank approxima-
tion methods. The two-spiral problem is one example is where the TNKF demonstrates its
capabilities, in which a large-scale and highly nonlinear problem is learned with ease, avoiding
the curse of dimensionality that makes the alternative low-rank methods infeasible. Due to
the tensor network representation much larger data sets can be employed for the approxima-
tion, especially if the data sets conform to low TT-ranks. For highly nonlinear problems, large
subsets are usually needed to be informative enough to capture all the behavior of the un-
derlying application. Sampling-based methods are then disadvantageous as the complexities
become too burdensome, however the TNKF has no such issues due to its compressed and it-
erative formulation, and because it evaluates all data points to construct the most descriptive
TT-structures. Another situation where the TNKF is desirable is if user-knowledge wants
to be specified and/or confidence bounds need be found. The recursive Bayesian framework
makes the TNKF a particularly attractive low-rank approximation methods when dealing
with uncertainties in the data points.
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There are also scenarios where the TNKF can be disadvantageous to apply. The first situation
is when the data set is small. The TT format is only beneficial for a data set size beyond some
threshold. Other low-rank approximation methods are likely to be less computationally and
memory costly up to that threshold. The reason for this is predominantly because the TNKF
algorithm needs to perform additional computations to cast the data into a T'T format, which
is only efficient when the data set is large enough. The threshold size is difficult to determine
as it problem-specific, and also depends on the performance of other low-rank approximation
methods. Another situation where the TNKF is less applicable is when the kernel matrix
is low-rank or has a rapidly decaying eigenvalue spectrum. Low-rank rank approximation
methods, as the name suggest, attempt to estimate a matrix with a low(er) rank matrix. If
few ranks are required for the estimation, few samples are typically needed, and the recon-
struction error is usually small. For example, in the Adult data set problem, the Nystrom
method only needs five samples to approximate the eigenspace accurately, as the designed
kernel matrix has a rapidly decaying eigenvalue spectrum that can be approximated by the
first five eigencomponents. For such cases, it is preferable to implement a low-rank approx-
imation method rather than the TNKF which are then computationally and memory-wise
much cheaper. Many "real" data sets conform to a low-rank kernel matrix approximation,
therefore it is advisable to first attempt a simpler low-rank approximation method if possible,
instead of directly applying the TNKF. Lastly, the TNKF requires much more work to im-
plement from scratch than its alternatives. Therefore it is again advisable, unless a software
packet becomes available, to first try using the simpler alternative low-rank methods.

4-1-4 Accuracy-Complexity Trade-Off

A major advantage of the TNKF is that the computational and memory requirements can be
directly controlled with the TT-rank truncations. The TT-truncations, which influence the
size of the T'T-ranks, are the most influential factor in the computational and memory scaling
of the TNKF. With the truncations, the data is approximated by the best fitting low-rank TT
structure. All TT variables can in principle be truncated, however, the TT-ranks that impact
scaling the most are of the variables TT'(¢;), TT(F;), and TT(k;). The TT-ranks of these
variables either quickly grow burdensome over the iterations, or can require very large ranks
to describe a slowly decaying singular value spectra. Because all the kernel data is evaluated
in the TNKF, a deterministic trade-off between the complexities and accuracy exists, which is
governed by the TT-ranks. Another possibility to influence the complexity-accuracy trade-off
is to limit the total computational cost of the TNKF by implementing early stopping. The
per iteration cost remains the same, but because only a fraction of the rows are iterated over,
the total cost goes down. For the adult data set early stopping is demonstrated, in which only
10% of the rows are iterated over to generate a decent approximation, saving roughly 90% of
work for a accuracy decrease of about 3%. On the contrary, the complexities of current state-
of-the-art methods are dominated by how large the sampled subsets are. Due to the sampling
dependency, the accuracy-complexity trade-off for these methods are probabilistic. Therefore,
current low-rank approximation methods can only impact the accuracy-complexity trade-off
indirectly, by specifying how many samples are employed. The TNKF is a breakthrough
for low-rank approximation methods, as it eliminates the need of a probabilistic sampling
procedure, and allows for direct influence of the accuracy-complexity trade-off through the
TT-ranks.
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One drawback, inherent to all kernel methods, is that kernel data needs to be constructed.
The computation of a kernel matrix is intensive, whether it is done apriori or only the rows
are constructed during the iterations. For the TNKF, construction of the kernel rows, which
are used to construct the dual problem rows, gives a computational lower bound of O(N?),
or equivalently O(n??). For problems with many features or extremely large data points,
kernel row construction is commonly a big source of computational cost. An advantage of
the TNKF however is that due to its iterative nature, if early stopping is employed, not all
of the kernel rows have to be constructed. Other low-rank approximation methods typically
have to construct an entire kernel matrix (or matrices) based on the subset. Depending on
the specific problem, the TNKF memory complexity can be smaller or greater than working
with explicit subset kernel matrices, but computationally, significant advantages are achieved
by only using the kernel rows.

4-1-5 Tuning of the Hyperparameters and TT-ranks

It is impossible to know suitable truncation- and hyper-parameters for the TNKF and dual
problem matrix. The truncation- and hyper-parameters are closely related, and cooperatively
determine the accuracy of the low-rank approximation. Here it is assumed the RBF kernel
function is used, therefore the hyperparameters (v, 0?) directly determine the singular value
decay of the dual problem matrix. The singular value spectra are important for the construc-
tion and rounding of the TTs. More specifically, the rate at which the spectrum decays has
direct influence over the ranks, as the TT-SVD and TT-rounding truncate the the singular
values only after some specified norm or (ordered) index. The TT-ranks are determined by
the truncations parameters of the singular value spectra, which usually can not be left untrun-
cated due to memory and computational complexities. Therefore, it is nearly always the case
that a balance needs to be found between the hyperparameters and the truncation parame-
ters to influence the accuracy-complexity trade-off. Tuning can therefore be a strenuous task,
especially for large data sets. Currently, tuning is performed iterative grid searches, as no
tuning method exists yet that takes into account the duality of the hyperparameters and trun-
cation parameters. A common observation is that a rapidly declining spectrum is desirable
for the TNKF, as this makes it easier to construct low-rank T'T variables. TNKF truncations
can, to a degree, compensate overfitting (generalization) caused by small hyperparameters.
However, care needs to be taken in such an approach, because too much truncation can lead
to instability of the TNKF. Truncations are generally most easily performed by based on the
respective norm as it keeps the TT-ranks more flexible. Also, some variables have more influ-
ence in the accuracy-complexity trade-off than others. Most important is the truncation of
the dual row T'T(¢;), covariance TT TT(P;), and Kalman gain T'T'(k;), since these variables
are used in many steps of the filter, and tend to dominate the complexities and a significant
portion of the accuracy.

4-1-6 Stability of the Tensor Network Kalman Filter

The stability of the Kalman filter is a difficult matter. First of all, the iterative state space
models are time-varying aspect due to the row-dependent nature of the output equation (¢;),
making analysis complex. Secondly, the tensor train form does not allow for easy analysis
of the eigenvalues, which would have to be found with expensive optimization procedures.
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The only pragmatic way of checking stability is to analyze the covariance. Because the dual
problem matrix is positive semi-definite it is known that a global solution exists, a result
of convexity. If convergence is attained after training, the norm of the covariance matrix
should approximately be zero or at a global minimum (depending on truncations/early stop-
ping/noise). In practical terms, after witnessing all the rows, the uncertainty (covariance) in
the solution updates should decrease to zero or a minimum. Additionally, during the itera-
tions the norm should monotonically decrease as more of the data is witnessed, a consequence
of orthogonality in Kalman gain updates (dual matrix rows are independent) and positive
semi-definiteness of the covariance. These conditions can be implemented to verify the stabil-
ity whilst using the algorithm. Fortunately, the covariance norm is easily computed or logged
in TT form during the iterations because of the singular value decomposition (SVD) in the
TT-SVD algorithm, or alternatively by computation of the trace. An analogous example for
the control community would be to consider the covariance as a Lyapunov function/matrix.
Note that the analysis of stability is dependent on the designed iterative models, therefore
can be different for other update equations. It is interesting to note, that if convergence is
attained, that covariance matrix is a scaled copy of the kernel matrix. The reason for this
phenomena is still an open question, but it is believed that this is derived from reproduc-
ing kernel Hilbert space property. Another issue of stability is how truncations affect the
properties of the covariance.

Truncations of the TT-rank heavily influence the stability of the Kalman filter. There is
no way to guarantee positive definiteness and symmetry for the covariance TT for example,
unless it has a T'T-rank-one structure. However, if a TT-rank-one structure is chosen, usually
too much information is lost and poor dual solutions are yielded. Experience informs that
the best way to truncate the covariance TT is with norm-based truncations, which are more
flexible for TT-rank sizes even though no stability guarantees can be given. Similarly for other
variables, if truncations are performed too aggressively, the Kalman filter becomes unstable
due to the which the covariance diverges. The measurement noise also affects the stability
in the aspect of convergence of the covariance TT, the noise measurement noise weighs how
much confidence can be placed in the observations. If the noise is specified too large, the
Kalman filter will updates will be insignificant and cause underfitting to occur. On the other
hand, if the noise is specified to small, overfitting can occur.

4-2 Improvements

There are also a numerous areas in which this thesis work an be improved. The complexity
of the implemented TNKF can be further reduced. Also, the particular TNKF formulation
can be modified to improve the method’s performance.

4-2-1 Computational Improvements

Computationally, there are numerous of improvements that can be made. First of all, it is
vital to mention that the ranks of the TTs play a crucial role in determining feasibility of
the TNKF. As witnessed for the F16 nonlinear benchmark data set, if the ranks need to be
too large, accuracy-loss has to be incurred to make the problem feasible. Ordering the rows
can be a smart "work-around', to create low-rank TT structures but in some cases this might
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Figure 4-1: "Zip-lock" contraction procedure between two TT vectors. The contractions are
performed sequentially leading to a lower computational complexity. [6].

not be possible, such as for early stopping. To create a more favorable trade-off between the
accuracy and complexity, the computational complexity of the algorithm and routines should
be investigated. Multiple approaches can be taken to decrease the computational complexity.
The construction of the kernel, or dual problem row, can be attempted to be done directly in
TT form, as is discussed in future work. The frequency at which the TT-rounding algorithm
is called can be decreased, as right now it is implemented after nearly each TT-contraction.
TT-rounding is a costly routine to run, but often necessary to keep the TT-ranks small, thus
a balance needs to be found in how often it is implemented. The TT-contraction procedure
can be adjusted to either a "zip-lock" CPU or parallel GPU implementation. Currently, the
contractions are performed non-optimally. Fortunately, TT-contractions appear to have only
a minor cost with respect to the TT-rounding and the construction of 77 (¢; . Nevertheless,
by modifying the contraction procedure, the time for contractions itself can be optimized.
In [11], it was reported that a parallel implementation can be an order of magnitude faster.
On the other hand, if a CPU implementation is wanted, the "zip-lock" contraction scheme as
shown in Figure 4-1 is more advantageous.

The "zip-lock" procedure effectively reduces the operations from matrix-matrix multiplications
to matrix-vector multiplications, thus has a lower complexity. Lastly, there is also the matter
of batch size. In this thesis, individual rows were iterated over, which is probably not optimal
in terms of runtime. As in many learning methods, it is common to learn in batches. Here
that would translate to using multiple rows in one iteration, and could save time in steps such
as kernel construction, or the classification/regression algorithms. Also, in batch learning less
iterations are then needed meaning that the number of implementations of common routines,
such as contractions and the TT-rounding, is much lower. On the downside, a matrix or TT
inverse would have to be computed for the TNKF which can be computationally difficult for
large batch sizes.

4-2-2 Improvements in the Formulation

There are also some modifications that can be done in the formulation of the TNKF. The
iterative state space models can be redesigned for example. In this work, the formulation was
based on the thought/assumption that the previous solution makes the best estimate of the
next solution. One simple idea could be to take a weighted average of a number previous
solutions, or to choose one of the previous estimates corresponding to the biggest covariance
decrease. Another point that can be addressed is the early stopping criteria, which were
chosen to be dependent on the covariance norm and the sum of errors Karush-Kuhn-Tucker
(KKT) condition in the paper, but can actually be designed arbitrarily. One idea could be
to include the prediction error v; in the list of criteria. Early stopping is especially attractive
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if one knows that a threshold test performance value has been achieved. Therefore it could
also be an idea to validate the test performance every ¢ iterations with the [ — th solution.
Lastly, there is also the topic of sparsity of the dual solution, which is lost in the least-squares
formulation of the support-vector-machine. It can be investigated whether TT-rounding of the
final approximation, 77 (m;), TT(P,), can lead to sparser or simplified models. By application
of the TT-Rounding algorithm, the most important information is found with the remainder
truncated, which could improve generalization performance for test data sets.
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Chapter 5

Conclusion and Future Work

Conclusion

In this thesis, a recursive Bayesian learning framework with the tensor network Kalman
filter was presented for large-scale LS-SVM dual problems. The framework is flexible, can
easily be modified, and is readily adoptable to other linear kernel methods. The TNKF
performs competitively with current low-rank approximation methods as was tested on two
regression and two classification problems, on which it achieves high accuracies. The method
is especially useful in situations where the alternative methods perform inadequately due to to
high-nonlinearities, require many samples and become too burdensome to compute, and/or
when the data conforms to a low-rank tensor train structure. Due to the Bayesian and
tensor network formulation, the TNKF generates confidence bounds, circumvents the curse
of dimensionality, and allows incorporation of prior knowledge, measurement noise, and early

stopping.

Future Work

One big obstacle of implementing large-scale kernel methods is finding suitable hyperparam-
eters. Current methods for hyperparameter-tuning scale poorly with the size of the data set,
usually completed with some cross-validation scheme or iterative grid searches, which are very
expensive [31] [35]. For this thesis, iterative tuning was used to find the hyperparameters and
truncation parameters, a lot of tedious work. A useful development for future implementa-
tions would be extending the framework to include some hyperparameter selection method.
By taking into account the tensor train (TT) structure the respective truncation parame-
ters, the poor computational and memory complexities can be reduced for a hyperparameter
search or tuning procedure. Additionally, the interdependence between the truncation and
hyperparameters can be investigated further to see how tuning or parameter selection can be
done more effectively.
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The lower bound of the computational complexity is determined by the construction of the
kernel row elements, costing at least O(N?). All kernel methods suffer from the need to
construct a kernel row or matrix, which is very costly. For the TNKF, it can be researched if
kernel or dual row construction can be done directly in TT form, eliminating the need recast
a kernel row to a TT form.

The TNKF can be also be expanded and implemented for other linear kernel methods, or even
as a general linear system solver. In this thesis, the application was limited to the LS-SVM
dual problem. However, there are close connections to other methods. These similarities can
be exploited to expand the TNKF framework and its applicability. Because of its TT formu-
lation, it can be very useful for solving large-scale data sets that do need not be represented
explicitly. The TNKF has already been applied to solve a Volterra series [4] [5] and used for
linear-time-invariant state space filtering [12].

Maximilian Javier Lucassen Master of Science Thesis



Bibliography

[1] G. Allaire and S.M. Kaber. Numerical Linear Algebra, volume 55. Springer, 1 edition,
2008.

[2] A. Astolfi, D. Karagiannis, and R. Ortega. Nonlinear and Adaptive Control with Appli-
cations. Springer Publishing Company, Incorporated, 1st edition, 2008.

[3] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, and H. Van der Vorst. Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods, 2nd Edition. STAM, Philadelphia, PA, 1994.

[4] K. Batselier, Z. Chen, and N. Wong. A Tensor Network Kalman filter with an application
in recursive MIMO Volterra system identification. Automatica, 84, October 2016.

[5] K. Batselier and N. Wong. Matrix output extension of the tensor network Kalman filter
with an application in MIMO Volterra system identification. Automatica, 95:413 — 418,
2018.

[6] J.C. Bridgeman and C.T. Chubb. Hand-waving and interpretive dance: an introduc-
tory course on tensor networks. Journal of Physics A: Mathematical and Theoretical,
50(22):223001, 2017.

[7] A. Cichocki. Era of Big Data Processing: A New Approach via Tensor Networks and
Tensor Decompositions. CoRR, abs/1403.2048, 2014.

[8] A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa, and H. A.
PHAN. Tensor Decompositions for Signal Processing Applications: From Two-way to
Multiway Component Analysis. IEEE Signal Processing Magazine, 32(2):145-163, March
2015.

[9] D. Comminiello and J. Principe. Adaptive Learning Methods for Nonlinear System Mod-
eling. Butterworth-Heinemann, Elsevier, June 2018.

Master of Science Thesis Maximilian Javier Lucassen



48

Bibliography

[10]

[11]

[12]

[21]

[22]

[23]

[24]

[25]

K. De Brabanter, J. De Brabanter, J. A. K. Suykens, and B. De Moor. Optimized Fixed-
size Kernel Models for Large Data Sets. Comput. Stat. Data Anal., 54(6):1484-1504,
June 2010.

S. Efthymiou, J. Hidary, and S. Leichenauer. Tensornetwork for machine learning. CoRR,
abs/1906.06329, 2019.

D. Gedon, P. Piscaer, K. Batselier, C. Smith, and M. Verhaegen. Tensor Network Kalman
Filter for LTI Systems. In 2019 27th European Signal Processing Conference (EUSIPCO),
pages 1-5, September 2019.

G.H. Golub and C.F Van Loan. Matriz Computations. The Johns Hopkins University
Press, 4 edition, 2013.

B. Hamers. Kernel Models for Large Scale Applications. PhD thesis, Katholieke Uni-
versiteit Leuven, ESAT, Katholieke Universiteit Leuven, Belgium, Kasteelpark Arenberg
10, 3001 Leuven, June 2004.

S.S. Haykin. Kalman Filtering and Neural Networks. John Wiley & Sons, Inc., USA,
2001.

T.G Kolda and B.W Bader. Tensor Decompositions and Applications. SIAM Review,
51(3):455-500, September 2009.

S. Kumar, M. Mohri, and A. Talwalkar. Sampling Methods for the Nystrém Method.
Journal of Machine Learning Research, 13(1):981-1006, April 2012.

C. Li, S. Jegelka, and S. Sra. Fast DPP Sampling for Nystrom with Application to Kernel
Methods. CoRR, abs/1603.06052, 2016.

W. Liu, J. C. Principe, and S. Haykin. Kernel Adaptive Filtering: A Comprehensive
Introduction. Wiley Publishing, 1st edition, 2010.

R. Mall and J. A. K. Suykens. Very Sparse LSSVM Reductions for Large-Scale Data.
IEEFE Transactions on Neural Networks and Learning Systems, 26(5):1086-1097, May
2015.

M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine Learning. The
MIT Press, 2012.

M.N. Murty and V.S. Devi. Bayes Classifier, pages 86—102. Springer London, London,
2011.

C. Musco and C. Musco. Provably Useful Kernel Matrix Approximation in Linear Time.
CoRR, abs/1605.07583, 2016.

I. Oseledets. Approximation of 2¢ x 2¢ Matrices Using Tensor Decomposition. SIAM
Journal on Matriz Analysis and Applications, 31, January 2010.

I. Oseledets. Tensor-Train Decomposition. SIAM J. Scientific Computing, 33:2295-2317,
January 2011.

Maximilian Javier Lucassen Master of Science Thesis



49

[26]

[27]

[28]

[29]

[30]

[31]

32]

33]

[34]

[37]

[38]

[39]

CE. Rasmussen and CKI. Williams. Gaussian Processes for Machine Learning. Adaptive
Computation and Machine Learning. MIT Press, Cambridge, MA, USA, January 2006.

W.J. Rugh. Nonlinear system theory. Johns Hopkins University Press Baltimore, MD,
1981.

J. Schoukens and L. Ljung. Nonlinear system identification: A user-oriented roadmap.
CoRR, abs/1902.00683, 2019.

S. Srkk. Bayesian Filtering and Smoothing. Cambridge University Press, New York, NY,
USA, 2013.

S. Sun, J. Zhao, and J. Zhu. A review of Nystrom methods for large-scale machine
learning. Information Fusion, 26:36 — 48, 2015.

J. Suykens, J. De Brabanter, K. De Brabanter, K. Pelckmans, et al. LS-SVMlab.
https://www.esat.kuleuven.be/sista/lssvmlab/.

J. Suykens, J. De Brabanter, L. Lukas, and J. Vandewalle. Weighted least squares support
vector machines: robustness and sparse approximation. Neurocomputing, 48:85-105, 10
2002.

J. Suykens, L. Lukas, P. Van Dooren, B. De Moor, and J. Vandewalle. Least Squares
Support Vector Machine Classifiers: a Large Scale Algorithm. Furo Conf Circ Theory
Design (ECCTD’99), June 2000.

J. Suykens, J. Vandewalle, and B. De Moor. Optimal control by least squares sup-
port vector machines. Neural networks : the official journal of the International Neural
Network Society, 14:23-35, February 2001.

J.A.K Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vandewalle. Least
Squares Support Vector Machines. World Scientific, 2002.

H.A van der Vorst. Efficient and reliable iterative methods for linear systems. Journal of
Computational and Applied Mathematics, 149(1):251 — 265, 2002. Scientific and Engineer-
ing Computations for the 21st Century - Methodologies and Applications Proceedings of
the 15th Toyota Conference.

T. Van Gestel, J. Suykens, B. Baesens, S. Viaene, J. Vanthienen, G. Dedene, B. De Moor,
and J. Vandewalle. Benchmarking least squares support vector machine classifiers. Ma-
chine Learning, 54, June 2002.

V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, Berlin, Heidel-
berg, 1995.

M. Verhaegen and V. Verdult. Filtering and System Identification: A Least Squares
Approach. Cambridge University Press, 2007.

H. Wang and D. Hu. Comparison of SVM and LS-SVM for Regression. In 2005 Inter-
national Conference on Neural Networks and Brain, volume 1, pages 279-283, October
2005.

Master of Science Thesis Maximilian Javier Lucassen



50 Bibliography

[41] H. Wendland. [terative Methods for Solving Linear Systems, page 101-131. Cambridge
Texts in Applied Mathematics. Cambridge University Press, 2017.

[42] K. Zhang, I. W. Tsang, and J. T. Kwok. Improved Nystrom Low-rank Approximation
and Error Analysis. In Proceedings of the 25th International Conference on Machine
Learning, ICML 08, pages 1232-1239, New York, NY, USA, 2008. ACM.

Maximilian Javier Lucassen Master of Science Thesis



List of Acronyms

FS-LSSVM Fixed size least-squares support-vector-machines

KKT
LS-SVM
QP

RBF
SVM
SVD

TT

TNKF

Karush-Kuhn-Tucker

Least-squares support-vector-machines
Quadratic programming
Radial-basis-function
support-vector-machines

Singular value decomposition

Tensor train

Tensor Network Kalman Filter
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List of Symbols

Abbreviations

a Dual weights

m Mean of the normal distribution.

w Primal weights.

T Input data vector of dimension f.

ol Regularization parameter

Aor A Eigenvalue(s), can be in scalar or matrix form
uor U Eigenvector(s), can be in vector or matrix form.
Tprimal Primal cost function.

N Normal distribution.

O Big O notation for complexities.

P Probability distribution.

Kernel matrix of size N.

)
Z

Dual problem matrix.

Standard deviation, (w.r.t RBF kernel function or Kalman filter variance)

—~
~—

The nonlinear feature mapping function.
Bias term.

Dual matrix.

Dimension.

Error variable.

Number of features (dimension) of the input data.

R N e I T

Index of a tensor.

=

Identity matrix of size N.

<

Total number of iterations for regression/classification of new samples.

Iteration count for regression/classification of new samples.

<.

Kernel function.

w
—~~
SN—

Total number of iterations.

Iteration count.

Number of data points.

Index sizes after tensorization.
Covariance matrix of normal distribution.
TT-rank.

Number of samples from a sampling procedure.

NI g S e T

Number of observations of the output data or labels.

~
=
=

Tensor train of tensor A.
Small sampled kernel matrix (subset).

Output data for a regression task, or a label for classification task.

<
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