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HowAbnormal Are the PDFs of the DIA Method:
A Quality Description in the Context of GNSS

Safoora Zaminpardaz and Peter J. G. Teunissen

Abstract

The DIA-method, for the detection, identification and adaptation of modeling errors, has
been widely used in a broad range of applications including the quality control of geodetic
networks and the integrity monitoring of GNSS models. The DIA-method combines two key
statistical inference tools, estimation and testing. Through the former, one seeks estimates
of the parameters of interest, whereas through the latter, one validates these estimates and
corrects them for biases that may be present. As a result of this intimate link between
estimation and testing, the quality of the DIA outcome Nx must also be driven by the prob-
abilistic characteristics of both estimation and testing. In practice however, the evaluation
of the quality of Nx is never carried out as such. Instead, use is made of the probability
density function (PDF) of the estimator under the identified hypothesis, say Oxi , thereby thus
neglecting the conditioning process that led to the decision to accept the i th hypothesis.
In this contribution, we conduct a comparative study of the probabilistic properties of Nx and
Oxi . Our analysis will be carried out in the framework of GNSS-based positioning. We will
also elaborate on the circumstances under which the distribution of the estimator Oxi provides
either poor or reasonable approximations to that of the DIA-estimator Nx.

Keywords

Detection, identification and adaptation (DIA) � DIA-estimator � Global Navigation Satel-
lite System (GNSS) � Probability density function (PDF) � Statistical testing

1 Introduction

In the DIA-method for the detection, identification and
adaptation of mismodelling errors, next to estimation of
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parameters of interest, a statistical testing is also exercised
to check the validation of underlying model. The actual
DIA outcome is then the one which rigorously captures this
combination of estimation and testing, and was introduced
as the DIA estimator in Teunissen (2017b). The DIA-method
has been widely used in a variety of applications, including
the quality control of geodetic networks and the integrity
monitoring of GNSS models, see e.g. DGCC (1982),
Teunissen (1990), Salzmann (1995), Tiberius (1998), Perfetti
(2006), Khodabandeh and Teunissen (2016), Zaminpardaz
et al. (2015). As a result of the combined estimation-testing
scheme of the DIA-method, the DIA outcome Nx must also be
evaluated on the basis of characteristics of both estimation
and testing. In practice however, the evaluation of the quality
of Nx is carried out based upon the probability density function
(PDF) of the estimator under the identified hypothesis, say
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Oxi , without regard to the conditioning process that led to the
decision of accepting the hypothesis Hi . In this contribution,
a comparative study of the probabilistic properties of Nx
and Oxi is conducted to highlight the impact of neglecting
the estimation-testing link on follow-on quality evaluations
and to elaborate on the circumstances under which such
negligence may still be considered acceptable.

This contribution is organized as follows. We first give a
brief overview of the Detection, Identification, and Adapta-
tion procedure in Sect. 2. Using a partitioning of the misclo-
sure space, the DIA-estimator and its statistical distribution
are then presented in Sect. 3. The difference between the PDF
of the DIA-estimator and that of Oxi is discussed and shown
to be driven by the DIA-method decision probabilities which
can be categorized as probability of correct acceptance (CA),
of false alarm (FA), of correct/missed detection (CD/MD)
and of correct/wrong identification (CI/WI). In Sect. 4, we
outline the estimation and testing strategies that we use for
our analyses. Section 5 contains our numerical evaluations
of the distribution of the DIA-estimator Nx and its normally-
distributed individual components Oxi (i D 0; 1; : : : ; k). We
graphically demonstrate, for binary hypothesis testing, i.e.
H0 and H1, applied to a single-unknown, single-redundancy
observational model, the PDF of Nx, Ox0 and Ox1 under both
H0 and H1. The distributional comparison is then continued
for a Global Navigation Satellite System (GNSS) single
point positioning (SPP) model where multiple-hypothesis
testing is involved. Finally a summary with conclusions are
presented in Sect. 6.

2 DIA Overview

As our point of departure, we first formulate our statistical
hypotheses. The hypothesis believed to be true under nom-
inal working conditions is referred to as the null hypothe-
sis. Denoted by H0, the null hypothesis is assumed to be
given as

H0 W E.y/ D A x ; D.y/ D Qyy (1)

with E.�/ and D.�/ denoting the expectation and dispersion
operators, respectively. According to (1), under H0, the
expectation of the normally-distributed random vector of
observables y 2 R

m is characterized through the unknown
parameter vector x 2 R

n and the full-rank design matrix
A 2 R

m�n (rank.A/ D n), while the dispersion of the
observables y is described by the positive-definite variance-
covariance matrix Qyy 2 R

m�m. The redundancy of H0 is
r D m � rank.A/ D m � n. The corresponding estimator of
x on the basis of (1) is denoted by Ox0.

The observational model in (1) could be misspecified in
several ways like, for example, E.y/ ¤ A x and/or D.y/ ¤

Qyy . Here we assume that a misspecification is restricted
to an underparametrization of the mean of y, which is the
most common error that occurs when formulating the model
(Teunissen 2017a). Thus, the alternative hypothesis Hi is
formulated as

Hi W E.y/ D A x C Ci bi ; D.y/ D Qyy (2)

where bi 2 R
q is the unknown bias vector while Ci 2 R

m�q

is known which together with the design matrix A form a
full-rank matrix, i.e. rank.ŒA; Ci �/ D n C q with q � m �
n. The corresponding estimator of x on the basis of (2) is
denoted by Oxi .

In practical applications, we usually have to consider
several alternative hypotheses about the physical reality at
hand. For example when modeling GNSS observations, we
may need to take into account hypotheses describing code
outliers, phase cycle slips, ionospheric gradients, etc. The
statistical validity of H0 and the multiple, say k, alternatives
Hi .i D 1; : : : ; k/ is usually checked through the following
three steps of detection, identification and adaptation (DIA)
(Baarda 1968; Teunissen 1990).

1. Detection The null hypothesis undergoes a validity check
using an overall model test, without considering a par-
ticular set of alternatives. If H0 is accepted, then Ox0 is
provided as the estimate of x.

2. Identification In case H0 is rejected, a search is carried
out among the specified alternative hypotheses Hi .i D
1; : : : ; k/ with the purpose of pinpointing the potential
source of model error. In doing so, one of the alternative
hypotheses, say Hi , is identified as the suspected model
error.

3. Adaptation The identified hypothesis Hi becomes the
new null hypothesis. The H0-based inferences are then
accordingly corrected and Oxi is provided as the estimate
of x.

The required information to realize the above steps of the
DIA-method is contained in the misclosure vector t 2 R

r

given as

t D BT yI Qtt D BT QyyB (3)

where B 2 R
m�r is a full-rank matrix, with rank.B/ D r ,

such that ŒA; B� 2 R
m�m is invertible and AT B D 0. With

y
Hi� N .Ax C Cibi ; Qyy/ for i D 0; 1; : : : ; k and C0b0 D 0,

the misclosure vector is then distributed as

t
Hi� N .�ti D BT Cibi ; Qtt /; for i D 0; 1; : : : ; k

(4)

An unambiguous testing procedure can be established
through unambiguously assigning the outcomes of t to the
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statistical hypotheses Hi for i D 0; 1; : : : ; k, which can
be realized through a partitioning of the misclosure space
(Teunissen 2017b). As such, let Pi 2 R

r .i D 0; 1; : : : ; k/ be
a partitioning of the misclosure space R

r , i.e. [k
iD0Pi D R

r

and Pi \ Pj D ; for i ¤ j , then the unambiguous testing
procedure is defined as follows (Teunissen 2017b)

Select Hi ” t 2 Pi ; for i D 0; 1; : : : ; k (5)

3 On the Outcome of the DIAMethod

Looking at the three steps of the DIA-method presented in
Sect. 2, it can be realized that estimation and testing are
combined in the DIA procedure. To gain a better appreciation
of this combination, the DIA procedure is schematically
visualized in Fig. 1. One can then find out that this is indeed
the testing decision which determines how to estimate the
unknown parameter vector x. Therefore, the actual DIA
outcome, denoted by Nx, will inherit the characteristics of not
only the estimation scheme but also the testing scheme as
well.

3.1 DIA Estimator

The combined estimation-testing scheme of the DIA-method
can be captured in one single DIA estimator which was
introduced in Teunissen (2017b) and is formulated as

Nx D
kX

iD0

Oxi pi .t/ (6)

in which the contribution to Nx from the estimation scheme
is captured by the individual estimators Oxi (i D 0; 1; : : : ; k),
and from the testing scheme by the indicator functions pi .t/

(i D 0; 1; : : : ; k) defined as pi .t/ D 1 if t 2 Pi and
pi .t/ D 0 elsewhere. The DIA outcome Nx is therefore a
binary weighted average of all the solutions corresponding
with the hypotheses at hand. We note that although Nx is linear
in the estimators Oxi (i D 0; 1; : : : ; k), it is nonlinear in t as
the indicator functions pi .t/ (i D 0; 1; : : : ; k) are nonlinear
functions of t . As a consequence, even if all the individual
estimators Oxi (i D 0; 1; : : : ; k) are normally distributed, Nx
does not have a normal distribution.

3.2 Abnormality of the PDF of Nx

A general probabilistic evaluation of the DIA-estimator is
presented in Teunissen (2017b), see also Teunissen et al.
(2017). With (6), the probability density function (PDF) of
Nx, under an arbitrary hypothesis like Hj , can be expressed
in terms of the probabilistic properties of the estimators Oxi

(i D 0; 1; : : : ; k) and t as

f Nx.� jHj / D
kX

iD0

Z

Pi

f Oxi ;t .�; � jHj / d� (7)

where f Oxi ;t .�; � jHj / is the joint PDF of Oxi and t under
Hj . The abnormality of the DIA-estimator PDF can clearly
be seen in the above equation. It is important to note,
upon application of the DIA-method, that all the follow-
on evaluations and inferences must be derived from the
probabilistic properties of Nx which are captured by its PDF
in (7). In practice however, if a certain hypothesis, say Hi ,
is selected through the testing procedure, use is made of
the PDF of the estimator under the selected hypothesis,
i.e. Oxi , neglecting the conditioning process that led to the
decision to accept this hypothesis, see e.g. Salzmann (1995),
Klein et al. (2018).

To get a better insight into what such negligence could
incur, we highlight the difference between the PDF of the
DIA-estimator Nx and that of the estimator Oxi , which, under
Hj , can be expressed in

f Nx.� jHj / � f Oxi
.� jHj / D˚

f Nxjt…Pi
.� jt … Pi ; Hj / � f Oxi jt…Pi

.� jt … Pi ;Hj /
� �˚

1 � P.t 2 Pi jHj /
� (8)

in which P.�/ denotes the probability of occurrence of the
event within parentheses. The above expression results from
an application of the conditional probability rule and the fact
that the event . Nxjt 2 Pi / is equivalent to . Oxi jt 2 Pi /. As (8)
shows, the difference between f Nx.� jHj / and f Oxi

.� jHj / is
governed by the difference between the conditional PDFs
f Nxjt…Pi

.� jt … Pi ; Hj / and f Oxi jt…Pi
.� jt … Pi ;Hj / as

well as the probability P.t 2 Pi jHj /. If, for instance, the
probability P.t 2 Pi jHj / gets close to one, the non-normal
PDF f Nx.� jHj / gets closer to the normal PDF f Oxi

.� jHj /.
Depending on the values of i and j , probabilities P.t 2

Fig. 1 Schematic illustration of
the DIA-method
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Pi jHj / (i ; j D 0; 1; : : : ; k) can be categorized as

PCA D P.t 2 P0jH0/ Pro. correct acceptance
PFA D 1 � PCA Pro. false alarm
PMDj D P.t 2 P0jHj ¤0/ Pro. missed detection
PCDj D 1 � PMDj Pro. correct detection
PCIj D P.t 2 Pj ¤0jHj ¤0/ Pro. correct identification
PWIj D PCDj � PCIj Pro. wrong identification

(9)

where ‘Pro.’ stands for ‘Probability of’. Distinguished by
index j , the last four probabilities are different from alter-
native to alternative. Also note that the last two probabili-
ties become of importance when more than one alternative
hypothesis need to be considered. For the single alternative
case, say H1, we have PCI1 D PCD1 and PWI1 D 0.

4 Estimation and Testing Strategy

Here, we outline the estimation and testing method as
employed in our numerical analysis of the following section.
We also remark that our evaluations will be carried out for
scalar biases, i.e. bi 2 R, revealing that Ci will take the form
of a vector ci 2 R

m.

Estimation To estimate the unknown parameters, use is
made of the Best Linear Unbiased Estimation (BLUE)
method. As such, Ox0 corresponding with (1) and Oxi

corresponding with (2) are given by

Ox0 D ACy D .AT Q�1
yy A/�1AT Q�1

yy y

Oxi D NAC
i y D . NAT

i Q�1
yy

NAi /
�1 NAT

i Q�1
yy y

(10)

where the superscript ‘C’ denotes the BLUE-inverse,
NAi D P ?

ci
A and P ?

ci
D Im � ci .c

T
i Q�1

yy ci /
�1cT

i Q�1
yy .

Assuming that the observation vector y is normally
distributed, Ox0 and Oxi in (10), as linear functions of y,
have also normal distributions. It can be shown, through the
Tienstra transformation (Tienstra 1956; Teunissen 2017b),
that all the information in the observation vector y is
contained in the two independent vectors Ox0 and t (cf. 3).
The estimator Oxi , as a linear function of y, can then be
expressed as a linear function of Ox0 and t as

Oxi D Ox0 � Li t (11)

in which Li D ACci .c
T
ti

Q�1
t t cti /

�1cT
ti

Q�1
t t with cti D BT ci .

Testing Our testing procedure is specified through defining
the regions P0 and Pi¤0 (cf. 5) as follows

P0 D
n
t 2 R

r
ˇ̌
ˇ ktk2

Qtt
� k˛;r

o

Pi¤0 D
�

t 2 R
r=P0

ˇ̌
ˇ̌ jwi j D max

j 2f1;:::;kg
jwj j

�
; i D 1; : : : ; k

(12)

in which k:k2
Qtt

D .:/T Q�1
t t .:/, ˛ is the user-defined false

alarm probability PFA, k˛;r is the ˛-percentage of the central
Chi-square distribution with r degrees of freedom, and wi is
Baarda’s test statistic computed as (Baarda 1967; Teunissen
2000)

wi D cT
ti

Q�1
t t t

q
cT

ti Q�1
t t cti

I i D 1; : : : ; k (13)

5 Numerical Evaluations

In this section, we emphasize the discrepancies between the
non-normal PDF of Nx and the normal PDFs of its individual
components, i.e. Oxi (i D 0; 1; : : : ; k). In addition, we
investigate situations in which the abnormality of the PDF
of Nx gets mitigated. In doing so, we first consider a simple
observational model with only a single alternative hypothesis
H1, and then continue with a multiple-hypothesis example in
the context of GNSS single point positioning.

5.1 Single-Alternative Case

Suppose that under H0, the observational model in (1)
contains only one unknown parameter (n D 1) with one
redundancy (r D 1), i.e. x 2 R and t 2 R. We furthermore
assume that there is only one single alternative hypothesis,
say H1, against which the null hypothesis H0 is to be tested.
For this binary example, the partitioning of the misclosure
space is formed by two regions, P0 and its complement Pc

0 .
The DIA-estimator is then constructed by the two estimators
Ox0 and Ox1 and the misclosure t as

Nx D Ox0 p0.t/ C Ox1.1 � p0.t// (14)

To compute the PDF of Nx, we assume that t , Ox0 and Ox1 are
distributed as

t
H0� N .0; �2

t / ; t
H1� N .�t1 ; �2

t /

Ox0
H0� N .0; �2

Ox0
/ ; Ox0

H1� N .L1�t1 ; �2
Ox0

/

Ox1
H0� N .0; �2

Ox0
C L2

1�2
t / ; Ox1

H1� N .0; �2
Ox0

C L2
1�2

t /

(15)

for some non-zero scalar �t1 . Note that Ox1 is unbiased
both under H0 and H1. Under H0, there is no bias to be
considered, and under H1, Ox1 is obtained based on a model
in which the bias b1 has already been taken into account.
With (8), (14) and (15), the difference between the PDF
of the DIA-estimator Nx and the normal PDFs of Ox0 and Ox1

is driven by �t , � Ox0
, L1, P0 and the value of �t1 which

comes into play under the alternative hypothesis H1. In the
following, we show how the PDF differences in (8) behave
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θ [m]

P
D
F

0
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0.6

0.8

1

0 5-5

Fig. 2 PDF of the DIA-estimator Nx versus those of Ox0 and Ox1 under
H0 in (14), given �t D p

2 m, �
Ox0

D p
0:2 m and L1 D 1. blue:

f
Ox0

.� jH0/; black: f
Ox1

.� jH0/; red dashed-dotted: f
Nx.� jH0/ for PFA D

0:2; red solid: f
Nx.� jH0/ for PFA D 0:05

as function of some of these parameters under both H0 and
H1. Note that instead of P0, we equivalently work with the
probability of false alarm PFA D P.t 2 Pc

0 jH0/, which is
usually a priori set by the user.

Evaluation Under H0 Given �t D p
2 m, � Ox0

D p
0:2 m

and L1 D 1, Fig. 2 shows the normal PDFs of Ox0 (blue) and
Ox1 (black) as well as the PDF of Nx (red) under H0. The DIA-
estimator PDF is illustrated for two different values of PFA

distinguished by their line style; dashed-dotted: PFA D 0:2,
solid: PFA D 0:05. As it can be seen, the PDF of the DIA-
estimator does not resemble a normal distribution, but in
fact a multi-modal distribution. Like the shown two normal
PDFs, the red graphs are symmetric w.r.t. the center, which
means that the DIA-estimator is unbiased under the null
hypothesis, i.e. E. NxjH0/ D 0. It is observed that the PDF of
the DIA-estimator gets close to the normal PDF of Ox0 as the
false alarm probability decreases. It indeed makes sense as
decreasing the false alarm probability means that it is getting
more likely that the testing procedure leads to the decision to
correctly accept the null hypothesis. This in turn will result
in the contribution of Ox0 to the construction of Nx getting
larger. In the extreme case of PFA D 0 (no testing), the DIA-
estimator PDF becomes identical to the normal PDF of Ox0.

If the data precision Qyy gets scaled by a factor of � 2
R

C, then the precision of Ox0, Ox1 and t will also change by
exactly the same factor � (cf. 3, 10). Shown in Fig. 3 are
the PDFs of Ox0, Ox1 and Nx under H0 given �t D � � p

2 m,
� Ox0

D � � p
0:2 m, L1 D 1 and PFA D 0:1. The left panel

corresponds with � D 1 while the right panel shows the
results of � D 1:5. In agreement with the normal PDFs of
Ox0 and Ox1, the PDF of Nx gets less peaked around the true
value when the data in use gets less precise (� increases).

Evaluation Under H1 For our analysis under H1, we need to
consider some value for �t1 as well. With P0 in (12) and the
definition of correct detection probability in (9), the larger
the value of b1 (bias under H1) and thus �t1 , the higher
is the probability of correct detection. Figure 4 shows, for
�t D p

2 m, � Ox0
D p

0:2 m, L1 D 1 and PFA D 0:1, the
graphs of f Ox0

.� jH1/, f Ox1
.� jH1/ and f Nx.� jH1/. The panels,

from left to right, correspond with �t1 D 3 m, �t1 D 4 m and
�t1 D 7 m. Given on top of each panel is the corresponding
probability of correct detection. We note that the PDF of the
DIA-estimator under H1 is no longer symmetric around the
center, revealing that the DIA-estimator under H1 is biased,
i.e. E. NxjH1/ ¤ 0. The larger the probability of correct
detection gets, the closer the PDF of the DIA-estimator
gets towards the normal PDF of Ox1. And ultimately with
a correct detection probability larger than 0.99, the PDF
f Nx.� jH1/ almost coincides with the PDF f Ox1

.� jH1/ which
indeed makes sense as more than 99% of the time, the
testing procedure leads to H1 being selected. We remark
that the probability mass of f Nx.� jH1/ becomes more centred
around the correct value, or equivalently the DIA-estimator
becomes less biased under H1, for higher correct detection
probabilities which can be achieved as a result of larger
biases (as shown in Fig. 4), larger false alarm probabilities
and/or more precise data.

5.2 Multiple-Alternative Case

In Sect. 5.1, we discussed the properties of the DIA-estimator
through some simple examples of binary hypothesis testing
applied to a single-unknown, single-redundancy model. With
the insight gained from these examples, we now consider the
DIA-estimator in the context of a more practical application,
i.e. the well-known GNSS single-point positioning (SPP).
Assuming that a single GNSS receiver is tracking the pseu-
dorange observations of m satellites on a single frequency,
the SPP model under the null hypothesis reads

H0 W E.y/ D Œ�G em�

�
x

dt

�
; D.y/ D �2

y Im

(16)

with G 2 R
m�3 containing the receiver-satellite unit direc-

tion vectors as its rows, em 2 R
m containing ones and Im 2

R
m�m being the identity matrix. There are four unknown

parameters to be estimated (n D 4); x 2 R
3 the receiver
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Fig. 3 PDF of the DIA-estimator
Nx versus those of Ox0 and Ox1 under
H0 in (14), given
�t D � � p

2 m,
�
Ox0

D � � p
0:2 m, L1 D 1 and

PFA D 0:1 for [left] � D 1 and
[right] � D 1:5. blue: f

Ox0
.� jH0/;

black: f
Ox1

.� jH0/; red: f
Nx.� jH0/
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Fig. 4 PDF of the DIA-estimator Nx versus those of Ox0 and Ox1 under H1

in (14), given �t D p
2 m, �

Ox0
D p

0:2 m, L1 D 1 and PFA D 0:1

for, [left] �t1 D 3 m, [middle] �t1 D 4 m and [right] �t1 D 7 m.

blue: f
Ox0

.� jH1/; black: f
Ox1

.� jH1/; red: f
Nx.� jH1/. The corresponding

correct detection probabilities are given on top of each panel

coordinate components increments and dt 2 R the receiver
clock error increment. The redundancy of H0 is then r D
m � 4. The dispersion of the observables is characterized
through the standard deviation �y . At this stage, for the
sake of simplicity, we do not consider a satellite elevation-
dependent variance matrix.

It is assumed that the alternative hypotheses capture the
outliers in individual observations. Thus, with m satellites
being available, there are m alternatives Hi (i D 1; : : : ; m)
of the following form

Hi W E.y/ D Œ�G em�

�
x

dt

�
C ci bi ; D.y/ D �2

y Im

(17)

where ci 2 R
m is a canonical unit vector having one as its

i th entry and zero elsewhere, and bi 2 R is the scalar outlier.
Note that the alternative hypotheses in (17) are identifiable
provided that cti ¬ ctj for any i ¤ j (Zaminpardaz
2018). For our analysis, we consider the satellite geometry
illustrated in Fig. 5, comprising six satellites (m D 6).
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Fig. 5 Skyplot view of satellites. The six blue circles denote the
skyplot position of the satellites

Therefore, six alternative hypotheses (k D m D 6) of the
form of (17) are considered in the DIA procedure, and the
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Fig. 6 PDF of the DIA-estimator
Nu versus that of Ou0 under H0. The
illustrations are given for the
receiver coordinate up
component in SPP model in (16)
corresponding with the satellite
geometry in Fig. 5 for [left]
�y D 0:7 m and [right]
�y D 1 m. blue: f

Ou0
.� jH0/; red

dashed-dotted: f
Nu.� jH0/ for

PFA D 0:3; red solid: f
Nu.� jH0/

for PFA D 0:1
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redundancy under the null hypothesis is r D 2 (t 2 R
2).

We also remark that for this satellite geometry, all the six
alternatives are identifiable. Our illustrations will be shown
for receiver coordinate up component, denoted by u, under
H0, H1 (outlier in G1 observation) and H4 (outlier in G4
observation). However, we note that our conclusions will
be valid for any unknown parameter in (16). Without loss
of generality, we also assume that the true value of the up
component is zero.

Evaluation Under H0 In Fig. 6, the PDFs of Ou0 and Nu are
depicted in, respectively, blue and red color. The left panel
shows the results corresponding with �y D 0:7 m while the
right one shows the results corresponding with �y D 1 m.
In each panel two red graphs are illustrated; dashed-dotted:
PFA D 0:3, solid: PFA D 0:1. Again the symmetry of
the DIA-estimator PDF around the true value indicates the
unbiasedness of the DIA-estimator under the null hypothesis.
In addition, the peakedness of the DIA-estimator PDF, like
the PDF of Ou0, around the true value decreases when the
data precision gets poorer (�y increases). Similar to the
single-alternative example, we expect that the difference
between the red and blue graphs will diminish if the false
alarm probability decreases. This is indeed corroborated by
comparing the red dashed-dotted graphs with the red solid
ones in Fig. 6.

Evaluation Under H1 and H4 For our analysis under alter-
native hypotheses, we, as example, take the two alternatives
H1 andH4. Assuming �y D 1 m and PFA D 0:1, Fig. 7 shows
the PDFs of Ou0, Oui and Nu under Hi . The top panels are given
for i D 1 while the bottom panels are obtained for i D 4.
The values for bi under the mentioned two alternatives are,
from left to right, set to bi D 3; 7 and 15m. Here, because of
having more than one single alternative, in addition to the
correct detection probability, we also compute the correct
identification probability, both of which are shown on top of
each panel.

The significant departure between the red graph and the
other two normal curves in each panel is an indicator of
how misleading the post-DIA quality assessments would
be if one neglects the conditioning on testing outcome.
For example, let us assume that, for the case of lower-
right panel, H4 is selected through the DIA procedure. As
shown in Fig. 7, the PDF of Ou4 has larger probability mass
around the true value than that of Nu. Therefore, assessments
on the basis of fOu4

.� jH4/, rather than fNu.� jH4/, would
lead to optimistic/misleading quality descriptions (precision,
accuracy, integrity, etc.). As the bias value bi increases, both
the correct detection and identification probabilities increase
as well, resulting in less discrepancies between fOui

.� jHi /

and fNu.� jHi /. Note, however, that the difference between
the red graphs and the corresponding black ones becomes
small only for large correct identification probabilities, and
not necessarily for large correct detection probabilities. For
example, for the case where bias under H1 is b1 D 7 m
(upper-middle panel), despite having a large correct detec-
tion probability of PCD1

D 0:94, there is a big difference
between the red and black curve as the correct identification
probability is only PCI1 D 0:60.

6 Summary and Concluding Remarks

There is a close link between estimation and testing in any
quality control procedure. By highlighting this link and its
consequences, we revealed its impact on the quality evalua-
tions usually performed and elaborated on the circumstances
under which negligence of this link may still be considered
acceptable. In doing so, we provided a comparative study
of the probabilistic properties of the actual DIA outcome
Nx derived from the characteristics of both estimation and
testing, and the individual estimators Oxi corresponding with
the hypotheses at hand Hi (i D 0; 1; : : : ; k) neglecting the
uncertainty of the testing decision process. Our analyses
were conducted assuming that the observations are normally
distributed and that the underlying models are linear.
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PCD1 = 0.37, PCI1 = 0.14 PCD1 = 0.94, PCI1 = 0.60 PCD1 > 0.99, PCI1 = 0.91

PCD4 = 0.14, PCI4 = 0.03 PCD4 = 0.34, PCI4 = 0.11 PCD4 = 0.87, PCI4 = 0.44

Fig. 7 PDF of the DIA-estimator Nu versus those of Ou0 and Oui under
Hi in (17) for [top] i D 1 and [bottom] i D 4. The illustrations are
given for �y D 1 m and for [left] bi D 3 m, [middle] bi D 7 m and

[right] bi D 15 m. blue: f
Ou0

.� jHi /; black: f
Oui

.� jHi /; red: f
Nu.� jHi /.

The corresponding correct detection and identification probabilities are
given on top of each panel

We started with simple examples of single alternative
hypothesis where a single-unknown, single-redundancy
model was considered. The DIA-estimator was then
constructed by Ox0, Ox1 and t . It was demonstrated that the
distribution of the DIA-estimator, unlike its individual
constructing components, is not normal, but multi modal.
However, the non-normal PDF of NxjH0 ( NxjH1) will
approach the normal distribution of Ox0jH0 ( Ox1jH1) if PFA

(PMD D 1�PCD) decreases. The impact of the data precision
on the DIA-estimator PDF was also illustrated. For example,
under H0, the more precise the observations are, the more
peacked the DIA-estimator PDF gets around the true value. It
was also shown that while Nx is unbiased under H0, it is biased
under H1. The bias of NxjH1 gets, however, smaller when the
correct detection probability gets larger as more probability
mass of f Nx.� jH1/ becomes centred around the true value.

Having investigated the single-alternative case, we then
applied the DIA-method to the satellite-based single point
positioning model where multiple alternative hypotheses,
describing outliers in individual observations, were consid-

ered. For our illustrations, we showed the results corre-
sponding with the receiver coordinate up component u. We
however remark that the following conclusions are valid for
any other unknown parameter and linear model. Similar to
the single-alternative example, it was shown that the PDF
of the DIA-estimator Nu cannot be characterized by a normal
distribution. Depending on the underlying settings, there
could be significant departures between the PDF of the DIA-
estimator and that of the estimator associated with the iden-
tified hypothesis. It was highlighted that if the uncertainty
of the statistical testing is not taken into account, then one
may end up with a too optimistic quality description of the
final estimator. Nevertheless, depending on the requirements
of the application at hand, the DIA-estimator PDF may be
well approximated by Ou0jH0 under H0 and by Oui jHi under
Hi for, respectively, small PFA and large PCIi . It is therefore
important that one always properly evaluates identification
probabilities, as a large probability of correct detection not
necessarily implies a large correct identification probability
(Teunissen 2017b).
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