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Scope of the thesis

Scope of the thesis

Catalysis is of fundamental importance to indusing the economy. It is estimated that
around 20-40% of GDP is generated through processedving catalysis. In the
petroleum and bulk-chemical industries, catalytioccesses are almost universal while,
in fine and pharmaceutical chemicals, catalytictieas play an increasingly important
role. In these industries the acceleration ofdalyst development and research can
have a large economic and ecological effect, becanere than 90 % of current
industrial processes involve catalytic steps. aisl research and development is
therefore an activity of major importance for timelustry, and also in universities and
research organisations. A great effort is therefmwe nowadays in the research and
discovery of new catalyst processes and the opditioiz of existent process parameters.
In catalysis the challenge of research is to firdalysts with high activity and
selectivity for certain chemical transformationsndato optimize them. Most
improvements in catalyst design and process camditioptimization arise from
extensive empirical catalyst synthesis and massenorg. A way to accelerate this
optimization is to use High-Throughput Experimeitat (HTE) methodologies. In
recent years, HTE has been recognised as a satlefdf great value in improving the
productivity of research into new and improved kestis and processes. The use of
miniaturised and parallel reactor assemblies deesethe limitations on the number of
experiments that can be performed, maximises dtyeend enables the various stages
from discovery to process development to be integraffectively.

The increase in experimental capabilities allowdth W TE brings with it a requirement
for effective experimental design, if the potentwl high information yield is to be
realised and data explosions avoided. To use HiT&hiefficient and rational way the
chemist needs to a certain extent to change histipah research habits. Multiple
parallel reactions need to be planned, to be paddrin grouped reaction batches and
the resulting large volumes of analytical data pssed. By the application of
appropriate chemometric techniques, appropriategagsfor all stages of catalysis
research, from catalyst preparation, through redesting to process optimization, can
be constructed. Chemometric methods can alsogedeols for efficient data analysis

of large sets of HTE results such as analysis afamee (ANOVA), principal



Scope of the thesis

components analysis (PCA) and principal least ssuéPLS). In this thesis alternative
strategies are discussed and applied to creatabBuibptimization procedures for
examples of both homogeneous and heterogeneoulgicat@actions.

The use of several chemometric design planning odetlbgies in HTE catalysis
research is experimented in this thesis througferdifit catalytic case studies. Three
different catalytic systems have been considerkd: ihvestigation of homogeneous
Brgnsted-acid catalytic hydration of terpenes; tpimization of heterogeneously
catalysed reaction conditions for the reductiorcgdnohydrin esters to N-acylated-[3-
amino alcohols; and finally the optimization of midcoxide heterogeneous catalyst
compositions for the oxidation of CO, with and waith hydrogen, for fuel-cells
applications. To tackle these three diverse catalstibjects different chemometric
optimization strategies have been applied. Thesgegies can be divided into two main
classes: the Design of Experiments (DoE) and tleb&I|Optimization algorithms.

The main topic of this thesis is the investigatiohthe synergies between High-
Throughput Experimentation (HTE) and Chemometridi®ation methodologies in
Catalysis research. The uses of these strategiesatalysis research are discussed in

this thesis through its various chapters:

Chapter 1 provides an introduction to High-Throughput Expegntation (HTE),
Chemometric optimization methods and consideratiaisout their combined
application for catalysis research.

Chapter 2 presents an overview of the Design of Experiméettiniques, since this
methodology is central to most of the thesis redear

Chapter 3 deals with the exploration of a terpene hydratieaction parameter space
using a Design of Experiments approach.

Chapter 4 presents the optimization of the reaction condgidor the reduction of
cyanohydrin esters to N-acylated-3-amino alcohasgs a multi-step Design of
Experiments approach.

Chapter 5 deals with the planning and modelling of catalybenchmark response
surfaces using Design of Experiments. A library1@9 mixed-oxide catalysts was
prepared and their activity tested and modelledHerCO oxidation reaction in both the
absencgCOOX) and presenceELOX) of hydrogen.



Chapter 6 is concerned with the optimization procedure ofpkying the Global
Optimization Genetic algorithm and the influence tbé algorithm settings on its
optimization efficiency. BothCOOX and SELOX benchmarks are used to validate the
Genetic algorithm performance.

Chapter 7 compares the performance of several algorithntBeir optimization based
on the SELOX benchmark. Evolutionary strategies, Genetic allgors, Simulated
Annealing, Taboo Search, and Hybrid Genetic algoré are the Global Optimization
strategies tested. Considerations between theafidessign of Experiments or Global

Optimization algorithms for catalysis researchas® discussed.

Appendix A describes the High Throughput Experimentation gageint used.

Appendix B presents the mathematical models (obtained in ©h#&) that constitute
the COOX and SELOX benchmarks.

Appendix C presents a brief description of the Opticat sofemssed in Chapters 6 and
Chapter 7.






OPTIMIZATION STUDIES IN CATALYSIS EMPLOYING
HIGH-THROUGHPUT EXPERIMENTATION: DESIGN
OF EXPERIMENTS AND GLOBAL OPTIMIZATION
ALGORITHMS

Abstract

High-Throughput experimentation (HTE) is being gasingly used in the field of
catalysis research. In order to realise the beméfihe higher throughput obtainable
using these methods, simultaneous parallel reacti@ed to be planned and the large
amount of data generated needs to be analysed. ddmetmc tools, originally designed
to tackle analytical chemistry issues, are provingbe a valuable aid for both
experimental planning and data analysis. In comimnawith HTE, they enable
diversity to be maximised and the productivity agféiciency of the research to be
greatly improved. This combined application offéherefore new possibilities and a

step forward in catalysis research.



Chapter 1

1.1 - Introduction

Catalysis research allowed the development of nefiieient and greener chemical
processes through the acceleration of chemicatiogscand the increase in selectivity
towards the desired product. A great effort is iputhe research and discovery of new
catalytic processes and the optimization of exisgmocess parameters. A way to
accelerate this discovery is to use High-Throughfperimentation (HTE)
methodologies. The use of HTE also allows more rditye to be taken into
consideration in the catalysis search parametetespgae to the lower experimental
effort, but the possibility of screening large paeder spaces can also lead to an
experimental combinatorial explosion, impossiblenemdle even with HTE. Multiple
parallel reactions need to be planned, to be pmddrin reaction batches and the
resulting large analytical data volumes procesdefficient experimental planning and
data analysis can be patrtially solved by chemometethods. These methods allow to
further enhance the capabilities of HTE experimgonaand their application in HTE

catalysis is nowadays increasingly studied.

1.2 - High-Throughput catalysis

In contrast to traditional methods, in which prodémrmulations or sets of process
conditions are tested sequentially, High-Throughgixperimentation (HTE) is a
method that allows the synthesis and screeningeind br hundreds of reactions or
catalysts simultaneously. Robotics in the formigdild and solid handling devices and,
usually, miniaturised multiple reactor systems ased to speed-up the screening
procedures of research and development in sevhahistry fields. The multiplicity
and parallelism of the reactor arrays enable priddtycand diversity to be maximised,
by reducing limitations in the number of experingetihat can be conducted. HTE
research, besides the saving in time, also all@fey,sand ultimately cheaper research,
and has a lower environmental impact since onlyllsgquentities of reactants are used
[1]. The initial applications of HTE occurred inethfield of combinatorial drug
discovery in the late ‘eighties. Since then, HTE us this field is widespread, being
nowadays a standard method for drug discovery @ustry [2,3]. The use of HTE



methods in the catalysis field is more recent, fttet reports appearing about fifteen
years ago. Schultet al. in 1995 disclosed the application of HTE methoals the
discovery of novel materials and library screenimmg properties such as
superconductivity and magneto resistance [4,5]elLat the same year, libraries of
compounds for use as catalysts for asymmetric sgiglj6] and phosphatase hydrolysis
[7] were also reported. Nowadays a significant ami@f work is still being performed,
aimed at realising the full potentialities of thethnod in this area. Some good review
papers about these efforts are presented in [8-HITE can be used in most procedures
involved in the development and testing of catalysCatalyst synthesis (both
homogeneous and heterogeneous), screening foritactand selectivity, and
optimization of process parameters can all be pmed with higher efficiency using
HTE methods.

The advantages of HTE have sometimes prompted dhelusion that less scientific
insight is necessary when applying these methduis. i$, however, a wrong perception
since the challenge to the chemist is in fact iaseel rather than decreased. Due to the
removal of limitations on the experimental effdrat can be performed, the chemist can
take into consideration more variables that catuémice the system under study. This
increased experimental power compels the chemigséohis/her chemical knowledge
to determine the relevant variables and theirrsgstin order to carry out a meaningful
experimental plan. And, finally, a great deal oftical chemical insight is again
essential for interpretation of the results, knalgle extraction and the planning of
subsequent research steps. High-Throughput Expetatien is not a new field of
science but a series of tools developed for helpimgmists. Optimization studies are
without doubt one of the areas where HTE methodolpigesents great advantages,
since it allows larger parameter spaces to be figaed in a systematic and
experimentally efficient manner. In Appendix-A thdigh-Throughput equipment
employed in this thesis is presented and briefgcdbed.
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1.3 - Chemometrics for HTE catalysis

Chemometrics is defined by the International Cheetocs Society (ICS) as “the

science of relating measurements made on a chegyis@m or process to the state of
the system via application of mathematical or statl methods”. These methods,
initially dedicated to tackle analytical chemistsgues, are nowadays receiving special
interest from the catalyst HTE community and a aerable number of studies have
been performed in order to improve the understandinthese methods and to adjust

them to the field of catalysis optimization [11-13]

The wider acceptance of High-Throughput Experim@mta(HTE) and combinatorial
methods has opened, in recent years, a broad mngew possibilities to the catalyst
researcher [14]. The automation and parallelisatddnthe experimentation poses,
however, new challenges to the chemist in the tenaof the experimental work so as
to take full advantage of the HTE capabilities. Hirfroduces the need of batch
experimental planning and the analysis of largeivas of data. The research routine is
based on batches of parallel experiments, as ogposthe conventional approach of
sequential experiments. The way to plan the exmariation is therefore different since
all experiments need to be designed beforehandinGa&dvantage of the lower
limitations on experimentation, robust experimerdakigns can be performed and
larger parameter spaces searched. As a consequietheelarge batches of experiments
performed, large data sets of results are alsarmataChemometrics provides the tools
for efficient experimental planning, data treatmand knowledge extraction. Many
stages of the HTE catalysis research can therdfenefit from the aid provided by
chemometric methods. The experimental planninghef research workflow can be
efficiently performed via Design of Experiments @Global Optimization techniques.
Chemometrics data analysis techniques allow taiefftly extract information from the
large data sets obtained in HTE research. Anabfsigriance (ANOVA) is a statistical
set of tools that allow verifying the significanoéthe information obtained. Methods
such as principal component analysis (PCA) allow duotliers and data correlations
identification can be used for facilitating the @rgretation of the results. When a
statistically planned experimental design is penked, regression techniques such as



ordinary linear regression (OLR) and principal tesguares (PLS) can also be used to
obtain the system model.

Correlations between variable descriptors (such sadvents, additives) and
activity/performance can be obtained by quantietistructure activity/properties
relationships (QSAR, QSPR) methods [11]. These lirevéhe construction of some
form of model which enables the observed activitypmperties to be related to the
molecular structure descriptors; these methods eatensively used in the virtual
screening of drug candidates. For catalysis-relatralies, mainly heterogeneous
catalysis, the importance of study of the compaosithas led to the development of
quantitative composition activity relationship (QBA techniques [10]. Via
QSPR/QSAR/QCAR models large data sets of librazas be virtually screened and
the combinatorial explosion due to the presencaariy categorical variables reduced.
Through these models knowledge about catalysibt@imed by extraction of rules and
relationships, and this knowledge can be furthedus the design of new libraries [15].
These methods belong to the Cheminformatics [16t&4 of research and will not be
treated in this thesis in which ordinary linear resgion techniques are applied and

focus is put on experimental planning techniques.

1.4 - Chemometric experimental planning techniques

The increased throughput that is achieved with H@&hnologies has introduced the
need for a different strategy in experimental plagrand also for new possibilities for
robust experimentation. Several experimental plaspnnethodologies exist that can
handle different experimentation throughputs anaaleds. Many of these technologies
are also used in other scientific fields that de#th multivariate issues such as
economics, social sciences, etc. Their applicationchemistry-related issues is
relatively recent and in many cases just nowadaysgbexplored (see Chapters 6 and
7).

Two main groups of strategies can be designate@xperimental planning: methods
based on statistical planning and modelling of ¢hére parameter space (Design of
Experiments); and, methods based on iterative Beardn the parameter space

(Optimization Algorithms).
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Design of Experiments (DoE) is the methodology tmoemmonly used in HTE
catalysis. For some catalytic issues, like foranse some cases of heterogeneous
catalyst composition optimization, algorithm optoaion strategies are nowadays
being increasingly studied and applied. These twthematical aids to experimentation
are different in nature and objective, the choi€avbich to use may depend on the

catalytic problem to be solved.

1.4.1 - Design of Experiments (DoE)

Design of Experiments (DoE) uses regression tect@siqqo obtain the relationship
between the responses and the system factors. Mbadethe chemical systems can be
obtained via this technique, or just screeningrmiation about the importance of the
effects of the factors studied. DOE can resembkotoe extent conventional laboratory
research, in the sense that, to improve efficieribg, search can be divided into
different stages or designs. The parameter spapeogessively reduced to the most
relevant variables from one stage to the next atdiléd information is obtained in the
end for the most important factors [18]. The intetption of the results, and the
selection of the factors for further investigatienthe responsibility of the chemist. The
parameter space is modified at each design, makpassible to eliminate or introduce
new parameters or levels, according to the cumederstanding of the system under
study.

DoE is starting to be increasingly applied in reskan the catalysis field. Literature is
available reporting screening and optimization &sicbf catalytic systems. Some of
these studies include catalyst formulation and gmepon [19-22], catalytic kinetic
modelling [23,24], reactor engineering [25,26], atite optimization of catalytic

reaction conditions [27-31]. In chapter 2 this noetology is explained in more detail.



1.4.2 - Optimization algorithms

Optimization algorithms are iterative computatior@ltines that guide the experimental
procedure (Chapter 6 and 7). There are severalrithlgp procedures that can be
applied, depending on the characteristics of th&esy requiring optimization. The
algorithms can have a heuristic (basing the searebedure on premises) or stochastic
(random) character, and can be divided into locagjlobal optimization algorithms.
While local optimization algorithms are valuable fme-tuning optimization, they stop
on the first optimum found. Global optimization atijhms in contrast are effective in
finding the global optimal solution location but aker in the fine optimization.
Examples of local search algorithms are Simplex &tekpest Ascent; global search
algorithms include the Genetic Algorithms (GA) a&imulated Annealing (SA)
between others. This thesis will focus on the Glabatimization search algorithms.
These are often inspired by natural processes tihi@ation, like Genetic Algorithms
(GA) which simulate biological evolution and suraivof the fittest, and Simulated
Annealing (SA) which mimics the gradual coolingeofetal to achieve its most stable
solid form (Chapters 6 and 7). Optimization aldgonis represent alternative
optimization methods to DoE, being many times prefé when there is a) a large
parameter space, b) non-linear shape of the respauréace (where synergistic effects
are commonly encountered) and c) the existenceaofymategorical variables [32,33].

1.5 - Summary

High-Throughput Experimentation, together with cloametric methods of experimental
planning and data analysis, allows increased pitish for catalysis research. The
synergy between these two strategies is, howetitmewadays not fully studied and
explored. This investigation and mainly the expemtal planning techniques applied

to HTE catalysis is a focal point from this thesis.
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DESIGN OF EXPERIMENTS FOR HIGH-THROGHPUT
CATALYSIS RESEARCH

Abstract

Design of Experiments (DoE) is a methodology thatsaat maximising the amount of
information obtained from experimentation while mirsing the experimental effort.
With DoE a statistically efficient set of experintecan be selected from the parameter
space and, by the use of regression techniquesiethgonship between the system
responses and the influencing factors is obtaifié result is a model from which
information about the magnitude of effects can kv or a response surface can be
constructed. The use of DoE can improve greatlyefifieiency of experimental effort
and enable more accurate results to be obtainedtkieaclassical one-factor-at-a-time

research method.



Chapter 2

2.1 - Introduction

Design of Experiments (DoE) was first developedthe 1920’s, by Sir Ronald A.
Fisher, a British scientist who studied and propoaedifferent research approach to
conventional one factor at a time (OFAT) resear@thods in order to maximise the
knowledge gained from experimental data [1,2]. Rilagp a DoE strategy starts with
determining the objectives of an experiment anecdielg the process factors that are
relevant for its study. An experimental desigrhisrt chosen in which all the considered
factors are simultaneously varied. These desigrig tte maximise the amount of
information obtained from experimentation while mrsing the experimental effort
required. They are more efficient and lead to maceurate optimization than
conventional OFAT research methods. The resultsimdd can be analysed in a
statistical manner, which enables information alibeir significance and confidence
intervals to be gathered. It can be applied toythffierent scientific fields or basically
to any system with measurable inputs and outputs.

In recent years, this methodology has been applidd success in the field of catalyst
research. Possible applications in this area irchkatalyst formulation and preparation
[3-6], catalytic kinetic modelling [7,8], reactongineering [9,10], and the optimization

of catalytic reaction conditions [11- 15].

2.2 - Design of experiments (DoBjs one factor at a time (OFAT)

In the conventional research strategy of changing factor at a timethe effect of

altering one variable of the studied system igaliyt measured, the best setting of this
variable being then usually chosen for the invesiign of the variation of the other
system parameters. With this approach a greatadi@aformation can be obtained about
how a given variable influences the system undedysiat the chosen fixed levels.
However, the OFAT approach has limitations that teed to inaccurate or even
erroneous conclusions in cases where the influeoicdse variables on the system are
not independent of each other [16], as is usudlly tase in catalyst optimization
studies. Catalytic reactions are commonly charseeér by multiple interacting

parameter dependencies (like temperature, meta tpd composition, pressure,



catalyst loading, solvent, etc.) and are therefure easily optimized by a traditional
OFAT approach.

This is demonstrated in Figure 2.1, which represéme difficulty of a proper system
optimization via the classical one-variable apphoaten interaction effects between

the parameters are present. In Figure 2.1a varkabtetested at a random fixed level of
variableX, (X, = 0.0). The level of the variablg from which the best result obtained is

fixed and variablex; is then tested at this level (Figure 2.1b). Tlsthresult found

after testing these two variables is often takemhasoptimal solution. In the case of
linear dependent variables this methodology camnl leaerroneous conclusions, as
exemplified in Figure 2.1a-b where the true respaswgface and optimality area can be

observed on the contour-plot graphic background.

'
s

Figure 2.1 - Optimization of the response affected by two fetoearing interaction effects
using the conventional one factor at a time appgro@FAT). a) Investigation of the first

variable, b) Investigation of the second varialblthe best setting of the first.

A multivariateDesign of Experiment®oE) approach, on the other hand, is able to take
account of these interactions. DoE is an empimeathod which directly measures the
effects of various changes in the system respdfisewledge about cause and effect
relationships can be drawn from a well planned a®digned experiment. The

parameter space is consistently investigated atetaictions between factors can be
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revealed with this methodology. Multivariate statiglly designed experiments are also
more economical with respect to time and effornthi@ classical research approach of
altering only one factor at a time.

Using a multivariate DoE approach enables an exygial plan to be constructed that
ensures proper experimental coverage of the paeamspace and produces
representative statistical results (Figure 2.2)e Tdata are fitted to a model that
originates a response surface that indicates tbatitmm of the optimality area. This

model is an approximation of the true response asetf and further close-up

experiments in the optimal area region can be pmdd to find the best optimal

solution.

3 - [

®

Figure 2.2 - Optimization of the response affected by two festikaving interaction effects.

Example of a DoE optimization experimental plamgsa Central Composite Design (CCD).



2.3 - DoE models

As with most chemical problems, for catalytic cheahisystems it is difficult or even
impossible to derive a function in an analyticainiobased on previous knowledge and

chemical theory. Experiments are therefore conduitidry to obtain information about

the functional relationship between the changinghef factors X, Xo, ..., Xx) and the

resulting responsey;}.

y=f(x.,%,...%) Equation 2.1

In the DoE approach this relationship is estabtishean analytical form and the Taylor
polynomial function is usually employed. This fuinct is called a response model. In
most catalytically related issues the inclusiortled second-order terms is considered
sufficient for representing the chemical systenopdimize [17]. This expression can

therefore be written as:

Y =6+ BX t BoX ot BX + XX, o+ B XX '*':5,11X12 +~--+13ka|3 tE

Equation 2.2

The error termg, contains information from the omitted terms o fhaylor expansion
and includes both experimental error and the effeft uncontrolled factors in the
experiment.

The coefficients of the response model describe tlmvsettings of the experimental
variables are linked to the response. PBheoefficients of the Taylor function can be
obtained via linear regression from the experimemisults. In a designed experiment,
X1 and X are systematically manipulated while measunjhgwith the objective of
estimating the coefficientg, f1, f2, andps. Thefix., terms represent the main effects
of the factorsgijxx the two-way interaction between factor effect ®randfux’ are
quadratic terms accounting for the system’s cureatiihe roles played by each factor
can be analysed from the estimated magnitude ofcaesfficient. For obtaining

representative coefficient values a consistenigesian needs to be performed.
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A quadratic order response model is not alwayssseng to represent the system being
studied, or to obtain the desired information. Loweder models are in many cases
sufficient. The terms that are necessary to ireludthe model function are dependent
on the objective and complexity of the system urstiedy. The more terms are included
in the equation, the more detailed the informattan be obtained about the chemical
system, but the price to pay is an increase inekgerimental effort. A graphical
exemplification of the type of information obtainedth increased order in the models
can be observed in Figure 2.3.

In this figure the increase in information obtaingdadding increased order terms into
the model function is shown.

In linear modelling(Figure 2.3a)the response is approximated by a plane. These
models are a simple approximation of the experialestirface, and do not give a
perfect description of its variance. But they canvbry useful when rough estimates of
the influence of the experimental variables arettat is required, as in the screening
experiments stag&econd order interaction mod€sigure 2.3b) allow the twists of the
planes to be revealed. This occurs when interastetist between the variables. And
quadratic models(Figure 2.3c) allow the curvature of the resposseface to be
exposed. These surfaces are valuable for locatmgnial optimum conditions.

In screening experiments, for instance, one is Ipamerested in determining, among
the many trivial factors, the few parameters of magportance; these can then be
investigated further in more detail. The main efeof the factors(fix) can be
sufficient to obtain this information and a lineaodel can be simply employed. If
interactions between factors are also assumed timpertant, the interaction terms
(Biixx) should also be considered. In a later stage odareh, if more detailed
information is necessary and curvature is suspettethe system response, then the
quadratic termsfx?) should then also be adopted. In most cases likebetmet with,
third order interactions between the factors artefouand to be significant and therefore
are often not necessary to be considered for opdition purposes.

A multi-step approach using a sequence of desigash increasing the degree of
information yielded, is a research strategy usuedigsidered to be very efficient (see
Chapter 4) [18,19].



Design of Experiments

Figure 2.3 -Example of contour plots and corresponding respsusfaces for different order

models. a) First order or linear modgH 1%, + f2%), b) Second order with interactions<

Pixa + PaXo + frXaXe) and d) Quadratic modey € fixq + faXe + frXaXot+ ﬁ11X12 + ﬂzzxzz)

21
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2.4 - Types of designs

Depending on the type of catalytic problem to bévesh the degree of detailed
information wanted, the dimensions of the paramejgsce and the experimental
constraints, a proper design should be chosen shtitfies these demands and
limitations. With a proper design the response rhodefficients can be obtained in the
most efficient and/or accurate way.

Commonly used designs can be divided into screenmgponse surface or
optimization, and mixture design classes. Both sita$ and non-classical types are
available; the classical employ predetermined postof the experimental points in the
parameter space, while in non-classical (compuaeetd “Optimal” designs) an
algorithm selects the experimental points, on thsidof the number of experiments
specified by the researcher. This enables als@xperimental constraints to be taken
into account and so these designs are generally wbeenever the classical designs
cannot be employed.

The screening designsare usually used to select the few important factihat
significantly affect the system and discard the ynaivial ones. These investigations
may include many variables and play an importam¢ io the early stages of an
investigation. Their main objective is problem retion. They allow locating a proper
region from the parameter space to perform morailddt investigation via a further
optimization design. Common screening designs laeFull and Fractional Factorial
designs (Section 2.4.1) and D-Optimal designs ({&e&.4.3).

In optimization designsysually more detailed information is desired frone few
significant factors in question. Their main objeetis to reveal the optimal values for
the experimental factors or to build a mathematiatiel which can be used to predict
the behaviour of the process being investigatedin@gation designs are also called
Response Surface designs and some commonly usedplesainclude the Central
Composite design, the Doehlert design (SectiorRpdnd also the D-Optimal design
(Section 2.4.3).

Mixture designsare employed whenever it is necessary to optirtizecomposition of
mixtures [20]. In these cases the proportions ef different factors must sum up to



100%, complicating the design and the analysihefresults. An example of a mixture

design can be observed in Figure 2.4f. This DoEhotkis not applied in this thesis.

2.4.1 - Factorial designs

Factorial designs typically place points at reguiarervals in the design space,
including the highest and lowest values of eaclofac

A Full Factorial design comprehends the exhaustive performancel dfelpossible
parameter combinations plus replication experimérterror analysis.

In Fractional Factorialdesigns just a part of the total number of runseidormed. The
runs are chosen with detail in order to have thestnemguilibrated design possible
[21,22]. The information obtained is dependent loe quantity of experiments and the
experimental plan considered. The fractional faatatesigns can have different levels
of resolution (lll, IV and V) and the choice of odstion is dependent on the level of
detail of information desired and on the experimkrgquirements. The price to pay by
not doing a full factorial design is that some effeerms of the model are confused by
‘aliases’. This means that the effects of thesengeron the system cannot be
distinguished. For instance, the main effect ofngfiag one variable is linked to the
main effect of changing one other variable and mat possible to determine which of
the variables is indeed responsible for the obskefect. The more reduced the design,
the more aliases between the factor effects arallysiound, because the number of
experiments is insufficient to distinguish betwettrem. More information about

fractional factorial designs can be obtained inliteeature [11,19].

2.4.2 - Response surface or optimization designs

Depending on the degree of detail necessary (omibdel order) the Response Surface
or optimization designs can be considerably morpesmentally demanding than
screening designs. They are usually employed tdysthe influence of the most
important factors after they have been selected dareening design. Response surface
designs (RSM) are used when more than one contintemior is present. There are

several RSM design strategies that can be choseodel catalytic systems. Figure 2.4
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shows geometrical representations of some of th& ecmmnmon strategies for systems
with two factors.

The Pentagon(Figure 2.4a) and thBoehlertdesign (Figure 2.4b-c) are experimentally
economical designs [23]. The Pentagon is moreiefficcequiring just the amount of
experiments necessary to fit a quadratic secon@rongodel (in the case of two
continuous variables 6 coefficients are needed sm@® experiments). The reduced
amount of experiments may, however, compromisartbdel prediction qualities. The
Doehlert design is more commonly used than thedgentdesign. One of the reasons is
the possibility of augmenting it by adding threalifidnal adjacent experimental points

in order to continue to explore the parameter sfiiceire 2.4b-c).

o o o .
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Figure 2.4 -Classical response surface or optimization desggnBentagon design, b) Doehlert
design, ¢) Augmented Doehlert design, d) Centrah@usite design, e) Box-Behnken design

and f) a mixture design. * Star or axial points.

The Central Compositalesign (Figure 2.4d) contains a factorial design with cent

points that is augmented with a group of star adalguoints[24,25]. The star points



establish new extremes for the low and high sedtifagy all factors and allow an
estimation of curvature. These designs have veog gtatistical properties and can be
used in demanding simulation issues.

The Box-Behnkerdesigns (Figure 2.4e) place points on the midpoaftthe edges of
the hyper-cubical design region, as well as paattdhe centre [26]. These designs are
used when there are more than three levels andhare economical than either the

Central Composite or the Doehlert design.

2.4.3 - D-Optimal designs

Optimal designs differ from those discussed aboueeing generated from an algorithm
based on a particular optimality criterion [27].€Thlgorithm searches for a sub-set of
experiments from the entire parameter space thstt ssisfies this criterion. All the
optimality methods are model-dependent and so ¥perementer must specify the
model terms to be considered and the final numbdesign points preferred before the
design generation. The computer algorithm usuaflgsua stepping and exchanging
process to select the sub-set of experiments. Taexevarious forms of optimality
criterion that can be used which are all based amnesfunction of the information
matrix. The most common criterion is the D-OptimEhe D-Optimal design algorithm
seeks to maximise thX'X |, the determinant of the information matrix (X’Xj the
design. This criterion results in minimising thengealised variance of the parameter
estimates in a pre-specified model [20].

The Optimal designs are usually applied whenever dlassical factorial or RSM
designs cannot be used due to constraint limitatioh the parameter space or
experimental effort, and/or the presence of discfattors with many levels (a common
case in catalysis issues). Computer-based optirealgds can be used both for

screening and optimization, depending on the mepletified.
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2.5 - Multi-design approach

Multi-design DoE approaches resemble to some extamtventional laboratory
research, in the sense that, to improve efficieribg, search can be divided into
different stages or designs. The parameter spapeogessively reduced to the most
relevant set of variables from one stage to the apd detailed information is obtained
in the end for the most important factors [28]. Thierpretation of the results and the
selection of the factors for further investigatisrthe responsibility of the chemist. The
parameter space is modified at each design, makpassible to eliminate or introduce
new parameters or levels, according to the cumederstanding of the system under
study.

A common strategy is to start with a screening giteso select the most important
factors affecting the system. Then, setting thes lggluential factors to the most
advantageous levels, a series of more detailedyaiegsuch as full factorial designs)
can be conducted to better understand the effetheoinost important factors on the
response. The process can, if necessary, be cedtimith additional optimization steps,
enabling the response surface to be further matielteil a satisfactory description of
the region of interest is obtained. Such a strategysually highly efficient and is
exemplified in Chapter 4.

2.6 - Steps for a DoE research strategy

A DoE research strategy should be carefully planinedrder to make it possible to
obtain in the most efficient way the informatiomuéed from the experimentation. The
planning of a DoOE experimental research programiffersl from the conventional
OFAT strategy, and the more important issues vélbbefly explained in this section.
Common steps in this planning are: 1) set the ¢ibEx and responses, 2) select the
parameter space, 3) select a proper experimentaigrde 4) perform the
experimentation, 5) analyse and interpret the tesahd prepare the next step based on

the previous results obtained.



2.6.1 - Setting objectives (responses)

The set-up of the experimental design dependsenqubstion to be answered. The goal
of the experiment needs to be clear to be ableakenthe right experimental plan. A
thoroughly thought-out experimental design is afteat essential for being able to
obtain the desired answers. For this, the relefators that may influence the system
need to be determined, and the experimental camisti@onsidered.

In many cases there is the need of multi-respoogesization. The choice of the most
relevant response to optimize or its importancthenhierarchy depends on the goal of
the catalytic challenge. Often the yield of theidb product is the most important
response; however other responses such as sdiecti@reo-selectivity or conversion
can be the most important ones to consider. O#sronses may be for instance the
production cost of the product, consumption of acHft starting material, time for
reaching a certain conversion, etc. There existesmathematical techniques that allow
the simultaneous analysis of several responsé®e iiumber of responses to optimize is
small, the surfaces for each of the responses eavdluated by visual inspection of the
contour plots, preferably superimposed on the sploe[19]. Another method is to
combine the responses together into one critetlwa,Desirability function, which is
then optimized. If there are many responses toidenstheir simultaneous evaluation
can become very complex. Multivariate analysis hed tesponse matrix by principal
components analysis (PCA) or principle least squéP&S) can simplify this evaluation
[19]. The Desirability function method has beenduseChapter 5.

2.6.2 - Selection of the parameter space

The selections of factors and factor levels thatiodluence the catalytic system in the
pursuit of the set goal have to be carefully com®d with the previously defined
objectives in mind. Existing knowledge about thesteypn under study should be
primarily used at this stage.

A catalytic reaction is a complex system that can dffected by several factors.

Common factors influencing a catalytic system areimstance the catalyst type and
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loading, its stability, the pressure, temperatargl the solvent; this makes it a complex
system to study and to optimize.

The variables can be usually divided into contirsioudiscrete factors. Variations such
as: substrates, reagents, catalysts, solvents(tie¢ccategorical variables) are discrete
and constitute what is sometimes called the reacBgstem. The experimental
conditions, such as: concentrations of a substra@gent or catalyst; temperature,
pressure, stirring rate, etc. are usually contisuand can be set to any value in their
range of variation.

Well-planned measurement of continuous variablésvatesponse model fitting and
interpolation estimates of the non-measured vaisblels. While among the discrete

variables, measurement estimates of non-testetslearnot be obtained.

2.6.3 - Choice of experimental design

Depending on the objective of the experiment antherexperimental constraints (time,
limited number of experiments, etc.) there are sdv@ossible types of design that can
be used to plan the experimental effort. An ovewad these designs can be seen in
Section 2.4.

2.6.4 - Performance of the experimental plan

When performing the experiments a high degree tehaon should be paid to avoid
experimental errors (random but mainly systemaklciown, but unwanted, sources of
variation caused for instance by changes in retgt&aguipment or personnel can be
‘blocked’. With blockingthe variation caused by this change can be aceduot and
not taken into consideration for the true estinmatid the effect of the factor on the
response. Furthermore, results can be revealedtimatwise would be obscured by the
variation.

With randomisation the run sequence of the experimental units is rokted
randomly. This decreases the possibility of ertorbe associated with specific factor

levels.



Blocking is used to remove the effects of impartancontrollable but known noise
sources and randomization is used to reduce thtamamating effects of the other
uncontrollable variables. A rule of thumb founduatle in DoE is: ‘block what we can

and randomize what we cannot’ [29].

2.6.5 - Analysis and interpretation of the results

The analysis and interpretation of the experimemsuilts can be performed in an initial
stage simply by a preliminary visual inspectiontbé data. Most of the available
software packages possess, however, graphicaltatstisal aid tools for their analysis
and interpretation which largely improves the datterpretation and information

knowledge.

With a well designed DoE experimental plan thectftbat varying a factor can have on

the system response can be computed in the folipmignner:

Effectcacioy) ==+ — =2 Equation 2.3

Wheren, and n, refer to the number of data points collected atitfand - level of

factor A respectively andy(,") and (y, ) to the associated responses.

The effects of changing experimental factors aemdamitted via the corresponding
model parameters into the systematic variatiornefresponsy. To be significant this
variation must be above the system noise level.ckleto determine the influence of
experimental variables we must determine the vadfieiseir model parameters and then
compare these values to an estimate of the expatatnerror. In this thesis a graphical
representation of the effects magnitude is usyaigented with the significance limits
at the 95% confidence interval (Chapters 3, 4 andOther statistical tests can be
performed based on the statistical method of arsalyksvariance (ANOVA). All the

previous tests can be automatically performedhgacommon DoE software.
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2.7 - Designs of experiments in HTE catalysis reseh

Automated equipment in conjunction with statistidakign of experiments (DoE) can
accelerate both the screening and the optimizativesse of catalytic reactions. The
large numbers of factors that affect a catalytistay usually implies a large
experimental effort. DoE enables the maximum é&drimation to be extracted with an
efficient experimental plan, while High-Throughpuethodology makes possible faster
experimentation with greatly reduced non-reprodiityb and human error. The
simultaneous experimental planning mode of the Bo&tegy combines well with the
batch parallel mode of operation of the HTE equipmesed in catalysis research. In
this way an entire design can be performed simetiasly in the HTE equipment. The
use of DoE and HTE are therefore two highly conipatimethodologies for both

catalysis screening and optimization projects.



2.8 - Summary

Design of experiments is a better optimization radttogy than one factor at a time
optimization. With the DoE methodology the paramejgace is consistently searched
and the probability of locating the system optirnahditions is largely increased. The
multivariate nature of the DoE methodology necess#t a different strategy of
experimental planning, leading to the need of thendist to change his/her approach to
optimization. The DoE methodology presents the atédity to deal with the most
common catalytic chemistry issues and its batcigdesutput is very well suited for the

parallel High Throughput Experimentation.
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HIGH-THROUGHPUT METHODOLOGY COMBINED
WITH DESIGN OF EXPERIMENTS APPLIED TO THE
EXPLORATION OF A COMPLEX CHEMICAL SYSTEM:
TERPENE ADDITION REACTIONS

Abstract

A Design of Experiments strategy in combinationhwitgh-throughput experimentation
methods was employed for the exploration of additieaction, namely the hydration
reaction of terpenes. Several starting materialpinene, f-pinene, camphene,
limonene, carene and myrcene were studied simuateshe in relation to the factors
determining activity and selectivity. The effectsvariation of acid catalyst and solvent
on the reactions were investigated and the proskletctivities rationalized in terms of
the available reaction pathways towardterpinyl, isobornyl and bornyl products. In
terms of competing nucleophiles, the highest seites (91%) were obtained for the
isobornyl methyl ether product, whereas isoborneat the only alcohol derivative
obtained with selectivities above 73%. An increaseactivity was observed by using
stronger acids, especially a heteropolyacid (HP&),acid strength alone was not found
to be a factor exerting a major influence on timalfproduct mixture. The multi-design
DoE technique proved to be highly valuable in thesidation of the main patterns and

trends of this complex chemical reaction system.
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3.1 - Introduction

With the arrival of Combinatorial Chemistry and Highroughput-Experimentation
(HTE) equipment, today’s chemist has available péweools for studying problems
with a much wider scope than previously [1,2]. Daehe higher throughput a more
comprehensive approach is possible where, in plecmost of the parameters thought
to influence a chemical problem can be studied ima@e consistent and uniform
manner. Optimization methodologies such as Desifyriexperiments (DoE) [3,4],
Genetic Algorithms (GA) [5-7], Simulated Annealif8A)[8] and others (see Chapter
6, 7), are being adopted in order to explore thensbal parameter space in a more
rational and efficient way [9]. Design of ExperinteiDoE) is considered to be one of
the most suited methodologies for the applicatibHDE in synthetic organic chemistry
research [10] because this methodology allows sysiptimization together with a
good understanding of the problem investigated armbnsiderable reduction of the
experimental effort. An overall knowledge of thespense surface is acquired, in
contrast to other screening techniques (like GA @mdulated Annealing) that focus on

the subspace where it is hoped to find the optsuohltions.

In this chapter a complex chemical reaction systesms chosen and studied using a
Design of Experiments strategy. Terpene chemisay lbeen intensively investigated
since the beginning of the twentieth century ang ¢@ntributed to the conception of
several fundamental organic chemistry theories @Wead/leerwein rearrangement,
Woodward-Hoffman rules of cycloaddition reactiom®nsiderations about the non-
classical carbenium ion, etc.) [11,12]. Numeroustlsstic terpene derivatives are in
industrial production as flavor and fragrance cleaisi. It was chosen to study the
addition of water to unsaturated terpenes, naniayhidration reaction in the presence
of competing nucleophiles, as an example of a cbaiyicomplex and rich system to
investigate [13-16]. Acid-catalysed reactions apemes are usually not very selective
due to the existence of alternative carbenium mthyays [17]. It is clear that finding a
selective reaction will not be an easy task, bexdghs carbenium ions are not very
stable and can rearrange easily without the furdiietiof or interaction with a catalyst.
In addition, possible competition between water pratic solvents or catalysts for the

nucleophilic role further increases the complexfythe system and the diversity of



selective product candidates. An explorative redeaf a chosen parameter space is
intended in this chapter in order to obtain anahiinderstanding of the system studied.
This is performed by using a systematic approacloluing experimental design
schemes in combination with High-Throughput-Expemtation techniques.

The reactivity of several terpene substrates igstigated simultaneously. This option
allows the study of existent common carbenium ieaction paths and has also a
financial and economic driver. Despite the fact tegpene-derived products are widely
used in many applications, their volumes and/czgsriare typically low and would not
justify a focused research effort. However, by conmyg more than one starting
material and thus inherently looking for a widerigty of possible feeds and products

within one design approach, the costs can be shared

The search for the main patterns and trends ofnaptEx terpene chemical reaction

system was performed in this Chapter by DoE tecalesq

3.2 - Results and Discussion

3.2.1 - Initial Screening

The parameter space chosen for investigation isngrmmed in Table 3.1. The six
substrates (shown in Figure 3.1) are all inexpensind derived from renewable
resources.

These commonly available monoterpenes were seledtbdregard to their chemical

and commercial interest. As catalysts, severalmonty used Brgnsted acids were
chosen. The solvent library comprised both protied aaprotic types. A single

temperature of 50 °C, 18 h reaction time, 0.5 Milgat and 1 M terpene concentration
was employed. And the water concentration was studi two levels: 1.5 and 3 M.
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Table 3.1- Initial screen parameter space.

Substrate Catalyst Solvent [Water] (M)
a-Pinene  Boric acid Acetone 15
[-Pinene  Acetic acid IPA 3
Camphene  Oxalic acid Methanol

3-Carene PTSA DMF

Limonene HSO, THF

Myrcene HCI

HPA

Abbreviations: IPA, Isopropyl alcohol, DMR,N-Dimethyl
formamide, THF Tetrahydrofuran, PTSA p-Toluenesilf acid,
HPA Heteropolyacid - phosphotungstic acigPMV;,0,0).

DA
TE O

Figure 3.1 -Monoterpene substrates. d&pinene, 2)5-pinene, 3) limonene, 4) camphene, 5) 3-

carene and 6) myrcene.

The object of the initial screen was to obtain dasformation about the selected
parameter space, such as whether the experimemditions would lead to acceptable
levels of activity with the chosen substrates. A@imal criterion was used to choose
part of the total combinations of variables (70l 420 possible combinations). The
D-optimal criterion chooses a sub-set of the totahbination of experiments which is
‘best-distributed’ (the experiments are situatedaadrom each other as possible). The
main effects of these factors (presented in Tallg @& the reactivity of the system are
summarised in Figure 3.2. In this representationl (@ subsequent similar figures) the
lengths of the bars indicate the magnitude of tifects relative to the average value.
The bars directed to the right mean a positivetiveaeffect and those to the left a



negative one. The dotted lines represent the 9&stidence interval calculated from
the estimated experimental variance. Effects highan this confidence level are

considered statistically significant and are repnésd in black.

1.5 M [Water]
IM [Water]

Acetone
IPA
Methanol
DMF

THF
a-Pinene
b-Pinene

Camphene

Carene
Limonene

Myrcene

Acetic acid
Boric acid
Oxalic acid
HCI

H2504

Desirability

10 100
Conversion %

PTSA/HPA

a) b)

Figure 3.2 - Main parameter effects on conversion for théahiscreen. a) Activity response
transformation (Desirability) considered for calting the main parameter effects on the
response in regard to reactive or non reactiveesystb) Main effects of the parameter space in
relation to the desired Desirability. The bars diee to the right mean a positive relative effect
and those to the left a negative one. The doitexs Irepresent the 95% confidence interval
calculated from the estimated experimental variaBdfects higher than this confidence level

are considered statistically significant and apgasented in black.

It could be observed that the substrates diffetkedly in reactivity. The catalyst is the
factor showing the highest influence on activitglldwed by the solvent. Under the
conditions employed, the weak acids: acetic, band oxalic acid, showed only very
low activities and were consequently eliminatednfr@onsideration in the second

screen. A trend of increased reactivity with ineeghacidic strength is observed. Of the
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five solvents, activities in DMF were in generalvl@nd so this solvent was likewise
excluded from the set investigated in the secongesc The reason for the low activity
in DMF may be due to its unstable character in @di@a medium and/or its electron

donor properties that can compete for the catalytitons. Low reactivities were also
obtained when 3-carene and myrcene were used agdtimg substrate. Due to these
low conversions and in addition miscibility problemwith myrcene under the reaction
conditions employed, these two substrates werecansidered for further screening.
The water concentration was found to have a smialflerence, without any discernable

trend in this initial design.

On the basis of this initial screening, a subspafcthe initial parameter space with

desirable reactivity levels was allocated for fertbtudy.

3.2.2 - Second Screening

The parameter space for the second screen is suseghan Table 3.2. In this new
parameter space four of the six original substrata® retained and four catalysts, four
solvents and two water concentrations were invatad) A D-optimal design algorithm
is employed to select 100 experiments from the iples428 experimental reactions
(75% of the total combination of variables) inclgli4% replicates for error analysis.
With this design, information about the major effeand 2-level interactions between

the parameters can possibly be obtained.

Table 3.2 -Second screen parameter space (128 possible cdiabsg)a
Substrates Catalyst Solvents  [Water] (M)

a-Pinene PTSA Acetone 1.5
[-Pinene H,SO, IPA 3
Camphene HCI Methanol

Limonene HPA THF

Reaction temperature 50°C; reaction time 18 h.



Conversion %

3.2.2.1 - Parameter effects on activity

A schematic representation of the reactivity tremelsus the substrate, obtained in all
experiments (100) from this second screen, is showirigure 3.3a. A statistical
analysis scheme of the main effects of the varfaasrs on the conversion response is
shown in Figure 3.3b.

The conversion trend (Figure 3.3) in relation te gubstrate is now clear, wifh
pinene, in general, being the most reactive onlgwed by a-pinene, limonene and
then camphene. The higher activity af and p-pinene is easily explained by
stereochemical stress release of their 4-membargd via protonation and subsequent
skeletal rearrangement, while the slightly loweactevity of a-pinene compared t6-
pinene is the result of its endo-cyclic double hond

1.5 M [Water]
3 M [Water]
a-Pinene
100
an % ? :C' ; b-Pinene .
30 ° a % Camphene
70 - o B 5
60 o o Limonene
N <}
50 4 o o« Acetone
[a]
40 4 % IPA
30 1
o o
90 - % 2 Methanol
105 i o THF
' ' ' : HCI
@ - Pinena §-Pinene Camphens Limonene
HPA
PTSA
H2504
a) b)

Figure 3.3 - Effects on conversion. a) Substrate conversiofumastion of the substrate for all

the reaction conditions. b) Parameter effects véfipect to the substrate conversion.
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Sincea- andg-pinene give almost complete conversions in mosts#see Figure 3.3a),
it follows that the influence of the other parametill be most discernible in the
conversion response of camphene and limonene.tidgsacids selected from the first
screening show also a trend of reactivity accordimgheir acidity. This effect is

especially evident for the strongest acid HPA whadnsistently gives rise to the
highest conversions. The solvent is also an infiaeparameter. The highest activities
are generally found in methanol, which is mainlyedo its additional role as a good
nucleophile in the attack on the carbenium ion® étfiect with respect to conversion of

changing the water concentration is again fourtoetemall.

3.2.2.2 - Parameter effects on selectivity
Rearrangement pathways

The main reaction pathways undergone by the substedter protonation are shown in
Schemes 3.1-3.

5
Ao

—_—

D =J0-

Scheme 3.1 Main pathways of the acid-catalysed rearrangemeatpinene () andg -pinene
(2). C1: bornane skeleton carbenium io@2: p-menthane skeleton carbenium idD3:

camphene skeleton carbenium ion.



For a- andf-pinene the products resulting from the rearrangerpath of carbenium
ion C2 are in the majority, but substantial amounts obdpicts obtained via

rearrangements of carbenium idd% andC3 (see Schemes 3.1-3) are also observed.

EX ;X

Limonene X
ﬂ 15 (x = OCH3)

S
XS

12 (X = OH)
13 (X=ClI)
14 (X=OCH3)

Scheme 3.2 -Main pathways of the acid-catalysed rearrangen@ntimonene andC2

carbenium ion.

o~ = -ty

\\

o\

Bornyl iso-Bornyl

Scheme 3.3 Main pathways of the acid catalysed rearrangemeoamphene an@1 andC3

carbenium ions.
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Scheme 1 shows the theoretically possible converbetween theC1l, C2 and C3
carbenium ions. From the analysis of the resulteagtion mixture (see Figure 3.5) it is
observed that in the case of limonene the compotwittsv almost exclusively the
rearrangement path of the carbenium @h(Scheme 3.2) showing that in practice the
rearrangement of carbeniu@? into a strained bi-cyclic structure is not favalirn the
case of camphene (Scheme 3) it is found that congsoabtained via rearrangement of
carbenium iorC1 represent the majority of products formed.

100 1 |

90 1 @2
me3

30

B4 Unknown

Coumpound %

b-Pinene a-Pinene camphene Limonene

Figure 3.5 - Percentage of compounds present in the reactigturaiwith theC1, C2 andC3

carbenium ions skeleton.

Selectivity: general

The selectivities observed are mainly determinedhleycarbenium-ion route following
protonation of the substrates. The carbenium idh wip-menthane skeleto82) has a
larger range of possible rearrangements availaimepared to carbenium iorgl and
C3, implying an increased difficulty in obtaining higelectivities towards any specific
product.



As shown in Figure 3.6, camphene with its more tihirearrangement possibilities is
the substrate that usually gives the highest seiiees towards the main reaction
product, followed by limonene (the products of whitollow mainly the path of
carbenium iorC2). The lowest selectivities are obtained with linghly reactiven- and
S-pinene, the products of which are obtained mandyboth theC1 andC2 carbenium-
ion pathways (see Scheme 1 and Figure 3.5 CB)products are also theoretically

possible but were not found in significant amounts.

90 ©
80_ D
70 %‘
60 %
501 o
404 3
30 &
20

Selectivity %

o - Pinene g- Pinene Camphene Limonene

Figure 3.6 - General results on selectivity towards the madpct obtained in each reaction:
% selectivityvs. substrate.

Products

When the aprotic solvents THF and acetone, andysttaother than HCI were used,
alcohol derivatives were the main products obtaimedhe reaction. It was also
observed that some acid counter-ions and protiestd can also act as nucleophiles,
leading to competition with water resulting in am@omplex product mixture. With
respect to the addition of the acids, this additi@s only significant in the case of HCI
where substantial amounts of chlorinated produatsewfound. The small size and
Lewis-basic properties of the ‘Ginion make it a good nucleophile for attacking the
protonated substrates. In fact, even in the presehtess than stoichiometric amounts
and in the presence of an excess of water, chlednderivatives are usually the main

products obtained when HCl is present (see Figute Begarding the addition of protic



Chapter 3

solvents, it is clear from Figure 3.7 that methosympounds prevail whenever
methanol is present. For IPA, even if in much largecess than water or the acids,
ether formation is less marked and water addiwogite alcohols, or chloro-products in
the case of HCI catalyst, is the prevailing reactierom Figure 3.7 it is clearly seen that
under the actual reaction conditions the orderrefguence with respect to nucleophile
addition is MeOH > HCI > BD > IPA. Rearrangement to the diene product tetpive

is also observed, this being the favoured produmtnwwater is present as the only
nucleophile at its lower concentration level of M5

Unsaturatad C@
-
[}
=
3
- Methoxy @
E' derivative
o
=
o
£
=1
@ Chlorinated % @
>
~
a
@
&
Alcohol 4 @
Water Water Water/ Waten/ Water Water/
IPA HCl P& Methanol Methanaol
HCI HCI

Strong nucleophiles present

Figure 3.7 -Main product types obtained according to the presef possible nucleophiles in
the reaction mixture. Only the nucleophiles fromiai corresponding addition products were

detected in reasonable amounts (water, HCI, IPAham®l) are considered.

3.2.2.3 - Selectivities and yields towards the maimeaction products

obtained

The principal reaction product (defined as the mammpound present in the product

mixture) obtained for each reaction, was in gentra known from the large volume of



published work on monoterpene hydration/isomesatireactions [11-16]. The

principal products are shown in Figure 3.8.

o X7 e 2~

TELY

11 12 13 14 15
Figure 3.8 - Main products obtained: 7) isoborneol, 8) isobbrtyjoride, 9) bornyl chloride,
10) isobornyl methyl ether, 11) terpinolene, ¥2derpineol, 13)a-terpinyl chloride, 14)a-
terpinyl methyl ether, 15) terpin dimethyl ether

The principal products obtained frasmpinene,f-pinene and limonene are formed via
the C2 carbenium-ion path. These are the rearranged prddrpinolene 11) together
with the alcoholsa-terpineol (2) and/or their chloro- 13) and methoxy- 14)
substitution products, depending on the reactiomditmns employed. When HCI is
present, bornyl chloride9) is the predominant product from the two pinened &
formed via the carbenium io61. Camphene yielded mainly isoborne@) @nd its
chloro- @) and methoxy-10) derivatives.

In Figure 3.9 the selectivities and yields of thaimproducts obtained for all the
reactions are summarised. It can be observedHhbainly product obtained in close to
quantitative yields is isobornyl methyl ethetO( from camphene. The chlorinated
products 8-9) are usually obtained with lower selectivities rthiéne corresponding
methoxy derivative J0) due to competition between the water and HCI enjuthiles,
compared to the competition between methanol, ptesesolvent, and water.

Figure 3.9 presents the main results obtained metugt. Thex-Terpinyl derivatives:-
terpineol (2), a-terpinyl chloride {3) anda-terpinyl methyl ether1(4) have responses
below 50% for yielda-terpinyl chloride being obtained as main produclydn the



Selectivity %
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reaction of limonene. High selectivities to isobgdrrderivatives: isoborneol 7§,
isobornyl chloride §) and isobornyl methyl ethel@) are obtained from camphene, up
to 73, 60 and 91 % respectively. The correspondimids are lower due to low
camphene conversions (Figure 3.9). Bornyl deriestiare formed as primary products
only whena- and g-pinene are used; moreover, only bornyl chlori@ewas obtained
in significant amounts, borneol and bornyl methylee being in all cases just smaller
secondary products. The effect of the factors erfing the synthesis of the main
product derivatives is discussed below.

o - o a0 o
. . 80
0 é‘@ o 70 1 .
& o 600 1
[T % g o E-"?' o &
I o g ¢ g 3 37 o
ol o o 2 oawd 3
g > :
o © B § 30 - o ®
3 ® 0% ¢
20 - g g g 1% o N §
o w4 22 &
Toog 8 40 H 4z 4z 44 15 T o8 8 0 1 4z 4z 14 15
Product Product
a) b)

Figure 3.9 -Selectivities and yields of the principal producty Selectivity, b)Yield.

7) isoborneol, 8) isobornyl chloride, 9) bornyl atitle, 10) isobornyl methyl ether, 11)
terpinolene, 12-terpineol, 13)a-terpinyl chloride, 14)a-terpinyl methyl ether, 15) terpin
dimethyl ether.

a-Terpinyl derivatives

From Figure 3.10 we see that the largest seleetviba-terpinyl products are usually
obtained from limonene, followed lay andg-pinenes. For the synthesis@ferpineol
(see Figure 3.10a) THF gives the best resultspvi@t by IPA and acetone. The water
concentration is a relevant factor, higher conegiums being preferential. HPA seems



to be the best catalyst and the presence of elf@&r or methanol as competing
nucleophiles is prejudicial for the synthesisietierpineol.

For the formation ofx-terpinyl chloride (Figure 3.10 b) andterpinyl methyl ether
(Figure 3.10c), besides the obvious necessity Hier gresence of the corresponding
nucleophiles, it was found that the difference he twater concentrations considered
does not have a significant influence. Acetone tiaspreferred solvent followed by
THF in the a-terpinyl chloride synthesis. The best catalyst tfog a-terpinyl methyl
ether synthesis was,H0,, which was slightly better than the stronger adRA. The
latter forms considerable amounts of terpin dimlegtlyer (L5) obtained by consecutive

reaction. In Table 3.3 the best results obtaingtiernscreening are summarised.

1.5 M [Water]
3 M [Water]
a-Pinene
b-Pinene
Camphene
Limonene
Acetone
IPA
Methanol
THF

HCI

HPA

PTSA

H2504

a) b) c)

Figure 3.10 -Selectivity towards: a}-terpineol (2), b) a-terpinyl chloride 13) HCI being the
only acid present, @)-terpinyl methyl etherl(4) methanol being the only solvent applied.
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Table 3.3 Best results obtained for the terpenyl derivatixedpctsl12, 13, 14 and15.

Water

Conv Select Yield

Product M) Substrate Solvent Catalyst %) (%) (%)
12 3 Limonene IPA HPA 73 55 43
12 3 Limonene THF HPA 63 56 38
12 3 a-Pinene THF HSO, 99 45 45
13 1.5 Limonene Acetone HCI 43 54 26
14 1.5 Limonene Methanol PTSA 93 42 40
14 3 Limonene Methanol H>,SO, 62 49 33
15 1.5 «a-Pinene Methanol HPA 100 22 22
15 1.5 Limonene Methanol HPA 97 23 23

Conversion, selectivity and yields calcethiccording to GC analysis.

Isobornyl products

Camphene is the only substrate to produce isobategVatives in relevant amounts.
For the synthesis of isoborneol the water conceatreseems to have only a small
influence on selectivity; the preferred solvents #re aprotic acetone and THF and the
preferred catalyst is HPA, followed by8&0,. For the synthesis of isobornyl chloride a
lower water concentration and THF as solvent seenige preferential. In the case of
isobornyl methyl ether the high excess of the gfnoncleophile methanol obscures any
influence of the water concentration effect and HBppears to be, even if not
markedly, the preferred catalyst. In Figure 3.ldsthtrends are summarised whereas in

Table 3.4 the best results obtained in the screz=prasented.

Table 3.4 Best results obtained for the Isobornyl derivapveducts?7, 8 and10.

Product Water Substrate Solvent Catalyst Conv Select Yield
(M) ) () (%)

7 3 Camphene THF HPA 50 73 40
7 1.5 Camphene Acetone HPA 57 62 38
8 1.5 Camphene THF HCI 44 57 25
8 1.5 Camphene Acetone HCI 37 60 26
10 1.5 CampheneMethanol PTSA 86 81 73
10 1.5 CampheneMethanol HPA 97 91 89

Conversion, selectivity and yields calcuteéecording to GC analysis.



1.5 M [Water]
3 M [Water]
a-Pinene
b-Pinene
Camphene

Limonene

Acetone

IPA

Methanol

THF

HCl

HPA

PTSA

H2504

a) b) c)

Figure 3.11 -Selectivity towards: a) Isoborneol, b) Isobornyil&@ide, HCI being the only acid
present c) Isobornyl methyl ether, MeOH being thly solvent applied.

Bornyl products

Bornyl chloride is generally produced as the magaction product when- and f-
pinene react in the presence of HCI. It seems thdhe presence of HCI, ring opening
does not occur readily and reaction of these safestproceeds via carbenium ions C3
and especially C1, in the latter case the produttt endo configuration is enhanced.
This phenomenon of HCI addition giving the endodurct was already reported in the
work of Hanack in 1960ut its reason is even nowadays not fully undes{d@, 14].
The fact that mainly the endo product (bornyl) Istained in contrast to the more
common exo configuration in other addition reactiewy. to isoborneol in hydrations, is
probably due to a certain degree of concertednegssteric constraint in the attack of

the nucleophile.
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Table 3.5Best results obtained for bornyl chloriéle

Product V\é'?/lt)e " Substrate Solvent Catalyst C(:(;SV S((j/:gd \E:,Zl)d
9 1.5 a-Pinene Acetone HCI 88 23 20
9 3 a-Pinene IPA HCI 76 26 21
9 1.5 oa-Pinene IPA HCI 83 28 24

Conversion, selectivity and yields caltedbaccording to GC analysis.

As bornyl chloride is only formed from the lessestivea- andfs-pinene substrates and
since, in the presence of water as competing nphlkn products of carbenium id@2
are also obtained, the selectivities and yieldsashyl products are below 30% for both
substrates. For the synthesis of bornyl chloride tmncentrations of water are of
course preferential and IPA seems to be the pesfesplvent followed by acetone.
These trends are summarised in Figure 3.12 anbdsieresults are presented in Table
3.5.

1.5 M [Water]

3 M [Water]

a-Pinene
h-Pinene
Camphene

Limonene

Acetone
IPA
Methanol

THF

Figure 3.12 -Selectivity towards bornyl chloride. The bars diesl to the right have a positive
relative effect and those to the left a negative.ohhe dotted lines represent the 95%
confidence interval calculated from the estimatgueeimental variance. Effects higher than this

confidence are considered statistically significamd are represented in black.



3.3 - Conclusions

From this introductory investigation of the terpepgrameter space we have obtained a
great deal of insight in the main reactivity trersohgl we are able to develop guide-lines
for further optimization: we have observed that tdmminant factor determining the
selectivity is the variety of carbenium ion reagament pathways usually undergone
by a particular substrate. Thus in this case tgbdst selectivities are usually obtained
with camphene and the lowest with the two pineressates. Activity is increased by
using stronger acids, especially HPA, but, aciémgth was not found to be a factor
exerting a major influence on the product mixtukespecial case is formed by HCI
which, owing to the unique action of ‘@Gs nucleophile, yields substantial amounts of
bornyl chloride froma- and p-pinene via the C1, bornyl carbenium ion pathway,
whereas, in other cases, products from the C2, mthglke carbenium ion, dominate.
Besides the effect of solvents due to their nudidmpproperties, some differences in
the final products obtained are found between apemtetone and THF and IPA. In the
case of hydration products the effect of water eotration is significant but not
generally pronounced.

The highest selectivities (91%) were obtained f@ isobornyl methyl ether product,
whereas isoborneol was the only alcohol derivatisgained with selectivities above
73%. On the basis of the knowledge obtained frois1 gbrt of explorative search new,
more product-specific, optimizations can be degigoeobtain the desired products.
HTE combined with Experimental Design proved toab&ast and fruitful strategy to
explore and discover the underlining trends in allehging chemical parameter space.
The simultaneous study of several substrates tlat share similar reactivity

characteristics proved to be advantageous atahet bf explorative information.
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3.4 - Experimental

3.4.1 - General

The monoterpenes used here were of commerciakg(a8)-(-)a-Pinene (98%), (1S)-
(-)-Bpinene (98%), myrcene (90%) and (+)-limonene (97f&n Acros, and, (+)-3-
carene (90%) and camphene (85%) from Aldrich.

For the high-throughput set-up, an automated watkst was used consisting of a
Hamilton Micro Lab Duo liquid-transfer system andparpose-designed working
platform, coupled with a temperature-controlledsger Analytic Desyre mixer. On this
platform a throughput of 24 reactions/day was oi®di The reactor rack comprised 24
x 1.5 ml HPLC reaction vessels which could be hebated agitated simultaneously.

'H- and**C-NMR spectra were recorded on a Varian VXR-4008(d4nd 100 MHz,
respectively) or Varian Unity Inova 300 (300 andMblz, respectively), instruments.
GC-MS was measured by means of a VG 250 SE instruetpiipped with a CP Sil 8
CB column of 25 mx 0.25 mm and 0.4m DF. A Varian Star 3600 GC, equipped with
a CP Sil 5CB column with 50 m 0.55 mm and Lim DF was used to determine the
conversions and vyields in the crude reaction megurColumn chromatography was
carried out with silica gel packing of 0.060-0.20@n, pore diameter ca. 6 nm and with
mixtures of petroleum ether (PE) and ethyl acet&Ac) as solvent. TLC was

performed on 0.20 mm silica gel plates.

3.4.2 - General Procedure A: Experimental designsna data analysis

For the first and second screenings a D-Optimaligde$ormed the basis of the
experimental plan proposed for studying the majfaces in the first screening, and the
major and interaction effects in the second scre&gnwith the reaction parameters
presented in Table 3.1 and Table 3.2, respectivelthe first screening 70 experiments
out of a possible 420 candidates were selectedyudasign Expert 6.0.3 software,
while in the second screening 100 experiments 6Ut28 candidates were selected,
including 4% replicate experiments for random eregralysis. Overall, a design
containing three categorical factors with multipdeels was employed: catalyst type,

substrate type and solvent type. Water concentratias the only continuous factor



studied. Other reaction conditions such as tempexg60 °C), catalyst concentration
(0.5 N), substrate concentration (1 M), and mixspged (750 rpm) were kept constant
for this exploratory search and so were not induidethe design strategy. The GC data
obtained was worked out to obtain the desired mesg® (conversion, yield, selectivity)
using a purpose-made Visual Basic program. Stedistiata treatment of the responses
to obtain the parameter effects was realised udiegnrodwW 2000 and further

representation of the results via the Spot FirédGs0ftware.

3.4.3 - General Procedure BScreening in the HTE platform

The reactions of the planned design were perforimeal yandom order, in batches of 24
x 1.5 ml screw-top HPLC reaction vessels. In eadttion vessel the concentrations
were: catalyst 0.5 N, substrate 1 M, and the imaterstandard (PCBTF, 4-
chlorobenzotrifluoride) 0.5 M. The solid catalysiere weighed manually and the
appropriate amount of water (1.5-3 M), catalystusoh and solvent (IPA, THF,
methanol or acetone) were dispensed to the reaostong the automated workstation.
The vessels were then closed and the reaction tatape regulated to 50 °C. After
approximately 10 minutes, the mixed solution of ubstrates and internal standard
was transferred to the vials, initiating the reactiA special rack equipped with needles
was inserted in the upper part of the vessels tadgwoblems of over-pressure during
the liquid transfer; after this transfer a normatk without needles was used. After
allowing the reaction to proceed for 18 h, 30 of a saturated solution of
NaHCQOy/NaCGQs, pH O 7, was added to quench the reaction, the temperatoled
down, and the reaction rack mixed until no moreasé of CQwas noticed. 50l of
2:7 THF/toluene solution was added to dilute thactien samples and extract the
products by forming a two-layer system. The samplese centrifuged and the upper
layer analysed by GC.

3.4.4 - General Procedure C: Scale-up of selectectsening reactions

For purposes of product identification and vertfica of the screening results, some
reactions were scaled-up to 30 ml reaction voluri&e desired products were then
purified by column chromatography using an ethytate/hexane solvent system (ratio
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adjusted according to the desired product sepajatibhe collected fractions were
evaporated and analysed by GC-MS and NMR for ifleation of the resulting
reaction products.
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CATALYTIC HYDROGENATION OF CYANOHYDRIN
ESTERS AS A NOVEL APPROACH TO N-ACYLATED p-
AMINO ALCOHOLS: REACTION OPTIMIZATION
EMPLOYING A DESIGN OF EXPERIMENT APPROACH

Abstract

The catalytic hydrogenation of acylated cyanohysifiollowed by an intra-molecular
migration of the acyl group to yield pharmaceuticahteresting N-acyl f-amino
alcohols, is shown to be a successful one-pot paipa method. The combination of a
multistep DoE approach and High-Throughput methagplproved to be an effective
strategy for the optimization of the reaction. Withe favoured catalyst/solvent
combination nickel-on-alumina in dioxane, both logknation and acyl-group
migration proceeded smoothly, giving tReacyl f-amino alcohols in yields of up to 90
% for aliphatic, and up to 50 % for benzylic subtgs, the latter being more prone to
side reactions. When enantiopure cyanohydrin estere used, no racemisation was
found to occur at the chiral centre of an aliphatiglecule, though a minor decrease in

ee was observed for a benzylic substrate.

The contents of this chapter have been published in
L. Veum, S. R. M. Pereira, J. C. van der Waal, @néfeld Eur. J. Org. Chen00§ 7, 1664



Chapter 4

4.1 - Introduction

N-Acylated f-aminoalcohols, such as aegeline (Figure 4.1), rogtwature and can
readily be converted int8-secamino alcohols, an important class of compoundéén
pharmaceutical and agrochemical industries. Sonpeesentative examples of the
numerous biologically activegs-secamino alcohols are etilefrine, bamethane and
denopamine (Figure 4.1). An established route &oN#facyl f-amino alcohols is the
reduction of the free cyanohydrin, followed by atign of the amino group [1-3]. The
reduction is usually performed using stoichiomesmounts of either LiAlgl or BH,
but it can also be achieved by catalytic hydrogenatnder strongly acidic conditions
[4-8]. If enantiopure substrates are used, theest@ntre remains intact during these
reduction reactions. Given the low atom efficierafyaluminium and boron hydride
reductions and the strongly acidic conditions regplifor the catalytic hydrogenations, a
different approach has been investigated. The dva&ra of this investigation was to

integrate the reduction and acylation steps ineafmot procedure under mild conditions.

OH H OH H
/©)\/N X HO\©)\/N\/
(@]
MeO

Aegeline Etilefrine
OH H OH H
/@/J\/N\/\©:OMG /©)\/N\/\/
MeO OMe HO
Denopamine Bamethane

Figure 4.1 - N-Acyl-g-amino alcohols angb-secamino alcohols showing high biological

activity.

The unprotected cyanohydrins, that are commonlyd use starting materials, are
relatively unstable and racemise easily. In cohti@shis, cyanohydrin esters are stable



and do not racemise. Moreover they are readilygresh both in their racemic [9] and
enantiopure forms [10-15]. In addition it was reali that the acyl group of the
protected cyanohydrins is a potential intra-molacudcyl-donor (see Scheme 4.1).
Following the catalytic hydrogenation of the nrtyroup the newly formed amine, as a
strong nucleophile, can immediately react with tlegghbouring acyl group via a five-
membered transition state to vyield théacyl p-amino alcohol. This type of
intramolecular acyl migration has previously beasalibed in the NaB#OCOCE)
reduction of an acylated cyanohydrin to yield deamome [16], suggesting that it

should proceed equally well following catalytic hgdenation of the nitrile.

i 3 o

' re H

O R H,, metal - O\ R N R
X D et

R CN solvent

1 2

Scheme 4.1 The hydrogenation of acylated cyanohydrins withsggquent acyl-migration.

Earlier reports of the catalytic hydrogenation oflated cyanohydrins, in particular of
mandelonitrile esters, describe the applicatiorPdfC or PtQ under strongly acidic
conditions [17-18] The primary product obtained was theN-acyl f-amino alcohol
but -phenylethylamine, owing to the facile hydrogenataf the benzylic C-O bond
over platinum or palladium catalysts in acidic nudi In this case the amine was the
desired product [17]. In the present work the dibjeds to maximise the yield of thé-
acylatedg-amino alcohol and the reductive cleavage of theyéec C-O bond needs to
be avoided. This investigation of a selective, lgdtaroute for the direct conversion of
acylated cyanohydrins1) into N-acylateds-amino alcohols 4) employed High-
Throughput methods for the screening of catalgstlvents and reaction conditions.

The large number of parameters to be investigalgdested a Design of Experiments
(DoE) approach. DoE methodologies (Chapter 2) [1P&e superior to traditional
methods involving the consecutive optimizationtad tarious parameters; they make it
possible to maximise the amount of information tter be obtained from the results,

while minimising the number of experiments, and réase the possibility of
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establishing the true optimum within the searclcep@he experiments to be performed
may be chosen in order to cover the whole searabesps efficiently as possible. The
size of the design (selected number of reactioepgdds on the kind of information that
is desired. In the present case a strategy of gwgaential small designs was adopted.
This enables thdanformation obtained from the first to be used taprove the
subsequent designs [2Breliminary screening designs (typically less t@a&fo of the
possible number of reactions) are sufficient totinligish between significant and
insignificant parameters and are therefore wellesuat the early stages of the research
effort to reduce the search space. By continuofiseraent of the conditions in
subsequent optimization designs, the most inflaémtarameters can then be studied
with higher detail, and further optimization acleev Since the number of parameters to
investigate is usually reduced, the number of arpmmts per parameter can be
increased. In this way, more information on the mmaifects and especially the
interactions of the parameters can be obtainech usequence of DoE’s is generally a
better strategy than one large one, because therafion obtained from one design is
used to improve the following (Chapter 2).

4.2 - Results and discussion

As shown by Hartung [17], the hydrogenation of hydinzcyanohydrin acetates easily
yields products such gsphenylethylamines by reductive cleavage of thezppn C-O
bond. In aliphatic substrates, on the other hahd, @-O bond is more stable and
resistant to cleavage even under drastic conditiDiferent conditions are likely to be
required for the selective hydrogenation of aliphand benzylic cyanohydrins and it
was therefore chosen to optimize the reactions n@ndelonitrile acetatel4),
representative for the benzylic substrates, andahepitrile acetatel€) (see Scheme

4.2), representative for the aliphatic substrateparately.

4.2.1 - Initial screening

The use of a DoOE strategy requires as the firg #te compilation of all potentially
important parameters, based on previous experi¢gnediterature or chemical intuition.

The initial search space should be broad enougkdore that the optimal settings of the



reaction are included but not too big to be stikperimentally feasible. In the
hydrogenation of nitriles the main factor influemgithe reaction rate and the product
distribution is the metal of the hydrogenation batta Most commonly, Raney nickel,
Raney cobalt, Pd/C, Pt/C, Ru/C, and Rh/C are uagjd The same metals but supported
on SiQ and AbOs; are also often reported [23]. Normally Rh, Pd &idend to give
more secondary and tertiary amines than Co, NiRumdAs the migration of the acyl
group might suppress the formation of secondarytarithry amines, these metals were
still included in this investigation. For the i@itiscreening Ni, Pd, Rh, Pt and Ru, on
carbon and AlO; as carriers were selected as potential catalysts.

The solvent forms a second important parameter.nid& commonly used solvents for
the hydrogenation of nitriles are protic solventslsas methanol and ethanol. However,
since the envisaged reaction involves a migratibthe acyl-group, solvents with a
broader range of properties were selected: 2-papanprotic but less polar solvent
than methanol; dioxane, an aprotic, polar ethed;taluene, a relatively apolar solvent.
It is known that the addition of ammonia and of @vatan change the distribution ratio
of the products of nitrile hydrogenation [23]. Amm@ is a commonly used additive,
favouring the formation of primary amines, thoughhe present case reaction with the
ester group is a possible side reaction. Reportthereffect of water are conflicting;
several cases have been reported where water ésl adgromote the formation of both
primary and secondary amines [24-25] but it wa® aimed that water does not
change the product distribution but instead in@edbe reaction rate [26[he effects
of both these additives were studied in the ing@kening.

The parameter space for the initial screen is susetin Table 4.1. The reaction
temperature was varied over two levels. The snealttors of the High-Throughput unit
(Appendix A.3) did not permit independent variation pressure, which was kept
constant at 20 bar41Using a D-Optimal algorithm a selection of 24até&ns out of
the total of 320 possible combinations was madeetmh of the two substrates [27].
This minimal design is sufficient to obtain inforiimam about the main effects of each
parameter and a more detailed subsequent studydwihdn allow for further
optimization. Acidic conditions were not includeshce any formation of the amino

salts would prevent the intramolecular migrationtioé acyl group. Furthermore, in
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contrast to the free cyanohydrins, the cyanohydsters 1) are more stable towards

possible basic side products like the secondarpemi

Table 4.1- The parameter space to be investigated for saatbsfra andlc.

Temperature Reaction  Support Solvent Additive Metal
(°C) time (h)
90 3 Alumina  2-propanol No additive Ni
120 24 Carbon Toluene 2B Pd
Dioxane NH Pt
Methanol HO + NHs Rh
Ru

After executing the 224 reactionsN-acyl f-amino alcohol2a and2c were identified
among the products in two of the experiments focheaubstrate, showing the
hydrogenation indeed to have been followed by intcdecular acyl-migration in a one-
pot procedure. The conditions for the four sucag¢ssfactions are given in Table 4.2.
This result already shows the advantage of using With successive small designs as
an approach towards the optimization of a new m@actlt made it possible to
investigate a large parameter space and identiéy rdgion of interest for further
exploration, even though only 8 % of the possiklenber of reactions was executed. If
a single large DoE design had been chosen, a gowdber of unnecessary reactions
would have been performed.

When using such a small design it is importante@lise that each result is extremely
influential for the calculation of the main effecitthe parameters. These calculations
will become increasingly inaccurate with a growmgnber of “zero-yield” reactions or
failed experiments. In this case the number oftreas leading to the desired product is
so low, i.e. 2 per design, that a statistical eatdun of the effect of the parameters on
the yield would not be meaningful. The results ldmwever, enable the identification of

unfavourable factors and their exclusion from tegtrscreening phase.



Table 4.2 -Conditions for the successful hydrogenation initiigal screening.

Substrate Metal Support 'IF:(r;q]p Solvent Additive COHXG[{ySO |]on of Y'E[}(IJZ][&I] 2
la Ni C 120 Dioxane Nkl 100 33
la Rh AlL,O3 120 Dioxane  NKH+H,O 100 24
1c Ni Al ;0O 120 Dioxane O 100 65
1c Rh C 120 2-propanol o) 100 48

4l According to GC

The reactions in Table 4.2 were all run for 24 H20 °C, with either dioxane or 2-
propanol as the solvent, and ammonia or water @sdudlitive. The successful metals
were Ni and Rh, supported on either carbon or alamirom the reactions which did
not yield the desired product, the following trermsuld be observed: the reactions
using Ru or toluene gave low conversions, whilergeections performed in MeOH in
all cases gave complete conversions, but, withde wange of side-products. Since the
intention of the first screening was to reduce plaeameter space, none of the side-
products of the reactions were isolated. Howevé&;NES enabled the identification of

several side-product8 (o 6).

NH
H H 2
N N )\
N T s
@)
3 4 5 6

Figure 4.2 -1dentified side-products in the hydrogenatiori af

The presence d shows that the secondary amine is formed in saasesc Product3

to 5, in which the benzylic alcohol group has been nesdo were particularly dominant

when platinum was used as the catalyst, which etexpected from the application of
platinum catalysts for the cleavage of this typeébond. Equivalent by-products could
also be identified in the case of the aliphaticsstate, though in much smaller amounts
in accordance with the greater stability of the (@nhd. The reason that even the
aliphatic C-O bond can be cleaved can be attribigtede stabilising effect of the nitrile

group on the intermediate radical or carbeniumf@med during the cleavage.
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In the successful reactions b& (see Table 4.2) ammonia was present as additite, b
analysis of the results did not show unambiguotisly the presence of ammonia was
essential. Since the formation of 6 indicates #mimonia also reacts with the substrate
it was chosen, in order to avoid this side-reagttorfurther optimize the conditions in
the absence of ammonia. Samples taken after 3 Bboged only low conversions and
there was no formation dfa or 2b in any other reaction than under the conditions
reported in Table 4.2. The long reaction time cdwéddue to an initial activation period
for the catalyst but the study of this was defeted later stage and a reaction time of

24 h was maintained for the second design.

4.2.2 - Second Screening

Based on the results of the first screening desigsecond design was conducted with
the parameters indicated in Table 4.3. In orddutther study the effect of the carrier

silica was included in this design. Since the pat@mspace was now considerably
reduced, a Full Factorial design (Chapter 2),3& combinations, became feasible for
each substrate. All the reactions were performed2& °C and 20 bar Hwith a

reaction time of 24 hours.

Table 4.3 Conditions and parameters in the second screeaunyl.

Additive Solvent Metal Support
No additive 2-propanol Ni Alumina
H,O Dioxane Rh Carborf!

Ru Silica

[Blin the case of nickel, Raney-nickel was used awste nickel on carbon.

The results of this screening are presented inr€igiB8 and Figure 4.4. The conversions
of laandlc were in most cases 100 %, except for the reactdrese Ru-alumina and
Ru-silica was used. For those two catalysts no emen was observed. In sharp
contrast to the first screening, where only a feactions yielded th&l-acyl f-amino
alcohols, all active catalysts now yielded the aebproducts. A statistical evaluation of
the results from Figure 4.3 and Figure 4.4, witepeet to the main effects of the
parameters and their interactions, is present&igure 4.5 and Figure 4.6.
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Additive [} |
No additive i i
Water 'n il

Solvent .
IPA ;1 ;
Dioxane i A

Metal o '
Ni
Rh
Ru

Support
Al
C/Raney
Si

'a')

Figure 4.5 - Effect of the main parameters in the second sangen) aliphatic substratkc; b)
benzylic substratéa. The lengths of the bars show the relative infageof the main parameters
on the yield of2aand2c. The bars directed to the right have a positilatire effect and to the
left a negative. The dotted lines represent the @®tfidence interval calculated from the
estimated experimental variance. Effects highen ttias confidence interval are considered

significant and are represented in black (‘Al' mraina, ‘Si’ = silica).

When evaluating the main parameters in Figure rhany similarities for the two
different substrates are noted. The most impogardameter in both cases is the type of
metal, with nickel being the best followed by rhadi For ruthenium, the poor results
from the initial screening are confirmed. In th#ial screening, the successful reactions
included those in which water was used as an aeédith small but statistically
significant positive effect of water is indeed otvsel in the case of the aliphatic
substrate, though not with the benzylic substrati¢hough the absolute difference
between the two solvents is small, dioxane is Stedilly significantly better than 2-
propanol for both substrates. With respect to tlieces of the catalyst carriers, the
apparent superiority of carbon is based solely lwn fact that ruthenium givethe
product only in combination with carbon while, iddition, nickel on carbon was not
available and Raney-Ni was used instead, so thatlefimite conclusion on carrier

effects can be drawn from this second design.
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Figure 4.6 - Interaction effects between the parameters ofs#wdnd screening: a) aliphatic
substratelc, b) benzylic substratéa. The lengths of the bars show the relative infogeaf the
interaction effects, between the different paranseten the yield of2a and 2c. The bars
directed to the right have a positive relative effend to the left a negative one. The dotted lines
represent the 95% confidence interval calculatednfthe estimated experimental variance.
Effects higher than this confidence interval aresidered significant and are represented in

black (‘Al' = alumina, ‘Si’ = silica).
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With respect to the 2-level interactions between iarameters presented in Figure 4.6
it was noticed that for both substrates there agmifscant additive/solvent and
metal/support interactions, while in the case @& lbienzylic substrate a solvent/metal
interaction also exists. However, the effects alsthinteractions are relatively small in
comparison with the main effect of the metal its€lbr the aliphatic substrates, nickel
on silica, using dioxane as the solvent and wasendditive, is the combination of
choice, while for the benzylic substrate Raney-eid& the indicated catalyst when used
in dioxane without addition of water.

All the reactions from these two screenings werdopmed in the “Quick Catalyst
Screening 96” platform (Appendix A.3). This equipthéas a maximum pressure limit
of 20 bar and no individual temperature control e reactors. Further optimization
regarding pressure and temperature was for thabneperformed in a conventional
autoclave.

In preparation for this, a test was conducted ottiver the results with the nickel
catalysts could be improved by activation with prior to the catalytic test. By
activating the catalysts at 140 °C for 12 h at 40 H, nickel on alumina gave similar
yields to those of Raney-nickel and it was foundb® more practical to use this
activated catalyst for further optimization. In tbase of the aliphatic substrate the
reaction time was reduced to two hours and forbiezylic substrate to three hours.
Once again, dioxane proved to be slightly supena2-propanol. As a result of this it
was chosen as the solvent to perform the third dafnscreening: the optimization of
temperature and pressure using activated nickellamina in dioxane. In the case of

the aliphatic substratkc water was used as an additive.

4.2.3 - Optimization design

A temperature range of 80 to 160 °C and a pregsurge from 5 to 40 bar was tested.
Only minor differences in the yields (x 7 % for thkphatic, £+ 5 % for the aromatic)
were observed, except for reaction temperaturesib@0 °C, where hardly any reaction
occurred. Despite the small differences in the olexkyields an optimum of 10 banH
at 140 °C is found for the aliphatic substrateand 20 bar Kat 120 °C is found for the

benzylic substratéa.



4.2.4 - Other substrates

In order to establish the versatility of the reawtthe optimized conditions were applied
to a number of other acylated cyanohydrins: a subst benzylic esterlp), an
aliphatic substrate with an aromatic side chdid),(and aliphatic substrates with a
variety of acyl groupsle 1f) (Scheme 4.2).

All these substrates were successfully hydrogenatgeeld the desiredll-acyl f-amino
alcohols2a-f. The conversion of the substrates was in all ca8€s%. The benzylic
substratedla and 1b gave more side products than the aliphatief. This difference
between the substrates is in accordance with g dt@ble benzylic C-O bond. In the

case oflc and 1f, the products were isolated by crystallisationnfréhe reaction

mixtures.
Ji§
OH OH
RJVHTR' Ha (20 bar), Ni-Al,O3 /(I)\ R" H, (10 bar), Ni-Al,03 )VHTRI
R
0 Dioxane, 120 °C R* CN  Dioxane-H,0, 140 °C o)
2a-2b laf 2c-2f

0 0 0
N
Ph/I\CN Meo\©/J\CN /\/\/I\CN
la 1b 1c
0
o)J\ o)J\ Ph
Pho\/]\c:N w/KCN /\/\/I\CN
1d

le 1f

Scheme 4.2 The catalytic hydrogenation of cyanohydrin estéra, R = -Ph, R’'=-CH; 1b, R
= -OCH;, R’ = -CH; 1c, R = -GHy;, R'= -CH;; 1d, R = -CHOPh, R’ = -CH, 1e R = -
CH(CH),, R'= -Ph;1f, R = -GHy;, R’ = -CHs)
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Table 4.4 Conversion and yield from the hydrogenation oflated cyanohydringa-f.
Substrate Conversion of 1 [%] NMR-Yield of 2 [%] Isolated yields of 2 [%4

la 100 n.d 44
1b 100 n.d 56§
1c 100 74 5%
1d 100 91 78
le 100 ~75 58
1f 100 83 36

[l |solated by column chromatography. [b] Isolateddxrystallisation from ethyl

acetate, not optimized.

The hydrogenation was also performed on the opfiealtive substratesS(-1a (95 %
ee) and H-1c (94 % ee). As expected, the chiral centreSpfL¢ was found to remain
unchanged during both the hydrogenation and thra-mblecular migration. This was

not the case withSj-1a. The isolated)-2a had an ee of only 75 % (see Scheme 4.3).

O
OH
9)1\ H, (20 bar), Ni-Al,O5 N o«
©/\CN Dioxane, 120 °C m 0o
(S)-la (S)-2a
95 % ee 45 % yield, 75 % ee
O
O)J\ H2 (10 bar), Ni'A|203 QH H
B - P N N
/\/\/\CN Dioxane-H,0, 140 °c \[(])/
(S)-1c (S)-2¢
94 % ee 57 % yield, 95 % ee

Scheme 4.3 Catalytic hydrogenation of enantiopure acylatgahohydrins

This decrease in ee might be explained by a basésad racemisation of the
substrate; the base being either ammonia releasédei formation of the secondary
amine side-product, or the secondary amine itself.



4.3 - Conclusions

A multi-step DoE approach proved an efficient metHor the optimization of the
reaction. From more than 2000 possible combinatafriee parameters requiring to be
studied, it proved possible to effect the optim@atsing only 70 experiments for each
substrate. This shows the great advantage of tliedpproach towards the optimization
of a new reaction, enabling a large parameter spadee investigated and the most
interesting range within the parameter space tiodmtified.

The catalytic hydrogenation of acylated cyanohyrih) with subsequent intra-
molecular migration of the acyl group constitutesraduable one-pot route to the
pharmaceutically importaniN-acyl p-amino alcohols 4). The nickel-on-alumina
catalyst in dioxane as solvent proved to be preferto the traditional catalysts (Pd/C
and PtQ) that are used under acidic conditions [8]; bdtd hydrogenation and the
migration proceeded smoothly and the desired proctudd be obtained in yields of up
to 90 % for the aliphatic substrates and up to 5@ofcthe more sensitive benzylic
substrates. The application to a range of aliphatit aromatic substrates with different
acyl groups was demonstrated. When enantiopuretratds are employed the
stereocentre remains unaltered for aliphatic satestrand only a small amount of
racemisation is observed for benzylic substratégerthe straightforward access to the
(chiral) starting materials and the mild, catalytieaction conditions this one-pot

sequence represents a significant step forward.
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4.4 - Experimental

4.4.1 - General

'H and™*C-NMR spectra were recorded on a Varian VXR-40080(and 100, MHz,
respectively) or a Varian Unity Inova 300 (300 Midnd 75, MHz, respectively),
instrument. Chemical shifts are expressed in paes million @) relative to
tetramethylsilane. Abbreviations are as follows(smglet), d (doublet), t (triplet), q
(quadriplet) and m (multiplet).

Mass spectra were determined on a VG 70 SE speeteoroperating at 70 eV. GC-MS
was measured by means of a VG 250 SE instrumenppepl with a CP Sil 8 CB
column of 25mx 0.25mm and 0.4m DF. A Varian Star 3600 - GC equipped with a CP
Sil 5CB column with 50mx 0.55mm and 1um DF, was used to determine the
conversions in the crude reaction mixtures. Optrcaations were obtained using a
Perkin-Elmer 241 polarimeter. Melting points areamected. Column chromatography
was carried out with silica gel packing of 0.06@dD mm, pore diameter ca. 6 nm and
with mixtures of petroleum ether (PE), methanol Q# and ethyl acetate (EtOAc) as
solvent. TLC was performed on 0.20 mm silica gel.

The nickel catalysts were all activated at 14068€12 hours at 40 barHbefore use in
the general procedures B, C and D described béltwther catalysts, and the solvents
employed, were used as received from commerciaicesu For all the supported
catalysts the metal loading was 5%, except for RhaS(1%), Ni-Alumina (50%) and
Ni-Silica (66%). Racemic [9] and enantiopure cyaythin acetates [11,28\vere
synthesised according to literature procedures.oftieal purity of2a was determined
by HPLC employing a Waters 510 pump, a ¥.850 mm 1Qu Chiracel OJ column and
a Waters 486 UV detector. The eluant was a mixtiiteexane and 2-propanol (90:10)
with a flow of 0.8 ml mift. The optical purity ofla, 1c and2c was determined by
chiral GC using a Shimadzu Gas Chromatograph GC-Eglipped with ap-
cyclodextrin column (CP-Chirasil-Dex CB 25m0.25mm). A Shimadzu Auto-injector
AOC-20i and FID detector were employed, and He witimear gas velocity of 75 cm/s
formed the carrier gas.

The Avantium “Quick Catalyst Screening 96" platforwas used to perform the

reactions of the first and second experimentalgiessiThis equipment has a maximum



pressure limit of 20 bar and the temperature idgrotiad for all reactors simultaneously.
Otherwise, a 100 ml Parr autoclave was used. Tdraazital analysis was performed on

a Elementar Vario EL Il analyser.

4.4.2 - General procedure A: Screening in the Avanim “Quick Catalyst

Screening 96” platform
The various supported metal catalyst (5 mg) werghesl into the autoclaves and
added to a 1.7 M solution of the substrate in thgirdd solvent (1.5 ml). When water
was used as an additive, il0was added. In the case ammonia was used as\aqdite
concentration of ammonia in the reaction mixtures\We&b M. After stirring the reaction
at 90 or 120 °C and 20 bag Fbr 3 or 24 h, the reaction mixture was centrifdig@ed the
supernatant liquid analysed by GC and GC-MS.

4.4.3 - General procedure B: Screening for temperate and pressure in the Parr
autoclave

The pre-activated 50% Ni on alumina (100 mg) waseddo a solution ofaor 1c (5.7

mmol) in dioxane (30 ml). In the case b, water (0.2 ml) was also added. After

stirring the reaction at 80, 100, 120, 140, or 160and 5, 10, 20, 30 or 40 bas fdr 2

hours, the reaction mixture was filtered. The dil&r was analysed by GC.

4.4.4 - General procedure C. Reductions in the Pamutoclave with optimized
conditions for substrates prepared fronaromatic aldehydes

Activated 50 % Ni on alumina (100 mg) was addea teolution of the substrate (5.7

mmol) in dioxane (30 ml). After stirring the reamwti at 120 °C and 20 barHthe

reaction mixture was filtered. A sample of 2 ml wagen from the filtrate and the

solvents from this sample were removed under vacdurma sample was then analysed

by 'H-NMR. The combined filtrate and NMR-sample wasntlesaporated to dryness to

yield the oil or solid products.

N-(2-Hydroxy-2-phenylethyl) acetamide 2aThe solid prepared frorha according to
general procedure C was purified by column chrogragehy (silica, EtOAc/MeOH,
95:5, R = 0.27). Yield of §-2a 503 mg (49 %) as a white solid; m.p. 125-126 °C;
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H-NMR (300 MHz, CDC}, 25 °C, TMS):d = 2.01 (s, 3H, 85-C=0), 3.32 (dddyJ =
5.0, 7.9, 14.1 Hz, 1H, E>-N), 3.70 (dddJ = 3.3, 7.0, 14.1, 1H, i@»-N), 4.85 (ddJ =
3.3, 7.9, 14.1 Hz, 1H,18-0), 5.92 (s, 1H, M), 7.28-7.38 (m, 5H, aromatic)’C-NMR
(75 MHz, CDC}, 25 °C, TMS):d = 23.1 CHas), 47.6 CH»>-N), 73.6 CH-O), 125.8,
128.8, 128.5 and 141.8 (aromatic), 17X60); IR (KBr): v= 3300, 3080, 1648, 1547,
1295 cni; MS (70 eV, El):m/z (%): 179 (1) [M], 161 (3) [M-H,O], 120 (14), 107
(21), 79 (31), 77 (31), 73 (100); elemental analysalculated (%) for gHi3NO,
(179.22): C 67.02, H 7.31, N 7.82; found: C 6718(;.49, N 7.81.

(S)-N-(2-Hydroxy-2-phenylethyl) acetamide §)-2a: The solid prepared fror()-1a
(95 % ee) according to general procedure C wadi@diby column chromatography
(silica, EtOAc/MeOH, 95:5, R= 0.27). Yield of §-2a 0.454 mg (45.4 %) as a white
solid; ee= 75 %, [p]p*° = + 8.1 € = 1.0 in MeOH); other spectroscopic data a2for

N-[2-Hydroxy-2-(3-methoxyphenyl)ethyl] acetamide 2b The solid prepared from
rac-1b according to general procedure C was purified bluran chromatography
(silica, EtOAc/MeOH, 95:5, R= 0.25). Yield of2b: 0.570 mg (57 %) as a white solid;
m.p. 123-124 °C*H-NMR (300 MHz, CROD, 25 °C, TMS):d = 1.93 (s, 3H, B
C=0), 3.28 (dd)J = 7.9, 13.7 Hz, 1H, B»-N), 3.45 (ddJ = 4.6, 13.5 Hz, 1H, B>-N),
3.78 (s, 3H, OE3), 4.71 (ddJ = 4.6, 7.9 Hz, 1H, 8-0), 6.81 (ddd, J = 0.9, 2.6, 8.2
Hz, 1H, C4H), 6.95 (m, 2H, C2-H, C64),), 7.24 (apparent t, J = 7.9 Hz, 1H, 8%-
3C-NMR (75 MHz, CROD, 25 °C, TMS):d = 22.5 CH5-CO), 48.3 CHx-N), 55.6
(OCHg), 73.5 CH-0), 112.6 C2), 114.1 C4), 119.4 C6), 130.3 C5), 145.5 C1),
161.2 €3), 173.6 C=0); IR (KBr): v = 3290, 1634, 1596, 1552, 1259, 1066'cMS
(70 eV, El):m/z(%): 209 (7) [M], 191 (3) [M'-H,0], 150 (31), 109 (25), 73 (87), 62
(46), 45 (100); elemental analysis calcd (%) feiHzsNO3 (209.24): C 63.14, H 7.23,
N 6.69; found: C 61.41, H 7.57, N 6.50.

4.4.5 - General procedure D. Reductions in the Parautoclave with optimized
conditions for substrates prepared from aliphatic &dehydes
Activated 50 % Ni on alumina (100 mg) was addea teolution of the substrate (5.7

mmol) in dioxane (30 ml) and water (0.2 ml). Aftirring the reaction at 140 °C and



10 bar H, the reaction mixture was filtered. A sample ofm2 was taken from the
filtrate and the solvents from this sample wereaeed under vacuum and the sample
was then analysed b{H-NMR. The combined filtrate and NMR-sample wasnthe

evaporated to dryness to yield the oil or soliddjoiads.

N-(2-Hydroxyheptyl) acetamide 2c The oil prepared fromic according to general
procedure D was purified by recrystallisation fr&t©Ac. Yield of2c. 454 mg (56 %)
as a white solid; m.p. 75-76 °&4-NMR (300 MHz, CDC}, 25 °C, TMS):d= 0.89 (m,
3H, CH3-CHp), 1.29-1.47 (m, 8H, CHCH,-CH,-CH,-CHy), 2.00 (s, 3H, E3-C=0),
3.08 (dddJ =5.0, 7.9, 13.7 Hz, 1H,K3;-N), 3.45 (ddd)] = 2.9, 6.6, 13.9 Hz, 1H,K;-
N), 3.45 (s, 1H, ®), 3.69 (m, 1H, E€-0), 6.49 (s, 1H, N); *C-NMR (75 MHz,
CDCls, 25 °C, TMS):d= 14.0 CH3-CHj), 22.6 (CH-CH>), 23.2 CH5-CO), 25.2 (CH-
CH,-CH,), 31.8 CH>-CH,-CH), 35.0 CH,-CH), 45.9 CH»-N), 71.2 CH-O), 171.4
(C=0); IR (KBr): v = 3425, 3279, 1661, 1627, 1586, 1569, 1136;duS (70 eV, EI):
m/z (%): 174 (3) [M+1], 102 (10), 73 (100); elemental analysis caléd) (for
CoH19NO;, (173.25): C 62.39, H 11.05, N 8.08; found: C 6219111.67, N 8.04.

(S)-N-(2-Hydroxyheptyl) acetamide §)-2c. The oil prepared fronfS)-1c (5.4 mmaol,

94 % e@ according to general procedure D was purified régrystallisation from
EtOAc. Yield of (S)-2c. 533 mg (57 %) as a white solide = 95 %; m.p. 75-76 °C;
[a]p?° = + 14.1 ¢ = 1.0 in MeOH); other spectroscopic data as2ér

N-(2-Hydroxy-3-phenoxypropyl) acetamide 2d The oil prepared fromrac-1d
according to general procedure D was purified bjuroe chromatography (silica,
EtOAc/MeOH, 95:5, R= 0.29). Yield of2d: 967 mg (72 %) as a white solid; m.p. 49-
50 °C;'H-NMR (300 MHz, CDC4, 25 °C, TMS):d = 1.99 (s, 3H, E5-C=0), 3.36
(ddd,J = 5.5, 6.8, 6.8 Hz, 1H, €>-N), 3.59 (dddJ = 3.3, 6.1, 14.0 Hz, 1H, K;-N),
3.92 (d,J = 5.5 Hz, 2H, E,-0), 4.09 (m, 1H, €-0), 4.18 (s, 1H, ), 6.58 (s, 1H,
NH), 6.87 (m, 2H, aromatic), 6.95 (m, 1H, aromattP6 (m, 2H, aromatic);’C-NMR
(75 MHz, CDC}, 25 °C, TMS):d= 23.0 CH3-C=0), 43.0 CH»-N), 69.5 CH-OH and
CH,-0), 114.5, 121.2, 129.6, and 158.4 (aromatic),27C€=0); IR (KBr): v = 3384,
3299, 1630, 1601, 1571, 1284, 1118, 75I1'cMS (70 eV, El)m/z(%): 209 (3) [M],
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191 (32) [M-H,0], 148 (7), 116 (100); elemental analysis calcd (& C;1H1sNO3
(209.24): C 63.14, H 7.23, N 6.69; found: C 61199.22, N 6.46.

N-(2-Hydroxy-3-methylbutyl) benzamide 2e The solid prepared fronrac-le
according to general procedure D was purified bjuroe chromatography (silica,
EtOAC/PE, 45:55, R= 0.30). Yield of2e 681mg (58 %) as a white solid; m.p. 116-117
°C; 'H-NMR (300 MHz, CDC}4, 25 °C, TMS):d = 0.97 (dd,J = 6.8, 9.0 Hz, 6H, 2
CHs), 1.73 (m, 1H, &-(CHs),), 3.06 (s, 1H, ®), 3.30 (ddd,) = 4.6, 8.61, 13.7 Hz, 1H,
CH2-N), 3.50 (m, 1H, &-0O), 3.72 (ddd, = 2.8, 6.8, 13.7 Hz, 1H,K3-N), 6.86 (s, 1H,
NH), 7.38 (m, 2H, aromatic), 7.46 (m, 1H, aromatit),7 (m, 2H, aromatic);?C-NMR
(75 MHz, CDC}, 25 °C, TMS):d = 17.9 CHs), 18.6 CHs), 32.3 CH-(CHs)), 44.1
(CH2-N), 76.3 CH-O), 127.0, 128.5, 131.5, and 134.3 (aromatic.36C=0); IR
(KBr): v = 3398, 3319, 1633, 1578, 1541, 1057, 697-cMS (70 eV, El):m/z (%):
207 (1) [M7, 189 (3) [M-H20], 164 (16), 134 (89), 122 (29), 105 (100); eletakn
analysis calcd (%) for GH17/NO, (207.27): C 69.54, H 8.27, N 6.76; found: C 68H5,
8.61, N 6.68.

N-(2-Hydroxyhepyl) butanamide 2f The oil prepared fronrac-1f according to
general procedure D was purified by recrystallsafrom EtOAc. Yield of2f: 345 mg
(30 %) as a white solid; m.p. 62-63 9%Et-NMR (300 MHz, CDC}, 25 °C, TMS):0 =
0.89 (m, 3H, pentyl-83), 0.95 (t,J = 7.5 Hz, 3H, propyl-83), 1.29-1.44 (m, 8H, CH
CH,-CH,-CH2-CHy), 1.67 (sextet) = 7.4 Hz, 2H, El,-CH,-C=0), 2.18 (tJ = 7.4 Hz
CH,-CH,-C=0), 2.94 (s, 1H, 8), 3.11 (dddJ = 4.9, 7.7, 13.0 Hz, 1H,K5-N), 3.47
(ddd,J = 2.7, 6.2, 13.7 Hz, 1H,-N), 3.70 (m, 1H, E-0), 6.15 (s, 1H, N); *C-
NMR (75 MHz, CDC}, 25 °C, TMS):0 = 13.8 (propyl€H3), 14.0 (pentylEHs), 19.2
(CH,-CH,-C=0), 22.6 (CHCH,-CHx-CH,), 25.2 (CH-CH,-CH,-CH,), 31.8 CHy-
CH,-CH), 35.0 CH»-CH), 38.6 CH,-C=0), 45.7 CH,-N), 71.5 CH-0), 174.2 C=0) ;
IR (KBr): v = 3418, 3283, 2964, 2919, 1657 ,1624, 1566"cMS (70 eV, El):m/z
(%): [M*] could not be identified].30 (17), 101 (100); elemental analysis calcd @) f
C11H23NO; (173.25): C 65.63, H 11.52, N 6.96; found: C 64H&2.03, N 6.83.
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SYNTHESIS OF TWO CATALYST RESPONSE SURFACE
BENCHMARKS FOR CO OXIDATION: COOX AND
SELOX

Abstract

Two catalytic response surface benchmarks wereatkbithased on the performance of
libraries of heterogeneous mixed-oxide catalystghim CO oxidation (COOX) and
selective CO oxidation (SELOX) reactions for fuedllcapplications. Almost 200
catalysts were synthesised and tested by meansgbfHhiroughput Experimentation
(HTE). The catalyst library was investigated undédferent reaction conditions and
more than 1000 catalyst performance results wetairsddl and used to build the
SELOX and COOX benchmark response surfaces. A Desigexperiments (DoE)
approach was applied for the experimental planraadelling of the resulting response
surfaces. COOX and SELOX constitute realistic gaitalbenchmarks that are used in

the later chapters to test the performance of GlOpémization algorithms.

The contents of this chapter have been published in

S. R. M. Pereira, F. Clerc, D. Farrusseng, J. @.dex Waal, T. Maschmeyer, C. Mirodat@SAR and
Comb. Scj.24,2005 45.
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5.1 - Introduction

Since a few years, High-Throughput ExperimentaflémE) enables fast synthesis and
testing of large libraries of materials [1-4]. Hovee, a systematic investigation of the
entire parameter space is usually inefficient afteinoexperimentally unaffordable since
the high number of parameters to investigate ldads too large number of sample
candidates to be prepared and tested. A rationettge of the compounds must be
considered to limit the size of this library whaesuring an optimum rate of discovery
and optimization. Because of the large number ofabbes and experiments, library
design of materials cannot be efficiently performmadnually and the assistance of
computer science is required for this purpose [S¥vHrug discovery, explorative data
analysis, data mining and artificial intelligenae antensively used since several years
in order to efficiently reduce the experimentaloeffin discovery and optimization
processes. Because the description of materiaeie complex than for molecules, an
approach employing Quantitative Structure Actiwngperty Relationships
(QSAR/QSPR) that allows for a complementary virtergbloration of large libraries of
individual compounds is in general not easily aggilie to heterogeneous catalysts [8].
Therefore other design strategies and associatgtithins need to be developed to
explore large parameter spaces. Several algoritke§enetic Algorithms (Chapter 6),
Simulated Annealing, Taboo Search methodologies (€&bapter 7) are in this way
being applied to try to solve this issue. Howewegeneral lack of knowledge exists
about the applicability of these algorithms andrtparameter settings in order to obtain
an efficient optimization performance when appliedatalytic case studies.

The optimization of algorithm configurations andtisgs is generally performed on so-
called virtual or synthetic benchmarks, which aom4chemistry-related custom-made
mathematical response surfaces. These functionsisrally far from what one can
expect for real case studies in material optimaredi Since the algorithm optimization
performance is very dependent on the type of serfacoptimize, they can be non-
representative for testing algorithm performancel dimding its best parameters
configuration. Ideally, real data collections ontdnegeneous catalysis performance
would be employed in performing these simulatiokkwever, data banks on

heterogeneous catalysts and their performancecthdtl be used as a real application



benchmark are usually kept confidential, while ded#lection from literature usually
provides data sets which are too small and ofteve hiaconsistent or poor data
accumulated over decades. Validation of GA confgjans by performing multiple
experimental optimizations at different configuoati settings is usually not an
alternative because it would lead to a too largaler of runs and experimental effort
in order to get statistically significant resulBenchmarks based on experimental and
simulation catalytic results using Artificial Nelinaetworks strategies have been used
by Rodemerlet al. to test algorithm performances [9]. In this chaptenethodology for
constructing benchmarks is discussed, based on mDoHelling of catalytic data
obtained from an experimental design. The consttlaratalytic search space was
systematically mapped using a Design of Experimegproach that allowed the
construction of a response surface described l®t afanathematical functions. These
will be later used as benchmarks to test the infteeof algorithm settings (Chapter 6)
and different algorithms (Chapter 7) in the optiatian performance of the algorithms.
The reactions chosen to obtain the catalytic beacksnare the oxidation of carbon
monoxide to carbon dioxide (COOX) and the sameti@adut in the presence of
hydrogen (SELOX).

In order to supply proton-exchange membrane fuls ¢€EMFC) for on-board or
domestic electricity generation, ideally a puredoggn fuel should be used at the anode
and oxygen/air at the cathode. Due to the numerarsent problems related to
hydrogen infrastructure, alternative fuel solutiomse currently being investigated,
namely hydrocarbon fuels. In this solution, theregarbon fuel is first transformed to a
hydrogen-rich but CO-containing gas, which is tlkenducted to the anode catalyst of
the PEMFC where the hydrogen undergoes electraatigill The power efficiency of
the PEMFC is substantially reduced by the presef€O in the hydrogen stream, due
to the poisoning of the anode catalyst by the augor and surface-bonding of CO and
consequent deactivation. Anode catalysts toletantCO adsorption have been
investigated but the issue is still one of the ndiallenges in PEMFC technology. An
enormous effort has also been made in methodsrtowe the CO from the COpyas
mixture in order to feed the catalytic anode of BFEEMFC with a cleaner gas stream.

The SELOX and COOX reactions are representativibede present efforts in finding



Chapter 5

catalytic solutions to promote new clean and muriaéd processes for generating
hydrogen from hydrocarbon fuels.

The SELOX and COOX benchmark response surfacesbeilused in later chapters
(Chapter 6 and 7) to study the performance of séagorithms in the exploration and

optimization of catalytic response surfaces.

5.2 - COOX and SELOX benchmarks planning

5.2.1 - Parameter/Search Space

The catalyst search space was constructed accaaiggnerally accepted principles in
catalysis, namely that heterogeneous catalystsuswally multi-component systems,
and that each component has specific functionsiatedacts with the others. For the
present case study, the composition search spaseeas#icted to 3 components per
catalyst, which were considered representative etsnfor studying the reaction of CO
oxidation in the absence or in the presence0flHe three components chosen were: i)
one metal (NM) acting as the main active phase @u, Pt), ii) one transition metal
(TM) acting as modifier/promoter of the active phand support (Mo, Nb, V), and iii)
one metal oxide acting as support (GeDO,, ZrO,). The elemental composition of
NM and TM varies from 0.1 to 2.1 % and from 1 to,5®spectively. It was considered
that the bulk composition of the support does neange significantly with the
concentration of TM and NM. Therefore, the cataly@tiposition search space can be
considered as made of 8istinct continuous sub-spaces. Temperature s alkey
parameter for the working of the CO oxidation reaxt. Therefore, the catalyst library
was tested at 3 different temperatures namely 208, and 250°C for the COOX, and
200, 250, and 300°C for the SELOX benchmarks. Téssilts in a total search space
consisting of 81 distinct continuous response sedaor sub-spaces for each
benchmark. Each sub-space represented the repativia different catalyst ternary
system in respect to the variation of its NM and Tddncentration and at the

corresponding tested temperature.



5.2.2 - Design of Experiments for the COOX and SEL®R benchmarks

For mapping the search space a design of expesmstategy based on the
optimization Doehlert DoE design (see Chapter 2 baen chosen. The sub-spaces
were considered to be able to be modelled by lirsgnession, assuming that non-linear
effects do not prevail for this type of reactiontire parameter space chosen. The 81
sub-spaces can therefore be modelled using an igption Doehlert Design as
experimental planning technique that allows thaénfit of a quadratic surface model
[10].
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Figure 5.1- Doehlert Experimental Design for a NM, TM and Suppernary system. The

Support amount is fixed. The dots represent therxgntal points.

This design (Figure 5.1), which requires seven pedelent experiments, enables to
reach an efficient and robust model for the mafieat$ and second order parameters

accounting for interaction and quadratic effectgu&ion 5.1) [11].
y = Bot BUTM] + Bo[NM] + B TM].[NM] + B1a[TM]? + Bo[NM] 2 Equation 5.1

Where [TM] and [NM] represents the TM and NM masscentage, respectively.
Therefore, the construction of the response surbesehmark can be performed by
collecting the 81 distinct linear models. This esypental plan was applied to all 27
ternaries resulting in a library of 189°%3) catalysts, which were synthesised in batches
of 24-48 catalysts using the automated equipmestrideed in Appendix A.2. All
catalysts were tested for both reactions (COOX@BHOX) with a HTE 16-vessel gas
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reactor (Appendix A.4) at 3 different temperaturgg)ding 1134 catalytic data point

results (27x7x2) plus replicates.

5.2.3 - Weighted surface response - Desirability

For obtaining cleaner Hyas streams to feed the PEMFC catalyst anodecrusal to
obtain the highest possible conversion of the C@sgmt. For the COOX reaction
conditions the important response to consider ereflore the conversion of CO
(Equation 2a). In the SELOX reaction, due to thesgality of the parallel oxidation of
H, (Equation 5.2.b), both CO and; ldonversion and COand HO selectivities need
also to be considered. There are therefore mudparses that need to be taken into

consideration.

COOX: CO+0.50—CO Equation 5.2a
SELOX: CO+050— CO, Equation 5.2a

H +0.5Q — H,O Equation 5.2b
X(CO) = pCQ/pC Equation 5.3a
S(CQ)= pCQ/(2.pO° - 2.pQ) Equation 5.3b

where, p denotes the partial pressure of the réspegases and the superscript © means

the inlet partial pressure, whereas no supersergains the outlet partial pressure.

For multi-response analysis or optimization severathods can be applied (see
Chapter 2). The desirability function method weighghe responses according to their
relevance into a single criterion, the Desirabifitpction [4].

Since the highest possible CO conversion (X(C®))he key criterion for fuel-cell
applications (Equation 5.3a), a larger weight skl given to CO conversion with
respect to other criteria. As stressed above,HerSELOX reaction, COselectivity -
S(CQO) (Equation 5.3b) has also to be considered as a key criterion Isecthe
oxidation has to be selective towards CO while timgi parallel H oxidation. In

addition, since low-temperature oxidation is preddr in connection with the
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requirements of other units of the PEMFC system témperature was also chosen as a
criterion for the performance assessment. The weighthree system responses were

defined with mathematical Desirability function e¢es as given in Figure 5.2.
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Figure 5.2 -Desirability Functions for: a) CO ConversiongR), b) CQ Selectivities ()
and c) Temperature (@)

Deony= 0.0105 X(CO) if X(CO) < 95% and dgh = 1 if X(CO) > 95%
Dse= 0.001 S(CQ+ 0.9
Dremp= - 0.002 Temp + 1.4

The steeper the slope of the Desirability curve, ldrger the weight. The Desirability
function for CO conversion (denotedcdd) is approximately proportional to the
conversion itself and works basically as a scalingction. Due to limitations in
guantifying accurately CO and GQraces, the Desirability for catalysts exhibiting
conversion higher than 95% was set to 1. Two Dietiina functions with low weights
were defined for C@selectivity and temperature, which are denoted &nd Gemp
respectively. The global Desirability functions, iath represent the benchmarks fitness
function, combine all sub-Desirabilities and ardirtgl as Roox = Dconv:Dremp and
DseLox = Dconv.DsetDtemp for the COOX and SELOX benchmarks, respectivéhe
combination of weighted performance criteria iniregke evaluation function enables a
more refined optimization, making it possible teatiminate between catalysts in the

same conversion range.
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5.3 - Results and Discussion

5.3.1 - Description of the surface responses for CiX and SELOX

reactions

After synthesising (section 5.4) and testing th&algats library, the conversion and
selectivity values of all 7x27 experiments werelexikd. The coefficients of Equation
5.1 for each of the 81 sub-spaces were obtaindithégr regression and are presented in
Appendix B. The obtained equations for the quadratodels show in general good
fitting in relation to the experimental points, hay in the majority of the cases an R-
Squared value higher than 0.8 (Appendix B). Asamw®le, the resulting sub-response
surface for the ternary system Pt-V-Ti at 250°C &#LOX conditions is shown in
Figure 5.3.
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Figure 5.3 - Sub-response surface for the ternary Pt-Nb-Z20&x°C for the conversion
response at SELOX reaction conditions. y = 100[Tl] + 49[NM] - 16[NM]? - 32[TM]?

All sub-response surfaces were gathered, and thigatldity functions were applied,
yielding the two COOX and SELOX benchmarks. A vigaion of the resulting

benchmark response surfaces is depicted in Figbraria 5.6 respectively.



COOX and SELOX Benchmarks

For the COOX conversion response surface (Figuda)b.it is obvious that Pt
containing catalysts are the best performing omédstever the testing temperature,
except when associated with Ge@he composition Cu-V-Cefalso shows significant
conversion, particularly at 250°C, and V-Ti@re always active compositions, whatever
the temperature and metal. It can be noted thatdneersion usually increases with
temperature as expected for activated processdsotAér combinations result in
inactive or poorly active systems, even at a haghperature such as 250° C. Figure
5.5b shows the effect of surface response transfitom by the Desirability function.
Because the Desirability function for the tempemtpenalises high temperatures
(negative slope), final optima of the COOX benchiare located at the lower

temperature of 200°C.

O W 2 33 4 N 8 T W 0 100 0 01 02 02 04 05 05 0T OB 03 05 1

a) b)
Figure 5.4- COOX response surface a) Conversion: X(CO),®DX Fitness landscape after

applying the Desirability functionsddox).
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Figure 5.5 - SELOX response surface. a) Conversion: X(CO)Sélectivity: S(CQ) and c)
SELOX Fitness landscape after applying the Deditaliunctions (DsgLox).
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When performing the reaction in the presence of(BELOX) a slightly different
landscape emerges (Figure 5.5a). Even if Pt istisélmetal with the highest influence
on performance, not all compositions containing af¢ active, especially at low
temperature. In addition, Cu-V/Ce@erforms much better with increasing conversion

values when temperature increases in contrastRtitiased catalysts.

For the SELOX benchmark, the nature of the prom@i&t) was found to have more

influence on the catalyst performance, giving theking V>Nb>Mo. Cerium-based

catalysts are on average the best systems in cmopawith the other supports.

However, at low temperature synergy with Pt is faoburable, since the ternary Pt-V-
Ce catalysts compositions are poorly performingsg®ase variance for GQelectivity

is relatively low with respect to CO conversion. vidgheless, Cu-based catalysts

exhibit generally higher selectivity.

Through the desirability function, response surfaeee weighted with respect to
temperature and selectivity. The global responsphasises the search space areas of
larger interest and enables discrimination betwesatalysts with very similar
conversion values. The top surfaces of responsis hile flattened due to the
Desirability settings that all catalysts with a gersion higher than 95% get the
maximum desirability value (&, =1). These flat surfaces are then discriminated
between themselves due to thenpand Qe functions (Figure 5.5b, Figure 5.5c). In
Table 5.1 the catalyst formulations that contribistethe global optimum response in
the COOX (Roox >0.99), and SELOX benchmarksdf)ox>0.92) are listed.

Table 5.1 -Global Optimal catalyst solutions for the COOX &@fLOX benchmarks.

Optimum COOX SELOX
1 Pt/\V/Zr/200 ° C Pt/\V/Zr/200 ° C
2 Pt/Nb/Zr/200 ° C Pt/Nb/Zr/200 ° C
3 Pt/Nb/Ti/200 ° C Pt/V/Ti/200 ° C
4 Pt/Mo/Ti/200 ° C Cu/V/Ce/200 ° C
5 Pt/Mo/Zr/200 ° C

In the presence of Hthe CO conversion does not always increase \gitlperature.
For instance for the ternary Pt-V-Zr system undBLSX conditions (Figure 5.5a),

raising the temperature leads to a decrease of¥itgctiThis can be explained by
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assuming a reverse Water Gas Shift (WGS) mechaa@marring in the downstream
catalyst bed during CO oxidation. In this mechantte CQ formed from the initial
CO oxidation reaction is in turn reduced to CO &h@® by the hydrogen present [13].
The preferential oxidation of hydrogen at high temgpure may also contribute to this
effect. This study has confirmed the beneficiakefffof V doping of Ce@on a broad
range of compounds. This synergetic effect wasrtegdor both SELOX and Water
Gas shift reaction with catalysts prepared by irgpagion [13].

The Au/TiG, Catalysts are known in the literature to be amibyegoest formulations for
the CO oxidation reaction [12] but were found ie fresent work to be inactive. This
may come from the synthesis procedure used inghidy. It might lead to a low
dispersion of the gold particles. Despite the leghface area of the T&upporthigh-
resolution-electron-microscopy (HREM) results dentbite presence of large sized gold

particles (Figure 5.6).
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Figure 5.6 - High Resolution Electron Microscopy (HREM) pimts of Au-TiQ sample

catalysts.

As a matter of fact, the good performances of Aseblacatalysts are usually related to
the high metal dispersion that ensures a partiafic state of Au atoms at the particles-



support interface. This effect is lost when a cdesable quantity of large gold particles
are present, resulting in a less active catalystaddition, rather low activity for Cu-
Ce( samples is noticed, compared to catalysts prepémedother methods as
investigated by Tibilettyet al. [13]. Here also the explanation may lie in a pGor
dispersion.

The low activity obtained with the Au-TiCand Cu-Ce@catalysts indicates a possible
pitfall of applying general catalyst preparatiorogedures typically used in a HTE
strategy. Catalyst performance is usually highlgsgevre to synthesis procedure. The
preferred use of non-laborious and generally apple preparation methods in HTE for
catalyst libraries synthesis can result in the agenon-optimal procedures for the
synthesis of certain catalyst formulations in theary. The influence of preparation
methods should not be underestimated and diffggertedures should be taken into
account and optimized in order to obtain good periing catalyst solutions. This can
be however extremely laborious or even impracteatten the goal is the screening of
a highly diverse catalyst library. The synthesistloé catalyst libraries may need to
become more labour-intensive or versatile and nestirtologies that can reproduce
complex catalyst recipes at the smaller scale reduor HTE may need to be further
developed.

Due to the handling of small amounts of compoumndheé preparation of HTE catalyst
libraries, a larger experimental error can be irduleading to a lower accuracy in the
resulting catalyst composition. This uncertainty ¢ further increased by the limited
or absent monitoring of the catalyst performancengutime and reduced by extensive
heterogeneous catalyst characterisation. The latier many cases only performed for
the successful or a few chosen unsuccessful cafedys the synthesised library.
Despite these possible drawbacks of heterogenesialyst library synthesis via HTE
methods, this is nowadays the only experimentdiigraable way to produce highly
diverse catalyst libraries and catalyst activityeenings. The amount of information
gained via the typical approach used in HTE alléogaising the attention on the most
promising catalyst solutions in further screeningd eoptimization steps, in which
additional criteria such as the dispersion of tttéva metal could be introduced into the

search space.
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5.4 - Conclusions

The COOX and SELOX catalytic benchmarks were swwfullg obtained based on
modelling of the performance of 189 synthesisedalgats at different reaction
conditions. The models obtained allow the simutatiof the performance of
intermediary catalyst compositions in the composifparameter space considered. The
benchmarks obtained can be used to navigate tlaeneéter space and serve as realistic
catalytic benchmarks for the testing of optimizatiperformance of optimization
algorithms.

Considering the chemical information gained dutimg study, formulations containing
an element known to be active like Pt were confdnas ranking among the best.
However, other active elements, like Au, were nomiind to ensure high catalytic
performance. This apparent discrepancy demonstrftessensitivity of synthesis
parameters and procedures on catalyst performartaleows that, in a combinatorial
discovery program, this need to be taken into atccdau the further refinement of a
catalyst formulation optimization procedure.

The results from the selected catalyst librarieioled do not, nevertheless, invalidate
the effectiveness of the approach chosen. Thentaya of binning the experimental
space in small zones using a Design of experimappsoach, which enables one to
model the whole surface by simple linear regressitth good confidence, has been,
from a methodological point of view, clearly demwated. It ensures that all the search
space can be modelled with about the same confdéewel in contrast to other
methods such as Artificial Neural Networks. In digdfi, it allows one also to obtain an
explicit model in a mathematical form that can lsualised and further used in Excel

or other software as a benchmark for catalyst dpttion performance assessment.



5.5 - Experimental

5.5.1 - General

An automated catalyst preparation workstation (8eph Zinsser Analytics, see
Appendix A.2) was used for the catalyst library thgsis, having a typical throughput
of 24-48 catalysts/day.

Materials: Activated carbon Darco® KB-B, titaniursopropoxide, zirconyl nitrate
hydrate and copper chloride dihydrate were purachag®m Sigma Aldrich.
Molybdenum chloride, hexa-ammonium heptamolybdateabhydrate, copper nitrate
pentahemihydrate and niobium chloride were purahdésen Riedel de Haén. Cerium
nitrate hexahydrate, chloroplatinic acid hexahyerahd hydrogen tetrachloroaurate
hydrate were purchased from Strem, ammonium metalea from Fluka. DMSO,

acetyl acetone and 2-propanol were of reagent grade

5.5.2 - General Procedure A: Ce and Zr based catais prepared by
Impregnation on Carbon

General principles of synthesis by the “carbon ebutan be found elsewhere [14].
Solutions of 1 M cerium and zirconyl nitrate, 0.86 TM (ammonium vanadate,
niobium and molybdenum chloride), and NM (0.0025d a@.025 M hydrogen
tetrachloroaurate, 0.05 and 0.001 M chloroplatasa, and 0.1 M and 0.01 M copper
nitrate) were dispensed in the appropriate volutnesccomplish the required catalysts
composition according to the design depicted inufgg5.1. The final volume was
adjusted by adding water until a total volume ah¥was reached. The solutions were
stirred and transferred to vials containing 1.3f @qctivated carbon. Subsequently, the
impregnated carbon was left to dry for 5 h at 1@0while shaking. All the previous
procedures have been performed by the automatealystatsynthesiser platform
presented in appendix A.2. The catalysts were tadrined for 3 h at 550 °C with an
initial heating rate of 2 °C/min.
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5.5.3 - General Procedurd: Ti supported catalysts prepared by SolGel
To each of the reactor vials 1.5 M titanium isogage with 2 M acetyl acetone in 2-
propanol solution was added manually. Subsequetity, TM solutions (0.05 M
ammonium vanadate, 0.05 M niobium chloride in DMS®DQ5 M molybdenum
chloride in DMSO) and NM (0.0025 and 0.025 M hyd¥ndetrachloroaurate, 0.05 and
0.001 M chloroplatinic acid, and 0.1 M and 0.01 bpper chloride in DMSO) were
dispensed in the appropriate volumes to accomghisirequired catalysts composition.
The reactor vials were heated at 120 °C and allowedry under shaking during the

night. The catalysts were then calcined as mentiah®ve.

5.5.4 - General procedure C: High-Throughput Catalgts Testing
All catalysts were tested in a parallel reactougdiSwitch 16 - Amtec, see Appendix

A.4) constituted of 16 channels loaded with 150 ofigcatalyst. The analyses were
performed on a micro-GC (Agilent), which enablesnptete quantification of all
products within 3 min. More details about the readystem can be found elsewhere
[13,15]. When placed in the parallel reactor thech@alysts were tested first under
COOX (no H present) and then under SELOX conditions (htesent). Detailed
reaction conditions are given in Table 5.2. Aftetemperature ramp (1°C/min), the
reactor was allowed to stabilise for 15 min befstating the sequential analysis. The
analyses were always duplicated implying a througlogh 192 analyses/day accounting
for 16 (catalysts) x 3 (temperatures) x 2 (reactionditions) x 2 (duplicates).

Table 5.2- Reaction conditions (feed composition, tempegtoatalyst loading and total flow)
for COOX and SELOX

H, O, CO N, Temp; Temp, Tempsz Catalyst Total Flow

) () ) ) (O (°C) (cC) (mg) (ml/min)
COOX - 2 1 97 200 225 250 150 30
SELOX 10 2 1 87 200 250 300 150 30
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EFFECT OF GENETIC ALGORITHM PARAMETERS ON
THE EFFICIENCY OF HETEROGENEOUS CATALYST
OPTIMIZATION

Abstract

A study of the effect of Genetic Algorithm (GA) dajurations on the performance of
heterogeneous catalyst optimization is reportethis Chapter. The GA optimization
procedure is validated on the COOX and SELOX beramksobtained in Chapter 5.
Because of the typical limitations in the numbepafallel experimentations which can
usually be carried out in heterogeneous catalyises effects of the population size on
the robustness and convergence speed were investigarom this study, general
considerations about the algorithm settings (cromscselection and mutation) to use
for the optimization of similar heterogeneous oathissues are addressed.

The contents of this chapter have been published in
- S. R. M. Pereira, F. Clerc, D. Farrusseng, vab. der Waal, T. Maschmeyer, C. MirodatQ§AR
Comb. Scj.2005 24,45.
- F. Clerc; M. Lengliz; D. Farrusseng;, C. Mirodat®s. R. M. Pereira; R. RakotomalaRev. Sci.
Instrum, 2005 76, 062208.



Chapter 6

6.1 - Introduction

Thetheoretical basis for the optimization strategyezhlGenetic Algorithms (GA) was
conceived by Holland in the early 1970’s [1-3] eoyphg the natural evolution rules of
selection and survival of the fittest as postuldigdDarwin.

A GA tries to mimic the evolutionary process ofilig species by using similar genetic
operators - mating, crossover and mutation - tglsirout the individuals with the
“genetic information” that leads to the best periance [4,5]. An Evolutionary
Algorithm was successfully applied by Wetf al. for optimizing a catalyst formulation
for the reactions of oxidative dehydrogenation dhaee and propane [6-12].
Nevertheless, despite proof of concept validatamother reaction systems [13-15], the
use of GA strategy is still scarce in this domainpossible explanation of the above
statement is the lack of confidence in the “black’boptimization processes for the
chemists who are trained only for rational catalyssign and trial and error approach.
The use of non-optimal implementation of GAs wougult either in a tedious and
time-consuming optimization process or could evetray jeopardise a discovery
project. As a matter of fact, the number of paramsetavailable for a GA
implementation makes the finding of a robust antinegd GA configuration difficult.
The task is further complicated due to the stoahdmhaviour of GA, in which many
different runs are required to get a statisticalggnificant quality assessment of a certain
GA architecture [15]. Considering that the sampleeppration and testing in
heterogeneous catalysis implies that typically amlfew generations can be screened
per week, several months of work can be lost ifang GA configuration is set.

The optimal generation size and the total numbegenferations which are required to
find the global optimum are the two most frequessues addressed in the community
[16]. Generally speaking, the answer to these duestdepends on the shape of the
surface response, namely on its size and complgkity The use of population sizes
that match with the commercially available HTE ¢upént capacities, usually
consisting of 8, 16, 24, 48 or 96 parallel vess®lgacks, would result in the best
experimental throughput (performing 1 generationdag/). The optimization efficiency

when using these population sizes is thereforeeduidr the COOX and SELOX case



studies. The next issue concerns the choice obdisé algorithm settings, considering
the practical limitations of dealing with a low pdation size capacity.

Optimization of algorithm configuration and setsnig usually performed on so-called
virtual or synthetic benchmarks which are custondenamathematical response surfaces
usually non-related to chemistry science. Thesetfons are typically distinct from
what one can expect for material optimizations cdsdies posing the question of their
suitability for the optimization of GA parametesince this is largely dependent on the
response surface to optimize. Relevant GA optinonanvestigations would ideally be
performed on extensive experimental data collestiam heterogeneous catalysis.
However, historical data collections from scieutiliterature usually provide data sets
which are too small and include inconsistent angrofpoor data accumulated over
decades. And on the other hand, comprehensiveysetalata banks that could be used
for this purpose are mostly performed and keptidential in industry research. Direct
validation of GA configurations by directly perfoimy experimental library design and
analysis is usually not considered an alternatiseabise it would lead to a too large
experimental effort in order to get statisticallgrsficant results. A strategy based on
experimental and simulation results using Artifidieeural Networks (ANN) has been
applied, by Rodemerckt al, to construct a non-linear benchmark for the oxidati
dehydrogenation of propane [16]. In this study,dffect of the GA population size was
investigated but the results of the study reliechorery limited number of runs and key
parameters such as the type of selection wereordidered. In chapter 5 a Design of
Experiments approach is adopted to build two catslpenchmarks (the COOX and
SELOX) which will be used in this chapter to penfoa thorough validation of the
influence of the GA configuration settings on thaimization performance on these
benchmarks. General guidelines for optimum con&gan settings are obtained and
give indications about which parameter settingsuse in similar optimizations of

heterogeneous catalysts employing a GA approach.
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6.2 - Genetic Algorithm implementation

A software platform nameQ@pticat- “Optimization for catalysis” was used for appiygi
the Genetic algorithms mentioned in this study.sTplatform has been designed and
implemented by the CNRS institute (Lyon, France) arbrief description can be found
in Appendix C. This platform enables to build atons-made GA configuration by a
versatile drag-and-drop system based on a dividmsey of possible operators.

The data workflow describing a usual GA architeetisrshown in Figure 6.1. An initial
random population of catalyst candidate solutiosischosen and evaluated. Some
candidate solutions of this generation are seled¢tedindergo the crossover and
mutation operations leading to a new generatiortasfdidate solutions that will be

tested and initiate a new iterative optimizatioodo

| Random Initial generation |

—>| Evaluate population ‘

Convergence Yes
Termination criteria
l No

(s ]

Figure 6.1- Framework of a basic Genetic algorithm procedure

In this study the evaluation of the candidate soh# is made employing the COOX
and SELOX benchmark fithess functions obtained imagler 5 and presented in
Appendix B. Examples of the procedure of differembdalities of the selection and
crossover operators are illustrated in Figure G2 &3 respectively.

The selection operatois usually based on probabilities. In the Whed®n type, the

probability of a catalyst to be selected as partatshe next generation is proportional



to its fitness or performance (Figure 6.2a,c) whsri@ the Ranking selection it relates
to its fitness rank (Figure 6.2a,d). The Threslsdtéction value defines the percentage
of low fitness performing catalysts that are acedgor the breeding process of the next
generation of catalysts (Figure 6.2b). In Tournansahection, the individuals that are

allowed to be reproduced, are chosen among a fiaadom pool of catalysts from

which the best one is selected. The selectivenassbe further tuned by the chosen
Selective Pressure (SP)heElitism operatoris a method, which forces a given number

of the best performing catalysts to be always setec
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Figure 6.2 - Example of Selection type procedures: a) Obsefitrdss for a hypothetical 7
catalysts population, b) 40% Threshold selectioWM)eel selection probability, d) Ranking

selection probability.

The Crossover operatomixes the genetic information of the selectedviutlials from
the previous generation, creating new combinatiaitt their genetic information.
Multipoint and uniform crossover operator types @epicted in Figure 6.3.

The Mutation operatorhas an explorative role in GA. Due to the possibgertion of
genetic information that was absent in the previgerserations, new areas of the search

space can be investigated, preventing the optimizgirocedure from being trapped
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into local optima. A representation of the mutatigperator procedure is shown in
Figure 6.4. Here also, the probabilities of stringsbe modified by either crossover
(CP) or mutation (MP) can be monitored by settimgpective values. Detailed

information on GA operators can be found elsewh#e
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Figure 6.3 - Crossover Types: a) 1-Single Point Crossover, Multipoint crossover,

c) Uniform Crossover with 0.5 gene-flip probability
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Figure 6.4 Mutation Operator

6.2.1 - Catalyst representation

In GA the candidate solutions are usually codediasstrings composed of binary
numbers (0, 1) representing the controllable inddpat variables that may influence
the response. In the present case the string wapased of 24 bits. Each of the 4
discrete variables (Temperature, Support, TM andtiidés) was encoded in genes of 4
bits each. As indicated in Chapter 5, they can &alédferent modalities: Cu, Au and Pt
for the main active metal (NM); V, Mo and Nb foretkransition promoter metal (TM);
Ce, Ti, Zr oxides for the Support; and T1, T2 ar®Ifdr the tested temperature. The 2
continuous variables were also encoded as genedits resulting in 16 steps of 0.06%
and 0.25% for the NM (0.1-1.1%) and TM (1-5%) cartcations, respectively.

Therefore a sub-space defined by a ternary at engiemperature encompasse$ 16



different catalysts compositions and the whole deaspace more than 20.000
experiments (3x 16%). An example for coding an experiment performedaoratalyst
composition containing 1.4% Pt and 2.6 % Nb on,la@d tested at 300 °C is shown in
Figure 6.5.

Bit string
(011101011110011000011101)

(0111)(0101)(1110)(0110)(0001)(1101)

14 10 7 ﬂ 6 8 11
05=Au | 0=01 05=Mo | 0=1 0-5=Ce02 | 0-5=200
610=Cu | .. 610=Nb | .. 6-10=TiO2 | 6-10 =250
1115=Pt [ 7=1.0 1115=v | 7=3 11-15= 7102 | 11-15=300
15=21 15=5
| pt | 14% | wo | 26% | Tio2 | 300 |

Figure 6.5- String representation of 1.4 % Pt, 2.6 % Nb, Ti@@)°C catalyst solution.

6.3 - Study of the effect of GA configurations onlgorithm
performances

Genetic Algorithms have both exploration and explon features. Best catalysts are
selected and reproduced while browsing the regheftearch space. The right balance
between the amount of diversity (exploration) apdesl of convergence (exploitation)
is crucial to a successful optimization. This batars generally tuned by the choice of
GA parameter settings during the GA implementatifinis choice needs, however, to

be performed a priori and can considerably inflgetie optimization efficiency.

The different GA parameter settings such as crasseelection and mutation types and
their corresponding percentage, the population, sird use of elitism operator were
compared for their effect on the GA performancengsthe COOX and SELOX

benchmarks. Information on the most influentialgmaeters in the optimization of these

benchmarks could in this way be obtained.
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6.3.1 - Performance assessment

Keeping the same GA configuration and operatorirggt the behaviour of an
optimization procedure can still vary because ef ithitial population that is designed
randomly, and also because of the random featutesduced by the crossover and
mutation operators. In order to get statisticalgngicant results on the performance of
the GA configurations, at least 40 replicate russenmonitored from which the average
of the achieved mean and best fithess were compteel quality of different GA
configurations was accessed viapgrfformancé criterion defined as the percentage of
successful runs after evaluation of a fixed nundderatalyst solutions (192). A run is
considered successful if, after evaluating 192viildials, at least one catalyst is found
displaying a fitness value in the considered oplitjmaegion: Dsg 0x>0.92 and
Dcoox>0.99 for the SELOX and COOX benchmarks, respelgtiva turn, the defined
guality assessment relates provides a measure obbustness feature of the GAs and
also the convergence speed since just a limitecbrumof catalysts can be used (192).
This criterion was considered more representatiam the more commonly employed
evaluation after a fixed number of generationsesiit the latter case, the experimental
effort necessary can vary greatly when configuretieith different population sizes are
compared. In this study the quality of each configlon was evaluated after a defined
number of generations (Table 6.1) depending on gbpulation size (Generation

number = 192/Population size).

Table 6.1 Number of generations at which the GA is evaluated

relation to the correspondent population size.

Population Generations
8 24
16 12
24 8

48 4




6.3.2 - COOX and SELOX benchmark features

Although there exists no clear study specifyingrses of difficulty in applying GA,
some factors that have been suggested include:i-mattality (the existence of
multiple misleading local or sub- optima), deceptipwhen lower-order scheme
information is misleading, causing the GA to gedtaated to sub-optimal solutions),
isolation (needle-in-the-haystack problem when nformation exists to direct the
optimization) and collateral noise (which hides hvesence of a good sub-solution
within a solution) [5]. The difficulty of the optimmation of the COOX and SELOX
response surfaces arises mainly by the preseroealfoptima with areas as large as or
larger than the ones of the global optima. On tteerohand, there are general trends
such as the effect of the temperature, of sup@&>2rO,>TiO,), of metal oxides
(V>Nb>Mo) and of the active metals (Pt>>Cu>Au), alhican be used as guidelines
during the iterative loops of the algorithm to faate the achievement of the final
optimum conditions (low deception). It is obviobsit the assessment criteria which are
chosen will depend on the shape of the benchmaxk @m the context [15].
Nevertheless, whatever the criteria and the bendtsnghe optimization of algorithm
settings is usually performed by screening differmnfigurations and parameters via
trial aand error. The use of DoE methodology allewaore systematic approach to the
study of how changing the algorithm parameters a#tuence its optimization
performance. This strategy has been used for findinitable GA configuration
parameter settings for the optimization of molecdanformations [18] and will be
used in this chapter to ascertain the best cordtgur settings to optimize the COOX
and SELLOX benchmarks.

Due to the stochastic behaviour of GA, and the ipleltoptima present in the COOX
and SELOX benchmarks, different optimal solutionsravfound at the end of the
optimization cycles performed. The sub-spaces &hmsually the GAs optimization
cycles converged are listed in Table 6.2, and thlees indicate the probability of

convergence to a particular sub-space or optingabneof the parameter space.
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Table 6.2 -Composition of the sub-spaces were the optimaitisois were

mostly found.

Optimum COOX % SELOX %
1 Pt/\VV/Zr/200 ° C 24 Pt/V/Zr/200 ° C 43
2 Pt/Nb/Zr/200 ° C 27 Pt/Nb/Zr/200 ° C 33
3 Pt/Nb/Ti/200 ° C 22 Pt/VITi/200 ° C 20
4 Pt/Mo/Ti/200 ° C 27 Cu/VICe/200 ° C 0
5 Pt/Mo/Zr/200 ° C <1

At the end of a GA optimization cycle one optimalusion is usually reached. As it can
be noticed in table 6.2 some optimum solutionsaateeved via the optimization cycles
more frequently than others, namely the ones post at the sub-spaces
Pt/Mo/Zr/200°C for COOX and Cu/V/Ce/200°C for SELOXhese probabilities match
well with the size of the areas that inside the-spdices are at the optimum plateau
values. Indeed, when looking at the best sub-spadbée benchmarks reported in Table
6.2 it can be seen that, in most cases, the pesforenis at the global optimum value
considered (BkLox>0.92 and [Roox>0.99) whatever the metals concentration
composition, resulting in a large plateau coveatrgost entirely the sub-space (Chapter
5, Figure 5.5 and 5.6). This is not the case fdiMe&tZr/200°C for COOX and
Cu/VICe/200°C for SELOX for which only a minor aréap of peaks) reaches the
optimum. Therefore, it is more probable that GAs\varyge for large optimal areas

rather than for small ones, which is in line wite bbtained results.

6.3.3 - Effect of GA configuration on the optimizaibn performances on
COOX and SELOX

Different GA parameters for the Elitism, CrossoWeopulation size and Selection type
were compared for their effects on the GA perforoeausing the COOX and SELOX

benchmarks. The different modalities studied farheparameter are depicted in Table
6.3.

The combination of each different modality représem given GA configuration. The

total number of combinations results in 128 différalgorithm configurations. Sixteen



configurations were selected by a D-Optimal experital design. By using this design
the main effects of each operator modality on teefggmance of GA optimization

could be studied with a reduced set of experiments.

Table 6.3 Genetic operators and respective modalities.

Elitism Population Selection type Cross-over type
Yes 8 Wheel (Whe) 1- Point (MP-1)
No 16 Ranking (Rank) 3- Point (MP-3)

24 Threshold (Thr) Uniform 20% (U-20)
48 Tournament (Tour) Uniform 50% (U-50)

Constant parameters: Selection Pressure = 1, GrarsBoobability = 70%,
Mutation Probability = 1%, 15% Elitism, 3 individsgper Tournament, 40%
Threshold.

The main effects of the GA settings calculated éxyression from the 16 different GA
configurations are shown in Figure 6.6. The bartctepresents the weighted average
effects for each GA parameter with the correspapdatandard error, while the
performance is the percentage of successful rudsfased in section 6.3.1.

As can be seen in Figure 6.6, the GA performance fazoured independently of the
benchmark when using the Elitism operator, largeupation size and Tournament
selection. The population size parameter showedhtigest effect for both benchmarks,
although the number of final tested catalysts wesdame. The larger the population
was, the more robust the optimization process ptdwebe. In addition, a pronounced
decrease of the standard error was observed wieepdjulation size was the highest
(48) for both benchmarks. This means that, whatékerother parameters, a more
reliable optimization procedure can in principle bbtained when using a large
population size. The performance of GA depends alsahe way the selection is
carried out. The performance appears to be bettenvthe selection included a large
percentage of the very best catalysts. Indeed, when*“elitist” mode was used
(systematic selection of the 15% top -catalystsk therformance optimization
performance was significantly better. On the otheamnd it was noticed that the different
crossover operator parameters did not influencenifgigntly the optimization

performance in both benchmarks.
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Yes B—l Yes ] E—l
No [+ No [+
8 g I
16 16 —_
24 24 | |
48 48 H
MP-1 MP-1
MP-3 MP-3
U-20 uU-20
u-50 U-50
Whe Whe
Thr Thr
Tour Tour
Rank . Rank " . .
20 40 60 80 20 40 60 80
Performance Performance
O Elitism Population O Elitism Population
M Selection B Crossover M Selection B Crossover
a) b)

Figure 6.6 -Mean operators performance for a) COOX and b) SEb&nhchmarks. The lines
represent standard errdglitism (yes, no); Population size (8, 16, 24 @&dindividuals)

Selection typesWheel (Whe), Ranking (Rank), Threshold (Thr) anduffament (Tour);

Crossovertypes: 1 and 3 Multi-point crossover (MP-1, MP-20% and 50% Uniform
crossover (U-20, U-50).

From this study, it comes out that the best GA igumétion consists in using the
Elitism operator, tournament selection and 1-parssover (MP-1). The typical
optimization behaviour calculated over 40 runsho$ tbest configuration is shown in

Figure 6.7.
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Figure 6.7 - Optimization profile for the selected configuaati(Elitism, Tournament selection

and 1-Point crossover), for several different papoh sizes. a) and b) COOX, c¢) and d)

SELOX. The vertical dash-dot line indicates the mamof the optimization iterative loop at

which the GA performance was evaluated.

The plots correspond to the mean of the best cdtabf a population in the course of

the optimization and report the effect of the pagioh size as a function of the

generation number and as a function of the numbeatalysts tested. It can be seen

that for the COOX benchmark the optimization ise&asnd a lower population number

is enough to provide efficient optimization tharr the SELOX benchmark. For the
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COOX benchmark, with a population higher than 1@ividuals, convergence is
reached before all 192 catalysts have been testegfeas in the SELOX benchmark a
population size above 24 catalysts is required. beih reactions a population of 8
individuals performs poorly.

As shown in Figures 6.6 and 6.7, the populatioe szthe parameter with the highest
impact in GA optimization performance. When the glagon is small, the diversity in
the initial random population is also small and pnebability to be trapped in a local
maximum increases.

When using a large population size a higher dieedready exists in the initial random
population and the best solution in the populaisoexpected to be already close to the
global solution (Figure 6.7). For smaller populatsizes, if the initial population does
not contain the genetic information for optimal wans, we have to rely on the
stochastic behaviour of the crossover and mutatiperators to insert the desired
information into the population during the new gexien breeding steps. This requires
a higher number of generations in order to achiepémality (Figure 6.7). This
confirms that there is a minimum threshold popolatsize below which the GA
optimization has difficulties to operate. It casalbe seen (Figure 6.7b) that above a
certain population size no further improvementdsiaved in the optimization.

As demonstrated by comparing the two reactions, dhwvergence in the SELOX
benchmark was found more difficult than in the CO@3€, due to the presence of more
local optima (Figure 6.7). For the former, a highepulation size was required. The use
of elitism prevents the possibility of losing gocatalyst solutions during the selection
stage, increasing the convergence speed. No signifidifference in the effect of
crossover type was observed.

6.3.4 - Optimization of operators for the SELOX beshmark

A further study of the GA operators was done wilpect to the selective pressure
(SP), mutation probability (MP) and crossover pholity (CP) based on the full

factorial design of the parameters presented inel@é.



Table 6.4 -Studied levels of the Selective pressure (SP), tiontarobability
(MP) and crossover probability (CP).

Selective Crossover Mutation
Pressure* Probability Probability
(%) (%)
2 60 1
4 70 10
6 80 20

* Number of candidate solutions per tournament.

For the tournament selection, changing the numbemdividuals picked from a
shuffled population from 2 to 6 increases the d$elecpressure and decreases the
diversity. The effect of changing SP, and the pbdiig of an individual to be subject to
crossover (60-70-80 %) and mutation (1-10-20%) ajoes, for populations of 16 and
48 catalyst solutions on the SELOX benchmark isseméed in Figure 6.8a and b,
respectively. From this figure it can be seen that range of crossover probabilities
studied does not have a significant effect for pafon. The performance for the 16
individuals’ population remains rather low and ocainfbe tuned within the tested
number of individuals to achieve desired conversiatues of more than 90%. In
contrast, for the population of 48 individuals (g 6.8.b) the desired performance is
obtained and a SP of 2 and MP 0.01 are the prefeatings.

The different nature of the diversity originated tng selective pressure and mutation
probability operators explains the results obtaiimedrigure 6.8. In the first case the
selective pressure (SP) will enable the alreadytent genetic information of the
population to pass to the next generation whilediversity originated by the mutation
probability (MP) can modify this genetic informatioby introducing genes, not
previously present in the population, from the refsthe unexplored search space. A
low selective pressure (SP-2) keeps a good levaliwdrsity for future generations
breeding, by decreasing in this way the probabditypremature convergence to local
optima. Clearly a low Selective pressure is preféifior both populations. With a large
population containing already good genetic infoiorat(Figure 6.8b) the GA will
perform better with low mutation values, while wigh smaller population a higher
mutation can be necessary to introduce good gedeftirsity (Figure 6.8a). However,

extreme values of mutation (MP 0.2) can be prejatia both cases since it can slow
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down the convergence rate by destroying alreadgdaalevant information.
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Figure 6.8 - Mean effects for the SP, CP and MP. Constant pasameElitism 15%,

Tournament selection and 1 Point crossover. agulRefor a 16 individual population size, b)

Results for a 48 individual population size.

The above features show that for an efficient GAaudarge variety in the initial sample

of the search space is of utmost importance. hegertheless obvious that, from a

practical point of view, a compromise has to benfbby considering the size limitation

arising from high-throughput equipment constraints.

The optimization profile for the population of 4&dividuals with SP of 2 and MP 0.01

is shown in Figure 6.9. With this configuration @rffermance of 97% according to the

established criteria in section 2.6 is attaineds Theans that in almost all the simulated

runs an optimal catalyst solution is achieved sslthan 4 generations or 192 catalyst

candidate solutions evaluated.



0.9 - IIIIIIIIIIIIIIJ
03 |
07 |
06 |

0.5 4
0.4 4 — Aver

03 Ml ax
02 1
01 1

Fitness, SELOX

0 5 10 15
Generations

Figure 6.9 - Optimization profile for the settings: 15 % iHin, 48 individuals population size,
Binary Tournament, 1 Point crossover with 60% avees probability and 0.01 Mutation on the
SELOX benchmark.

6.5 - Conclusions

Due to the large influence of parameter settintheoptimization efficiency of GA and
the usual difficulty or even impossibility to vadite the optimization results via repeated
optimization cycles (due to the large experimepfédrt necessary) the settlement of a
proper algorithm parameter configuration in the ibeigpg of an experimental GA
optimization is highly important. These configuosits are however dependent on the
response surface to optimize and this knowledgesislly not known a priori. The
construction of benchmarks can allow the optimaatiof GA settings through
simulation of its optimization performance, giviran indication of which sort of
configurations would be more adapted for certatalgat optimization studies.

The use of Design Experiments showed to be aniafficstrategy for obtaining a
systematic procedure to investigate the effect ldnging the Genetic Algorithms
settings on its optimization performance. The magmds on the use of the selected
parameters were obtained and optimal GA configomasiettings for the optimization of
the COOX and SELOX benchmarks were achieved.

The results of the GA parameter optimization higiffithat a large variety in the initial
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sample of the search space is crucial. It is nbetss obvious that, from a practical
point of view, a compromise has to be found by mering the size limitation arising
from high-throughput equipment constraints anccedficy of workflow.

The optimal GA configuration found for the optimima of the COOX and SELOX
benchmark consisted of using as parameter settibgs® Elitism, 48 individuals
population size, Binary Tournament, 1 Point crossavith 60% crossover probability
and 1% Mutation. These settings can give an indicaif the parameters to be adopted
for investigating similar catalytic response suecWhen HT equipment for catalyst
screening will have become more conventional indagdc laboratories, access to
databases may facilitate the study of algorithmnaigation processes in other catalytic

related studies.
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COMPARISON OF OPTIMIZATION METHODOLOGIES
IN THE SELOX BENCHMARK

Abstract

The optimization efficiencies of several Global @ptation algorithms were studied
using the SELOX benchmark. Genetic Algorithms, Etiohary Strategies, Simulated
Annealing, Taboo Search, and Genetic Algorithms ridiged with Knowledge

Discovery procedures were the methods compared.egign of Experiments search
strategy was also exemplified using this benchmarke main differences regarding
the applicability of DoE and Global optimization ckeiques are highlighted.

Evolutionary strategies, Genetic algorithms ushmg sharing procedure, and the Hybrid

Genetic algorithms proved to be the most successthle benchmark optimization.

The contents of this chapter have been published in
S. R. M. Pereira, F. Clerc, D. Farrusseng, J. (G dar Waal, T. Maschmeyer, Optimisation
Methodologies and Algorithms for Research on CatalyEmploying High-Throughput Methods:
Comparison Using the Selox Benchmatlemb. Chem. & High Through. ScregtD, 2007, 149.
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7.1 — Introduction

The wide acceptance of High Throughput ExperiménaHTE) and combinatorial
methods in recent years has opened a broad rangmssibilities to the catalyst
researcher [1,2]. However, the automation and [edisgtion of the experimentation
poses new challenges to the chemist in the planwiirxperimental work so as to take
full advantage of HTE capabilities. Chemometriceash methods [3,4], initially
dedicated to tackle analytical chemistry issues,raawadays receiving special interest
from the catalyst HTE community and a considerailenber of studies has been
performed in order to improve the understandinghee methods and to adjust them,
as well as other computer-science methods, toighe éf catalyst optimization [5]. A
method starting to be commonly used within the cortorial catalysis field is the
Design of Experiments (DoE) explained in ChapterABplications include catalyst
formulation and preparation [6-9], catalytic kimetimodelling [10,11] reactor
engineering [12,13], and the optimization of caialyeaction conditions [14-18]. For
the latter, DoOE is usually well-suited, since foistapplication a well defined parameter
space is commonly employed, the general understgrafia given chemical system is
targeted and, by using descriptors, successful hgl®f the response surface can be
achieved in the presence of discrete variables [Y¥#hen the goal is the optimization of
a heterogeneous catalyst composition, howeveragleiochastic algorithms appear to
be promising alternatives. These are attractivetd#g the large parameter space, b) the
non-linear shape of the response surface, wherergigtic effects are commonly
encountered, and c) the difficulty of defining d@stors that characterise heterogeneous
catalysts [20,21]. Under these conditions the ddeo& methodology might not be the
most appropriate since the optimum can be easgganl.

Usually in Catalysis, catalytic properties cannet firedicted from physical models.
This implies that the catalysts (candidate solwjomust be synthesised and tested.
Catalyst screening and optimization is a tediog& &en with the help of automated
parallel equipments. As a consequence, the opttiaizgorocedure should be reliable
and should minimise the risks of failures (e.g.irmpt not found). This represents a

substantial increase in the effort required to ssdbe reliability of algorithms and



methodologies. In addition, unlike the solutionaofmathematical equation, laboratory
experimentation implies experimental error andietdl Algorithms robust with respect
to noisy data are therefore required for catalystintization [22]. Furthermore,
adjusting and testing the applicability of the erf#fnt algorithms to different types of
chemical problems is essential. Much effort hasnbeszently invested in validating
optimization algorithms using catalytic benchmarker instance, Genetic Algorithms
search procedures have been studied in virtualytatdenchmarks in the form of a
Neural Network [23-26], or in some form of virtualathematical benchmarks. While
several of these methods have been tested separédel studies compare their

performances directly on the same benchmark.

In this chapter a general overview of the applaratiof common chemometric
optimization methods in the field of catalyst optation is presented. Several global
optimization algorithms are compared to each otlming the same mathematical
function, or benchmark, which derived from a datasethe SELOX reaction (Chapter
5). Finally, Design of Experiment methodology Iscastudied using the same SELOX
benchmark.

7.2 - The SELOX benchmark

A large data set for the selective catalytic oxatateaction of CO in the presence of H
(for fuel-cell applications) was modelled to obtéie SELOX benchmark (Chapter 5)
[27]. The parameter space modelled includes therfacelating to catalyst composition
and reaction temperature effects on the convemhselectivity of CO oxidation. The
catalyst composition parameters considered weeetygpe and amount of main active
metal (NM, [NM]%) acting as the main active phates type and amount of transition
metal (TM, [TM]%) acting as modifier/promoter ofettactive phase, and the type of
metal oxide acting as support (see Table 7.1). Bgetiing, for every combination of

the remaining discrete parameters, the effectsaoying [NM%] and [TM%] on the

fitness function, 81 quadratic order functions wetgained - one for each of the
conversion and selectivity responses (see Figuredd Appendix B). The application

of a desirability function that combined the twospenses and a penalty for high
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reaction temperatures formed the SELOX benchmaomrese surface (for more details
see [27]) The SELOX benchmark has the advantageeiofy composed of a series of
mathematical functions and, therefore, it can bsilyaptimized computationally.
Moreover, it also has the advantage of being acatllytic case study, the response
surface of which can be easily visualised. It casgs a series of sub-optimal surfaces
and its maximum fitness value is 0.935. The carsid optimal areas (fithess > 0.92)
are situated in the Pt-Zr-Nb and Pt-Ti/Zr-V at 28D sub-regions of the response
surface (see Figure 7.1).

Table 7.1 -Parameter Space for the SELOX Benchmark

Temp. NM ™
NM ™ Support (°C)p (nEass]%) (nEass] %)
Au Mo CeO2 200 0.1 1
Cu Nb TiO2 250
Pt V Zr02 300 2.1 5
Cce .“‘ e
Mo : Ti

:Zr

Nb | Ti

b zr
i

-HHE NEran
il b

tzr

Figure 7. 1 -Contour Plot representation of the total desiiighiesponse surfaces of the
SELOX benchmark.



7.3 - Global Optimization algorithms

A common methodology for the optimization of catalyproblems is the use of global
optimization strategies. Unlike, for example, Sieypland Gradient Descent local
optimization methodologies, which are determiniséilgorithms, stochastic global
optimization algorithms do not, as long as the ssagy number of iterations is
performed, get trapped in local optima. Among thebgl methodologies available,
currently Evolutionary Algorithms (EA) representetmost popular method which has
found a wide range of applications in chemistry][Z8ter the introduction, by Wolét
al., of this optimization strategy in heterogeneoatalyst formulation, the interest in
this approach has risen considerably [24,25,30-Bd¢ increasing familiarity with this
methodology, and its efficiency in the discoverynefv catalytic materials, make EA a
methodology of choice for this kind of applicatigkdvanced Genetic Algorithms (GA)
are also being tested in order to further imprdwe ¢ptimization efficiency. Most of
these enhancements deal with hybridization of th& @&gorithm with learning
techniques such as Neural Networks, knowledge ilegusystems and others. Different
promising algorithms like Simulated Annealing (S|8p-37], and Taboo Search (TS)
[38], while being widely used in other scientifieltls, have been used to a lesser extent
by chemical researchers and their advantages hatvieeen sufficiently explored. Still
other search algorithms recently applied to hetmegus catalysis include MAP [39],
Kriging [40], Holographic [26,41] search, etc. tlme following section, a brief set of
explanations regarding search algorithms to beadesnh the SELOX benchmark is
presented.

7.3.1 - Evolutionary Strategy (ES) and Genetic algithms (GA)

Genetic Algorithms (GA), and also Evolution Stragsg (ES), try to mimic the

evolutionary process of living species by using isimgenetic operators such as
selection, crossover and mutation [42,43]. Bothesliae same basic concepts, but differ
in the way they encode the solutions. Genetic Algors use chromosomes composed

of binary code, whereas the evolutionary strategise a real-vector coding
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representation [44]. In both methods a randomahipiopulation is evaluated, from
which the strings of the selected catalysts aremdined and mutated, creating a new
population that is evaluated again. Performingltiog once is called a generation, and
this is then repeated until a termination criter{or example a maximum number of
catalysts tested, or convergence to a catalyst) met. The degree of
browsing/exploitation of the search system is egthly adjusting its selection pressure,
crossover rate and mutation rate parameters [2@uls obtained for the SELOX
benchmark with a GA algorithm are shown in Figur2 &nd the workflow chart for a

GA and an ES are presented in Figure 7.3a.

Initial population 1% generation ¥ Generation
ce °° s 8 ° “"‘ A ce ‘ Py ce ‘ A
T |e ol . Mo i Ti d Mo i Ti B &‘
” - A8 4 “ - y y P z - -
- NN -EREEEENE R ] |||
Nb i Ti ‘ la Nb i Ti ° :‘ o "°°] Nb i Ti ‘ ¢ 01 °
O P | S S P |
- -“Hf FEEFEER B SETEEP
Ti VAR ‘ 9 ‘. : Vo ‘u ‘. 4 ‘.
(g zr
’ Au cu Pt Au cu Pt Au Cu Pt ‘ Au Cu ! Au Cu !iu Cu Pt Au Cu Pt Au Cu Pt lAu Cu Pt
200°C 250°C 300°C 200°C 250°C 300°C 200°C 250 °C 300 °C
3 Generation " Generation
. [l P -, - [l P
Ti ‘ Mo i Ti ‘
0.93
z & 4 zr - A 832
. AV SENEE - AT AENE 03
Nb i Ti ! | ‘ l Nb i Ti o‘ ] ‘ ‘ 0:6

2 BN
-H SRR
' Ag M 1m

AU Cu Pt AU _Cu Pt Au__Cu_ Pt Au__Cu_ Pt AU Cu Pt Au__Cu Pt
200°C 250°C 300°C 200°C 250°C 300°C

@ .
-JHENErEEr
1l |

Figure 7.2 - Scatter-plot of the initial random population ahé subsequent 4 generations on
the SELOX benchmark for the GAlgorithm settings (see Table 7. 2).

124



7.3.2 - Simulated Annealing (SA)

Simulated Annealing algorithms work as an analagthe way in which a heated metal
changes towards a minimum-energy crystalline strecon cooling (the annealing
process). If it is cooled quickly, it will solidifin a less organised and higher potential-
energy state then when cooled slowly. The method ba generalised to a
combinatorial approach in a straightforward way ,48%. the state of the
thermodynamic system is analogous to the candgtdtgion,e.g.the catalyst, and the
energy of the state is analogous to the value efotbjective function for the specific
solution. The perturbations to move to anothetestan be compared to moving to a
neighbouring candidate solution and the grounc stathe global minimum or the final
solution found by the algorithm. The temperaturis @ parameter within the algorithm.
Its initial value and the way in which it is decsed during the optimization (CT,
Cooling Temperature scheme) controls the degreesystem browsing and the
algorithm’s optimization speed. The workflow chimt a SA procedure is presented in
Figure 7.3b. In this study the simulated anneategjed is a classic single-candidate
algorithm. However, parallel SA optimizations tlainsider, for the same temperature,

several neighbourhood candidate solutions hava@rbeen implemented [47].

7.3.3 - Taboo Search (TS)

The word Taboo comes from Tongan, a language gin@sla, where it was used by the
aboriginal inhabitants of the Tonga island to iadicthings that cannot be touched
because they are sacred [48]. A recent meanindiefwiord is a social prohibition
imposed as a protective measure. It is on ther@igneaning that the taboo algorithm
is based. The most important association with tmeaning is that taboos are
transmitted by means of social memory, which igexttto modification over time. In
this way also the Taboo search memorizes a littlmdo candidate solutions that are not
repeated in the subsequent iteration and thatdated at each iterative step. The Taboo
algorithm uses a neighbourhood search proceduiteradively move from a candidate
solution to a selected one in its neighbourhoodi] sBome stopping criterion has been
satisfied. The new candidate solution is accepfedt ihas not previously been
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memorised as a taboo, or bad, candidate soluti®h J&boo Search is a deterministic

algorithm. The TS workflow chart is presented igu¥e 7.3c.

Initial T value — -
| Rancdom Initial generation | Random initial solution Random initial solution
|
*
Update T Generate N neighb
. ghbours that
| Sl EoRuishon | do not belong to the taboo list
i Generate a new solution dependent
Convergence Yes on the distance allowed by T
R . | Stol
Temination criteria l -select the best neighbour as
No ’ the new current solution
i L Accept new solution ‘ -update the taboo list
lyes -update the best known solution
Replace the old by the
new solution
m 4i ‘ Temination condition met? | No
No
| Temination condition met? }— yes
yes
Stop
asin, Ea
a) b) c)

Figure 7.3 - Flow charts of the algorithm strategies. a) Gefgtiolutionary Algorithm, b)

Simulated Annealing (T = temperature), and c) Tabearch algorithm.

7.3.4 - Hybrid algorithms

Several efforts have been made to improve the @Arsthms by introducing some sort
of knowledge learning procedure into its searchucstire. Knowledge discovery
algorithms [22,50,51] and Neural Networks [52-54mong others, have been
hybridized with GA in order to extract knowledgerir the past generations and use it
in designing the new candidate solution generation.this paper a multi-linear
regression procedure was introduced in the GA (G);lconsisting of a mathematical
function built according to the evaluation of theeydous candidate solutions. The new
individuals are estimated and proposed accordinthi® mathematical function. The
Zone Definer (GA-ZD) GA hybrid includes a specialpsrvised learning algorithm
which divides the search space into zones, the daies of which are based on the
average value of each predictive variable. ZonénBeis a modification of thé&-d-
trees algorithm [55,56]. For the prediction, the estimate of an nown candidate

solution value will be the value of the zone itdds to [57]. The linear-regression



learning procedure models the search space frornargl point of view, while the

zone-definer learning approach is a non-linearlacal procedure.

7.4 - Comparison of Global Optimization algorithmsusing the SELOX

benchmark

7.4.1 - Candidate solution representation

The catalyst candidate solutions were coded fothallalgorithms, except Evolutionary
Strategy (ES), as bit-strings composed of binamplers (0,1). Each string comprised
30 digits, 4 for each discrete variable and 7 fachecontinuous variable. The binary
code (base 2) was converted to decimal numbergrendorresponding value for the
encoded variable calculated from that number. AsrmgXe of coding and decoding of
the bit-string representation is shown in Figura7 Vector coding representation of the

variables was used for the Evolutionary Strateggedescribed in Figure 7.4b.

Bit string Vector string
(011010000001101100111011100011) [t o] 2TJoa] 2T o]
(0110) (1000000)2 (1101)2 (1001110)2 (1110)2 (0011)2 NM NM»% M l TM% Supp. __Temp T
—_ Y —V— —— —— 0=Au -1=0.1 0=Mo -1=1 0=_CeO2 0 =200

6 64 13 88 14 3 1=Cu | - 1=Nb | .. 1=TiO2 1=250
2=pt | 0=11 | 2=v 0=3 2=2102 2=300
NM NM% ™ TM%  Supp. Temp 1=21 1=5
0-5=Au 0=0.1 0-5=Mo 0=1 0-5=Ce02 0-5 =200
6-10=Cu 6-10 = Nb 6-10 = TiO2 6-10 = 250

11-15=pt | 64=11 11-15=Vv | 64=3 11-15=2r02 | 11-15=300

| Cu ] 1.1% ] v ] 3.8% ] Zr02 ] 200 T |
127=2.1 127 =5

[cu]11% [v]3sw [ zo |20 |

a) b)
Figure 7.4 -Candidate solution representation. a) Binary straggesentation and decoding for

the GA, SA, TS, random algorithms, and the ZD-GA aR-GA Hybrid algorithms. b) Vector
string representation and decoding for the ES #lgos
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7.4.2 - Algorithm settings

Prior to the experimental optimization the algamtlsettings need to be defined. This
will influence the speed of optimization and browgsby the algorithm. The efficiency

of the optimization is dependent on whether thérgget adopted are appropriate for the
problem to optimize [27]However, since the knowledge about the shape of the
response surface is usually not knowrmpriori, chemists have usually to base their
choice on settings commonly adopted and/or previexigerience. In our study
commonly used settings were adopted. For SA, tdiferent Cooling Temperature
(CT) schemes were studied (§5A and SA. see Table 7.2 and Figure 7.5), which in
this case defines the neighbourhood size changevedl at each iterative step,
controlling the browsing/exploration speed of tipéimization.

1’?\\ cT1
[)) N
£ 08 . T C12
() ' N, .
%,,’, 0.6 |" S crs
- I‘ \.
o ' N,
£ 041 . '~
+— \‘\\_ \\.
= IR TP
§ 02’ ’\\
= 0 ; ; ; \"
& 0 50 100 150 200

Candidate Solutions

Figure 7.5 -Simulated annealing cooling temperature schemes. (€de Table 7.2)

For the Taboo Search (TS) a neighbourhood size méighbours of the last retained
best individual for generation and evaluation waisstdered. The best of these becomes
the new reference individual and is marked as taltaw the GA and ES, two selections
(Ranking and Tournament selections) and the usleeo$haring property were studied.
For GA a constant 10 % bit-flip mutation rate an@® uniform crossover were
considered, and for ES a 10% gene-mutation prababihd 80% 1-point crossover. In
some algorithms a sharing property was added tgeheration evaluation step, so as to
induce the simultaneous search of different op{ia&. The sharing property (Equation

7.1) uses a similarity operatosim(a,b), (Equation 7.2), to measure the similarity



between each of the generation candidate solutibhis similarity operator uses a
constanta (in our casea =1) and is proportional to the distance betweerhdao
individualsd(a,b). The individuals are penalized, if they sharénailar neighbourhood,
by decreasing their performance valdé) — f(a)) [58]. With this operator the
regrouping of individuals is penalized and the gapon diversity increased, as shown

below (Equation 1 and 2).

f'(a) = nf& Equation 7.1
> sim(a,h)
sim(a,b) = _G ' Equation 7.2
= d(ab) a '

where f(a) is the real fitness value of the candidate sotutip f'(a) the possible
penalised fitness valud(a,b)the distance between the candidate solutoasdb (0-1
normalised), G a neighbourhood parameter artie number of candidate solutions
from the current generation.

For the SA and TS, and any other methods that hsesharing property, the
neighbourhood of the candidate solution needs tddfmed, since it is necessary for
these methods to order the distance between thdidzde solutions, which possess
discrete variables. For this purpose the Jaccanii@o co-efficient has been used
[59]. This co-efficient establishes how distant teandidate solutions are from each
other by calculating, according to their bit-strirgpresentation, the ratio between the
shared and non-shared bits.

As a blank reference to test the performance obther algorithms, a random search

was included in the comparison.
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7.4.3 - Algorithm efficiency criteria

The efficiency in achieving the SELOX benchmarkimpim catalytic system was
tested for all the global algorithms described @&k stopping criterion of maximal
200 catalyst solutions to be tested was adoptede&mh algorithm search. Every
algorithm was run 50 times and two efficiency crdevere computed from the average
results: the percentage of the 50 runs that reattteedptimal values (>0.92, >0.93 and
0.935 % Reliability), and the average maximum vaksched after the performed 50
runs (Max. Fit. Average). The Opticat software (Apgix C) was used for performing

all the algorithmic optimizations [60]. The resulistained are presented in Table 7.2.

7.4.4 - Results and discussion

The algorithms used for optimizing the SELOX benahknresponse surface and the
results obtained are presented in Table 7.2. Froisy thble we can note that the
maximum fitness average obtained, after 200 catatgndidate solutions tested, was
high for many of the algorithms. However, with soofehe algorithms the maximum
fithess average indicates that the algorithms wéen trapped on sub-optimal solutions
(SA, Taboo, GA, GA,;, Random). This is quite obvious with simulated ealmg and
taboo searches where, besides the low maximunsétaeerage, the percentage of runs
reaching values above 0.92 (% Reliability) is egemaller than in the random search
procedure. This demonstrates their risk of notedhg the right solution when just one
search optimization is performed. The poor perforoesof the SA search is likely to be
related to having only a single candidate per ftezsstep (see Table 7.2). When starting
from a bad candidate solution it can be more diffi¢o find the right track and the
optimization can be easily trapped into a localimptn solution. Another obvious
practical disadvantage of a single-candidate smiuthethodology is its unsuitability to
parallel high-throughput experimentation. Paradghulated Annealing, which does not
suffer from the single-candidate limitatip4v], was not within the scope of the present

investigation but would be worthwhile to evaluatduture studies.



Table 7.2 -Optimization algorithms, their settings and optiatian results on the SELOX

benchmark.
Max. Fit.
Search settings % Reliability Average
. . Specific alg.

Algorithm Distance | Ninaroop | NLoop pgrametergs 0.935 0.93|0.92| (0-0.935)
Simulated | sa, | yes 1 2000 CT|To=L, Ti=1Neopi| 4 | 6 | 30| 0837
Annealing T1 T = :

o—4, i —

Sh | yes 1| 2000 €T in(News) | 12 | 24| 45| o0.838
Te=1,T=

Shs | yes 1 2001 €31 5 005N oyt 8 | 17| 44| 0860

Taboo

Search | 1o | VYes 5 40 5 | 12| 33| 0821
Evolution. | gg no 40 5 | Sel Ranking 5 | 24| 871 0919
Algorithm —— :

ES, no 20 5 Sel 2 individuals-
) Tournament 6 35| 9(Q 0.920

Gen_etic GA; no 40 5 | Sel. Ranking 0 2 62 0.897
Algorithm —— -

GA no 20 5 Sel 2 individuals-
2 | Tournament 0 4 | 74 0.907
2 individuals-
GA; yes 40 5 Sel| Tournament and
Sharing 2 11| 93 0.923
Hybrid GA- '
algorithms | zp | ™ 40 | 5 | LA} Zone-Definer | 4 | 19| gg| 912
GA- Multi-linear
LR no 40 5 | LAl Regression 0| 10 93 0922
Random | RD | no 4 | 5 0o | 4|58 o871

SA: simulated annealing, TS: taboo search, GA: iemdgorithm, ES: evolutionary strategy,
GA-LR: genetic algorithm hybridised with multi-line regression learning algorithm, GA-ZD:
genetic algorithm hybridised with zone-definer féag algorithm, CT: cooling temperature

schedule, Sel.: Selection type, L.A.: learning athan.

For SA, an improvement can be observed when ussigveer decrease of the cooling
temperature schedule (CT, S§/&8A>SAs) indicating that a longer initial browsing
period of the search space is required to impréne algorithm performance and to
increase the probability of the algorithm finditge toptimum track. Global optimization
algorithms, as the name indicates, are usually gooéinding the global optimal
solution area. They are, however, not the bestfifog local optimization of the
continuous variables. This is indicated by the oedupercentage that reached the 0.93
and 0.935 % values - better results were achievdd A and TS. These algorithms,
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which operate with the concepts of distance betwdba individuals and
neighbourhood, are better able to exploit the oaitinegion, provided they are not
trapped in a sub-optimal area. A common optimizagwocedure to overcome this
limitation is to employ local optimization deternstic methods, like Simplex or
Gradient Descent, after the global algorithm optation.

Evolutionary Strategies (ES) performed in generdtds than the Genetic Algorithms
(GA), indicating that the representation of thedidate solutions can play an important
role. The higher variability usually obtained whesing the bit-string representation
seems not to be beneficial for the SELOX benchnmgotimization. In respect to the
selection types applied, the Tournament selecipe produced better results than the
Ranking selection for both the ES and GA casess Thconsistent with the results of
previous investigations on the SELOX benchmarknaigg the effect of this setting for
the GA optimization [27]. The use of the Sharinggarty (Equation 7.1 and 2) with the
GA appears to be highly beneficial, bringing abautconsiderable increase in
performance and giving results even better thah thié ES optimization. The Sharing
property, by monitoring the diversity of the caratigl solutions from one iterative step
to the other, disincentives premature convergenca focal optimum and enables

several alternative optima to be pursued.

The hybridisation of learning algorithms (LR, ZDjtlwthe GA improved the normal
GA efficiency. The integration of an algorithmwhich the existing knowledge from
the previous experiences is used to choose thegemdration of candidate solutions

improves the GA search.

7.5 - DoOE strategy for the SELOX benchmark optimizéon

Design of Experiments (DoE) aims at maximising éneount of information obtained
from experimentation while minimising the numberexperiments (Chapter 2). DoE
uses regression techniques to obtain the relatipristween the response surface and
the system factors in order to obtain a model fog themical system or to just
understand the importance of the effects of theofacWhen the factors that influence



the system studied are continuous, quantitativwrpalations are provided to minimize
the number of experiments needed to obtain the mbldevever, when discrete factors
are also present, which is the most common casatalysis studies, other techniques
have to be applied to avoid the exhaustive perfanaaof all the discrete factor level
combinations [61]. A common technique used is th®@imal criterion, where a sub-
set of the total combination of experiments is del@ that has an optimal distribution
(the experiments are situated as far from each athpossible) [62].

DoE resembles to some extent conventional labgratsearch, in the sense that, to
improve efficiency, the search can be divided idifferent stages or designs. The
parameter space is progressively reduced to thé mleyant variables from one stage
to the next and detailed information is obtainethmend for the most important factors
[63]. The interpretation of the results, and théect®n of the factors for further
investigation, is the responsibility of the chemiBhe parameter space is modified at
each design, making it possible to eliminate oromice new parameters or levels,
according to the current understanding of the systader study. A representative DoE
optimization strategy, using tidemrodw 2008@oftware, is discussed below.

7.5.1 - Screening for the effects of the main faa®

The cost of the total amount of information obtaline the number of experiments it is
necessary to perform. To estimate simple firsttomtemain effects, a small number of
the total experimental effort is usually necessampile in order to account for
interaction effects as well, more data-points agenanded. For the parameter space
presented in Table 7.1 the minimum number of expents recommended to obtain the
trends for the main effects of the factors is T8vé would like to study all the two-
factor interaction effects, a minimum of 130 expents would be required. Frequently
the option adopted will need to take into accourd@ tesearch time and resources
available. A common optimization procedure comgis@ initial study of the main
effects of the factors, following which a subspadethe initial parameter space is
chosen for further investigation of the interactieffiects between the factors. In the

present case, ten different D-Optimal designs weeduated to observe the variance of
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the estimated effects of the factors with the expental points chosen. The position of
the experimental points in the SELOX response sartd one of the D-optimal designs
is represented in Figure 7.6 and the results obdaior the main factor effects study are
depicted in Figure 7.

The estimate of the main effect of a factor istelato the average response values of
the experiments performed at various levels offogor. An important factor causes a
large effect because the system will perform sigaiftly better or worse at one of its
levels on average.

The results obtained for the main factor analysistie SELOX response and its
variance by choosing difference sets of experimetgaigns is represented in Figure
7.7. From this analysis we see that the main trendshe SELOX surface are
reproduced. The NM type has by far the largestcefbm the SELOX response; if we
look at the SELOX response surface we see thatawemage, when Pt is used the
performance increases significantly, while Au is goorest performer of the three NM,
followed by Cu (in Chapter 5 the poor performanté¢he Au catalysts is explained in
terms of the low metal dispersion resulting frorne fireparation method). The use of
Mo as TM type also affects significantly the penfiance, but in a negative way, and
this can be confirmed by noticing that on averageatches with the lightest areas from
the SELOX surface (Figure 7.6)).

Mog'

Nb i Ti

Figure 7.6 -Representation of one of the possible designsarsthL.OX search space.
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Figure 7.7 -Average main factor effects with 95% confidencewnal and their variance. The
bars directed to the right signify a positive riefateffect and those to the left a negative one.
The dotted lines represent the 95% confidence vatecalculated from the estimated
experimental variance. Effects higher than thisfidemce level are considered statistically

significant and are represented in black.

The effects of the other factors are smaller and ihot possible to rely on their
significance at this level. This means that thassds are not sufficiently clear to
predict the effect of choosing one of their fad®rels. The principal outcome of the
effect study pinpoints Pt as a positive determifiacior level and Mo as a negative one.
Based on these results, Pt could be selected andlifiinated in a subsequent more

detailed parameter study.

7.5.2 - Screening for interaction effects

In this second design the interaction effects ef discrete variables Support, TM and
Temp were studied (see Table 3). By opting to perfbne-tuning optimization of the

[NM]% and [TM]% continuous variables at a laterggaand by setting their variables at
their median values, a substantial reduction ofpd@ameter space was achieved. A full

factorial design (see Figure 7.8) could then besehaomprising 18 experiments.
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Table 7. 3 - Factors to be investigated in the second screeaitdjtheir correspondent levels.

™ Support Temp (°C)
\Y Ce( 200
Nb ZrQ, 250
TiO; 300

Figure 7.8 -Representation of the reduced search space aftendin factors analysis, and the

new experimental design points

The results obtained for the two-factor main antkraction effects are depicted in
Figure 7.9. A detailed analysis of the main e8dor this reduced search space shows
that on average the TM type V is better than NIsOAZrQ is on average a better
support. In the interaction analysis we notice teeen if TiQ is not, on average,
considered the better support, there is a strosgip®e interaction between the TM V
and the support TiO(V-Ti). Since the response surface presents sewptimal areas,
several trends could be followed to search thene iflteraction effect between the
transition metals and the reaction temperature duoas show significant trends.
However the interaction of ZgQor of TiO,, with this parameter indicates a positive
interaction at 200 °C. The most significant intéicats are, however, the TM-Support

interactions.



Interaction effects
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Nb - Ce
Nb - Ti
MNb - Zr

V- Ce
V- Ti
V. Zr

Nb - 200 °C
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Nb - 300 °C
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V- 300°C

Main effects

Ce- 200°C
Ce-250°C
Ce- 300°C

TM Mb
TMV
Sup. Ce
SupTi
Sup. Zr
Temp. 200 °C

Temp. 250 °C
Temp. 300 °C

Ti- 200°C
Ti- 250 °C
Ti- 300°C

Zr- 200°C
Zr - 250 °C
Zr - 300 °C

a) b)

Figure 7.9 - Statistical effect analysis for the second sdregra) Main effects. b) Interaction
effects.

The interaction Ti-V is very strong, and there idifference between the Nb-Zr and V-
Zr interactions, where the Nb-Zr interaction haglative positive effect and the V-ZR
a negative. These trends can be confirmed by cangptirem with the response surface
in Figure 7.8. At this stage of the optimization kagve the indication that Pt is the best
performing NM type and that the optimal region cbiie in the combination of this
metal with V supported on Tigor Nb supported on ZrDat 200 °C reaction

temperature.

7.5.3 - Optimization design

The final optimization step is exemplified with teelected V-Ti interaction at 200 °C;

in this final step the location of the optimum arrhs of the concentration of TM and
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NM is to be found. This usually requires a mathecaatmodel to be built which can be
used to predict the response surface of the prolbkeimy investigated. More detailed
information about each of the factors is then nemgs therefore these modelling
experiments are much larger than screening expetsrand are only performed for a
few factors. To model the curvature of the respasis#ace a second-order model is
considered to be sufficient. A Central Compositsigie [3], Figure 7.10a), was chosen
to plan the experimental points to be performedr the efficient modelling of the
response surface seven experiments plus two reggicaf the central point were
selected. The resulting response surface obtaimedtlae location of the optimal
composition region is shown in Figure 7.10b).

In this response surface (Figure 7.10b) the reptaiee curvature of the benchmark
surface (Figure 7.10c) is obtained. The optimahaseallocated but with this second
order model the small areas where the final optinfeath93) resides are not revealed.

To obtain more detailed information a higher onsexdel design would be necessary.

[TM]%[ .
ER"Y -: 9
[TM]% [TMI%
R L P
1 P ; s >
0.1 21 (N .
a) [NM]% [NM]%
a) b) c)

Figure 7.10 - Composition optimization in terms of the [NM]% afM]% of the catalyst
composed of Pt-Nb-Zr at 200 °C. a) Central Conmpasipresentation of the experimental plan,
b) Resulting response surface with central comppsit SELOX benchmark response surface

for the Pt-Nb-Zr catalyst compositions.



7.6 - Conclusions

The comparison of the different algorithms appliedhe same benchmark has proven
valuable for understanding the way they work and/ hibey may be adjusted to the
chemical problem under study. The efficiency of apimization algorithm depends
largely on the difficulty of the problem to be sied. Adjustment of the
browsing/exploitation ratio of the algorithm is essal to avoid becoming rapidly
trapped on a local optimum or performing too leygaim optimization. Since chemists
do not knowa priori the shape of the response surface to be studiey need to base
their choice of the algorithm parameters in theitr@gg of the optimization procedure
on existent benchmark studies.

If the parameter space to be investigated is \emgel Design of Experiments may not
constitute the most efficient strategy. The redeaan be divided into different stages,
in which the scientist can adjust the size of tlaeameter space and the detail of
information withdrawal at each stage, making treeaech more flexible and efficient.
This strategy runs, however, the risk that synégedriables are discarded at an early
stage because their interactions were not detettethis way, even if better cause-
effect knowledge about the effects of the varialethe chemical system is obtained
(which is necessary to understand the chemica¢systthe achievement of the optimal
solution cannot be guaranteed. With global optitniraalgorithms, the final optimum
is more efficiently achieved and guaranteed if iknenber of necessary experiments is
performed, but only a poor understanding of therdhal system and the effects of the
variables on the response is obtained. The maihwitla Global optimization is the
achievement of the optimal solution. For small elkeaspaces many of the global
optimization methods are not adequate. For instdoce¢he normal procedure of a GA,
a minimum population size of 20 candidate solutiansl 3 iterative generations are
usually necessary. A more efficient design couldob&ined with DoE where such
restrictions do not exist.

Chemometric methods for catalysis composition ogtmion are excellent aids for
exploring and allocating the optimal parameter spaagions, avoiding an inefficient

exhaustive experimental investigation. The appetprmethod to be used, however, is
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dependent on the research resources availableathee of the parameter space and the

precise research aims.
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HTE Equipment

High-Throughput Experimentation Equipment

In the catalysis field a great deal of effort ha&ei applied on the development and
improvement of equipment that accelerates the spe&dpractical chemical
experimentation. Examples are robotic liquid antidsbandling equipment that pick
and mix the reactants in different miniature vesselreactors (e.g. Appendix A.1 and
A.2), and platforms for catalyst synthesis prepanst (Appendix A.2). Specialized
reactor platforms are also available that can perfeigh-pressure parallel screening of
catalyst reactions in the liquid phase (e.g. Apperd3) and gas-flow catalyst testing
reactions (e.g. Appendix A.4).

The High throughput equipment employed in this ihas presented and briefly
described in this appendix.



Appendix A

Appendix A.1 - Liquid handling and parallel reactor ‘Hamilton’ platform

The Hamilton Dual Arm is a robotic liquid-handlipdatform. This robot dispenses and
transfers liquid-phase chemicals using two typededices: the single needle arm and
the pipette D-arm. Set amounts of liquids canrbasferred from one rack of vials to
another via both arms, or dispensed to a rackad$ ¥fiom an array of bottles containing
different liquids stored in an adjacent cabinetthi@ needle arm. The needle arm is able
to perforate septa and is adequate for experintlkeatsequire a closed environment. On
the other hand, the pipette D-arm can dispense msceus liquids and in more precise
amounts than the needle arm. Between differenidittansfers the needle arm requires
a washing cycle, while the D-arm picks up a newpassible plastic tip for each transfer,
excluding contamination risks

A special kind of rack has been designed for periog the terpene reactions presented
in Chapter 3. This reactor rack was composed ofjldds reactor HPLC vessels each

with a working volume of 1.5 ml.

Figure A.1 - Hamilton Dual Arm liquid-handling and reactor rapkatform. a) 6x4 glass

reactor-rack, b) sample- rack, c) needle arm, dndipette D-arm.
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HTE Equipment

Appendix A.2 - Liquid handling and catalyst synthess Zinsser-Sophas Analytics
platform

The Zinsser- Sophas workbench employed in the relseaf Chapter 5 is a liquid
handling platform specialised for catalyst synthgwsiocedures. This system has one
arm which can be equipped with up to four indepehg@getting or dispensing probes.
Liquid transfer from vials or liquid dispensing fnostored bottles can be performed.
Several reactor and chemicals handling racks camsbembled in the system. For the
catalyst syntheses in Chapter 5 a rack of 6x4 oeatals has been used. The reactor
racks can be positioned in a vortex mixer with dtid heater (to +150 °C). All the
operations performed by the workbench are conttollg a computer supplied with
Zinsser Sophas software.

Figure A.2 - Sophas liquid handling and catalyst synthesigqoiat
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Appendix A

Appendix A.3 - High pressure ‘Quick Catalyst Screemg’ parallel reactors
platform

The Quick Catalyst Screening (QCS) platform (Figé&a), as employed for the
catalytic hydrogenations of Chapter 4, is compasfedp to 8 blocks of 12 (3x4) high-
pressure stainless steel reactors (Figure A.3l@sdare can be independently set for
each reactor block up to 20 bar. The reactors liisosable Teflon inserts (Figure
A.3c), a working volume of 1-2 ml and are mixed metically. The temperature can be
varied from -40 to 180 °C.

b) c)
Figure A.3 - Quick Catalyst Screening (QCS) Avantium BV platfoah General view of the

equipment, b) Detail of one high pressure 12-redutick, and c) Detail of the reactors.
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HTE Equipment

Appendix A.4 - Gas-phase AMTEC reactor system

The 16-fold parallel reactor system from Amtec hasn employed for the testing of the
synthesised catalyst library in Chapter 5. The esgstwhich is equipped with 16
individual, continuous-flow, fixed-bed, stainledeed reactors, with a catalyst volume
bed of 4 ml, ensures uniform temperatures, pressand fluid flows in all reactors. The
system allows a maximum flow rate of 200 ml/min peactor, a temperature of 600 °C
and 13 bar of pressure. Micro-GC and Micro-ms witl equipment were adapted to

the system for semi-online analysis.

Figure A.4 Switch-16 -Amtec gas-phase reactor system.
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Appendix B - COOX and SELOX Benchmark Regression Functions

The regression coefficientso(ldn, b, bis, b1, o) of the experimental data from the
COOX and SELOX reactions (Chapter 5) obtained leyNemrowd 2000 software are
presented in table TB.1. A polynomial quadraticamn (y =l + bx; + X + broxixo

+ buxa® + bpoxo?) based on these coefficients could be deriveceémh metal ternary
combination, at a certain reaction temperaturetiferresponses of CO conversion and
CO, selectivity. The equations of table TB.1 consétihe analytical forms of the
COOX and SELOX benchmarks before the applicatiorthef desirability criteria. A
visual representation of the corresponding respsagaces can be observed in Chapter
5 (Figures 5.4 and 5.5).



Table B.1- COOX and SELOX benchmark functions. Polynomigression coefficients obtained for the conversioa selectivity
responses: (Y =obr bixy + byx® + broxixo + biaxs® + booxo? ) where x is the TM amount andythe NM amount in %.

Catalyst system COOX reg. coefficients Conversion SELOX reg. coefficients Conversion SELOX reg. coefficients Selectivity
Eq. | Suppert | TM | NM {c{:on;l?ﬁ[;%l} o b1 by bu bn b | R | b by by by by by [ R by by by by by by | R
1 Ce Mo | Am 200200 10 03 00 05 00 00 |em | 10 50 00 64 5% 00 |o71| 270 -104 35 105 100 60 | 086
2 Ce Mo | Cm 200200 10 -1 10 08 02 -13 | 1m0 | 100 14 i 08 03 18 | 098 | 280 -11% 13 03  -15  -63 | 100
3 Ce Mo | Pt 200200 60 154 253 28 179 -248 | 080 | 320 72 155 -143 58 .55 | 084|100 -l14 -20 51 179 65 | 085
4 Ti Mo | Anm 200200 00 02 00 03 02 05 |oss| 10 w02 03 03 08 00 |o0s1| 100 11 30 20 65 15 | 0854
5 Ti Mo | Cu 200200 40 11 35 03 02 05 | o085 | 40 04 20 05 -10 05 |055| 50 -18 120 138 52 35 | 100
6 Ti Mo | Pt 200200 970 113 478 151 322 03 |ogx | 200 57 163 05 08 23 |1p0| 50 11 18 00 18 -08 | 07
7 Ir Mo | Anm 200200 00 -0 00 10 05 00 |ose | 00 29 55 20 40 25 |woo| 30 01 13 28 18 03 | 039
§ Ir Mo | Cu 200200 10 08 13 03 10 -132 |esr | 30 15 25 08 08 00 | 085|250 42 33 122 -7 40 | as1
9 Zr Mo | Pt 200200 70 266 260 230 40 215 | 08y | 120 154 88 140 158 33 |p73| 30 17 18 66 28 03 | pa9
10 Ce Nb | Anm 200200 w06 08 12 00 08 [os7 | 70 08 20 00 g 05 |ose| 300 60  3E 156 1985 63 | 082
11 Ce Nb | Cun 200200 30 07 15 10 -10 05 |083 | 60 27 28 03 20 .18 | 088 | S00 -103 95 08 -3Z .10 | nso
11 Ce Nb | Pt 200200 SO <267 238 281 63 M3 | 100 | 150 31 148 51 39 38 | 100|340 54 100 13 78 10 | 100
13 Ti Nb | Anm 100200 00 01 03 08 05 03 |[o7s| 10 01 08 00 03 03 |o8| 160 -17 00 51 -171 00 | 084
14 Ti Nb | Cu 200200 50 15 43 08 10 13 |oee | 30 11 23 00 03 08 | 097|480 13 63 .87 31 313 | om
15 Ti Nb | Pt 200200 960 151 475 04 261 05 | o088 | /0 52 285 10 15 10 |ops2| 90 15 58 05 08 03 | p@2
16 Ir Nb | Anm 200200 0 06 13 03 00 -08 |os7 | 90 05 45 035 -1z 08 | 100 | 150 04 03 18 5 13 | 0ss
17 Ir Nb | Cu 200200 10 01 08 00 13 03 |oes | 10 03 08 03 05 03 |o089| 180 40 55 56 31 25 | 100
18 Zr Nb | Pt 200200 1020 04 305 03 497 00 | poo | 1000 113 485 163 322 00 | 082|250 26 05 41 16 05 | os4
19 Ce v | Aw 200200 0 01 03 1o 07 03 |eo7 | 150 07 50 46 16 10 | 088 | 3L0 108 90 03 73 40 | 064
20 Ce vV | Co 200200 130 106 250 .28 158 235 | g | si0  -123 385 87 -297 200 | 085|120 5% .00 43 87 20 | 087
21 Ce v | Pt 200200 10 27 95 13 77 40 | o0&y | 140 104 290 74 1Ll 53 |pee | 3®0 17 23 10 W0 15 | na4
11 Ti V | An 200200 10 169 03 253 B0 03 |em | 100 93 10 138 -158 05 |e7s| 00 -14 00 92 92 00 | os7
13 Ti vV | Co 200200 20 5§ 135 05 130 -115| 087 | 30 .71 180 .05 175 130 | 088 | 00  -101 100 204  -04  -100 | 0.78
24 Ti v | Pt 200200 290 88 288 122 153 183 | oge | 9m0 228 255 270 400 130 | 087|240 07 13 59 31 120 | 076
15 Ir V | An 200200 00 06 05 10 00 00 [oss | 10 13 035 15 15 10 | o083 | 100 78 38 8% 178 73 | 089
26 Ir Vv | Cao 200200 0 05 2% 08 03 -13 |ese | 40 05 38 03 13 1B | 086 | 350 24 248 08 -205 98 | oss
27 Ir v | Pt 200200 980 00 475 05 475 035 | of | 100 9® 185 00 460 B0 | og9 | 250 57  -143 00 73 43 | pga

g Xipuaddy



Table B.1- COOX and SELOX benchmark functions. Polynomigression coefficients obtained for the conversiod selectivity
responses: (Y =gbt bixy + bpx® + broxixo + braxs® + booxo? ) where x is the TM amount andxthe NM amount in %. (Continuation)

Catalyst system COOX reg. coefficients Conversion SELOX reg. coefficients Conversion SELOX reg. coefficients Selectivity
Eq. | Support [ TM [ NM {g{f;'}'{‘;g%},} b bi b by bn b |R | by by by by bn b R (b by by bu bn by | R
28 Ce Mo | Au 225250 10 05 00 05 05 00 |es4| 20 5B 00 0TI 61 00 o074 18D -B1 2B 71 204 938 | om0
29 Ce Mo | Cuo 2252350 20 38 28 20 02 2% |ose| S0 52 45 w3 48 45 g | 650 27 73 191 31 28 | os7
a0 Ce Mo | P 225250 140 385 260 217 -72 -230 | ose| M0 -173 8B 36 -0F 3B Q76| 80 07 43 66 19 33 | 72
n Ti Mo | Am 125250 10 07 03 0F 05 03 |og3| 20 03 OF 0 05 03 959 | W0 -11 10 -10 35 220 | ose
3 Ti Mo | Ca 115250 70 22 58 03 00 13 |ess| %0 08 6% 03 00 13 Q86| 20 -T0 65 148 117 25 | ose
13 Ti Mo | Pt 128250 G0 05 465 05 470 00 [1po| W00 43 k0 00 15 15 o8| 20 05 05 03 17 -15 | 08B
34 Ir Mo | Anm 125250 10 08 05 13 08 035 |ess| O 33 108 28 B4 23 1e0| 50 03 08 03 20 -03 | go9
s Ir Mo | Cu 125080 10 17 28 05 32 28 |es3| 80  B6é 123 9% 32 03 a7 210 -7 3§ 94 117 28 | oo
16 Ir Mo | Pt 115250 2L0 -B3 313 383 m0 -I2B | 086 | 220 95 63 26 -W3 23 07| 50 48 -1IE 48 69 103 | aro
37 Ce Nb | An 225250 0 11 18 -I& 05 18 |oez| 180 23 20 43 17 33 083|290 -66 -35 74 -129 -BO | os7
38 Ca Nb | Cu 115080 70 -13 33 20 23 18 |es3| 220 93 W5 10 45 60 o099 6L0 126 43 10 47 03 | os3
a9 Ce Nb | Pt 125250 010 -7 263 03 W05 73| eo4| 1000 32 473 69 404 0F gs9| 230 L 3§ 20 17 48 | e
40 Ti Nb | Anm 125250 10 0f 03 08 10 08 |esT| 30 03 15 43 05 03 og7| 170 0% 33 Q9 37 28| os4
41 Ti Nb | Cu 128250 W0 37 88 -1 20 28 |100| 138 37 85 13 0B 40 oes| 410 12 35 65 01 335 | ose
42 Ti Nb | Pt 125280 970 124 465 181 284 05 |ps1| 220 07 238 94 13 53 qgm0| 50 03 58 23 05 13 | gme
43 Ir Nb | Anm 115050 40 07 18 18 20 08 |@gL| 120 02 43 05 07 -13 g98| 90 02 -8 .15 63 -03 | oo
44 Ir Nb | Cu 215250 30 03 15 05 25 00 |oss| S0 08 35 15 05 00 083|400 72 200 15 A3s 5| oss
45 Ir Nb | Pi 228280 120 04 485 03 482 05 | Eg0 | 1000 k9 403 00 403 3F Qg | 250 21 73 00 68 38 | as1
46 Ca v | An 128250 0 -01 03 15 07 03 |esg| 790 23 153 M9 168 03 10| 280 27 93 82 48 03 | 100
47 Ce v | Ca 225250 00 -90 153 71 49 223 | 078 | 480 55 405 153 M3 60 081 | 10 61 -58 38 989 15 | 0o4
48 Ce v | B 225250 10 102 -325 38 192 155 | @mE| 450 203 290 43 4B 50 080 | 440 24 43 05 2133 03 | oo
49 Ti ¥ An 125250 10 145 03 273 260 08 |w@7s| 10 146 15 240 -0 05 076 110 -2z .58 15 112 13 | 049
50 Ti v | Cu 125250 0 77 183 10 188 148 | 088 | 70 -8 263  0F 140 -45 o089 | 600 -56 193 -BS 32 128 as7
51 Ti v | P 125250 9E0 68 275 454 146 170 |oss| 930 333 6% 214 1R 38 o087 230 63 45 4B 33 15 | 100
£1 Ir ¥ An 125250 10 -15 03 13 05 03 |ess| 40 27 53 13 BS 3B p@0| 1.0 46 118 03 200 25 | oss
£3 Ir ¥ Cu 125280 60 03 50 13 13 20 |oss| 150 18 80 05 03 25 o088 690 04 138 97 56 63 | oos
54 Ir v | P 225250 980 07 455 08 457 10 | 100 980 66 130 10 -0 130 ggs| 20 16 33 05 28 33 | gss




Table B.1- COOX and SELOX benchmark functions. Polynomigkression coefficients obtained for the conversioa selectivity
responses: (Y =obr bix; + bx® + broxixo + braxs® + byoXo? ) where x is the TM amount andythe NM amount in %. (Continuation)

Catalyst system

COOX reg. coefficients Conversion

SELOX reg. coefficients Conversion

SELOX reg. coefficients Selectivity

Eq. | Support | TM | NM {cﬁﬁpﬁq%;} by b1 by bu bn b [ R by b1 by bun by R'| by by by by by by | R
55 Ce Mo | Aw 250300 10 09 -10 03 13 05 |0B5| 40 63 13 79 67 083 | 160 25 03 41 15 43 | 0g3
56 Ce Mo | Cm 250300 30 7B 48 34 06 48 | 089 | 180 105 43 .33 9] 073 | 490 72 23 -5 75 10 | 0ss
57 Ce Mo | Pt 250,300 1020 219 293 161 -512 -168 | 100 370 -155 53 18 80 088 | 80 22 15 18 23 15 | 086
58 Ti Mo | Am 250300 20 -3 03 112 -100 08 |o0e9| 30 04 13 05 05 p%2 | 120 02 -13 15 .17 28 | 096
59 Ti Mo | Cuo 250300 120 34 W00 05 05 25 | 099 1L0 02 163 71 71 085 | 30 78 23 123 115 33 | 100
80 Ti Mo | Pt 250300 970 11 438 00 28 23 100 60 23 10 08 47 09| 20 03 03 00 08 08 | 0sa
61 Ir Mo | Am 250300 20 12 05 26 04 20 |oso| 20 55 135 13 27 0%y | 100 07 -18 28 16 -33 | 089
62 Ir Mo | Cuo 250,300 a0 33 68 00 83 58 | og0| 120 -165 208 173 .04 086 | 130 26 -85 88 04 15 | 078
63 Ir Mo | Pt 250300 980 108 230 05 -0 230 | 087| 260 121 65 15 35 088 | 60 43 B8 3§ 47 EE | 082
64 Ce Nb | Am 250,300 140 12 13 56 21 18 | o0s0| 630 97 20 -0 33 091 | 240 138 38 2312 50 | e
65 Ce Nb | Cu 250300 160 42 213 33 8BS 173 | 00| 480 -123 128 20 .17 085 | 480 45 33 413 25 43 | 082
6 Ce Nb | Pt 250300 1010 -15 450 05 455 30 | 100 980 30 393 20 407 100 | 230 04 38 03 40 08 | 096
67 Ti Nb | Anm 250,300 30 00 03 15 17 08 |o73| 70 14 28 .15 13 081 | 150 -10 48 23 .10 -33 | 080
68 Ti Nb | Cu 250,300 180 46 145 .26 2 45 | 089 | 310 63 220 .33 63 087 | 280 .25 -58 26 -02 33 | 082
(1] Ti Nb | Pt 250300 970 -57 340 -08 -337 100 | 088 | 290 -15 323 54 69 o2 | 70 05 75 13 17 -15 | 083
0 Ir Nb | An 250300 120 -10 30 03 43 -0 |o7m1| 180 180 05 23 13 p70| 60 04 55 10 55 -15 | 0%
71 Ir Nb | Cn 250300 60 09 38 05 63 08 |o0s6| 160 38 63 43 14 091 | 340 -51 43 035 -17 15 | 100
72 Ir Nb | Pt 250300 1020 35 38 03 w35 73 |oss| 930 82 35 41 -us 096 | 220 03 55 10 2 15 | 086
73 Ce vV | A 250300 40 02  -10 -18 02 00 | 088 990 -50  3T0 418 4E 100 | 240 -31 43 13 0 33 | 0ss
74 Ce vV | Cuo 250300 980 125  -#4F -191 -261 03 | 08B | 490  0F 403 240 132 100 | 110 29 -10 38 61 60 | 081
75 Ce v | Pt 250,300 1.0 4% 455 28 382 00 |o88| 1000 224 -1BO -207 -H3 086 | 250 41 43 33 02 05 | 089
76 Ti Y | Aw 250,300 20 68 03 390 373 18 | 086 | 30 152 08 281 268 078 | 260 37 48 61 16 13 | 076
77 Ti Y | Co 250,300 40 98 255 03 247 185 | og9| 120 -76 253 43 269 084 | 470 12 18 36 -32 103 | 059
78 Ti v | Pt 250300 950 33 230 421 24 130 | 08B | 960 296 93 212 126 100|230 61 00 51 0% 20 | oss
79 Ir vV | An 250300 0 22 00 23 03 10 |ose| S0 43 123 10 152 pse | 60 3% 70 08 117 235 | 088
80 Ir v | Co 250300 00 09 93 18 35 -38 |o0g3| 380 97 253 18 00 086 | 600 -06 58 99 68 143 | 093
81 Zr v | Pt 250,300 980 -42 363 05 -367 83 |qQsus| 840 92 93 g2 174 081|200 21 -23 20 -38 38 | 082

g Xipuaddy




OptiCat Software

The OptiCat (Optimization for Catalysis) softwaseal platform for building stochastic
optimization algorithms. A diverse variety of aldgbms can be implemented via drag
and drop operations of the pre-established proeetuilding blocks. Some of these
algorithms are, for instance: evolutionary strafeggnetic algorithm, Tabu search,
simulated annealing and a series of hybrid algothwith knowledge based
implementations used in Chapter 7. This softwasetieen developed due to the need of
soft computing tools in combinatorial high-throughpatalysis and can be downloaded
from the website: http://eric.univ-lyon2.fr/~fclérc

Most optimization algorithm are traditionally congsal of four iterative phases: 1)
initialisation, to generate a first set of potehsialutions to the problem; 2) evaluation
of each solution (results visualisation); 3) contadion with a stopping criterion; 4)
generation of a new set of potential solutions @tdrn at stage 2. Figure C.1 gives a

schematic representation of the algorithm implele@n in Opticat.

Initialisation |—» Loop a_nd_ —»| Evaluation
stop criterium

T

Generation of
new population

<4+—| Visualisation

Figure C.1 - A classical optimization process

With judicious arrangement of the procedure bugdbiocks existent in the Opticat
software, diverse iterative optimization strategilsee random search, simulated
annealing, Tabu search, evolutionary algorithms astber algorithms can be
implemented. Figure C.2 shows an example of anCaptscreenshot of a Genetic

algorithm construction.
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Summary

Summary

The main topic of this thesis is the investigatiohthe synergies between High-
Throughput Experimentation (HTE) and Chemometridi®ation methodologies in
Catalysis research and of the use of such methg#sldo maximize the advantages of
using HTE methods.

In Chapter 1 an introduction to High-Throughput Esmentation (HTE) and
Chemometric optimization methods and their combined for catalysis research is
presented. Considerations are given about the disehemometric experimental
planning methodologies such as Design of Experismarid Global Optimization
algorithms.

An overview of the use of the Design of Experimdstshnique is presented in Chapter
2. This methodology is central to most of the thasisearch, being applied through
almost all its chapters.

Chapter 3 deals with the exploration of a terpeshditeon reaction parameter space, in
this case a hydration reaction, using a multi-&epign of Experiments approach. From
this investigation insights on the main reactititynds were obtained. Namely that the
highest selectivities were achieved with camphemstsate and the lowest with the two
pinene substrates, due to the higher number oframgement pathways usually
undergone with the latter. It is shown that thedatrength had a significant effect on
the activity but not on the resulting product mimetuthe solvent type and water
concentration were shown to have smaller effects Proved to be a fruitful strategy
to explore and discover the underlying trends ichsal challenging chemical parameter
space.

In Chapter 4 is presented the optimization of tlaction conditions for the
hydrogenation of cyanohydrin esters to N-acylate¥ino alcohols, using again a
multi-step Design of Experiments approach. Thiatefy enabled, with only a small
number of experiments, the location of the mostmsong region of the experimental
space in which this reaction took place, namely tise of Ni and Rh catalysts,
supported on either carbon or alumina, and withidp@nol or dioxane as solvents. Via
further optimization designs the best conditionstf@ reaction were obtained, yielding

total conversion and vyields of about 50% and 90 d¥the benzylic and aliphatic



Summary

cyanohydrin ester substrates, respectively. Thécgbion was demonstrated on a range
of aliphatic and aromatic substrates. When used wibantiopure substrates no
racemisation was observed, except to a small ddgrethe benzylic substrates. DoE
together with HTE technologies proved efficient floe exploration and optimization of
this chemical route towards the production of Ntai®d-3-amino alcohols.

In Chapter 5 the planning and modelling of catalys@nchmark response surfaces using
Design of Experiments is performed. A library of91l&ixed-oxide catalysts was
prepared and their activity tested and modelledHerCO oxidation reaction in both the
absencgCOOX) and presenc€SELOX) of hydrogen. A DoE model (quadratic order)
was used to map the parameter space. A visualsemegion of the resulting response
surfaces was obtained together with the model &palyfunctions which constituted
the benchmarks for the two conditions tested (CO&@¥ SELOX). The multiple
responses of interest and the process preferecaegefsion of CO, selectivity towards
CO, and temperature) were taken into account throbgluse of a desirability function.
The visualisation of the response surface allowsdining a good understanding of the
effects of the studied variables and the locatibthe optimality regions. The COOX
and SELOX benchmarks were used in the followingotdra to access the optimization
performance of selected Global optimization aldponis.

In Chapter 6 the optimization procedure of emplgytine Global Optimization Genetic
algorithm and the influence of the algorithm sefsiron its optimization efficiency is
studied. Both thecOOX and SELOX benchmarks obtained in Chapter 5 were used to
validate the Genetic algorithm performance. A Desij Experiments approach was
used to select the configurations to be tested sindy the effects of the chosen
parameter settings. The most important parametardfevas the population size, where
the largest population compatible with the desiHIE workflow (the synthesis and
testing of one generation of catalysts per worldag) was found to be preferential. An
optimal GA configuration was found for the optimipa of the SELOX and COOX
benchmarks, consisting of the use of 48 individuspopulation size, 15 % elitism,
binary tournament as selection type, 1l-point cressavith 60% crossover and 1%
mutation probabilities, respectively.

In Chapter 7 the optimization performance of sevalgorithms tested on theELOX
benchmark is compared. The studied algorithms deli&volutionary Algorithms,
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Genetic Algorithms, Simulated Annealing, Taboo $karand Hybrid Genetic
Algorithms. The most successful in the SELOX benatihoptimization proved to be
Evolutionary and Genetic Algorithms using the sh@riprocedure, and Genetic
algorithms hybridized with some knowledge-extragctimutine. A multi-step DoE
optimization procedure was also exemplified usimgs tbenchmark. The main
differences regarding the applicability of DoE a@abbbal optimization strategies were
highlighted, namely that better cause-effect knolygecan usually be obtained with the
use of multi-step DoE but the risk of discardingesgetic variables at an early stage is
increased. With Global optimization algorithms gahievement of the optimal solution
can be theoretically guaranteed; furthermore, $iiategy may present an advantage
with regard to experimental effort, in relation@D@E, when a very large and complex
parameter space needs to be investigated.

Altogether, it was shown that the use of HTE, apoaverful method for catalysis
research, is further improved by the applicatiorappropriate experimental planning
techniques. Strategies involving Chemometric metH@ Design of Experiments and
Global Optimization techniques can help in avoidieghaustive experimental
investigations and enhance the power of explomdngd parameter spaces and locate the

optimum catalytic system conditions.



Samenvatting

Het hoofd onderwerp van dit proefschrift is het emzmbek naar de synergién tussen
High-Throughput Experimentatiati TE) enChemometric Optimizatiomethodologién

in katalyse onderzoek en het gebruik van dit sowthoden voor het maximaliseren
van de voordelen van het gebruik van HTE methoden.

In hoofdstuk 1 wordt een introductie gegeven adegh-Throughput Experimentation
(HTE) en Chemometric Optimizatiomethoden en hun gecombineerde gebruik in
katalyse onderzoek. Verschillende methoden van ohestrische experimentele
planning worden behandeld zoals Design of Experimemd Global Optimization
algoritems.

Het gebruik van déesign of Experimentiechniek wordt behandeld in hoofdstuk 2.
Deze methodologie is een belangrijk thema in diefschrift aangezien zij in vrijwel
alle hoofdstukken wordt gebruikt.

Hoofdstuk 3 gaat over het onderzoeken van een derr@elditie reactie parameter
ruimte, gebruikmakend van een meerstapsign of Experimentsenadering. Hierdoor
werd inzicht verkregen in de belangrijkste reattis trends. De hoogste selectiviteit
werd verkregen met een campheen substraat en gidagelectiviteit met twee pineen
substraten. Dit was verklaarbaar door het grotemetah omleggingen dat pinenen
kunnen ondergaan. Aangetoond werd dat de zuurstegkt de katalysator van invioed
was op de activiteit, maar niet op de uiteindelyleehouding van producten. Het type
oplosmiddel en de water activiteit waren van betgeekinvioed. DoE bleek een goede
strategie te zijn voor het ontdekken van de ongigeinde trends in deze gecompliceerde
chemische parameter ruimte.

In hoofdstuk 4 wordt de optimalisatie van de reacindities voor de hydrogenering
van cyanohydrin esters nadrgeacyleerdg-amino alcoholen, gebruikmakend van de
meerstapDesign of Experimentbenadering beschreven. Deze strategie maakte het
mogelijk om met een beperkt aantal experimenten lamatie van het meest
veelbelovende deel van de parameter ruimte te minD& was met name het gebruik
van Ni en Rh katalysatoren op kool of alumina, nestpropanol of dioxaan als
oplosmiddel. Door verdere optimalisatie werden @sté condities voor de reactie
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gevonden. Deze gaven een opbrengst van ongeveerv®®@benzylische en ongeveer
90% voor alifatische cyanohydrin esters. De reactias succesvol voor een
verscheidenheid aan alifatische en aromatischetrsidys. Er werd in de regel geen
racemisatie gevonden als werd uitgegaan van emamécubstraten behalve in geringe
mate bij benzylische substraten. DoE in combinatedt HTE technologien bleek een
efficienté methode voor het onderzoeken en optsaedn van de chemische route naar
N-geacyleerd@-amino alcoholen.

In hoofdstuk 5 wordt het plannen en modelleren e@ancatalytic benchmark response
surface (grafische weergave van de resultaten), gebruikmakvan Design of
Experimentdeschreven. Een bibliotheek van 189 katalysatdretestonden uit oxide
mengsels werd gesynthetiseerd, getest op actietede resultaten gemodelleerd voor
de CO oxidatie reactie. Dit gebeurde in de aanviezihvan waterstof (SELOX) of
zonder waterstof (COOX). Een DoE model (tweede nderd gebruikt om de
parameter ruimte te beschrijven. Een visuele reptese van deesponse surfaces
werd gegenereerd en de analytische functies vamioelel werden berekend. Deze
gaven debenchmarksvoor de twee geteste condities (COOX en SELOX). De
meervoudige responses of interest en de gewernstegcondities (conversie van CO,
selectiviteit naar C® en temperatuur) werden meegenomen in de bereketong
middel van eeresirability function De visualisering van deesponse surfacmaakte
het mogelijk een goed inzicht te krijgen in de efié® van de onderzochte variabelen en
de plaats van de optimale gebieden. De COOX en SEbhénchmarksverden in de
volgende hoofdstukken gebruikt om de optimalisafigciéntie van de geselecteerde
Global Optimizatioralgoritmes te onderzoeken.

In hoofdstuk 6 wordt de optimalisatie door midd@nvhet gebruik van d&lobal
Optimization Genetic AlgorithngGA) besproken en wordt de invloed van algoritme
settings op de optimalisatie efficiency onderzodd& benchmarks voor COOX en
SELOX die in hoofdstuk 5 gevonden werden, werdémgkt voor de validatie van de
efficientie van het GA. Door middel van een DoE d&a#ring werden GA configuraties
geselecteerd die werden getest en waarvan de exifa@n de gekozen parameter
settings werden bestudeerd. De meest belangrijieenmder bleek de populatie omvang.
De grootste populatie omvang die mogelijk was binde gewenste HTE workflow

(synthese en testen van een generatie katalysgieremerkdag), gaf het beste resultaat.
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Als optimale GA configuratie werd gevonden vooragimalisatie van de SELOX en
COOX benchmarks: 48 individuen als populatie omyat§% Elitism, Binary
Tournament als selectie type, 1-point crossover @86t crossover en 1% mutatie
waarschijnlijkheid.

In hoofdstuk 7 wordt de optimalisatie efficiéntianvverschillende algoritmen getest op
de SELOX benchmark. De onderzochte algoritmen Zirelotionary algoritmes,
Genetic algoritmes, Simulated Annealing, Taboo &ean Hybrid Genetic algoritmes.
Meest succesvol in de optimalisatie van de SELOXchmark bleken Evolutionary en
Genetic algoritmes met gebruik van een Sharing qoloe en Genetic algoritmes
gehybridiseerd met een Knowledge Extraction routi@ebruikmakend van deze
benchmark werd ook een meerstaps DoE optimalisatozedure toegepast. De
belangrijkste verschillen in de toepasbaarheid danDoE enGlobal optimization
strategien worden belicht, met name het beterehibhm cause-effect dat in de regel kan
worden verkregen door middel van gebruik van mapssDoOE. Er is echter een risico
dat synergistische variabelen al in een vroeg stadiiet meer meegenomen worden.
Bij gebruik van Global optimizationalgoritmes kan het bereiken van de optimale
oplossing theoretisch worden gegarandeerd. Boventhedt deze strategie ook
mogelijk het voordeel, in gevallen waarbij een greh zeer complexe parameter ruimte
moet worden onderzocht, om het aantal experimdrmateerbaar te houden.
Samengevat werd er getoond dat het gebruik van HIEEmethode in katalyse
onderzoek verder wordt versterkt door het aanwendan de juiste experimentele
planning technieken. Strategieén die bestaan eincmetriche methoden zoals DoE en
Global Optimizationtechnieken kunnen helpen bij het vermijden vanr zg®te
hoeveelheden experimenten en vergroten de kraahthed onderzoeken van grote
parameter ruimten en het lokaliseren van optimaladities voor een katalytisch

systeem.
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