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 1 

Scope of the thesis 

  

Catalysis is of fundamental importance to industry and the economy.  It is estimated that 

around 20-40% of GDP is generated through processes involving catalysis.  In the 

petroleum and bulk-chemical industries, catalytic processes are almost universal while, 

in fine and pharmaceutical chemicals, catalytic reactions play an increasingly important 

role.  In these industries the acceleration of the catalyst development and research can 

have a large economic and ecological effect, because more than 90 % of current 

industrial processes involve catalytic steps. Catalysis research and development is 

therefore an activity of major importance for the industry, and also in universities and 

research organisations. A great effort is therefore put nowadays in the research and 

discovery of new catalyst processes and the optimization of existent process parameters. 

In catalysis the challenge of research is to find catalysts with high activity and 

selectivity for certain chemical transformations, and to optimize them. Most 

improvements in catalyst design and process conditions optimization arise from 

extensive empirical catalyst synthesis and mass screening. A way to accelerate this 

optimization is to use High-Throughput Experimentation (HTE) methodologies. In 

recent years, HTE has been recognised as a set of tools of great value in improving the 

productivity of research into new and improved catalysts and processes. The use of 

miniaturised and parallel reactor assemblies decreases the limitations on the number of 

experiments that can be performed, maximises diversity, and enables the various stages 

from discovery to process development to be integrated effectively. 

The increase in experimental capabilities allowed with HTE brings with it a requirement 

for effective experimental design, if the potential of high information yield is to be 

realised and data explosions avoided.  To use HTE in an efficient and rational way the 

chemist needs to a certain extent to change his practical research habits. Multiple 

parallel reactions need to be planned, to be performed in grouped reaction batches and 

the resulting large volumes of analytical data processed. By the application of 

appropriate chemometric techniques, appropriate designs for all stages of catalysis 

research, from catalyst preparation, through reactor testing to process optimization, can 

be constructed.  Chemometric methods can also provide tools for efficient data analysis 

of large sets of HTE results such as analysis of variance (ANOVA), principal 
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components analysis (PCA) and principal least squares (PLS). In this thesis alternative 

strategies are discussed and applied to create suitable optimization procedures for 

examples of both homogeneous and heterogeneous catalytic reactions. 

The use of several chemometric design planning methodologies in HTE catalysis 

research is experimented in this thesis through different catalytic case studies. Three 

different catalytic systems have been considered: the investigation of homogeneous 

Brønsted-acid catalytic hydration of terpenes; the optimization of heterogeneously 

catalysed reaction conditions for the reduction of cyanohydrin esters to N-acylated-ß-

amino alcohols; and finally the optimization of mixed-oxide heterogeneous catalyst 

compositions for the oxidation of CO, with and without hydrogen, for fuel-cells 

applications. To tackle these three diverse catalytic subjects different chemometric 

optimization strategies have been applied. These strategies can be divided into two main 

classes: the Design of Experiments (DoE) and the Global Optimization algorithms.  

The main topic of this thesis is the investigation of the synergies between High-

Throughput Experimentation (HTE) and Chemometric Optimization methodologies in 

Catalysis research. The uses of these strategies for catalysis research are discussed in 

this thesis through its various chapters: 

 

Chapter 1 provides an introduction to High-Throughput Experimentation (HTE), 

Chemometric optimization methods and considerations about their combined 

application for catalysis research. 

Chapter 2 presents an overview of the Design of Experiments techniques, since this 

methodology is central to most of the thesis research. 

Chapter 3 deals with the exploration of a terpene hydration reaction parameter space 

using a Design of Experiments approach.  

Chapter 4 presents the optimization of the reaction conditions for the reduction of 

cyanohydrin esters to N-acylated-ß-amino alcohols using a multi-step Design of 

Experiments approach. 

Chapter 5 deals with the planning and modelling of catalytic benchmark response 

surfaces using Design of Experiments. A library of 189 mixed-oxide catalysts was 

prepared and their activity tested and modelled for the CO oxidation reaction in both the 

absence (COOX) and presence (SELOX) of hydrogen.  



Scope of the thesis 
__________________________________________________________________________________________________________ 

 
 

 3 

Chapter 6 is concerned with the optimization procedure of employing the Global 

Optimization Genetic algorithm and the influence of the algorithm settings on its 

optimization efficiency. Both COOX and SELOX benchmarks are used to validate the 

Genetic algorithm performance.  

Chapter 7 compares the performance of several algorithms in their optimization based 

on the SELOX benchmark. Evolutionary strategies, Genetic algorithms, Simulated 

Annealing, Taboo Search, and Hybrid Genetic algorithms are the Global Optimization 

strategies tested.  Considerations between the uses of Design of Experiments or Global 

Optimization algorithms for catalysis research are also discussed. 

Appendix A describes the High Throughput Experimentation equipment used. 

Appendix B presents the mathematical models (obtained in Chapter 5) that constitute 

the COOX and SELOX benchmarks. 

Appendix C presents a brief description of the Opticat software used in Chapters 6 and 

Chapter 7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





 

 5 

 

1 

OPTIMIZATION STUDIES IN CATALYSIS EMPLOYING 

HIGH-THROUGHPUT EXPERIMENTATION: DESIGN 

OF EXPERIMENTS AND GLOBAL OPTIMIZATION 

ALGORITHMS  

 

Abstract 

 

High-Throughput experimentation (HTE) is being increasingly used in the field of 

catalysis research. In order to realise the benefit of the higher throughput obtainable 

using these methods, simultaneous parallel reactions need to be planned and the large 

amount of data generated needs to be analysed. Chemometric tools, originally designed 

to tackle analytical chemistry issues, are proving to be a valuable aid for both 

experimental planning and data analysis. In combination with HTE, they enable 

diversity to be maximised and the productivity and efficiency of the research to be 

greatly improved. This combined application offers therefore new possibilities and a 

step forward in catalysis research.  
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1.1 - Introduction 

 

Catalysis research allowed the development of more efficient and greener chemical 

processes through the acceleration of chemical reactions and the increase in selectivity 

towards the desired product. A great effort is put in the research and discovery of new 

catalytic processes and the optimization of existent process parameters. A way to 

accelerate this discovery is to use High-Throughput Experimentation (HTE) 

methodologies. The use of HTE also allows more diversity to be taken into 

consideration in the catalysis search parameter space due to the lower experimental 

effort, but the possibility of screening large parameter spaces can also lead to an 

experimental combinatorial explosion, impossible to handle even with HTE. Multiple 

parallel reactions need to be planned, to be performed in reaction batches and the 

resulting large analytical data volumes processed.  Efficient experimental planning and 

data analysis can be partially solved by chemometric methods. These methods allow to 

further enhance the capabilities of HTE experimentation and their application in HTE 

catalysis is nowadays increasingly studied. 

 

1.2 - High-Throughput catalysis 

 

In contrast to traditional methods, in which product formulations or sets of process 

conditions are tested sequentially, High-Throughput Experimentation (HTE) is a 

method that allows the synthesis and screening of tens or hundreds of reactions or 

catalysts simultaneously. Robotics in the form of liquid and solid handling devices and, 

usually, miniaturised multiple reactor systems are used to speed-up the screening 

procedures of research and development in several chemistry fields. The multiplicity 

and parallelism of the reactor arrays enable productivity and diversity to be maximised, 

by reducing limitations in the number of experiments that can be conducted. HTE 

research, besides the saving in time, also allows safer, and ultimately cheaper research, 

and has a lower environmental impact since only small quantities of reactants are used 

[1]. The initial applications of HTE occurred in the field of combinatorial drug 

discovery in the late ‘eighties. Since then, HTE use in this field is widespread, being 

nowadays a standard method for drug discovery in industry [2,3]. The use of HTE 
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methods in the catalysis field is more recent, the first reports appearing about fifteen 

years ago.  Schültz et al. in 1995 disclosed the application of HTE methods for the 

discovery of novel materials and library screening of properties such as 

superconductivity and magneto resistance [4,5]. Later in the same year, libraries of 

compounds for use as catalysts for asymmetric synthesis [6] and phosphatase hydrolysis 

[7] were also reported.  Nowadays a significant amount of work is still being performed, 

aimed at realising the full potentialities of the method in this area. Some good review 

papers about these efforts are presented in [8-10].  HTE can be used in most procedures 

involved in the development and testing of catalysts. Catalyst synthesis (both 

homogeneous and heterogeneous), screening for activity and selectivity, and 

optimization of process parameters can all be performed with higher efficiency using 

HTE methods.  

The advantages of HTE have sometimes prompted the conclusion that less scientific 

insight is necessary when applying these methods. This is, however, a wrong perception 

since the challenge to the chemist is in fact increased rather than decreased. Due to the 

removal of limitations on the experimental effort that can be performed, the chemist can 

take into consideration more variables that can influence the system under study. This 

increased experimental power compels the chemist to use his/her chemical knowledge 

to determine the relevant variables and their settings in order to carry out a meaningful 

experimental plan. And, finally, a great deal of critical chemical insight is again 

essential for interpretation of the results, knowledge extraction and the planning of 

subsequent research steps. High-Throughput Experimentation is not a new field of 

science but a series of tools developed for helping chemists. Optimization studies are 

without doubt one of the areas where HTE methodology presents great advantages, 

since it allows larger parameter spaces to be investigated in a systematic and 

experimentally efficient manner. In Appendix-A the High-Throughput equipment 

employed in this thesis is presented and briefly described.   
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1.3 - Chemometrics for HTE catalysis 

 

Chemometrics is defined by the International Chemometrics Society (ICS) as “the 

science of relating measurements made on a chemical system or process to the state of 

the system via application of mathematical or statistical methods”. These methods, 

initially dedicated to tackle analytical chemistry issues, are nowadays receiving special 

interest from the catalyst HTE community and a considerable number of studies have 

been performed in order to improve the understanding of these methods and to adjust 

them to the field of catalysis optimization [11-13]. 

The wider acceptance of High-Throughput Experimentation (HTE) and combinatorial 

methods has opened, in recent years, a broad range of new possibilities to the catalyst 

researcher [14]. The automation and parallelisation of the experimentation poses, 

however, new challenges to the chemist in the planning of the experimental work so as 

to take full advantage of the HTE capabilities. HTE introduces the need of batch 

experimental planning and the analysis of large volumes of data. The research routine is 

based on batches of parallel experiments, as opposed to the conventional approach of 

sequential experiments. The way to plan the experimentation is therefore different since 

all experiments need to be designed beforehand. Taking advantage of the lower 

limitations on experimentation, robust experimental designs can be performed and 

larger parameter spaces searched. As a consequence of the large batches of experiments 

performed, large data sets of results are also obtained. Chemometrics provides the tools 

for efficient experimental planning, data treatment and knowledge extraction. Many 

stages of the HTE catalysis research can therefore benefit from the aid provided by 

chemometric methods. The experimental planning of the research workflow can be 

efficiently performed via Design of Experiments or Global Optimization techniques. 

Chemometrics data analysis techniques allow to efficiently extract information from the 

large data sets obtained in HTE research. Analysis of variance (ANOVA) is a statistical 

set of tools that allow verifying the significance of the information obtained. Methods 

such as principal component analysis (PCA) allow for outliers and data correlations 

identification can be used for facilitating the interpretation of the results. When a 

statistically planned experimental design is performed, regression techniques such as 
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ordinary linear regression (OLR) and principal least squares (PLS) can also be used to 

obtain the system model.  

Correlations between variable descriptors (such as solvents, additives) and 

activity/performance can be obtained by quantitative structure activity/properties 

relationships (QSAR, QSPR) methods [11]. These involve the construction of some 

form of model which enables the observed activity or properties to be related to the 

molecular structure descriptors; these methods are extensively used in the virtual 

screening of drug candidates. For catalysis-related studies, mainly heterogeneous 

catalysis, the importance of study of the composition has led to the development of 

quantitative composition activity relationship (QCAR) techniques [10]. Via 

QSPR/QSAR/QCAR models large data sets of libraries can be virtually screened and 

the combinatorial explosion due to the presence of many categorical variables reduced. 

Through these models knowledge about catalysis is obtained by extraction of rules and 

relationships, and this knowledge can be further used in the design of new libraries [15]. 

These methods belong to the Cheminformatics [16,17] area of research and will not be 

treated in this thesis in which ordinary linear regression techniques are applied and 

focus is put on experimental planning techniques. 

 

1.4 - Chemometric experimental planning techniques 

 

The increased throughput that is achieved with HTE technologies has introduced the 

need for a different strategy in experimental planning and also for new possibilities for 

robust experimentation. Several experimental planning methodologies exist that can 

handle different experimentation throughputs and demands. Many of these technologies 

are also used in other scientific fields that deal with multivariate issues such as 

economics, social sciences, etc. Their application in chemistry-related issues is 

relatively recent and in many cases just nowadays being explored (see Chapters 6 and 

7). 

Two main groups of strategies can be designated for experimental planning: methods 

based on statistical planning and modelling of the entire parameter space (Design of 

Experiments); and, methods based on iterative searches in the parameter space 

(Optimization Algorithms). 



Chapter 1 
__________________________________________________________________________________________________________ 

 
 

 10 

 Design of Experiments (DoE) is the methodology most commonly used in HTE 

catalysis. For some catalytic issues, like for instance some cases of heterogeneous 

catalyst composition optimization, algorithm optimization strategies are nowadays 

being increasingly studied and applied. These two mathematical aids to experimentation 

are different in nature and objective, the choice of which to use may depend on the 

catalytic problem to be solved. 

 

 

1.4.1 - Design of Experiments (DoE) 

 

Design of Experiments (DoE) uses regression techniques to obtain the relationship 

between the responses and the system factors. Models for the chemical systems can be 

obtained via this technique, or just screening information about the importance of the 

effects of the factors studied. DoE can resemble to some extent conventional laboratory 

research, in the sense that, to improve efficiency, the search can be divided into 

different stages or designs. The parameter space is progressively reduced to the most 

relevant variables from one stage to the next and detailed information is obtained in the 

end for the most important factors [18]. The interpretation of the results, and the 

selection of the factors for further investigation, is the responsibility of the chemist. The 

parameter space is modified at each design, making it possible to eliminate or introduce 

new parameters or levels, according to the current understanding of the system under 

study.  

DoE is starting to be increasingly applied in research in the catalysis field. Literature is 

available reporting screening and optimization studies of catalytic systems. Some of 

these studies include catalyst formulation and preparation [19-22], catalytic kinetic 

modelling [23,24], reactor engineering [25,26], and the optimization of catalytic 

reaction conditions [27-31].  In chapter 2 this methodology is explained in more detail. 
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1.4.2 - Optimization algorithms 

 

Optimization algorithms are iterative computational routines that guide the experimental 

procedure (Chapter 6 and 7). There are several algorithm procedures that can be 

applied, depending on the characteristics of the system requiring optimization. The 

algorithms can have a heuristic (basing the search procedure on premises) or stochastic 

(random) character, and can be divided into local or global optimization algorithms. 

While local optimization algorithms are valuable for fine-tuning optimization, they stop 

on the first optimum found. Global optimization algorithms in contrast are effective in 

finding the global optimal solution location but weaker in the fine optimization.  

Examples of local search algorithms are Simplex and Steepest Ascent; global search 

algorithms include the Genetic Algorithms (GA) and Simulated Annealing (SA) 

between others. This thesis will focus on the Global Optimization search algorithms. 

These are often inspired by natural processes of optimization, like Genetic Algorithms 

(GA) which simulate biological evolution and survival of the fittest, and Simulated 

Annealing (SA) which mimics the gradual cooling of a metal to achieve its most stable 

solid form (Chapters 6 and 7). Optimization algorithms represent alternative 

optimization methods to DoE, being many times preferred when there is a) a large 

parameter space, b) non-linear shape of the response surface (where synergistic effects 

are commonly encountered) and c) the existence of many categorical variables [32,33]. 

 

1.5 - Summary 

High-Throughput Experimentation, together with chemometric methods of experimental 

planning and data analysis, allows increased possibilities for catalysis research. The 

synergy between these two strategies is, however, still nowadays not fully studied and 

explored.  This investigation and mainly the experimental planning techniques applied 

to HTE catalysis is a focal point from this thesis.  
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2 

DESIGN OF EXPERIMENTS FOR HIGH-THROGHPUT 

CATALYSIS RESEARCH 

 

Abstract 

 

Design of Experiments (DoE) is a methodology that aims at maximising the amount of 

information obtained from experimentation while minimising the experimental effort. 

With DoE a statistically efficient set of experiments can be selected from the parameter 

space and, by the use of regression techniques, the relationship between the system 

responses and the influencing factors is obtained. The result is a model from which 

information about the magnitude of effects can be drawn or a response surface can be 

constructed. The use of DoE can improve greatly the efficiency of experimental effort 

and enable more accurate results to be obtained than the classical one-factor-at-a-time 

research method. 
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2.1 - Introduction 

 

Design of Experiments (DoE) was first developed in the 1920’s, by Sir Ronald A. 

Fisher, a British scientist who studied and proposed a different research approach to 

conventional one factor at a time (OFAT) research methods in order to maximise the 

knowledge gained from experimental data [1,2]. Planning a DoE strategy starts with 

determining the objectives of an experiment and selecting the process factors that are 

relevant for its study. An experimental design is then chosen in which all the considered 

factors are simultaneously varied. These designs help to maximise the amount of 

information obtained from experimentation while minimising the experimental effort 

required. They are more efficient and lead to more accurate optimization than 

conventional OFAT research methods. The results obtained can be analysed in a 

statistical manner, which enables information about their significance and confidence 

intervals to be gathered.  It can be applied to many different scientific fields or basically 

to any system with measurable inputs and outputs. 

In recent years, this methodology has been applied with success in the field of catalyst 

research. Possible applications in this area include catalyst formulation and preparation 

[3-6], catalytic kinetic modelling [7,8], reactor engineering [9,10], and the optimization 

of catalytic reaction conditions [11- 15]. 

 

2.2 - Design of experiments (DoE) vs one factor at a time (OFAT) 

 

In the conventional research strategy of changing one factor at a time, the effect of 

altering one variable of the studied system is initially measured, the best setting of this 

variable being then usually chosen for the investigation of the variation of the other 

system parameters. With this approach a great deal of information can be obtained about 

how a given variable influences the system under study at the chosen fixed levels. 

However, the OFAT approach has limitations that can lead to inaccurate or even 

erroneous conclusions in cases where the influences of the variables on the system are 

not independent of each other [16], as is usually the case in catalyst optimization 

studies. Catalytic reactions are commonly characterised by multiple interacting 

parameter dependencies (like temperature, metal type and composition, pressure, 
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catalyst loading, solvent, etc.) and are therefore not easily optimized by a traditional 

OFAT approach.  

This is demonstrated in Figure 2.1, which represents the difficulty of a proper system 

optimization via the classical one-variable approach when interaction effects between 

the parameters are present. In Figure 2.1a variable x1 is tested at a random fixed level of 

variable x2 (x2 = 0.0). The level of the variable x1 from which the best result obtained is 

fixed and variable x2 is then tested at this level (Figure 2.1b).  The best result found 

after testing these two variables is often taken as the optimal solution.  In the case of 

linear dependent variables this methodology can lead to erroneous conclusions, as 

exemplified in Figure 2.1a-b where the true response surface and optimality area can be 

observed on the contour-plot graphic background.   

 

 

 

 

 

 

 

 

 

 

 

                              a)                                     b)   

Figure 2.1 - Optimization of the response affected by two factors bearing interaction effects 

using the conventional one factor at a time approach (OFAT). a) Investigation of the first 

variable, b) Investigation of the second variable at the best setting of the first. 

 

A multivariate Design of Experiments (DoE) approach, on the other hand, is able to take 

account of these interactions. DoE is an empirical method which directly measures the 

effects of various changes in the system response. Knowledge about cause and effect 

relationships can be drawn from a well planned and designed experiment. The 

parameter space is consistently investigated and interactions between factors can be 
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revealed with this methodology. Multivariate statistically designed experiments are also 

more economical with respect to time and effort than the classical research approach of 

altering only one factor at a time. 

Using a multivariate DoE approach enables an experimental plan to be constructed that 

ensures proper experimental coverage of the parameter space and produces 

representative statistical results (Figure 2.2). The data are fitted to a model that 

originates a response surface that indicates the location of the optimality area. This 

model is an approximation of the true response surface, and further close-up 

experiments in the optimal area region can be performed to find the best optimal 

solution. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 - Optimization of the response affected by two factors having interaction effects. 

Example of a DoE optimization experimental plan using a Central Composite Design (CCD).  
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2.3 - DoE models 

 

As with most chemical problems, for catalytic chemical systems it is difficult or even 

impossible to derive a function in an analytical form based on previous knowledge and 

chemical theory. Experiments are therefore conducted to try to obtain information about 

the functional relationship between the changing of the factors (x1, x2, …, xk) and the 

resulting responses (yi).   

 

( )1 2 ky f x ,x ,…,x=           Equation 2.1 

 

In the DoE approach this relationship is established in an analytical form and the Taylor 

polynomial function is usually employed. This function is called a response model. In 

most catalytically related issues the inclusion of the second-order terms is considered 

sufficient for representing the chemical system to optimize [17]. This expression can 

therefore be written as: 

 

εββββββββ +++++++++++= 22
111211222110 kkkjiijkk xxxxxxxxxy KKK  

Equation 2.2 

 

The error term, ε, contains information from the omitted terms of the Taylor expansion 

and includes both experimental error and the effects of uncontrolled factors in the 

experiment.  

The coefficients of the response model describe how the settings of the experimental 

variables are linked to the response. The β coefficients of the Taylor function can be 

obtained via linear regression from the experimental results. In a designed experiment, 

x1 and x2 are systematically manipulated while measuring y, with the objective of 

estimating the coefficients β0, β1, β2, and β3. The βkxk, terms represent the main effects 

of the factors, βijxixj the two-way interaction between factor effect terms, and βkkxk
2 are 

quadratic terms accounting for the system’s curvature. The roles played by each factor 

can be analysed from the estimated magnitude of its coefficient. For obtaining 

representative coefficient values a consistent design plan needs to be performed.  
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A quadratic order response model is not always necessary to represent the system being 

studied, or to obtain the desired information. Lower order models are in many cases 

sufficient.  The terms that are necessary to include in the model function are dependent 

on the objective and complexity of the system under study. The more terms are included 

in the equation, the more detailed the information can be obtained about the chemical 

system, but the price to pay is an increase in the experimental effort. A graphical 

exemplification of the type of information obtained with increased order in the models 

can be observed in Figure 2.3. 

In this figure the increase in information obtained by adding increased order terms into 

the model function is shown. 

In linear modelling (Figure 2.3a) the response is approximated by a plane.  These 

models are a simple approximation of the experimental surface, and do not give a 

perfect description of its variance. But they can be very useful when rough estimates of 

the influence of the experimental variables are all that is required, as in the screening 

experiments stage. Second order interaction models (Figure 2.3b) allow the twists of the 

planes to be revealed. This occurs when interactions exist between the variables. And 

quadratic models (Figure 2.3c) allow the curvature of the response surface to be 

exposed. These surfaces are valuable for locating the final optimum conditions. 

In screening experiments, for instance, one is mainly interested in determining, among 

the many trivial factors, the few parameters of most importance; these can then be 

investigated further in more detail. The main effects of the factors (βkxk) can be 

sufficient to obtain this information and a linear model can be simply employed. If 

interactions between factors are also assumed to be important, the interaction terms 

(βijxixj) should also be considered. In a later stage of research, if more detailed 

information is necessary and curvature is suspected for the system response, then the 

quadratic terms (βkkxk
2) should then also be adopted. In most cases likely to be met with, 

third order interactions between the factors are not found to be significant and therefore 

are often not necessary to be considered for optimization purposes.  

A multi-step approach using a sequence of designs, each increasing the degree of 

information yielded, is a research strategy usually considered to be very efficient (see 

Chapter 4) [18,19]. 
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 a)                                            b)                                        c) 

Figure 2.3 - Example of contour plots and corresponding response surfaces for different order 

models. a) First order or linear model (y = β1x1 + β2x2), b) Second order with interactions (y = 

β1x1 + β2x2 + β12x1x2)  and d) Quadratic model (y = β1x1 + β2x2 + β12x1x2+ β11x1
2 + β22x2

2)  
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2.4 - Types of designs 

 

Depending on the type of catalytic problem to be solved, the degree of detailed 

information wanted, the dimensions of the parameter space and the experimental 

constraints, a proper design should be chosen that satisfies these demands and 

limitations. With a proper design the response model coefficients can be obtained in the 

most efficient and/or accurate way.  

Commonly used designs can be divided into screening, response surface or 

optimization, and mixture design classes. Both classical and non-classical types are 

available; the classical employ predetermined positions of the experimental points in the 

parameter space, while in non-classical (computer-based “Optimal” designs) an 

algorithm selects the experimental points, on the basis of the number of experiments 

specified by the researcher. This enables also the experimental constraints to be taken 

into account and so these designs are generally used whenever the classical designs 

cannot be employed.  

 The screening designs are usually used to select the few important factors that 

significantly affect the system and discard the many trivial ones. These investigations 

may include many variables and play an important role in the early stages of an 

investigation. Their main objective is problem reduction. They allow locating a proper 

region from the parameter space to perform more detailed investigation via a further 

optimization design. Common screening designs are the Full and Fractional Factorial 

designs (Section 2.4.1) and D-Optimal designs (Section 2.4.3). 

In optimization designs, usually more detailed information is desired from the few 

significant factors in question. Their main objective is to reveal the optimal values for 

the experimental factors or to build a mathematical model which can be used to predict 

the behaviour of the process being investigated. Optimization designs are also called 

Response Surface designs and some commonly used examples include the Central 

Composite design, the Doehlert design (Section 2.4.2) and also the D-Optimal design 

(Section 2.4.3). 

Mixture designs are employed whenever it is necessary to optimize the composition of 

mixtures [20]. In these cases the proportions of the different factors must sum up to 
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100%, complicating the design and the analysis of the results. An example of a mixture 

design can be observed in Figure 2.4f.  This DoE method is not applied in this thesis.  

 

2.4.1 - Factorial designs 

 

Factorial designs typically place points at regular intervals in the design space, 

including the highest and lowest values of each factor.   

A Full Factorial design comprehends the exhaustive performance of all the possible 

parameter combinations plus replication experiments for error analysis.  

In Fractional Factorial designs just a part of the total number of runs is performed. The 

runs are chosen with detail in order to have the most equilibrated design possible 

[21,22]. The information obtained is dependent on the quantity of experiments and the 

experimental plan considered. The fractional factorial designs can have different levels 

of resolution (III, IV and V) and the choice of resolution is dependent on the level of 

detail of information desired and on the experimental requirements. The price to pay by 

not doing a full factorial design is that some effect terms of the model are confused by 

‘aliases’. This means that the effects of these terms on the system cannot be 

distinguished. For instance, the main effect of changing one variable is linked to the 

main effect of changing one other variable and it is not possible to determine which of 

the variables is indeed responsible for the observed effect. The more reduced the design, 

the more aliases between the factor effects are usually found, because the number of 

experiments is insufficient to distinguish between them. More information about 

fractional factorial designs can be obtained in the literature [11,19]. 

 

2.4.2 - Response surface or optimization designs 

 

Depending on the degree of detail necessary (or the model order) the Response Surface 

or optimization designs can be considerably more experimentally demanding than 

screening designs. They are usually employed to study the influence of the most 

important factors after they have been selected via a screening design. Response surface 

designs (RSM) are used when more than one continuous factor is present. There are 

several RSM design strategies that can be chosen to model catalytic systems. Figure 2.4 
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shows geometrical representations of some of the most common strategies for systems 

with two factors.  

The Pentagon (Figure 2.4a) and the Doehlert design (Figure 2.4b-c) are experimentally 

economical designs [23]. The Pentagon is more efficient requiring just the amount of 

experiments necessary to fit a quadratic second order model (in the case of two 

continuous variables 6 coefficients are needed and so 6 experiments). The reduced 

amount of experiments may, however, compromise the model prediction qualities. The 

Doehlert design is more commonly used than the Pentagon design. One of the reasons is 

the possibility of augmenting it by adding three additional adjacent experimental points 

in order to continue to explore the parameter space (Figure 2.4b-c).  

 

 

 

 

 

 

 

        a)            b)                  c) 

 

 

 

 

 

 

   d)              e)                                   f) 

Figure 2.4 - Classical response surface or optimization designs. a) Pentagon design, b) Doehlert 

design, c) Augmented Doehlert design, d) Central Composite design, e) Box-Behnken design 

and f) a mixture design.  * Star or axial points. 

 

 

The Central Composite design (Figure 2.4d) contains a factorial design with centre 

points that is augmented with a group of star or axial points [24,25]. The star points 

*  

*  

*  

*  
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establish new extremes for the low and high settings for all factors and allow an 

estimation of curvature. These designs have very good statistical properties and can be 

used in demanding simulation issues.  

The Box-Behnken designs (Figure 2.4e) place points on the midpoints of the edges of 

the hyper-cubical design region, as well as points at the centre [26]. These designs are 

used when there are more than three levels and are more economical than either the 

Central Composite or the Doehlert design.  

 

 

2.4.3 - D-Optimal designs 

 

Optimal designs differ from those discussed above in being generated from an algorithm 

based on a particular optimality criterion [27]. The algorithm searches for a sub-set of 

experiments from the entire parameter space that best satisfies this criterion. All the 

optimality methods are model-dependent and so the experimenter must specify the 

model terms to be considered and the final number of design points preferred before the 

design generation. The computer algorithm usually uses a stepping and exchanging 

process to select the sub-set of experiments. There are various forms of optimality 

criterion that can be used which are all based on some function of the information 

matrix. The most common criterion is the D-Optimal. The D-Optimal design algorithm 

seeks to maximise the ׀X’X  the determinant of the information matrix (X’X) of the ,׀

design. This criterion results in minimising the generalised variance of the parameter 

estimates in a pre-specified model [20]. 

The Optimal designs are usually applied whenever the classical factorial or RSM 

designs cannot be used due to constraint limitations of the parameter space or 

experimental effort, and/or the presence of discrete factors with many levels (a common 

case in catalysis issues). Computer-based optimal designs can be used both for 

screening and optimization, depending on the model specified. 
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2.5 - Multi-design approach 

 

Multi-design DoE approaches resemble to some extent conventional laboratory 

research, in the sense that, to improve efficiency, the search can be divided into 

different stages or designs. The parameter space is progressively reduced to the most 

relevant set of variables from one stage to the next and detailed information is obtained 

in the end for the most important factors [28]. The interpretation of the results and the 

selection of the factors for further investigation is the responsibility of the chemist. The 

parameter space is modified at each design, making it possible to eliminate or introduce 

new parameters or levels, according to the current understanding of the system under 

study. 

A common strategy is to start with a screening design to select the most important 

factors affecting the system. Then, setting the less influential factors to the most 

advantageous levels, a series of more detailed designs (such as full factorial designs) 

can be conducted to better understand the effect of the most important factors on the 

response. The process can, if necessary, be continued with additional optimization steps, 

enabling the response surface to be further modelled until a satisfactory description of 

the region of interest is obtained. Such a strategy is usually highly efficient and is 

exemplified in Chapter 4. 

 

 

2.6 - Steps for a DoE research strategy 

 

A DoE research strategy should be carefully planned in order to make it possible to 

obtain in the most efficient way the information required from the experimentation. The 

planning of a DoE experimental research programme differs from the conventional 

OFAT strategy, and the more important issues will be briefly explained in this section. 

Common steps in this planning are: 1) set the objectives and responses, 2) select the 

parameter space, 3) select a proper experimental design, 4) perform the 

experimentation, 5) analyse and interpret the results, and prepare the next step based on 

the previous results obtained. 
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2.6.1 - Setting objectives (responses) 

 

The set-up of the experimental design depends on the question to be answered. The goal 

of the experiment needs to be clear to be able to make the right experimental plan. A 

thoroughly thought-out experimental design is after that essential for being able to 

obtain the desired answers. For this, the relevant factors that may influence the system 

need to be determined, and the experimental constraints considered.   

In many cases there is the need of multi-responses optimization. The choice of the most 

relevant response to optimize or its importance in the hierarchy depends on the goal of 

the catalytic challenge. Often the yield of the desired product is the most important 

response; however other responses such as selectivity, stereo-selectivity or conversion 

can be the most important ones to consider. Other responses may be for instance the 

production cost of the product, consumption of a specific starting material, time for 

reaching a certain conversion, etc.  There exist some mathematical techniques that allow 

the simultaneous analysis of several responses. If the number of responses to optimize is 

small, the surfaces for each of the responses can be evaluated by visual inspection of the 

contour plots, preferably superimposed on the same plot [19]. Another method is to 

combine the responses together into one criterion, the Desirability function, which is 

then optimized. If there are many responses to consider, their simultaneous evaluation 

can become very complex. Multivariate analysis of the response matrix by principal 

components analysis (PCA) or principle least squares (PLS) can simplify this evaluation 

[19]. The Desirability function method has been used in Chapter 5.  

 

 

2.6.2 - Selection of the parameter space 

 

The selections of factors and factor levels that can influence the catalytic system in the 

pursuit of the set goal have to be carefully considered with the previously defined 

objectives in mind. Existing knowledge about the system under study should be 

primarily used at this stage. 

A catalytic reaction is a complex system that can be affected by several factors. 

Common factors influencing a catalytic system are for instance the catalyst type and 
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loading, its stability, the pressure, temperature, and the solvent; this makes it a complex 

system to study and to optimize.   

The variables can be usually divided into continuous or discrete factors. Variations such 

as: substrates, reagents, catalysts, solvents, etc. (the categorical variables) are discrete 

and constitute what is sometimes called the reaction system. The experimental 

conditions, such as: concentrations of a substrate, reagent or catalyst; temperature, 

pressure, stirring rate, etc. are usually continuous and can be set to any value in their 

range of variation.  

Well-planned measurement of continuous variables allow response model fitting and 

interpolation estimates of the non-measured variable levels. While among the discrete 

variables, measurement estimates of non-tested levels cannot be obtained.  

 

2.6.3 - Choice of experimental design 

 

Depending on the objective of the experiment and on the experimental constraints (time, 

limited number of experiments, etc.) there are several possible types of design that can 

be used to plan the experimental effort. An overview of these designs can be seen in 

Section 2.4. 

 

2.6.4 - Performance of the experimental plan 

 

When performing the experiments a high degree of attention should be paid to avoid 

experimental errors (random but mainly systematic). Known, but unwanted, sources of 

variation caused for instance by changes in reactants, equipment or personnel can be 

‘blocked’.  With blocking the variation caused by this change can be accounted for and 

not taken into consideration for the true estimation of the effect of the factor on the 

response. Furthermore, results can be revealed that otherwise would be obscured by the 

variation. 

 With randomisation the run sequence of the experimental units is determined 

randomly. This decreases the possibility of errors to be associated with specific factor 

levels. 
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 Blocking is used to remove the effects of important uncontrollable but known noise 

sources and randomization is used to reduce the contaminating effects of the other 

uncontrollable variables. A rule of thumb found valuable in DoE is: ‘block what we can 

and randomize what we cannot’ [29]. 

 

2.6.5 - Analysis and interpretation of the results 

 

The analysis and interpretation of the experimental results can be performed in an initial 

stage simply by a preliminary visual inspection of the data. Most of the available 

software packages possess, however, graphical and statistical aid tools for their analysis 

and interpretation which largely improves the data interpretation and information 

knowledge. 

With a well designed DoE experimental plan the effect that varying a factor can have on 

the system response can be computed in the following manner:  

 

 

                 Equation 2.3 

 

 

Where An+  and An−  refer to the number of data points collected at the + and - level of 

factor A respectively and (Ay + ) and ( Ay − ) to the associated responses.  

The effects of changing experimental factors are transmitted via the corresponding 

model parameters into the systematic variation of the response y. To be significant this 

variation must be above the system noise level. Hence, to determine the influence of 

experimental variables we must determine the values of their model parameters and then 

compare these values to an estimate of the experimental error. In this thesis a graphical 

representation of the effects magnitude is usually presented with the significance limits 

at the 95% confidence interval (Chapters 3, 4 and 7). Other statistical tests can be 

performed based on the statistical method of analysis of variance (ANOVA). All the 

previous tests can be automatically performed via the common DoE software.  
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2.7 - Designs of experiments in HTE catalysis research 

 

Automated equipment in conjunction with statistical design of experiments (DoE) can 

accelerate both the screening and the optimization phase of catalytic reactions. The 

large numbers of factors that affect a catalytic system usually implies a large 

experimental effort.  DoE enables the maximum of information to be extracted with an 

efficient experimental plan, while High-Throughput methodology makes possible faster 

experimentation with greatly reduced non-reproducibility and human error. The 

simultaneous experimental planning mode of the DoE strategy combines well with the 

batch parallel mode of operation of the HTE equipment used in catalysis research. In 

this way an entire design can be performed simultaneously in the HTE equipment. The 

use of DoE and HTE are therefore two highly compatible methodologies for both 

catalysis screening and optimization projects. 
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2.8 - Summary 

 

Design of experiments is a better optimization methodology than one factor at a time 

optimization. With the DoE methodology the parameter space is consistently searched 

and the probability of locating the system optimal conditions is largely increased. The 

multivariate nature of the DoE methodology necessitates a different strategy of 

experimental planning, leading to the need of the scientist to change his/her approach to 

optimization. The DoE methodology presents the versatility to deal with the most 

common catalytic chemistry issues and its batch design output is very well suited for the 

parallel High Throughput Experimentation. 
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3 

HIGH-THROUGHPUT METHODOLOGY COMBINED 

WITH DESIGN OF EXPERIMENTS APPLIED TO THE 

EXPLORATION OF A COMPLEX CHEMICAL SYSTEM: 

TERPENE ADDITION REACTIONS  

 

Abstract 

 

A Design of Experiments strategy in combination with high-throughput experimentation 

methods was employed for the exploration of addition reaction, namely the hydration 

reaction of terpenes. Several starting materials: α-pinene, β-pinene, camphene, 

limonene, carene and myrcene were studied simultaneously in relation to the factors 

determining activity and selectivity. The effects of variation of acid catalyst and solvent 

on the reactions were investigated and the product selectivities rationalized in terms of 

the available reaction pathways towards α-terpinyl, isobornyl and bornyl products. In 

terms of competing nucleophiles, the highest selectivities (91%) were obtained for the 

isobornyl methyl ether product, whereas isoborneol was the only alcohol derivative 

obtained with selectivities above 73%. An increase in activity was observed by using 

stronger acids, especially a heteropolyacid (HPA), but acid strength alone was not found 

to be a factor exerting a major influence on the final product mixture. The multi-design 

DoE technique proved to be highly valuable in the elucidation of the main patterns and 

trends of this complex chemical reaction system.  
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3.1 - Introduction 

 
With the arrival of Combinatorial Chemistry and High-Throughput-Experimentation 

(HTE) equipment, today’s chemist has available powerful tools for studying problems 

with a much wider scope than previously [1,2]. Due to the higher throughput a more 

comprehensive approach is possible where, in principle, most of the parameters thought 

to influence a chemical problem can be studied in a more consistent and uniform 

manner. Optimization methodologies such as Design of Experiments (DoE) [3,4], 

Genetic Algorithms (GA) [5-7], Simulated Annealing (SA)[8] and others (see Chapter 

6, 7), are being adopted in order to explore the chemical parameter space in a more 

rational and efficient way [9]. Design of Experiments (DoE) is considered to be one of 

the most suited methodologies for the application of HTE in synthetic organic chemistry 

research [10] because this methodology allows system optimization together with a 

good understanding of the problem investigated and a considerable reduction of the 

experimental effort. An overall knowledge of the response surface is acquired, in 

contrast to other screening techniques (like GA and Simulated Annealing) that focus on 

the subspace where it is hoped to find the optimal solutions. 

In this chapter a complex chemical reaction system was chosen and studied using a 

Design of Experiments strategy. Terpene chemistry has been intensively investigated 

since the beginning of the twentieth century and has contributed to the conception of 

several fundamental organic chemistry theories (Wagner-Meerwein rearrangement, 

Woodward-Hoffman rules of cycloaddition reactions, considerations about the non-

classical carbenium ion, etc.) [11,12]. Numerous synthetic terpene derivatives are in 

industrial production as flavor and fragrance chemicals.  It was chosen to study the 

addition of water to unsaturated terpenes, namely the hydration reaction in the presence 

of competing nucleophiles, as an example of a chemically complex and rich system to 

investigate [13-16]. Acid-catalysed reactions of terpenes are usually not very selective 

due to the existence of alternative carbenium ion pathways [17]. It is clear that finding a 

selective reaction will not be an easy task, because the carbenium ions are not very 

stable and can rearrange easily without the further aid of or interaction with a catalyst. 

In addition, possible competition between water and protic solvents or catalysts for the 

nucleophilic role further increases the complexity of the system and the diversity of 
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selective product candidates. An explorative research of a chosen parameter space is 

intended in this chapter in order to obtain an initial understanding of the system studied. 

This is performed by using a systematic approach involving experimental design 

schemes in combination with High-Throughput-Experimentation techniques.  

The reactivity of several terpene substrates is investigated simultaneously. This option 

allows the study of existent common carbenium ion reaction paths and has also a 

financial and economic driver. Despite the fact that terpene-derived products are widely 

used in many applications, their volumes and/or prices are typically low and would not 

justify a focused research effort. However, by combining more than one starting 

material and thus inherently looking for a wider variety of possible feeds and products 

within one design approach, the costs can be shared.  

The search for the main patterns and trends of a complex terpene chemical reaction 

system was performed in this Chapter by DoE techniques.  

 

 

3.2 - Results and Discussion 

 

3.2.1 - Initial Screening 

 

The parameter space chosen for investigation is summarised in Table 3.1. The six 

substrates (shown in Figure 3.1) are all inexpensive and derived from renewable 

resources. 

These commonly available monoterpenes were selected with regard to their chemical 

and commercial interest.  As catalysts, several commonly used Brønsted acids were 

chosen. The solvent library comprised both protic and aprotic types. A single 

temperature of 50 ºC, 18 h reaction time, 0.5 N catalyst and 1 M terpene concentration 

was employed. And the water concentration was studied at two levels: 1.5 and 3 M.   
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Table 3.1 - Initial screen parameter space. 

Substrate Catalyst Solvent [Water] (M) 
α -Pinene Boric acid Acetone 1.5 
β -Pinene Acetic acid IPA 3 
Camphene Oxalic acid Methanol  
3-Carene PTSA DMF  
Limonene H2SO4 THF  
Myrcene HCl   

 HPA   
Abbreviations: IPA, Isopropyl alcohol, DMF N,N-Dimethyl 

formamide, THF Tetrahydrofuran, PTSA  p-Toluenesulfonic acid, 

HPA Heteropolyacid - phosphotungstic acid (H3PW12O40). 

 
 
 

1 2 3

4 5 6  

Figure 3.1 - Monoterpene substrates. 1) α-pinene, 2) β-pinene, 3) limonene, 4) camphene, 5) 3-

carene and 6) myrcene. 

 

The object of the initial screen was to obtain basic information about the selected 

parameter space, such as whether the experimental conditions would lead to acceptable 

levels of activity with the chosen substrates.  A D-optimal criterion was used to choose 

part of the total combinations of variables (70 of the 420 possible combinations). The 

D-optimal criterion chooses a sub-set of the total combination of experiments which is 

‘best-distributed’ (the experiments are situated as far from each other as possible). The 

main effects of these factors (presented in Table 3.1) on the reactivity of the system are 

summarised in Figure 3.2. In this representation (and in subsequent similar figures) the 

lengths of the bars indicate the magnitude of the effects relative to the average value. 

The bars directed to the right mean a positive relative effect and those to the left a 
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negative one.  The dotted lines represent the 95% confidence interval calculated from 

the estimated experimental variance. Effects higher than this confidence level are 

considered statistically significant and are represented in black. 

 

 

    a)                     b) 
 

Figure 3.2 - Main parameter effects on conversion for the initial screen. a) Activity response 

transformation (Desirability) considered for calculating the main parameter effects on the 

response in regard to reactive or non reactive systems. b) Main effects of the parameter space in 

relation to the desired Desirability. The bars directed to the right mean a positive relative effect 

and those to the left a negative one.  The dotted lines represent the 95% confidence interval 

calculated from the estimated experimental variance. Effects higher than this confidence level 

are considered statistically significant and are represented in black. 

 

It could be observed that the substrates differ markedly in reactivity.  The catalyst is the 

factor showing the highest influence on activity, followed by the solvent. Under the 

conditions employed, the weak acids: acetic, boric and oxalic acid, showed only very 

low activities and were consequently eliminated from consideration in the second 

screen. A trend of increased reactivity with increased acidic strength is observed. Of the 
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five solvents, activities in DMF were in general low and so this solvent was likewise 

excluded from the set investigated in the second screen.  The reason for the low activity 

in DMF may be due to its unstable character in an acidic medium and/or its electron 

donor properties that can compete for the catalytic protons. Low reactivities were also 

obtained when 3-carene and myrcene were used as the starting substrate. Due to these 

low conversions and in addition miscibility problems with myrcene under the reaction 

conditions employed, these two substrates were not considered for further screening. 

The water concentration was found to have a smaller influence, without any discernable 

trend in this initial design.  

On the basis of this initial screening, a subspace of the initial parameter space with 

desirable reactivity levels was allocated for further study. 

 

3.2.2 - Second Screening 

 
The parameter space for the second screen is summarised in Table 3.2. In this new 

parameter space four of the six original substrates were retained and four catalysts, four 

solvents and two water concentrations were investigated. A D-optimal design algorithm 

is employed to select 100 experiments from the possible 128 experimental reactions 

(75% of the total combination of variables) including 4% replicates for error analysis. 

With this design, information about the major effects and 2-level interactions between 

the parameters can possibly be obtained.  

 

 
Table 3.2 - Second screen parameter space (128 possible combinations) 

Substrates Catalyst Solvents [Water] (M)  
α-Pinene PTSA Acetone 1.5 
β-Pinene H2SO4 IPA 3 

Camphene HCl Methanol  
Limonene HPA THF  

Reaction temperature 50ºC; reaction time 18 h.  
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3.2.2.1 - Parameter effects on activity  

 

A schematic representation of the reactivity trends versus the substrate, obtained in all 

experiments (100) from this second screen, is shown in Figure 3.3a. A statistical 

analysis scheme of the main effects of the various factors on the conversion response is 

shown in Figure 3.3b. 

The conversion trend (Figure 3.3) in relation to the substrate is now clear, with β-

pinene, in general, being the most reactive one, followed by α-pinene, limonene and 

then camphene. The higher activity of α- and β-pinene is easily explained by 

stereochemical stress release of their 4-membered rings via protonation and subsequent 

skeletal rearrangement, while the slightly lower reactivity of α-pinene compared to β-

pinene is the result of its endo-cyclic double bond. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 - Effects on conversion. a) Substrate conversion as function of the substrate for all 

the reaction conditions. b) Parameter effects with respect to the substrate conversion. 

 

a) b) 
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Since α- and β-pinene give almost complete conversions in most cases (see Figure 3.3a), 

it follows that the influence of the other parameters will be most discernible in the 

conversion response of camphene and limonene. The strong acids selected from the first 

screening show also a trend of reactivity according to their acidity. This effect is 

especially evident for the strongest acid HPA which consistently gives rise to the 

highest conversions. The solvent is also an influential parameter. The highest activities 

are generally found in methanol, which is mainly due to its additional role as a good 

nucleophile in the attack on the carbenium ions. The effect with respect to conversion of 

changing the water concentration is again found to be small. 

 

3.2.2.2 - Parameter effects on selectivity  

 

Rearrangement pathways 

 

The main reaction pathways undergone by the substrates after protonation are shown in 

Schemes 3.1-3.   

 

H+

C1

C2

C3

1 2

 

 

Scheme 3.1 - Main pathways of the acid-catalysed rearrangement of α-pinene (1) and β -pinene 

(2). C1: bornane skeleton carbenium ion, C2: p-menthane skeleton carbenium ion, C3: 

camphene skeleton carbenium ion.  
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For α- and β-pinene the products resulting from the rearrangement path of carbenium 

ion C2 are in the majority, but substantial amounts of products obtained via 

rearrangements of carbenium ions C1 and C3 (see Schemes 3.1-3) are also observed. 

 

C2

x

x

x

Limonene

x

x

x

x

x

11

12 (X = OH)

15 (x = OCH3)

13 (X=Cl)
14 (X=OCH3)  

 

Scheme 3.2 - Main pathways of the acid-catalysed rearrangement of limonene and C2 

carbenium ion.  

X X

X X

Camphene C1C3

Bornyl iso-Bornyl  

 

Scheme 3.3 - Main pathways of the acid catalysed rearrangement of camphene and C1 and C3 

carbenium ions.  
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Scheme 1 shows the theoretically possible conversion between the C1, C2 and C3 

carbenium ions. From the analysis of the resulting reaction mixture (see Figure 3.5) it is  

observed that in the case of limonene the compounds follow almost exclusively the 

rearrangement path of the carbenium ion C2 (Scheme 3.2) showing that in practice the 

rearrangement of carbenium C2 into a strained bi-cyclic structure is not favoured. In the 

case of camphene (Scheme 3) it is found that compounds obtained via rearrangement of 

carbenium ion C1 represent the majority of products formed.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 - Percentage of compounds present in the reaction mixture with the C1, C2 and C3 

carbenium ions skeleton. 

 

 

Selectivity: general 

 

The selectivities observed are mainly determined by the carbenium-ion route following 

protonation of the substrates. The carbenium ion with a p-menthane skeleton (C2) has a 

larger range of possible rearrangements available compared to carbenium ions C1 and 

C3, implying an increased difficulty in obtaining high selectivities towards any specific 

product. 



Terpenes 
__________________________________________________________________________________________________________ 

 45 
 

As shown in Figure 3.6, camphene with its more limited rearrangement possibilities is 

the substrate that usually gives the highest selectivities towards the main reaction 

product, followed by limonene (the products of which follow mainly the path of 

carbenium ion C2).  The lowest selectivities are obtained with the highly reactive α- and 

β-pinene, the products of which are obtained mainly via both the C1 and C2 carbenium-

ion pathways (see Scheme 1 and Figure 3.5 - 6). C3 products are also theoretically 

possible but were not found in significant amounts. 

 

 

Figure 3.6 - General results on selectivity towards the main product obtained in each reaction: 

% selectivity vs. substrate. 

 

Products 

  

When the aprotic solvents THF and acetone, and catalysts other than HCl were used, 

alcohol derivatives were the main products obtained in the reaction. It was also 

observed that some acid counter-ions and protic solvents can also act as nucleophiles, 

leading to competition with water resulting in a more complex product mixture. With 

respect to the addition of the acids, this addition was only significant in the case of HCl 

where substantial amounts of chlorinated products were found. The small size and 

Lewis-basic properties of the Cl- anion make it a good nucleophile for attacking the 

protonated substrates. In fact, even in the presence of less than stoichiometric amounts 

and in the presence of an excess of water, chlorinated derivatives are usually the main 

products obtained when HCl is present (see Figure 3.7). Regarding the addition of protic 
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solvents, it is clear from Figure 3.7 that methoxy compounds prevail whenever 

methanol is present. For IPA, even if in much larger excess than water or the acids, 

ether formation is less marked and water addition to give alcohols, or chloro-products in 

the case of HCl catalyst, is the prevailing reaction. From Figure 3.7 it is clearly seen that 

under the actual reaction conditions the order of preference with respect to nucleophile 

addition is MeOH > HCl > H2O > IPA. Rearrangement to the diene product terpinolene 

is also observed, this being the favoured product when water is present as the only 

nucleophile at its lower concentration level of 1.5 M.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 - Main product types obtained according to the presence of possible nucleophiles in 

the reaction mixture.  Only the nucleophiles from which corresponding addition products were 

detected in reasonable amounts (water, HCl, IPA, methanol) are considered.  

 

 

3.2.2.3 - Selectivities and yields towards the main reaction products 

obtained 

 

The principal reaction product (defined as the major compound present in the product 

mixture) obtained for each reaction, was in general that known from the large volume of 
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published work on monoterpene hydration/isomerisation reactions [11-16]. The 

principal products are shown in Figure 3.8.  

 

OH Cl O O

O

OH Cl O

Cl

7 8 9 10

11 12 13 14 15  

Figure 3.8 - Main products obtained: 7) isoborneol, 8) isobornyl chloride, 9) bornyl chloride, 

10) isobornyl methyl ether, 11) terpinolene, 12) α-terpineol, 13) α-terpinyl chloride, 14) α-

terpinyl methyl ether, 15) terpin dimethyl ether    

 

The principal products obtained from α-pinene, β-pinene and limonene are formed via 

the C2 carbenium-ion path. These are the rearranged product terpinolene (11) together 

with the alcohols α-terpineol (12) and/or their chloro- (13) and methoxy- (14) 

substitution products, depending on the reaction conditions employed.  When HCl is 

present, bornyl chloride (9) is the predominant product from the two pinenes and is 

formed via the carbenium ion C1. Camphene yielded mainly isoborneol (7) and its 

chloro- (8) and methoxy- (10) derivatives. 

In Figure 3.9 the selectivities and yields of the main products obtained for all the 

reactions are summarised.  It can be observed that the only product obtained in close to 

quantitative yields is isobornyl methyl ether (10) from camphene. The chlorinated 

products (8-9) are usually obtained with lower selectivities than the corresponding 

methoxy derivative (10) due to competition between the water and HCl nucleophiles, 

compared to the competition between methanol, present as solvent, and water.  

Figure 3.9 presents the main results obtained per product. The α-Terpinyl derivatives α-

terpineol (12), α-terpinyl chloride (13) and α-terpinyl methyl ether (14) have responses 

below 50% for yield, α-terpinyl chloride being obtained as main product only in the 
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reaction of limonene. High selectivities to isobornyl derivatives: isoborneol (7), 

isobornyl chloride (8) and isobornyl methyl ether (10) are obtained from camphene, up 

to 73, 60 and 91 % respectively. The corresponding yields are lower due to low 

camphene conversions (Figure 3.9). Bornyl derivatives are formed as primary products 

only when α- and  β-pinene are used; moreover, only bornyl chloride (9) was obtained 

in significant amounts, borneol and bornyl methyl ether being in all cases just smaller 

secondary products. The effect of the factors influencing the synthesis of the main 

product derivatives is discussed below.  

 

 

 

 

 

 

 

 

 

 

 

 

     a)                      b) 

Figure 3.9 - Selectivities and yields of the principal products,  a) Selectivity, b)Yield. 

7) isoborneol, 8) isobornyl chloride, 9) bornyl chloride, 10) isobornyl methyl ether, 11) 

terpinolene, 12) α-terpineol, 13) α-terpinyl chloride, 14) α-terpinyl methyl ether, 15) terpin 

dimethyl ether. 

 

 

α-Terpinyl derivatives 

 

From Figure 3.10 we see that the largest selectivities to α-terpinyl products are usually 

obtained from limonene, followed by α- and β-pinenes. For the synthesis of α-terpineol 

(see Figure 3.10a) THF gives the best results, followed by IPA and acetone. The water 

concentration is a relevant factor, higher concentrations being preferential. HPA seems 



Terpenes 
__________________________________________________________________________________________________________ 

 49 
 

to be the best catalyst and the presence of either HCl or methanol as competing 

nucleophiles is prejudicial for the synthesis of α-terpineol. 

For the formation of α-terpinyl chloride (Figure 3.10 b) and α-terpinyl methyl ether 

(Figure 3.10c), besides the obvious necessity for the presence of the corresponding 

nucleophiles, it was found that the difference in the water concentrations considered 

does not have a significant influence. Acetone was the preferred solvent followed by 

THF in the α-terpinyl chloride synthesis. The best catalyst for the α-terpinyl methyl 

ether synthesis was H2SO4, which was slightly better than the stronger acid HPA. The 

latter forms considerable amounts of terpin dimethyl ether (15) obtained by consecutive 

reaction. In Table 3.3 the best results obtained in the screening are summarised. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 - Selectivity towards: a) α-terpineol (12), b) α-terpinyl chloride (13) HCl being the 

only acid present, c) α-terpinyl methyl ether (14) methanol being the only solvent applied.  
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         Table 3.3 - Best results obtained for the terpenyl derivative products 12, 13, 14 and 15.  

Product Water 
 (M) 

Substrate Solvent Catalyst Conv 
(%) 

Select 
(%) 

Yield 
(%) 

12 3 Limonene IPA HPA 73 55 43 
12 3 Limonene THF HPA 63 56 38 
12 3 α-Pinene THF H2SO4 99 45 45 
13 1.5 Limonene Acetone HCl 43 54 26 
14 1.5 Limonene Methanol PTSA 93 42 40 
14 3 Limonene Methanol H2SO4 62 49 33 
15 1.5 α-Pinene Methanol HPA 100 22 22 
15 1.5 Limonene Methanol HPA 97 23 23 

        Conversion, selectivity and yields calculated according to GC analysis. 

 

 

Isobornyl products 

 

Camphene is the only substrate to produce isobornyl derivatives in relevant amounts. 

For the synthesis of isoborneol the water concentration seems to have only a small 

influence on selectivity; the preferred solvents are the aprotic acetone and THF and the 

preferred catalyst is HPA, followed by H2SO4. For the synthesis of isobornyl chloride a 

lower water concentration and THF as solvent seems to be preferential. In the case of 

isobornyl methyl ether the high excess of the strong nucleophile methanol obscures any 

influence of the water concentration effect and HPA appears to be, even if not 

markedly, the preferred catalyst. In Figure 3.11 these trends are summarised whereas in 

Table 3.4 the best results obtained in the screen are presented. 

 
        Table 3.4 - Best results obtained for the Isobornyl derivative products 7, 8 and 10.  

Product Water 
 (M) 

Substrate Solvent Catalyst Conv 
(%) 

Select 
(%) 

Yield 
(%) 

7 3 Camphene THF HPA 50 73 40 
7 1.5 Camphene Acetone HPA 57 62 38 
8 1.5 Camphene THF HCl 44 57 25 
8 1.5 Camphene Acetone HCl 37 60 26 
10 1.5 Camphene Methanol PTSA 86 81 73 
10 1.5 Camphene Methanol HPA 97 91 89 

       Conversion, selectivity and yields calculated according to GC analysis. 
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Figure 3.11 - Selectivity towards: a) Isoborneol, b) Isobornyl Chloride, HCl being the only acid 

present c) Isobornyl methyl ether, MeOH being the only solvent applied.  

 

 

Bornyl products 

 

Bornyl chloride is generally produced as the major reaction product when α- and β-

pinene react in the presence of HCl. It seems that, in the presence of HCl, ring opening 

does not occur readily and reaction of these substrates proceeds via carbenium ions C3 

and especially C1, in the latter case the product with endo configuration is enhanced. 

This phenomenon of HCl addition giving the endo-product was already reported in the 

work of Hanack in 1960 but its reason is even nowadays not fully understood [12, 14]. 

The fact that mainly the endo product (bornyl) is obtained in contrast to the more 

common exo configuration in other addition reaction, e.g. to isoborneol in hydrations, is 

probably due to a certain degree of concertedness and steric constraint in the attack of 

the nucleophile. 
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         Table 3.5. Best results obtained for bornyl chloride 9.  

Product Water  
(M) 

Substrate Solvent Catalyst Conv 
(%) 

Select 
(%) 

Yield 
(%) 

9 1.5 α-Pinene Acetone HCl 88 23 20 
9 3 α-Pinene IPA HCl 76 26 21 
9 1.5 α-Pinene IPA HCl 83 28 24 

         Conversion, selectivity and yields calculated according to GC analysis. 

 

As bornyl chloride is only formed from the less selective α- and β-pinene substrates and 

since, in the presence of water as competing nucleophile, products of carbenium ion C2 

are also obtained, the selectivities and yields of bornyl products are below 30% for both 

substrates. For the synthesis of bornyl chloride low concentrations of water are of 

course preferential and IPA seems to be the preferred solvent followed by acetone. 

These trends are summarised in Figure 3.12 and the best results are presented in Table 

3.5. 

 

 

 

Figure 3.12 - Selectivity towards bornyl chloride. The bars directed to the right have a positive 

relative effect and those to the left a negative one. The dotted lines represent the 95% 

confidence interval calculated from the estimated experimental variance. Effects higher than this 

confidence are considered statistically significant and are represented in black. 
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3.3 - Conclusions 

 

From this introductory investigation of the terpenyl parameter space we have obtained a 

great deal of insight in the main reactivity trends and we are able to develop guide-lines 

for further optimization: we have observed that the dominant factor determining the 

selectivity is the variety of carbenium ion rearrangement pathways usually undergone 

by a particular substrate. Thus in this case the highest selectivities are usually obtained 

with camphene and the lowest with the two pinene substrates. Activity is increased by 

using stronger acids, especially HPA, but, acid strength was not found to be a factor 

exerting a major influence on the product mixture. A special case is formed by HCl 

which, owing to the unique action of Cl- as nucleophile, yields substantial amounts of 

bornyl chloride from α- and β-pinene via the C1, bornyl carbenium ion pathway, 

whereas, in other cases, products from the C2, p-menthyl carbenium ion, dominate. 

Besides the effect of solvents due to their nucleophilic properties, some differences in 

the final products obtained are found between aprotic acetone and THF and IPA. In the 

case of hydration products the effect of water concentration is significant but not 

generally pronounced.  

The highest selectivities (91%) were obtained for the isobornyl methyl ether product, 

whereas isoborneol was the only alcohol derivative obtained with selectivities above 

73%. On the basis of the knowledge obtained from this sort of explorative search new, 

more product-specific, optimizations can be designed to obtain the desired products. 

HTE combined with Experimental Design proved to be a fast and fruitful strategy to 

explore and discover the underlining trends in a challenging chemical parameter space. 

The simultaneous study of several substrates that can share similar reactivity 

characteristics proved to be advantageous at this level of explorative information.  
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3.4 - Experimental  

 

3.4.1 - General 

 The monoterpenes used here were of commercial grade. (1S)-(-)-α-Pinene (98%), (1S)-

(-)-β-pinene (98%), myrcene (90%) and (+)-limonene (97%) from Acros, and, (+)-3-

carene (90%) and camphene (85%) from Aldrich.  

For the high-throughput set-up, an automated workstation was used consisting of a 

Hamilton Micro Lab Duo liquid-transfer system and a purpose-designed working 

platform, coupled with a temperature-controlled Zinsser Analytic Desyre mixer. On this 

platform a throughput of 24 reactions/day was obtained. The reactor rack comprised 24 

x 1.5 ml HPLC reaction vessels which could be heated and agitated simultaneously. 
1H- and 13C-NMR spectra were recorded on a Varian VXR-400S (400 and 100 MHz, 

respectively) or Varian Unity Inova 300 (300 and 75 MHz, respectively), instruments. 

GC-MS was measured by means of a VG 250 SE instrument equipped with a CP Sil 8 

CB column of 25 m × 0.25 mm and 0.4 µm DF. A Varian Star 3600 GC, equipped with 

a CP Sil 5CB column with 50 m × 0.55 mm and 1 µm DF was used to determine the 

conversions and yields in the crude reaction mixtures. Column chromatography was 

carried out with silica gel packing of 0.060-0.200 mm, pore diameter ca. 6 nm and with 

mixtures of petroleum ether (PE) and ethyl acetate (EtOAc) as solvent. TLC was 

performed on 0.20 mm silica gel plates.  

 

3.4.2 - General Procedure A: Experimental designs and data analysis 

For the first and second screenings a D-Optimal Design formed the basis of the 

experimental plan proposed for studying the major effects in the first screening, and the 

major and interaction effects in the second screening, with the reaction parameters 

presented in Table 3.1 and Table 3.2, respectively. In the first screening 70 experiments 

out of a possible 420 candidates were selected using Design Expert 6.0.3 software, 

while in the second screening 100 experiments out of 128 candidates were selected, 

including 4% replicate experiments for random error analysis. Overall, a design 

containing three categorical factors with multiple levels was employed: catalyst type, 

substrate type and solvent type. Water concentration was the only continuous factor 
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studied. Other reaction conditions such as temperature (50 °C), catalyst concentration 

(0.5 N), substrate concentration (1 M), and mixing speed (750 rpm) were kept constant 

for this exploratory search and so were not included in the design strategy.  The GC data 

obtained was worked out to obtain the desired responses (conversion, yield, selectivity) 

using a purpose-made Visual Basic program. Statistical data treatment of the responses 

to obtain the parameter effects was realised using NemrodW 2000 and further 

representation of the results via the Spot Fire 6.0.0 software.  

 

3.4.3 - General Procedure B: Screening in the HTE platform 

The reactions of the planned design were performed, in a random order, in batches of 24 

x 1.5 ml screw-top HPLC reaction vessels. In each reaction vessel the concentrations 

were: catalyst 0.5 N, substrate 1 M, and the internal standard (PCBTF, 4-

chlorobenzotrifluoride) 0.5 M. The solid catalysts were weighed manually and the 

appropriate amount of water (1.5-3 M), catalyst solution and solvent (IPA, THF, 

methanol or acetone) were dispensed to the reactors using the automated workstation. 

The vessels were then closed and the reaction temperature regulated to 50 ºC. After 

approximately 10 minutes, the mixed solution of the substrates and internal standard 

was transferred to the vials, initiating the reaction. A special rack equipped with needles 

was inserted in the upper part of the vessels to avoid problems of over-pressure during 

the liquid transfer; after this transfer a normal rack without needles was used. After 

allowing the reaction to proceed for 18 h, 300 µl of a saturated solution of 

NaHCO3/NaCO3, pH ≅ 7, was added to quench the reaction, the temperature cooled 

down, and the reaction rack mixed until no more release of CO2 was noticed. 500 µl of 

2:7 THF/toluene solution was added to dilute the reaction samples and extract the 

products by forming a two-layer system. The samples were centrifuged and the upper 

layer analysed by GC. 

 

3.4.4 - General Procedure C: Scale-up of selected screening reactions 

For purposes of product identification and verification of the screening results, some 

reactions were scaled-up to 30 ml reaction volume.  The desired products were then 

purified by column chromatography using an ethyl acetate/hexane solvent system (ratio 
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adjusted according to the desired product separation). The collected fractions were 

evaporated and analysed by GC-MS and NMR for identification of the resulting 

reaction products. 
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4 

CATALYTIC HYDROGENATION OF CYANOHYDRIN 

ESTERS AS A NOVEL APPROACH TO N-ACYLATED β-

AMINO ALCOHOLS: REACTION OPTIMIZATION 

EMPLOYING A DESIGN OF EXPERIMENT APPROACH 1 

 

Abstract 

 

The catalytic hydrogenation of acylated cyanohydrins followed by an intra-molecular 

migration of the acyl group to yield pharmaceutically interesting N-acyl β-amino 

alcohols, is shown to be a successful one-pot preparation method. The combination of a 

multistep DoE approach and High-Throughput methodology proved to be an effective 

strategy for the optimization of the reaction. With the favoured catalyst/solvent 

combination nickel-on-alumina in dioxane, both hydrogenation and acyl-group 

migration proceeded smoothly, giving the N-acyl β-amino alcohols in yields of up to 90 

% for aliphatic, and up to 50 % for benzylic substrates, the latter being more prone to 

side reactions. When enantiopure cyanohydrin esters were used, no racemisation was 

found to occur at the chiral centre of an aliphatic molecule, though a minor decrease in 

ee was observed for a benzylic substrate.  

                                                 
The contents of this chapter have been published in: 

L. Veum, S. R. M. Pereira, J. C. van der Waal, U. Hanefeld, Eur. J. Org. Chem, 2006, 7, 1664. 
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4.1 - Introduction 

 
N-Acylated β-aminoalcohols, such as aegeline (Figure 4.1), occur in nature and can 

readily be converted into β-sec-amino alcohols, an important class of compounds in the 

pharmaceutical and agrochemical industries. Some representative examples of the 

numerous biologically active β-sec-amino alcohols are etilefrine, bamethane and 

denopamine (Figure 4.1). An established route to the N-acyl β-amino alcohols is the 

reduction of the free cyanohydrin, followed by acylation of the amino group [1-3]. The 

reduction is usually performed using stoichiometric amounts of either LiAlH4 or BH3, 

but it can also be achieved by catalytic hydrogenation under strongly acidic conditions 

[4-8]. If enantiopure substrates are used, the stereocentre remains intact during these 

reduction reactions. Given the low atom efficiency of aluminium and boron hydride 

reductions and the strongly acidic conditions required for the catalytic hydrogenations, a 

different approach has been investigated. The overall aim of this investigation was to 

integrate the reduction and acylation steps in a one-pot procedure under mild conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 - N-Acyl-β-amino alcohols and β-sec-amino alcohols showing high biological 

activity. 

 

The unprotected cyanohydrins, that are commonly used as starting materials, are 

relatively unstable and racemise easily. In contrast to this, cyanohydrin esters are stable 
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and do not racemise. Moreover they are readily prepared, both in their racemic [9] and 

enantiopure forms [10-15]. In addition it was realised that the acyl group of the 

protected cyanohydrins is a potential intra-molecular acyl-donor (see Scheme 4.1). 

Following the catalytic hydrogenation of the nitrile group the newly formed amine, as a 

strong nucleophile, can immediately react with the neighbouring acyl group via a five-

membered transition state to yield the N-acyl β-amino alcohol. This type of 

intramolecular acyl migration has previously been described in the NaBH3(OCOCF3) 

reduction of an acylated cyanohydrin to yield denopamine [16], suggesting that it 

should proceed equally well following catalytic hydrogenation of the nitrile. 

 

 

 

 

 

 

Scheme 4.1 - The hydrogenation of acylated cyanohydrins with subsequent acyl-migration. 

 

Earlier reports of the catalytic hydrogenation of acylated cyanohydrins, in particular of 

mandelonitrile esters, describe the application of Pd/C or PtO2 under strongly acidic 

conditions [17-18] The primary product obtained was not the N-acyl β-amino alcohol 

but β-phenylethylamine, owing to the facile hydrogenation of the benzylic C-O bond 

over platinum or palladium catalysts in acidic medium. In this case the amine was the 

desired product [17]. In the present work the objective is to maximise the yield of the N-

acylated-β-amino alcohol and the reductive cleavage of the benzylic C-O bond needs to 

be avoided. This investigation of a selective, catalytic route for the direct conversion of 

acylated cyanohydrins (1) into N-acylated-β-amino alcohols (2) employed High-

Throughput methods for the screening of catalysts, solvents and reaction conditions.  

The large number of parameters to be investigated suggested a Design of Experiments 

(DoE) approach. DoE methodologies (Chapter 2) [19-21] are superior to traditional 

methods involving the consecutive optimization of the various parameters; they make it 

possible to maximise the amount of information that can be obtained from the results, 

while minimising the number of experiments, and increase the possibility of 
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establishing the true optimum within the search space. The experiments to be performed 

may be chosen in order to cover the whole search space as efficiently as possible. The 

size of the design (selected number of reactions) depends on the kind of information that 

is desired. In the present case a strategy of three sequential small designs was adopted. 

This enables the information obtained from the first to be used to improve the 

subsequent designs [22]. Preliminary screening designs (typically less than 25% of the 

possible number of reactions) are sufficient to distinguish between significant and 

insignificant parameters and are therefore well suited at the early stages of the research 

effort to reduce the search space. By continuous refinement of the conditions in 

subsequent optimization designs, the most influential parameters can then be studied 

with higher detail, and further optimization achieved. Since the number of parameters to 

investigate is usually reduced, the number of experiments per parameter can be 

increased. In this way, more information on the main effects and especially the 

interactions of the parameters can be obtained. Such a sequence of DoE’s is generally a 

better strategy than one large one, because the information obtained from one design is 

used to improve the following (Chapter 2). 

 

4.2 - Results and discussion 

 
As shown by Hartung [17], the hydrogenation of benzylic cyanohydrin acetates easily 

yields products such as β-phenylethylamines by reductive cleavage of the benzylic C-O 

bond. In aliphatic substrates, on the other hand, the C-O bond is more stable and 

resistant to cleavage even under drastic conditions. Different conditions are likely to be 

required for the selective hydrogenation of aliphatic and benzylic cyanohydrins and it 

was therefore chosen to optimize the reactions for mandelonitrile acetate (1a), 

representative for the benzylic substrates, and heptanonitrile acetate (1c) (see Scheme 

4.2), representative for the aliphatic substrates, separately. 

4.2.1 - Initial screening  
 

The use of a DoE strategy requires as the first step the compilation of all potentially 

important parameters, based on previous experience, the literature or chemical intuition. 

The initial search space should be broad enough to assure that the optimal settings of the 
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reaction are included but not too big to be still experimentally feasible. In the 

hydrogenation of nitriles the main factor influencing the reaction rate and the product 

distribution is the metal of the hydrogenation catalyst. Most commonly, Raney nickel, 

Raney cobalt, Pd/C, Pt/C, Ru/C, and Rh/C are used [23]. The same metals but supported 

on SiO2 and Al2O3 are also often reported [23]. Normally Rh, Pd and Pt tend to give 

more secondary and tertiary amines than Co, Ni and Ru. As the migration of the acyl 

group might suppress the formation of secondary and tertiary amines, these metals were 

still included in this investigation. For the initial screening Ni, Pd, Rh, Pt and Ru, on 

carbon and Al2O3 as carriers were selected as potential catalysts. 

The solvent forms a second important parameter. The most commonly used solvents for 

the hydrogenation of nitriles are protic solvents such as methanol and ethanol. However, 

since the envisaged reaction involves a migration of the acyl-group, solvents with a 

broader range of properties were selected: 2-propanol, a protic but less polar solvent 

than methanol; dioxane, an aprotic, polar ether; and toluene, a relatively apolar solvent.   

It is known that the addition of ammonia and of water can change the distribution ratio 

of the products of nitrile hydrogenation [23]. Ammonia is a commonly used additive, 

favouring the formation of primary amines, though in the present case reaction with the 

ester group is a possible side reaction. Reports on the effect of water are conflicting; 

several cases have been reported where water is added to promote the formation of both 

primary and secondary amines [24-25] but it was also claimed that water does not 

change the product distribution but instead increases the reaction rate [26]. The effects 

of both these additives were studied in the initial screening. 

The parameter space for the initial screen is summarised in Table 4.1. The reaction 

temperature was varied over two levels. The small reactors of the High-Throughput unit 

(Appendix A.3) did not permit independent variation in pressure, which was kept 

constant at 20 bar H2. Using a D-Optimal algorithm a selection of 24 reactions out of 

the total of 320 possible combinations was made for each of the two substrates [27]. 

This minimal design is sufficient to obtain information about the main effects of each 

parameter and a more detailed subsequent study would then allow for further 

optimization. Acidic conditions were not included since any formation of the amino 

salts would prevent the intramolecular migration of the acyl group. Furthermore, in 
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contrast to the free cyanohydrins, the cyanohydrin esters (1) are more stable towards 

possible basic side products like the secondary amine. 

 

 

    Table 4.1 - The parameter space to be investigated for substrates 1a and 1c.  

Temperature 
(ºC) 

Reaction 
time (h) 

Support Solvent Additive  Metal 

90 3 Alumina 2-propanol No additive Ni 
120 24 Carbon Toluene H2O Pd 

   Dioxane NH3 Pt 
   Methanol H2O + NH3 Rh 
     Ru 

 

 

After executing the 2×24 reactions, N-acyl β-amino alcohols 2a and 2c were identified 

among the products in two of the experiments for each substrate, showing the 

hydrogenation indeed to have been followed by intra-molecular acyl-migration in a one-

pot procedure. The conditions for the four successful reactions are given in Table 4.2. 

This result already shows the advantage of using DoE with successive small designs as 

an approach towards the optimization of a new reaction. It made it possible to 

investigate a large parameter space and identify the region of interest for further 

exploration, even though only 8 % of the possible number of reactions was executed. If 

a single large DoE design had been chosen, a good number of unnecessary reactions 

would have been performed. 

When using such a small design it is important to realise that each result is extremely 

influential for the calculation of the main effects of the parameters. These calculations 

will become increasingly inaccurate with a growing number of “zero-yield” reactions or 

failed experiments. In this case the number of reactions leading to the desired product is 

so low, i.e. 2 per design, that a statistical evaluation of the effect of the parameters on 

the yield would not be meaningful. The results do, however, enable the identification of 

unfavourable factors and their exclusion from the next screening phase. 
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Table 4.2 - Conditions for the successful hydrogenation in the initial screening. 

Substrate Metal Support Temp 
[°C] Solvent Additive Conversion of 

1 [%] 
Yield [a] 2 

[%] 
1a Ni C 120 Dioxane NH3 100 33 

1a Rh Al2O3 120 Dioxane NH3+H2O 100 24 

1c Ni Al 2O3 120 Dioxane H2O 100 65 

1c Rh C 120 2-propanol H2O 100 48 
[a] According to GC 

 

The reactions in Table 4.2 were all run for 24 h at 120 ºC, with either dioxane or 2-

propanol as the solvent, and ammonia or water as the additive. The successful metals 

were Ni and Rh, supported on either carbon or alumina. From the reactions which did 

not yield the desired product, the following trends could be observed: the reactions 

using Ru or toluene gave low conversions, while the reactions performed in MeOH in 

all cases gave complete conversions, but, with a wide range of side-products. Since the 

intention of the first screening was to reduce the parameter space, none of the side-

products of the reactions were isolated. However, GC-MS enabled the identification of 

several side-products (3 to 6).  

 

 

 

 

 

Figure 4.2 - Identified side-products in the hydrogenation of 1a. 

 

The presence of 5 shows that the secondary amine is formed in some cases. Products 3 

to 5, in which the benzylic alcohol group has been removed, were particularly dominant 

when platinum was used as the catalyst, which is to be expected from the application of 

platinum catalysts for the cleavage of this type of bond. Equivalent by-products could 

also be identified in the case of the aliphatic substrate, though in much smaller amounts 

in accordance with the greater stability of the C-O bond. The reason that even the 

aliphatic C-O bond can be cleaved can be attributed to the stabilising effect of the nitrile 

group on the intermediate radical or carbenium ion formed during the cleavage.  
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In the successful reactions of 1a (see Table 4.2) ammonia was present as additive, but 

analysis of the results did not show unambiguously that the presence of ammonia was 

essential. Since the formation of 6 indicates that ammonia also reacts with the substrate 

it was chosen, in order to avoid this side-reaction, to further optimize the conditions in 

the absence of ammonia. Samples taken after 3 hours showed only low conversions and 

there was no formation of 2a or 2b in any other reaction than under the conditions 

reported in Table 4.2. The long reaction time could be due to an initial activation period 

for the catalyst but the study of this was deferred to a later stage and a reaction time of 

24 h was maintained for the second design.  

 

4.2.2 - Second Screening 

 

Based on the results of the first screening design, the second design was conducted with 

the parameters indicated in Table 4.3. In order to further study the effect of the carrier 

silica was included in this design. Since the parameter space was now considerably 

reduced, a Full Factorial design (Chapter 2), i.e. 36 combinations, became feasible for 

each substrate. All the reactions were performed at 120 °C and 20 bar H2, with a 

reaction time of 24 hours.  

 

          Table 4.3 - Conditions and parameters in the second screening round. 

Additive  Solvent Metal Support 
No additive 2-propanol Ni Alumina 

H2O Dioxane Rh Carbon[a] 
  Ru Silica 

 
               [a] In the case of nickel, Raney-nickel was used instead of nickel on carbon. 

 

The results of this screening are presented in Figure 4.3 and Figure 4.4. The conversions 

of 1a and 1c were in most cases 100 %, except for the reactions where Ru-alumina and 

Ru-silica was used. For those two catalysts no conversion was observed. In sharp 

contrast to the first screening, where only a few reactions yielded the N-acyl β-amino 

alcohols, all active catalysts now yielded the desired products. A statistical evaluation of 

the results from Figure 4.3 and Figure 4.4, with respect to the main effects of the 

parameters and their interactions, is presented in Figure 4.5 and Figure 4.6. 
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Figure 4.3 - Graphical representation of the results of the second screening with substrate 1c.  

Note: dashed lines are intended to group individual point results at similar reaction conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 - Graphical representation of the results of the second screening with substrate 1a. 

Note: dashed lines are intended to group individual point results at similar reaction conditions. 
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Figure 4.5 - Effect of the main parameters in the second screening: a) aliphatic substrate 1c; b) 

benzylic substrate 1a. The lengths of the bars show the relative influence of the main parameters 

on the yield of 2a and 2c. The bars directed to the right have a positive relative effect and to the 

left a negative. The dotted lines represent the 95% confidence interval calculated from the 

estimated experimental variance. Effects higher than this confidence interval are considered 

significant and are represented in black (‘Al’ = alumina, ‘Si’ = silica). 

 

When evaluating the main parameters in Figure 4.5, many similarities for the two 

different substrates are noted. The most important parameter in both cases is the type of 

metal, with nickel being the best followed by rhodium. For ruthenium, the poor results 

from the initial screening are confirmed. In the initial screening, the successful reactions 

included those in which water was used as an additive. A small but statistically 

significant positive effect of water is indeed observed in the case of the aliphatic 

substrate, though not with the benzylic substrate. Although the absolute difference 

between the two solvents is small, dioxane is statistically significantly better than 2-

propanol for both substrates. With respect to the effects of the catalyst carriers, the 

apparent superiority of carbon is based solely on the fact that ruthenium gives the 

product only in combination with carbon while, in addition, nickel on carbon was not 

available and Raney-Ni was used instead, so that no definite conclusion on carrier 

effects can be drawn from this second design. 
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Figure 4.6 - Interaction effects between the parameters of the second screening: a) aliphatic 

substrate 1c; b) benzylic substrate 1a. The lengths of the bars show the relative influence of the 

interaction effects, between the different parameters, on the yield of 2a and 2c. The bars 

directed to the right have a positive relative effect and to the left a negative one. The dotted lines 

represent the 95% confidence interval calculated from the estimated experimental variance. 

Effects higher than this confidence interval are considered significant and are represented in 

black (‘Al’ = alumina, ‘Si’ = silica). 

 



Chapter 4 
__________________________________________________________________________________________________________ 

 70 

With respect to the 2-level interactions between the parameters presented in Figure 4.6 

it was noticed that for both substrates there are significant additive/solvent and 

metal/support interactions, while in the case of the benzylic substrate a solvent/metal 

interaction also exists. However, the effects of these interactions are relatively small in 

comparison with the main effect of the metal itself. For the aliphatic substrates, nickel 

on silica, using dioxane as the solvent and water as additive, is the combination of 

choice, while for the benzylic substrate Raney-nickel is the indicated catalyst when used 

in dioxane without addition of water.  

All the reactions from these two screenings were performed in the “Quick Catalyst 

Screening 96” platform (Appendix A.3). This equipment has a maximum pressure limit 

of 20 bar and no individual temperature control for the reactors. Further optimization 

regarding pressure and temperature was for that reason performed in a conventional 

autoclave. 

In preparation for this, a test was conducted of whether the results with the nickel 

catalysts could be improved by activation with H2 prior to the catalytic test. By 

activating the catalysts at 140 ˚C for 12 h at 40 bar H2, nickel on alumina gave similar 

yields to those of Raney-nickel and it was found to be more practical to use this 

activated catalyst for further optimization. In the case of the aliphatic substrate the 

reaction time was reduced to two hours and for the benzylic substrate to three hours. 

Once again, dioxane proved to be slightly superior to 2-propanol. As a result of this it 

was chosen as the solvent to perform the third round of screening: the optimization of 

temperature and pressure using activated nickel on alumina in dioxane. In the case of 

the aliphatic substrate 1c water was used as an additive. 

 

4.2.3 - Optimization design 

 

A temperature range of 80 to 160 ˚C and a pressure range from 5 to 40 bar was tested. 

Only minor differences in the yields (± 7 % for the aliphatic, ± 5 % for the aromatic) 

were observed, except for reaction temperatures below 90 ˚C, where hardly any reaction 

occurred. Despite the small differences in the observed yields an optimum of 10 bar H2 

at 140 ˚C is found for the aliphatic substrate 1c and 20 bar H2 at 120 ˚C is found for the 

benzylic substrate 1a.  
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4.2.4 - Other substrates 

 

In order to establish the versatility of the reaction the optimized conditions were applied 

to a number of other acylated cyanohydrins: a substituted benzylic ester (1b), an 

aliphatic substrate with an aromatic side chain (1d), and aliphatic substrates with a 

variety of acyl groups (1e, 1f) (Scheme 4.2).  

All these substrates were successfully hydrogenated to yield the desired N-acyl β-amino 

alcohols 2a-f. The conversion of the substrates was in all cases 100 %. The benzylic 

substrates 1a and 1b gave more side products than the aliphatic 1c-f. This difference 

between the substrates is in accordance with the less stable benzylic C-O bond. In the 

case of 1c and 1f, the products were isolated by crystallisation from the reaction 

mixtures.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 4.2 - The catalytic hydrogenation of cyanohydrin esters. (1a, R = -Ph, R’= -CH3; 1b, R 

= -OCH3, R’ = -CH3; 1c, R = -C5H11, R’= -CH3; 1d, R = -CH2OPh, R’ = -CH3, 1e, R = -

CH(CH3)2, R’= -Ph; 1f, R = -C5H11, R’ = -C2H5) 
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      Table 4.4 - Conversion and yield from the hydrogenation of acylated cyanohydrins 1a-f. 

Substrate Conversion of 1 [%] NMR-Yield of 2 [%] Isolated yields of 2 [%] 
1a 100 n.d 49[a] 
1b 100 n.d 50[a] 
1c 100 74 57[b] 
1d 100 91 72[a] 
1e 100 ~75 58[a] 
1f 100 83 30[b] 

       [a] Isolated by column chromatography. [b] Isolated by recrystallisation from ethyl  

           acetate, not optimized. 

 

The hydrogenation was also performed on the optically active substrates (S)-1a (95 % 

ee) and (S)-1c (94 % ee). As expected, the chiral centre of (S)-1c was found to remain 

unchanged during both the hydrogenation and the intra-molecular migration. This was 

not the case with (S)-1a. The isolated (S)-2a had an ee of only 75 % (see Scheme 4.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 4.3 - Catalytic hydrogenation of enantiopure acylated cyanohydrins  

 

This decrease in ee might be explained by a base-catalysed racemisation of the 

substrate; the base being either ammonia released in the formation of the secondary 

amine side-product, or the secondary amine itself.  
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4.3 - Conclusions 

 

A multi-step DoE approach proved an efficient method for the optimization of the 

reaction. From more than 2000 possible combinations of the parameters requiring to be 

studied, it proved possible to effect the optimization using only 70 experiments for each 

substrate. This shows the great advantage of the DoE approach towards the optimization 

of a new reaction, enabling a large parameter space to be investigated and the most 

interesting range within the parameter space to be identified. 

The catalytic hydrogenation of acylated cyanohydrins (1) with subsequent intra-

molecular migration of the acyl group constitutes a valuable one-pot route to the 

pharmaceutically important N-acyl β-amino alcohols (2). The nickel-on-alumina 

catalyst in dioxane as solvent proved to be preferable to the traditional catalysts (Pd/C 

and PtO2) that are used under acidic conditions [8]; both the hydrogenation and the 

migration proceeded smoothly and the desired product could be obtained in yields of up 

to 90 % for the aliphatic substrates and up to 50 % for the more sensitive benzylic 

substrates. The application to a range of aliphatic and aromatic substrates with different 

acyl groups was demonstrated. When enantiopure substrates are employed the 

stereocentre remains unaltered for aliphatic substrates and only a small amount of 

racemisation is observed for benzylic substrates. Given the straightforward access to the 

(chiral) starting materials and the mild, catalytic reaction conditions this one-pot 

sequence represents a significant step forward. 
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4.4 - Experimental  

 

4.4.1 - General 
1H and 13C-NMR spectra were recorded on a Varian VXR-400S (400 and 100, MHz, 

respectively) or a Varian Unity Inova 300 (300 MHz and 75, MHz, respectively), 

instrument. Chemical shifts are expressed in parts per million (δ) relative to 

tetramethylsilane. Abbreviations are as follows: s (singlet), d (doublet), t (triplet), q 

(quadriplet) and m (multiplet).  

Mass spectra were determined on a VG 70 SE spectrometer operating at 70 eV. GC-MS 

was measured by means of a VG 250 SE instrument equipped with a CP Sil 8 CB 

column of 25m × 0.25mm and 0.4 µm DF. A Varian Star 3600 - GC equipped with a CP 

Sil 5CB column with 50m × 0.55mm and 1 µm DF, was used to determine the 

conversions in the crude reaction mixtures. Optical rotations were obtained using a 

Perkin-Elmer 241 polarimeter. Melting points are uncorrected. Column chromatography 

was carried out with silica gel packing of 0.060-0.200 mm, pore diameter ca. 6 nm and 

with mixtures of petroleum ether (PE), methanol (MeOH) and ethyl acetate (EtOAc) as 

solvent. TLC was performed on 0.20 mm silica gel.  

The nickel catalysts were all activated at 140 ˚C for 12 hours at 40 bar H2 before use in 

the general procedures B, C and D described below. All other catalysts, and the solvents 

employed, were used as received from commercial sources. For all the supported 

catalysts the metal loading was 5%, except for Rh-Silica (1%), Ni-Alumina (50%) and 

Ni-Silica (66%). Racemic [9] and enantiopure cyanohydrin acetates [11,28] were 

synthesised according to literature procedures. The optical purity of 2a was determined 

by HPLC employing a Waters 510 pump, a 4.6 × 250 mm 10 µ Chiracel OJ column and 

a Waters 486 UV detector. The eluant was a mixture of hexane and 2-propanol (90:10) 

with a flow of 0.8 ml min-1. The optical purity of 1a, 1c and 2c was determined by 

chiral GC using a Shimadzu Gas Chromatograph GC-17A equipped with a β-

cyclodextrin column (CP-Chirasil-Dex CB 25m × 0.25mm). A Shimadzu Auto-injector 

AOC-20i and FID detector were employed, and He with a linear gas velocity of 75 cm/s 

formed the carrier gas.  

The Avantium “Quick Catalyst Screening 96” platform was used to perform the 

reactions of the first and second experimental designs. This equipment has a maximum 
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pressure limit of 20 bar and the temperature is controlled for all reactors simultaneously. 

Otherwise, a 100 ml Parr autoclave was used. The elemental analysis was performed on 

a Elementar Vario EL III analyser.  

 

4.4.2 - General procedure A: Screening in the Avantium “Quick Catalyst 

            Screening 96” platform 

The various supported metal catalyst (5 mg) were weighed into the autoclaves and 

added to a 1.7 M solution of the substrate in the desired solvent (1.5 ml). When water 

was used as an additive, 10 µl was added. In the case ammonia was used as additive, the 

concentration of ammonia in the reaction mixture was 0.5 M. After stirring the reaction 

at 90 or 120 ºC and 20 bar H2 for 3 or 24 h, the reaction mixture was centrifuged and the 

supernatant liquid analysed by GC and GC-MS. 

 

4.4.3 - General procedure B: Screening for temperature and pressure in the Parr 

autoclave 

The pre-activated 50% Ni on alumina (100 mg) was added to a solution of 1a or 1c (5.7 

mmol) in dioxane (30 ml). In the case of 1c, water (0.2 ml) was also added. After 

stirring the reaction at 80, 100, 120, 140, or 160 ºC, and 5, 10, 20, 30 or 40 bar H2 for 2 

hours, the reaction mixture was filtered. The filtrate was analysed by GC.  

 

4.4.4 - General procedure C. Reductions in the Parr autoclave with optimized 

            conditions for substrates prepared from aromatic aldehydes 

Activated 50 % Ni on alumina (100 mg) was added to a solution of the substrate (5.7 

mmol) in dioxane (30 ml). After stirring the reaction at 120 ºC and 20 bar H2, the 

reaction mixture was filtered. A sample of 2 ml was taken from the filtrate and the 

solvents from this sample were removed under vacuum. The sample was then analysed 

by 1H-NMR. The combined filtrate and NMR-sample was then evaporated to dryness to 

yield the oil or solid products.  

 

N-(2-Hydroxy-2-phenylethyl) acetamide 2a: The solid prepared from 1a according to 

general procedure C was purified by column chromatography (silica, EtOAc/MeOH, 

95:5, Rf = 0.27). Yield of (S)-2a: 503 mg (49 %) as a white solid; m.p. 125-126 ºC; 
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1H-NMR (300 MHz, CDCl3, 25 ºC, TMS): δ = 2.01 (s, 3H, CH3-C=O), 3.32 (ddd, J = 

5.0, 7.9, 14.1 Hz, 1H, CH2-N), 3.70 (ddd, J = 3.3, 7.0, 14.1, 1H, CH2-N), 4.85 (dd, J = 

3.3, 7.9, 14.1 Hz, 1H, CH-O), 5.92 (s, 1H, NH), 7.28-7.38 (m, 5H, aromatic); 13C-NMR 

(75 MHz, CDCl3, 25 ºC, TMS): δ = 23.1 (CH3), 47.6 (CH2-N), 73.6 (CH-O), 125.8, 

128.8, 128.5 and 141.8 (aromatic), 171.6 (C=O); IR (KBr): ν = 3300, 3080, 1648, 1547, 

1295 cm-1; MS (70 eV, EI): m/z (%): 179 (1) [M+], 161 (3) [M+-H2O], 120 (14), 107 

(21), 79 (31), 77 (31), 73 (100); elemental analysis calculated (%) for C10H13NO2 

(179.22): C 67.02, H 7.31, N 7.82; found: C 67.00, H 7.49, N 7.81. 

 

(S)-N-(2-Hydroxy-2-phenylethyl) acetamide (S)-2a: The solid prepared from (S)-1a 

(95 % ee) according to general procedure C was purified by column chromatography 

(silica, EtOAc/MeOH, 95:5, Rf = 0.27). Yield of (S)-2a: 0.454 mg (45.4 %) as a white 

solid; ee = 75 %, [α]D
20 = + 8.1 (c = 1.0 in MeOH); other spectroscopic data as for 2a. 

 

N-[2-Hydroxy-2-(3-methoxyphenyl)ethyl] acetamide 2b: The solid prepared from 

rac-1b according to general procedure C was purified by column chromatography 

(silica, EtOAc/MeOH, 95:5, Rf = 0.25). Yield of 2b: 0.570 mg (57 %) as a white solid; 

m.p. 123-124 ºC; 1H-NMR (300 MHz, CD3OD, 25 ºC, TMS): δ = 1.93 (s, 3H, CH3-

C=O), 3.28 (dd, J = 7.9, 13.7 Hz, 1H, CH2-N), 3.45 (dd, J = 4.6, 13.5 Hz, 1H, CH2-N), 

3.78 (s, 3H, OCH3), 4.71 (dd, J = 4.6, 7.9 Hz, 1H, CH-O), 6.81 (ddd, J = 0.9, 2.6, 8.2 

Hz, 1H, C4-H), 6.95 (m, 2H, C2-H, C6-H),), 7.24 (apparent t, J = 7.9 Hz, 1H, C5-H); 
13C-NMR (75 MHz, CD3OD, 25 ºC, TMS): δ = 22.5 (CH3-CO), 48.3 (CH2-N), 55.6 

(OCH3), 73.5 (CH-O), 112.6 (C2), 114.1 (C4), 119.4 (C6), 130.3 (C5), 145.5 (C1), 

161.2 (C3), 173.6 (C=O); IR (KBr): ν = 3290, 1634, 1596, 1552, 1259, 1066 cm-1; MS 

(70 eV, EI): m/z (%): 209 (7) [M+], 191 (3) [M+-H2O], 150 (31), 109 (25), 73 (87), 62 

(46), 45 (100); elemental analysis calcd (%) for C11H15NO3 (209.24): C 63.14, H 7.23, 

N 6.69; found: C 61.41, H 7.57, N 6.50. 

 

4.4.5 - General procedure D. Reductions in the Parr autoclave with optimized 

conditions for substrates prepared from aliphatic aldehydes  

Activated 50 % Ni on alumina (100 mg) was added to a solution of the substrate (5.7 

mmol) in dioxane (30 ml) and water (0.2 ml). After stirring the reaction at 140 ºC and 
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10 bar H2, the reaction mixture was filtered. A sample of 2 ml was taken from the 

filtrate and the solvents from this sample were removed under vacuum and the sample 

was then analysed by 1H-NMR. The combined filtrate and NMR-sample was then 

evaporated to dryness to yield the oil or solid products. 

 

N-(2-Hydroxyheptyl) acetamide 2c: The oil prepared from 1c according to general 

procedure D was purified by recrystallisation from EtOAc. Yield of 2c: 454 mg (56 %) 

as a white solid; m.p. 75-76 ºC; 1H-NMR (300 MHz, CDCl3, 25 ºC, TMS): δ = 0.89 (m, 

3H, CH3-CH2), 1.29-1.47 (m, 8H, CH3-CH2-CH2-CH2-CH2), 2.00 (s, 3H, CH3-C=O), 

3.08 (ddd, J = 5.0, 7.9, 13.7 Hz, 1H, CH2-N), 3.45 (ddd, J = 2.9, 6.6, 13.9 Hz, 1H, CH2-

N), 3.45 (s, 1H, OH), 3.69 (m, 1H, CH-O), 6.49 (s, 1H, NH); 13C-NMR (75 MHz, 

CDCl3, 25 ºC, TMS): δ = 14.0 (CH3-CH2), 22.6 (CH3-CH2), 23.2 (CH3-CO), 25.2 (CH3-

CH2-CH2), 31.8 (CH2-CH2-CH), 35.0 (CH2-CH), 45.9 (CH2-N), 71.2 (CH-O), 171.4 

(C=O); IR (KBr): ν = 3425, 3279, 1661, 1627, 1586, 1569, 1136 cm-1; MS (70 eV, EI): 

m/z (%): 174 (3) [M++1], 102 (10), 73 (100); elemental analysis calcd (%) for 

C9H19NO2 (173.25): C 62.39, H 11.05, N 8.08; found: C 62.01, H 11.67, N 8.04. 

 

(S)-N-(2-Hydroxyheptyl) acetamide (S)-2c: The oil prepared from (S)-1c (5.4 mmol, 

94 % ee) according to general procedure D was purified by recrystallisation from 

EtOAc. Yield of (S)-2c: 533 mg (57 %) as a white solid; ee = 95 %; m.p. 75-76 ºC; 

[α]D
20 = + 14.1 (c = 1.0 in MeOH); other spectroscopic data as for 2a. 

 

N-(2-Hydroxy-3-phenoxypropyl) acetamide 2d: The oil prepared from rac-1d 

according to general procedure D was purified by column chromatography (silica, 

EtOAc/MeOH, 95:5, Rf = 0.29). Yield of 2d: 967 mg (72 %) as a white solid; m.p. 49-

50 ºC; 1H-NMR (300 MHz, CDCl3, 25 ºC, TMS): δ = 1.99 (s, 3H, CH3-C=O), 3.36 

(ddd, J = 5.5, 6.8, 6.8 Hz, 1H, CH2-N), 3.59 (ddd, J = 3.3, 6.1, 14.0 Hz, 1H, CH2-N), 

3.92 (d, J = 5.5 Hz, 2H, CH2-O), 4.09 (m, 1H, CH-O), 4.18 (s, 1H, OH), 6.58 (s, 1H, 

NH), 6.87 (m, 2H, aromatic), 6.95 (m, 1H, aromatic), 7.26 (m, 2H, aromatic); 13C-NMR 

(75 MHz, CDCl3, 25 ºC, TMS): δ = 23.0 (CH3-C=O), 43.0 (CH2-N), 69.5 (CH-OH and 

CH2-O), 114.5, 121.2, 129.6, and 158.4 (aromatic), 171.9 (C=O); IR (KBr): ν = 3384, 

3299, 1630, 1601, 1571, 1284, 1118, 751 cm-1; MS (70 eV, EI): m/z (%): 209 (3) [M+], 
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191 (32) [M+-H2O], 148 (7), 116 (100); elemental analysis calcd (%) for C11H15NO3 

(209.24): C 63.14, H 7.23, N 6.69; found: C 61.99, H 7.22, N 6.46. 

 

N-(2-Hydroxy-3-methylbutyl) benzamide 2e: The solid prepared from rac-1e 

according to general procedure D was purified by column chromatography (silica, 

EtOAc/PE, 45:55, Rf = 0.30). Yield of 2e: 681mg (58 %) as a white solid; m.p. 116-117 

ºC; 1H-NMR (300 MHz, CDCl3, 25 ºC, TMS): δ = 0.97 (dd, J = 6.8, 9.0 Hz, 6H, 2 

CH3), 1.73 (m, 1H, CH-(CH3)2), 3.06 (s, 1H, OH), 3.30 (ddd, J = 4.6, 8.61, 13.7 Hz, 1H, 

CH2-N), 3.50 (m, 1H, CH-O), 3.72 (ddd, J = 2.8, 6.8, 13.7 Hz, 1H, CH2-N), 6.86 (s, 1H, 

NH), 7.38 (m, 2H, aromatic), 7.46 (m, 1H, aromatic), 7.77 (m, 2H, aromatic); 13C-NMR 

(75 MHz, CDCl3, 25 ºC, TMS): δ = 17.9 (CH3), 18.6 (CH3), 32.3 (CH-(CH3)2), 44.1 

(CH2-N), 76.3 (CH-O), 127.0, 128.5, 131.5, and 134.3 (aromatic), 168.5 (C=O); IR 

(KBr): ν = 3398, 3319, 1633, 1578, 1541, 1057, 697 cm-1; MS (70 eV, EI): m/z (%): 

207 (1) [M+], 189 (3) [M+-H2O], 164 (16), 134 (89), 122 (29), 105 (100); elemental 

analysis calcd (%) for C12H17NO2 (207.27): C 69.54, H 8.27, N 6.76; found: C 68.75, H 

8.61, N 6.68. 

 

N-(2-Hydroxyhepyl) butanamide 2f: The oil prepared from rac-1f according to 

general procedure D was purified by recrystallisation from EtOAc. Yield of 2f: 345 mg 

(30 %) as a white solid; m.p. 62-63 ºC; 1H-NMR (300 MHz, CDCl3, 25 ºC, TMS): δ = 

0.89 (m, 3H, pentyl-CH3), 0.95 (t, J = 7.5 Hz, 3H, propyl-CH3), 1.29-1.44 (m, 8H, CH3-

CH2-CH2-CH2-CH2), 1.67 (sextet, J = 7.4 Hz, 2H, CH2-CH2-C=O), 2.18 (t, J = 7.4 Hz 

CH2-CH2-C=O), 2.94 (s, 1H, OH), 3.11 (ddd, J = 4.9, 7.7, 13.0 Hz, 1H, CH2-N), 3.47 

(ddd, J = 2.7, 6.2, 13.7 Hz, 1H, CH2-N), 3.70 (m, 1H, CH-O), 6.15 (s, 1H, NH); 13C-

NMR (75 MHz, CDCl3, 25 ºC, TMS): δ = 13.8 (propyl-CH3), 14.0 (pentyl-CH3), 19.2 

(CH2-CH2-C=O), 22.6 (CH3-CH2-CH2-CH2), 25.2 (CH3-CH2-CH2-CH2), 31.8 (CH2-

CH2-CH), 35.0 (CH2-CH), 38.6 (CH2-C=O), 45.7 (CH2-N), 71.5 (CH-O), 174.2 (C=O) ; 

IR (KBr): ν = 3418, 3283, 2964, 2919, 1657 ,1624, 1566 cm-1; MS (70 eV, EI): m/z 

(%): [M+] could not be identified, 130 (17), 101 (100); elemental analysis calcd (%) for 

C11H23NO2 (173.25): C 65.63, H 11.52, N 6.96; found: C 64.78, H 12.03, N 6.83. 



Cyanohydrin Esters 
__________________________________________________________________________________________________________ 

 79 

4.5 - References 

 

[1] M. North, Tetrahedron: Asymmetry 2003, 14, 147.  

[2] H. Griengl, H. Schwab and M. Fechter, Trends Biotechnol. 2000, 18, 252. 

[3] J. Brussee, A. van der Gen, in Stereoselective Biocatalysis (Ed.: P. N. Ramesh), Marcel 

Dekker, Inc., New York, 2000, pp. 289. 

[4] L. T. Kanerva, Acta Chem. Scand. 1996, 50, 234.  

[5] K. Tanaka, A. Mori and S. Inoue, J. Org. Chem 1990, 55, 181.  

[6] T. Ziegler, B. Hörst and F. Effenberger, Synthesis 1990, 575.  

[7] T. Ooi, M. Kameda, J. Fujii and K. Maruoka, Org. Lett. 2004, 6, 2397.  

[8] W. J. Greenlee, J. P. Springer and A. A. Patchett, J. Med. Chem, 1989, 32, 165. 

[9] A. Fishman and M. Zviely, Tetrahedron: Asymmetry 1998, 9, 107. 

[10] M. Inagaki, J. Hiratake, T. Nishioka and J. Oda, J. Org. Chem. 1992, 57, 5643.  

[11] L. Veum, L. T. Kanerva, P. J. Halling, T. Maschmeyer and U. Hanefeld, Adv. Synth. 

Catal. 2005, 347, 1015.  

[12] C. Paizs, P. Tähtinen, M. Toşa, C. Majdik, F. D. Irimie and L. T. Kanerva, Tetrahedron 

2004, 60, 10533. 

[13] S. Lundgren, E. S. Lundgren, E. Wingstrand, M. Penhoat, C. Moberg, J. Am.Chem. Soc. 

2005, 127, 11592.  

[14] Y. N. Belokon, P.Carta, A. V. Gutnov, V. Maleev, M. A. Moskalenko, L. V. Yashkina, 

N. S. Ikonnikov, N. V. Voskoboev, V. N. Khrustalev, M. North, Helv. Chim. Acta 2002, 

85, 3301. 

[15] Y. N. Belokon,P. Carta, M. North, Lett. Org. Chem. 2004, 1, 81. 

[16] M. Ikezaki, N. Umino, M. Gaino, K. Aoe, T. Iwakuma and T. Oh-Ishi, Yakugaku Zasshi, 

1986, 106, 80. 

[17] W. H. Hartung, J. Am. Chem. Soc. 1928, 50, 3370.  

[18] J. S. Buck, J. Am. Chem. Soc. 1933, 55, 2593. 

[19] D. L. Massart, B. G. M.Vandeginste, L.M.C. Buydens, S. de Jong, P. J. Lewi and J. 

Smeyers-Verbeke, Handbook of Chemometrics and Qualimetrics, Part A, Elsevier, 

Amsterdam, 1997.  

[20] E. W. Kirchhoff , D. R. Anderson, S. Zhang, C. C. Cassidy and M. T. Flavin, Automated 

Process Research and the optimization of the synthesis of 4(5)-(3-Pyridyl)imidazole, 

Organic Process Res. & Dev., 2001, 5, 50.  

[21] R. Marchetti and M. E. Guerzoni, Cerevisia Biotechnol, 16 (1), 1991, 24. 



Chapter 4 
__________________________________________________________________________________________________________ 

 80 

[22] P. D. Haaland, Biotechnology Experimental Design in: Statistical Design and analysis of 

Industrial experiments, (Ed.: S. Ghosh), Marcel Dekker, New York, 1990, pp. 73-108. 

[23] S. Gomez, J. A. Peters and T. Maschmeyer, Adv. Synth. Catal. 2002, 344, 1037. 

[24] J. Volf and J. Pasek. in Catalytic Hydrogenation Vol 27 ( Ed.: L. Cerveny), Elsevier, 

Amsterdam 1986, pp. 105.  

[25] H. Greenfield, Ind. Eng. Chem., Prod. Res. Dev. 1976, 15, 156. 

[26] Y. Huang and V. Adeeva, W. M. H. Sachtler, Appl. Catal. A: Gen. 2000, 196, 73. 

[27] P. F. Aguiar, B. Bourguignon, M. S. Khots, D. L. Massart and R. Phan-Than-Luu, 

Chemom. Intell. Lab. Syst., 1995, 30, 199. 

[28] H. Griengl, N. Klempier, P. Pöchlauer, M. Schmidt, N. Shi and A. A. Zabelinskaja-

Mackova, Tetrahedron, 1998, 54, 14477.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 81 

 

5 

SYNTHESIS OF TWO CATALYST RESPONSE SURFACE 

BENCHMARKS FOR CO OXIDATION: COOX AND 

SELOX 2 

 

Abstract 

 

Two catalytic response surface benchmarks were derived based on the performance of 

libraries of heterogeneous mixed-oxide catalysts in the CO oxidation (COOX) and 

selective CO oxidation (SELOX) reactions for fuel cell applications. Almost 200 

catalysts were synthesised and tested by means of High-Throughput Experimentation 

(HTE). The catalyst library was investigated under different reaction conditions and 

more than 1000 catalyst performance results were obtained and used to build the 

SELOX and COOX benchmark response surfaces. A Design of Experiments (DoE) 

approach was applied for the experimental plan and modelling of the resulting response 

surfaces. COOX and SELOX constitute realistic catalytic benchmarks that are used in 

the later chapters to test the performance of Global Optimization algorithms. 

                                                 
The contents of this chapter have been published in: 

S. R. M. Pereira, F. Clerc, D. Farrusseng, J. C. van der Waal, T. Maschmeyer, C. Mirodatos, QSAR and 
Comb. Sci., 24, 2005, 45. 
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5.1 - Introduction 

 

Since a few years, High-Throughput Experimentation (HTE) enables fast synthesis and 

testing of large libraries of materials [1-4]. However, a systematic investigation of the 

entire parameter space is usually inefficient and often experimentally unaffordable since 

the high number of parameters to investigate leads to a too large number of sample 

candidates to be prepared and tested. A rational selection of the compounds must be 

considered to limit the size of this library while ensuring an optimum rate of discovery 

and optimization. Because of the large number of variables and experiments, library 

design of materials cannot be efficiently performed manually and the assistance of 

computer science is required for this purpose [5-7]. In drug discovery, explorative data 

analysis, data mining and artificial intelligence are intensively used since several years 

in order to efficiently reduce the experimental effort in discovery and optimization 

processes. Because the description of materials is more complex than for molecules, an 

approach employing Quantitative Structure Activity/Property Relationships 

(QSAR/QSPR) that allows for a complementary virtual exploration of large libraries of 

individual compounds is in general not easily applicable to heterogeneous catalysts [8]. 

Therefore other design strategies and associated algorithms need to be developed to 

explore large parameter spaces. Several algorithms like Genetic Algorithms (Chapter 6), 

Simulated Annealing, Taboo Search methodologies etc. (Chapter 7) are in this way 

being applied to try to solve this issue. However, a general lack of knowledge exists 

about the applicability of these algorithms and their parameter settings in order to obtain 

an efficient optimization performance when applied to catalytic case studies.  

The optimization of algorithm configurations and settings is generally performed on so-

called virtual or synthetic benchmarks, which are non-chemistry-related custom-made 

mathematical response surfaces. These functions are usually far from what one can 

expect for real case studies in material optimizations. Since the algorithm optimization 

performance is very dependent on the type of surface to optimize, they can be non-

representative for testing algorithm performance and finding its best parameters 

configuration. Ideally, real data collections on heterogeneous catalysis performance 

would be employed in performing these simulations. However, data banks on 

heterogeneous catalysts and their performance that could be used as a real application 
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benchmark are usually kept confidential, while data collection from literature usually 

provides data sets which are too small and often have inconsistent or poor data 

accumulated over decades. Validation of GA configurations by performing multiple 

experimental optimizations at different configuration settings is usually not an 

alternative because it would lead to a too large number of runs and experimental effort 

in order to get statistically significant results. Benchmarks based on experimental and 

simulation catalytic results using Artificial Neural networks strategies have been used 

by Rodemerk et al. to test algorithm performances [9]. In this chapter a methodology for 

constructing benchmarks is discussed, based on DoE modelling of catalytic data 

obtained from an experimental design.  The considered catalytic search space was 

systematically mapped using a Design of Experiments approach that allowed the 

construction of a response surface described by a set of mathematical functions. These 

will be later used as benchmarks to test the influence of algorithm settings (Chapter 6) 

and different algorithms (Chapter 7) in the optimization performance of the algorithms. 

The reactions chosen to obtain the catalytic benchmarks are the oxidation of carbon 

monoxide to carbon dioxide (COOX) and the same reaction but in the presence of 

hydrogen (SELOX). 

In order to supply proton-exchange membrane fuel cells (PEMFC) for on-board or 

domestic electricity generation, ideally a pure hydrogen fuel should be used at the anode 

and oxygen/air at the cathode. Due to the numerous current problems related to 

hydrogen infrastructure, alternative fuel solutions are currently being investigated, 

namely hydrocarbon fuels. In this solution, the hydrocarbon fuel is first transformed to a 

hydrogen-rich but CO-containing gas, which is then conducted to the anode catalyst of 

the PEMFC where the hydrogen undergoes electro-oxidation. The power efficiency of 

the PEMFC is substantially reduced by the presence of CO in the hydrogen stream, due 

to the poisoning of the anode catalyst by the adsorption and surface-bonding of CO and 

consequent deactivation.  Anode catalysts tolerant to CO adsorption have been 

investigated but the issue is still one of the main challenges in PEMFC technology. An 

enormous effort has also been made in methods to remove the CO from the CO/H2 gas 

mixture in order to feed the catalytic anode of the PEMFC with a cleaner gas stream. 

The SELOX and COOX reactions are representative of these present efforts in finding 
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catalytic solutions to promote new clean and miniaturised processes for generating 

hydrogen from hydrocarbon fuels. 

The SELOX and COOX benchmark response surfaces will be used in later chapters 

(Chapter 6 and 7) to study the performance of several algorithms in the exploration and 

optimization of catalytic response surfaces. 

 

5.2 - COOX and SELOX benchmarks planning 

 

5.2.1 - Parameter/Search Space 
 
The catalyst search space was constructed according to generally accepted principles in 

catalysis, namely that heterogeneous catalysts are usually multi-component systems, 

and that each component has specific functions and interacts with the others. For the 

present case study, the composition search space was restricted to 3 components per 

catalyst, which were considered representative elements for studying the reaction of CO 

oxidation in the absence or in the presence of H2. The three components chosen were: i) 

one metal (NM) acting as the main active phase (Au, Cu, Pt), ii) one transition metal 

(TM) acting as modifier/promoter of the active phase and support (Mo, Nb, V), and iii) 

one metal oxide acting as support (CeO2, TiO2, ZrO2). The elemental composition of 

NM and TM varies from 0.1 to 2.1 % and from 1 to 5%, respectively. It was considered 

that the bulk composition of the support does not change significantly with the 

concentration of TM and NM. Therefore, the catalyst composition search space can be 

considered as made of 33 distinct continuous sub-spaces. Temperature is also a key 

parameter for the working of the CO oxidation reactions. Therefore, the catalyst library 

was tested at 3 different temperatures namely 200, 225, and 250°C for the COOX, and 

200, 250, and 300°C for the SELOX benchmarks. This results in a total search space 

consisting of 81 distinct continuous response surfaces or sub-spaces for each 

benchmark. Each sub-space represented the reactivity of a different catalyst ternary 

system in respect to the variation of its NM and TM concentration and at the 

corresponding tested temperature. 
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5.2.2 - Design of Experiments for the COOX and SELOX benchmarks 
 
For mapping the search space a design of experiments strategy based on the 

optimization Doehlert DoE design (see Chapter 2) has been chosen. The sub-spaces 

were considered to be able to be modelled by linear regression, assuming that non-linear 

effects do not prevail for this type of reaction in the parameter space chosen. The 81 

sub-spaces can therefore be modelled using an optimization Doehlert Design as 

experimental planning technique that allows the fitting of a quadratic surface model 

[10].  

 

 

 

 

 

 

 

 

 

Figure 5.1 - Doehlert Experimental Design for a NM, TM and Support ternary system. The 

Support amount is fixed. The dots represent the experimental points. 

 

This design (Figure 5.1), which requires seven independent experiments, enables to 

reach an efficient and robust model for the main effects and second order parameters 

accounting for interaction and quadratic effects (Equation 5.1) [11].  

 

y = β0+  β1[TM] + β2[NM] + β12[TM].[NM] + β11[TM] 2 + β22[NM] 2            Equation 5.1  

 

Where [TM] and [NM] represents the TM and NM mass percentage, respectively. 

Therefore, the construction of the response surface benchmark can be performed by 

collecting the 81 distinct linear models. This experimental plan was applied to all 27 

ternaries resulting in a library of 189 (33x7) catalysts, which were synthesised in batches 

of 24-48 catalysts using the automated equipment described in Appendix A.2. All 

catalysts were tested for both reactions (COOX and SELOX) with a HTE 16-vessel gas 
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reactor (Appendix A.4) at 3 different temperatures, yielding 1134 catalytic data point 

results (27x7x2) plus replicates.  

5.2.3 - Weighted surface response - Desirability 
 

For obtaining cleaner H2 gas streams to feed the PEMFC catalyst anode it is crucial to 

obtain the highest possible conversion of the CO present. For the COOX reaction 

conditions the important response to consider is therefore the conversion of CO 

(Equation 2a). In the SELOX reaction, due to the possibility of the parallel oxidation of 

H2 (Equation 5.2.b), both CO and H2 conversion and CO2 and H2O selectivities need 

also to be considered. There are therefore multi-responses that need to be taken into 

consideration. 

 

COOX:    CO +0.5 O2 → CO2                 Equation 5.2a 

   

SELOX:   CO + 0.5 O2 → CO2                 Equation 5.2a 

     H2 +0.5 O2 → H2O                 Equation 5.2b 

 

X(CO) = pCO2/pCOo                  Equation 5.3a 

S(CO2)=  pCO2/(2.pO2
o - 2.pO2)                           Equation 5.3b 

 

where, p denotes the partial pressure of the respective gases and the superscript ° means 

the inlet partial pressure, whereas no superscript means the outlet partial pressure. 

For multi-response analysis or optimization several methods can be applied (see 

Chapter 2). The desirability function method weighs all the responses according to their 

relevance into a single criterion, the Desirability function [4]. 

Since the highest possible CO conversion (X(CO)) is the key criterion for fuel-cell 

applications (Equation 5.3a), a larger weight shall be given to CO conversion with 

respect to other criteria. As stressed above, for the SELOX reaction, CO2 selectivity - 

S(CO2) (Equation 5.3b) - has also to be considered  as a key criterion because the 

oxidation has to be selective towards CO while limiting parallel H2 oxidation. In 

addition, since low-temperature oxidation is preferred, in connection with the 
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requirements of other units of the PEMFC system, the temperature was also chosen as a 

criterion for the performance assessment. The weights of three system responses were 

defined with mathematical Desirability function curves as given in Figure 5.2.  

 

 

 

 

 

 

 

 

                           a)         b)      c) 

 

Figure 5.2 - Desirability Functions for: a) CO Conversion (DConv), b) CO2 Selectivities (DSel) 
and c) Temperature (DTemp )  

DConv  =  0.0105 X(CO) if X(CO) <  95% and  DConv = 1 if X(CO)  ≥  95% 

DSel =  0.001 S(CO2) + 0.9 

DTemp =  - 0.002 Temp + 1.4 

 

The steeper the slope of the Desirability curve, the larger the weight. The Desirability 

function for CO conversion (denoted DConv) is approximately proportional to the 

conversion itself and works basically as a scaling function. Due to limitations in 

quantifying accurately CO and CO2 traces, the Desirability for catalysts exhibiting 

conversion higher than 95% was set to 1. Two Desirability functions with low weights 

were defined for CO2 selectivity and temperature, which are denoted DSel and DTemp, 

respectively. The global Desirability functions, which represent the benchmarks fitness 

function, combine all sub-Desirabilities and are defined as DCOOX = DConv.DTemp and 

DSELOX = DConv.DSel.DTemp, for the COOX and SELOX benchmarks, respectively. The 

combination of weighted performance criteria in a single evaluation function enables a 

more refined optimization, making it possible to discriminate between catalysts in the 

same conversion range. 
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5.3 - Results and Discussion 

 
 

5.3.1 - Description of the surface responses for COOX and SELOX 

            reactions 

 
After synthesising (section 5.4) and testing the catalysts library, the conversion and 

selectivity values of all 7x27 experiments were collected. The coefficients of Equation 

5.1 for each of the 81 sub-spaces were obtained by linear regression and are presented in 

Appendix B. The obtained equations for the quadratic models show in general good 

fitting in relation to the experimental points, having in the majority of the cases an R-

Squared value higher than 0.8 (Appendix B). As an example, the resulting sub-response 

surface for the ternary system Pt-V-Ti at 250°C for SELOX conditions is shown in 

Figure 5.3.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 - Sub-response surface for the ternary Pt-Nb-Zr at 200°C for the conversion 

response at SELOX reaction conditions. y = 100 - 11[TM] + 49[NM] - 16[NM] 2
  - 32[TM]2

   

 

 

All sub-response surfaces were gathered, and the desirability functions were applied, 

yielding the two COOX and SELOX benchmarks. A visualisation of the resulting 

benchmark response surfaces is depicted in Figure 5.5 and 5.6 respectively.   
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For the COOX conversion response surface (Figure 5.4a), it is obvious that Pt 

containing catalysts are the best performing ones, whatever the testing temperature, 

except when associated with CeO2. The composition Cu-V-CeO2 also shows significant 

conversion, particularly at 250°C, and V-TiO2 are always active compositions, whatever 

the temperature and metal. It can be noted that the conversion usually increases with 

temperature as expected for activated processes. All other combinations result in 

inactive or poorly active systems, even at a high temperature such as 250° C.  Figure 

5.5b shows the effect of surface response transformation by the Desirability function. 

Because the Desirability function for the temperature penalises high temperatures 

(negative slope), final optima of the COOX benchmark are located at the lower 

temperature of 200°C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             

               a)                                                                           b) 

Figure 5.4 - COOX response surface a) Conversion: X(CO), b) COOX Fitness landscape after 

applying the Desirability functions(DCOOX). 
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a)                   b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                     c) 

Figure 5.5 - SELOX response surface. a) Conversion: X(CO), b) Selectivity: S(CO2) and c) 

SELOX Fitness landscape after applying the Desirability functions (DSELOX). 
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When performing the reaction in the presence of H2 (SELOX) a slightly different 

landscape emerges (Figure 5.5a). Even if Pt is still the metal with the highest influence 

on performance, not all compositions containing Pt are active, especially at low 

temperature. In addition, Cu-V/CeO2 performs much better with increasing conversion 

values when temperature increases in contrast with Pt based catalysts.  

For the SELOX benchmark, the nature of the promoter (TM) was found to have more 

influence on the catalyst performance, giving the ranking V>Nb>Mo. Cerium-based 

catalysts are on average the best systems in comparison with the other supports. 

However, at low temperature synergy with Pt is not favourable, since the ternary Pt-V-

Ce catalysts compositions are poorly performing. Response variance for CO2 selectivity 

is relatively low with respect to CO conversion. Nevertheless, Cu-based catalysts 

exhibit generally higher selectivity. 

Through the desirability function, response surfaces are weighted with respect to 

temperature and selectivity. The global response emphasises the search space areas of 

larger interest and enables discrimination between catalysts with very similar 

conversion values. The top surfaces of response hills are flattened due to the 

Desirability settings that all catalysts with a conversion higher than 95% get the 

maximum desirability value (DConv =1). These flat surfaces are then discriminated 

between themselves due to the Dtemp and Dsel functions (Figure 5.5b, Figure 5.5c). In 

Table 5.1 the catalyst formulations that contribute for the global optimum response in 

the COOX (DCOOX >0.99), and SELOX benchmarks (DSELOX>0.92) are listed. 

 

Table 5.1 - Global Optimal catalyst solutions for the COOX and SELOX benchmarks. 

 Optimum COOX SELOX 
1 Pt/V/Zr/200 ° C Pt/V/Zr/200 ° C 
2 Pt/Nb/Zr/200 ° C Pt/Nb/Zr/200 ° C 
3 Pt/Nb/Ti/200 ° C Pt/V/Ti/200 ° C 
4 Pt/Mo/Ti/200 ° C Cu/V/Ce/200 ° C 
5 Pt/Mo/Zr/200 ° C  

 

 

In the presence of H2, the CO conversion does not always increase with temperature. 

For instance for the ternary Pt-V-Zr system under SELOX conditions (Figure 5.5a), 

raising the temperature leads to a decrease of activity. This can be explained by 
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assuming a reverse Water Gas Shift (WGS) mechanism occurring in the downstream 

catalyst bed during CO oxidation. In this mechanism the CO2 formed from the initial 

CO oxidation reaction is in turn reduced to CO and H2O by the hydrogen present [13]. 

The preferential oxidation of hydrogen at high temperature may also contribute to this 

effect. This study has confirmed the beneficial effect of V doping of CeO2 on a broad 

range of compounds. This synergetic effect was reported for both SELOX and Water 

Gas shift reaction with catalysts prepared by impregnation [13]. 

The Au/TiO2 Catalysts are known in the literature to be among the best formulations for 

the CO oxidation reaction [12] but were found in the present work to be inactive. This 

may come from the synthesis procedure used in this study. It might lead to a low 

dispersion of the gold particles. Despite the high surface area of the TiO2 support, high-

resolution-electron-microscopy (HREM) results denote the presence of large sized gold 

particles (Figure 5.6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 - High Resolution Electron Microscopy (HREM) pictures of Au-TiO2 sample  

catalysts. 

 

 

As a matter of fact, the good performances of Au-based catalysts are usually related to 

the high metal dispersion that ensures a partially ionic state of Au atoms at the particles-
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support interface. This effect is lost when a considerable quantity of large gold particles 

are present, resulting in a less active catalyst.  In addition, rather low activity for Cu-

CeO2 samples is noticed, compared to catalysts prepared by other methods as 

investigated by Tibiletty et al. [13]. Here also the explanation may lie in a poor Cu 

dispersion.  

The low activity obtained with the Au-TiO2 and Cu-CeO2 catalysts indicates a possible 

pitfall of applying general catalyst preparation procedures typically used in a HTE 

strategy. Catalyst performance is usually highly sensitive to synthesis procedure. The 

preferred use of non-laborious and generally applicable preparation methods in HTE for 

catalyst libraries synthesis can result in the use of non-optimal procedures for the 

synthesis of certain catalyst formulations in the library. The influence of preparation 

methods should not be underestimated and different procedures should be taken into 

account and optimized in order to obtain good performing catalyst solutions. This can 

be however extremely laborious or even impracticable when the goal is the screening of 

a highly diverse catalyst library. The synthesis of the catalyst libraries may need to 

become more labour-intensive or versatile and new technologies that can reproduce 

complex catalyst recipes at the smaller scale required for HTE may need to be further 

developed. 

Due to the handling of small amounts of compounds in the preparation of HTE catalyst 

libraries, a larger experimental error can be induced leading to a lower accuracy in the 

resulting catalyst composition. This uncertainty can be further increased by the limited 

or absent monitoring of the catalyst performance during time and reduced by extensive 

heterogeneous catalyst characterisation. The latter is in many cases only performed for 

the successful or a few chosen unsuccessful catalyst from the synthesised library.  

Despite these possible drawbacks of heterogeneous catalyst library synthesis via HTE 

methods, this is nowadays the only experimentally affordable way to produce highly 

diverse catalyst libraries and catalyst activity screenings. The amount of information 

gained via the typical approach used in HTE allows focusing the attention on the most 

promising catalyst solutions in further screening and optimization steps, in which 

additional criteria such as the dispersion of the active metal could be introduced into the 

search space. 
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5.4 - Conclusions 

 

The COOX and SELOX catalytic benchmarks were successfully obtained based on 

modelling of the performance of 189 synthesised catalysts at different reaction 

conditions. The models obtained allow the simulation of the performance of 

intermediary catalyst compositions in the composition parameter space considered. The 

benchmarks obtained can be used to navigate the parameter space and serve as realistic 

catalytic benchmarks for the testing of optimization performance of optimization 

algorithms. 

Considering the chemical information gained during this study, formulations containing 

an element known to be active like Pt were confirmed as ranking among the best. 

However, other active elements, like Au, were not found to ensure high catalytic 

performance. This apparent discrepancy demonstrates the sensitivity of synthesis 

parameters and procedures on catalyst performance and shows that, in a combinatorial 

discovery program, this need to be taken into account in the further refinement of a 

catalyst formulation optimization procedure. 

The results from the selected catalyst libraries obtained do not, nevertheless, invalidate 

the effectiveness of the approach chosen.  The advantage of binning the experimental 

space in small zones using a Design of experiments approach, which enables one to 

model the whole surface by simple linear regression with good confidence, has been, 

from a methodological point of view, clearly demonstrated. It ensures that all the search 

space can be modelled with about the same confidence level in contrast to other 

methods such as Artificial Neural Networks. In addition, it allows one also to obtain an 

explicit model in a mathematical form that can be visualised and further used in Excel 

or other software as a benchmark for catalyst optimization performance assessment.  
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5.5 - Experimental  
 

5.5.1 - General 

 

An automated catalyst preparation workstation (Sophas - Zinsser Analytics, see 

Appendix A.2) was used for the catalyst library synthesis, having a typical throughput 

of 24-48 catalysts/day. 

Materials: Activated carbon Darco® KB-B, titanium isopropoxide, zirconyl nitrate 

hydrate and copper chloride dihydrate were purchased from Sigma Aldrich. 

Molybdenum chloride, hexa-ammonium heptamolybdate tetrahydrate, copper nitrate 

pentahemihydrate and niobium chloride were purchased from Riedel de Haën. Cerium 

nitrate hexahydrate, chloroplatinic acid hexahydrate and hydrogen tetrachloroaurate 

hydrate were purchased from Strem, ammonium metavanadate from Fluka.  DMSO, 

acetyl acetone and 2-propanol were of reagent grade. 

 

5.5.2 - General Procedure A: Ce and Zr based catalysts prepared by 

Impregnation on Carbon 

General principles of synthesis by the “carbon route” can be found elsewhere [14]. 

Solutions of 1 M cerium and zirconyl nitrate, 0.05 M TM (ammonium vanadate, 

niobium and molybdenum chloride), and NM (0.0025 and 0.025 M hydrogen 

tetrachloroaurate, 0.05 and 0.001 M chloroplatinic acid, and 0.1 M and 0.01 M copper 

nitrate) were dispensed in the appropriate volumes to accomplish the required catalysts 

composition according to the design depicted in Figure 5.1. The final volume was 

adjusted by adding water until a total volume of 4 ml was reached. The solutions were 

stirred and transferred to vials containing 1.3 g of activated carbon. Subsequently, the 

impregnated carbon was left to dry for 5 h at 120 °C while shaking. All the previous 

procedures have been performed by the automated catalyst synthesiser platform 

presented in appendix A.2. The catalysts were then calcined for 3 h at 550 °C with an 

initial heating rate of 2 °C/min. 

 

 

 



Chapter 5 
__________________________________________________________________________________________________________ 

 

 96 

5.5.3 - General Procedure B: Ti supported catalysts prepared by SolGel 

To each of the reactor vials 1.5 M titanium isopropoxide with 2 M acetyl acetone in 2-

propanol solution was added manually. Subsequently, the TM solutions (0.05 M 

ammonium vanadate, 0.05 M niobium chloride in DMSO, 0.05 M molybdenum 

chloride in DMSO) and NM (0.0025 and 0.025 M hydrogen tetrachloroaurate, 0.05 and 

0.001 M chloroplatinic acid, and 0.1 M and 0.01 M copper chloride in DMSO) were 

dispensed in the appropriate volumes to accomplish the required catalysts composition. 

The reactor vials were heated at 120 °C and allowed to dry under shaking during the 

night. The catalysts were then calcined as mentioned above. 

 

5.5.4 - General procedure C: High-Throughput Catalysts Testing 
All catalysts were tested in a parallel reactor setup (Switch 16 - Amtec, see Appendix 

A.4) constituted of 16 channels loaded with 150 mg of catalyst. The analyses were 

performed on a micro-GC (Agilent), which enables complete quantification of all 

products within 3 min. More details about the reactor system can be found elsewhere 

[13,15]. When placed in the parallel reactor the 16 catalysts were tested first under 

COOX (no H2 present) and then under SELOX conditions (H2 present). Detailed 

reaction conditions are given in Table 5.2. After a temperature ramp (1°C/min), the 

reactor was allowed to stabilise for 15 min before starting the sequential analysis. The 

analyses were always duplicated implying a throughput of 192 analyses/day accounting 

for 16 (catalysts) x 3 (temperatures) x 2 (reaction conditions) x 2 (duplicates). 

 

Table 5.2 - Reaction conditions (feed composition, temperature, catalyst loading and total flow) 
for COOX and SELOX 
 

 H2 

(%)  
O2 

(%)  
CO 
(%) 

N2 

(%)  
Temp 1 

(ºC) 
Temp 2 

(ºC) 
Temp 3 

(ºC) 
Catalyst 

(mg) 
Total Flow 
(ml/min) 

COOX - 2 1 97 200 225 250 150 30 
SELOX 10 2 1 87 200 250 300 150 30 
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6 

EFFECT OF GENETIC ALGORITHM PARAMETERS ON 

THE EFFICIENCY OF HETEROGENEOUS CATALYST 

OPTIMIZATION 3 

 

Abstract 

 
A study of the effect of Genetic Algorithm (GA) configurations on the performance of 

heterogeneous catalyst optimization is reported in this Chapter. The GA optimization 

procedure is validated on the COOX and SELOX benchmarks obtained in Chapter 5. 

Because of the typical limitations in the number of parallel experimentations which can 

usually be carried out in heterogeneous catalysis, the effects of the population size on 

the robustness and convergence speed were investigated. From this study, general 

considerations about the algorithm settings (crossover, selection and mutation) to use 

for the optimization of similar heterogeneous catalyst issues are addressed.  

                                                 
The contents of this chapter have been published in: 

-  S. R. M. Pereira, F. Clerc, D. Farrusseng, J. C. van der Waal, T. Maschmeyer, C. Mirodatos, QSAR 
Comb. Sci., 2005, 24,45. 

- F. Clerc; M. Lengliz; D. Farrusseng;, C. Mirodatos, S. R. M. Pereira; R. Rakotomalala, Rev. Sci. 
Instrum.,  2005, 76, 062208. 
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6.1 - Introduction 

 

The theoretical basis for the optimization strategy called Genetic Algorithms (GA) was 

conceived by Holland in the early 1970’s [1-3] employing the natural evolution rules of 

selection and survival of the fittest as postulated by Darwin. 

A GA tries to mimic the evolutionary process of living species by using similar genetic 

operators - mating, crossover and mutation - to single out the individuals with the 

“genetic information” that leads to the best performance [4,5]. An Evolutionary 

Algorithm was successfully applied by Wolf et al. for optimizing a catalyst formulation 

for the reactions of oxidative dehydrogenation of ethane and propane [6-12]. 

Nevertheless, despite proof of concept validation for other reaction systems [13-15], the 

use of GA strategy is still scarce in this domain. A possible explanation of the above 

statement is the lack of confidence in the “black-box” optimization processes for the 

chemists who are trained only for rational catalysts design and trial and error approach. 

The use of non-optimal implementation of GAs would result either in a tedious and 

time-consuming optimization process or could even entirely jeopardise a discovery 

project. As a matter of fact, the number of parameters available for a GA 

implementation makes the finding of a robust and optimal GA configuration difficult. 

The task is further complicated due to the stochastic behaviour of GA, in which many 

different runs are required to get a statistically significant quality assessment of a certain 

GA architecture [15]. Considering that the sample preparation and testing in 

heterogeneous catalysis implies that typically only a few generations can be screened 

per week, several months of work can be lost if a wrong GA configuration is set. 

The optimal generation size and the total number of generations which are required to 

find the global optimum are the two most frequent issues addressed in the community 

[16]. Generally speaking, the answer to these questions depends on the shape of the 

surface response, namely on its size and complexity [17]. The use of population sizes 

that match with the commercially available HTE equipment capacities, usually 

consisting of 8, 16, 24, 48 or 96 parallel vessels or racks, would result in the best 

experimental throughput (performing 1 generation per day). The optimization efficiency 

when using these population sizes is therefore studied for the COOX and SELOX case 
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studies. The next issue concerns the choice of the best algorithm settings, considering 

the practical limitations of dealing with a low population size capacity.  

Optimization of algorithm configuration and settings is usually performed on so-called 

virtual or synthetic benchmarks which are custom-made mathematical response surfaces 

usually non-related to chemistry science. These functions are typically distinct from 

what one can expect for material optimizations case studies posing the question of their 

suitability for the optimization of GA parameters, since this is largely dependent on the 

response surface to optimize. Relevant GA optimization investigations would ideally be 

performed on extensive experimental data collections on heterogeneous catalysis. 

However, historical data collections from scientific literature usually provide data sets 

which are too small and include inconsistent and often poor data accumulated over 

decades. And on the other hand, comprehensive catalysis data banks that could be used 

for this purpose are mostly performed and kept confidential in industry research. Direct 

validation of GA configurations by directly performing experimental library design and 

analysis is usually not considered an alternative because it would lead to a too large 

experimental effort in order to get statistically significant results. A strategy based on 

experimental and simulation results using Artificial Neural Networks (ANN) has been 

applied, by Rodemerck et al, to construct a non-linear benchmark for the oxidative 

dehydrogenation of propane [16]. In this study, the effect of the GA population size was 

investigated but the results of the study relied on a very limited number of runs and key 

parameters such as the type of selection were not considered. In chapter 5 a Design of 

Experiments approach is adopted to build two catalysis benchmarks (the COOX and 

SELOX) which will be used in this chapter to perform a thorough validation of the 

influence of the GA configuration settings on the optimization performance on these 

benchmarks. General guidelines for optimum configuration settings are obtained and 

give indications about which parameter settings to use in similar optimizations of 

heterogeneous catalysts employing a GA approach.  
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6.2 - Genetic Algorithm implementation 
 
 

A software platform named Opticat - “Optimization for catalysis” was used for applying 

the Genetic algorithms mentioned in this study. This platform has been designed and 

implemented by the CNRS institute (Lyon, France) and a brief description can be found 

in Appendix C. This platform enables to build a custom-made GA configuration by a 

versatile drag-and-drop system based on a diverse library of possible operators.  

The data workflow describing a usual GA architecture is shown in Figure 6.1. An initial 

random population of catalyst candidate solutions is chosen and evaluated. Some 

candidate solutions of this generation are selected to undergo the crossover and 

mutation operations leading to a new generation of candidate solutions that will be 

tested and initiate a new iterative optimization loop. 

.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 - Framework of a basic Genetic algorithm procedure 

 

In this study the evaluation of the candidate solutions is made employing the COOX 

and SELOX benchmark fitness functions obtained in Chapter 5 and presented in 

Appendix B. Examples of the procedure of different modalities of the selection and 

crossover operators are illustrated in Figure 6.2 and 6.3 respectively.  

The selection operator is usually based on probabilities. In the Wheel selection type, the 

probability of a catalyst to be selected as parents for the next generation is proportional 
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to its fitness or performance (Figure 6.2a,c) whereas in the Ranking selection it relates 

to its fitness rank (Figure 6.2a,d). The Threshold selection value defines the percentage 

of low fitness performing catalysts that are accepted for the breeding process of the next 

generation of catalysts (Figure 6.2b). In Tournament selection, the individuals that are 

allowed to be reproduced, are chosen among a fixed random pool of catalysts from 

which the best one is selected. The selectiveness can be further tuned by the chosen 

Selective Pressure (SP). The Elitism operator is a method, which forces a given number 

of the best performing catalysts to be always selected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 - Example of Selection type procedures: a) Observed fitness for a hypothetical 7 

catalysts population, b) 40% Threshold selection c) Wheel selection probability, d) Ranking 

selection probability. 

 

The Crossover operator mixes the genetic information of the selected individuals from 

the previous generation, creating new combinations with their genetic information. 

Multipoint and uniform crossover operator types are depicted in Figure 6.3.  

The Mutation operator has an explorative role in GA. Due to the possible insertion of 

genetic information that was absent in the previous generations, new areas of the search 

space can be investigated, preventing the optimization procedure from being trapped 
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into local optima. A representation of the mutation operator procedure is shown in 

Figure 6.4. Here also, the probabilities of strings to be modified by either crossover 

(CP) or mutation (MP) can be monitored by setting respective values. Detailed 

information on GA operators can be found elsewhere [4]. 

 

 

 

 

 

 

 

 

Figure 6.3 - Crossover Types: a) 1-Single Point Crossover, b) 2-Multipoint crossover, 

c) Uniform Crossover with 0.5 gene-flip probability 

 

 

 

 

                Figure 6.4 - Mutation Operator 

 

 

6.2.1 - Catalyst representation  

 

In GA the candidate solutions are usually coded as bit strings composed of binary 

numbers (0, 1) representing the controllable independent variables that may influence 

the response. In the present case the string was composed of 24 bits. Each of the 4 

discrete variables (Temperature, Support, TM and NM types) was encoded in genes of 4 

bits each. As indicated in Chapter 5, they can take 3 different modalities: Cu, Au and Pt 

for the main active metal (NM); V, Mo and Nb for the transition promoter metal (TM); 

Ce, Ti, Zr oxides for the Support; and T1, T2 and T3 for the tested temperature. The 2 

continuous variables were also encoded as genes of 4 bits resulting in 16 steps of 0.06% 

and 0.25% for the NM (0.1-1.1%) and TM (1-5%) concentrations, respectively. 

Therefore a sub-space defined by a ternary at a given temperature encompasses 162 

  
a

b

c
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different catalysts compositions and the whole search space more than 20.000 

experiments (34 x 162). An example for coding an experiment performed on a catalyst 

composition containing 1.4% Pt and 2.6 % Nb on TiO2 and tested at 300 ºC is shown in 

Figure 6.5. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 - String representation of 1.4 % Pt, 2.6 % Nb, TiO2, 300°C catalyst solution. 

 

6.3 - Study of the effect of GA configurations on algorithm 
performances 

 

Genetic Algorithms have both exploration and exploitation features. Best catalysts are 

selected and reproduced while browsing the rest of the search space. The right balance 

between the amount of diversity (exploration) and speed of convergence (exploitation) 

is crucial to a successful optimization. This balance is generally tuned by the choice of 

GA parameter settings during the GA implementation. This choice needs, however, to 

be performed a priori and can considerably influence the optimization efficiency.  

The different GA parameter settings such as crossover, selection and mutation types and 

their corresponding percentage, the population size, and use of elitism operator were 

compared for their effect on the GA performance using the COOX and SELOX 

benchmarks. Information on the most influential parameters in the optimization of these 

benchmarks could in this way be obtained. 
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6.3.1 - Performance assessment 

 
Keeping the same GA configuration and operator settings, the behaviour of an 

optimization procedure can still vary because of the initial population that is designed 

randomly, and also because of the random features introduced by the crossover and 

mutation operators. In order to get statistically significant results on the performance of 

the GA configurations, at least 40 replicate runs were monitored from which the average 

of the achieved mean and best fitness were computed. The quality of different GA 

configurations was accessed via a “performance” criterion defined as the percentage of 

successful runs after evaluation of a fixed number of catalyst solutions (192). A run is 

considered successful if, after evaluating 192 individuals, at least one catalyst is found 

displaying a fitness value in the considered optimality region: DSELOX>0.92 and 

DCOOX>0.99 for the SELOX and COOX benchmarks, respectively. In turn, the defined 

quality assessment relates provides a measure of the robustness feature of the GAs and 

also the convergence speed since just a limited number of catalysts can be used (192). 

This criterion was considered more representative than the more commonly employed 

evaluation after a fixed number of generations since, in the latter case, the experimental 

effort necessary can vary greatly when configurations with different population sizes are 

compared. In this study the quality of each configuration was evaluated after a defined 

number of generations (Table 6.1) depending on the population size (Generation 

number = 192/Population size).  

 

 

         Table 6.1 - Number of generations at which the GA is evaluated in  

 relation to the correspondent population size. 
 

Population Generations 
8 24 
16 12 
24 8 
48 4 
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6.3.2 - COOX and SELOX benchmark features 

 

Although there exists no clear study specifying sources of difficulty in applying GA, 

some factors that have been suggested include: multi-modality (the existence of 

multiple misleading local or sub- optima), deception (when lower-order scheme 

information is misleading, causing the GA to get attracted to sub-optimal solutions), 

isolation (needle-in-the-haystack problem when no information exists to direct the 

optimization) and collateral noise (which hides the presence of a good sub-solution 

within a solution) [5]. The difficulty of the optimization of the COOX and SELOX 

response surfaces arises mainly by the presence of local optima with areas as large as or 

larger than the ones of the global optima. On the other hand, there are general trends 

such as the effect of the temperature, of supports (CeO2>ZrO2>TiO2), of metal oxides 

(V>Nb>Mo) and of the active metals (Pt>>Cu>Au), which can be used as guidelines 

during the iterative loops of the algorithm to facilitate the achievement of the final 

optimum conditions (low deception). It is obvious that the assessment criteria which are 

chosen will depend on the shape of the benchmark and on the context [15]. 

Nevertheless, whatever the criteria and the benchmarks, the optimization of algorithm 

settings is usually performed by screening different configurations and parameters via 

trial aand error. The use of DoE methodology allows a more systematic approach to the 

study of how changing the algorithm parameters can influence its optimization 

performance. This strategy has been used for finding suitable GA configuration 

parameter settings for the optimization of molecular conformations [18] and will be 

used in this chapter to ascertain the best configuration settings to optimize the COOX 

and SELLOX benchmarks.  

Due to the stochastic behaviour of GA, and the multiple optima present in the COOX 

and SELOX benchmarks, different optimal solutions were found at the end of the 

optimization cycles performed.  The sub-spaces where usually the GAs optimization 

cycles converged are listed in Table 6.2, and the values indicate the probability of 

convergence to a particular sub-space or optimal region of the parameter space.  

 

 



Chapter 6 
__________________________________________________________________________________________________________ 

 108 

 

Table 6.2 - Composition of the sub-spaces were the optimal solutions were 

 mostly found. 

Optimum COOX % SELOX % 
1 Pt/V/Zr/200 ° C 24 Pt/V/Zr/200 ° C 43 
2 Pt/Nb/Zr/200 ° C 27 Pt/Nb/Zr/200 ° C 33 
3 Pt/Nb/Ti/200 ° C 22 Pt/V/Ti/200 ° C 20 
4 Pt/Mo/Ti/200 ° C 27 Cu/V/Ce/200 ° C 0 
5 Pt/Mo/Zr/200 ° C <1   

 

 

At the end of a GA optimization cycle one optimal solution is usually reached. As it can 

be noticed in table 6.2 some optimum solutions are achieved via the optimization cycles 

more frequently than others, namely the ones positioned at the sub-spaces 

Pt/Mo/Zr/200°C for COOX and Cu/V/Ce/200°C for SELOX.  These probabilities match 

well with the size of the areas that inside the sub-spaces are at the optimum plateau 

values. Indeed, when looking at the best sub-spaces in the benchmarks reported in Table 

6.2 it can be seen that, in most cases, the performance is at the global optimum value 

considered (DSELOX>0.92 and DCOOX>0.99) whatever the metals concentration 

composition, resulting in a large plateau covering almost entirely the sub-space (Chapter 

5, Figure 5.5 and 5.6). This is not the case for Pt/Mo/Zr/200°C for COOX and 

Cu/V/Ce/200°C for SELOX for which only a minor area (top of peaks) reaches the 

optimum. Therefore, it is more probable that GAs converge for large optimal areas 

rather than for small ones, which is in line with the obtained results. 

 

 

6.3.3 - Effect of GA configuration on the optimization performances on 

COOX and SELOX 

 

Different GA parameters for the Elitism, Crossover, Population size and Selection type 

were compared for their effects on the GA performance, using the COOX and SELOX 

benchmarks. The different modalities studied for each parameter are depicted in Table 

6.3.  

The combination of each different modality represents a given GA configuration. The 

total number of combinations results in 128 different algorithm configurations. Sixteen 
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configurations were selected by a D-Optimal experimental design. By using this design 

the main effects of each operator modality on the performance of GA optimization 

could be studied with a reduced set of experiments.  

 

            Table 6.3 - Genetic operators and respective modalities. 
 

Elitism Population  Selection type Cross-over type 
Yes 8 Wheel (Whe) 1- Point (MP-1) 
No 16 Ranking (Rank) 3- Point (MP-3) 

 24 Threshold (Thr) Uniform 20% (U-20) 
 48 Tournament (Tour) Uniform 50% (U-50) 

Constant parameters: Selection Pressure = 1, Crossover Probability = 70%, 

Mutation Probability = 1%, 15% Elitism, 3 individuals per Tournament, 40% 

Threshold.  

 

The main effects of the GA settings calculated by regression from the 16 different GA 

configurations are shown in Figure 6.6. The bar chart represents the weighted average 

effects for each GA parameter with the corresponding standard error, while the 

performance is the percentage of successful runs as defined in section 6.3.1. 

As can be seen in Figure 6.6, the GA performance was favoured independently of the 

benchmark when using the Elitism operator, large population size and Tournament 

selection. The population size parameter showed the largest effect for both benchmarks, 

although the number of final tested catalysts was the same. The larger the population 

was, the more robust the optimization process proved to be. In addition, a pronounced 

decrease of the standard error was observed when the population size was the highest 

(48) for both benchmarks. This means that, whatever the other parameters, a more 

reliable optimization procedure can in principle be obtained when using a large 

population size. The performance of GA depends also on the way the selection is 

carried out. The performance appears to be better when the selection included a large 

percentage of the very best catalysts. Indeed, when the “elitist” mode was used 

(systematic selection of the 15% top catalysts), the performance optimization 

performance was significantly better. On the other hand it was noticed that the different 

crossover operator parameters did not influence significantly the optimization 

performance in both benchmarks.  
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           a)            b)   

Figure 6.6 - Mean operators performance for a) COOX and b) SELOX benchmarks. The lines 

represent standard error. Elitism (yes, no); Population size (8, 16, 24 and 48 individuals) 

Selection types: Wheel (Whe), Ranking (Rank), Threshold (Thr) and Tournament (Tour); 

Crossover types: 1 and 3 Multi-point crossover (MP-1, MP-3), 20% and 50% Uniform 

crossover (U-20, U-50). 

 

From this study, it comes out that the best GA configuration consists in using the 

Elitism operator, tournament selection and 1-point crossover (MP-1). The typical 

optimization behaviour calculated over 40 runs of this best configuration is shown in 

Figure 6.7.   
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  a)                           b) 

 
 
 
 

 

 

 

 

 

 

 

 

c)          d) 

Figure 6.7 - Optimization profile for the selected configuration (Elitism, Tournament selection 

and 1-Point crossover), for several different population sizes. a) and b) COOX, c) and d) 

SELOX. The vertical dash-dot line indicates the moment of the optimization iterative loop at 

which the GA performance was evaluated. 

 

The plots correspond to the mean of the best catalysts of a population in the course of 

the optimization and report the effect of the population size as a function of the 

generation number and as a function of the number of catalysts tested. It can be seen 

that for the COOX benchmark the optimization is easier and a lower population number 

is enough to provide efficient optimization than for the SELOX benchmark. For the 
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COOX benchmark, with a population higher than 16 individuals, convergence is 

reached before all 192 catalysts have been tested, whereas in the SELOX benchmark a 

population size above 24 catalysts is required. For both reactions a population of 8 

individuals performs poorly. 

As shown in Figures 6.6 and 6.7, the population size is the parameter with the highest 

impact in GA optimization performance. When the population is small, the diversity in 

the initial random population is also small and the probability to be trapped in a local 

maximum increases.  

When using a large population size a higher diversity already exists in the initial random 

population and the best solution in the population is expected to be already close to the 

global solution (Figure 6.7). For smaller population sizes, if the initial population does 

not contain the genetic information for optimal solutions, we have to rely on the 

stochastic behaviour of the crossover and mutation operators to insert the desired 

information into the population during the new generation breeding steps. This requires 

a higher number of generations in order to achieve optimality (Figure 6.7). This 

confirms that there is a minimum threshold population size below which the GA 

optimization has difficulties to operate. It can also be seen (Figure 6.7b) that above a 

certain population size no further improvement is achieved in the optimization. 

As demonstrated by comparing the two reactions, the convergence in the SELOX 

benchmark was found more difficult than in the COOX one, due to the presence of more 

local optima (Figure 6.7). For the former, a higher population size was required. The use 

of elitism prevents the possibility of losing good catalyst solutions during the selection 

stage, increasing the convergence speed. No significant difference in the effect of 

crossover type was observed. 

 

 

6.3.4 - Optimization of operators for the SELOX benchmark 

 
A further study of the GA operators was done with respect to the selective pressure 

(SP), mutation probability (MP) and crossover probability (CP) based on the full 

factorial design of the parameters presented in Table 6.4.  
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Table 6.4 - Studied levels of the Selective pressure (SP), mutation probability 

 (MP) and crossover probability (CP).  

Selective 
Pressure* 

 

Crossover 
Probability  

(%)  

Mutation 
 Probability 

(%) 
2 60 1 
4 70 10 
6 80 20 

* Number of candidate solutions per tournament. 

 

For the tournament selection, changing the number of individuals picked from a 

shuffled population from 2 to 6 increases the selective pressure and decreases the 

diversity. The effect of changing SP, and the probability of an individual to be subject to 

crossover (60-70-80 %) and mutation (1-10-20%) operators, for populations of 16 and 

48 catalyst solutions on the SELOX benchmark is presented in Figure 6.8a and b, 

respectively. From this figure it can be seen that the range of crossover probabilities 

studied does not have a significant effect for population. The performance for the 16 

individuals’ population remains rather low and cannot be tuned within the tested 

number of individuals to achieve desired conversion values of more than 90%. In 

contrast, for the population of 48 individuals (Figure 6.8.b) the desired performance is 

obtained and a SP of 2 and MP 0.01 are the preferred settings. 

The different nature of the diversity originated by the selective pressure and mutation 

probability operators explains the results obtained in Figure 6.8. In the first case the 

selective pressure (SP) will enable the already existent genetic information of the 

population to pass to the next generation while the diversity originated by the mutation 

probability (MP) can modify this genetic information by introducing genes, not 

previously present in the population, from the rest of the unexplored search space. A 

low selective pressure (SP-2) keeps a good level of diversity for future generations 

breeding, by decreasing in this way the probability of premature convergence to local 

optima. Clearly a low Selective pressure is preferred for both populations. With a large 

population containing already good genetic information (Figure 6.8b) the GA will 

perform better with low mutation values, while with a smaller population a higher 

mutation can be necessary to introduce good genetic diversity (Figure 6.8a). However, 

extreme values of mutation (MP 0.2) can be prejudicial in both cases since it can slow 
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down the convergence rate by destroying already-found relevant information. 

 

 

 

 

 

 

 

 

 

 

 

 

 

          a)     b) 

Figure 6.8 - Mean effects for the SP, CP and MP. Constant parameters: Elitism 15%, 

Tournament selection and 1 Point crossover.  a)  Results for a 16 individual population size, b) 

Results for a 48 individual population size. 

 

The above features show that for an efficient GA run a large variety in the initial sample 

of the search space is of utmost importance. It is nevertheless obvious that, from a 

practical point of view, a compromise has to be found by considering the size limitation 

arising from high-throughput equipment constraints. 

The optimization profile for the population of 48 individuals with SP of 2 and MP 0.01 

is shown in Figure 6.9. With this configuration a performance of 97% according to the 

established criteria in section 2.6 is attained. This means that in almost all the simulated 

runs an optimal catalyst solution is achieved in less than 4 generations or 192 catalyst 

candidate solutions evaluated. 
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Figure 6.9 - Optimization profile for the settings: 15 % Elitism, 48 individuals population size, 

Binary Tournament, 1 Point crossover with 60% crossover probability and 0.01 Mutation on the 

SELOX benchmark. 

 

 

6.5 - Conclusions 

 

Due to the large influence of parameter setting in the optimization efficiency of GA and 

the usual difficulty or even impossibility to validate the optimization results via repeated 

optimization cycles (due to the large experimental effort necessary) the settlement of a 

proper algorithm parameter configuration in the beginning of an experimental GA 

optimization is highly important. These configurations are however dependent on the 

response surface to optimize and this knowledge is usually not known a priori. The 

construction of benchmarks can allow the optimization of GA settings through 

simulation of its optimization performance, giving an indication of which sort of 

configurations would be more adapted for certain catalyst optimization studies.  

The use of Design Experiments showed to be an efficient strategy for obtaining a 

systematic procedure to investigate the effect of changing the Genetic Algorithms 

settings on its optimization performance. The main trends on the use of the selected 

parameters were obtained and optimal GA configuration settings for the optimization of 

the COOX and SELOX benchmarks were achieved.  

The results of the GA parameter optimization highlight that a large variety in the initial 
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sample of the search space is crucial. It is nevertheless obvious that, from a practical 

point of view, a compromise has to be found by considering the size limitation arising 

from high-throughput equipment constraints and efficiency of workflow. 

The optimal GA configuration found for the optimization of the COOX and SELOX 

benchmark consisted of using as parameter settings: 15 % Elitism, 48 individuals 

population size, Binary Tournament, 1 Point crossover with 60% crossover probability 

and 1% Mutation. These settings can give an indication of the parameters to be adopted 

for investigating similar catalytic response surfaces. When HT equipment for catalyst 

screening will have become more conventional in academic laboratories, access to 

databases may facilitate the study of algorithm optimization processes in other catalytic 

related studies. 
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7 

COMPARISON OF OPTIMIZATION METHODOLOGIES 

IN THE SELOX BENCHMARK 4 

 

Abstract 

 

The optimization efficiencies of several Global Optimization algorithms were studied 

using the SELOX benchmark. Genetic Algorithms, Evolutionary Strategies, Simulated 

Annealing, Taboo Search, and Genetic Algorithms hybridised with Knowledge 

Discovery procedures were the methods compared. A Design of Experiments search 

strategy was also exemplified using this benchmark.  The main differences regarding 

the applicability of DoE and Global optimization techniques are highlighted. 

Evolutionary strategies, Genetic algorithms using the sharing procedure, and the Hybrid 

Genetic algorithms proved to be the most successful in the benchmark optimization.  

                                                 
The contents of this chapter have been published in: 

S. R. M. Pereira, F. Clerc, D. Farrusseng, J. C. van der Waal, T. Maschmeyer, Optimisation 
Methodologies and Algorithms for Research on Catalysis Employing High-Throughput Methods: 
Comparison Using the Selox Benchmark, Comb. Chem. & High Through. Screen., 10, 2007, 149. 
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7.1 – Introduction 

 

The wide acceptance of High Throughput Experimentation (HTE) and combinatorial 

methods in recent years has opened a broad range of possibilities to the catalyst 

researcher [1,2]. However, the automation and parallelisation of the experimentation 

poses new challenges to the chemist in the planning of experimental work so as to take 

full advantage of HTE capabilities. Chemometric research methods [3,4], initially 

dedicated to tackle analytical chemistry issues, are nowadays receiving special interest 

from the catalyst HTE community and a considerable number of studies has been 

performed in order to improve the understanding of these methods and to adjust them, 

as well as other computer-science methods, to the field of catalyst optimization [5]. A 

method starting to be commonly used within the combinatorial catalysis field is the 

Design of Experiments (DoE) explained in Chapter 2. Applications include catalyst 

formulation and preparation [6-9], catalytic kinetic modelling [10,11] reactor 

engineering [12,13], and the optimization of catalytic reaction conditions [14-18].  For 

the latter, DoE is usually well-suited, since for this application a well defined parameter 

space is commonly employed, the general understanding of a given chemical system is 

targeted and, by using descriptors, successful modelling of the response surface can be 

achieved in the presence of discrete variables [19].  When the goal is the optimization of 

a heterogeneous catalyst composition, however, global stochastic algorithms appear to 

be promising alternatives. These are attractive due to a) the large parameter space, b) the 

non-linear shape of the response surface, where synergistic effects are commonly 

encountered, and c) the difficulty of defining descriptors that characterise heterogeneous 

catalysts [20,21]. Under these conditions the use of DoE methodology might not be the 

most appropriate since the optimum can be easily missed.  

Usually in Catalysis, catalytic properties cannot be predicted from physical models. 

This implies that the catalysts (candidate solutions) must be synthesised and tested. 

Catalyst screening and optimization is a tedious task even with the help of automated 

parallel equipments. As a consequence, the optimization procedure should be reliable 

and should minimise the risks of failures (e.g. optima not found). This represents a 

substantial increase in the effort required to assess the reliability of algorithms and 
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methodologies. In addition, unlike the solution of a mathematical equation, laboratory 

experimentation implies experimental error and outliers. Algorithms robust with respect 

to noisy data are therefore required for catalyst optimization [22]. Furthermore, 

adjusting and testing the applicability of the different algorithms to different types of 

chemical problems is essential. Much effort has been recently invested in validating 

optimization algorithms using catalytic benchmarks. For instance, Genetic Algorithms 

search procedures have been studied in virtual catalytic benchmarks in the form of a 

Neural Network [23-26], or in some form of virtual mathematical benchmarks. While 

several of these methods have been tested separately, few studies compare their 

performances directly on the same benchmark. 

In this chapter a general overview of the application of common chemometric 

optimization methods in the field of catalyst optimization is presented. Several global 

optimization algorithms are compared to each other using the same mathematical 

function, or benchmark, which derived from a dataset on the SELOX reaction (Chapter 

5).  Finally, Design of Experiment methodology is also studied using the same SELOX 

benchmark.  

 

 

7.2 - The SELOX benchmark 

 

A large data set for the selective catalytic oxidation reaction of CO in the presence of H2 

(for fuel-cell applications) was modelled to obtain the SELOX benchmark (Chapter 5) 

[27]. The parameter space modelled includes the factors relating to catalyst composition 

and reaction temperature effects on the conversion and selectivity of CO oxidation. The 

catalyst composition parameters considered were: the type and amount of main active 

metal (NM, [NM]%) acting as the main active phase; the type and amount of transition 

metal (TM, [TM]%) acting as modifier/promoter of the active phase, and the type of 

metal oxide acting as support (see Table 7.1). By modelling, for every combination of 

the remaining discrete parameters, the effects of varying [NM%] and [TM%] on the 

fitness function, 81 quadratic order functions were obtained - one for each of the 

conversion and selectivity responses (see Figure 7.1 and Appendix B). The application 

of a desirability function that combined the two responses and a penalty for high 
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reaction temperatures formed the SELOX benchmark response surface (for more details 

see [27]) The SELOX benchmark has the advantage of being composed of a series of 

mathematical functions and, therefore, it can be easily optimized computationally. 

Moreover, it also has the advantage of being a real catalytic case study, the response 

surface of which can be easily visualised. It comprises a series of sub-optimal surfaces 

and its maximum fitness value is 0.935.  The considered optimal areas (fitness > 0.92) 

are situated in the Pt-Zr-Nb and Pt-Ti/Zr-V at 200 ºC sub-regions of the response 

surface (see Figure 7.1).  

 

 

Table 7.1 - Parameter Space for the SELOX Benchmark 
 

NM TM Support 
Temp.  
(°C) 

[NM]  
(mass %) 

[TM]  
(mass %) 

Au Mo CeO2 200 0.1 1 
Cu Nb TiO2 250 … … 
Pt V ZrO2 300 2.1 5 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
               

Figure 7. 1 - Contour Plot representation of the total desirability response surfaces of the 

SELOX benchmark.  
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7.3 - Global Optimization algorithms 

 

A common methodology for the optimization of catalytic problems is the use of global 

optimization strategies. Unlike, for example, Simplex and Gradient Descent local 

optimization methodologies, which are deterministic algorithms, stochastic global 

optimization algorithms do not, as long as the necessary number of iterations is 

performed, get trapped in local optima. Among the global methodologies available, 

currently Evolutionary Algorithms (EA) represents the most popular method which has 

found a wide range of applications in chemistry [28]. After the introduction, by Wolf et 

al., of this optimization strategy in heterogeneous catalyst formulation, the interest in 

this approach has risen considerably [24,25,30-34]. The increasing familiarity with this 

methodology, and its efficiency in the discovery of new catalytic materials, make EA a 

methodology of choice for this kind of application. Advanced Genetic Algorithms (GA) 

are also being tested in order to further improve the optimization efficiency. Most of 

these enhancements deal with hybridization of the GA algorithm with learning 

techniques such as Neural Networks, knowledge learning systems and others. Different 

promising algorithms like Simulated Annealing (SA) [35-37], and Taboo Search (TS) 

[38], while being widely used in other scientific fields, have been used to a lesser extent 

by chemical researchers and their advantages have not been sufficiently explored. Still 

other search algorithms recently applied to heterogeneous catalysis include MAP [39], 

Kriging [40], Holographic [26,41] search, etc.  In the following section, a brief set of 

explanations regarding search algorithms to be tested on the SELOX benchmark is 

presented. 

 

 

7.3.1 - Evolutionary Strategy (ES) and Genetic algorithms (GA) 

 

Genetic Algorithms (GA), and also Evolution Strategies (ES), try to mimic the 

evolutionary process of living species by using similar genetic operators such as 

selection, crossover and mutation [42,43]. Both share the same basic concepts, but differ 

in the way they encode the solutions. Genetic Algorithms use chromosomes composed 

of binary code, whereas the evolutionary strategies use a real-vector coding 
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representation [44]. In both methods a random initial population is evaluated, from 

which the strings of the selected catalysts are recombined and mutated, creating a new 

population that is evaluated again. Performing the loop once is called a generation, and 

this is then repeated until a termination criterion (for example a maximum number of 

catalysts tested, or convergence to a catalyst) is met. The degree of 

browsing/exploitation of the search system is settled by adjusting its selection pressure, 

crossover rate and mutation rate parameters [27]. Results obtained for the SELOX 

benchmark with a GA algorithm are shown in Figure 7.2 and the workflow chart for a 

GA and an ES are presented in Figure 7.3a.  

 

 
 Initial population        1st generation        2nd Generation 

 
 
 
 
 
 
 
 
 
 

  3rd Generation                     4th Generation 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.2 - Scatter-plot of the initial random population and the subsequent 4 generations on 

the SELOX benchmark for the GA1 algorithm settings (see Table 7. 2).  
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7.3.2 - Simulated Annealing (SA) 

 

Simulated Annealing algorithms work as an analogy to the way in which a heated metal 

changes towards a minimum-energy crystalline structure on cooling (the annealing 

process). If it is cooled quickly, it will solidify in a less organised and higher potential-

energy state then when cooled slowly. The method can be generalised to a 

combinatorial approach in a straightforward way [45,46]: the state of the 

thermodynamic system is analogous to the candidate solution, e.g. the catalyst, and the 

energy of the state is analogous to the value of the objective function for the specific 

solution.  The perturbations to move to another state can be compared to moving to a 

neighbouring candidate solution and the ground state to the global minimum or the final 

solution found by the algorithm. The temperature T is a parameter within the algorithm. 

Its initial value and the way in which it is decreased during the optimization (CT, 

Cooling Temperature scheme) controls the degree of system browsing and the 

algorithm’s optimization speed.  The workflow chart for a SA procedure is presented in 

Figure 7.3b. In this study the simulated annealing tested is a classic single-candidate 

algorithm. However, parallel SA optimizations that consider, for the same temperature, 

several neighbourhood candidate solutions have already been implemented [47]. 

 

7.3.3 - Taboo Search (TS) 

 

The word Taboo comes from Tongan, a language of Polynesia, where it was used by the 

aboriginal inhabitants of the Tonga island to indicate things that cannot be touched 

because they are sacred [48]. A recent meaning of the word is a social prohibition 

imposed as a protective measure. It is on the original meaning that the taboo algorithm 

is based. The most important association with this meaning is that taboos are 

transmitted by means of social memory, which is subject to modification over time. In 

this way also the Taboo search memorizes a list of taboo candidate solutions that are not 

repeated in the subsequent iteration and that is updated at each iterative step. The Taboo 

algorithm uses a neighbourhood search procedure to iteratively move from a candidate 

solution to a selected one in its neighbourhood, until some stopping criterion has been 

satisfied. The new candidate solution is accepted if it has not previously been 
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memorised as a taboo, or bad, candidate solution [49]. Taboo Search is a deterministic 

algorithm. The TS workflow chart is presented in Figure 7.3c. 

 
 

 

 

 

 

 

 

 

 

 

 

        a)     b)                  c) 

Figure 7.3 - Flow charts of the algorithm strategies. a) Genetic/Evolutionary Algorithm, b) 

Simulated Annealing (T = temperature), and c) Taboo Search algorithm. 

 

7.3.4 - Hybrid algorithms 

 

Several efforts have been made to improve the GA algorithms by introducing some sort 

of knowledge learning procedure into its search structure. Knowledge discovery 

algorithms [22,50,51] and Neural Networks [52-54], among others, have been 

hybridized with GA in order to extract knowledge from the past generations and use it 

in designing the new candidate solution generation. In this paper a multi-linear 

regression procedure was introduced in the GA (GA-LR), consisting of a mathematical 

function built according to the evaluation of the previous candidate solutions. The new 

individuals are estimated and proposed according to this mathematical function. The 

Zone Definer (GA-ZD) GA hybrid includes a special supervised learning algorithm 

which divides the search space into zones, the boundaries of which are based on the 

average value of each predictive variable.  Zone Definer is a modification of the k-d-

trees algorithm [55,56]. For the prediction, the estimate of an unknown candidate 

solution value will be the value of the zone it belongs to [57]. The linear-regression 
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learning procedure models the search space from a general point of view, while the 

zone-definer learning approach is a non-linear and local procedure. 

 

7.4 - Comparison of Global Optimization algorithms using the SELOX 

benchmark 

 
7.4.1 - Candidate solution representation 

 

The catalyst candidate solutions were coded for all the algorithms, except Evolutionary 

Strategy (ES), as bit-strings composed of binary numbers (0,1). Each string comprised 

30 digits, 4 for each discrete variable and 7 for each continuous variable. The binary 

code (base 2) was converted to decimal numbers and the corresponding value for the 

encoded variable calculated from that number. An example of coding and decoding of 

the bit-string representation is shown in Figure 7.4a. Vector coding representation of the 

variables was used for the Evolutionary Strategies as described in Figure 7.4b. 

 

 
 
 
 
 
 
 
 
 
 
 
 
   a)                 b) 
Figure 7.4 - Candidate solution representation. a) Binary string representation and decoding for 

the GA, SA, TS, random algorithms, and the ZD-GA and LR-GA Hybrid algorithms. b) Vector 

string representation and decoding for the ES algorithms. 

 

 

 

 

(011010000001101100111011100011)
Bit string

(0110)2 (1000000)2 (1101)2 (1001110)2 (1110)2 (0011)2(0110)2 (1000000)2 (1101)2 (1001110)2 (1110)2 (0011)2

NM NM% TM% Supp. TempTMNM NM% TM% Supp. TempTM

64 88

0-5 = 200
6-10 = 250
11-15 = 300

0-5 = CeO2
6-10 = TiO2
11-15 = ZrO2

0= 1
...
64 = 3
...
127 = 5

0-5 = Mo
6-10 = Nb
11-15 = V

0= 0.1
...
64 = 1.1
...
127 = 2.1

0-5 = Au
6-10 = Cu
11-15 = Pt

0-5 = 200
6-10 = 250
11-15 = 300

0-5 = CeO2
6-10 = TiO2
11-15 = ZrO2

0= 1
...
64 = 3
...
127 = 5

0-5 = Mo
6-10 = Nb
11-15 = V

0= 0.1
...
64 = 1.1
...
127 = 2.1

0-5 = Au
6-10 = Cu
11-15 = Pt

200 °CZrO23.8%V1.1% Cu 200 °CZrO23.8%V1.1% Cu

6 13 14 3

Vector string

NM NM% TM% Supp. Temp °CTMNM NM% TM% Supp. Temp °CTM

020.4201 020.4201

0 = 200
1 = 250
2 = 300

0 = CeO2
1 = TiO2
2 = ZrO2

-1= 1
...
0 = 3
...
1 = 5

0 = Mo
1 = Nb
2 = V

-1= 0.1
...
0 = 1.1
...
1 = 2.1

0 = Au
1 = Cu
2 = Pt

0 = 200
1 = 250
2 = 300

0 = CeO2
1 = TiO2
2 = ZrO2

-1= 1
...
0 = 3
...
1 = 5

0 = Mo
1 = Nb
2 = V

-1= 0.1
...
0 = 1.1
...
1 = 2.1

0 = Au
1 = Cu
2 = Pt

200 °CZrO23.8%V1.1% Cu 200 °CZrO23.8%V1.1% Cu
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7.4.2 - Algorithm settings 

 

Prior to the experimental optimization the algorithm settings need to be defined. This 

will influence the speed of optimization and browsing by the algorithm. The efficiency 

of the optimization is dependent on whether the settings adopted are appropriate for the 

problem to optimize [27]. However, since the knowledge about the shape of the 

response surface is usually not known a priori, chemists have usually to base their 

choice on settings commonly adopted and/or previous experience.  In our study 

commonly used settings were adopted. For SA, three different Cooling Temperature 

(CT) schemes were studied (SA1, SA2 and SA3; see Table 7.2 and Figure 7.5), which in 

this case defines the neighbourhood size change allowed at each iterative step, 

controlling the browsing/exploration speed of the optimization.  

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.5 - Simulated annealing cooling temperature schemes (CT). (see Table 7.2) 
 

For the Taboo Search (TS) a neighbourhood size of 5 neighbours of the last retained 

best individual for generation and evaluation was considered. The best of these becomes 

the new reference individual and is marked as taboo.  For the GA and ES, two selections 

(Ranking and Tournament selections) and the use of the sharing property were studied. 

For GA a constant 10 % bit-flip mutation rate and 80% uniform crossover were 

considered, and for ES a 10% gene-mutation probability and 80% 1-point crossover. In 

some algorithms a sharing property was added to the generation evaluation step, so as to 

induce the simultaneous search of different optima [58]. The sharing property (Equation 

7.1) uses a similarity operator, sim(a,b), (Equation 7.2), to measure the similarity 
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between each of the generation candidate solutions. This similarity operator uses a 

constant α (in our case, α =1) and is proportional to the distance between each two 

individuals d(a,b). The individuals are penalized, if they share a similar neighbourhood, 

by decreasing their performance value (f(a) → f’ (a)) [58]. With this operator the 

regrouping of individuals is penalized and the population diversity increased, as shown 

below (Equation 1 and 2). 
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where f(a) is the real fitness value of the candidate solution a, f´(a) the possible 

penalised fitness value, d(a,b) the distance between the candidate solutions a and b (0-1 

normalised), G a neighbourhood parameter and n the number of candidate solutions 

from the current generation. 

For the SA and TS, and any other methods that use the sharing property, the 

neighbourhood of the candidate solution needs to be defined, since it is necessary for 

these methods to order the distance between the candidate solutions, which possess 

discrete variables. For this purpose the Jaccard-Tanimoto co-efficient has been used 

[59]. This co-efficient establishes how distant two candidate solutions are from each 

other by calculating, according to their bit-string representation, the ratio between the 

shared and non-shared bits.  

As a blank reference to test the performance of the other algorithms, a random search 

was included in the comparison.  
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7.4.3 - Algorithm efficiency criteria 

 

The efficiency in achieving the SELOX benchmark optimum catalytic system was 

tested for all the global algorithms described above. A stopping criterion of maximal 

200 catalyst solutions to be tested was adopted for each algorithm search. Every 

algorithm was run 50 times and two efficiency criteria were computed from the average 

results: the percentage of the 50 runs that reached the optimal values (>0.92, >0.93 and 

0.935 % Reliability), and the average maximum value reached after the performed 50 

runs (Max. Fit. Average). The Opticat software (Appendix C) was used for performing 

all the algorithmic optimizations [60]. The results obtained are presented in Table 7.2. 

 

7.4.4 - Results and discussion 

  

The algorithms used for optimizing the SELOX benchmark response surface and the 

results obtained are presented in Table 7.2. From this table we can note that the 

maximum fitness average obtained, after 200 catalytic candidate solutions tested, was 

high for many of the algorithms. However, with some of the algorithms the maximum 

fitness average indicates that the algorithms were often trapped on sub-optimal solutions 

(SA, Taboo, GA1, GA2, Random). This is quite obvious with simulated annealing and 

taboo searches where, besides the low maximum fitness average, the percentage of runs 

reaching values above 0.92 (% Reliability) is even smaller than in the random search 

procedure. This demonstrates their risk of not achieving the right solution when just one 

search optimization is performed. The poor performance of the SA search is likely to be 

related to having only a single candidate per iterative step (see Table 7.2). When starting 

from a bad candidate solution it can be more difficult to find the right track and the 

optimization can be easily trapped into a local optimum solution. Another obvious 

practical disadvantage of a single-candidate solution methodology is its unsuitability to 

parallel high-throughput experimentation. Parallel Simulated Annealing, which does not 

suffer from the single-candidate limitation [47], was not within the scope of the present 

investigation but would be worthwhile to evaluate in future studies. 
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Table 7.2 - Optimization algorithms, their settings and optimization results on the SELOX 

benchmark. 
 

Search settings % Reliability 
Max. Fit. 
Average 

 

   Algorithm Distance NInd/Loop NLoop 
Specific alg. 
parameters 

0.935 0.93 0.92 (0-0.935) 

SA1      yes 1 200 CT1 T0=1, Ti = 1/NLoopi 4 6 30 0.837 

SA2 yes 1 200 CT2 
T0=1, Ti = 
1/ln(NLoopi) 12 24 45 0.838 

Simulated 
Annealing 

 

SA3 yes 1 200 CT3 
T0=1, Ti = 

0.005NLoopi+1 8 17 44 0.860 
Taboo 
Search 

TS yes 5 40  --- 
5 12 33 0.821 

ES1 no 40 5 Sel. Ranking 5 24 87 0.919 
Evolution.  
Algorithm  

ES2 no 40 5 Sel. 
2 individuals-
Tournament 6 35 90 0.920 

GA1 no 40 5 Sel. Ranking 0 2 62 0.897 

GA2 no 40 5 Sel. 
2 individuals-
Tournament 0 4 74 0.907 

Genetic  
Algorithm  

GA3 yes 40 5 Sel. 
2 individuals-

Tournament and 
Sharing 2 11 93 0.923 

GA-
ZD 

no 40 5 L.A. Zone-Definer   
0 11 89 0.912 

Hybrid 
algorithms 

GA-
LR 

no 40 5 L.A. 
Multi-linear 
Regression  0 10 93 0.922 

Random RD no 40 5  --- 0 4 58 0.871 
 
SA: simulated annealing, TS: taboo search, GA: genetic algorithm, ES: evolutionary strategy, 

GA-LR: genetic algorithm hybridised with multi-linear regression learning algorithm, GA-ZD: 

genetic algorithm hybridised with zone-definer learning algorithm, CT: cooling temperature 

schedule, Sel.: Selection type, L.A.: learning algorithm. 

 

 

For SA, an improvement can be observed when using a slower decrease of the cooling 

temperature schedule (CT, SA1>SA2>SA3) indicating that a longer initial browsing 

period of the search space is required to improve the algorithm performance and to 

increase the probability of the algorithm finding the optimum track. Global optimization 

algorithms, as the name indicates, are usually good in finding the global optimal 

solution area. They are, however, not the best for fine local optimization of the 

continuous variables. This is indicated by the reduced percentage that reached the 0.93 

and 0.935 % values - better results were achieved with SA and TS.  These algorithms, 
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which operate with the concepts of distance between the individuals and 

neighbourhood, are better able to exploit the optimal region, provided they are not 

trapped in a sub-optimal area. A common optimization procedure to overcome this 

limitation is to employ local optimization deterministic methods, like Simplex or 

Gradient Descent, after the global algorithm optimization. 

Evolutionary Strategies (ES) performed in general better than the Genetic Algorithms 

(GA), indicating that the representation of the candidate solutions can play an important 

role. The higher variability usually obtained when using the bit-string representation 

seems not to be beneficial for the SELOX benchmark optimization. In respect to the 

selection types applied, the Tournament selection type produced better results than the 

Ranking selection for both the ES and GA cases. This is consistent with the results of 

previous investigations on the SELOX benchmark regarding the effect of this setting for 

the GA optimization [27]. The use of the Sharing property (Equation 7.1 and 2) with the 

GA appears to be highly beneficial, bringing about a considerable increase in 

performance and giving results even better than with the ES optimization.  The Sharing 

property, by monitoring the diversity of the candidate solutions from one iterative step 

to the other, disincentives premature convergence to a local optimum and enables 

several alternative optima to be pursued.  

The hybridisation of learning algorithms (LR, ZD) with the GA improved the normal 

GA efficiency.  The integration of an algorithm in which the existing knowledge from 

the previous experiences is used to choose the next generation of candidate solutions 

improves the GA search.  

 

 

7.5 - DoE strategy for the SELOX benchmark optimization 

 

Design of Experiments (DoE) aims at maximising the amount of information obtained 

from experimentation while minimising the number of experiments (Chapter 2). DoE 

uses regression techniques to obtain the relationship between the response surface and 

the system factors in order to obtain a model for the chemical system or to just 

understand the importance of the effects of the factors. When the factors that influence 
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the system studied are continuous, quantitative interpolations are provided to minimize 

the number of experiments needed to obtain the model. However, when discrete factors 

are also present, which is the most common case in catalysis studies, other techniques 

have to be applied to avoid the exhaustive performance of all the discrete factor level 

combinations [61]. A common technique used is the D-Optimal criterion, where a sub-

set of the total combination of experiments is selected that has an optimal distribution 

(the experiments are situated as far from each other as possible) [62]. 

DoE resembles to some extent conventional laboratory research, in the sense that, to 

improve efficiency, the search can be divided into different stages or designs. The 

parameter space is progressively reduced to the most relevant variables from one stage 

to the next and detailed information is obtained in the end for the most important factors 

[63]. The interpretation of the results, and the selection of the factors for further 

investigation, is the responsibility of the chemist. The parameter space is modified at 

each design, making it possible to eliminate or introduce new parameters or levels, 

according to the current understanding of the system under study. A representative DoE 

optimization strategy, using the Nemrodw 2000 software, is discussed below. 

 

 

7.5.1 - Screening for the effects of the main factors 

 

The cost of the total amount of information obtained is the number of experiments it is 

necessary to perform. To estimate simple first-order or main effects, a small number of 

the total experimental effort is usually necessary, while in order to account for 

interaction effects as well, more data-points are demanded. For the parameter space 

presented in Table 7.1 the minimum number of experiments recommended to obtain the 

trends for the main effects of the factors is 18. If we would like to study all the two-

factor interaction effects, a minimum of 130 experiments would be required. Frequently 

the option adopted will need to take into account the research time and resources 

available. A common optimization procedure comprises an initial study of the main 

effects of the factors, following which a subspace of the initial parameter space is 

chosen for further investigation of the interaction effects between the factors. In the 

present case, ten different D-Optimal designs were evaluated to observe the variance of 
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the estimated effects of the factors with the experimental points chosen. The position of 

the experimental points in the SELOX response surface of one of the D-optimal designs 

is represented in Figure 7.6 and the results obtained for the main factor effects study are 

depicted in Figure 7.7. 

The estimate of the main effect of a factor is related to the average response values of 

the experiments performed at various levels of the factor. An important factor causes a 

large effect because the system will perform significantly better or worse at one of its 

levels on average.  

The results obtained for the main factor analysis in the SELOX response and its 

variance by choosing difference sets of experimental designs is represented in Figure 

7.7. From this analysis we see that the main trends in the SELOX surface are 

reproduced. The NM type has by far the largest effect on the SELOX response; if we 

look at the SELOX response surface we see that, on average, when Pt is used the 

performance increases significantly, while Au is the poorest performer of the three NM, 

followed by Cu (in Chapter 5 the poor performance of the Au catalysts is explained in 

terms of the low metal dispersion resulting from the preparation method). The use of 

Mo as TM type also affects significantly the performance, but in a negative way, and 

this can be confirmed by noticing that on average it matches with the lightest areas from 

the SELOX surface (Figure 7.6)). 

 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 

Figure 7.6 - Representation of one of the possible designs in the SELOX search space.  
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Figure 7.7 - Average main factor effects with 95% confidence interval and their variance. The 

bars directed to the right signify a positive relative effect and those to the left a negative one.  

The dotted lines represent the 95% confidence interval calculated from the estimated 

experimental variance. Effects higher than this confidence level are considered statistically 

significant and are represented in black. 

 

The effects of the other factors are smaller and it is not possible to rely on their 

significance at this level. This means that those trends are not sufficiently clear to 

predict the effect of choosing one of their factor levels. The principal outcome of the 

effect study pinpoints Pt as a positive determinant factor level and Mo as a negative one.  

Based on these results, Pt could be selected and Mo eliminated in a subsequent more 

detailed parameter study.   

 

7.5.2 - Screening for interaction effects 

 

In this second design the interaction effects of the discrete variables Support, TM and 

Temp were studied (see Table 3). By opting to perform fine-tuning optimization of the 

[NM]% and [TM]% continuous variables at a later stage and by setting their variables at 

their median values, a substantial reduction of the parameter space was achieved. A full 

factorial design (see Figure 7.8) could then be chosen comprising 18 experiments.  
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Table 7. 3 -  Factors to be investigated in the second screening  and their correspondent levels. 
 

TM Support Temp (ºC) 
V CeO2 200 
Nb ZrO2 250 

 TiO2 300 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.8 - Representation of the reduced search space after the main factors analysis, and the 

new experimental design points 

 
The results obtained for the two-factor main and interaction effects are depicted in 

Figure 7.9.  A detailed analysis of the main effects for this reduced search space shows 

that on average the TM type V is better than Nb. Also ZrO2 is on average a better 

support. In the interaction analysis we notice that even if TiO2 is not, on average, 

considered the better support, there is a strong positive interaction between the TM V 

and the support TiO2 (V-Ti). Since the response surface presents several optimal areas, 

several trends could be followed to search them. The interaction effect between the 

transition metals and the reaction temperature does not show significant trends. 

However the interaction of ZrO2, or of TiO2, with this parameter indicates a positive 

interaction at 200 ºC. The most significant interactions are, however, the TM-Support 

interactions.   
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a)                                                                b) 
 

Figure 7.9 -  Statistical effect analysis for the second screening. a) Main effects. b) Interaction 
effects. 
 
 

The interaction Ti-V is very strong, and there is a difference between the Nb-Zr and V-

Zr interactions, where the Nb-Zr interaction has a relative positive effect and the V-ZR 

a negative. These trends can be confirmed by comparing them with the response surface 

in Figure 7.8. At this stage of the optimization we have the indication that Pt is the best 

performing NM type and that the optimal region could lie in the combination of this 

metal with V supported on TiO2 or Nb supported on ZrO2 at 200 ºC reaction 

temperature. 

 

7.5.3 - Optimization design 

 

The final optimization step is exemplified with the selected V-Ti interaction at 200 ºC; 

in this final step the location of the optimum in terms of the concentration of TM and 
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NM is to be found. This usually requires a mathematical model to be built which can be 

used to predict the response surface of the problem being investigated. More detailed 

information about each of the factors is then necessary; therefore these modelling 

experiments are much larger than screening experiments and are only performed for a 

few factors. To model the curvature of the response surface a second-order model is 

considered to be sufficient. A Central Composite design [3], Figure 7.10a), was chosen 

to plan the experimental points to be performed.  For the efficient modelling of the 

response surface seven experiments plus two replicates of the central point were 

selected. The resulting response surface obtained and the location of the optimal 

composition region is shown in Figure 7.10b). 

In this response surface (Figure 7.10b) the representative curvature of the benchmark 

surface (Figure 7.10c) is obtained. The optimal area is allocated but with this second 

order model the small areas where the final optimum (>0.93) resides are not revealed.  

To obtain more detailed information a higher order model design would be necessary. 

 

 
 
 
 
 
 
 
 
 
 
 
   a)            b)                                                    c) 
 

Figure 7.10 - Composition optimization in terms of the [NM]% and [TM]% of the catalyst 

composed of  Pt-Nb-Zr at 200 ºC. a) Central Composite representation of the experimental plan, 

b) Resulting response surface with central composite, c) SELOX benchmark response surface 

for the Pt-Nb-Zr catalyst compositions. 
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7.6 - Conclusions 

 

The comparison of the different algorithms applied to the same benchmark has proven 

valuable for understanding the way they work and how they may be adjusted to the 

chemical problem under study. The efficiency of any optimization algorithm depends 

largely on the difficulty of the problem to be studied. Adjustment of the 

browsing/exploitation ratio of the algorithm is essential to avoid becoming rapidly 

trapped on a local optimum or performing too lengthy an optimization. Since chemists 

do not know a priori the shape of the response surface to be studied, they need to base 

their choice of the algorithm parameters in the beginning of the optimization procedure 

on existent benchmark studies.  

If the parameter space to be investigated is very large, Design of Experiments may not 

constitute the most efficient strategy. The research can be divided into different stages, 

in which the scientist can adjust the size of the parameter space and the detail of 

information withdrawal at each stage, making the research more flexible and efficient. 

This strategy runs, however, the risk that synergetic variables are discarded at an early 

stage because their interactions were not detected. In this way, even if better cause-

effect knowledge about the effects of the variables in the chemical system is obtained 

(which is necessary to understand the chemical system), the achievement of the optimal 

solution cannot be guaranteed. With global optimization algorithms, the final optimum 

is more efficiently achieved and guaranteed if the number of necessary experiments is 

performed, but only a poor understanding of the chemical system and the effects of the 

variables on the response is obtained. The main goal with Global optimization is the 

achievement of the optimal solution. For small search spaces many of the global 

optimization methods are not adequate. For instance, for the normal procedure of a GA, 

a minimum population size of 20 candidate solutions and 3 iterative generations are 

usually necessary. A more efficient design could be obtained with DoE where such 

restrictions do not exist. 

Chemometric methods for catalysis composition optimization are excellent aids for 

exploring and allocating the optimal parameter space regions, avoiding an inefficient 

exhaustive experimental investigation. The appropriate method to be used, however, is 
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dependent on the research resources available, the nature of the parameter space and the 

precise research aims. 
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Appendix A - High-Throughput Experimentation Equipment 
 

 

In the catalysis field a great deal of effort has been applied on the development and 

improvement of equipment that accelerates the speed of practical chemical 

experimentation. Examples are robotic liquid and solid handling equipment that pick 

and mix the reactants in different miniature vessels or reactors (e.g. Appendix A.1 and 

A.2), and platforms for catalyst synthesis preparations (Appendix A.2). Specialized 

reactor platforms are also available that can perform high-pressure parallel screening of 

catalyst reactions in the liquid phase (e.g. Appendix A.3) and gas-flow catalyst testing 

reactions (e.g. Appendix A.4).  

The High throughput equipment employed in this thesis is presented and briefly 

described in this appendix. 
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Appendix A.1 - Liquid handling and parallel reactor ‘Hamilton’ platform 

 

The Hamilton Dual Arm is a robotic liquid-handling platform. This robot dispenses and 

transfers liquid-phase chemicals using two types of devices: the single needle arm and 

the pipette D-arm.  Set amounts of liquids can be transferred from one rack of vials to 

another via both arms, or dispensed to a rack of vials from an array of bottles containing 

different liquids stored in an adjacent cabinet via the needle arm. The needle arm is able 

to perforate septa and is adequate for experiments that require a closed environment. On 

the other hand, the pipette D-arm can dispense more viscous liquids and in more precise 

amounts than the needle arm. Between different liquid transfers the needle arm requires 

a washing cycle, while the D-arm picks up a new disposable plastic tip for each transfer, 

excluding contamination risks.  

A special kind of rack has been designed for performing the terpene reactions presented 

in Chapter 3.  This reactor rack was composed of 24 glass reactor HPLC vessels each 

with a working volume of 1.5 ml.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1 - Hamilton Dual Arm liquid-handling and reactor rack platform. a) 6x4 glass 

reactor-rack, b) sample- rack, c) needle arm, and, d) pipette D-arm.  
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Appendix A.2 - Liquid handling and catalyst synthesis Zinsser-Sophas  Analytics 

platform 

 

The Zinsser- Sophas workbench employed in the research of Chapter 5 is a liquid 

handling platform specialised for catalyst synthesis procedures.  This system has one 

arm which can be equipped with up to four independent pipetting or dispensing probes. 

Liquid transfer from vials or liquid dispensing from stored bottles can be performed. 

Several reactor and chemicals handling racks can be assembled in the system. For the 

catalyst syntheses in Chapter 5 a rack of 6x4 reactor vials has been used.  The reactor 

racks can be positioned in a vortex mixer with a built-in heater (to +150 °C).  All the 

operations performed by the workbench are controlled by a computer supplied with 

Zinsser Sophas software.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.2 - Sophas liquid handling and catalyst synthesis platform. 
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Appendix A.3 - High pressure ‘Quick Catalyst Screening’ parallel reactors 

platform 

 

The Quick Catalyst Screening (QCS) platform (Figure A.3a), as employed for the 

catalytic hydrogenations of Chapter 4, is composed of up to 8 blocks of 12 (3x4) high-

pressure stainless steel reactors (Figure A.3b). Pressure can be independently set for 

each reactor block up to 20 bar. The reactors have disposable Teflon inserts (Figure 

A.3c), a working volume of 1-2 ml and are mixed magnetically. The temperature can be 

varied from -40 to 180 °C.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.3 - Quick Catalyst Screening (QCS) Avantium BV platform. a) General view of the 

equipment, b) Detail of one high pressure 12-reactor block, and c) Detail of the reactors.  

 

a) 

b) c) 
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Appendix A.4 - Gas-phase AMTEC reactor system 

 

The 16-fold parallel reactor system from Amtec has been employed for the testing of the 

synthesised catalyst library in Chapter 5. The system, which is equipped with 16 

individual, continuous-flow, fixed-bed, stainless steel reactors, with a catalyst volume 

bed of 4 ml, ensures uniform temperatures, pressures and fluid flows in all reactors. The 

system allows a maximum flow rate of 200 ml/min per reactor, a temperature of 600 ºC 

and 13 bar of pressure.  Micro-GC and Micro-ms analytical equipment were adapted to 

the system for semi-online analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            Figure A.4 - Switch-16 - Amtec gas-phase reactor system.  
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Appendix B - COOX and SELOX Benchmark Regression Functions 

 

 

The regression coefficients (b0, b1, b2, b12, b11, b22) of the experimental data from the 

COOX and SELOX reactions (Chapter 5) obtained by the Nemrowd 2000 software are 

presented in table TB.1. A polynomial quadratic equation (y = b0 + b1x1 + b2x
2 + b12x1x2 

+ b11x1
2 + b22x2

2) based on these coefficients could be derived for each metal ternary 

combination, at a certain reaction temperature, for the responses of CO conversion and 

CO2 selectivity. The equations of table TB.1 constitute the analytical forms of the 

COOX and SELOX benchmarks before the application of the desirability criteria. A 

visual representation of the corresponding response surfaces can be observed in Chapter 

5 (Figures 5.4 and 5.5). 
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Table B.1 – COOX and SELOX benchmark functions. Polynomial regression coefficients obtained for the conversion and selectivity 
responses: (y = b0 + b1x1 + b2x

2 + b12x1x2 + b11x1
2 + b22x2

2 ) where x1 is the TM amount and x2 the NM amount in %. 
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Table B.1 – COOX and SELOX benchmark functions. Polynomial regression coefficients obtained for the conversion and selectivity 
responses: (y = b0 + b1x1 + b2x

2 + b12x1x2 + b11x1
2 + b22x2

2 ) where x1 is the TM amount and x2 the NM amount in %. (Continuation) 
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Table B.1 – COOX and SELOX benchmark functions. Polynomial regression coefficients obtained for the conversion and selectivity 
responses: (y = b0 + b1x1 + b2x

2 + b12x1x2 + b11x1
2 + b22x2

2 ) where x1 is the TM amount and x2 the NM amount in %. (Continuation) 
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Appendix C - OptiCat Software 

 

The OptiCat (Optimization for Catalysis) software is a platform for building stochastic 

optimization algorithms. A diverse variety of algorithms can be implemented via drag 

and drop operations of the pre-established procedure building blocks. Some of these 

algorithms are, for instance: evolutionary strategy, genetic algorithm, Tabu search, 

simulated annealing and a series of hybrid algorithms with knowledge based 

implementations used in Chapter 7. This software has been developed due to the need of 

soft computing tools in combinatorial high-throughput catalysis and can be downloaded 

from the website: http://eric.univ-lyon2.fr/~fclerc/.  

Most optimization algorithm are traditionally composed of four iterative phases: 1) 

initialisation, to generate a first set of potential solutions to the problem; 2) evaluation 

of each solution (results visualisation); 3) confrontation with a stopping criterion; 4) 

generation of a new set of potential solutions and return at stage 2.  Figure C.1 gives a 

schematic representation of the algorithm implementation in Opticat. 

 

 

 

 

 

 

 

 

 

Figure C.1 - A classical optimization process 

 

With judicious arrangement of the procedure building blocks existent in the Opticat 

software, diverse iterative optimization strategies like random search, simulated 

annealing, Tabu search, evolutionary algorithms and other algorithms can be 

implemented. Figure C.2 shows an example of an OptiCat screenshot of a Genetic 

algorithm construction. 
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Figure C.2 - OptiCat screenshot of a Genetic algorithm. 
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Summary 

 

The main topic of this thesis is the investigation of the synergies between High-

Throughput Experimentation (HTE) and Chemometric Optimization methodologies in 

Catalysis research and of the use of such methodologies to maximize the advantages of 

using HTE methods.  

In Chapter 1 an introduction to High-Throughput Experimentation (HTE) and 

Chemometric optimization methods and their combined use for catalysis research is 

presented. Considerations are given about the use of chemometric experimental 

planning methodologies such as Design of Experiments and Global Optimization 

algorithms.  

An overview of the use of the Design of Experiments technique is presented in Chapter 

2. This methodology is central to most of the thesis research, being applied through 

almost all its chapters. 

Chapter 3 deals with the exploration of a terpene addition reaction parameter space, in 

this case a hydration reaction, using a multi-step Design of Experiments approach. From 

this investigation insights on the main reactivity trends were obtained. Namely that the 

highest selectivities were achieved with camphene substrate and the lowest with the two 

pinene substrates, due to the higher number of rearrangement pathways usually 

undergone with the latter. It is shown that the acid strength had a significant effect on 

the activity but not on the resulting product mixture; the solvent type and water 

concentration were shown to have smaller effects. DoE proved to be a fruitful strategy 

to explore and discover the underlying trends in such a challenging chemical parameter 

space. 

In Chapter 4 is presented the optimization of the reaction conditions for the 

hydrogenation of cyanohydrin esters to N-acylated-ß-amino alcohols, using again a 

multi-step Design of Experiments approach. This strategy enabled, with only a small 

number of experiments, the location of the most promising region of the experimental 

space in which this reaction took place, namely the use of Ni and Rh catalysts, 

supported on either carbon or alumina, and with 2-propanol or dioxane as solvents. Via 

further optimization designs the best conditions for the reaction were obtained, yielding 

total conversion and yields of about 50% and 90 % for the benzylic and aliphatic 
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cyanohydrin ester substrates, respectively. The application was demonstrated on a range 

of aliphatic and aromatic substrates. When used with enantiopure substrates no 

racemisation was observed, except to a small degree for the benzylic substrates. DoE 

together with HTE technologies proved efficient for the exploration and optimization of 

this chemical route towards the production of N-acylated-ß-amino alcohols.  

In Chapter 5 the planning and modelling of catalytic benchmark response surfaces using 

Design of Experiments is performed. A library of 189 mixed-oxide catalysts was 

prepared and their activity tested and modelled for the CO oxidation reaction in both the 

absence (COOX) and presence (SELOX) of hydrogen. A DoE model (quadratic order) 

was used to map the parameter space. A visual representation of the resulting response 

surfaces was obtained together with the model analytical functions which constituted 

the benchmarks for the two conditions tested (COOX and SELOX). The multiple 

responses of interest and the process preferences (conversion of CO, selectivity towards 

CO2 and temperature) were taken into account through the use of a desirability function. 

The visualisation of the response surface allowed obtaining a good understanding of the 

effects of the studied variables and the location of the optimality regions. The COOX 

and SELOX benchmarks were used in the following chapters to access the optimization 

performance of selected Global optimization algorithms. 

In Chapter 6 the optimization procedure of employing the Global Optimization Genetic 

algorithm and the influence of the algorithm settings on its optimization efficiency is 

studied. Both the COOX and SELOX benchmarks obtained in Chapter 5 were used to 

validate the Genetic algorithm performance. A Design of Experiments approach was 

used to select the configurations to be tested and study the effects of the chosen 

parameter settings. The most important parameter found was the population size, where 

the largest population compatible with the desired HTE workflow (the synthesis and 

testing of one generation of catalysts per working day) was found to be preferential. An 

optimal GA configuration was found for the optimization of the SELOX and COOX 

benchmarks, consisting of the use of 48 individuals as population size, 15 % elitism, 

binary tournament as selection type, 1-point crossover with 60% crossover and 1% 

mutation probabilities, respectively.  

In Chapter 7 the optimization performance of several algorithms tested on the SELOX 

benchmark is compared. The studied algorithms include Evolutionary Algorithms, 
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Genetic Algorithms, Simulated Annealing, Taboo Search, and Hybrid Genetic 

Algorithms. The most successful in the SELOX benchmark optimization proved to be 

Evolutionary and Genetic Algorithms using the sharing procedure, and Genetic 

algorithms hybridized with some knowledge-extraction routine. A multi-step DoE 

optimization procedure was also exemplified using this benchmark.  The main 

differences regarding the applicability of DoE and Global optimization strategies were 

highlighted, namely that better cause-effect knowledge can usually be obtained with the 

use of multi-step DoE but the risk of discarding synergetic variables at an early stage is 

increased. With Global optimization algorithms the achievement of the optimal solution 

can be theoretically guaranteed; furthermore, this strategy may present an advantage 

with regard to experimental effort, in relation to DoE, when a very large and complex 

parameter space needs to be investigated.   

Altogether, it was shown that the use of HTE, as a powerful method for catalysis 

research, is further improved by the application of appropriate experimental planning 

techniques. Strategies involving Chemometric methods like Design of Experiments and 

Global Optimization techniques can help in avoiding exhaustive experimental 

investigations and enhance the power of exploring large parameter spaces and locate the 

optimum catalytic system conditions.  
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Samenvatting 

 

Het hoofd onderwerp van dit proefschrift is het onderzoek naar de synergiën tussen 

High-Throughput Experimentation (HTE) en Chemometric Optimization methodologiën 

in katalyse onderzoek en het gebruik van dit soort methoden voor het maximaliseren 

van de voordelen van het gebruik van HTE methoden.  

In hoofdstuk 1 wordt een introductie gegeven over High-Throughput Experimentation 

(HTE) en Chemometric Optimization methoden en hun gecombineerde gebruik in 

katalyse onderzoek. Verschillende methoden van chemometrische experimentele 

planning worden behandeld zoals Design of Experiments and Global Optimization 

algoritems.  

Het gebruik van de Design of Experiments techniek wordt behandeld in hoofdstuk 2. 

Deze methodologie is een belangrijk thema in dit proefschrift aangezien zij in vrijwel 

alle hoofdstukken wordt gebruikt.  

Hoofdstuk 3 gaat over het onderzoeken van een terpeen additie reactie parameter 

ruimte, gebruikmakend van een meerstaps Design of Experiments benadering. Hierdoor 

werd inzicht verkregen in de belangrijkste reactiviteits trends. De hoogste selectiviteit 

werd verkregen met een campheen substraat en de laagste selectiviteit met twee pineen 

substraten. Dit was verklaarbaar door het grotere aantal omleggingen dat pinenen 

kunnen ondergaan. Aangetoond werd dat de zuursterkte van de katalysator van invloed 

was op de activiteit, maar niet op de uiteindelijke verhouding van producten. Het type 

oplosmiddel en de water activiteit waren van beperktere invloed. DoE bleek een goede 

strategie te zijn voor het ontdekken van de onderliggende trends in deze gecompliceerde 

chemische parameter ruimte.  

In hoofdstuk 4 wordt de optimalisatie van de reactie condities voor de hydrogenering 

van cyanohydrin esters naar N-geacyleerde β-amino alcoholen, gebruikmakend van de 

meerstaps Design of Experiments benadering beschreven. Deze strategie maakte het 

mogelijk om met een beperkt aantal experimenten de locatie van het meest 

veelbelovende deel van de parameter ruimte te vinden. Dit was met name het gebruik 

van Ni en Rh katalysatoren op kool of alumina, met isopropanol of dioxaan als 

oplosmiddel. Door verdere optimalisatie werden de beste condities voor de reactie 



Samenvatting 
__________________________________________________________________________________________________________ 

 161 
 

gevonden. Deze gaven een opbrengst van ongeveer 50% voor benzylische en ongeveer 

90% voor alifatische cyanohydrin esters. De reactie was succesvol voor een 

verscheidenheid aan alifatische en aromatische substraten. Er werd in de regel geen 

racemisatie gevonden als werd uitgegaan van enantiopure substraten behalve in geringe 

mate bij benzylische substraten. DoE in combinatie met HTE technologien bleek een 

efficientë methode voor het onderzoeken en optimaliseren van de chemische route naar 

N-geacyleerde β-amino alcoholen.  

In hoofdstuk 5 wordt het plannen en modelleren van een catalytic benchmark response 

surface (grafische weergave van de resultaten), gebruikmakend van Design of 

Experiments beschreven. Een bibliotheek van 189 katalysatoren die bestonden uit oxide 

mengsels werd gesynthetiseerd, getest op activiteit en de resultaten gemodelleerd voor 

de CO oxidatie reactie. Dit gebeurde in de aanwezigheid van waterstof (SELOX) of 

zonder waterstof (COOX). Een DoE model (tweede orde) werd gebruikt om de 

parameter ruimte te beschrijven. Een visuele representatie van de response surfaces 

werd gegenereerd en de analytische functies van het model werden berekend. Deze 

gaven de benchmarks voor de twee geteste condities (COOX en SELOX). De 

meervoudige responses of interest en de gewenste proces condities (conversie van CO, 

selectiviteit naar CO2 en temperatuur) werden meegenomen in de berekening door 

middel van een Desirability function. De visualisering van de response surface maakte 

het mogelijk een goed inzicht te krijgen in de effecten van de onderzochte variabelen en 

de plaats van de optimale gebieden. De COOX en SELOX benchmarks werden in de 

volgende hoofdstukken gebruikt om de optimalisatie efficiëntie van de geselecteerde 

Global Optimization algoritmes te onderzoeken.  

In hoofdstuk 6 wordt de optimalisatie door middel van het gebruik van de Global 

Optimization Genetic Algorithm (GA) besproken en wordt de invloed van algoritme 

settings op de optimalisatie efficiency onderzocht. De benchmarks voor COOX en 

SELOX die in hoofdstuk 5 gevonden werden, werden gebruikt voor de validatie van de 

efficientie van het GA. Door middel van een DoE benadering werden GA configuraties 

geselecteerd die werden getest en waarvan de effecten van de gekozen parameter 

settings werden bestudeerd. De meest belangrijke parameter bleek de populatie omvang. 

De grootste populatie omvang die mogelijk was binnen de gewenste HTE workflow 

(synthese en testen van een generatie katalysatoren per werkdag), gaf het beste resultaat. 
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Als optimale GA configuratie werd gevonden voor de optimalisatie van de SELOX en 

COOX benchmarks: 48 individuen als populatie omvang, 15% Elitism, Binary 

Tournament als selectie type, 1-point crossover met 60% crossover en 1% mutatie 

waarschijnlijkheid.  

In hoofdstuk 7 wordt de optimalisatie efficiëntie van verschillende algoritmen getest op 

de SELOX benchmark. De onderzochte algoritmen zijn: Evelotionary algoritmes, 

Genetic algoritmes, Simulated Annealing, Taboo Search en Hybrid Genetic algoritmes.  

Meest succesvol in de optimalisatie van de SELOX benchmark bleken Evolutionary en 

Genetic algoritmes met gebruik van een Sharing procedure en Genetic algoritmes 

gehybridiseerd met een Knowledge Extraction routine. Gebruikmakend van deze 

benchmark werd ook een meerstaps DoE optimalisatie procedure toegepast. De 

belangrijkste verschillen in de toepasbaarheid van de DoE en Global optimization 

strategien worden belicht, met name het betere inzicht in cause-effect dat in de regel kan 

worden verkregen door middel van gebruik van meerstaps DoE. Er is echter een risico 

dat synergistische variabelen al in een vroeg stadium niet meer meegenomen worden. 

Bij gebruik van Global optimization algoritmes kan het bereiken van de optimale 

oplossing theoretisch worden gegarandeerd. Bovendien biedt deze strategie ook 

mogelijk het voordeel, in gevallen waarbij een grote en zeer complexe parameter ruimte 

moet worden onderzocht, om het aantal experimenten hanteerbaar te houden.  

Samengevat werd er getoond dat het gebruik van HTE als methode in katalyse 

onderzoek verder wordt versterkt door het aanwenden van de juiste experimentele 

planning technieken. Strategieën die bestaan uit chemometriche methoden zoals DoE en 

Global Optimization technieken kunnen helpen bij het vermijden van zeer grote 

hoeveelheden experimenten en vergroten de kracht van het onderzoeken van grote 

parameter ruimten en het lokaliseren van optimale condities voor een katalytisch 

systeem. 
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