
TECHNISCHE UNIVERSITEIT DELFT

COMPUTER VISION LAB

MSc in CS

MASTER’S THESIS

Analysis Tool for Optical Flow Models

Thesis Advisor
Prof. Jan van Gemert
Computer Vision Lab
Daily co-supervisor
Sander Gielisse
Computer Vision Lab

Petter Reijalt

2025, July

Contents

1 Introduction 1

2 Supplementary Material 2

2.1 Optical Flow . 2

2.1.1 Average Endpoint Error (AEPE) 2

2.1.2 Angular error . 2

2.2 Classical Models . 3

2.2.1 Horn-Schuck . 3

2.2.2 Lucas-Kanade . 4

2.2.3 Coarse-to-fine pyramids 5

2.2.4 Median filtering . 5

2.3 Deep-Learning Models . 7

2.3.1 FlowNet (2015) . 7

2.3.2 SPyNet (2017) . 7

2.3.3 DC-Flow (2017) . 8

2.3.4 PWC-Net (2018) . 9

2.3.5 Iterative residual refinement network (2019) 9

2.3.6 RAFT (2020) . 10

2.3.7 GMA (2021) . 10

2.3.8 SKFlow (2022) . 11

2.3.9 FlowFormer (2022) . 12

2.3.10 MemFlow (2024) . 12

2.4 Evaluation Datasets . 12

2.4.1 Yosemite (1994) . 12

2.4.2 Middlebury (2007) . 13

2.4.3 MPI Sintel (2012) . 13

2.4.4 KITTI-15 (2015) . 14

2.4.5 Spring (2023) . 14

2.5 Pretraining Datasets . 15

2.5.1 FlyingChairs (2015) 15

i

2.5.2 FlyingThings3D (2016) 16

2.5.3 AutoFlow (2021) . 16

2.6 Challenges . 17

2.6.1 Large displacements 17

2.6.2 Aperture problem . 17

2.6.3 Occlusion . 17

2.6.4 Brightness changes . 18

2.6.5 Textureless regions . 18

2.7 Deep Learning . 18

2.7.1 Neural networks . 18

2.7.1.1 Feedforward networks 19

2.7.1.2 Stochastic Gradient Descent 19

2.7.1.3 Activation Function 19

2.7.1.4 Backpropagation 20

2.7.2 Overfitting . 21

2.7.2.1 Dropout . 21

2.7.2.2 Regularisation 21

2.7.3 Residual networks . 22

2.7.4 Convolutional Neural Networks 22

2.7.4.1 Network In Network 23

2.7.4.2 Inception modules 23

2.7.4.3 Depthwise Separable Convolutions 24

2.7.5 Transformer Architecture 24

2.7.5.1 Attention Mechanism 24

3 Scientific Article 26

Bibliography 36

ii

1 Introduction

Optical flow refers to the computer vision task of estimating the apparent

motion of objects in a scene by projecting 3D movements onto a 2D image

plane. This is commonly formulated as a per-pixel correspondence problem

between consecutive video frames. Accurately predicting optical flow remains

a significant challenge due to various sources of ambiguity, such as lighting

changes, occlusions, and reflective surfaces.

Historically, progress in optical flow has been closely tied to the devel-

opment of standardized benchmark datasets. As real-life optical flow ground

truth is hard to come by, often synthetic datasets are used, which provide

dense optical flow ground truth. These evaluation benchmarks often solely re-

port on basic metrics such as EPE, and depending on the benchmark occlusion

and/or displacement statistics.

However, understanding the specific areas in which modern models improve

requires a modular evaluation framework, one that enables controlled variation

of individual scene parameters. This research contributes a dataset generation

tool that allows for such controlled variation, including the ability to adjust

lighting conditions, displacement magnitudes, and surface textures. Addition-

ally, it supports learning parameter configurations that produce datasets with

targeted displacement distributions and global image characteristics such as

average pixel brightness.

Section 2 provides supplementary material aimed at readers who are less

familiar with the domain, offering foundational concepts and current develop-

ments in optical flow research. In Section 3, we introduce the scientific paper

that describes the methodology and contributions of this work to the field of

optical flow.

1

2 Supplementary Material

2.1 Optical Flow

Optical flow is a classical computer vision task in which the goal is to esti-

mate a 2-dimensional velocity map, which is a projection of the movement

of 3-dimensional objects onto the image plane. [1] Motion analysis between

consecutive frames can also constitute in a 3-dimensional motion field which

is called scene flow [2]. Some of the applications of optical flow include, but

not limited to, are 3d-action recognition, moving object detection, image in-

terpolation, image superresolution and video segmantation [3].

2.1.1 Average Endpoint Error (AEPE)

When evaluating a model on a certain dataset, often the AEPE is reported.

This is the mean per-pixel error, similar to the euclidean distance between the

vectors:

AEPE =
1

N

N∑
i=1

√
(µst,i − µgnd,i)

2 + (vst,i − vgnd,i)
2,

where µst,i and vst,i are the estimated horizontal and vertical displacement

vectors and µgnd,i and vgnd,i the ground truth vectors [4].

2.1.2 Angular error

ψE = arccos (v⃗c · v⃗e)

where v⃗ = 1√
u2+v2+1

denotes the normalised optical flow vector in space-

time, incorporating both spatial motion components u and v, along with a

temporal dimension. In this formulation, v⃗c and v⃗e represent the ground truth

and estimated optical flow vectors, respectively. The metric ψE quantifies the

angular error, which captures the difference in direction between the estimated

and true pixel motion vectors, regardless of their magnitude. This angular error

was historically used as the primary evaluation metric in early benchmarks such

as the Yosemite sequence [5]. However, in contemporary optical flow research,

2

the average AEPE has become the more widely adopted metric, as it accounts

for both the magnitude and direction of flow discrepancies, providing a more

comprehensive assessment of estimation accuracy.

2.2 Classical Models

2.2.1 Horn-Schuck

One method to estimate optical flow is the Horn-Schuck method. This method

makes the assumption that the brightness of an image point stays the same

between consecutive frames:

I(x+ δx, y + δy, t+ δt) = I(x, y, t)

It also assumes that the displacement and timestep are small:

I(x+ δx, y + δy, t+ δt) = I(x, y, t) +
∂I

∂x
δx+

∂I

∂y
δy +

∂I

∂t
δt

This can be rewritten as the brightness constancy equation:

Eb = Ixu+ Iyv + It,

where u and v are the horizontal and vertical displacement respectively

and Ex, Ey and Et are the change in brightness with respect to x, y, and t

respectively.

However this is an underconstrained problem, as we have 2 variables and

only one formula. Hence they introduced the smoothness constraint, with the

underlying assumption that neighbouring pixels have a similar optical flow:

E2
c =

(
∂u

∂x

)2

+

(
∂u

∂y

)2

+

(
∂v

∂x

)2

+

(
∂v

∂y

)2

.

The goal is to minimise both constraints and this can be achieved by

introducing an α2 operator, which weighs the two errors and creates a combined

error which can be minimised:

3

E2 =

∫∫ (
α2E2

c + E2
b

)
dx dy.

Horn-Schunck is a global approach and hence tries to minimise the error

above for all pixels. This happens iteratively [6].

2.2.2 Lucas-Kanade

The Lucas-Kanade method is a local approach to solving the optical flow prob-

lem. It uses the same brightness constancy constraint as the Horn-Schunck

method, but adds another constraint in the fact that within a patch the flow is

assumed to be the same. First the brightness constancy equation is rewritten

as follows:

Ixu+ Iyv = −It,

Assuming a 5x5 patch in which the optical flow should stay the same results

in the following 25 equations:

Ix(p1)u+ Iy(p1)v = −It(p1)

Ix(p2)u+ Iy(p2)v = −It(p2)

...

Ix(p25)u+ Iy(p25)v = −It(p25)

In matrix form, this looks like, the following, with unknowns u and v which

can be solved using the least-squares approximation:


Ix(p1) Iy(p1)

Ix(p2) Iy(p2)
... ...

Ix(p25) Iy(p25)


u
v

 = −


It(p1)

It(p2)
...

It(p25)


This leads to a sparse optical flow representation as the optical flow is

considered the same within a patch [7].

4

2.2.3 Coarse-to-fine pyramids

The methods above struggle with larger displacements, as the brightness con-

stancy equation only holds for smaller displacements as it is based on an ap-

proximation of the taylor series. Coarse-to-fine pyramids lower the resolution

of the two images to the point that every displacement is smaller than 1 pixel,

and the brightness constancy equation holds again. This optical flow, obtained

by for example the Lucas-Kanade method is then applied, to a higher resolu-

tion image, resulting in a warped image. This warped image can then be used

to compute a new optical flow together with the higher resolution t+1 image.

This results in smaller displacements which allows for the use of the brightness

equation again. This new optical flow is added to the previous optical flow and

used again to warp a higher-resolution image. This is done iteratively until

the original resolution is reached again [8].

2.2.4 Median filtering

In [9] the creators start off with a formulation of the horn-schuck method as

follows:

E(u, v) =
∑
i,j

{
ρD (I1(i, j)− I2(i+ ui,j, j + vi,j))

+ λ
[
ρS(ui,j − ui+1,j) + ρS(ui,j − ui,j+1)

+ ρS(vi,j − vi+1,j) + ρS(vi,j − vi,j+1)
]}

Where the ρD + ρS represent the penalty function for the brightness and

the smoothness constraint respectively. They found that using median filter-

ing reduced the End-Point-Error but increased the energy function. Median

filtering is used for denoising in the optimisation stage. They changed the

objective function to account for this finding:

5

EA(u, v, û, v̂) =
∑
i,j

{
ρD (I1(i, j)− I2(i+ ui,j, j + vi,j))

+ λ
[
ρS(ui,j − ui+1,j) + ρS(ui,j − ui,j+1)

+ ρS(vi,j − vi+1,j) + ρS(vi,j − vi,j+1)
]}

+ λ2
(
∥u − û∥2 + ∥v − v̂∥2

)
+
∑
i,j

∑
(i′,j′)∈Ni,j

λ3 (|ûi,j − ûi′,j′ |+ |v̂i,j − v̂i′,j′ |) ,

Here an auxiliary flow field û and v̂ is used to ensure smoothness over a

local region, in their case a 5x5 region. ∥u − û∥2 + ∥v − v̂∥2 is the coupling

term enforces that the auxiliary flow is close to the original flow.∑
i,j

∑
(i′,j′)∈Ni,j

λ3 (|ûi,j − ûi′,j′ |+ |v̂i,j − v̂i′,j′ |) is the non-local term that en-

forces that patches in the auxiliary flow field have a similar flow. This mimics

the median filtering heuristic. This can lead, however, as can be seen for the

Lucas-Kanade method, to rounded edges, when a pixel’s patch is dominated by

pixels belonging to another object. Therefore, the pixels within a region should

be weighed depending on their likelihood of belonging to the same object. So

we rewrite the non-local term as follows:

∑
i,j

∑
(i′,j′)∈Ni,j

wi,j,i′,j′ (|ûi,j − ûi′,j′ |+ |v̂i,j − v̂i′,j′ |)

Where w, gives higher odds to pixels deemed to belong to the same object.

This w is approximated by calculating the color-value distance:

exp
{
−|i− i′|2 + |j − j′|2

2σ2
1

− |I(i, j)− I(i′, j ′)|2

2σ2
2

}
o(i′, j ′)

o(i, j)
,

where o is the occlusion variable and σ1 = 7 and σ2 = 7.

6

2.3 Deep-Learning Models

2.3.1 FlowNet (2015)

FlowNet was among the first successful deep learning-based approaches to

optical flow estimation, introducing convolutional neural networks (CNNs) as

an effective framework for this task. The architecture was proposed in two

variants: FlowNetSimple and FlowNetCorr.

FlowNetSimple processes a pair of consecutive images by concatenating

them along the channel dimension and passing them through a series of con-

volutional layers. These layers progressively extract hierarchical features and

estimate a coarse flow field, which is subsequently refined through a decoder

(or upsampling) path to produce a dense optical flow map at the original res-

olution.

FlowNetCorr, on the other hand, employs a two-stream architecture in

which each image from the input pair is processed independently by a se-

ries of convolutional layers. The resulting feature maps are then combined

using a correlation layer, which explicitly computes pairwise similarities be-

tween patches from the two feature maps, serving as a form of implicit motion

matching.

While the correlation layer was initially introduced to enhance the model’s

capacity to learn pixel correspondences, subsequent analysis revealed that com-

parable or superior performance could be achieved using simpler end-to-end

architectures without such explicit matching operations. This underscored the

potential of purely convolutional models to implicitly learn motion represen-

tations directly from data [10].

2.3.2 SPyNet (2017)

SPyNet adopts a coarse-to-fine strategy to address large displacements in opti-

cal flow estimation, combining classical principles with modern deep learning

techniques. The input images are first downsampled to construct an image

pyramid, and the initial optical flow is initialised to zero at the coarsest level.

7

At each pyramid level, the second image is warped according to the upsampled

optical flow estimated from the previous (coarser) level. A convolutional neu-

ral network (CNN) is then used to predict a residual flow correction between

the warped image and the first image. Each CNN is trained independently to

estimate flow refinements at its respective scale.

By progressively refining the flow from coarse to fine resolutions, the prob-

lem of large motion estimation is decomposed into a sequence of simpler, small-

motion estimation tasks. This hierarchical structure significantly reduces the

complexity of the learning problem at each stage, enabling the network to

achieve accurate optical flow predictions with relatively lightweight CNN ar-

chitectures [11].

2.3.3 DC-Flow (2017)

DC-Flow was among the first methods to construct a four-dimensional cost

volume for optical flow estimation. The approach begins by downsampling

the input image pair by a factor of three to reduce computational complexity.

For each pixel, a feature vector is computed, capturing local appearance infor-

mation. A dense matching cost volume is then constructed by evaluating the

distance between feature vectors for all possible pixel correspondences across

the two images.

To enhance the robustness of the matching, outlier correspondences are

identified and removed from the cost volume. Pixels can now be matched by

finding the lowest cost for each pixel. Subsequently, an initial optical flow

field is obtained through regularisation of the remaining costs. Both forward

and backward optical flows are estimated independently, and inconsistencies

between them are detected and eliminated to further refine the solution.

The resulting low-resolution optical flow is then upsampled to the original

resolution. Gaps introduced during this process are addressed using a combi-

nation of variational refinement and inpainting techniques, yielding the final

dense flow field [12].

8

2.3.4 PWC-Net (2018)

PWC-Net integrates key ideas from prior optical flow models, including FlowNet,

SPyNet, and DC-Flow, by employing a coarse-to-fine framework combined

with the construction of partial cost volumes. Rather than relying solely on a

CNN to directly regress optical flow, as in SPyNet, PWC-Net first generates a

partial cost volume at each pyramid level. This cost volume encodes matching

costs between features extracted from the first image and warped features from

the second image, where warping is based on the upsampled flow estimate from

the previous (coarser) level.

The partial cost volume, along with the features of the first image and the

upsampled flow, is then provided as input to a CNN that refines the optical flow

estimate at the current resolution. By leveraging cost volume representations

and warping operations within a multi-scale hierarchy, PWC-Net improves flow

estimation accuracy while maintaining computational efficiency [13].

2.3.5 Iterative residual refinement network (2019)

Hur et al. introduced an iterative residual refinement framework to enhance

the performance of optical flow estimation models, building upon the founda-

tions established by FlowNet and PWC-Net. In contrast to SPyNet, which

employs multiple convolutional neural networks (CNNs) with independently

trained weights at each pyramid level, their method utilises a single CNN whose

weights are shared across multiple iterations. At each iteration, the current

optical flow estimate is refined by predicting a residual correction, which is

added to the previous estimate. This recurrent refinement mechanism allows

the model to progressively improve its prediction, leading to higher accuracy

while maintaining a compact parameter footprint. By sharing weights across

iterations, the model also benefits from reduced complexity and improved gen-

eralisation [14].

9

2.3.6 RAFT (2020)

RAFT (Recurrent All-Pairs Field Transforms) employs a fixed-point iterative

refinement strategy to estimate optical flow, similar in spirit to the iterative

residual refinement networks. The method initialises a dense flow field, which

is then progressively updated through multiple refinement steps. A key inno-

vation of RAFT lies in its construction of a multi-scale, all-pairs cost volume.

Instead of computing cost volumes at multiple image resolutions as in tra-

ditional pyramidal approaches, RAFT generates a single high-resolution cost

volume by pooling over the last two spatial dimensions with kernel sizes of 1,

2, 4, and 8. This design enables the network to simultaneously capture both

small and large displacements within a unified representation.

Another novel contribution is the use of a gated recurrent unit (GRU)-

based update block, which iteratively refines the optical flow predictions. The

recurrent structure allows the network to maintain a hidden state across it-

erations, facilitating more stable convergence and improved flow accuracy.

Together, these innovations result in highly accurate, dense optical flow es-

timations while maintaining computational efficiency. RAFT has completely

differentiable cost volume, contrary to DC-flow [15].

2.3.7 GMA (2021)

Global Motion Aggregation (GMA) is an augmentation of the RAFT frame-

work, specifically designed to improve optical flow estimation in regions af-

fected by occlusion, that is, pixels corresponding to objects visible in the first

frame but not in the subsequent frame.

GMA introduces an attention-based mechanism, inspired by techniques

commonly used in transformer architectures, to model long-range dependencies

across the image. In particular, it constructs an attention matrix by computing

self-similarities within the feature representations extracted from the context

network. The central assumption underpinning GMA is that pixels belonging

to the same object or structure exhibit similar motion patterns, even when

parts of the object become occluded. By exploiting this relational information,

10

GMA enables the network to infer plausible motion for occluded regions based

on the motion of visible, similar pixels.

The GMA unit accepts as input both the context features (providing local

spatial information) and the two-dimensional motion features (reflecting the

current flow estimate). Through attention-based aggregation, it produces re-

fined motion features that encapsulate globally aggregated motion cues. These

features are then fed into the recurrent update operator (e.g., GRU) during

the iterative refinement of the optical flow estimate, allowing the model to

integrate both local and non-local motion information at each iteration.

By incorporating GMA into the RAFT architecture, the resulting sys-

tem achieves improved robustness to occlusion and enhanced flow consistency

within moving objects, yielding significant performance gains across standard

optical flow benchmarks [16].

2.3.8 SKFlow (2022)

SuperKernelFlow (SKFlow) employs large convolutional kernels to achieve an

expanded receptive field, thereby enhancing the network’s ability to estimate

motion in occluded regions [17]. This design choice is motivated by the find-

ings of Luo et al. [18], who demonstrated that increasing kernel size has a

more significant impact on the receptive field than simply increasing network

depth. To mitigate the computational overhead associated with large kernels,

SKFlow incorporates depthwise separable convolutions, which reduce parame-

ter count and improve efficiency. Each convolutional block in SKFlow consists

of three key components: (1) a large L×L kernel to capture long-range spatial

dependencies, complemented by a smaller auxiliary S×S kernel to refine local

features; (2) residual connections that fuse the outputs of the large and small

kernels, enhancing gradient flow and facilitating multi-scale feature aggrega-

tion; and (3) pointwise (1×1) convolutions that model cross-channel correla-

tions following the spatial processing. This architecture effectively balances

representational capacity with computational efficiency [17].

11

2.3.9 FlowFormer (2022)

FlowFormer is among the first architectures to effectively leverage transformer-

based models for optical flow estimation. While retaining the use of cost

volumes to encode pixel correspondence information, FlowFormer introduces

a novel approach by projecting the cost volume into a latent feature space

through a transformer-based encoder. This encoding phase captures long-

range dependencies and rich context beyond local pixel neighbourhoods, ad-

dressing limitations of traditional convolutional methods. Subsequently, a

decoder network operates on the latent features to predict dense optical flow

fields. By utilising self-attention mechanisms within the transformer, Flow-

Former achieves more globally consistent and accurate flow estimations, partic-

ularly in challenging scenarios involving large displacements or complex scene

structures [19].

2.3.10 MemFlow (2024)

MemFlow is designed to capture long-range temporal dependencies across

video sequences. In contrast to optical flow approaches, which operate on

pairs of consecutive frames, MemFlow incorporates an aggregated historical

context. By leveraging this extended temporal memory, the model aims to

produce more temporally consistent and stable flow estimates for videos [20].

2.4 Evaluation Datasets

2.4.1 Yosemite (1994)

The Yosemite dataset is a synthetic optical flow benchmark comprising 8-bit

grayscale image sequences with a resolution of 316 × 252 pixels. The dataset

is based on aerial imagery of the Yosemite Valley, from which synthetic 3-

dimensional scenes are constructed. These scenes consist of two distinct re-

gions: the valley and the sky. Ground truth optical flow is provided exclusively

for the valley region, while the sky region lacks reliable motion information due

to undergoing Brownian motion.

12

The dataset introduces several challenges relevant to optical flow estima-

tion, including occlusions, where portions of the scene become temporarily

hidden or revealed due to camera or object motion, and a diverging flow

field, typically resulting from simulated forward camera motion through the

3-dimensional scene. These characteristics make the Yosemite dataset a use-

ful benchmark for evaluating the robustness of optical flow algorithms under

conditions of depth variation. The error is reported using the angular error

[5].

2.4.2 Middlebury (2007)

The Middlebury dataset introduced several significant improvements over the

earlier Yosemite sequence, including the incorporation of non-rigid motion,

large displacements, and more realistic surface textures. Ground truth optical

flow was acquired in a controlled laboratory environment using fluorescent

paint applied to scene surfaces. Image pairs were captured under both ambient

and ultraviolet (UV) illumination, with the UV lighting revealing fine-grained

texture patterns that were otherwise not visible.

To compute ground truth flow, a local brute-force search was performed on

high-resolution UV images to match small image patches between successive

frames, enabling high-precision correspondence estimation. Additionally, the

Middlebury benchmark introduced the AEPE metric alongside the previously

used angular error, providing a more comprehensive evaluation of optical flow

accuracy by quantifying both direction and magnitude discrepancies between

estimated and ground truth flow vectors [21].

2.4.3 MPI Sintel (2012)

The MPI Sintel dataset is a synthetic optical flow benchmark derived from the

open-source animated short film ”Sintel,” produced by the Durian Open Movie

Project. The original Blender scene files are openly available, which enables

the generation of accurate ground truth optical flow data. Compared to earlier

benchmarks such as the Middlebury dataset, MPI Sintel introduces increased

13

complexity through features such as large motion, specular reflections, and

motion blur.

The dataset is structured into multiple rendering passes of increasing real-

ism and difficulty. The albedo pass represents the simplest version, containing

only intrinsic surface colors without any shading. The clean pass incorpo-

rates basic shading effects, while the final pass adds further visual complexity,

including motion blur, atmospheric effects, and specular highlights. This pro-

gression allows for a more thorough evaluation of optical flow algorithms under

varying levels of photorealism and scene complexity [22].

2.4.4 KITTI-15 (2015)

The KITTI dataset comprises real-world data collected using a sensor-equipped

vehicle that rode through the streets of Karlsruhe, Germany. The vehicle was

outfitted with various sensors, including cameras and a 3-dimensional laser

scanner, enabling the acquisition of high-resolution imagery and spatial infor-

mation. This dataset provides valuable ground truth for a range of computer

vision tasks such as optical flow estimation, object detection, and object track-

ing [23] To generate ground truth for optical flow, 3-dimensional CAD models

are aligned with the 3-dimensional point clouds obtained from the laser scan-

ner, enabling the precise simulation of object motion and corresponding pixel

displacements in the image plane [24].

2.4.5 Spring (2023)

The Spring dataset is a synthetic benchmark designed for the evaluation of

scene flow and optical flow algorithms. It offers significant improvements over

previous datasets by providing high-resolution, high-detail imagery that en-

ables more precise assessment of motion estimation techniques. Specifically,

the dataset includes 6,000 HD image pairs at a resolution of 1920 × 1080

pixels.

To facilitate more accurate evaluation of fine-grained motion and subpixel

accuracy, the corresponding ground truth for optical and scene flow is gener-

14

ated at an even higher resolution of 3840 × 2160 pixels. Similar to the MPI

Sintel dataset, the scenes in Spring are created using Blender, based on as-

sets from the open-source animated film Spring. This approach allows for the

generation of dense, pixel-accurate ground truth data under a wide range of

visual conditions and motion complexities [25].

2.5 Pretraining Datasets

Contemporary optical flow models are typically pretrained on large-scale syn-

thetic datasets before being evaluated on more realistic benchmark datasets.

These pretraining datasets are often not photorealistic, yet they have demon-

strated high effectiveness in generalising well to real-world scenarios, often

outperforming models trained exclusively on realistic data [26].

2.5.1 FlyingChairs (2015)

FlyingChairs is a synthetic optical flow dataset comprising 22,872 image pairs,

generated by compositing 3-dimensional chair models onto a collection of 2-

dimensional background images sourced from stock photography. To simu-

late motion, 2-dimensional affine transformations are independently applied

to both the background and the foreground chair objects. As a result of the

planar nature of these transformations, only a single visible side of each chair

is maintained throughout the sequence, limiting the representation of full 3-

dimensional motion or (self-)occlusions.

To enhance model generalisation and mitigate overfitting, the dataset in-

cludes data augmentation techniques, such as the addition of Gaussian noise,

brightness variations, and other photometric perturbations. Despite its syn-

thetic nature and limited realism, FlyingChairs has proven to be an effective

pretraining dataset for learning optical flow representations, particularly when

followed by fine-tuning on more realistic benchmarks [10].

15

2.5.2 FlyingThings3D (2016)

FlyingThings3D extends the concept introduced by FlyingChairs by incorpo-

rating realistic 3-dimensional object models, thereby enabling the generation

of both optical flow and scene flow ground truth. Unlike its predecessor, which

applies 2-dimensional affine transformations, FlyingThings3D simulates realis-

tic 3-dimensional motion by applying rigid translations and rotations to both

the virtual camera and scene objects along linear 3-dimensional trajectories.

The dataset contains approximately 25,000 stereo image pairs, all rendered

using Blender, which facilitates pixel-accurate ground truth for optical flow,

disparity, and scene flow. Each scene includes between 5 and 20 dynamic ob-

jects, randomly sampled from a subset of 32,872 models from the ShapeNet

database. The background environment is procedurally generated by populat-

ing the scene with randomly placed geometric primitives, such as cuboids and

cylinders, which are then textured.

FlyingThings3D thus provides a more physically grounded and diverse syn-

thetic dataset for training and evaluating models on dense motion estimation

tasks in 3-dimensional space [27].

2.5.3 AutoFlow (2021)

Autoflow is a dynamic dataset designed to optimise performance based on a

target dataset. This optimisation is achieved through learnable hyperparam-

eters that govern the motion, shape, and appearance of objects within the

dataset. The construction of scenes involves sampling a random background

and overlaying it with polygons. These polygons are characterised by a random

number of sides, may contain holes, and can have either smooth or non-smooth

edges. The optical flow field is sampled randomly, and objects are warped ac-

cordingly. The motion of objects can be rigid, encompassing scale, rotation,

and translation, or non-rigid, achieved through a bilinear grid warp.

Empirical findings indicate that scenes with 3 or 4 objects, particularly

those with smooth edges, yield the best results. For datasets such as Sintel

and Kitti, the application of a bilinear grid warp on objects was found to

16

be crucial. Additionally, the introduction of fog and motion blur resulted in

significant improvements in terms of Average End-Point Error (AEPE) [26].

2.6 Challenges

2.6.1 Large displacements

Large displacements can occur when objects move rapidly relative to the cam-

era. Capturing large displacements in optical flow estimation necessitates a

correspondingly large receptive field, which increases computational complex-

ity.

2.6.2 Aperture problem

The aperture problem refers to the inherent ambiguity in estimating motion

based on a limited local image region. When only a small portion of a moving

object is visible, such as a straight edge, the motion can only be determined

perpendicular to the edge, making the true motion direction indeterminate. A

classic illustration of this phenomenon is the barber pole illusion, where the

perceived motion of diagonal stripes becomes ambiguous due to the constrained

viewing aperture [3].

2.6.3 Occlusion

Occlusion in optical flow refers to the phenomenon where a pixel that is visible

in the reference frame becomes invisible in the subsequent frame. This may

occur due to self-occlusion during object rotation, as parts of the object obscure

themselves, or due to inter-object occlusion, where another object obstructs

the view. Occlusions can also result from scene dynamics, such as objects

moving out of the camera’s field of view. This makes for an example task,

as they violate most classical constraints, such as the brightness constancy

equation.

In some cases, optical flow can still be inferred through contextual cues,

such as the motion of visible regions of a partially occluded object. However,

17

when an object moves entirely out of the frame, the absence of visual informa-

tion renders accurate flow estimation infeasible, even for human observers.

2.6.4 Brightness changes

Variations in illumination, such as objects entering shadowed regions, intro-

duce additional complexity to optical flow estimation. These changes violate

the brightness constancy assumption, which underpins many traditional flow

algorithms, thereby complicating the task of establishing reliable pixel corre-

spondences.

2.6.5 Textureless regions

Textureless regions present a significant challenge for optical flow estimation, as

the lack of distinctive visual features impedes reliable pixel matching. In such

cases, algorithms must rely on broader contextual information or regularisation

strategies to infer motion, compensating for the absence of local texture cues.

2.7 Deep Learning

Deep learning can be seen as a subset of machine learning, which can be seen

as a subset of artificial intelligence.

2.7.1 Neural networks

Neural networks are computational models inspired by the structure and func-

tion of the biological brain. They aim to replicate the brain’s ability to learn

and adapt by utilising interconnected processing units known as artificial neu-

rons. These neurons are organised into structured layers and are connected

through synaptic weights. Information is propagated through the network via

activation functions that determine the output of each neuron based on its

input. As illustrated in Figure 1, the network architecture consists of multiple

layers, with a total of 26 learnable parameters in this example, comprising

21 weights and 5 biases. These parameters are adjusted during the learning

18

process using the backpropagation algorithm, which minimises the prediction

error by computing gradients and updating the weights accordingly [28].

2.7.1.1 Feedforward networks

Feedforward networks are neural networks that do not use the output toward

the input.

Figure 1: Example of a Feedforward Network

This is a fully connected network, as every neuron is connected with every

other neuron, using weights [28].

2.7.1.2 Stochastic Gradient Descent

To update the weights, they are adjusted in the opposite direction of the gradi-

ent of the loss function with respect to the weights. Instead of computing this

gradient using the entire dataset, a small subset of samples (a mini-batch) is

used to approximate the gradient. This approach, known as stochastic gradient

descent (SGD) or mini-batch gradient descent, is computationally more effi-

cient than standard (batch) gradient descent, which uses all training samples

to compute the exact gradient at each iteration.

2.7.1.3 Activation Function

19

Every neuron uses an activation function on input. In this manner, non-

linearity can be introduced:

h = g(W⊤x+ c)

where g is the activation function. One example is a ReLU, which makes every

negative number 0, and all the other numbers stay the same (f(x) = max(0, x))

2.7.1.4 Backpropagation

Backpropagation is used to update the weights. By using gradient descent

the weights and biases of the neurons are changed to converge to a local op-

timum. The error of the output neuron j can be computed as the squared

difference between the outcome yj and the desired dj outcome:

ej(n) = dj − yj(n)

εj(n) =
1

2
e2j(n)

The average error over all the training examples can be computed as fol-

lows:

εav =
1

N

N∑
n=1

ε(n)

The function of the output neuron can be written as follows, where wj0 is

equal to the bias bj:

yj(n) = f

(
m∑
i=0

wji(n)yi(n)

)

We want to know ∂ε(n)
∂wji(n)

, which is the partial derivative of the error with

respect to the weights and biases, which will tell us how we should update

the weights and biases. This partial derivative can be written, using the chain

rule, as follows:

20

∂ε(n)

∂wji(n)
=

∂ε(n)

∂ej(n)
· ∂ej(n)
∂yj(n)

· ∂yj(n)
∂wji(n)

The first two derivatives can be obtained trivially:

∂ε(n)

∂ej(n)
= ej(n)

∂ej(n)

∂yj(n)
= −1

∂yj(n)

∂wji(n)
= f ′

(
m∑
i=0

wji(n)yi(n)

)
· ∂ (

∑m
i=0wji(n)yi(n))

∂wji(n)

= f ′

(
m∑
i=0

wji(n)yi(n)

)
· yi(n)

where f ′

(
m∑
i=0

wji(n)yi(n)

)
=
∂f (

∑m
i=0wji(n)yi(n))

∂ (
∑m

i=0wji(n)yi(n))

[28]

2.7.2 Overfitting

Overfitting occurs when a model doesn’t work well on unseen data, as it’s

generalisation capability is limited as it suits only the training data. To combat

overfitting in neural networks various strategies can be deployed.

2.7.2.1 Dropout

During training, dropout stochastically deactivates a subset of neurons, thereby

reducing inter-neuronal dependency and encouraging the learning of more ro-

bust and independent feature representations. This regularisation mechanism

improves the model’s ability to generalise to unseen data [29].

2.7.2.2 Regularisation

To prevent overly complex representations that may hinder generalisation,

21

several regularisation strategies can be employed. For instance, early stop-

ping restricts the number of training epochs to reduce overfitting. Similarly,

constraining the number of neurons limits the representational capacity of the

model, thereby encouraging better generalisation performance [30].

2.7.3 Residual networks

Residual connections, as introduced in residual neural networks (ResNets),

function by adding the input of a given block to its output, thereby enabling

the network to learn a residual mapping rather than the direct transformation.

Let H(x) denote the underlying function the network aims to approximate.

Instead of directly learning H(x), the residual block learns F (x) = H(x)− x,

so that the overall output becomes F (x) + x.

This formulation has been shown to alleviate the degradation problem

in very deep networks, where additional layers can actually lead to higher

training error. It is hypothesised that learning the residual function is easier

than learning the original unreferenced mapping, particularly when the opti-

mal transformation is close to the identity function. In such cases, driving

the residual function F (x) towards zero effectively enables the network to pre-

serve the input, facilitating gradient flow and improving convergence in deep

architectures [31].

2.7.4 Convolutional Neural Networks

Convolutional Neural Networks (ConvNets) are designed to process data with a

grid-like topology, such as images and videos, by leveraging spatial hierarchies

through the use of local connections and shared weights. In the context of

image analysis, the initial layers of a ConvNet typically consist of convolution

and pooling operations.

In the convolutional layers, a set of learnable filters (or kernels) is applied

to the input feature maps to produce new feature maps that capture local

spatial patterns. Each filter learns to detect a specific type of feature (e.g.,

edges, textures, or shapes), and different filters in a layer are responsible for

22

capturing different aspects of the input. These filters are applied across the

entire input space via weight sharing, which reduces the number of parameters

and allows the network to learn spatially invariant features. Following convo-

lution, pooling layers, most commonly max pooling, are used to downsample

the feature maps. This reduces the spatial resolution and computational load,

while also providing a degree of translation invariance. Pooling aggregates

information over small neighbourhoods, enabling the network to become more

robust to small translations and distortions in the input. The hierarchical

nature of ConvNets allows them to learn increasingly complex features across

layers: lower layers capture simple local patterns, while higher layers integrate

these into more abstract representations. This coarse-to-fine architecture ex-

ploits the compositional structure of visual data, where higher-level patterns

(motifs) are composed of lower-level features [32].

2.7.4.1 Network In Network

A 1×1 convolution operates by computing a weighted linear combination across

all input channels at each spatial location, effectively performing an element-

wise dot product between the filter weights and the channel vector at that

position. This operation is typically followed by a non-linear activation func-

tion, such as ReLU. When multiple 1×1 filters are applied in parallel, the

result is analogous to applying a fully connected layer independently at each

spatial location. This approach enables increased representational power and

non-linearity, and is referred to as a ”Network in Network” architecture, as

introduced by [33].

2.7.4.2 Inception modules

In traditional convolutional neural networks, the architectural operations within

each layer, such as the presence of pooling or the choice of convolutional kernel

size, are predefined and fixed across the network. In contrast, the Inception

module introduces a more flexible design by performing multiple operations

23

in parallel within a layer, including 1×1, 3×3, and 5×5 convolutions, as well

as max-pooling. The outputs of these parallel paths are concatenated along

the channel dimension, allowing the network to learn, through training, which

receptive field sizes and operations are most relevant at different depths. This

adaptive capability enables the model to dynamically select appropriate fea-

ture extraction strategies depending on the level of abstraction, as proposed

by [34].

2.7.4.3 Depthwise Separable Convolutions

Xception employs depthwise separable convolutions, a factorised form of stan-

dard convolution that decomposes the operation into two distinct steps. First,

pointwise convolutions (typically 1×1 kernels) are applied independently at

each spatial location to capture cross-channel correlations. Subsequently, depth-

wise convolutions (e.g., 3×3 or 5×5) are performed separately for each channel

to model spatial correlations. This architectural design effectively decouples

the learning of spatial and inter-channel features, leading to improved compu-

tational efficiency and performance [35].

2.7.5 Transformer Architecture

The transformer architecture is a neural network framework that leverages

multi-head attention mechanisms and has achieved state-of-the-art perfor-

mance in diverse domains such as natural language processing and computer

vision.

It follows an encoder–decoder structure, where both encoder and decoder

are composed of six stacked layers, as originally proposed in the seminal work

Attention is All You Need[36]. Each layer consists of a multi-head self-attention

module, followed by a feed-forward neural network.

2.7.5.1 Attention Mechanism

An attention mechanism defines a mapping between a query vector and a set

of key–value pairs, producing a weighted output representation. Formally, the

24

Figure 2: The standard transformer architecture, as introduced by Vaswani et
al.[36].

scaled dot-product attention is given by[36]:

Attention(Q,K, V) = softmax
(
QKT

√
dk

)
V,

where Q, K, and V denote the query, key, and value matrices respectively.

25

3 Scientific Article

The scientific article is on the next page.

26

FlyingDutchman: An Optical Flow
Analysis Tool

Petter Reijalt1, Sander Gielisse1, and Jan van Gemert1

1Computer Vision Lab, Delft University of Technology, The Netherlands

Abstract

Much progress in optical flow research has been driven by benchmark datasets. However, these datasets provide
only limited feedback on the underlying causes of architectural failures, typically restricted to metrics such
as end-point error (EPE), occlusion statistics, and large-displacement ranges. This leads to imprecise claims
regarding areas consecutive models have improved upon. In this paper, we present an analysis tool that enables
the generation of customizable datasets, allowing controlled variation in displacement size, camera corruptions,
luminance, and other factors. We demonstrate the utility of this tool by analyzing the behaviour of different
architectures under varying displacement sizes and in low-light settings.

1. Introduction

Optical flow describes the pixel–wise correspondence
between consecutive image frames and underpins nu-
merous applications, including autonomous driving,
robotics, and motion detection [1]. Optical flow can
be difficult to estimate due to numerous challenges
under which, occlusions [2], low-light settings [3], un-
textured surfaces [2], and large displacements [2]. As
in many computer-vision tasks, model performance
has advanced rapidly, largely propelled by benchmark
datasets, that are either real-word or synthetic. Be-
cause dense ground-truth annotations (annotations
for every pixel in the frame) are difficult to obtain
in real-world settings, the majority of these datasets
are synthetic. Unfortunately, most benchmarks pro-
vide only general feedback, typically limited to overall
displacement and occlusion metrics, offering little in-
sight into the specific failure modes of a model, e.g.
KITTI [4], Sintel [5], Spring [6] etc. The effects of
specific confounding variables in vacuum remain often
unknown. Consequently, recent optical flow papers
seldom pinpoint which specific areas they improve,
instead reporting a generic performance gain. Alter-
natively, one can also make claims without providing
evidence to support them. For example, FlowFormer
makes the claim that its attention mechanism bet-
ter handles challenging cases such as occluded regions
and large displacements [7]. A similar claim is made
by the authors of FlowFormerPlusPlus, who speculate
that their design improves robustness to noise, large
displacements, and occlusions [8]. However, these as-
sertions are presented without direct evidence, report-
ing instead on EPE scores from evaluation datasets,
where multiple confounding factors are at play.

In this paper we introduce an analysis tool, that

makes it easier for researchers to substantiate these
claims. By isolating variables, we can research the
effects of large displacements. Hence can more accu-
rately pin-point improvements across different mod-
els. Our analysis tool can automatically generate op-
tical flow datasets with fine-grained control over scene
parameters such as object displacement, camera mo-
tion, lighting conditions, blur, and surface textures.

By using Differential Evolution (DE), we learn the
scene parameters that lead to expressive quantities
such as average pixel displacement and average pixel
brightness. Which makes it easier to draw concrete
conclusions.

The framework is written in Python on
top of the Blender API1. The code is avail-
able here or at the following url https:
//github.com/Petter6/FlyingDutchman.

In order to test the claims of better long range de-
pendency and noise robustness made by the Flow-
Former [7] and FlowFormerPlusPlus [8] papers, and
in order to demonstrate the capabilities of the analysis
tool, we issue the following research question, which
we aim to answer using our analysis tool:

• How do varying magnitudes of optical flow vec-
tors affect model performance?

• To what extent do low-light settings influence the
accuracy of optical flow predictions?

2. Related works

We evaluate four seminal optical flow architectures:
RAFT [9], GMA [2], FlowFormer [7], and Flow-

1https://docs.blender.org/api/current/index.html

1

Former++ [8]. RAFT introduced a dense all-pairs
cost volume together with iterative refinement via a
recurrent update operator, establishing a strong base-
line across standard benchmarks [9]. GMA builds
on the RAFT paradigm by aggregating global mo-
tion cues with attention mechanisms to better cap-
ture long-range dependencies and reason about oc-
clusions [2]. FlowFormer implements an attention
module, in order to make better use of the cost-
volume than RAFT it claims [7]. Aming to improve
handling longe-range relationships. FlowFormer++
further pretrains the transformer using masked cost-
volume autoencoding, which is claimed to enhance
robustness to noise and to improve performance on
large-motion regimes [8].

Kubric [10] is a dataset rendering pipeline, which
combines realistic physics via PyBullet and Blender
for rendering. In this manner, ground truth for dif-
ferent computer vision tasks, such as Optical Flow,
can be created. Allowing among others to change the
velocity and the location of the objects, and camera
movements. They show that their tool can be used to
create either a benchmark dataset, or can be used to
create additional training data, where they show to be
competitive with AutoFlow [11]. Models pre-trained
using Kubric are shown to outperform models pre-
trained with FlyingChairs [12] on KITTI-15 [13] and
Sintel.

Carla simulator is a simulator that can be used
to generate ground truth from a simulated vehicle.
Thereby allowing for capturing realistic optical flow
ground truth in the autonomous vehicle domain [14].
This comes however with a few challenges, as it pro-
vides backwards optical flow compared to the normal
forward optical flow; additionally the precision of the
flow is limited to 10 digits [15].

RobustSpring extends the Spring dataset by intro-
ducing distortions such as rain and blur, enabling
the evaluation of optical flow models under controlled
corruptions. The study reports that transformer-
based architectures achieve the best overall perfor-
mance across most corruption types, although their
accuracy decreases under noise distortions. The au-
thors attribute this to the reliance on global matching.
In contrast, stacked architectures such as FlowNet2
perform remarkably well on noise corruptions, likely
due to their iterative refinement process [16].

Mayer et al. [17] investigated the key characteristics
of good synthetic pretraining datasets, focusing on
factors such as lighting, displacement distributions,
and textures. Their findings indicate that networks
trained with dynamic lighting perform poorly when
evaluated on scenes with static lighting. The study
further emphasizes that diversity in the training data
is more critical than realism, and that incorporating
camera distortions into the dataset significantly im-
proves performance.

Zheng et al. [3] researched the effects of low-light
scenes on FlowNet models and PWC-net. They did
this by creating their own dataset and creating vari-
ous levels of darkness with accompanying noise levels.

The EPE shows an overall increasing trend with dark-
ness, though not strictly monotonically, as occasional
decreases occur between consecutive levels [3]. [3].

3. Analysis tool

The analysis tool is implemented in Python using the
Blender Python API (bpy) bpy version 4.4.0, which
allows for headless rendering and full programmatic
control over the Blender suite.

Backgrounds
Two types of backgrounds are integrated into the
pipeline: a set of eight 2D HDRI images and one
fully modeled 3D market scene. The latter enables
the rendering of complete and realistic optical flow
fields, whereas the former allows for the isolation of
foreground objects in a simplified setting that is well-
suited for analyzing motion statistics.

The HDRI images are sourced from PolyHaven2,
and the 3D supermarket model is obtained from
Creazilla3.

Objects
To introduce dynamic, moving elements into the
scenes, we make use of the SynthDet dataset, which
was originally developed for Unity and which we
ported to Blender. We reduced the dataset size to 50
objects and provide two variants: one with textures
and one without. This enables a controlled investiga-
tion of the role of texture in influencing the end-point
error. 4.

Configuration file
The rendering process is configurable through a struc-
tured JSON file, which defines parameters such as ob-
ject count, camera motion, lighting conditions, and
image resolution. A detailed overview of these config-
urable parameters is presented in Table 1.

Learning Configuration File
Blender units can be unintuitive in the context of op-
tical flow. For example object motion is expressed
in Blender units and the power of lighting sources is
specified in watts. We developed a tool that maps
these parameters to more interpretable and expres-
sive quantities such as the average pixel displacement
and average pixel intensity.

We employ an evolutionary algorithm, Differential
Evolution. To infer the scene parameters that yield

2https://polyhaven.com/hdris
3https://creazilla.com/media/3d-model/65069/

mini-market-scene
4https://github.com/Unity-Technologies/SynthDet

2

Parameter Explanation
scene.num_scenes Number of scenes to generate in this dataset.
scene.num_obj Number of objects placed per scene.
scene.seed Random seed for deterministic scene generation.
scene.depth Minimum and maximum distance of objects relative to the camera.
camera.position_start Initial camera position [x, y, z] in blender units.
camera.rotation_start Initial camera rotation [roll, pitch, yaw] in radians.
camera.shutter_speed Physical shutter speed (seconds).
camera.translation Per-frame camera translation vector.
camera.rotation_offset Per-frame camera rotation offset (radians).
lighting.lighting_color RGB range applied to lights.
lighting.3d_scene_light_intensities Intensity of a point light.
objects.textures_enabled Toggle for textured materials on imported meshes.
motion.mean_rotation Mean object rotation per frame (radians).
motion.sigma_rotation Standard deviation of object rotation.
motion.mean_translation Mean object translation vector [x, y, z].
motion.sigma_translation.x Standard deviation of object translation.
effects.fog_percentage Density of fog (0–1).
effects.inverted_colors Produce negative-coloured images.
render.resolution.x Horizontal render resolution (pixels).
render.resolution.y Vertical render resolution (pixels).
stats.calc_occlusion Export per-pixel occlusion mask images.
stats.calc_displacement Calculate displacement distributions.

Table 1: Blender2Flow configuration parameters.

a desired average displacement magnitude or lumi-
nance:

(R+G+B)/(3 ∗ 255))

This algorithm iteratively generates scenes and mea-
sures statistics such as luminance and displacement
magnitude. Through repeated evaluations, it learns
parameter settings that produce target scenes, for
example with an average displacement of 10 pixels
within a predefined error tolerance. The accuracy of
this process depends on the available computational
resources. The displacement size only based on the
pixels that display a moving object, ie. flow ̸= 0; pix-
els with a flow of zero are hence excluded.

Output flow
An example scene and optical flow map can be seen
here 1. The flow is calculated using the vector pass.
The vector pass, can be enabled during rendering and
produces 4 vectors. 2 vectors that describe the back-
wards optical flow (the optical flow relative to the
previous frame) and 2 vectors for the forward flow,
which we use. The vector pass normally provides the
information used by the motion blur node. The code
for the flow extraction from the exr-file can be found
here. After the u and v component are extracted the
v component needs to be inverted as a downward y-
flow is considered positive when it comes to flow maps.
The Z and W vector are chosen as they represent the
forward flow as opposed to the backward flow.

Format folder output

The user can choose to either use a Sintel format for
the dataset output or a KITTI format. Sintel uses an
image resolution of 1024×436 pixels. KITTI uses a
resolution of 1242 × 376 pixels [4]

Output Statistics

Occlusion

Furthermore, it is possible to calculate which pixels
are occluded. This can be achieved by casting a ray
through each pixel in the initial frame and record-
ing the corresponding object face. In the subsequent
frame, a ray is cast through each pixel displaced by
the optical flow vector. If the intersected face, or the
object itself, differs from the initial frame, the pixel
is marked as occluded. This procedure yields fairly
accurate results, although edge cases remain, for ex-
ample, when a pixel becomes occluded by its own face
but is nevertheless classified as visible.

Displacement magnitude

Due availability of accurate flow data it is possible
to calculate displacement magnitudes and creating a
corresponding histograme. This is done by calculating
the L2-norm:

mag =
√
u2 + v2

3

Figure 1: Example scene with corresponding optical flow, without a background

where u is the vertical flow for every pixel and v is
the horizontal flow. This metric is used to answer the
first RQ, and is used by the DE algorithm to converge
to a mean displacement size.

4. Experiments

Large Displacements
Our first research question concerns the effect of larger
displacement magnitudes on different models. Since
optical flow networks are trained on datasets with
varying displacement distributions, they may be bi-
ased toward either different size displacements. Sintel
has an average displacement of 13.5 pixels [18], Fly-
ingThings3D [19] is around 38 pixels, FlyingChairs
around 19 [19], and KITTI-15 around 2.8 pixels [20].
Also different architectures tend to refine long range
relationships differently [17]. To isolate the impact of
object motion, we generated 50 short video sequences
in which a randomly-chosen single object moves by
10 pixels between consecutive frames, while both the
background and the object appearance remain fixed.
The background is an HDRI and hence has no de-
tectable optical flow. The object only moves in the
spaces and does not rotate. No extra lighting is added
and only the standard HDRI background lighting is
used. For each sequence, we computed the EPE be-
tween the base frame and the reference frame at in-
creasing pixel displacements (i.e., 10 px, 20 px, …,
90 px). We evaluated four representative architec-
tures that mark recent milestones in optical flow re-
search, as layed out in Table 4. Here, C+T+S+K+H
denotes training on Chairs, Things, KITTI, Sintel,
and HD1K. An example scene is shown in Figure 4,
where four consecutive frames are displayed with a
displacement of 10 pixels between each pair, enabling
controlled experiments with progressively larger dis-
placements. The results are reported in Table 2. As
shown in Figure 2, all models exhibit a similar trajec-
tory with respect to the increase in EPE as displace-
ment grows. Make note of the RAFT architecture,
which loses track of some objects at the 80-pixel mark,
resulting in remarkably steeper path. Notably, all
lowest-EPE checkpoints correspond to models trained
with the C+T+K+S+H regime, highlighting the im-
portance of a varied training set for this purpose 7.

In contrast, models trained solely on KITTI perform
the worst on GMA, FlowFormerPlusPlus and Raft 7.
This can be attributed both to the synthetic nature
of our dataset versus the real-world nature of KITTI,
and to the fact that KITTI contains very few large
displacements, with an average displacement of 2.8
pixels [20]. GMA seems to perform slightly better
than the other architectures.

Low-light
We further investigated the role of luminance, i.e., the
amount of light in the scene, and the point at which
performance begins to degrade. Many current-day
benchmarks lack low-light scenes in their datasets,
and often models are not built for this specific sce-
nario [3]. Low-light scenes come with an increased
amount of noise, which increases the difficulty of the
task [3].

Specifically, we calculated the intensity needed of
four lights in a 3D market scene required to achieve
an average luminance of 1 across all pixels in frame.
These same settings are then kept the same for the
second frame. The light intensities were then scaled
to reach average luminance values of 2, 3, 4, and 5.
Higher luminance values were also tested, but no ad-
ditional performance degradation was observed. We
created 100 scenes and recorded the average EPE of
all models.

An example scene with the different luminance lev-
els for Scene 0 is shown in Figure 5. Here the same ob-
ject is shown only for different luminance levels. The
performance trajectories of the best checkpoints of all
architectures are presented in Figure 3, where GMA
and FlowFormer++ exhibit nearly identical behavior.
Figure 6 also shows that architectures trained exclu-
sively on Chairs and KITTI perform poorly. For the
Chairs dataset, this can partly be attributed to the
absence of dynamic lighting sources in the training
data.

5. Discussion

We introduce an optical flow analysis tool that gen-
erates datasets via a Blender-based pipeline. Scene
parameters are optimized with Differential Evolution

4

Architecture Model 10px 20px 30px 40px 50px 60px 70px 80px 90px
RAFT raft-chairs 0.075 0.084 0.093 0.102 0.116 0.135 0.148 0.166 0.207
RAFT raft-kitti 0.048 0.068 0.095 0.122 0.189 0.266 0.382 0.462 0.585
RAFT raft-sintel 0.021 0.027 0.032 0.036 0.042 0.047 0.053 0.063 0.068
RAFT raft-small 0.095 0.115 0.132 0.150 0.169 0.190 0.209 0.229 0.252
RAFT raft-things 0.046 0.051 0.055 0.060 0.064 0.069 0.073 0.079 0.083
GMA gma-chairs 0.035 0.050 0.066 0.079 0.092 0.106 0.127 0.145 0.160
GMA gma-kitti 0.039 0.054 0.080 0.112 0.176 0.259 0.373 0.454 0.555
GMA gma-sintel 0.015 0.021 0.026 0.030 0.036 0.040 0.045 0.051 0.057
GMA gma-things 0.036 0.040 0.045 0.049 0.054 0.059 0.064 0.069 0.074
FlowFormer chairs_small 0.042 0.071 0.096 0.129 0.170 0.206 0.267 0.309 0.346
FlowFormer chairs 0.089 0.114 0.137 0.171 0.312 0.430 0.519 0.618 0.703
FlowFormer kitti 0.065 0.091 0.125 0.159 0.182 0.241 0.321 0.445 0.556
FlowFormer sintel_small 0.018 0.024 0.029 0.035 0.041 0.047 0.054 0.060 0.067
FlowFormer sintel 0.019 0.025 0.031 0.036 0.042 0.048 0.055 0.061 0.068
FlowFormer things_kitti 0.031 0.035 0.040 0.044 0.049 0.053 0.058 0.063 0.067
FlowFormer things_small 0.029 0.034 0.039 0.044 0.049 0.054 0.060 0.065 0.071
FlowFormer things 0.028 0.034 0.039 0.044 0.050 0.056 0.063 0.069 0.077
FlowFormer++ chairs 0.038 0.062 0.085 0.121 0.166 0.213 0.249 0.287 0.333
FlowFormer++ kitti 0.065 0.096 0.138 0.166 0.197 0.254 0.300 0.341 0.407
FlowFormer++ sintel 0.020 0.025 0.031 0.036 0.041 0.047 0.052 0.058 0.063
FlowFormer++ things_288960 0.035 0.040 0.045 0.050 0.056 0.062 0.068 0.074 0.080
FlowFormer++ things 0.033 0.040 0.048 0.055 0.062 0.070 0.078 0.085 0.093

Table 2: End-point error (EPE) for different models across displacement magnitudes (10–90 pixels).

Figure 2: Lowest EPE per architecture per displace-
ment size

(DE), enabling controlled ablations to isolate vari-
ables and relate them to the end-point error (EPE).

The claims made by FlowFormerPlusPlus regard-
ing superior performance in noise handling and large
displacements cannot be substantiated using our tool.
For displacements, only marginal improvements over
the FlowFormer architecture are observed. With re-
spect to luminance, FlowFormerPlusPlus performs
slightly better in brighter scenes (2–5

FlowFormer outperforms RAFT but does not
demonstrate improvements over GMA. In fact, GMA
performs better than FlowFormer in handling larger

Figure 3: Lowest EPE per architecture per luminance
level

displacements.
Smaller models appear to be more robust to both

large displacements and low-light settings compared
to their larger counterparts. This trend can be seen
in the flatter performance trajectory of smaller mod-
els, particularly in FlowFormer, where the Sintel-
small variant achieves the best overall performance
(see Fig. 6).

The GMA model performs on par with the Flow-
Former models and consistently outperforms RAFT.

Across two experiments, we observe consistent
gains from diverse pretraining: models trained on

5

Architecture Model 1% 2% 3% 4% 5%
RAFT raft-chairs 0.349 0.247 0.211 0.188 0.170
RAFT raft-kitti 0.542 0.434 0.389 0.379 0.374
RAFT raft-sintel 0.116 0.094 0.088 0.087 0.086
RAFT raft-small 0.309 0.280 0.263 0.253 0.248
RAFT raft-things 0.146 0.118 0.111 0.107 0.103
GMA gma-chairs 0.281 0.219 0.187 0.173 0.162
GMA gma-kitti 0.380 0.288 0.261 0.246 0.236
GMA gma-sintel 0.100 0.122 0.079 0.072 0.071
GMA gma-things 0.162 0.124 0.110 0.105 0.101
FlowFormer chairs_small 0.359 0.331 0.315 0.304 0.292
FlowFormer chairs 0.280 0.244 0.237 0.229 0.224
FlowFormer kitti 0.431 0.346 0.319 0.304 0.291
FlowFormer sintel_small 0.096 0.083 0.080 0.078 0.077
FlowFormer sintel 0.101 0.084 0.080 0.076 0.074
FlowFormer things_kitti 0.164 0.109 0.091 0.084 0.080
FlowFormer things_small 0.116 0.097 0.090 0.088 0.086
FlowFormer things 0.161 0.114 0.103 0.097 0.094
FlowFormer++ chairs 0.287 0.233 0.221 0.215 0.203
FlowFormer++ kitti 0.327 0.265 0.253 0.246 0.244
FlowFormer++ sintel 0.100 0.080 0.074 0.071 0.070
FlowFormer++ things_288960 0.184 0.111 0.094 0.086 0.082
FlowFormer++ things 0.171 0.118 0.108 0.103 0.101

Table 3: EPE of different optical flow models at different luminance thresholds

Figure 4: Four consecutive frames of a video showing 10 pixel displacements.

a mixture of KITTI, MPI-Sintel, FlyingThings3D,
HD1K, and FlyingChairs outperform those trained on
narrower regimes.

Regarding the first research question (RQ1), GMA
emerges as the best choice for handling large displace-
ments. Models trained exclusively on KITTI tend to
underperform, while models trained on a diverse set
of datasets achieve the strongest results.

For the second research question (RQ2), concern-
ing low-light conditions, small transformer-based ar-
chitectures appear most effective, as they achieve bet-
ter performance in extremely dark settings.

Limitations
There are several limitations. First, the number of
distinct scenes is modest (n = 50 and n=100). Losing
track of a single object can induce speculative predic-
tions and small shifts in EPE that may not reproduce
across random seeds. Second, while Differential Evo-
lution optimizes a configuration that targets a mean
displacement magnitude, the realized displacement
varies with the sampled supermarket item, introduc-
ing spread between small datasets. Third, scene real-
ism is limited, especially for 2D HDRI backgrounds,

complicating external validity; the 3D market experi-
ments also used a single viewpoint, reducing diversity.
Finally, we did not model camera egomotion, which
is atypical for real-world capture and may limit gen-
eralizability.

References

[1] M. Zhai, X. Xiang, N. Lv, and X. Kong, “Op-
tical flow and scene flow estimation: A survey,”
Pattern Recognition, vol. 114, p. 107861, 2021.

[2] S. Jiang, D. Campbell, Y. Lu, H. Li, and R. Hart-
ley, “Learning to estimate hidden motions with
global motion aggregation,” in Proceedings of
the IEEE/CVF international conference on com-
puter vision, pp. 9772–9781, 2021.

[3] Y. Zheng, M. Zhang, and F. Lu, “Optical flow in
the dark,” in Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recogni-
tion, pp. 6749–6757, 2020.

[4] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun,
“Vision meets robotics: The kitti dataset,” The

6

Figure 5: Five frames of the same scene with luminance levels left-to-right (1% to 5%)

Architecture Model Size (MB) Training Dataset(s)
RAFT raft-chairs 21.1 FlyingChairs
RAFT raft-kitti 21.1 KITTI
RAFT raft-sintel 21.1 C+T+K+S+H
RAFT raft-small 4.0 FlyingChairs + FlyingThings
RAFT raft-things 21.1 FlyingThings3D (clean + final pass)
GMA gma-chairs 23.8 FlyingChairs
GMA gma-kitti 23.8 KITTI
GMA gma-sintel 23.8 C+T+K+S+H
GMA gma-things 23.8 FlyingThings3D (clean + final pass)
FlowFormer chairs_small 25.0 FlyingChairs
FlowFormer chairs 65.1 FlyingChairs
FlowFormer kitti 65.1 KITTI
FlowFormer sintel_small 25.0 C+T+K+S+H
FlowFormer sintel 65.1 C+T+K+S+H
FlowFormer things_kitti 65.1 FlyingThings3D + KITTI
FlowFormer things_small 25.0 FlyingThings3D
FlowFormer things 65.1 FlyingThings3D
FlowFormer++ chairs 65.0 FlyingChairs
FlowFormer++ kitti 65.0 KITTI
FlowFormer++ sintel 65.0 C+T+K+S+H
FlowFormer++ things_288960 65.0 FlyingThings3D
FlowFormer++ things 65.0 FlyingThings3D

Table 4: Overview of model checkpoints, sizes, and training datasets. C+T+K+S+H stands for FlyingChairs
+ FlyingThings3D + KITTI-15 + Sintel + HD1K

international journal of robotics research, vol. 32,
no. 11, pp. 1231–1237, 2013.

[5] D. J. Butler, J. Wulff, G. B. Stanley, and M. J.
Black, “A naturalistic open source movie for opti-
cal flow evaluation,” in Computer Vision–ECCV
2012: 12th European Conference on Computer
Vision, Florence, Italy, October 7-13, 2012, Pro-
ceedings, Part VI 12, pp. 611–625, Springer,
2012.

[6] L. Mehl, J. Schmalfuss, A. Jahedi, Y. Nalivayko,
and A. Bruhn, “Spring: A high-resolution high-
detail dataset and benchmark for scene flow,
optical flow and stereo,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 4981–4991, 2023.

[7] Z. Huang, X. Shi, C. Zhang, Q. Wang, K. C. Che-
ung, H. Qin, J. Dai, and H. Li, “Flowformer: A
transformer architecture for optical flow,” in Eu-

ropean conference on computer vision, pp. 668–
685, Springer, 2022.

[8] X. Shi, Z. Huang, D. Li, M. Zhang, K. C. Che-
ung, S. See, H. Qin, J. Dai, and H. Li, “Flow-
former++: Masked cost volume autoencoding
for pretraining optical flow estimation,” in Pro-
ceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pp. 1599–
1610, 2023.

[9] Z. Teed and J. Deng, “Raft: Recurrent all-pairs
field transforms for optical flow,” in Computer
Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings,
Part II 16, pp. 402–419, Springer, 2020.

[10] K. Greff, F. Belletti, L. Beyer, C. Doersch, Y. Du,
D. Duckworth, D. J. Fleet, D. Gnanapragasam,
F. Golemo, C. Herrmann, et al., “Kubric: A scal-
able dataset generator,” in Proceedings of the

7

Figure 6: EPE per luminance level highlighted for every architecture

IEEE/CVF conference on computer vision and
pattern recognition, pp. 3749–3761, 2022.

[11] D. Sun, D. Vlasic, C. Herrmann, V. Jampani,
M. Krainin, H. Chang, R. Zabih, W. T. Free-
man, and C. Liu, “Autoflow: Learning a better
training set for optical flow,” in Proceedings of
the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 10093–10102, 2021.

[12] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser,
C. Hazirbas, V. Golkov, P. Van Der Smagt,
D. Cremers, and T. Brox, “Flownet: Learn-
ing optical flow with convolutional networks,” in
Proceedings of the IEEE international conference
on computer vision, pp. 2758–2766, 2015.

[13] M. Menze and A. Geiger, “Object scene flow
for autonomous vehicles,” in Proceedings of the
IEEE conference on computer vision and pattern
recognition, pp. 3061–3070, 2015.

[14] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez,
and V. Koltun, “Carla: An open urban driv-
ing simulator,” in Conference on robot learning,
pp. 1–16, PMLR, 2017.

[15] Z. Wan, W. Zhai, Y. Cao, and Z. Zha, “Emotive:
Event-guided trajectory modeling for 3d motion
estimation,” arXiv preprint arXiv:2503.11371,
2025.

[16] J. Schmalfuss, V. Oei, L. Mehl, M. Bartsch,
S. Agnihotri, M. Keuper, and A. Bruhn, “Ro-
bustspring: Benchmarking robustness to im-
age corruptions for optical flow, scene flow and
stereo,” arXiv preprint arXiv:2505.09368, 2025.

[17] N. Mayer, E. Ilg, P. Fischer, C. Hazirbas, D. Cre-
mers, A. Dosovitskiy, and T. Brox, “What makes
good synthetic training data for learning dispar-
ity and optical flow estimation?,” International
Journal of Computer Vision, vol. 126, pp. 942–
960, 2018.

[18] S. Savian, P. Morerio, A. Del Bue, A. A. Janes,
and T. Tillo, “Towards equivariant optical flow
estimation with deep learning,” in Proceedings of
the IEEE/CVF Winter Conference on Applica-
tions of Computer Vision, pp. 5088–5097, 2023.

[19] R. Li, R. T. Tan, L.-F. Cheong, A. I. Aviles-
Rivero, Q. Fan, and C.-B. Schonlieb, “Rainflow:
Optical flow under rain streaks and rain veiling
effect,” in Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pp. 7304–
7313, 2019.

[20] G. Liu, H. Tian, Q. Gao, and Y. Yuan, “En-
hancing visual inertial odometry with efficient
dynamic perceptionnet and consistency improve-
ment fusion,” Available at SSRN 5227953.

8

Figure 7: EPE per displacement size highlighted for every architecture

9

Bibliography

[1] Steven S. Beauchemin and John L. Barron. “The computation of optical

flow”. In: ACM computing surveys (CSUR) 27.3 (1995), pp. 433–466.

[2] Mingliang Zhai et al. “Optical flow and scene flow estimation: A survey”.

In: Pattern Recognition 114 (2021), p. 107861.

[3] Andrea Alfarano et al. “Estimating optical flow: A comprehensive review

of the state of the art”. In: Computer Vision and Image Understanding

(2024), p. 104160.

[4] Robert Guamán-Rivera, Jose Delpiano, and Rodrigo Verschae. “Event-

based optical flow: Method categorisation and review of techniques that

leverage deep learning”. In: Neurocomputing (2025), p. 129899.

[5] John L Barron, David J Fleet, and Steven S Beauchemin. “Performance

of optical flow techniques”. In: International journal of computer vision

12 (1994), pp. 43–77.

[6] Berthold KP Horn and Brian G Schunck. “Determining optical flow”. In:

Artificial intelligence 17.1-3 (1981), pp. 185–203.

[7] Carnegie Mellon University. Lucas-Kanade Optical Flow. Accessed: 2025-

03-19. 2025. url: https://www.cs.cmu.edu/lectures/Lecture21.

pdf.

[8] Jean-Yves Bouguet et al. “Pyramidal implementation of the affine lucas

kanade feature tracker description of the algorithm”. In: Intel corporation

5.1-10 (2001), p. 4.

[9] Deqing Sun, Stefan Roth, and Michael J Black. “Secrets of optical flow

estimation and their principles”. In: 2010 IEEE computer society confer-

ence on computer vision and pattern recognition. IEEE. 2010, pp. 2432–

2439.

[10] Alexey Dosovitskiy et al. “Flownet: Learning optical flow with convolu-

tional networks”. In: Proceedings of the IEEE international conference

on computer vision. 2015, pp. 2758–2766.

36

https://www.cs.cmu.edu/lectures/Lecture21.pdf
https://www.cs.cmu.edu/lectures/Lecture21.pdf

[11] Anurag Ranjan and Michael J Black. “Optical flow estimation using a

spatial pyramid network”. In: Proceedings of the IEEE conference on

computer vision and pattern recognition. 2017, pp. 4161–4170.

[12] Jia Xu, René Ranftl, and Vladlen Koltun. “Accurate optical flow via

direct cost volume processing”. In: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition. 2017, pp. 1289–1297.

[13] Deqing Sun et al. “Pwc-net: Cnns for optical flow using pyramid, warp-

ing, and cost volume”. In: Proceedings of the IEEE conference on com-

puter vision and pattern recognition. 2018, pp. 8934–8943.

[14] Junhwa Hur and Stefan Roth. “Iterative residual refinement for joint

optical flow and occlusion estimation”. In: Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition. 2019, pp. 5754–

5763.

[15] Zachary Teed and Jia Deng. “Raft: Recurrent all-pairs field transforms

for optical flow”. In: Computer Vision–ECCV 2020: 16th European Con-

ference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16.

Springer. 2020, pp. 402–419.

[16] Shihao Jiang et al. “Learning to estimate hidden motions with global

motion aggregation”. In: Proceedings of the IEEE/CVF international

conference on computer vision. 2021, pp. 9772–9781.

[17] Shangkun Sun et al. “Skflow: Learning optical flow with super ker-

nels”. In: Advances in Neural Information Processing Systems 35 (2022),

pp. 11313–11326.

[18] Wenjie Luo et al. “Understanding the effective receptive field in deep

convolutional neural networks”. In: Advances in neural information pro-

cessing systems 29 (2016).

[19] Zhaoyang Huang et al. “Flowformer: A transformer architecture for op-

tical flow”. In: European conference on computer vision. Springer. 2022,

pp. 668–685.

37

[20] Qiaole Dong and Yanwei Fu. “Memflow: Optical flow estimation and

prediction with memory”. In: Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition. 2024, pp. 19068–19078.

[21] Simon Baker et al. “A database and evaluation methodology for optical

flow”. In: International journal of computer vision 92 (2011), pp. 1–31.

[22] Daniel J Butler et al. “A naturalistic open source movie for optical flow

evaluation”. In: Computer Vision–ECCV 2012: 12th European Confer-

ence on Computer Vision, Florence, Italy, October 7-13, 2012, Proceed-

ings, Part VI 12. Springer. 2012, pp. 611–625.

[23] Andreas Geiger et al. “Vision meets robotics: The kitti dataset”. In: The

international journal of robotics research 32.11 (2013), pp. 1231–1237.

[24] Moritz Menze and Andreas Geiger. “Object scene flow for autonomous

vehicles”. In: Proceedings of the IEEE conference on computer vision and

pattern recognition. 2015, pp. 3061–3070.

[25] Lukas Mehl et al. “Spring: A high-resolution high-detail dataset and

benchmark for scene flow, optical flow and stereo”. In: Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition.

2023, pp. 4981–4991.

[26] Deqing Sun et al. “Autoflow: Learning a better training set for optical

flow”. In: Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition. 2021, pp. 10093–10102.

[27] Nikolaus Mayer et al. “A large dataset to train convolutional networks

for disparity, optical flow, and scene flow estimation”. In: Proceedings of

the IEEE conference on computer vision and pattern recognition. 2016,

pp. 4040–4048.

[28] Murat H Sazlı. “A brief review of feed-forward neural networks”. In:

Communications Faculty of Sciences University of Ankara Series A2-A3

Physical Sciences and Engineering 50.01 (2006).

[29] Pierre Baldi and Peter J Sadowski. “Understanding dropout”. In: Ad-

vances in neural information processing systems 26 (2013).

38

[30] Seán Mc Loone and George Irwin. “Improving neural network training

solutions using regularisation”. In: Neurocomputing 37.1-4 (2001), pp. 71–

90.

[31] Kaiming He et al. “Deep residual learning for image recognition”. In: Pro-

ceedings of the IEEE conference on computer vision and pattern recog-

nition. 2016, pp. 770–778.

[32] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In:

nature 521.7553 (2015), pp. 436–444.

[33] Min Lin, Qiang Chen, and Shuicheng Yan. “Network in network”. In:

arXiv preprint arXiv:1312.4400 (2013).

[34] Christian Szegedy et al. “Going deeper with convolutions”. In: Proceed-

ings of the IEEE conference on computer vision and pattern recognition.

2015, pp. 1–9.

[35] François Chollet. “Xception: Deep learning with depthwise separable

convolutions”. In: Proceedings of the IEEE conference on computer vision

and pattern recognition. 2017, pp. 1251–1258.

[36] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural

information processing systems 30 (2017).

39

	Introduction
	Supplementary Material
	Optical Flow
	Average Endpoint Error (AEPE)
	Angular error

	Classical Models
	Horn-Schuck
	Lucas-Kanade
	Coarse-to-fine pyramids
	Median filtering

	Deep-Learning Models
	FlowNet (2015)
	SPyNet (2017)
	DC-Flow (2017)
	PWC-Net (2018)
	Iterative residual refinement network (2019)
	RAFT (2020)
	GMA (2021)
	SKFlow (2022)
	FlowFormer (2022)
	MemFlow (2024)

	Evaluation Datasets
	Yosemite (1994)
	Middlebury (2007)
	MPI Sintel (2012)
	KITTI-15 (2015)
	Spring (2023)

	Pretraining Datasets
	FlyingChairs (2015)
	FlyingThings3D (2016)
	AutoFlow (2021)

	Challenges
	Large displacements
	Aperture problem
	Occlusion
	Brightness changes
	Textureless regions

	Deep Learning
	Neural networks
	Feedforward networks
	Stochastic Gradient Descent
	Activation Function
	Backpropagation

	Overfitting
	Dropout
	Regularisation

	Residual networks
	Convolutional Neural Networks
	Network In Network
	Inception modules
	Depthwise Separable Convolutions

	Transformer Architecture
	Attention Mechanism

	Scientific Article
	Bibliography

