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Aerosol Absorption Over Land Derived From the
Ultra-Violet Aerosol Index by Deep Learning

Jiyunting Sun

Abstract—Quantitative measurements of aerosol absorptive
properties, e.g., the absorbing aerosol optical depth (AAOD) and
the single scattering albedo (SSA), are important to reduce uncer-
tainties of aerosol climate radiative forcing assessments. Currently,
global retrievals of AAOD and SSA are mainly provided by the
ground-based aerosol robotic network (AERONET), whereas it is
still challenging to retrieve them from space. However, we found
the AERONET AAOD has a relatively strong correlation with the
satellite retrieved ultra-violet aerosol index (UVAI). Based on this,
a numerical relation is built by a deep neural network (DNN) to
predict global AAOD and SSA over land from the long-term UVAI
record (2006-2019) provided by the ozone monitoring instrument
(OMI) onboard Aura. The DNN predicted aerosol absorption is
satisfying for samples with AOD at 550 nm larger than 0.1, and the
DNN model performance is better for smaller absorbing aerosols
(e.g., smoke) than larger ones (e.g., mineral dust). The comparison
of the DNN predictions with AERONET shows a high correlation
coefficient of 0.90 and a root mean square of 0.005 for the AAOD,
and over 80% of samples are within the expected uncertainty of
AERONET SSA (£0.03).

Index Terms—Absorbing aerosol optical depth (AAOD), deep
neural network (DDN), machine learning, ozone monitoring
instrument (OMI), single scattering albedo (SSA), ultra-violet
aerosol index (UVAI).

I. INTRODUCTION

TMOSPHERIC aerosols are solid or liquid particles sus-
pended in the air. Most aerosols have a dominating cooling
effect on the Earth’s climate (—0.9W/m? [-1.9 to 0.2 W/m?]),
however, the presence of light absorbing aerosols poses a par-
tially offsetting warming effect [1]. Absorbing aerosols are
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mainly produced by combustion processes and dust uplifts [2].
They affect the Earth’s climate directly by absorbing the so-
lar radiation or indirectly by altering the cloud and surface
properties [3]-[6]. Quantifying the aerosol absorption is an
important task to determine the aerosol radiative forcing and
its uncertainties [7]-[9].

Quantitative aerosol absorptive properties, e.g., the aerosol
single scattering albedo (SSA), which presents the ratio of
scattering efficiency to total extinction efficiency, and the
absorbing aerosol optical depth (AAOD), which describes the
fraction of total columnar extinction due to particle absorption,
are usually provided by the ground-based aerosol robotic
network (AERONET) [10] [11], but the global distribution of
AERONET stations is sparse and unbalanced. Observations
from space have the advantage to have a better spatial
coverage, but only few satellite sensors are capable to retrieve
aerosol absorptive properties. Currently, satellite retrievals
of AAOD and/or SSA use either multiangle measurements,
optionally combined with polarimetry [2], [12], e.g., the
multi-angle imaging spectroradiometer (MISR) onboard Terra
(1999-present) [13], [14], and the third polarization and
directionality of the earth’s reflectances mission (POLDER-3)
onboard PARASOL (2005-2013) [15]-[17].

Another parameter holding the information of the qualitative
aerosol absorption is the ultra-violet aerosol index (UVAI) [18].
Compared with the AAOD and SSA retrieved by MISR and
POLDER-3, UVALI is easier to derive without multiangular and
polarimetric techniques. Moreover, its calculation does not rely
on a priori assumptions of aerosol properties (e.g., the size distri-
bution function and the complex refractive index). By contrast,
the aerosol properties retrieved by MISR are based on look-up
tables (LUTSs) produced for 74 predefined aerosol mixtures [19].
The POLDER retrievals, either based on LUTs [16], [20], [21]
or the recently developed generalized retrieval of aerosol and
surface properties (GRASP) algorithm that online calculates
radiative transfer for multiple pixels simultaneously [22], [23],
also require predefined information on aerosol properties. On
the other hand, the calculation of UVAI does not need to make
such assumptions, because UVAI is defined as the change of
the spectral contrast at two UV channels (A < A2) between
a measured and a calculated radiance due to the presence of
absorbing aerosols [18], [24]:

I obs I Ray
UVAI = —100 [loglo <Iil> — logy (Ii) ] (1)
2 2
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where Ray indicates the radiance calculated by radiative transfer
simulations assuming no aerosol present. By assuming [ ,‘\’55 =
If;y(a& 2 ) (s s, s the surface albedo at the longer wavelength
Mo), the above can be rewritten as
obs
UVAI = —1001og10%. )

UVALI is a qualitative measure of aerosol absorption. A posi-
tive value indicates the presence of absorbing aerosols, whereas
nonabsorbing aerosols and clouds yield neutral or negative val-
ues [18].

The UVALI has been continuously produced on a global scale
by multiple satellites since 1978. It is of interest to quantify
the aerosol absorption from such a long-term record. We have
attempted to derive AAOD and SSA from UVAI based on radia-
tive transfer simulations [25] and the support vector regression
(SVR) [26] for specific cases. Following previous studies, this
work generates a database of quantitative aerosol absorptive
properties over land from the UVAI between 2006 and 2019
provided by the ozone monitoring instrument (OMI) onboard
Aura using a deep neural network (DNN) model. We create a
training dataset using both observations and simulations, employ
a filter as well as a wrapper method for feature selection, and
apply the cross validation for hyperparameter tuning. We provide
an error analysis of the DNN predictions and validate the outputs
with the AERONET observations. The result of this study leads
to an aerosol climatology (2006-2019) of quantitative absorptive
properties over land. Section II introduces the training data and
the DNN algorithm. Section III presents the assessments of the
derived aerosol absorption and the climatology for the period
from 2006 to 2019. Section IV summarizes the major findings
and potential improvements in the future.

II. DATASETS AND METHODOLOGY
A. Datasets

The datasets used in this study include the OMI/Aura level 2
version 3 aerosol product OMAERUYV,! the moderate resolution
imaging spectroradiometer (MODIS)/Aqua Collection 6 level 3
daily gridded aerosol product MYDOS8,? and the ground-based
network AERONET level 1.5 inversion almucantar product.’
Besides, the modern-era retrospective analysis for research
and applications, Version 2 (MERRA-2) aerosol reanalysis is
used to calculate the aerosol vertical distributions (MERRA-2
inst3_3d_aer_Nv, 10.5067/LTVB4GPCOTK?2) and to provide
AAOD and SSA (MERRA-2 tavgl_2d_aer_Nx, 10.5067/KLI-
CLTZ8EMOID) for comparisons with the predicted results. All
the data are collected globally from 2006-01-01 to 2019-12-31.
All the observational data (i.e., satellite and ground-based data)
are regarded to be cloud-free and all the satellite data are re-
garded to be not affected by large viewing angles and sun-glint
effect after preprocessing. The detailed introduction of datasets
and preprocessing are presented in Appendix A.

![Online]. Available: http://dx.doi.org/10.5067/ Aura/OMI/DATA2004
2[Online]. Available: http://dx.doi.org/10.5067/MODIS/MYDO08_M3.006
3[Online]. Available: https://aeronet.gsfc.nasa.gov
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TABLE I
SUMMARY OF DATASETS AND RELEVANT VARIABLES USED IN THIS STUDY

Solar zenith angle (SZA), viewing zenith angle
(VZA), relative azimuth angle (RAA), surface albedo
(as, at 388 nm), surface pressure (Ps), UVAI (calcu-
lated by radiance at 354 and 388 mm), AOD (at 500
nm), AAOD (at 500 nm), SSA (at 500 nm), latitude
(°), longitude (°)

AOD (at 550 nm)

AOD (at 550 nm), AAOD (at 550 nm), SSA (at 440
and 550 mm), Extinction Angstri')m Exponent (EAE,
between 440 and 870 nm), Absorption Angstrom Ex-
ponent (AAE, between 440 and 870 nm), time (day of
year)

AOD (at 550 nm), AAOD (at 550 nm), SSA (at 550
nm), aerosol layer height (ALH, derived from aerosol
profiles)

OMI

MODIS

AERONET

MERRA-2

All the data are collected globally from 2006-01-01 to 2019-12-31. Parameters used as
input features in DNN are bold.

The relevant parameters used in this work are listed in Table I,
including satellite-solar geometries (SZA, VZA, RAA), surface
properties (as and Ps) and UVAI from OMI; AOD from MODIS;
and AAOD and SSA from AERONET. Extinction ;\ngstrdm
Exponent (EAE) and Absorption Angstrﬁm Exponent (AAE)
calculated between 440 and 870 nm from AERONET are used
for AOD and AAOD spectral conversion according to the power
law. Except for UVAI, all aerosol optical properties in this
study is at 550 nm by default, unless other wavelengths are
explicitly mentioned. The AOD, AAOD, and SSA provided
by OMI and MERRA-2 are also included for discussions and
comparisons. Note that the OMAERUYV product contains two
aerosol index variables, and this study uses the term “residue”
[27]. For more detailed explanations on this parameter, one can
refer to Appendix A.

Since UVALI is highly sensitive to the aerosol vertical distri-
bution [18], [24], [25], [28], whereas the observation on global
aerosol vertical distribution is limited in space and time [29].
Instead, we derive the geometric top boundary height of aerosol
layers as ALH from the aerosol profiles provided by MERRA-2.
For more detailed explanations on this parameter, one can refer
to Appendix A.

B. Construction of the Training Dataset

All the variables in Table I are merged into one hybrid dataset.
First, the daily OMI and MODIS satellite data are projected onto
the MERRA-2 grid (0.5° x 0.625°). Next, the satellite-model
data is colocated to the ground-based AERONET observations.
According to previous studies [30]-[35], the satellite-model
joint data passing a time window of +3 h and a spatial distance
<50 km is allocated to an AERONET record after averag-
ing. To ensure the consistency between different measurement
techniques (i.e., space-borne versus ground-based), we apply
the following filtering criteria, based on the expected errors
of the MODIS AOD (£(0.05+ 15%) over land and from
—0.04 + 10% to 4+0.02 + 10%) over ocean [36], [37]), the
OMAERUV AOD (0.1 or 30% [38], [39]) and the AERONET
SSA (£0.03 [11])

1) |[AODY —AODZ | <0.05 + 15% x AOD# (over land).


http://dx.doi.org/10.5067/Aura/OMI/DATA2004
http://dx.doi.org/10.5067/MODIS/MYD08_M3.006
https://aeronet.gsfc.nasa.gov
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Global distribution of training data
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Fig. 1. Global distribution of the training data. The color indicates the number
of observations. Note that the temporal coverage of each AERONET site varies.

2) —0.04—10% x AOD“ <AOD2!, — AODZ, <0.02+
10% x AOD# (over ocean).
3) |AOD$,, —AOD%,| <0.1 or [AODS), —AODZ,,|/
AOD%, < 30%).
4) |SSAG), — SSAZ,,| < 0.03.
where the upper-script M, A, and O indicate MODIS,
AERONET, and OMAERUYV. Note that OMAERUYV only pro-
vides aerosol properties on 354, 388, and 500 nm. Therefore,
the corresponding AERONET AOD and AAQOD are converted
to 550 nm according to the power law

)\' —
Thy = Ta (A;) 3)

where 7;, is the AOD at wavelength X to be estimated, and 7;,,
is the AOD at wavelength A5 that is known; « is the EAE listed
in Table I. The same conversion method is applied to AAOD
using corresponding AAE.

The final hybrid dataset after quality filtering has 48 080
coincidences. Fig. 1 shows its distribution. Most samples are
located in North America and Western Europe. On the contrary,
few sites measure aerosol absorptive properties over ocean. As
aresult, this study only focus on deriving the aerosol absorptive
properties over land.

C. Feature Selection

1) Feature Selection by Domain Knowledge: In machine
learning, features are treated as explanatory variables used to
predict the target variable. In our algorithm, the target variable
is the quantitative aerosol absorptive parameter AAOD and/or
SSA. From our previous study [26], we have proven that com-
pared with SSA, AAOD is better correlated with UVAI because
both AAOD and UVAI are sensitive to aerosol loading and
aerosol absorption. Therefore, deriving AAOD from UVAI is
expected to give better results than deriving SSA from UVAL

UVALI is calculated from the satellite measured radiance. It
does not only depend on the aerosol properties (e.g. AOD, ALH,
aerosol absorption), but also on other parameters, including
SZA, VZA, RAA, surface albedo (as), and surface pressure
(Ps) [18] [24], [25],[28]. The above variables are thus listed
as candidate features. Note that the influence of clouds has been
eliminated by discarding pixels with cloud fraction larger than
0.3 (see Appendix A) and will not be considered in this work.

Machine learning algorithms solve the numerical relation-
ship between given variables, but they neglect the fact that

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

environmental variables are correlated in space and time [40].
Recently, there is an increasing trend involving the spatial and/or
temporal autocorrelation in machine learning applications. This
can be done in many ways, for example, Li et al. [41] and Li
et al. [42] directly used the measurements in the past and/or
the measurements from surrounding sites. In other studies,
geo-statistical methods were used in combination with machine
learning algorithms (e.g., [43]-[48]). There is also an increasing
trend using the convolutional neural network (CNN) and/or the
recurrent neural network (RNN) to present the temporal and
spatial correlation (e.g., [49]-[51]), as these techniques can
share weight parameters in space and/or time domain. However,
applying above techniques in this study is not feasible due to
the limitation of training datasets (limited spatial coverage and
different time spans, see Fig. 1). Instead, we just directly add
geo-coordinates (longitude and latitude) and time information
(day of the year) into the feature space as that done in other
studies (e.g. [52]-[58]). In total, we selected 11 variables as the
candidate features based on our domain knowledge.

2) Feature Selection by Filter and Wrapper Methods: We
have chosen 11 features according to our experience and knowl-
edge, but whether those features are favorable to derive AAOD
from UVAI needs further investigations. Feature selection is the
process of selecting a subset of features that is most relevant
to the target variable. This process is important to enhance the
model interpretability, computational efficiency, generalization
performance, etc. [59].

In our previous study, we only selected three features that have
relatively high Spearman’s correlation coefficients (122) with the
target variable (the AERONET AAOD) [26]. However, R? only
measures the monotonic relationship between features and the
target variable. In this work, we apply two independent feature
selection methods: 1) the maximum information coefficients
(MIC) [60] and 2) the recursive feature elimination (RFE) [59].

MIC is a filter method that was first introduced in [60]. It
measures the dependence between two variable X and Y, no
matter the relation is linear or nonlinear. It uses a constrained
adaptive bin method to apply mutual information (/) on con-
tinuous variables. The mutual information measures the mutual
dependence between two random variables, which is defined as

p(z,y)
p(z)p(y)

where p(z,y) is the joint probability density function of X

and Y, and p(x) and p(y) are the marginal probability density

function of X and Y. Then MIC uses binning to compute the

normalized mutual information on continuous variables
1(X3Y)

MIC(X,Y) = —_— 5
(X,Y) nmgya?Nz logy min(ny, ny) )

I(X;Y) = / p(z,y)log, dxdy 4)

where n, and n, are the bin numbers of X and Y, respectively.
Their product is supposed to be smaller than anumber N#, where
N is the size of the data and z usually takes 0.6 [60]. Last, MIC
is the maximum of the normalized mutual information values
calculated by different combinations of n, and n, (MIC ranges
between 0 and 1).
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Fig. 2. Feature selection: the (MIC), blue bars and the (RFE), white bars.
The higher MIC values, the stronger correlation between a feature and the
target variable (AAOD). RFE presents how the model performance (in format
of averaged RMSE from 100 RF experiments) varies with an eliminated feature.
The higher the RMSE (the worse the model performance), the more important
the corresponding feature.

MIC is a filter method, which uses statistical measures to in-
dependently evaluate the correlation between the target variable
and the input features, and to filter out the least relevant features.
However, filter methods only look at one individual feature at
a time, thus ignoring relationship between features. Wrapper
methods like RFE can also detect the interactions between
features [61]. RFE recursively removes the least relevant feature
by a certain metric and aims to find the feature combination that
leads to the optimal model performance. The feature ranking
metrics of RFE is given by an external estimator that assigns
weights to each feature, such as the coefficients of the linear
regression or the support vector machines [59], or the feature
importance of the random forests (RF) [62]. In this work, we
use the RF-based RFE, as RF can deal with nonlinear problems
and it does not have many hyperparameters to tune. Since RF
predictions will not always be the same, we set up 100 RFE
experiments and use the average value to select the features of
interest.

The MIC and REF evaluation on the 11 candidate features are
presented in Fig. 2. MIC (blue bars) indicates the UVAI, AOD,
ALH are the most relevant features to AAOD, which is in agree-
ment with our previous study [26]. The geo-coordinates (Lat
and Lon) are more important compared to the rest parameters.
The average of 100 RFE experiments (white bars) shows how
the model performance changes (in terms of the averaged root
mean square error, RMSE) with an eliminated feature. It is clear
that the most important feature is UVAI, followed by AOD and
ALH. The remaining features do neither significantly improve
nor hurt the model performance. As there is no solid reason to
exclude them, we decide to keep all 11 features.

The basic statistics of the selected features are shown in Fig. 3.
But to show the impact of the spatial and temporal information
(Lat, Lon, DOY) on predictions, we also build a feature space
without this information to allow a comparison. Consequently,
we have the following two feature spaces.

1) Feature space with 11 features (F11): UVAI, AOD, ALH,

Lat, Lon, DOY, SZA, VZA, RAA, as, Ps.
2) Feature space with 8 features (F8): UVAI, AOD, ALH,
SZA, VZA, RAA, as, Ps.
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D. Deep Neural Network (DNN)

Machine learning algorithms learn the underlying behavior of
a system from a set of training data [63]. They have been widely
applied in geosciences and remote sensing [63], [64]. Recently,
driven by the increasing size of geo-data, algorithms such as
deep learning becomes more and more popular [65], [66]. Deep
learning is characterized by neural networks with no less than
two hidden layers [67].

We use a feed-forward DNN with multiple hidden layers
(see Fig. 4). A DNN consists of an input layer, n intermediate
hidden layers and an output layer. The input layer contains input
features, and the output layer gives the predicted variable(s). A
hidden layer consists of 7 neurons. The jth neuron in /th hidden
layer (a]) is calculated by neurons in the previous layer

n
Z = ZwljzaLl + b (6)
i=1

where wlj “is the weight of the ith neuron in (I — 1)th layer (a{ )
given to the a]; b/ is a bias term. Then, the computed z; is fed
into an activation function o

a{ = a(zlj). @)

The activation function is used to add the nonlinear properties
to a neural network. In this work, the rectified linear unit (ReL.U)
is used as the activation function

o(x) = max(0,x). (8)

The DNN is to find the optimal weight matrix W containing
all wj" that can minimized the loss function (L). Here, we use
the RMSE as the error metric

Lk 1/2
L= [k > @i - yi)] ©)
i=1
where k is the number of samples; y; and y; are the DNN-
predicted and the true values. In this work, the optimization of
loss function is realized by the Adam solver [68] with a fixed
learning rate of 10~*. The Adam solver is more computationally
efficient than classical optimization algorithms and performs
well for large datasets [69].

The structure of DNN (the number of hidden layer n and
the number of neurons in each layer m) highly varies with
applications. Therefore, we applied an exhaustive grid search
over specified hyperparameter values. The process is based on
tenfold cross validations: the dataset is randomly split into 10
sets. For each fold, 9 out of 10 sets are used to train the DNN
model and the remaining set is used for validation.

Tables II and III present the training results and the validation
of the model performance for different layer and neuron con-
figurations. Compared to the model performance of DNN-FS,
the DNN-F11 predictions show a better consistency with the
true values (R? =0.9). The RMSE and the mean absolute error
(MAE) of the DNN-11 predictions are also smaller than that
of DNN-8. The comparison reveals that the additional spatial
and temporal information indeed improves the DNN model
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Fig. 3. Histogram and basic statistics of the selected features.
TABLE 11

MODEL PERFORMANCE OF DNN WITH 1|1 FEATURES UNDER DIFFERENT DNN CONFIGURATIONS IN TERMS OF THE LINEAR FITTING SLOPE (k),
THE INTERCEPT (b), THE CORRELATION COEFFICIENT (R?), THE RMSE, AND THE MAE

Training Validation
Layer Neuron k b R?2 RMSE MAE k b R? RMSE MAE
1 64 078 0 0.88 5.34E-03 3.42E-03 078 0 0.88 547E-03 3.48E-03
128 079 0 0.89 5.19E-03 3.34E-03 079 0 0.88 546E-03 3.44E-03
256 079 0 09  516E-03 3.29E-03 077 0 0.88 534E-03 3.40E-03
2 64 085 0 09  492E-03 3.19E-03 082 0 089 521E-03 3.36E-03
128 084 0 091 47IE-03 3.05E-03 082 0 0.89 5.18E-03 3.31E-03
256 085 0 092 451E-03 2.92E-03 083 0 0.89 506E-03 3.23E-03
3 64 083 0 091 471E-03 3.06E-03 082 0 089 525E-03 3.33E-03
128 086 0 093 4.19E-03 2.69E-03 082 0 09  496E-03 3.18E-03
256 085 0 093 4.10E-03 2.6IE-03 082 0 09  496E-03 3.13E-03
4 64 083 0 092 4.53E-03 2.94E-03 081 0 089 5.10E-03 3.28E-03
128 084 0 094 3.92E-03 2.51E-03 081 0 09  486E-03 3.10E-03
256 084 0 093 4.11E-03 2.56E-03 08 0 09  494E-03 3.10E-03
5 64 084 0 092 439E-03 2.84E-03 081 0 0.89 5.03E-03 3.23E-03
128 086 0 094 3.99E-03 2.56E-03 084 0 09  48I1E-03 3.09E-03
256 086 0 094 3.79E-03 2.36E-03 082 0 091 4.76E-03 3.03E-03
6 64 082 0 092 4.52E-03 2.94E-03 079 0 09  498E-03 3.23E-03
128 086 0 094 3.78E-03 2.37E-03 082 0 09  482E-03 3.05E-03
256 083 0 094 3.87E-03 2.35E-03 079 0 09  4.88E-03 3.03E-03

performance. However, the improvement is not significant as
that in other studies (e.g., [42]), because we only provide co-
ordinate and time information in a straightforward way, instead
of giving the explicit spatial and temporal autocorrelation calcu-
lated by geo-statistics methods (e.g., deterministic interpolation,
Kriging, or Gaussian process regression), or sharing weights in
space and time domain by CNN or RNN.

The optimal model of DNN-F11 is constructed by 3 hidden
layers with 64 neurons in each layer. The final trained model
has a prediction accuracy of 0.0045 [see Fig. 5(a)]. This model
performance is significantly better than the SVR model used

in the previous work ([26], RMSE = 0.01). Considering the
representative uncertainty of AERONET AAOD is at the level
between 0.004 and 0.006 (calculated by the expected errors
of AERONET AOD and SSA via the error propagation equa-
tion, see Fig. 23 in Appendix A), the model performance is
encouraging. The optimal model of DNN-F8 is constructed by
2 hidden layers with 128 neurons in each layer. Without the
information on coordinate and time, the final trained model
has a prediction accuracy of 0.0056, slightly higher than that
of DNN-F11. Consequently, we only use the DNN-F11 in the
following applications.
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TABLE III
MODEL PERFORMANCE OF DNN WITH 8 FEATURES UNDER DIFFERENT DNN CONFIGURATIONS IN TERMS OF THE LINEAR FITTING SLOPE (k), THE INTERCEPT
(b), THE CORRELATION COEFFICIENT (R?), THE RMSE, AND THE MAE

Training Validation
Layer Neuron k b R? RMSE MAE k b R? RMSE MAE
1 64 076 0 0.86 5.84E-03 3.65E-03 075 0 085 5.88E-03 3.68E-03
128 076 0 0.86 5.70E-03 3.60E-03 075 0 0.86 5.84E-03 3.65E-03
256 076 0 0.87 5.54E-03 3.55E-03 075 0 0.86 5.73E-03 3.62E-03
2 64 075 0 0.88 551E-03 3.52E-03 074 0 0.86 5.76E-03 3.63E-03
128 0.8 0 088 535E-03 3.42E-03 079 0 0.86 5.77E-03 3.59E-03
256 079 0 0.89 5.15E-03 3.28E-03 077 0 0.87 5.63E-03 3.52E-03
3 64 078 0 0.89 5.17E-03 3.32E-03 076 0 0.87 5.63E-03 3.56E-03
128 083 0 091 4.82E-03 3.01E-03 0.8 0 087 S5.61E-03 3.44E-03
256 084 0 091 4.64E-03 2.94E-03 081 0 0.87 545E-03 3.40E-03
4 64 077 0 09 4.94E-03  3.16E-03 074 0 0.87 551E-03 3.48E-03
128 082 0 092 449E-03 2.84E-03 077 0 0.87 541E-03 3.37E-03
256 0.8 0 091 471E-03 291E-03 076 0 0.87 548E-03 3.38E-03
5 64 082 0 09 4.92E-03  3.13E-03 079 0 0.87 5.53E-03 3.45E-03
128 082 0 092 449E-03 2.85E-03 078 0 0.88 5.33E-03 3.36E-03
256 081 0 092 443E-03 2.72E-03 077 0 0.88 5.30E-03 3.28E-03
6 64 077 0 09 4.92E-03  3.14E-03 073 0 0.87 5.58E-03 3.47E-03
128 081 0 092 4.39E-03 2.76E-03 077 0 0.88 534E-03 3.33E-03
256 081 0 092 442E-03 2.67E-03 078 0 0.88 531E-03 3.26E-03

Hidden Layer Output Layer

Input Layer

OMAERUV <

d
1| DNN-Fionly |
S

Fig. 4. Conceptual structure of the DNN in this study.
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Fig. 5. Performance of the optimal model selected by grid search. The linear

fitting slope (k), intercept (b), the correlation coefficient (R?), the RMSE and the
MAE between the observed and predicted values, and the percentage of AAOD
difference within AERONET AAOD estimated error in the total samples (P)
are provided: (a) DNN with 11 features (DNN-F11); (b) DNN with 8 features
(DNN-F8). The dashed lines are 1:1 and 50% difference lines.

III. RESULTS AND DISCUSSION
A. Assessments of the DNN-Predicted Aerosol Absorption

The DNN-F11 model is applied to predict the aerosol absorp-
tion from 2006 to 2019. The AAOD estimated by the DNN and
further derived SSA (SSA = 1 - AAOD/AOD) are validated by
the colocated AERONET records and compared with the aerosol
absorption provided by OMAERUYV and MERRA-2. To ensure
the consistency between different products, we apply the same
quality filtering described in Section II-B before analysis. This
filtering is also applied to MERRA-2 AOD and SSA. There are
in total 39 504 coincidences for validation.

1) Influence of Input Features on the DNN Predictions: First,
we investigate the relationship between the errors of the DNN
predictions and input features. According to Fig. 6, the differ-
ence between the DNN-predicted AAOD and the AERONET-
retrieved AAOD shows little dependence on the input features.
However, it is slightly related to the AOD difference between
MODIS and AERONET [see Fig. 6 (I)]. The positive bias of
MODIS AOD leads to overestimation of the DNN-predicted
AAOD. On the other hand, Fig. 7(b) reflects that low AOD may
cause large biases in the DNN-derived SSA, because MODIS
observation become less sensitive to low aerosol loading [37].
This indicates that a quality filtering on AOD is necessary to
ensure the quality of the DNN predictions. As a result, based
on the sensitivity study of the DNN-derived SSA accuracy [see
Fig. 24 in Appendix B], a threshold of 0.1 on the MODIS AOD
at 550 nm is applied to the DNN predictions. The same threshold
is also applied to the OMAERUV AOD (converted to 550 nm)
and the MERRA-2 AOD for direct comparisons. There are total
21 600 samples after AOD-screening. The following discussions
are based on the filtered data.
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number of samples. The data is further grouped into 20 sets, and the red circles and error bars are the mean and standard deviation of each group.

2) Validating the DNN Predictions With AERONET: Ac-
cording to Fig. 8(a), the filtered DNN-predicted AAOD shows
a high correlation with the AERONET retrievals (R?=0.89).
The linear fitting shows that the DNN predictions have a slight
negative bias, which is mainly caused by the underestimation for
cases with high aerosol absorption. Both RMSE and MAE are
at level around 0.005, and about 83% samples falling within the
AERONET AAOD estimated error. The corresponding SSA is
also positively biased [see Fig. 9(a)]. Over 80% of the samples

are within the AERONET SSA typical uncertainty of +0.03.
Compared with the SVR predictions in our previous study with
only 66% data is inside the £0.03 confidence interval [26], the
DNN-predictions show a significant improvement. Despite of
the larger bias for high absorption cases, the averaged error of

DNN-derived SSA is at level around 0.02.

Aerosol absorptive properties of OMAERUYV (at 500 nm) and
MERRA-2 (at 550 nm) are also compared with the AERONET
retrievals. Although both the OMAERUV AOD and SSA are
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Fig. 8.

AERONET AAOD against the AAOD of (a) DNN-F11 predictions, (b) OMAERUYV and (c) MERRA-2 after the AOD-screening. The black lines are the

linear fittings. The dotted and dashed lines are 1:1 and 50% difference lines, respectively. P is the percentage of the difference between the DNN-predicted AAOD
and AERONET AAOD smaller than the expected error of the AERONET AAOD calculated by (23) in the total samples.
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Fig. 9.

AERONET SSA against the SSA of (a) DNN-F11 predictions, (b) OMAERUYV and (c) MERRA-2 after the AOD-screening. The black lines are linear

fittings. The gray dashed lines are the £0.03 uncertainty of AERONET SSA. P is the percentage of the difference between the DNN-predicted SSA and AERONET
SSA smaller than the expected error of the AERONET SSA (£0.03) in the total samples.

TABLE IV

AEROSOL CLASSIFICATION BASED ON THE EXTINCTION ANGSTROM EXPONENT (EAE), THE ABSORPTION ANGSTROM EXPONENT (AAE), AND THE SSA AT
440 NM (ADAPTED FROM [70] AND [71])

Aerosol types EAFE440-870 AAF 440870 SS A0 Comment
Smoke EAE > 1.5 AAE >0 SSA <0.95 Small absorbing aerosols
Dust EAE < 0.5 AAE > 1 SSA <0.95 Large absorbing aerosols
Mixed 05 < EAE<15 AAE > 1 SSA <0.95 Mixture of small and large absorbing aerosols
Other All other conditions Non-absorbing aerosols

quality assured by AERONET, its AAOD is still considerably
lower than the corresponding AERONET retrievals, resulting in
a RMSE larger than the expected magnitude [see Fig. 8(b)].
Similar as the DNN predictions, the gap is mainly due to
the underestimation of the high aerosol absorption cases. The
MERRA-2 AAOD tends to be overestimated for lower values
and underestimated for higher values, leading to the highest error
level (both RMSE and MAE) among the three data sets [see
Fig. 8(c)]. In most cases, the MERRA-2 SSA is also higher than
that of AERONET, with only 66% of samples within the +0.03
confidence range [see Fig. 9(c)].

3) Validating the DNN Predictions by Aerosol Types: We
further validate the DNN predictions according to aerosol types.
We categorize the aerosols into four types (i.e., smoke, dust,
smoke-and-dust-mixed, and other nonabsorbing aerosols) by the
EAE between 440 and 870 nm, the AAE between 440 and 870
nm, and the SSA at 440 nm reported in the AERONET inversion
product (see Table IV). This classification method is adapted
from [70], [71].

The comparisons of the DNN, OMAERUYV, and MERRA-2
against the AERONET AAOD and SSA for the four aerosol
types are presented in Fig. 10 and Table V. All three datasets
show their best consistency with the AERONET retrievals for
smoke aerosols (R? >0.90). R? slightly decreases for larger
absorbing aerosols (mixed and dust aerosols), but most of the
samples is still within the £50% difference range (dashed lines).
On the other hand, all three datasets are not well correlated with
AERONET for nonabsorbing aerosols (R? <0.8), and tend to
overestimate the aerosol absorption.

Compared to OMAERUYV and MERRA-2, the DNN predic-
tions have higher R? and lower error in general. The agreement
between the DNN predictions and the AERONET retrievals
varies with aerosol types. The DNN is best at predicting aerosol
absorption for smaller absorbing aerosols. This is because the
DNN-predicted AAOD is most sensitive to the input MODIS
AOD and OMAERUYV UVALI The uncertainty of the MODIS
AOQOD in the visible band is higher for dust aerosols due to the
stronger surface reflectance [36], [37], [72], [73]. Consequently,
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Table IV: (a) smoke, (b) dust, (¢c) mixed and (d) other aerosols. The dashed lines are 1:1 and 50% difference lines.

AAOD VALIDATION BY AEROSOL TYPES

TABLE V

AERONET AAOD against that of DNN-F11 (red square), OMAERUV (green cross) and MERRA-2 (blue circle) for four aerosol types based on

Type  Data RMSE MAE k b R?2 P[% N MEia0p MEiop MEgssa
Smoke DNN-FI1 546E-03 3.94E-03 0.9 0 093 79 3533 -0.003 -0.02 0.00
MERRA-2  6.09E-03 4.17E-03 0.96 0 091 77 3533 -0.001 -0.01 0.00
OMAERUV  7.51E-03 4.74E-03  0.65 0 091 72 3533 -0.002 0.00 0.01

Dust  DNN-FII 6.50E-03 4.75E-03 0.73 001 086 89 2410 0.00 0.00 0.00
MERRA-2  1.01B-02 7.42E-03 1.02 0 083 74 2410 0.005 0.01 -0.01
OMAERUV ~ 8.92E-03  6.66E-03  0.73 0 085 81 2410 -0.003 -0.01 0.00

Mixed  DNN-F11 521E-03 3.86E-03 0.82 0 09 82 7322 -0.002 -0.01 0.00
MERRA-2  7.92B-03 521E-03 1.02 0 08 73 7322 0.001 -0.01 0.00
OMAERUV  7.77B-03 547E-03 0.6 0 083 69 7322 -0.003 -0.01 0.01

Other DNN-FI1 483E-03 3.64E-03 0.73 0.00 073 84 8335 0.002 0.00 -0.01
MERRA-2  1.02E-02 737E-03 104 001 063 50 8335 0.007 0.00 -0.03
OMAERUV  541E-03 4.24E-03 0.67 000 07 76 8335 0.002 0.01 -0.01

The columns are statistics between AAOD of each data set and AERONET: The RMSE, the MAE, the linear fitting slope (k), intercept (b) and correlation
coefficient (R?), the percentage of difference within the expected AERONET error level in the total samples ( P), the number of samples (IN), and the mean
error of AAOD, AOD and SSA (M Eaaop, M Exop, and M Essa) of each aerosol type.

Fig. 11. MODIS/Aqua true color maps of the selected cases:
https://worldview.earthdata.nasa.gov/.

(a)

the DNN predictions for dust aerosols are less consistent with
the AERONET retrievals than smoke aerosols. The gap between
DNN-predictions and AERONET is largest for nonabsorbing
aerosols. It is because that the OMAERUV UVAI is more
sensitive to absorbing aerosols than scattering aerosols by its
definition [18], [24].

The OMAERUV AAOQOD is overall lower than the AERONET
retrievals, with k£ <0.8 for all aerosol types. This is caused by
the higher OMAERUV SSA compared to AERONET for the
majority of the data. This agrees with findings in [34]. According
to Jethva et al., the potential reasons behind the SSA difference
to AERONET could come from the clouds contamination, the
assumptions on ALH, the high surface albedo (in desert and arid

2019-02-14;

(b) 2019-02-18; (c) 2019-07-10; (d) 2019-08-07. Source:

areas), and the assumed aerosol microphysical properties. On the
contrary, the MERRA-2 AAOD shows slightly positive biases
(except for smoke), particularly for nonabsorbing aerosols, re-
flecting that the MERRA-2 aerosol models may overestimate
the aerosol absorption.

4) Assessments of the DNN-Predicted Aerosol Absorption
by Cases: Here, we selected four cases to further investigate
the performance of the DNN predictions, covering dust storms
and biomass burning events in Africa. Figs. 11 and 12 present
the MODIS/Aqua true color images and the OMAERUV UVAI
for the selected cases. Case 2019-02-14 and 2019-02-18 show
the biomass burning events in the central Africa. Case 2019-
07-10 and 2019-08-07 mainly present the dust storms in the
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Fig. 13.

Case study of 2019-02-14. The upper-script O and M indicate
OMAERUYV and MERRA-2 respectively. First row: DNN-predicted AAOD
and its difference with the OMAERUYV and MERRA-2 AAOD; second row:
DNN-derived SSA and its difference with the OMAERUV and MERRA-2
SSA; third row: input UVAI, the MODIS AOD difference with OMAERUYV,
and MODIS AOD difference with MERRA-2.

northern Africa with some biomass burning events in the south-
ern Africa.

Figs. 13—16 show the DNN-predicted AAOD, SSA, and the
input MODIS AOD (left column), and their difference with the
corresponding parameters of OMAERUYV (middle column) and
MERRA-2 (right column). In general, the DNN-derived AAOD
can reflect the distribution of absorbing aerosols (cloud-free
parts) as that shown in Figs. 11 and 12, whereas it is difficult to
tell the dust or smoke plumes from the derived-SSA alone (same
for SSA of OMAERUYV and MERRA-2). The distribution of the
DNN-derived AAOD is dominant by the input MODIS AOD,
whereas the effect of UVAI is weaker. For example, in case
2019-07-10 and 2019-08-07, both AOD and the DNN-derived
AAOD show high values in biomass burning regions, whereas
the corresponding UVALI is very low.

The difference plots of AAOD and SSA (see Figs. 13-16
(b, c, e, )) show that the DNN-predicted aerosol absorption is
generally higher than that of OMAERUYV, whereas it is lower
than that of MERRA-2. This finding is consistent with that
found in previous sections. The difference in aerosol absorption
is mainly associated with the difference in AOD. For example,
in case 2019-02-18, the MODIS AOD of the smoke plume is

OMAERUYV UVALI of the selected cases: (a) 2019-02-14; (b) 2019-02-18; (c) 2019-07-10; (d) 2019-08-07.
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Fig. 14. Case study of 2019-02-18. The upper-script O and M indicate
OMAERUYV and MERRA-2 respectively. First row: DNN-predicted AAOD
and its difference with the OMAERUV and MERRA-2 AAOD; second row:
DNN-derived SSA and its difference with the OMAERUV and MERRA-2
SSA; third row: input UVAI, the MODIS AOD difference with OMAERUYV,
and MODIS AOD difference with MERRA-2.

Fig. 15. Case study of 2019-07-10. The upper-script O and M indicate
OMAERUYV and MERRA-2 respectively. First row: DNN-predicted AAOD
and its difference with the OMAERUV and MERRA-2 AAOD; second row:
DNN-derived SSA and its difference with the OMAERUV and MERRA-2
SSA; third row: input UVAI, the MODIS AOD difference with OMAERUYV,
and MODIS AOD difference with MERRA-2.
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Fig. 16. Case study of 2019-08-07. The upper-script O and M indicate
OMAERUYV and MERRA-2 respectively. First row: DNN-predicted AAOD
and its difference with the OMAERUV and MERRA-2 AAOD; second row:
DNN-derived SSA and its difference with the OMAERUV and MERRA-2
SSA; third row: input UVAI, the MODIS AOD difference with OMAERUYV,
and MODIS AOD difference with MERRA-2.

significantly higher than that of OMAERUYV [see Fig. 14(h)],
and the corresponding AAOD and SSA difference shows the
same pattern [see Fig. 14 (b, e)].

B. Aerosol Absorption Climatology

Here, we discuss the aerosol absorption climatology over land
derived by DNN for the period from 2006 to 2019. Although it
is applicable for aerosols over ocean, the DNN model is mainly
trained for aerosols over land, as the most of AERONET sites
measure aerosol absorptive properties of continental aerosols
(see Fig. 1). The aerosol properties over ocean may have a dif-
ferent distribution from that of continental aerosols, which could
bias the predictions. Therefore, we only discuss the aerosol ab-
sorption over land in this section, and provide a tentative analysis
on the predicted aerosol absorption over ocean in Appendix C.

1) Global Aerosol Absorption Climatology: Figs. 17 and 18
present the seasonal aerosol absorption of DNN, OMAERUY,
and MERRA-2 over land averaged between 2006 and 2019.
All three datasets show the major absorbing aerosol sources
in each season, for instance, the biomass burning events in
Central Africain DJF and MAM, and dust storms from Sahara in
MAM and JJA, etc. Compared with MERRA-2, both the DNN
and OMAERUV AAOD have lower magnitudes, especially
over desert regions. It is because both MODIS and OMI have
difficulty in retrieving AOD over bright surfaces in the visible
band. Besides, in OMAERUYV, dust particles are assumed to
be spherical, which is not a proper assumption to calculated
the dust optical properties [74]. On the contrary, MERRA-2
assimilates the MISR and AERONET AOD observations over
bright surfaces [75],[76]. Owing to MISR’s multiangle measure-
ment technique providing more constraints on the inversion, the
MISR AOD is better associated with AERONET than MODIS
over desert regions [77], [78]. Both MERRA-2 and DNN show
that the northern India is a considerable source in all seasons,
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Fig.17.  Seasonal AAOD of DNN (left column), OMAERUYV (middle column)
and MERRA-2 (right column) over land.
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Fig. 18.  Seasonal SSA of DNN (left column), OMAERUYV (middle column)
and MERRA-2 (right column) over land.

although the latter has a lower magnitude. However, this is not
observed in OMAERUYV. By contrast, the OMAERUV AAOD
is higher in South America during all seasons, whereas the other
two data only show significant AAOD during the fire season
(SON). These disagreements are associated with the difference
in AOD climatology (see Fig. 27 in Appendix D).

In terms of SSA, the correlation between three datasets is
not explicit. Because the OMAERUV and MERRA-2 SSA
are calculated from independent a priori aerosol models,
whereas the DNN derives SSA also using observational data.
The OMAERUV SSA shows the highest magnitude and the
MERRA-2 SSA is lower than others, which agrees with find-
ings in the validation section. The spatial patterns of the DNN
and MERRA-2 SSA are more similar to each other than that
of OMAERUYV over the Southern Africa and South America
biomass burning regions, although the DNN predictions are
slightly higher than that of MERRA-2.

2) Regional Aerosol Absorption Climatology: We further se-
lect the major absorbing aerosol sources for regional analysis,
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Fig. 19. Regions of interest. Green and red indicates regions dominated by

smoke aerosols and dust aerosols, respectively.
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Fig. 20. AAOD time series of DNN (black), OMAERUYV (green), MERRA-2
(blue) and AERONET (gray) for regions of interest.

as shown in Fig. 19. We analyze the monthly averaged aerosol
absorption time series of the selected regions of interest with
the mean of the corresponding AERONET measurements as a
reference. According to Fig. 20, the DNN-predicted AAOD and
MERRA-2 AAOD show better consistency with AERONET,
whereas in terms of SSA (Fig. 21), the fluctuation of the
AERONET SSA is larger than other datasets, and generally
shows a stronger aerosol absorption in almost all regions. But
note that the selected AERONET sites can hardly represent the
whole features of the selected regions, and thus we only provide
statistical analysis between DNN predictions, OMAERUV and
MERRA-2. All the three datasets show similar seasonal cycles
of aerosol absorption. Overall, the DNN-predicted AAOD are
better associated with the other two datasets than the DNN-
predicted SSA.

In biomass burning regions, e.g., Southeast Asia, Central
Africa, and Southern Africa, the DNN-predicted AAOD is
highly correlated with OMAERUV and MERRA-2 (R? >0.8),
but the magnitude of the DNN predictions is more similar to the
latter. An exception is South America, where the OMAERUV
AAOD has the highest magnitude but with little seasonal vari-
ations, showing very low correlations with other two datasets.
This is also reflected in the climatology maps (see Fig. 17).
However, the corresponding SSA of DNN and MERRA-2 are in
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Fig. 21.  SSA time series of DNN (black), OMAERUYV (green), MERRA-2
(blue) and AERONET (gray) for regions of interest.

good agreement over this region (R? =0.93). The DNN-derived
SSA is also well correlated with that of MERRA-2 in Africa
biomass burning regions (R? =0.9), whereas lower correla-
tions are found in Southeast Asia and the Amazonian regions
(R? <0.8). The reason could be that the satellite observations
are less sensitive to these regions as the aerosol loading is lower
compared to that in Africa.

Compared with biomass burning regions, the AAOD and SSA
of all datasets show less correlations in the desert regions of
Arabia and Northern Africa. MERRA-2 presents the strongest
absorption, whereas OMAERUYV presents the lowest absorption,
which is consistent with the findings in the validation section.
The DNN predictions are between the two datasets, as the low
measurement sensitivity of AOD in the visible band due to high
surface albedo is partially compensated by the advantage of
UVALI that can detect the presence of absorbing aerosols even
over bright surfaces [18], [24].

IV. CONCLUSION

A global aerosol absorption database is important to reduce
uncertainties of aerosol radiative forcing assessments. In this
study, we introduced a DNN model to retrieve quantitative
aerosol absorptive properties (AAOD and SSA) from the long-
term OMI UVAI product. The input features are selected by
both filter and wrapper methods. The hyperparameters of the
DNN model are determined by grid search with tenfold cross
validation. The final trained model has an accuracy of 0.0045
for AAOD prediction, which is within the expected AAOD error
(0.004-0.006).

The trained DNN model has been applied to predict aerosol
absorption over land for the period between 2006 and 2019. It is
recommended to use the DNN-predicted AAOD and SSA with
AOD at 550 nm above 0.1, as the low aerosol loading will lead
to significant biases in the DNN predictions. The point-to-point
validation shows that the DNN AAOD is negatively biased,
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but still highly associated with the AERONET retrievals
(R?=0.89 and RMSE=0.0050). There are 82% samples fall in
the excepted uncertainty of the AERONET SSA (+£0.03). The
analysis based on aerosol types shows that our DNN model
is better at predicting fine absorbing aerosols (e.g., smoke)
rather than coarse ones (e.g., mineral dust). This is mainly
caused by the property of the MODIS AOD in the visible band.
The consistency with ground-based measurements is lowest
for nonabsorbing aerosols, since UVAI is only sensitive to
absorbing aerosols according to its definition.

The DNN predictions are also compared with the OMAERUV
retrievals and the MERRA-2 aerosol reanalysis. It should be
noted that for both OMAERUV and MERRA-2, the SSA is
calculated from a priori assumptions on aerosol microphysical
properties, whereas no such constraints in our DNN model.
Using AERONET as the reference, the DNN AAOD outper-
forms that of OMAERUV and MERRA-2 for all aerosol types.
Specifically, OMAERUYV underestimates the aerosol absorption
particularly for absorbing aerosols, whereas MERRA-2 has the
tendency to overestimate aerosol absorption in general. The
AAOD spatial distribution and temporal variation of the DNN
predictions and MERRA-2 are highly similar, particularly in
the biomass burning regions. The spatial pattern of SSA is less
comparable.

Our DNN model shows encouraging results in aerosol ab-
sorptive properties retrieval over land. However, the resultis only
satisfying for AOD above a certain level, since the low measure-
ment sensitivity to low aerosol loading is a general problem of
aerosol remote sensing. Besides, the satellite retrieved AOD in
the visible band is still challenging for dust particles over bright
surfaces. The application to aerosols over ocean is still restricted
by the availability of reliable aerosol absorption sources used for
training machine learning models. Future applications should
pay attention to the above aspects.

Currently, due to the limitation of the training dataset (a
hybrid datasets of satellite observations, model simulations
and ground-based network measurements), our study did not
properly account for spatial and temporal autocorrelation of
geo-parameters. With more efforts put on the global monitor-
ing of aerosol properties and vertical distribution, and better
resolution of satellite instruments, it is expected to solve this
problem either using geo-statistics that explicitly provide the
spatial and temporal autocorrelation, or using advanced deep
learning techniques such as CNN and/or RNN that can share
weight parameters in space and/or time domain.

APPENDIX A
DATASETS

A. OMI Observations

OMI is a UV/Visible spectrometer onboard Aura (2004-
present) [79]. The instrument has a large swath of 2600 km,
providing around 14 orbits per day to complete a global coverage
(overpass on 13:45 local time). The spatial resolution at nadir is
13 Km x 24 km (13 km X 48 km in the UV-1 band).

We take UVAL, the solar zenith angle (SZA), the satellite view-
ing zenith angle (VZA), the solar-satellite relative azimuth angle
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(RAA), the surface reflectance (as) and the surface pressure
(P,) from the level 2 OMAERUYV version 3 product.* Pixels
are excluded if they have SZA larger than 70°, or they are over
bright surface (a, at 388 nm higher than 0.3), contaminated by
clouds (cloud fraction larger than 0.3) or sun-glint (glint angle
larger than 20° over water).

OMI data suffers from the so-called row anomaly issue since
2008, which affects the quality of the level 1B radiance data at all
wavelengths and consequently the level 2 products [80]. The row
anomaly is caused by a partial blockage of the Earth telescope,
affecting part of the across track swath. More information on
row anomaly can refer to,> [80]. Even after filtering the data
using the quality flag provided in OMAERUYV product, the row
anomaly can still be observed in some pixels. Therefore, we
apply a moving standard deviation method to further eliminate
the effects due to the row anomaly: for a given pixel, the standard
deviation of UVAI (oyva) is calculated over a sliding window
of its eight neighboring elements. Pixels with oyyar larger
than a threshold are discarded. The threshold is determined by
sensitivity studies based on colocated data of OMAERUYV and
AERONET.

According to Fig. 22, the final determined oyya; threshold
is 0.5. This value on the one hand retains a large data size,
meanwhile ensuring the consistency between the satellite and
the ground-based AERONET measurements in terms of AAOD.
We use AAQOD as the criteria is because our study is based on
the relationship between UVAI and AAOD. Both parameters
contain information on the aerosol loading and the aerosol
absorption. Moreover, AAOD is the common aerosol absorption
parameter provided by both OMAERUYV and AERONET.

The OMAERUYV data product contains two UVAI parameters.
One is called “residue,” where I3 is calculated by a lambert
equivalent reflectivity (LER) model as that done in UVAI prod-
ucts provided by other sensors [18], [24]. The other one is “UV
index,” where I5* is reprocessed by considering the effects of
clouds on scattering angular variability [27]. Although the “UV
index” shows a reduced across-scan bias and is better associated
with the AERONET AAOD (see Fig. 22), itis overall higher than
the “residue,” especially over ocean where neural or negative
should have been found (see [27, Fig. 12 ]). The reason behind
is not explicitly explained. On the other hand, the method used
to calculate “residue” is widely used in other satellite products,
whereas “UV Index” is exclusively used for the OMAERUV
product. Therefore, the term UVAI in this work refers to the
“residue.”

B. MODIS Observations

MODIS is a multispectral radiometer covering 36 wave-
lengths from 0.4 to 14.4 ym. A large swath of 2330 km allows
it to complete a global coverage within 1 or 2 days. The spatial
resolution ranges from 0.25 to 1 km. Currently, two MODIS in-
struments are operational: one is on EOS-Terra satellite launched
in 1999 (descending node, overpass on 10:30 local time) and the

4[Online]. Available: http:/dx.doi.org/10.5067/ Aura/OMI/DATA2004
3[Online]. Available: http://projects.knmi.nl/omi/research/product/
rowanomaly-background.php


http://dx.doi.org/10.5067/Aura/OMI/DATA2004
http://projects.knmi.nl/omi/research/product/rowanomaly-background.php
http://projects.knmi.nl/omi/research/product/rowanomaly-background.php

SUN et al.:

le—-1

AEROSOL ABSORPTION OVER LAND DERIVED FROM THE ULTRA-VIOLET AEROSOL INDEX BY DEEP LEARNING

9705

=

)
|

N

=
o

»
ES
s

>
N

—- UVAI
—- residue

R? between AAODY and AAOD?

0.25

»
=)
|

N
o
L

bt
>
L

d
[N}
N

N
o
L

0.4 0.6 0.8 1.0 0.2 0.4

oyvA! threshold

(@)

0.2

Fig. 22.

oy¥A! threshold

RMSE between AAOD? and AAODZ

1.0 0.4 0.6 0.8 1.0
oy¥Al threshold

(©)

0.6 0.8 0.2

(b)

Sensitivity studies to determine the oyvyar threshold. (a) the number of OMAERUV-AERONET coincidences as a function of the oyyar threshold;

(b) the correlation coefficient (R?) between the OMAERUV AAOD (AAOD®) and the AERONET AAOD (AAODA) as a function of the oyyar threshold;
(c) the root mean square error (RMSE) between AAOD© and AAOD# as a function of the oy threshold.

other one is on EOS-Aqua launched in 2002 (ascending node,
overpass on 13:30 local time) [36].

MODIS has two aerosol retrieval algorithms for 1) aerosols
over ocean and vegetated dark surface (“Dark Target,” DT) [37],
[81], [82] and 2) aerosols over desert and arid regions (“Deep
Blue,” DB) [72], [83], [84]. The retrieved AOD uncertainty
of DT is £(0.05 + 15%) over land and from —0.04 — 10% to
+0.02 + 10% over ocean, and the expected uncertainty of DB
is estimated better than 4-(0.05 4+ 20%). A hybrid AOD is also
reported in a combination of DT and DB retrievals, where the
method is based on the the normalized difference vegetation
index [37].

In this work, we use the DT and DB combined AOD at 550 nm
from Collection 6.1 level 3 daily gridded data (MYDO8_D3) of
MODIS/Aqua® to provide information of aerosol loading. The
resolution of the level 3 data is 1°x 1°. Pixels with geometric
cloud fraction larger than 0.3 are excluded.

C. AERONET Observations

AERONET is a ground-based remote sensing network to
retrieve aerosol optical, microphysical and radiative properties
for aerosol research and characterization, validation of satellite
retrievals, and synergism with other databases [10].

The AERONET radiometer takes two types of measurements:
1) direct sun irradiance and 2) sky radiance. AOD is retrieved
by the Beer—-Bouguer Law from the direct sun measurements
at a wide spectrum from 340 to 1020 nm [85]. The bias of the
near-real time AOD data is estimated as 0.02 with a standard
deviation of 0.02 [86]. The sky radiance measurements scan an
aerosol profile at multiple scattering angles to retrieve aerosol
absorption (SSA and AAOD) and other aerosol microphysics
(e.g., volume size distribution, complex refractive index, and
the aerosol scattering phase function, etc.) at 440, 670, 870, and
1020 nm [87]. The AERONET level 2 (quality assured) SSA has
a typical uncertainty of +0.03 (for AOD at 440 nm larger than
0.2 [11],[88], or 0.3 [89]).

In this work, we use the AOD, AAOD, and SSA from the
AERONET version 3 level 1.5 inversion almucantar product.’
Although the level 2 data is recommended (cloud screened and
quality assured) [90], we use the level 1.5 product (only cloud

[Online]. Available: http://dx.doi.org/10.5067/MODIS/MYDO08_M3.006
7[Online]. Available: https://aeronet.gsfc.nasa.gov
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Fig. 23.  Estimated error of AERONET AAOD at 550 nm calculated by (10)

with AERONET AOD uncertainty of +0.02 and AERONET SSA uncertainty
of £0.03.

screened) because the level 2 data availability is insufficient for
our applications. Using the expected error of AOD (assuming
oaop = 0.02) and SSA (ossa =0.03), and the definition of
AAOD (10), we can calculate the expected error level of the
AERONET AAOD using the error propagation equation (11)

AAOD = (1 — SSA) x AOD

|, (9AAOD\®
OAAOD = |/ O§sA (E)SSA> + 0aoD
Fig. 23 presents the distribution of the AERONET AAOD at
550 nm uncertainty for all AERONET records collected between
2006 and 2019. For more than 80% of the samples, the AAOD
uncertainty is less than 0.01. The mean and median of the
estimated AAOD error are 0.006 and 0.004, respectively.

(10)

OAAOD *
( AAOD ) - (D

D. MERRA-2 Aerosol Reanalysis

MERRA-2 is the latest modern satellite era (1980 onwards)
atmospheric reanalysis [75], [76]. The model resolution is
0.5° x 0.625° latitude by longitude with 72 hybrid-eta layers
from the surface up to 0.01 hPa. MERRA-2 assimilates mul-
tiple observational AOD datasets, including MODIS, MISR,
the advanced very high resolution radiometer (AVHRR) and
AERONET. MERRA-2 aerosol assimilation and the total col-
umn AOD evaluation are well-documented in [75]. They elab-
orated that the MERRA-2 AOD constrained by observations
better matches independent measurements. Improved agreement
is also found for aerosol optical properties and aerosol vertical
distributions [76].
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In this work, we use the MERRA-2 columnar AOD and
AAOD (reported at 550 nm) provided by the MERRA-2 1-hourly
time-averaged aerosol (MERRA-2 tavgl_2d_aer_Nx, 10.5067/
KLICLTZ8EMO9D) to compare with our derived aerosol absorp-
tion results. Furthermore, we also derive the aerosol vertical
distribution information from MERRA-2. This is important be-
cause UVAL s sensitive to the aerosol layer vertical location [18],
[24], [25], [28]. Many efforts have been made on measuring
aerosol vertical structures [29], including ground-based lidar
systems [91], [92], space-borne lidar missions [93], [94], multi-
angle measurements [95], polarimetry [96], oxygen absorption
at A-band [56], [97]-[103], oxygen absorption in the visible
band [104] and thermal infrared [105], [106]. However, currently
an aerosol vertical distribution product based on observations
that has a daily global coverage as that of UVAI is still missing.
Consequently, we turn to derive the ALH from the aerosol
vertical profiles provided by MERRA-2.

We derive the geometric aerosol layer top height as the
ALH from the MERRA-2 3-hourly instantaneous aerosol mass
mixing ratio profiles (MERRA-2 inst3_3d_aer_Nv, 10.5067/
LTVB4GPCOTK?2). The mass mixing ratio is converted to
extinction coefficients first. Then for a MERRA-2 extinction
profile, we attempt to find the top boundary of an aerosol layer
with the extinction coefficient lapse rate (7ex(, unit: km~2,[107]),
which is defined as

dp(z)

7ext(z) = T3

dz

where d(z) is the extinction coefficient difference between two
continuous layers, and dz is the atmospheric interval geometric
thickness. Given an aerosol profile, we search upward from the
surface and retain the first height at which the magnitude of ey
above this height is always smaller than a certain value. The
choice of the threshold is empirical, which we select 0.01 km 2
based on sensitivity studies (not shown). The relation between
the derived ALH and the UVAI matches our knowledge of UVAI
dependence on altitude [18], [24], [25], [28].

12)

APPENDIX B
QUALITY FILTERING ON DNN PREDICTIONS

The sensitivity of the DNN-derived SSA accuracy as a func-
tion of the MODIS AOD (see Fig. 24). It is found that when AOD
at 550 nm is larger than 0.1, the most of the samples (83%) are
within the AERONET SSA uncertainty of +0.03 meanwhile
retaining a relative large sample size for validation.

APPENDIX C
AEROSOL ABSORPTION CLIMATOLOGY OVER OCEAN

Here provides a tentative analysis for the DNN-derived
aerosol absorption climatology over ocean. Figs. 25 and 26
present the AAOD and SSA, respectively. All AAOD datasets
show the absorbing aerosol outflows from major continental
sources, e.g., the dust storms from the Sahara Desert and smoke
plumes from Central and Southern Africa. The OMAERUV
climatology map is more noisy compared with others due to
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Fig. 26.  Seasonal SSA of DNN (left column), OMAERUYV (middle column)
and MERRA-2 (right column) over ocean.
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observational and retrieval errors, missing data, etc. There are
high values of the OMAERUV AAOD over remote oceans which
are far away from absorbing aerosol sources, especially in the
Northern Pacific during MAM and in the Southern Pacific during
SON 25 (e, k).

The outflow of the Sahara dust and the Africa biomass burning
plumes can be observed in the OMAERUV SSA climatology.
The MERRA-2 SSA is also associated with the corresponding
AAOD, particularly for smoke plumes. But the dust outflows
over the northern Atlantic Ocean and the Arabian Sea can hardly
be observed in the SSA maps. This may be caused by the
aerosol models used in MERRA-2. The SSA of dust aerosols is
between 0.77 and 0.96 (depending on particle size), whereas the
absorption of black carbon is much stronger (SSA varies from
0.21 to 0.38, depending on relative humidity) [75]. On the other
hand, the outflows of Africa dust and smoke are observable in
the DNN-derived SSA map, but the magnitude is much less than
other two datasets. The DNN predictions over ocean is overall
not as good as that over land due to the limitation of spatial
distribution of the training data.

APPENDIX D
AOD CLIMATOLOGY OVER LAND FrROM 2006 TO 2019

Fig. 27 shows the seasonal AOD climatology over land.
The distribution and magnitude between DNN (i.e., MODIS)
and MERRA-2 AOD are in good agreement, whereas the
OMAERUV AOD (has been converted to 550 nm) is signifi-
cantly higher than the other two datasets.
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