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SAMENVATTING

Dit proefschrift bestudeert fundamentele aspecten van atmosferische turbulentie
door middel van direct numerieke simulaties van homogene roterende turbulentie
en van een brekende traagheid-zwaartekrachtgolf in de middelste atmosfeer. De
numerieke experimenten werden uitgevoerd met een nieuwe computationele tool,
specifiek ontworpen voor dit onderzoek en bedoeld om te profiteren van massaal
parallel verwerking op supercomputer hardware.

Ten eerste is de overgang van een gespleten naar een voorwaarts kinetisch ener-
gie cascade systeem onderzocht in de context van homogene roterende turbulentie
met een driedimensionale isotrope willekeurige kracht die niet gecorreleerd is met
het snelheidsveld. De parametrische studie behandelt begrenzing effecten in domei-
nen met grote aspectverhoudingen, die in de draairichting ongeveer 340 keer groter
zijn dan de typische initiéle wervelgrootte, en een breed scala aan rotatiesnelheden.
De huidige gegevens voegen substantieel toe aan eerdere werken, die daarentegen
gericht waren op kleinere en ondiepere domeinen. Resultaten geven aan dat voor
vaste geometrische afmetingen het Rossby nummer als controle parameter fungeert,
terwijl voor een vast Rossby nummer het product van de domeingrootte langs de
rotatie-as met het forcerende golfgetal de hoeveelheid energie regelt die gedeeltelijk
omgekeerd wordt overgedragen. Onze resultaten laten zien dat het criterium voor
regime overgang afhangt van beide controle parameters.

Ten tweede, met behulp van de vorige database, twee aspecten van homogeen
roterende turbulentie worden gekwantificeerd. Door de tijdevolutie van de integrale
lengteschaal langs de rotatie-as £ te volgen, de groeisnelheid van de zuilvormige
wervelingen en zijn afhankelijkheid van het Rossby nummer Ro. wordt bepaald als
v = 3.90exp(—16.72 Ro.) voor 0.06 < Ro. < 0.31 waarbij v de niet-dimensionale
groeisnelheid is. Daarna wordt een schaalwet voor de energie dissipatie snelheid €,
gezocht. Een vergelijking met de huidige beschikbare schaalwetten laten zien dat de
relatie die voorgesteld wordt door Baqui & Davidson (2015), namelijk €, ~ u’3 /¢y,
waarbij v’ de r.m.s. snelheid is, onze gegevens gedeeltelijk goed benadert, daarbij
specifiek in het bereik 0.39 < Ro. < 1.54. Echter, de voorgestelde relaties in de
literatuur slagen er niet in de gegevens te modelleren voor het tweede en meest in-
teressante bereik, namelijk 0.06 < Ro. < 0.31, die gekenmerkt zijn door de formatie
van zuilvormige wervels. Om een overeenkomstige relatie te vinden voor het laatste,
maken wij gebruik van het concept van een spectrale overdrachtstijd die geintro-
duceerd is door Kraichnan (1965). Binnen dit kader wordt de energie dissipatie
snelheid beschouwd af te hangen aan zowel de niet-lineaire tijdschaal als de ont-
spanningstijdschaal. Dus door onze gegevens te analyseren zijn uitdrukkingen voor

deze verschillende tijdschalen verkregen die resulteren in g, ~ u'*/ (ﬁiRog‘GZTﬁi’?),

1S0

waarbij £, de integrale lengteschaal is in de richting loodrecht op de draaias, en 7,7
de niet-lineaire tijdschaal is van het initiéle homogene isotrope veld.

ix



X SAMENVATTING

Ten derde onderzoeken we een testcase waarin rotatie- en stratificatie-effecten
gecombineerd optreden. Daarom simuleren we traagheidszwaartekrachtgolven die in
de midden-bovenste mesosfeer breken, namelijk op hoogtes die overeenkomen met
het Reynolds nummer van 28647 en 114591 die gebaseerd zijn op de golflengte
en de periode geassocieerd met het opwaartse drijfvermogen. Terwijl het eerste al
bestudeerd is door Remmler et al. (2013), wordt deze hier herhaald met een ho-
gere resolutie en dient als basis voor vergelijking met de hoge Reynolds nummer
testcase. De simulaties zijn ontworpen op basis van de studie van Fruman et al.
(2014), en worden geinitialiseerd door optimale verstoringen bovenop de onstabiele
convectieve basisgolf te plaatsen. Binnen één golfperiode, vergankelijke groei leidt
tot een bijna onmiddellijke golfbreking en secundaire uitbarsting van turbulentie.
We laten zien dat dit proces gekenmerkt wordt door de vorming van fijnstroom-
structuren die zich voornamelijk in de omgeving bevinden van het minst stabiele
punt van de golf. Tijdens de golfafbraak, de energie dissipatie snelheid neigt naar
een isotrope tensor, terwijl dit sterk anisotropisch is tussen de brekende gebeur-
tenissen. We vinden dat de verticale kinetische energie spectra een duidelijke 5/3
schaalwet vertonen bij instanties van intensieve energie dissipatie snelheid en een
kubieke machtswet in rustigere periodes. Het term-voor-term energiebudget laat
zien dat de drukterm de belangrijkste bijdrage levert aan het globale energiebud-
get, aangezien het de verticale en horizontale kinetische energie koppelt. Tijdens de
brekende gebeurtenissen is de lokale energieoverdracht voornamelijk van het gemid-
delde tot het fluctuerende veld en de kinetische energie productie is in evenwicht
met de pseudo-kinetische energie dissipatie snelheid. De laatstgenoemde studie is
gericht op de gecombineerde effecten van rotatie en stratificatie.



SUMMARY

This thesis studies fundamental aspects of atmospheric turbulence through direct
numerical simulations of homogeneous rotating turbulence and of an inertia-gravity
wave breaking in the middle atmosphere. The numerical experiments were per-
formed with a new computational tool designed for the sole purpose of this research
and meant to take advantage of massively parallel processing on supercomputer
hardware.

First, transition from a split to a forward kinetic energy cascade system is ex-
plored in the context of homogeneous rotating turbulence with a three-dimensional
isotropic random force uncorrelated with the velocity field. The parametric study
covers confinement effects in large aspect ratio domains, which is in the direction of
rotation about 340 times larger than the typical initial eddy size, and a broad range
of rotation rates. The present data adds substantially to previous works, which,
in contrast, focused on smaller and shallower domains. Results indicate that for
fixed geometrical dimensions the Rossby number governs the amount of energy that
cascades inversely, whereas for a fixed Rossby number the product of the domain
size along the rotation axis and forcing wavenumber acts as the control parame-
ter. Our results show that the regime transition criterion depends on both control
parameters.

Second, using the previous database, two aspects of homogeneous rotating tur-
bulence are quantified. By following the time evolution of the integral lengthscale
along the axis of rotation ¢, the growth rate of the columnar eddies and its de-
pendency on the Rossby number Ro. is determined as v = 3.90 exp(—16.72 Ro,) for
0.06 < Ro. < 0.31 where ~ is the non-dimensional growth rate. Then, a scaling law
for the energy dissipation rate ¢, is sought. A comparison with current available
scaling laws shows that the relation proposed by Baqui & Davidson (2015), i.e.,
g, ~ u3/l), where v/ is the r.m.s. velocity, approximates well part of our data,
more specifically the range 0.39 < Ro. < 1.54. However, relations proposed in the
literature fail to model the data for the second and most interesting range, i.e.,
0.06 < Ro. < 0.31, which is marked by the formation of columnar eddies. To find a
similarity relation for the latter, we exploit the concept of a spectral transfer time
introduced by Kraichnan (1965). Within this framework, the energy dissipation rate
is considered to depend on both the nonlinear timescale and the relaxation timescale.
Thus, by analyzing our data, expressions for these different time-scales are obtained
that results in &, ~ u* /(€% Ro%27,5°), where £, is the integral lengthscale in the
direction normal to the axis of rotation and 7,)° is the nonlinear timescale of the
initial homogeneous isotropic field.

Third, we explore a test case where rotation and stratification effects appear
combined. Therefore, we simulate inertia-gravity waves breaking in the middle-
upper mesosphere, namely at altitudes which correspond to the Reynolds number of

xi



xii SUMMARY

28 647 and 114 591 based on wavelength and buoyancy period. While the former was
studied by Remmler et al. (2013), it is here repeated at a higher resolution and serves
as a baseline for comparison with the high Reynolds number case. The simulations
are designed based on the study of Fruman et al. (2014), and are initialized by
superimposing primary and secondary perturbations to the convectively unstable
base wave. Transient growth leads to an almost instantaneous wave breaking and
secondary bursts of turbulence. We show that this process is characterized by the
formation of fine flow structures that are predominantly located in the vicinity of
the wave’s least stable point. During the wave breakdown, the energy dissipation
rate tends to be an isotropic tensor, whereas it is strongly anisotropic in between
the breaking events. We find that the vertical kinetic energy spectra exhibit a clear
5/3 scaling law at instants of intense energy dissipation rate and a cubic power law
at calmer periods. The term-by-term energy budget reveals that the pressure term
is the most important contributor to the global energy budget, as it couples the
vertical and the horizontal kinetic energy. During the breaking events, the local
energy transfer is predominantly from the mean to the fluctuating field and the
kinetic energy production is in balance with the pseudo kinetic energy dissipation
rate.



INTRODUCTION

If it works once, it’s a trick.
If it works twice, it’s a method.
If it works three times, it’s a law.

Source Unknown



2 1. INTRODUCTION

1.1. THE STUDY OF TURBULENT FLOWS

The word turbulence is often used to describe situations full of commotion and it
appears in different contexts. For instance, we may all have heard the expression “a
turbulent life” as a synonym for a life marked by accidents and unplanned events.
Or, the reader might be familiar with the term “turbulent financial market”, which
basically means economists can not accurately predict the future. In fluid mechanics,
the field we deal with in this thesis, the term turbulent flows has been coined to
describe the chaotic multiscale motion of fluids (gases and liquids). Like everything
in life, it also has a contrary, namely laminar flows, which symbolizes the calm fluid
motion, just like the water flow in the Dutch canals.

The laws governing fluid motion were first revealed in 1822 by C.L. Navier and
later shown to be valid for a number of experiments by G.G. Stokes (see Dugas
(2012) for details of the historical facts). However, knowing the governing equations
was not sufficient. The rules which fluids obey were found, but the reason for specific
flow behavior could not be inferred directly from the rules. Due to nonlinearities
in the equations of motion, solutions were only found for elementary problems. It
was then not until the experiments by Reynolds (1883), roughly 60 years later, that
the notion of direct (now referred to as laminar) and a sinuous (now referred to as
turbulent) flow stream was clarified. In that seminal work, O. Reynolds introduced
what today is known as the Reynolds number and pinpointed that the different flow
regimes are a consequence of the balance between the inertial and the viscous forces.

In nature, as well as in most engineering systems, we are more likely to find
turbulent flows, i.e., situations in which the inertial forces prevail over the viscous
forces. The importance of turbulent flows is therefore utmost. It has driven the cu-
riosity of many researches and paved the way to a number of discoveries. Situations
in which turbulent flows are encountered range from simple things in our daily lives
to more complicated ones which are harder to grasp. Classical examples are the
ones of stirring a cup of coffee or blowing out a strike-anywhere match (Fig. 1.1a).
More sophisticated examples are found in the atmosphere and oceans of planets

(b)

Figure 1.1: (a) A strike-anywhere match being blown out; the image shows the interaction of
turbulent structures from the air and the flame itself (Miller et al., 2014). (b) Polar meshosperic
clouds (aka Noctilucent clouds) over the sky of Solna (Stockholm/Sweden) showing turbulence in
the atmosphere.
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Figure 1.2: Turbulent gas in the interstellar medium of the Milky Way. The picture shows regions
of intense density and magnetic field variations. (Gaensler et al., 2011).

(e.g., on Earth Fig. 1.1b), where turbulence promotes mixing and influences the
climate and the dynamics of oceanic currents; or in the cosmos (Fig. 1.2), where
turbulence is vital for sustaining magnetic fields. Incidentally, we can still mention
turbulent flows over surfaces (viscous boundary layers), which occurs in any kind of
transportation system we may think of (e.g., boats, cars and airplanes).

Similarly to other fields in science, turbulence is studied by both theoreticians
and experimentalists. Progress in this field, however, is slow and often smoothed
out over the years, with major breakthroughs far from being the rule. Advances
are accomplished by small victories and the big wins follow from contributions of
different parties. For a good part of the 20th century, the scientific community
experienced great advances towards an universal turbulence theory. During this
time, progress was mainly led by the outburst of ideas from the Russian School (see
e.g., Davidson et al. (2011) for a historical overview), which is nowadays probably
best known due to the work of A. N. Kolmogorov. Unfortunately, an universal
theory of turbulence has not emerged, and the question whether one even exists
remains open. Currently, advances in this field are powered by a continuous techni-
cal progress, which allows for improved measurement techniques and unprecedented
computational power —although at the cost of new programming paradigms. This
has enabled the scientific community to harvest unprecedented data, both numer-
ically and in laboratories, which can help elucidate unsolved problems and unveil
new flow physics.

By envisioning the potential of computers in the study of turbulence, R. Kraich-
nan and S. Orszag were the pioneers in what today is called Direct Numerical
Simulations (DNS)— see e.g. Orszag & Patterson (1972) for the first simulations
of fluid turbulence. In this kind of experiment, numerical techniques are employed
to accurately solve the laws of motion. Whereas classical experiments provide mea-
surements of the real world, and can always be argued to represent in some sense
reality, there is no doubt that numerical experiments have contributed (and will
continue) to understanding the underlying physics of turbulent flows. In fact, nu-
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merical and experimental techniques complement each other. Whereas the former
can provide highly accurate temporal and spatial data, the latter can, for example,
probe flows at much higher Reynolds number.

In this thesis, we deal with a very small part of this vast and exciting field. In
particular, we focus our attention mainly on flow physics that can potentially lead to
a better comprehension of atmospheric and oceanic flows. Our plan of attack relies
exclusively on a computational approach that employs highly accurate and state-of-
the-art numerical techniques for solving the equations of motion. In the following,
we give a brief overview of the fundamentals of rotating flows. The experienced
reader can skip ahead to Section 1.3, where we present the aim and outline this
thesis.

1.2. FUNDAMENTALS OF ROTATING FLOWS

1.2.1. PRELIMINARIES
Whether in engineering, geophysical or in astrophysical flows, rotation can influence
and shape fluid motion. In engineering systems, classical examples of rotating flows
are found in turbomachinery, like in wind/water turbines, or in turbofan reactors
where rotation rates are as high as 10°rpm (Godeferd & Moisy, 2015). In geophysical
flows, it is planetary rotation that engenders the atmosphere and the ocean of planets
with special traits and characteristic coherent structures. On Earth, hurricanes are
perhaps the simplest example of the consequences of a rotating atmosphere. But a
rotating atmosphere is not limited to our rock. On Jupiter, the dynamics induced
by rotation are often called to explain the existence of a persistent red spot in
its atmosphere. And, on icy moons like Enceladus, the effects of rotation are also
important for the mixing of saline oceans that are conjectured to exist; there is hope
that some sort of life could be found in these oceans.

The rules that govern the motion of incompressible fluids in an inertial frame of
reference and in the absence of external forces are given by

Vou=0 (1.1)

%—?—FV- (u®u) = —Vp +vV2u, (1.2)
where u is the fluid’s velocity, ¢ denotes time, p is the hydrodynamic pressure nor-
malized by the fluid’s constant density p, v is the kinematic viscosity, and ® denotes
the dyadic product. Strictly speaking, these laws could be applied anywhere, as long
as we obey the condition that the observer rests upon an inertial frame of reference.
Obeying this condition, however, is not an easy task. For instance, since our planet
is continuously rotating (with a period of T,qrtn = 86 400s), any motion on its frame
of reference is continuously accelerated, and therefore it does not qualify as an in-
ertial frame of reference. Thus, depending on the problem of interest, it might be
convenient to consider non-inertial frames of reference and the above laws (Egs. (1.1)
and (1.2)) must be corrected to include the so-called fictious or inertial forces (see
Appendix A for the mathematical details).
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In a frame rotating with angular velocity €, there are two fictitious forces: the
Coriolis and the centrifugal force. Under these conditions, Eqgs. (1.1) and (1.2)
become

V-u=0 (1.3)
ou

N +V-(u®u)+2(2 xu) = -Vq+vV3u, (1.4)

in which, the Coriolis force appears explicitly added to the left-hand-side of Eq. (1.4)
through the cross product between the angular velocity and the fluid’s velocity, and
the centrifugal force has been written in form of a potential and combined with the
hydrodynamic pressure to yield the reduced pressure

¢=p—-—— (1.5)
In the equation above, 2 is the norm of the angular velocity €2, and R is the shortest
distance to the axis of rotation. Whereas the centrifugal force acts in the plane of
motion and pulls the fluid elements outward, the Coriolis force acts perpendicularly
to the plane containing the axis of rotation and the velocity vector, and deflects
the motion of the fluid particles. The centrifugal force depends only on the angular
velocity of the frame and on the distance between the fluid particle and the axis of
rotation; it does not introduce kinematic changes and it simply modifies the existing
pressure field without altering the velocity field (cf. Eq. (1.5)). The Coriolis force,
on the other hand, is the one that imparts different dynamics to incompressible
rotating flows.

Although for the reason cited above any motion occurring on Earth takes place
in a rotating frame of reference, depending on the scales of the physical process of
interest, the influence of Earth’s rotation can be neglected. This statement is clari-
fied if the equations of motion are made non-dimensional by defining characteristic
scales of motion such as a velocity scale ug and a lengthscale ly. By introducing
these quantities, Egs. (1.3) and (1.4) can be alternatively written as

V-u"'=0 (1.6)
@JFV(*@ *)+i( X *)—fv*+iv2* (L.7)
ot ORI R e ) = Ve T R Y '

where the star as superscript denotes non-dimensional quantities. The Reynolds

and the Rossby numbers, which are the two non-dimensional numbers governing

the problem, appear naturally in Eq. (1.7) and are (for now and without specifying
ug and lp) defined as

uOlo Uug

Re=—— and Ro= —-. 1.8

v QQZO ( )

The Rossby number, named after the Swedish meteorologist Carl-Gustaf Arvid

Rossby, represents the ratio between the timescale for fluid motion ¢y = lo/ug

and the timescale induced by the system’s rotation 7q = 1/Q. For large Ro, i.e.,

Ta > ty, the fluid particles move as if in a fixed frame of reference, without noticing

the effects of rotation. Conversely, for small Ro, i.e., 7o < ty, the effects of system
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Quasi 2D Turbulence 3D Isotropic Turbulence

Wave Turbulence

Re ~ 1 t
Rok 1 Ro~1 Ro>1

Inertial Waves

Figure 1.3: Map of the different regimes in homogeneous rotating turbulence. Inspired by Godeferd
& Moisy (2015).

rotation modulate the flow. Indeed, from Eq. (1.7) we see that that the Coriolis
force is proportional to 1/Ro, thus vanishing for Ro > 1, and becoming more rele-
vant the smaller Ro is. In many cases, Eq. (1.7) can be approximated by Eq. (1.4).
But generally speaking, the importance of rotational effects depends on a balance
of timescales.

1.2.2. FLow REGIMES

From the previous section, we have seen that the Rossby number plays an important
role, since it can change the form of the governing equations. As probably already
expected, this may lead to different flow regimes which depend on the Reynolds and
on the Rossby number. A qualitative description of the possible regimes is given in
Godeferd & Moisy (2015), here reproduced in Fig. 1.3.

In the both low Reynolds and Rossby number limits, inertial waves are expected
to dominate the flow. By increasing the Reynolds number and making the flow
more energetic, while Ro < 1, we have rotating turbulence. For relatively low
Re, the Coriolis force shapes the dynamics of both small and large scales, and the
flow is marked by the interplay between turbulent eddies and inertial waves (wave
turbulence). For higher Re, the effects of the Coriolis are felt only by the large
scales, and the result is a quasi 2D turbulent flow.

Next, we first discuss what happens in the limit of very strong rotation and low
Re, and subsequently we review the foundations of rotating turbulence.

INERTIAL WAVES AS PRODUCT OF THE LINEAR DYNAMICS
Let us consider first the case of rapidly rotating flows. One of the features that
make rotating flows special is that the Coriolis force endows the fluid with wave
motions. These waves, commonly referred to as inertial waves, are dispersive and
can propagate energy anisotropically throughout the fluid.

For inviscid rapidly rotating fluids, such that the magnitude of the Coriolis force
is much larger than of the inertial forces, conservation of linear momentum in a
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rotating frame of reference, i.e., Eq. (1.4), assumes the following form:

(?9_1: +2(Q2 xu)=-Vq. (1.9)

It can be shown that the equation above supports plane wave solutions of the type
u=R{aexp[I(k- -x—ot)]}, (1.10)

where 01 is the wave amplitude vector, I is the unit imaginary number, k is the
wavenumber vector, ¢ is the wave frequency and R denotes the real part (see Ap-
pendix B for the details). The frequencies of the inertial waves depend on the
wavenumber k, and are given as

2(2- k)

=t——7" 1.11
o= (111)

from which follows that the phase and the group velocity are

(k- Q)

K3

X (2 X K)

cp =12 k and cg::I:2R

e , (1.12)
respectively. Note that throughout this work x = ||| and that both symbols are
used interchangeably to denote the 2-norm of k. From the relations appearing in
Eq. (1.12), it can be seen that ¢, and ¢, are orthogonal vectors, and therefore the
wavepackets travel in the direction perpendicular to the phase velocity. A visual
confirmation of their existence and of their anisotropic characteristic can be obtained

(a)

Figure 1.4: Flow field visualizations of a rapidly rotating fluid showing the inertial waves due an
oscillating disk (a), and the formation of a Taylor-Proudman column on top of a slowly moving
spherical object (b). Both figures have been taken from Greenspan (1968).
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in a simple experimental setup: if we place a cylindrical container filled with water
on a spinning turntable, and we induce a small oscillatory disturbance at the center
of the container, we observe the formation of two cones that meet at the source, and
bound the region along which energy is transported (Fig. 1.4a).

Another important feature of rapidly rotating fluids is that the steady-state
regime does not allow for straining motions along the axis of rotation. This state-
ment is often referred to as the Taylor-Proudman theorem, a reference to the two
scientists who experimentally demonstrated it (Taylor, 1921) and derived it math-
ematically (Proudman, 1916). A simpler mathematical derivation can be obtained
from the vorticity equation. An evolution equation for the vorticity field can be
obtained by taking the curl of Eq. (1.9) to yield

ow

5 2(2-Vu) =0, (1.13)

where w = (eijkauk/axj) €, is the vorticity vector, €;; is the permutation symbol

and &; is the Cartesian versor. By neglecting temporal variations in Eq. (1.13), we

find that the vorticity field is orthogonal to the gradient of the velocity field. If we

consider (for simplicity), that the rotation vector is oriented upwards, i.e., @ = Q &;,
this implies that

3ui

81’3

and therefore in the limit of rapid rotation, velocity gradients in the direction of
the rotation axis are not allowed. This feature can be experimentally demonstrated
by slowly towing a solid object across a rapidly rotating fluid, and with the aid of
dye (Fig. 1.4b). In such a set-up, a column of fluid, known as the Taylor-Proudman
column, forms on the top of the object such that the motion of all other fluid
particles are constrained to the plane horizontal to the axis of rotation. The column
moves as if it were attached to the object, and no other fluid particle enters it, in
agreement with Eq. (1.14).

The first evidences of this phenomenon in rotating flows dates back to the ex-
periments by Lord Kelvin. In that experiment, two corks were placed in a rotating
tank, one on top of the other. By displacing the upper cork with the aid of a thin
wire, it was observed that the cork below also moved. As the fluid could not be
strained, it behaved like a rigid body and propagated the force from one cork to
the other. Note that although the Taylor-Proudman theorem (Eq. (1.14)) states
that the flow is two-dimensional, it does not impose any restriction regarding the
magnitude of the velocity component along the axis of rotation. Hence it does not
prohibit the existence of 2D-3C (two-dimensional three-component) flows.

=0, (1.14)

ROTATING TURBULENCE

The first observations on rotating turbulence were made by Ibbetson & Tritton
(1975), Hopfinger et al. (1982), S. C. Dickinson (1982). Although these experiments
brought insight to the topic and motivated further studies, they were far from the
idealized flow, i.e., statistically homogeneous turbulence (Davidson et al., 2013). A
common finding in these early experiments, nevertheless, was that rotation induces
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the formation of long-lived columnar eddies aligned with the rotation axis. Ex-
periments of statistically homogeneous rotating turbulence were later reported by
Jacquin et al. (1990), whose configuration used an axial wind-tunnel in the presence
of a rotating fine mesh. Jacquin et al. (1990) carried out measurements and reported
that for small Ro, the integral lengthscale in the direction of the rotation axis grew
linearly with time, thus verifying the observations of early experiments related to
the formation of elongated structures. Moreover, they noted that rotation reduced
the rate of energy decay, suggesting that rotation inhibits energy dissipation. These
findings have also been confirmed more recently in the experiments of Staplehurst
et al. (2008). Following Davidson et al. (2013) and Sagaut & Cambon (2018), we
can summarize the main features of rotating turbulence as:

» for Ro = 1 and smaller, columnar eddies form,;

» the integral lengthscale parallel to the rotation axis grows linearly during the
formation of columnar eddies;

» rotation reduces the kinetic energy dissipation rate

» distinct anisotropy characterized by a transition from a three-dimensional to
a two-dimensional state.

Among the features above, the formation of columnar eddies is the most inter-
esting trait of rotating turbulence. The growth of the flow structures preferentially
along the axis of rotation renders the flow anisotropy and is a visual confirmation
of the tendency towards a two-dimensional three-component (2D-3C) state. The
reason for transition towards a 2D flow is often wrongly attributed to the Taylor-
Proudman theorem, which can not predict transition from a 3D state to a 2D state.
Due to its linear and inviscid equations, it yields conservation of energy and en-
strophy and therefore does not allow inter-scale energy transfer (Cambon et al.,
1997). However, other explanations of the formation of these columnar eddies have
appeared in literature.

Works like Davidson et al. (2006) and Staplehurst et al. (2008) claim that the
linear dynamics can contribute to the formation of columnar structures. These
authors, for instance, performed experiments where an initially quiescent fluid is
spun. In this scenario, they observed that the size of the turbulent regions grew in
time in the direction of rotation. The growth rate was linear and they associated it
with the group velocity of the inertial waves. In contrast, several other authors affirm
that the formation of columnar eddies is a nonlinear phenomena. Their hypothesis
is that the Coriolis force, which does not appear in the kinetic energy evolution
equation, but does plays a role in the energy exchange among the different velocity
components, modulates energy transfers and favors the accumulation of energy in
the slow-manifold — k3 = 0 plane, where k3 is the wavenumber along the direction
of rotation. This process was early suggested to lead to two-dimensionalization of
the flow in the work of Cambon & Jacquin (1989), who was able to account for the
rotational effects in an initial isotropic field by employing a modified Eddy Damped
Quasi-normal Markovian Theory (EDQNM2). The accumulation of energy in the
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plane normal to the axis of rotation has since then been confirmed by different
Direct Numerical Simulations, see e.g., Mininni et al. (2009); Morinishi et al. (2001)
or Alexakis & Biferale (2018) for a review.

Direct Numerical Simulations have therefore proven to be an important pillar
for the study of rotating turbulence. These kind of simulations provide easy and
accurate access throughout the domain to quantities which are often called upon
to explain the dynamics of rotating turbulence, e.g., directional two-point corre-
lations, transfer functions (triad interactions) and multidirectional energy spectra.
By using directional two-point correlations for example, Yoshimatsu et al. (2011)
reported the evolution of lengthscales. Longitudinal and transverse lengthscales,
which are related when rotation is not present, were reported to differ when Ro < 1.
The longitudinal lengthscale was observed to grow faster, which is in accordance
with previous observations of long elongated structures aligned with the rotation
axis. This evolution from an isotropic to an anisotropic flow is associated with a
progressive loss of dependence in the direction parallel to the axis of rotation, i.e.,
a decrease of the variations 9/9z (Godeferd & Moisy, 2015), upper left regime in
Fig. 1.3.

In rotating turbulence at moderate Ro numbers, however, not every scale of
motion becomes anisotropic. The scales of motion affected by rotation are delimited
by the Zeman wavenumber kg, “a cut-off wavenumber that delimits the region of
the spectrum where rotation effects are important” (Zeman, 1994). Mininni et al.
(2012) confirmed indeed that wavenumbers smaller than kg were affected by rotation
and became highly anisotropic, whereas isotropy was recovered for wavenumbers
larger than kg. This result should also be taken into account when performing
forced simulations of rotating turbulence. In large scale forced simulations, energy
is artificially injected into the large scales (small wavenumbers). This means that
large scales are modeled by the chosen forcing scheme, whereas the smallest scales
of motion are resolved. It should be noted that if the forcing acts on wavenumbers
smaller than kg, the forcing method would be in competition with the true dynamics
of rotating turbulence.

The observation of an inverse energy cascade in rotating turbulence, with energy
being transferred from small to large scales, is also noteworthy. In turbulent flows,
energy transfer is ruled by triadic interactions, which involve energy exchange be-
tween three wavenumbers. In order to analyze the energy transfers in turbulence,
Waleffe (1993) introduced the instability assumption. According to this hypothe-
sis, energy is always released by the most unstable wavenumber and leads to two
different types of transfer: forward and reverse. In the forward type, energy is re-
leased from small wavenumbers and handed to larger ones, whereas in the reverse
type, energy is transferred in the opposite direction. In the absence of rotation and
in the inertial range, the forward type of interactions dominate, and results in a
forward energy cascade characterized by the —5/3 Kolmogorov scaling law for the
energy spectrum (Sagaut & Cambon, 2018). The results obtained by Waleffe (1993)
were also believed to be applicable to rotating turbulence, but with a modified set
of possible triadic interactions altered by the Coriolis force. An analysis of the
possible interactions leads to the conclusion that energy is mostly transferred from
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modes with wavenumbers aligned with the rotation axis to modes whose wavenum-
bers are closer to the transverse plane. These hypotheses were also confirmed by
Smith & Waleffe (1999) and Morinishi et al. (2001) in more recent numerical stud-
ies. In addition, Delache et al. (2014) also report multidirectional energy spectra,
which supports the idea that energy is drawn from the longitudinal direction and
accumulates in the transverse plane.

The presence of an inverse energy cascade leads also to different spectra scaling
laws. Smith & Waleffe (1999), for instance, argue that for scales of motion where
rotational effects are much more important, the only dimensional parameters to
be considered are the wavenumber itself and the rate of rotation. Non-dimensional
analysis then yields a —3 power law for the region x < k¢, where xy is the wavenum-
ber associated to the force. In an early study, Zhou (1995) suggested that in the
presence of strong rotation, if the time scale of energy transfer is taken to be equal
to the frequency of rotation, one obtains a —2 power law for the inertial range of the
energy spectrum. Such scaling laws are indeed different from the —5/3 power law
based on Kolmogorov hypothesis. However, in the DNS of Mininni et al. (2012) a
—5/3 power law is recovered for wavenumbers larger than the Zeman wavenumber,
motivating the authors to refer to the presence of a “Coriolis” and a Kolmogorov
range. Baqui & Davidson (2015) have recently revisited the aforementioned laws
and investigated the regime for which Ro ~ 1. Intriguingly a —5/3 power law is
obtained for this regime when rotation is introduced to the system. The scaling
law, however, has nothing to do with the Kolmogorov spectra, since the simulations
were carried for a relatively small Reynolds number, for which an inertial range is
not yet present. In passing, let us also mention that the weak inertial-wave theory
of Galtier (2003) predicts anisotropic scaling, with the longitudinal energy spectra

1/2 —5/2

proportional to x, ~*~ and the transversal energy spectrum proportional to & |

1.3. Aim AND OVERVIEW

The main goals of this thesis are: (a) find whether the inverse energy cascade in ho-
mogeneous rotating turbulence can vanish for a combination of the non-dimensional
parameters, (b) obtain predictive laws for the growth rate of columnar eddies, and
(c) propose a correction for the scaling of the kinetic energy dissipation rate. Addi-
tionally, having in mind that rotation often appears in combination with stratifica-
tion, we explore the physics associated with the breaking events of inertia-gravity
waves in the atmosphere.

As a first step towards our goals, we have designed an entirely new single-purpose
DNS solver to simulate homogeneous rotating and stratified flows in unbounded
domains. The details regarding the solver, i.e., governing equations, numerical ap-
proach and performance, are laid out in Chapter 2, in which we also present results
that verify and validate our numerical tool. This numerical tool was tailored to
perform the present numerical experiments and efficiently use high-performance
computing resources. For the simulations of rotating homogeneous turbulence, we
design experiments that allow us to focus solely on the interaction between the
Coriolis force and an initial cloud of homogeneous isotropic eddies. Our numerical
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experiments are intended to be as clean as possible, in the sense that we minimize
the influence of secondary effects on the flow, as typically occurs in numerical studies
due to artificial boundary conditions. The present database generated in this work
is unprecedented and accounts for variation in the domain size and Rossby number,
totalizing more than 50 new direct numerical simulations.

In Chapter 3, the effects of the non-dimensional parameters on the direction
of the energy cascade are investigated, more specifically the influence of the do-
main aspect ratio and the Rossby number. This chapter shows for the first time
simulations of rotating turbulence in elongated domains, in which the typical eddy
size is about 340 times smaller than the computational domain. Chapter 4 builds
upon the preceding chapter and analyzes one dataset for fixed domain size and 21
different rotation rates. The growth rate of columnar eddies is investigated, and a
comparison with current scaling laws for the energy dissipation rate is presented.
Faced with the fact that different theories fail to collapse our data for the energy
dissipation rate into a single curve, we follow the ideas introduced by Kraichnan
(1965) and propose a correction in terms of a power law of the Rossby number. In
both of the aforementioned chapters, we also present results of the energy spectra
in this large-box limit.

Additionally, we also explore a problem of atmospheric turbulence where rotation
appears in combination with stratification. Chapter 5 studies the case of two inertia-
gravity waves breaking in the middle-upper atmosphere and highlights the possible
difficulties that basic turbulence models might encounter when employed to simulate
anisotropic flows. Lastly, Chapter 6 offers a summary and conclusions of the work.

This dissertation is arranged in such a way that Chapters 3 to 5 can be read
separately; each chapter begins with a brief introduction to the topic together with
a review of the relevant literature.
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2.1. A NUMERICAL ToOL FOR HOMOGENEOUS FLOWS

Although several tools are available in the scientific community to numerically sim-
ulate turbulent homogeneous flows, we decided to start from scratch and concept a
computational code that could bring together up-to-date programming techniques.
In the most general case, we consider as numerical domain cuboids of arbitrary size,
i.e.,, L =10,L;1] %[0, Ls] x [0, L3], that are filled with an incompressible rotating and
stratified fluid. The equations governing the fluid dynamics are

V-ou=0 (2.1)
MV (o) + 20 x w) = ~Vg +¥7u+bn (2:2)
O 49 () = B (u-m) + 0V, 23)

where, apart from the already defined quantities, b represents the buoyancy field, «
is the thermal diffusivity, By is the Brunt-Viisild frequency and n is a unit vector
that points in the direction of gravity. Equations (2.1) and (2.2) are the conservation
of mass and momentum, whereas Eq. (2.3) follows from conservation of energy along
with Boussinesq’s approximation. As before, the effects of the centrifugal forces in
Eq. (2.2) have been added to the reduced pressure ¢ (cf. Eq. (1.5)).

Our numerical approach for numerically solving Eqgs. (2.1) to (2.3) employs a
pseudospectral method combined with hybrid time marching techniques. The gov-
erning equations on the discrete level are obtained by assuming that the field of
interest (velocity or buoyancy) can be expanded in terms of orthogonal basis func-
tions. Because we deal exclusively with homogeneous flows, it is enough to consider
only basis functions that are trigonometric polynomials, i.e., we restrict ourselves
to Fourier series representations. For instance, the velocity field is expressed as

u;(x,t) = Zﬁi(l{,t)em'x, (2.4)

in which the compact notation for the summation term represents a triple summa-

tion, i.e., it takes place over every wavenumber direction, and the caret () denotes
the Fourier coefficients. The wavenumbers x are related to the domain size through

ki = (2 /L;)m, (2.5)

where m is an integer ranging from —N;/2 to N;/2 — 1, with N; the number of
degrees of freedom in each direction, and the nodes of the corresponding physical
grid are

where Ax; = L;/N; is the grid spacing and j e N: 1 < j < N,.

The solver is built around the basic idea of converting the partial differential
equations (Eqs. (2.1) to (2.3)) to a set of dynamical equations for the Fourier co-
efficients that can be further advanced in time. In the sequence (Sections 2.1.1
and 2.1.2), we cover the discretization procedure and present the resulting equa-
tions in the wavenumber domain. In Section 2.1.3; we discuss time integration.
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2.1.1. EQUATIONS IN THE WAVENUMBER DOMAIN

The procedure to find approximate solutions for partial differential equations with
the aid of appropriate orthogonal basis functions can be summarized as follows.
First, one needs to replace every field in the original partial differential equation by
its expansion, i.e., make use of Eq. (2.4) and the corresponding expansion for the
buoyancy field in Eqs. (2.1) to (2.3). Second, one defines a residual (error) function,
which, upon multiplication with trial functions, is forced through integration to
return null. Then, with the aid of the orthogonality relation between the basis
and the trial function, one obtains a dynamical system, whose unknowns are the
coeflicients of the expansion, and that can be later advanced in time by a suitable
time integration scheme. Although at first glance the process seems tedious, it is
instead relatively simple. In Appendix C, we illustrate the procedure by applying
the aforementioned steps to the Burgers’ equation.

Here, we present the equations in the wavenumber domain, which follow from
the sequence of steps mentioned above, and constitutes the foundations of the nu-
merical method. We do this in parts. First, we treat Eq. (2.2) due to its slightly
more complex form, and second, we show the resulting equation for Eq. (2.3). For
Eq. (2.1), it is enough to note that in the wavenumber domain this equation requires
that Fourier coefficients are orthogonal to the wavenumber vector, i.e., k- (k) = 0.

CONSERVATION OF LINEAR MOMENTUM
Following the instructions described in Appendix C, it is readily shown that Eq. (2.2)
yields

0,

ot
where the convective terms have been grouped as & = Ik;F {wu;}, with F{-}
denoting the Fourier coefficients of the terms within the brackets. An advantage
of this method with respect to approaches that deal with the equations of motion
in physical space is that it does not need require to solve for the pressure field, as,
for example, typically required by the fractional-step method in finite-difference or
finite-volume methods (Ferziger & Peri¢, 2002). In our case, the pressure field can
be computed with the aid of the incompressibility condition, and its solution can be
back propagated to eliminate the pressure from the set of equations. By enforcing
k;l; = 0 upon Eq. (2.7), we obtain

+ & + 26456050, = —IK; G — v HKZH2 U; + bng, (27)

— (2.8)

I 3 emijjuk —
[l

which contains on its right-hand-side the divergence of the convective terms, along

with contributions due to the Coriolis and to the buoyancy force. We can further

simplify Eq. (2.8) by grouping the contributions due to the convective and the

buoyancy terms into fzm = ¢, — bn,,, such that

q= 5 + 21 26mijjka. (29)
K
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Now, back substitution of Eq. (2.9) into Eq. (2.7) leads to

0t - (@m - “’F””“) Fim. (2.10)

ot

. N Kik R
tv HHHQ u; + 2€iijjuk - 2&€mjk9j’u,k

2
il

2
il

We see that, as a result of the elimination of the pressure field, the influence of the
Coriolis force (terms within the square brackets in the left-hand-side) is twofold. By
invoking the incompressibility condition (see Appendix E), these two terms can be
concatenated and Eq. (2.7) can be finally written as

o1,

ot

2Q K KiKm ~
+v ”K’”QﬁZ + #eiql"iqﬂl = - <5zm - 2) - (211)
<l [l

Alternatively, Eq. (2.11) can be written in a more compact notation, viz.,

aa—‘tl + Dt + Ra = —Ph, (2.12)

from which we will benefit in Section 2.1.3 when we deal with time marching schemes.
In Eq. (2.12), the second-order tensors D and R are

viel> 0 0 0 —K3 Ko
2Q
D= 0 V||I€||2 0 and R = plzp K3 0 —r1],
0 0 vl Isl™ \—ko 0

and
Pim = (f%m - Fm’;’) (2.13)

is the projection tensor.

CONSERVATION OF ENERGY

Writing the conservation of energy in the wavenumber domain is essentially simpler,
since Eq. (2.3) is neither influenced by the pressure field nor by the Coriolis force.
Following the same logical steps (cf. Appendix C), it can be shown that Eq. (2.3)
becomes

ob

N 24
a5t + Ik F {bu;} = —szc(umi) —allk||”b, (2.14)
or in compact notation
b
— b = Chuo 2.15
It + Co (2.15)

where v = o ||k|* and ey, = —Bj(in;) — Ir; F {buj}.
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2.1.2. THE PSEUDOSPECTRAL APPROACH

If it were not for one difficulty, it would be straightforward to advance Eqs. (2.12)
and (2.15) in time. This difficulty arises from the nonlinear terms that appear on
the right-hand-side of both Egs. (2.12) and (2.15) and require information about all
other wavenumbers. More precisely, we refer here to the terms

F{uu;} and  F{bu,;}, (2.16)

which compose h and Chuo- In the following, we elaborate on what makes it hard
to compute these terms, and show how their computation is in practice handled.
We confine our attention to the calculation of F {w;u;}, since this is sufficient to
understand the gist of the problem.

In theory, we could calculate F {u;u;} through a convolution sum. By definition,
the Fourier transform of a product is given by

F{ujuj} = Z 0;(K")a; (k") (2.17)

Ktk =k

(Tolstov & Silverman, 1976). Nevertheless, the number of operations required to
evaluate the summation in Eq. (2.17) scales with Ng, where NV, is the total number
of degrees of freedom. In fluid mechanics, we usually encounter problems with
large number of unknowns. For certain cases, the number of degrees of freedom is
proportional to Re®/* (Landau & Lifshitz, 1959), meaning that a small increase in
Re requires a steep rise in IV, to cope with the new spatial scales of motions. As
a result, evaluating F {u;u;} through Eq. (2.17) turns out to be computationally
expensive and often prohibitive.

An alternative to remedy this cost is to employ the pseudospectral method in-
troduced originally by Orszag (1969). The central idea is to first build the non-
linear product in physical space, e.g., s;; = u;u;, and then transform the result
into the wavenumber domain, using Discrete Fourier Transforms (DFT) to obtain
F{si;}. This technique can drastically reduce the number of operations from N2
to Nplogy (Np). But, it comes at a price. It introduces aliasing errors and the
obtained result is not fully equivalent to Eq. (2.17). Mathematically speaking, the
pseudospectral leads to

Fisib= >, ww)i(&")+ > d(k)i,(s"), (2.18)

k4K =k k' +r" =kEtN

aliasing errors

from which we see that the aliasing errors contaminate the Fourier coefficients as-
sociated with high wavenumbers.

Fortunately, there are several techniques for removing the aliasing errors, viz.,
de-aliasing techniques, which overall still yield a lower computational cost than
computing the convolution sum (see e.g. Boyd (2001) and Canuto et al. (2006a,b)
for an extensive discussion). A popular choice, due to the ease of implementation is
the 3/2-rule, also known as the 2/3-rule. In this technique, the velocity field (or the
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variable of interest) is first sampled in physical space on a uniform grid with 3N;/2
nodes per direction. Multiplication is then performed in the physical grid and the
Fourier coeflicients are obtained through an oversized DFT. Upon transformation
to the wavenumber domain, the Fourier coefficients are pruned, i.e., the coefficients
associated to the additional degrees of freedom are discarded. This approach shifts
the aliasing errors to wavenumbers higher than those associated with m = N;/2,
and guarantees that the coefficients of interest are unaffected.

When a dealiasing technique is combined with the pseudospectral approach,
the final set of equations are equivalent to those obtained with the Fourier-Galerkin
method. There are, however, ongoing debates in the scientific community on whether
dealiasing is required. Many authors consider it unnecessary as long as enough res-
olution is provided. For large IV, both truncation and aliasing errors decays at
the same rate, but for a fixed IV, the pseudospectral error will be larger than the
Fourier-Galerkin error (Canuto et al., 20060). This point will be further discussed
in Section 2.1.5 where we compare results of aliased and dealiased computations for
different formulations of the Navier-Stokes equations.

2.1.3. TIME INTEGRATION
So far we have shown how to transform the original partial differential equations
into dynamical equations for the Fourier coefficients. Here, we target an essential
part of the code, namely the time integration schemes, necessary for obtaining the
long-time behavior of the system of equations. To advance the equations in time, we
use a hybrid approach, in which some of the terms are treated with the integrating
factor technique (Morinishi et al., 2001; Rogallo, 1977) and the remaining are treated
with either a third or fourth-order low-storage Runge-Kutta scheme (Canuto et al.,
2006a,b).

Technically, time integration could be solely accomplished by employing an ex-
plicit scheme like the Runge-Kutta scheme. For that, we would need to rearrange
the equations of motion, e.g., Eq. (2.12), such that it is written as

ot .
T 1(1, t). (2.19)
By comparing Eq. (2.12) with Eq. (2.19), we see that this simply requires 1(1,¢) =
—Da — Ra — Ph. Although this approach suffices, it places severe constrains in
the size of the marching step (At). In numerical time integration, the timestep size
follows from a compromise between the maximum eigenvalue of the operator on the
right-hand-side of Eq. (2.19) and the size of the stability region, which depends on
the time integration scheme. In another words, to integrate the equations in a stable
manner, the maximum eigenvalue scaled with the timestep size must lie within the
stability limits of the time integration scheme.

The different terms that compose 1(11,t) can stem from different physical pro-
cesses, and impose limits on At in different ways. For example, it can be show from
the structure of the operator D that the maximum eigenvalue imposed by the vis-
cous terms lies always on the real axis and is proportional to vx2 where Kinaz 1S

max’

the largest positive wavenumber. Similarly, it can also be shown that the maximum
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eigenvalue of R varies with 2Q2, where () is the absolute angular velocity of the rotat-
ing frame, and lies on the imaginary axis. In the case of 1(u,t) = —Da — Ra — Ph,
the maximum eigenvalue would have a component on the real axis due to the vis-
cous terms and a component on the imaginary axis defined by the rotation rate.
This would imply that we would have to choose a timestep of the order of either
1/(vk2,,.) or 1/(29Q), whichever is stricter. We can then imagine that, even in the
case of small Re (large v), for high rotation rates, the above constraint requires
increasingly small At¢, which would render simulations of multiples of large-eddy
turnover times unfeasible.

In passing, we should also mention that the convective terms h impose con-
straints in the timestep size. Stability analysis of a simplified linear transport equa-
tion with constant velocity shows that the eigenvalues lie on the imaginary axis and
their magnitude is proportional to the transport velocity. However, when rotation
is considered, stability limits on the imaginary axis are more likely to stem from the
effects of rotation.

Exact TIME INTEGRATION
In non-rotating unstratified flows, a common approach is to combine the Runge-
Kutta scheme with another method for the integration of the viscous terms, for
example, with the Crank-Nicolson method. This is definitely one way to go, since
methods like the Crank-Nicolson are implicit and unconditionally stable. In the
wavenumber domain, implementation of the Crank-Nicholson method is straight-
forward and has no noticeable extra cost. because the viscous terms are linear and
local. Yet, another approach turns out to be more attractive, namely the inte-
grating factor technique, which was introduced by Rogallo (1977) to integrate the
viscous terms. This technique provides exact integration and it is not limited by
the timestep size. Further, it can also be used to integrate any other linear term,
such as the Coriolis force (see e.g. Morinishi et al. (2001)).

In Appendix D, we include a surrogate problem to illustrate the innerworkings of
the integrating factor technique. In its essence, it allows us to find transformations
that can bring Eq. (2.12) into the following form,

ov .

where ¥ is a new variable, which contains the former velocity field @ and the effects
due to viscosity and/or rotation. If we know how to compute exponentials of second-
order tensors, it turns out that the required steps are relatively simple. For instance,
in the absence of rotation and stratification, Eq. (2.12) is

ol

En +Dua = —Pe, (2.21)

and multiplying both sides by M, = exp[Dt], leads to

7‘(’(/\;‘;“) = —M,Pé, (2.22)
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from which we can define ¥ = M, 0 and 1, (v, t) = —M, P& to obtain an expression
in the fashion of Eq. (2.20). In this case, M, is a diagonal tensor and defined by

M, = exp[Dt] = exp (v ||k||* 1) Z, (2.23)

where Z is the identity tensor. Note that because D is diagonal, calculating exp[Dt]
is straightforward.

If we now consider the Coriolis force and include the term R into Eq. (2.21),
we can still apply the same procedure. But this time, we multiply Eq. (2.21) with
both M, and Mq = exp[Rt] such that we obtain

oM, Mqr)
ot

Again, we can define v = (M, Mq)a and 1,(¥v,t) = —(M,Mq)P¢ to obtain an
equation like Eq. (2.20).

Nevertheless, R is not diagonal and to compute Mq = exp[Rt] we need the
eigendecomposition of Mgq, i.e., we need to write R = QRx @', where Q is
obtained from the eigenvectors of R and R, is a diagonal tensor whose elements
are the eigenvalues of R (see Appendix B.1 for the definitions). This way, Mq =
exp[Rt] = Qexp[Rat]Q 1, and Eq. (2.24) becomes

= —(MgM,)Pe. (2.24)

% (exp[(D + Rp)t]Q ') = —(exp[(D + R )] Q') Pe, (2.25)

from which we can define
Vv = (exp[(D+Rp)HQ M1 (2.26)

and
1,(¥,t) = —(exp[(D + R)t]Q 1) Pe. (2.27)

Including the effects of stratification only requires to replace ¢ by h in Eq. (2.27).

The same procedure can also be applied to the conservation of energy. Equa-
tion (2.15) is essentially simpler as it does not contain any explicit influence of the
Coriolis force, and the resulting equation is

% (exp[’yt]i)) = exp[t] Cbuo- (2.28)

2.1.4. FORCING METHODS

It is often convenient to study homogeneous turbulent flows that are sustained in
time. In contrast to studies that initialize the velocity field according to an initial
energy spectrum (typically of the Batchelor of Saffman type), and let the flow field
decay in time, forced simulation allow the gathering of flow statistics in time, without
the need to repeat the numerical experiment to build ensemble averages. Current
literature contains a multitude of ways to design a force term that, when added to
the right-hand-side of the momentum equations, produces statistically steady-state
solutions. In our tool, we choose to implement two different forcing schemes, namely
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the schemes proposed by Eswaran & Pope (1988) and Alvelius (1999). Whereas the
former allows for forcing schemes with a characteristic timescale, the latter is more
versatile and allows for fine tuning of the energy input rate.

The rate at which energy is injected on the system depends on both force-velocity
and force-force correlations. This can be illustrated by considering a one-dimensional
dynamical system as shown in Alvelius (1999). Instead of the full Navier-Stokes
equations, let the evolution equation be one-dimensional and given by

3u1
ot
where f; is a random external force that drives the system. Now, assume that we

employ a time marching scheme to numerically solve Eq. (2.29), e.g., an explicit
Euler scheme. The (in time) discretized equation is

= fl(fEl,t) (229)

Wt =l + Atf], (2.30)

where the superscript j denotes the time level. The local kinetic energy at any time
level j is defined as (uju])/2, such that, in a discrete sense, the box-averaged kinetic
energy K varies as

Kitl _ K
At

in which (- ), denotes box-averages. From this simple example, we observe that the
rate at which energy is injected into the system depends on both spatial correlations:
the force-velocity correlation, and the force-force correlation, the latter being also
proportional to the timestep size.

In simulations it is desirable to known a priori the final energy input rate due to
the force, since this allows for the design of the numerical experiments and for
control of the physical parameters. In a steady-state, the box-averaged energy
input rate (er), matches the viscous dissipation (g,),. Knowledge of (g;), in
beforehand allows for predictions of quantities such as the Kolmogorov microscale
and the ultimate Re) of the simulation.

In the following, we detail how the methods introduced by Eswaran & Pope
(1988) and Alvelius (1999) construct the external forcing f. In both cases, the forcing
is constructed in the wavenumber domain and applied to a narrow wavenumber-
band. The characteristic forcing wavenumber is defined as sy, and the set of the
forced wavenumbers is denoted as Ny.

= Gl e + 3 )ear, (231)

EswArAaN & PoPE (1988)

The forcing scheme introduced in Eswaran & Pope (1988) is based on the Ornstein-
Uhlenbeck process. In a discrete sense, the components of the forcing term are given
as

1/2
fi(k,t + At) = fi(k,t) (1 - ?Lt) + ¢ (202%’5) (2.32)

where (; is a complex random number drawn from a normal distribution with zero
mean and unity variance, Ty, is the characteristic timescale of the random process
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and o2 is the variance. (Note that when At equals the characteristic timescale T},
the force becomes white-noise and uncorrelated in time.) In practice, it is convenient
to introduce another quantity, namely * = ¢2Tp,, such that in the limit of 77, — 0,
the energy input rate remains finite (Eswaran & Pope, 1988). This force is typically
a large-scale force, in the sense that it is applied to a narrow wavenumber range,
such that the forced wavenumbers lie in the range [0, k¢|, where y is a characteristic
forcing wavenumber. This forcing scheme has then 3 free parameters, i.e., kf, T, and
€*, which can be tuned to obtain a turbulent field with specific physical parameters.

A common difficulty encountered when using this scheme is that it is not straight-
forward to predict the final energy input rate and consequently the final energy dis-
sipation rate. This problem can be circumvented, to some extent, through ad-hoc
approximations. Using a model that takes as input a measure of the timescale of the
resulting velocity field, Eswaran & Pope (1988) obtained an analytical expression
to predict the final time and box-averaged energy input rate rate:

¥
(er) oy e — e E (2.33)
L+ TN 8

where Tpx = T7, (5*)1/ 3/@3/ % is the nondimensional forcing timescale, kg the lowest
resolved wavenumber in the simulation, and the adjusted constant § is taken as
0.8. With prior knowledge about the energy input rate, the viscous dissipation and
consequently the resulting Re) can be estimated. However, when the aim is to design
numerical experiments with large Re), our experience has shown that Eq. (2.33)
leads to unsatisfactory estimates; see also the study of Chouippe & Uhlmann (2015),
who experienced the same problem.

Our approach to select the free parameters that yield a desired energy dissipa-
tion rate uses as basis Eq. (2.33) but combines it with an iterative procedure to seek
for the best value of T} /8. In short, through a series of smaller simulations (typ-
ically with the number of degrees of freedom being set to one eighth of the actual
computation), a Newton-Raphson algorithm is employed to search for a value of &*
that delivers a desired Rey.

As a final step, the force f needs to be made divergence free by projection in the
wavenumber direction, i.e.,

filk) = fi — i (Kj’ﬁé> . (2.34)

1

The latter step is required for the external force to not directly interfere with the
pressure field.

ALVELIUS (1999)

Alvelius (1999) proposes a forcing term that is constructed around a predefined
Gaussian spectrum F'(x), which is centered around a forcing wavenumber k¢ and
has standard deviation ¢, i.e.,

F(k) = Caexp [_ (”“”_"fﬂ . (2.35)

c
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In the equation above, C'4 is a free parameter which can be tuned to control the
energy input rate. The Fourier coefficients of the external force f are

fi(""a t) = Arcmez1 (’{) + an@l2 ("-3), (2.36)

in which e' and e? are unit vectors and A,4, and B4, are complex random numbers
uniformly distributed. The unit vectors are orthogonal to the wavenumber such that,
per definition, the force is divergence free i.e., k- f = 0. For each wavenumber triad,
e! and e? are defined as

1 K2 1 k1 1
e1=—F 5=, b=——5—-——  e3=0 2.37
) L N O ) IVE A (2:57)
2 K1K3 5 Kok 5 (k] +w3)'/2
e1=——F5———— e =—7—-"———— e5=-——-—"—"" 2.38
O P e A A T TP A W 59
The complex random numbers A,,, and B,,, are defined as
Fie) |
K
Avan = <2> exp(161)ga(o) (2.39)
2m |||
Fx) 1/2
K
Bran = <2> exp(1602)gp(d) (2.40)
2r ||kl

where the real functions g4 and gp satisfy the relation g% + g% = 1, and 6, 6
and ¢ are uniformly distributed real numbers drawn for each wavenumber at each
timestep; the first two are taken from the interval [0, 27], while the latter is taken
from [0,7]. Choosing g4 = sin(2¢) and gp = cos(2¢) ensures that the energy
input rate is the same in all three directions and results in isotropic flow fields. For
generating anisotropic flow fields with an specific energy input rate ratio between
the directions, other functions can be chosen (Alvelius, 1999).

Due to its robust design, this scheme allows one to place constraints in the
choice of 6; and 0, such that the force-velocity correlation is always zero, and the
energy input rate stems solely from the force-force correlation. Since the force-force
correlation is known and it can be computed in beforehand, it allows one to have
absolute control over the energy input rate. As shown in Alvelius (1999), this is
achieved by choosing 6; such that it satisfies

9a(@)R{&} + 95(¢) (sin(¥)S{S2} + cos(¢) R{E2})
—9a(9)S{&} + g6() (sin(P)R{&} — cos(¥)I{&2})’
where & and & are the projections of the coefficients of the velocity field on the
directions defined by e! and €2, i.e., &, = @;e} and & = €2, and ¢ = 0y — 6.
Finally, the free parameter C4 follows from the desired energy input rate (e;):

(er)c 1

SN ECET

Np

tan(; ) = (2.41)

Ca = (2.42)
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where integration is taken over every forced wavenumber. The energy input rate is,
for every instant of time, constant.

2.1.5. A NOTE ON DIFFERENT FORMULATIONS

In the previous sections, we have used the Navier-Stokes equations in their conser-
vative form for our discussion on how to numerically solve the equations of motion.
Here, we comment on alternative ways to express the conservation of linear momen-
tum, which may result in computationally faster algorithms.

Besides the divergence form, which has already appeared in Eq. (2.2), the in-
compressible Navier-Stokes can be restated in three additional forms, namely in the
skew-symmetric, rotation and convective form. The mathematical expressions that
represent each of these forms in an inertial frame of reference and in the absence of
any external/body forces are:

Skew-Symmetric: %—l: + %(u -Vu) + %V (u®u)=-Vp+rvViu, (2.43)
) ou 1 2 2
Rotation: g + (wxu)+ iv |lull” = =Vp+vV-u (2.44)
. Ju 9
Convective: e +u-Vu=-Vp+rvV-u, (2.45)
. OJu 9
Divergence: e +V-(u®u)=-Vp+vV-u (2.46)

where, for completeness, we have repeated the divergence form. All these 4 formu-
lations are analytically equivalent, since they can be derived from each other with
the aid of vector identities and assuming a solenoidal velocity field.

Yet, equivalence at the continuous level does not necessarily imply equivalence at
the discrete level. That is, the alternative formulations may yield unequal discretized
equations. When designing numerical algorithms, it is desirable to construct a
numerical approximation such that the discretized equation preserves the properties
of the continuous equation. Violating essential features of the original equations can
result in faulty computations, which range from simulations being unreliable and
not producing the correct picture of the phenomena, to unpractical simulations due
to numerical overflow.

If we inspect the equations above, we note that they differ in the structure of
the nonlinear operator. The fact that the nonlinear term in the Navier-Stokes can
be always recast in a conservative form (as in the divergence form), ensures that in
the absence of viscosity, kinetic energy is globally conserved, i.e., the kinetic energy
is an invariant of the Euler equations. Therefore, if we employ the sequence of steps
required to bring the continuous equations into a discrete form (Section 2.1.1), we
may expect dissimilar results regarding the conservation of kinetic energy.

Canuto et al. (2006a,b) present a detail discussion on this matter. The bottom-
line is that when the pseudospectral approach is employed for evaluation of the
nonlinear terms, the only formulations that ensures conservation of the kinetic en-
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ergy in the discrete sense is either the skew-symmetric or the rotation form. The
convective and the divergence form results in an over-accumulation of energy and
ultimately overflow. Nevertheless, when a dealiasing method is included, a Fourier
Galerkin approximation is obtained. In this case, all 4 formulations lead to analog
semi-discrete equations, i.e., discrete in space and continuous in time, whose inviscid
form conserve kinetic energy, i.e., dK /dt = 0, where K = 3 (u-u) .

It is also worthwhile noting that the time integration scheme plays a role. The
fully discrete equations only satisfy the conservation law of the semi-discrete equa-
tions if the time discretization scheme is symmetric (e.g., Crank-Nicolson). For un-
symmetric time discretization schemes, as in the case of the Runge-Kutta scheme,
it can be shown that the overall conservation of kinetic energy is broken. However,
there is only minor violation of the conservation laws and errors typically shrink
with decreasing timestep size.

So, assuming that a dealiasing technique is always necessary, what makes us
choose one formulation over the other? The answer lies in the number of operations
required to evaluate the nonlinear term. The computation of the nonlinear terms
demands specific numbers of forward and backward discrete Fourier transforms. The
number of transforms per timestep is the largest for the skew-symmetric formulation
(21), and lowest for the rotation form and the divergence form (9), whereas the
convective form requires 15 transforms per timestep. Thus, the rotation form is the
best choice, in the sense that it requires less Fourier transforms and can be used
without dealiasing.

2.1.6. A NOTE ON COMPUTATIONAL IMPLEMENTATION AND PER-
FORMANCE

In the following, we highlight the main ingredients of our DNS solver, and give an

overview of its computational performance.

The computational code was written in Fortran 90 and it has been designed to
efficiently exploit massively parallel supercomputer hardware. To achieve that, we
have joined different programming paradigms: message passing interface (MPI) for
inter-node communication, OpenMP for intra-node parallelization and parallel I/0O
through the HDF5 library. The user can choose to time march the incompressible
Navier-Stokes equations using any of the 4 formulations presented in Section 2.1.5,
which can be further combined with the 2/3-rule to obtain alias free solutions. The
time-stepping scheme uses specific strategies for each of the terms in the governing
equations, cf. Section 2.1.3. In most of the cases, the integrating factor is applied
to the viscous terms and the Coriolis force, whereas the convective terms and the
external/body forces are integrated with a low-storage Runge-Kutta scheme (3rd
or 4th order). Occasionally, and for the reasons given in Section 2.1.3, the Crank-
Nicolson scheme can be applied to the viscous terms and the Runge-Kutta scheme
can be also used to integrate the Coriolis force.

The performance of the code depends strongly on the efficiency of the discrete
Fourier transforms, since these account for roughly 80% of the total computational
time. In distributed-memory systems, Fourier transforms require global transposi-
tion of the three-dimensional arrays (all-to-all communication), and this operation
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Figure 2.1: Performance of our numerical solver when applied to a problem size with N3 = 10243
degrees of freedom (dealiased). The panels refer to two parallelization approaches: distributed
with MPI (left) and hybrid with MPI/OpenMP (right). Panels (a) and (b) show the efficiency of the
code, whereas (c) and (d) show the elapsed time per timestep normalized by the case with 240
processes. In (e) and (f), markers are used to represent the speed-up of the parts that constitute
a single timestep: vectorized loops ( —¢ ), discrete Fourier transforms ( — ) and the timestep
itself ( —@— ). The thin blue line denotes the ideal behavior ( — ).
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Figure 2.2: Wall-clock time required for the computation of discrete Fourier transforms per timestep
for increasing number of processes. The problem size is fixed and has N3 = 10243 degrees of free-
dom (dealiased) as in Fig. 2.1. Again, the markers denote two different parallelization approaches:
fully distributed with MPI ( —e— ), and hybrid MPI/OpenMP ( -m- ). The thin blue line shows the
ideal scaling ( — ).

hinges on network performance. Exclusively for this part of the code, we have
opted to rely on P3DFFT, a well established FFTW-based library designed to handle
three-dimensional Fourier transforms in parallel (Pekurovsky, 2012). During the de-
velopment phase of the code, we have also investigated the performance of another
library, namely 2DECOMP. However, our tests have shown that P3DFFT outperforms
2DECOMP, especially for large problem size and for large number of processes. In
fact, Mohanan et al. (2019) has recently documented the performance of different
libraries and confirmed the supremacy of P3DFFT, in agreement with our experience.

In terms of memory usage, the code is very efficient and memory requirements per
core are extremely low. For each grid point, a computation with dealiasing requires
approximately 630 bytes per grid point. For instance, for a problem with N3 = 10243
(dealiased), therefore with corresponding physical domain compromising 15363 grid
points, the required memory is not larger than 700 GB. This is significantly less
than what is available in recent hardware, and only requires a couple of computing
nodes, considering a typical memory size of 64 GB per node

To demonstrate the overall scalability and the speed-up of the code, we performed
a scaling test on the Dutch National Supercomputer (Cartesius) with Haswell pro-
cessors (Intel Xeon E5-2690V3). For the test, we fixed the problem size (N3 = 10243,
no dealiasing) and marched in time for a few timesteps with total number of pro-
cesses ranging from 240 to 3840. This procedure was repeated for several realizations
to obtain more reliable statistics, and it was conducted for 2 parallelization strate-
gies: (i) purely based on MPI, and (ii) based on a hybrid approach which splits the
number of processes among MPI-tasks and OpenMP-threads. For (ii), the number of
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Figure 2.3: Validation of the temporal and the spatial discretization schemes. (a) Time convergence
using as test case the TGV-2D. Solid line with markers indicate the numerical error due to different
time integration schemes: Crank-Nicolson ( @ ) and integrating factor ( A ). A second-order power-
law is added for reference ( — ). (b) Spectral convergence obtained for increasing number of degrees
of freedom N3 when simulating the TGV-3D.

MPI-tasks was taken as the number of sockets per node, in this case two.

Remarkably, when the hybrid approach is used, the code scales well up to 3840
cores, leading to a quasi-ideal performance in terms of speed-up and efficiency
(Fig. 2.1). Conversely, the pure MPI-based approach shows an efficiency lower than
50 percent for more than 3000 processes, and the speed-up is consequently poorer.
We attribute this gain in performance to the fact that all-to-all communications
are cheaper in the hybrid approach, since several processes share the same memory
space. Consequently, the Fourier transforms require less intra-node communication,
and are less impacted by the maximum network throughput. This can actually be
seen in Fig. 2.2, where we show the wall-clock time per timestep elapsed in Fourier
transforms for both cases. A comparison reveals that the scaling with the hybrid
approach is nearly ideal, whereas the performance of the MPI-based approach flats
when the number of processes is increased. It is however worthwhile noting that for
small number of processes, in this cases slightly smaller than 1000, the MPI-based
approach can lead to faster execution times, in spite of the poorer scalability.

2.2. VERIFICATION AND VALIDATION

In this section, we present a set of test cases that were used to verify the correctness
of our implementation. Each of them was designed to test a different part of the
code. In the following, we show examples that range from simple and manufactured
problems to fully developed homogeneous turbulence.
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2.2.1. TAYLOR-GREEN VORTEX

Perhaps the most used mean to validate and verify numerical solvers in fluid me-
chanics is to consider the time evolution of a Taylor-Green vortex flow. Taylor-Green
vortices are velocity fields that satisfy the Navier-Stokes equations, and they can
be defined in both two (TGV-2D) or three dimensions (TGV-3D). We define the
TGV-2D and the TGV-3D velocity fields as

u; = Acos(xy) sin(zg)

TGV-2D: ¢ us = —Asin(z) cos(xa) (2.47)
us = 0
Uy = 0

TGV-3D: { us = — cos(z1) sin(z2) cos(zs) (2.48)

uz = cos(z1) cos(xz) sin(zs)

with A = 1/4 the amplitude of the velocity field. The velocity fields are built
from harmonic functions, which share special symmetries and periodicity, and the
streamlines form an array of counter rotating vortices. Note that other definitions
may appear in the literature, but they only differ by a prefactor.

When either the TGV-2D or the TGV-3D is given as initial condition to the
Navier-Stokes equations, we observe different dynamics. For the TGV-2D, due to
its definition, the convective terms are null and the vortices simply decay in time.
For this specific case, analytical solutions for the flow field exist, and one can show
that the box-averaged kinetic evolves as

A72 6741/15.
4

In three dimensions, the time evolution of the TGV-3D is marked by a strong
coupling between the velocity components. This interaction yields, at least initially,
to an energy exchange among the different velocity components, similarly to what
is observed in a real turbulent flows (energy cascade). Nevertheless, after the initial
phase, which is characterized by a surge in the energy dissipation rate, the TGV-
3D also decays in time due to viscous effects. For the verification and validation
of the pseudospectral method and the temporal integration schemes, we performed
simulations of both TGV-2D and TGV-3D in a triple periodic domain £ = [0, 27|
and at Re = wg0figy/v = 100. The terms w;q, and ¢4, denote the characteristic
velocity and lengthscale, respectively, and were both set to unity.

Exclusively for verifying the time integration schemes, we performed a set of
simulations of the TGV-2D with different temporal resolutions A¢. The total simu-
lation time was t,ps = 10(€tgv / Utgy). The correctness of the method was measured
by comparing the box-averaged kinetic energy at the final simulation time against
its true value, i.e., K2P(t = ty,). Figure 2.3a shows the convergence rate of the
temporal integration. We observe that the Crank-Nicolson integrating scheme leads
to the expected error decay rate of the order of O(At~2), whereas the error due to
the integrating factor technique is, irrespective of the timestep size, O(1071°), i.e.,

K2P(t) = (2.49)
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Figure 2.4: Time evolution of the box-averaged energy dissipation rate normalized by its maximum
value for the TGV-3D at Re = 100. The simulation was performed with 1283 (dealiased) and fixed
timestep size At = 0.01. The different line colors represent runs with different three time marching
techniques: integrating factor technique ( — ) and Crank-Nicolson ( — ). The markers (O )
represent the data from Hickel et al. (2006).

machine precision. Both results are in solid agreement with theoretical predictions,
thus verifying our time marching strategies.

For assessing spatial convergence, a separate set of runs with the TGV-3D was
performed. This time, we fixed At and varied the spatial resolution. Unfortunately,
we did not have analytical solutions nor access to any database with the same quality
as the ones produced by our tool. Hence, we first generated reference data by using
N3 = 2562 degrees of freedom and the skew-symmetric formulation, which is more
than sufficient to resolve all scales of motion found in the TGV-3D at Re = 100.
Figure 2.3b shows the relative error between the box-averaged kinetic energy of each
of the runs and the reference box-averaged kinetic energy from our over-resolved
simulation, i.e., K32 . We observe that the error decay rate is proportional to 1/N
(spectral convergence), showing that it decays faster than any finite power-law.
Again, this is in solid agreement with the theory.

As a final test, we set N3 = 1283 and computed the TGV-3D with both time
integrating schemes. The time evolution of the energy dissipation rate compared
against the data found in Hickel et al. (2006) is shown in Fig. 2.4, from which we
find a perfect agreement with the reference data. Altogether, this set of tests give
us confidence regarding the numerical implementation.

2.2.2. INTEGRATING FACTOR: CORIOLIS

Now, we verify the integrating factor technique for integration of the Coriolis force.
For this test, we create a toy-problem for which an analytical solution can be eas-
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Figure 2.5: Numerical error in the solution of Eq. (2.50) for different timesteps sizes and two time
integration techniques: third-order Runge-Kutta scheme ( —@— ) and exact integration ( —e— ).
The dashed red line denotes a cubic power law ( — ).

ily obtained. Instead of solving the full Navier-Stokes equations, we consider the
following system of equations:

d
d—‘t“ — 20 x u, (2.50)
with @ = Q &3, where &3 is the unit vector along the third Cartesian direction.
It is readily shown that this problem has two eigenvalues, namely \ = £2I€),
which are associated to the eigenvectors (I/\/Z 1/\@) and (fl/ﬁ, 1/\@), respec-
tively. Therefore Eq. (2.50) can be diagonalized, and the solution is of the type

u} = Cyexp (—Ift) (2.51)
uy = Cyexp (Ift), (2.52)
where the superscript “A” denotes the variables on the basis spanned by the eigenvec-
tors, 8 = 22 and C; and Cs are two integration constants which can be determined

for a given initial condition. For an arbitrary initial condition, say u(t = 0) =
u?, 1Y) the final solution in Cartesian coordinates is given by
1, U2

uy =uf cos(Bt) + ud sin(Bt) (2.53)
uy = —ul sin(Bt) + ud cos(Bt). (2.54)

Note that Egs. (2.53) and (2.54) are simply the equations for clockwise rotation of
the vector u(t = 0) = (u?,u9). At any instant of time, the velocity can be then
obtained by a linear transformation of the initial velocity field.
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As initial condition, we impose the two-dimensional Taylor-Green vortex, cf.
Eq. (2.47). Further, we set = 7/2 and march Eq. (2.50) in time until ¢yps =
1/2 by using two integration schemes — the third-order Runge-Kutta and the exact
integrating factor. The numerical error stems solely from time integration and we
define it as the difference between the final state of the velocity field (u$®®,u$"®)
and the expected solution (u9, —uf), which is essentially the initial field rotated
clockwise by 7/2, cf. Egs. (2.53) and (2.54). Figure 2.5 shows the numerical error
for different timestep sizes and for both methods. As we can see, the results agree
perfectly, i.e., the Runge-Kutta displays an error decay rate varying with (At)? and
the exact integrating factor is machine accurate. In the latter case, the fact that the
error increases for decreasing timestep size is attributed to round-off errors, which
naturally accumulate; the smaller At, the larger are the number of steps required
to reach the final simulation time.

2.2.3. DECAYING HOMOGENEOUS ISOTROPIC TURBULENCE

Let us now consider decaying fully developed homogeneous turbulence. For this
test case, we use as reference the results from Comte-Bellot & Corrsin (1971), who
reported experiments of grid turbulence. In that experiment, turbulence was gener-
ated by the contact of an incoming flow and a grid, and measurements were taken
downstream of the grid, where the flow was assumed nearly isotropic. The data
provided by these authors is a hallmark in the study of homogeneous isotropic
turbulence, and here we attempt to reproduce the same experimental conditions
numerically.

In the experiment, the flow field was first sustained for a certain time before
let decay. Later, while decaying, data is probed at 3 consecutive instants of time,
referred to as stages 42, 98 and 171. The first of these corresponds to the instant at
which the flow is left to decay. For comparison with the available data, we generate
a random velocity field and rescale every velocity component to match the initial
spectrum at stage 42. Then, we give this velocity field as initial condition and evolve
the equations of motion in time without external force and, obviously, in the absence
of rotation and stratification.

During the first instants of time, the Fourier coefficients of the velocity field are
rescaled such that the energy spectrum remains constant and the influence associ-
ated with the random initialization is diminished. After a certain time is reached,
the rescaling is switched off and the flow decays. The simulations are repeated with
all 4 formulations of the Navier-Stokes equations, to observe the influence on the
results.

Figure 2.6a compares the energy spectrum at all 3 stages with N3 = 3843
(dealiasing) and using the rotation formulation. Overall, we observe a good agree-
ment between our simulations and the reference data. In fact, when dealiasing is
used, the good agreement is independent of the chosen formulation; see Fig. 2.6b,
which shows that all different formulations lead to the same result at stage 98. Con-
versely, in the presence of aliasing errors, the rotation and the skew-symmetric form
lead to disparate behavior, especially in the high wavenumber range of the energy
spectrum. Figure 2.6c compares aliased calculations with two the skew-symmetric
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Figure 2.6: Validation of homogeneous isotropic turbulence against the experiments of CBC for
stages 48, 98 and 171, together with the influence of the aliasing error on the numerical solution.
( 0) corresponds to the reference data from CBC. (a): ( — ) energy spectra at the three different
stages computed with the rotation formulation and 384> DoF (dealiased). (b): energy spectra for
stage 98 computed using 2563 DoF (dealiased) with the four alternative formulations of the NSE,
i.e., convective ( — ), divergence ( — ), rotation ( — ) and skew-symmetric ( — ). (c) energy
spectra at stage 98 computed using 2563 DoF (aliased) using the rotation form ( — ) and skew-
symmetric ( — ). (d) energy spectra at stage 98 computed using 5123 DoF (aliased) using the
rotation form ( — ) and skew-symmetric ( — ).
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and the rotation form and N? = 2563. We see that the reference data is better
reproduced by the skew-symmetric formulation. With the rotation formulation,
aliasing errors are larger and causes significant discrepancies. If the resolution is
however increased to N3 = 512, while still aliased, both formulations are able to
reproduce results accurately (cf. Fig. 2.6d). In the latter case, N® = 5123 is more
than sufficient, implying that truncation and aliasing errors are probably very small
in both cases.

These tests were performed in the initial development phase of the code, and all
simulations used the Crank-Nicolson method for integrating the viscous terms and
the 3rd order Runge-Kutta for integrating the convective terms.

2.2.4. FORCED HOMOGENEOUS ISOTROPIC TURBULENCE

In contrast to the previous section, we now consider cases for which the system
is initially at rest, and homogeneous isotropic turbulence is generated by injecting
energy into the system with the aid of an external force. In other words, here we test
the implementation of the forcing schemes of Eswaran & Pope (1988) (henceforth
EP) and Alvelius (1999) (henceforth AL).

The tests with the forcing of EP were aimed at reproducing the results of Jiménez
et al. (1993), for which reference data of homogeneous isotropic turbulence at differ-
ent Rey is available'. Our numerical experiments focused on two different Reynolds
numbers, namely Rey ~ 60 and Re) =~ 140, and compared the probability density
functions (pdfs) of the longitudinal and the transversal velocity gradients as well
as the energy spectra. In all cases, the numerical resolution is chosen such that
KmazT =~ 1.5, where 7 is the Kolmogorov lengthscale.

Through a proper choice of the free parameters, the simulation was setup such
that the desired final Rey were obtained. After an initial transient that lasted about
6 large-eddy turnover times, the velocity field reached a statistically steady-state.
Figures 2.7 and 2.8 show the results for Rey =~ 60 and Re) = 140. The present
results are in excellent agreement with the reference data although the reference
data was computed using a different forcing scheme (negative viscosity). Further
and in agreement with theory, two behaviors for the probability density functions
are also salient: the skewed behavior in the pdf of du/90z, and the fact that both
pdfs become wider for increasing Re).

The test for the forcing scheme of AL was instead aimed at showing that a
constant power input is achieved throughout the entire simulation time. For this
purpose, we considered a simple case with relatively low Rey. To excite a fluid
initially at rest, we imposed a force in the wavenumber range [0, 4ko] with £ /ko = 2.
After the usual transient, a statistically steady-state was reached with Rey = 68.

Figure 2.9 shows the temporal evolution of the individual terms in the turbulence

kinetic equation:
dK
E:—<€V>L+<EI>L. (255)

In a steady-state, i.e., dK/dt = 0, the box-averaged power input (e;), must bal-

1Processed data for the basic flow statistics is available at http://torroja.dmt.upm.es/turbdata/
agard/
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Figure 2.7: Spherically averaged energy spectrum for the validation runs with (a) Rey =~ 60 ( — )
and with (b) Rey ~ 140 ( — ). The symbols represent the reference data from Jiménez et al.
(1993) at approximately the same Rey (0 ).
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Figure 2.8: Probability density function of the transversal and longitudinal (a) velocity derivatives
(b). The solid line denotes results obtained with our numerical tool for Rey ~ 60 ( — ) and
Rey = 140 ( — ). The symbols denote the data from Jiménez et al. (1993) ( 0 ) at approximately
the same Re),.
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Figure 2.9: Turbulence kinetic energy budget showing the constant energy input rate when the
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