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Summary 
 

he greater pressure from both customers and regulators to maintain and 

enhance service reliability, while at the same time controlling costs, has caused 

many utility distribution businesses to adopt Asset Management (AM) as their framework to 

balance the financial aspects with the engineering and infrastructure aspects. Therefore, AM 

is widely being applied in asset intensive industries around the world. Generally, AM consists 

of data driven decision-making processes with the goal of deriving the most value from utility 

assets within the available budget. AM provides access to quantitative and qualitative data 

and allows decision makers to more readily identify and focus on key issues (risks). Asset 

intensive industries rely on asset data, information and asset knowledge as key enablers in 

undertaking both strategic AM activities and operational activities. Good asset information 

(timely, reliable and accurate data) enables better decisions to be made such as determining 

the optimal asset maintenance or renewal frequency for an asset. Consequently, in the past 

years utilities have progressively created databases to record asset or business data such as 

failure, maintenance, operation and cost. However, in many cases, the available data 

required to track equipment reliability are not sufficiently rich to provide a basis for 

straightforward decision-making processes. There are a number of reasons why data may 

not be sufficient. An important reason, among others, is because AM is a fairly new concept 

and many utilities did not have a reason to collect detailed information to track equipment 

lifetimes. The determination of equipment reliability required the collection and systematic 

evaluation of data on equipment failures.   

In this context, there is a strong need for people, in practice, to have access to 

systematic techniques and guidelines on how to deal with information of equipment 

lifetimes. Recently, CIGRE has also felt the strong need to develop practical solution to deal 

with asset life data and, in this sense, has approved the creation of a new Working Group 

WG D1.39. The title of this group is ―Methods for Failure Data Collection & Analysis‖.   

In this MSc thesis report, a systematic approach for analyzing asset life data (data 

describing equipment lifetime) in presence of incomplete data by means of statistical 

analytical methods is introduced. The analysis in this report mainly focus on a statistically 

based approach which uses data available from the past to predict short term reliability of a 

specific group of assets. 

In chapter 1, a brief introduction of the AM approach is given and the related 

information aspects which are required to facilitate the asset managers decision-making 

processes.  Subsequently, the importance of failure statistics within the AM framework is 

explained. Finally, the research description, research objectives & challenges and research 

approach & scope of this thesis report are explained. In this thesis, the analysis of 

equipment life data is carried out for three types of 10 kV medium voltage (MV) cable joint 

populations. 

T 
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In chapter 2, the fundamental aspects and construction principles of typical Dutch 

distribution networks are described. It begins by describing the components of which such 

underground distribution networks are constructed. More specifically, the emphasis in this 

chapter is on cable systems consisting of three different types of components, which are 

cable parts, cable termination and cable joints. It continues by describing why defects occur 

in cable insulation systems with emphasis on MV cable joint failure causes. The chapter 

concludes by discussing examples of a number of typical cable joint failures and a historical 

failure data analyses for the 10 kV MV distribution network of the host company, Stedin. 

In chapter 3, a theoretical overview of basic modelling concepts such as failure rate 

functions, probability distribution functions and statistics is discussed. The available 

Statistical Life Data Analysis (LDA) methods that can be used for analysing component 

reliability data are explained. Furthermore, this chapter describes available statistical tools, 

such as the Maximum Likelihood Estimation (MLE) technique, that can be used for analysing 

incomplete data sets. 

In chapter 4, the application of statistical life data analysis for three types of 10 kV 

cable joint populations are discussed. First, the process of collecting and handling available 

life data for the cable joint populations is described. Secondly, the collected life data is used 

for estimating the probability distribution functions for each type of cable joint population. 

The MLE technique is used for parameter estimation in accordance with Goodness-of-Fit 

tests and engineering knowledge of the failure mechanisms. Based on these test the best 

fitted failure probability model is selected. Finally, the selected failure probability models for 

the three types of cable joints are used to compare the three populations of cable joints with 

each other. With these fitted probability models the available data from the past can be 

extrapolated to predict future failure expectations. 

In chapter 5, a number of analytical tools which can be used to facilitate the asset 

manager to make sound decisions with regard to the failure behaviour of the cable joints are 

described. These analytical tools share a basic framework for decision-making and specify 

the evolution of the failures of the cable joint population over time.  

In chapter 6, several conclusions of this thesis are presented and a number of 

recommendations are given. 
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Samenvatting 
 

ls gevolg van de toenemende druk op de energie- en nutsbedrijven, van zowel 

afnemers als toezichthouders, om een constante verbetering van de 

betrouwbaarheid, operationele presentaties en financiële presentaties te demonstreren is er 

een brede interesse in Asset Management (AM) ontstaan. Zodoende kan er een 

balansoefening tussen de financiële aspecten en de technische aspecten bewerkstelligd 

worden. Als gevolg hiervan wordt het concept van AM wereldwijd in toenemende mate 

toegepast in nutsbedrijven. Algemeen gesproken bestaat AM uit besluitvormingsprocessen 

die gebaseerd zijn op gegevens en feiten met als doel om assets zo effectief en efficiënt 

mogelijk in te zetten en de kosten binnen de perken te houden. Hierdoor hebben asset 

managers toegang tot kwalitatieve en kwantitatieve informatie waardoor zij belangrijke 

kwesties (risico’s) makkelijker kunnen identificeren en zich op deze kwesties kunnen richten. 

Door gebruik te maken van analytische tools kunnen beslissingen worden gebaseerd op 

gegevens en feiten en niet alleen op subjectiviteit en intuïtie. Een belangrijk aspect voor 

effectieve AM is het beschikken over goede informatie (tijdige, betrouwbare en nauwkeurige 

informatie) teneinde deze informatie te voorzien aan de asset managers ter ondersteuning 

van de besluitvormingsprocessen. Als gevolg hiervan zijn er de afgelopen jaren veel meer 

databases met asset en bedrijfsspecifieke informatie zoals aantal storingen, 

onderhoudsbeurten, operationele aspecten en kosten tot stand gekomen. Echter kan het 

voorkomen dat de beschikbare informatie niet altijd toereikend is om de 

besluitvormingsprocessen te ondersteunen. Er zijn een aantal redenen waarom de 

beschikbare informatie niet altijd toereikend genoeg is. Een belangrijke reden is omdat het 

concept van AM relatief nieuw is voor energie- en nutsbedrijven. De energie- en 

nutsbedrijven hadden in het verleden meestal geen reden om over te gaan tot het bijhouden 

van gedetailleerde informatie over de levensduur van componenten. 

In de praktijk blijkt er een sterke behoefte te zijn aan mensen die informatie over de 

levensduur van componenten kunnen beoordelen. In kader hiervan heeft CIGRE onlangs een 

nieuwe Working Group WG D1.39 ingesteld. Deze nieuwe Working Group heeft als doel het 

ontwikkelen van praktische oplossingen voor het beoordelen van informatie over de 

levensduur van componenten. Deze Working Group is genaamd ―Methods for Failure Data 

Collection & Analysis‖.  

Dit MSc thesis behandelt een systematische methode voor het analyseren van 

volledige en/of onvolledige beschikbare informatie, die de levensduur van componenten 

beschrijft, met behulp van statistische methoden.  

In hoofdstuk 1 wordt een beknopt overzicht over het AM concept gegeven en laat 

zien welke informatieaspecten noodzakelijk zijn voor het ondersteunen van de 

besluitvormingsprocessen van de asset manager. Hierna wordt het belang van 

storingsstatistieken binnen het kader van AM uitgelegd. Uiteindelijk wordt het onderzoek zelf 

beschreven. Hierbij wordt ingegaan op de onderzoeksdoelen & uitdagingen en het plan van 

A 
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aanpak & de reikwijdte van het onderzoek. Dit onderzoek buigt zich over de analyse van de 

levensduur gegevens van drie type 10 kV middenspanning kabelmof populaties.  

In hoofdstuk 2 worden de fundamentele aspecten en de constructie principes van 

typische Nederlandse ondergrondse elektriciteitsdistributie netten beschreven. Allereerst 

worden de componenten die gebruikelijk zijn in ondergrondse netten besproken. In het 

bijzonder ligt de nadruk in dit hoofdstuk op kabelsystemen die in drie categorieën kunnen 

worden onderverdeeld, namelijk kabels, kabel eindsluitingen en kabel moffen. Hierna worden 

de veelvoorkomende faaloorzaken van isolatiematerialen van kabelsystemen beschreven met 

de nadruk op middenspanning kabelmof defecttypen. Uiteindelijk sluit dit hoofdstuk af met 

enkele typische voorbeelden van kabelmof storingen gevolgd door een historische 

storingsdata analyse voor 10 kV middenspanning distributie netten van Stedin.    

In hoofdstuk 3 wordt een theoretisch overzicht van basis concepten voor het 

modelleren van betrouwbaarheidsparameters zoals faalkansen, kans verdelingsfuncties, en 

statistieken gegeven. De beschikbare Statistische Levensduur Data Analyse (LDA) methoden 

die gebruikt kunnen worden voor het analyseren van component gerelateerde 

betrouwbaarheidsgegevens worden hier besproken. In dit hoofdstuk worden ook de 

beschikbare statistische technieken die gebruikt kunnen worden voor het analyseren van 

onvolledige data zoals Maximum Likelihood Estimaltion (MLE) aangehaald.  

In hoofdstuk 4 wordt de beschikbare levensduur informatie van drie type 10 kV kabel 

mof populaties onderworpen aan statistische analyses. Allereerst wordt het proces voor het 

verzamelen en ordenen van beschikbare informatie van de kabelmoffen toegelicht. 

Vervolgens wordt de beschikbare data onderworpen aan statistische analyses, waarbij met 

behulp van statistische kansverdelingen de faalkansen voor elke kabelmof populatie wordt 

uitgerekend. De MLE methodiek wordt gebruikt voor het schatten van de parameters van de 

kansverdelingen. Hierbij wordt gebruik gemaakt van Goodness-of-Fit tetst en kennis van 

faalmechanismen voor het selecteren van een geschikte kansverdeling. De geselecteerde 

kansverdelingen worden uiteindelijk gebruikt om de drie verschillende kabelmof populaties te 

vergelijken met elkaar.  

In hoofdstuk 5 worden enkele analytische modellen en tools beschreven die gebruikt 

kunnen worden door de asset manager om weloverwogen besluiten te nemen betreffende 

het storingsgedrag van de kabelmoffen. Deze analytische tools vormen een basis strategie 

voor besluitvorming and beschrijven de ontwikkeling van storingen van kabelmof populaties. 

In hoofdstuk 6 wordt deze MSc thesis afgesloten door enkele conclusies te trekken en 

aanbevelingen te doen. 
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1  

Introduction  
 

Nowadays, utilities, especially power distribution utilities, face challenges of satisfying 

increasingly high standards for reliability and service quality while at the same time reducing 

costs and improving earnings. To meet the challenges, utilities are adopting Asset 

Management (AM) as their framework to balance the financial aspects with the engineering 

and infrastructure aspects. Generally, AM consists of data driven decision-making processes 

with the goal of deriving the most value from utility assets within the available budget. 

However, in many cases, the data that are available are not sufficiently rich to provide a 

basis for straightforward decision-making processes. There are a number of reasons why 

data may not be sufficient. One important reason, among others, is because AM is a fairly 

new concept, and many utilities did not have a reason to collect detailed information to track 

equipment lifetimes.   

In this thesis, a systematic approach for analyzing asset life data in presence of 

incomplete or inconsistent data by means of statistical analytical methods is introduced. 

This chapter starts, in section 1.1, with a general outline of AM and the importance of 

failure statistics within this context. Subsequently, in sections 1.2, 1.3 and 1.4, respectively, 

the research description, research objectives & challenges and research approach & scope of 

this thesis project are explained. Section 1.5 gives an outline of the chapters for the 

remainder of the MSc thesis report.     

 

1.1 Background 

 

1.1.1 Asset Management 

 

The term AM is frequently encountered in utilities around the world. AM is a business 

approach that balances the financial aspects of a utility with the engineering and 

infrastructure aspects. AM of infrastructures (e.g. power utilities) involves making data-

driven infrastructure investment decisions so that the life cycle cost are minimized while 

satisfying performance, risk tolerance, budget and other operational requirements [1]. 

Stated simply, AM is a corporate strategy that seeks to balance performance, cost and risk 

for the infrastructure as a whole. Achieving this balance requires the alignment of corporate 

goals, management decisions, and engineering decisions. It also requires a corporate 

culture, business processes, and information system capable of making thorough and 

consistent spending decisions based on asset-level data. Nowadays, AM heavily relies on the 

use of information and data to facilitate the decision-making process. Resulting from this the 

decisions should be based on information from various sources. This involves a large amount 



17 
 

of different information aspects such as failure statistics, network operation, condition 

assessment and reliability & availability. In figure 1, various aspects that typically are 

concerned with AM are given in more detail [2]. 

 

Figure 1.1: Different aspects for life assessment considerations for HV infrastructures [2]. Asset 

Management is a centralized decision-making process, which uses information from various sources 

such as failure statistics, network operation, condition assessments etc. 

An important aspect shown in figure 1.1 is failure statistics. In order to incorporate 

this aspect into the decision-making process of the asset manager, it is required to consider 

the recorded life data (data describing components life) and perform analysis in order to 

determine the asset related failure behaviour.  

Analysis on which decision can be based requires reasonable and acceptable data. 

The quality of the data is of fundamental importance for these analyses. However, in 

practice, it is difficult, expensive and sometimes impossible to collect all required life data. 

Nevertheless, with the AM heavily relying on asset level data to support sound AM decisions, 

there is a strong need for methods that are able to analyse life data even in the case of 

incomplete or inconsistent data. Therefore, developing a systematic approach in which 

optimal use is made of the available data for supporting the AM decision processes is 

required. Statistical life data analysis for estimating and predicting the probability of survival, 

the mean life, failure rate or, more generally, the life distribution of components can be a 

powerful tool for satisfying such needs. One way to capture the information in the data is to 

fit the parameters of a hypothesized failure distribution to the data. This process is known as 

parametric distribution fitting, and will be used in this thesis as part of the statistical analysis.            

 

1.1.2 Importance of Failure Statistics 

 

Every installed power system component will eventually fail. Therefore, at a certain point 

in time, every component will start exhibiting failure behaviour. For each type of component, 
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this failure behaviour can be different. The purpose of applying maintenance is to prevent 

the occurrence of failures. However, if certain (e.g. critical) components show an increasing 

number of failures, it could mean that the maintenance or replacement program should be 

adjusted and be more focussed on these failing components. Therefore, detailed knowledge 

of failure probability, ageing and failure frequency can contribute to the AM decision process.  

The frequency at which components fail, usually denoted as failure rates, is an important 

indicator for selection of an asset for condition assessment or replacement. These failure 

rates can be analyzed on different levels [3]: 

 Network system level: Failure patterns on the network system level provide 

information about failures which are typical for specific areas or groups of 

components. An example is the comparison of failure rates of HV network level with 

MV network level. Failure patterns on system level can also give information about 

the relation between failures and component groups that are responsible for these 

failures such as transformers, cables or switchgears. 

 Asset system level: If a specific asset system e.g. a certain cable network shows an 

increasing number of failures in a specific time span, then it is an indicator to perform 

assessments to this specific cable system.  

 Component level: Failure rates on component level are more related to component 

types such as joints, termination, cable parts etc. Depending on the type of 

components, manufacturer or year of construction, the deterioration behaviour can 

be different. If a specific component type shows an increasing number of failures, the 

condition assessment can be focussed on this group of assets.  

In the end, a combination of the above described selection levels will result in the best 

selection of component groups which are suitable for condition assessment. Therefore, it is 

important to understand what types of components are likely to fail, and how these failure 

rates will change over time.   

       

1.2 Research Description 

 

1.2.1 Description of the project 

 

The department Asset Management at Stedin performs trend analysis of the annual 

outage hours. Based on this analysis and the information from specific failure analysis (size 

and/or duration), conducted by the department Network Coordination, necessary measures 

to control the annual outage duration are taken. The total outage duration is the product of 

2 factors: average interruption duration and the failure frequency. Therefore, the chosen 

measures to control the outage duration focus on, both, average interruption duration (by 

means of organizational measures) as well as on failure frequency (by performing preventive 

maintenance or adjusting replacement programs). Currently, the average outage duration of 
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the total system is primarily determined by failures in the MV distribution networks and a 

vast majority of these outages are due to failure in MV cables and especially in their joints.  

MV cable and joint failures make up approximately 82% of the total number of 

component related failures. Also, the MV distribution network accounts for the largest part of 

assets in the total power network. In the Netherlands, almost 100% of the distribution of 

power is realized by means of underground medium voltage cables, cable joints and 

transformers. Most parts of this infrastructure were constructed more than 30 years ago and 

a preventive strategy, as was often applied in the past, would require replacement. Due to 

the regulation of the energy market, asset managers are forced to reduce costs, postpone 

investments, while maintaining or upgrading the reliability of power delivery. This, together 

with the increasing demand for electricity and customer awareness, leads asset managers to 

employ various maintenance and replacement strategies by using asset failure forecasting 

tools. Therefore, it is important to understand which types of components are likely to fail. 

Furthermore, it is also important to understand how these failure rates will change over time 

what can be known by determination of the failure probabilities. 

Performing failure probability studies to analyse life data of suspect groups of 

components required the data to be collected throughout the entire life cycle of the 

components. Information or rather, the lack of information is the main challenge in 

performing statistical life data analysis. Database systems have undergone many changes 

and throughout the years many regional Distribution System Operators (DSO) have merged 

their asset inventory databases causing information discrepancies. Furthermore, distribution 

infrastructures were constructed many decades ago, and sometimes asset information is not 

available anymore and, most of the time, the exact age of equipment at the moment of 

failure is unknown.  

This thesis deals with the application of appropriate statistical tools to analyse 

incomplete data sets for modelling component failure rates. This, in turn, will assist the asset 

manager in making failure forecasts and acquire more knowledge on the failure behaviour of 

component groups.     

   

1.2.2 Purpose of the project 

 

The purpose of the project is to develop an extension for this particular purpose of an 

already used systematic approach, in which all available data of a specific group of assets is 

used, for forecasting asset failure behaviour. In order to serve this purpose the use of 

statistical tools to determine the failure behaviour plays a key role. The most dominating 

component related failures are observed for MV cables and especially in cable joints. This 

thesis will mainly focus on the development of failure rate models for cable joints and its 

implication for asset management decision support. This, in turn, will facilitate the asset 

manager in the decision support regarding asset failure behaviour and possible maintenance 

or replacement policies for cable joints. Consequently, by creating more insight into the 

failure behaviour of these assets, more knowledge of the system reliability can be extracted.   
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1.3 Research Objectives & Challenges 

 

1.3.1 Research Objectives 

 

This thesis will focus on the statistical failure rate modelling of distribution systems on 

component level. The objective of the present study is to obtain more knowledge about the 

feasibility of statistical methodologies by using available asset life data to develop failure rate 

models for 10 kV cable joints. In summary the objectives are: 

 Acquiring more knowledge with regard to the failure behaviour of 10 kV cable joint 

populations 

 The development of failure rate models for 10 kV cable joint populations by using 

available cable joint life data in combination with parametric distribution fitting tools  

 The prediction of future failures of 10 kV cable joint populations by using the 

developed failure rate models together with the service history 

 The development of analytical tools, based on the statistical failure models, which 

can be used to acquire more knowledge with regard to the failure behaviour of the 

10 kV cable joint populations  

 

1.3.2 Scientific Challenge 

 

AM for distribution networks are usually considered a different case when compared 

to AM for transmission networks. First of all, the number of installed equipment is much 

larger for distribution networks than for transmission networks. Consequently, monitoring 

and processing data of individual equipments and its sub-components would likely be very 

costly and time consuming. Due to the numerous types of different components installed in 

the network it would be impossible to implement condition assessment for the whole 

population at once. Structural analyses are required to select those components which could 

benefit from e.g. condition assessment. Since it is also expensive to replace a large number 

of the asset population, it is still important to understand the impact that age has on the 

failure rates of the asset groups. By using these statistical methods more knowledge about 

the failure behaviour, especially age related failure behaviour, can be extracted. Developing 

failure rate models (in presence of limited information) for specific groups of assets in 

distribution networks is necessary, as these form important indicators for selecting a 

network, component or sub-component for condition assessment. 
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1.4 Research Approach & Scope 

 

1.4.1 Research Methodology 

 

The thesis can be divided into two main parts namely a theoretical part and an 

analysis part. The theoretical part corresponds to a literature overview while the analysis 

part corresponds to a statistical parametric distribution fitting analysis section.  

In the theoretical part, the underlying concepts for underground distribution networks 

in the Netherlands, impact of ageing, and statistical life data analysis are explored and 

discussed. In this part, literature review plays an important role. This review includes 

academic literature and consists mainly of publications, books and magazines on the 

engineering issues of component failure probabilities. In figure 1.2 a schematic overview of 

the theoretical part of the thesis is shown. 

 

 

 

 

 

 

 

 

The analysis part provides an application of statistical life data analysis for 10 kV 

cable joints. The first step in the application of statistical life data analysis is the collection of 

available cable joint data. The second step is to perform a parametric distribution fitting 

method for the 10 kV cable joint data. The statistical calculations and evaluations are 

performed in Reliasoft’s Weibull ++ 7 tool for life data analysis. The software is capable of 

performing life data analysis utilizing multiple lifetime distributions. Subsequently, after the 

parametric distribution fitting, an appropriate failure distribution is selected for further 

analysis. With the selected failure distribution and their related statistical parameters the 

failure probability characteristics of the cable joint populations can be determined. Finally, 

the developed failure models are used to facilitate the asset manager with tools in order to 

make sound decisions. In figure 1.3 a schematic overview of the analysis part of the thesis is 

shown.       

Theoretical Part 

Literature Review 

Underground Distribution 

Networks 

Cable System Failure Related 

Defects 

Component Failure Modelling Statistical Life Data Analysis 

Figure 1.2: Schematic representation of the theoretical part of the thesis 
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1.4.2 Scope of the Project    

 

Before proceeding further, it is helpful to first define the scope of this research. The 

available data that will be used during this study comes from the recorded databases of 

Stedin. The failure rate models that are developed are based on component level failure 

statistics and deals with 10 kV distribution cable joints of three different type of insulation 

material namely: 

 Oil insulated joints 

 Mass insulated joints 

 Synthetic insulated joints 

The part of the system that is investigated is a 10 kV distribution network, a common 

applied distribution voltage level in the Netherlands, and this area is known as ―Region X‖ in 

this report. 

 

Figure 1.4: Geographical overview of the service area for electricity of Stedin 

Analysis Part 

Application of Life Data Analysis for 10 kV 

Cable Joint Populations  

Life Data Collection for 10 kV 

Cable Joints 

Failure Probability 

Distribution Selection 

AM Decision Support for Cable Joint Failures 

Parametric 

Distribution Fitting 

Figure 1.3: Schematic representation of the analysis part of the thesis 
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A geographical representation of the service area for electricity of Stedin is shown in 

figure 1.4. In combination with statistical analysis, the available data is used for failure rate 

modelling and predicting future failure rates. The available data, as provided by Stedin, will 

be used and, where necessary, data enhancement techniques and estimation are made 

based on expert knowledge.  

 

1.5 Outline of the Thesis 

 

The report is described in several chapters and is in line with the research approach 

highlighted in figure 1.2 and 1.3.  

Chapter 2 performs a literature review of the construction of general Dutch 

distribution networks and its characteristics. The emphasis in this chapter is especially on 

underground distribution networks. Furthermore, this chapter highlights the typical defects 

that can occur in cable insulation and cable accessories. In this chapter special notice is 

given to cable joint failures. 

Chapter 3 deals with the general background of component failure models and how 

they can be represented. In this chapter, the theoretical review of statistical failure 

distributions is described. Subsequently, the procedure for statistical LDA is described and, 

here, two methods are introduced which can be used for analysing continuous life data. 

These methods are the parametric distribution method and the non-parametric distribution 

method.  

Chapter 4 considers the application of statistical LDA for three different types of 10 

kV cable joint populations. In this chapter, the process of data collection and representation 

is described. The collected data is then prepared for the LDA analysis, which follows the 

parametric distribution fitting method. The MLE is used for parameter estimation of the fitted 

failure distribution. 

Chapter 5 develops various tools to facilitate the asset manager in the decision-

making process regarding the failure behaviour of the 10 kV cable joint populations. B(x)-

lives, forecasting future failures and the failure count diagram are described in this chapter. 

Finally, chapter 6 presents the conclusions of the thesis and makes 

recommendations.  
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2 

Distribution Networks 
 

 In this chapter, an overview of MV distribution networks in the Netherlands is 

provided, to help understand the construction of such networks. This chapter starts, in 

section 2.1, with an explanation of the construction of typical Dutch distribution networks. In 

the Netherlands, MV distribution networks are almost 100 % underground constructed, and 

therefore, a large part of the investment cost of the distribution network is taken by the MV 

cable systems. 

 In section 2.2, factors which can result in a defect of the different insulation systems 

of the cables and cable accessories are described.  Three categories of important stresses 

that can cause defects in insulation systems are explained in this section. This section 

proceeds in sub-section 2.2.3, with special emphasis on MV power cable joint failures and 

highlights the most significant reasons why these cable accessories are subjected to more 

failures. Furthermore, a brief overview of typical cable joints used in MV distribution 

networks is provided. In order to illustrate all of the above mentioned aspects, this section, 

presents a number of practical examples of real cable joint failures. 

 In section 2.3, we will discuss the recorded historical failure statistics for 10 kV MV 

distribution networks of Stedin. From the investigated failure patterns, it becomes clear that 

cable systems are associated to the major part of MV distribution network failures.  

 At the end of this chapter, in section 2.4, an overview of the main conclusions is 

provided. The knowledge gained in this chapter will then help to understand the basic 

principles of failure modelling, which is explained in chapter 3.     

    

2.1 Background 

 

2.1.1 Distribution Network in the Netherlands 

 

In the early days of electrification, cable technology was just in development and 

overhead lines were used mainly. Today, power cables are available for a variety of voltage 

levels and power levels. From an investment viewpoint, overhead lines are usually still 

preferred. However, due to public awareness for aesthetics, environmental reasons and 

safety issues, but also technical matters, power cables can be a viable alternative. If 

operation and maintenance (O&M) costs are taken into account, power cables can also be 

competitive, especially when applied to MV distribution networks.  

Nowadays, distribution networks are constructed more frequently using underground 

power cables, especially in areas with a dense infrastructure. In the Netherlands, MV and LV 
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networks are constructed for almost 100% of underground power cables. In the rural areas, 

where soil conditions are too wet, overhead lines are used. The commonly used nominal 

voltage level for the distribution network in the Netherlands is 10 kV. However, other voltage 

levels also exist such as 25 kV, 20 kV, 12.5 kV, 6 kV and 3 kV. The total MV cables length in 

the Netherlands alone is approximately 100.000 km and a large part of the investment cost 

of the distribution network is taken by the MV cable network.  Because the MV distribution 

network is almost completely constructed underground, the reliability and availability in the 

Netherlands are among the highest in Europe [4]. When the total power grid is considered, 

the distribution power grid is responsible for the major part of power-delivery outages. A 

vast majority of the distribution grid outage times is due to failures in MV cables and more 

specifically their joints.  

Typically, the high failure rate is related to external causes of non-electrical nature, 

e.g. excavator digging. Besides this, insulation deterioration in cable systems, due to a wide 

variety of different defects [5], is causing the major part of the functional losses in the 

distribution network. Typical ageing stresses affecting cable insulation systems are thermal 

influences, mechanical influences, environmental influences and electrical influences. 

Because the power cable system forms a substantial part of the total MV distribution network 

system, and due to the high probability of functional losses, strategies are implemented to 

reduce the failure rate in the distribution cable network. Consequently, the continuity of the 

energy supply can be improved. To prevent external causes, such as dig-ins, from occurring, 

utilities should encourage the public agencies to have cable routes indentified before giving 

permits for initiating site excavation. Also, to prevent dominant failures due to internal 

causes from occurring, utilities should perform inspections of the insulation quality. However, 

as mentioned in chapter 1, due to the numerous types of different components installed in 

the network it would be impossible to implement condition assessment for the whole 

population simultaneously. 

 

2.1.2 Underground Distribution Networks  

 

In order to connect a cable to a protection fuse, a transformer or a circuit breaker, 

terminations are required. As result of limited maximum lengths of MV cables, or partial 

replacement, cable joints are used to interconnect these cable sections. As a consequence, 

distribution power cable networks are a building block of multiple links of several cable 

systems connected to the feeding substation. In general, each of these cable systems has an 

insulation system, consisting of three different types of components, which are cable parts, 

terminations and cable joints. In principle, a cable system is constructed with two 

terminations, N cable parts and N-1 cable joints. This is illustrated in figure 2.1.  

The reliability of the cable system depends on the reliability of all individual 

components. When a failure occurs in a cable system the failed part can be repaired by 

replacing several meters of cable and two new joints (see figure 2.1.b). Due to these 

changes in the topology, a cable system generally consists of various types of joints, 

terminations and cable parts. Resulting from this, the age of the different components will 
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vary and different kinds of defect will occur. This means that throughout the service years 

different deterioration mechanisms may be active for power cable systems and especially for 

the cable components [5], [2].   

 

Figure 2.1: Construction of cable-section from different types of components, the age of components 

as well as the maintenance history may vary [2]. 

The cable systems quality depends on the quality of its individual component(s). In 

the average service aged cable system, a mixture of old and new defect types occurs with 

different deterioration behaviour. This implies that throughout the service years of cable 

system the failure rates may vary according to many aspects. 

 

2.2 Failure Related Defects 

 

2.2.1 Factors Resulting in Defect 

 

Besides external damages, many references show that more than 60 – 70% of the 

breakdowns in the MV cable network are caused by internal defects in the insulation system 

of the cable network [5], [6], [7]. There are many reasons why defects occur in cable 

insulation systems. In general, there are three categories of stresses that can cause internal 

defects. These categories are: 

 Operational stresses 

 Environmental stresses 

 Human handling 
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In order to understand above mentioned stresses, a brief explanation of each category 

is given. 

Operational Stresses – Load changes in cable systems cause temperature fluctuations and 

result in movement (transversal strengths) on the cable system. As a result of axial forces on 

the cable connectors, the connectors inside the cable accessories can move and cause 

increased electrical stresses inside. This may happen for instance in a cable joint. Also, load 

changes and short circuit currents in the network can cause mechanical stress on the cable 

connectors in joints. Due to these mechanical stresses, the connectors may lose their 

connecting strength, which will cause locally increased heat production into the insulation 

[5]. Moreover, daily load cycles can make the power cable expand and shrink thermo-

mechanically. For example in paper oil insulation a fluid pressure is build up during high 

loads, which results in an expansion in the radial direction. When the load decreases, the 

cable shrinks starting at the conductor and an under-pressure occurs. The insulation fluids 

present in cable components will fill up the voids in the paper insulation and the oil level in 

the cable and cable accessories will decrease resulting in impaired insulation strength in 

these components. In worst cases, this may lead to implosions of cable joints or terminations 

[5].  

Table 2.1: Important operational stresses, which induce defects in power cables and cable accessories 

[5]. 

Stresses Induced factors Induces defect 

Daily load cycles     Thermal expansion   Increase of migration of materials 

High temperatures  Chemical reactions   Drying out of paper insulation 

 Depolymerisation of paper 

 Voids creation 

 Embrittlement of material 

 Gas formation  

 

In most cases, the above mentioned operation effects cannot be prevented and the 

development of the network loads are not always known at the start of a cable system life-

time. Appropriate diagnosis methods can be applied in order to gain more knowledge about 

these operational stresses. More information on the topic of appropriate diagnosis methods 

for MV cables can be found in [5].   

Environmental Stresses – The condition or environment where cable systems are located 

has a large influence on the initiation of defects in the insulation. Such environmental 

stresses are, amongst other, moisture penetration (ground humidity), corrosion of cable 

covers (ground pollution and acidity content of the ground) and tensions on connections in 

accessories (mechanical stress). Usually, power cable systems are positioned under 

groundwater level and water could enter into the insulation (e.g. if the water blocking of the 

cable system is faulty). In wet grounds, which is common in the Netherlands, cable 

movement may impose mechanical stresses on a cable system, for instance on the cable 
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joints. This, in turn, can again lead to breaking of the water blockings and impaired 

insulation breakdown strengths. 

Table 2.2: Important environmental stresses which introduce defects in power cables and cable 

accessories [5].  

Stresses Induced factors Induces defect 

Water/humidity     Moisture penetration   Decrease of insulating qualities 

Ground pollution   Corrosion                  Lead sheath penetration, water 

penetration 

Mechanical stress  Dielectric losses         

Tensions                  

 Local overheating 

 Forces on cable accessories 

 Thermal ageing 

 Loss of adhesion 

 Cracking of materials 

   

Human Handling – When replacements or new installations are made on-site, defect can 

be introduced by means of human induced errors. This is especially the case for cable 

accessories, which are most of the time assembled on-site. Improper assembly can cause 

defects. The installation of a cable part in an accurate manner depends on several external 

factors of which some are weather, time pressure, dedications, experience, tools and proper 

training. Even if the work is performed correctly, small defects can lead to breakdowns on 

the mid-long term [5]. Such human induced influences can be prevented by means of 

improving installation and repair instructions.    

Table 2.3: Important human induces stresses which introduce defect in power cables and cable 

accessories [5].    

Stresses Induced factors  Induces defect 

Manuals/Instruction  Critical construction       Cavities 

Mounting error        Mixtures of insulation materials      Bad hardened resin 

Design                   Imperfect water blocking of 

accessories 

Introduction of PD related defects 

Damaging of sheaths during laying 

Bad connection between 

conductors          

                   

 
 

 

 

 

 

 

 Moisture penetration (decrease of 

insulation properties) 

 

 Erosion of insulation 

 

 Lead sheath perforation, leakage of 

oil, water penetration 

 

 Local overheating 
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2.2.2 Overview of Insulation Defects 

 

In general, visual inspections and forensic investigations of failed components 

provides insight into the different types of fault causes that result in breakdown. The most 

common sources for the initiation of breakdown in cables and their accessories are the 

presence of voids, cavities, sharp edges, metallic impurities and other defect in insulation. 

From many years of defect analysis, which include visual analysis and forensic studies, a 

number of repetitive fault causes can be listed for cable systems [5], [8], [9], [10]. Typical 

insulation defects for different type of power cables, joints and terminations are listed in the 

table below.  

Table 2.4: Overview of typical insulation defects for different types of power cable components [5], 

[8], [9]. 

Cable Type Joint & Termination Cable Insulation 
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Lowered oil level Corrosions of sheath 

Sharp edges on connectors Perforations of sheath  

Moisture penetration Cavities 

Air/Gas bubbles Internal damages (bending) 

Bad hardened resin Drying out 

Cavities/ Voids  

Impurities  

C
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e
  

(X
LP

E
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Bad field grading (interface) Moisture penetration  

Sharp edges on conductors Cavities 

Moisture penetration Damaged outer sheaths 

Remaining semi-conductor layer Water treeing   

Air gaps Electrochemical degradation (electrical treeing) 

 

The typical insulation defects mentioned in table 2.4, are in general induced by either 

operational stresses, environmental stresses, human induces stresses or a combination of 

these three stresses.  

 

 

 

 



30 
 

2.2.3 MV Power Cable Joint Failures 

 

This thesis work mainly focuses on the failure statistics of cable joints and therefore 

more attention will be paid to cable joint failures in this section. Although the cables are far 

more expensive than the related cable accessories, it is usually the accessories that affect 

the reliability of the cable system more often. The most significant reasons why cable 

accessories are subjected to more failures are because: 

 they are subjected to higher electrical, mechanical and thermal stresses 

 they are mounted in the field and most of the time under non-ideal circumstances, 

particularly during outage situations 

 they are not subjected to expensive reliability testing procedures like the cable itself 

 the quality of mounting the accessories is quite sensitive to workmanship, experience 

and care of the involved employee.       

It can be concluded that especially cable joints form the weakest link in the total cable 

system. The complicated insulation interfaces in joints form a possible weak point in its 

construction. This is due to the insulation interfaces, which are at an angle to the electric 

field present in the cable system. As a consequence, when designing cable joints special 

precaution has to be taken in order to keep the electric field strength (tangential component) 

along the interface constant and sufficiently low [11]. Therefore, considering the above 

mentioned susceptibilities, the likelihood for a cable joint failure is high.  

Type of MV cable joints 

Various types of MV cable joints exist and are used by network operators. Amongst 

other, some typical types of cable joints are: 

 straight joints (i.e. joints connecting the same type of cable) 

 transition joints (i.e. joints connecting different type of cable) 

 cross bonding joints (used in cable systems to minimize screen losses and to limit 

voltage rise). 

Straight joints are mostly used when two cables with the same insulation type need to be 

jointed together at a certain point in the cable system. There are two main types of straight 

joints, namely filled joints and massive joints. Within the category of filled joints a further 

distinction can be made according to the type of filling used. An overview of straight cable 

joint types and the related joint filling material is given in figure 2.2: 
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Figure 2.2: Schematic overview of straight MV cable joint types 

 

In filled joints, some type of insulating materials, such as oil, silicon gel or 

resin/bitumen, is used to insulate the casing from the cable conductors. In massive joints, 

the insulation material being is used is solid from the beginning. Processing of the massive 

joint can be done through heat or cold shrinking or pre-moulded joints can be used. In the 

figures 2.3 and 2.4, two examples of MV cable joints are shown. 

 

 

Figure 2.3: Example of a straight filled MV cable joint (source: Lovink Enertech).  

1: Joint body shield 

2: Connector 

3: Cable insulation 

 

 

 

 

1 
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Figure 2.4: Example of a synthetic heat shrink cable joint (source: Tyco Electronics). 

1: Electric field control 

2: Insulation 

3: Insulation Screen 

4: Metallic shielding 

5: Outer sealing 

 

2.2.3.1 Examples of Cable Joint Failures 

 

Different ageing mechanisms exist for both filled and massive joints. The most 

important ageing mechanisms for each of these joint types are discussed briefly here [12].  

Filled Joints – As mentioned in the previous section, filled joints can be filled with a 

material that stays viscous (i.e. oil or silicon gel) or with a material that hardens (i.e. resin of 

bitumen). A dominant ageing mechanism which exists for joints filled with viscous material is 

a lowered liquid level. Most of the time this is caused by the connected MV cable which 

soaks up the liquid from the cable joint due to thermal heat cycles as a result of daily load 

cycles as mentioned earlier in section 2.1.1. The liquid also gets contaminated and both of 

these causes result in impaired breakdown strength. Both, lowered liquid level and 

contaminated liquid can lead to partial discharges that may ultimately lead to a breakdown. 

Asymmetric conductor positioning inside a joint will create areas with higher field strength 

and this can cause heating of the conductor. Inclusions of air present in joints filled with 

materials that harden form the most important ageing mechanism. Consequently, partial 

discharges can occur, which in turn can lead to a breakdown.  

Massive Joints – Massive joints, either heat shrink, cold shrink or pre-moulded, are 

subjected to ageing mechanisms which are caused either by contamination (conductive 

parts) of the joint during the assembly in the factory or by voids between the conductors and 

the joint during the installation in the field. On-site installation of cold and hot shrink joints 

usually results in long flat cavities on the boundary between the joint and the cable 

insulation. These defects are caused by improper installation and inaccuracies, such as 

insufficient shrinking. In these defects (cavities) partial discharges can occur, causing 

degradation of the insulation material that ultimately can cause breakdown. 
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Throughout the literature, examples of typical MV cable joint failures can be found 

and will be used here in order to illustrate the above mentioned failure causes for these 

cable joints. These examples are according to [5], [8], [10] and more examples for cable 

terminations and cable failures can be found in these references. 

 
Decreased Insulation Level 
 

 

Figure 2.5: Liquid level decrease in a fluid filled cable joint. This occurs when the insulation fluid in 

fluid filled cable joints migrate to other places in the cable system [5]. 

 

This example according to reference [5] illustrates the problem in a filled cable joint when 

the insulation fluid (permanently viscous material) from the joints migrates into the cable 

insulation due to load cycles. As a result, the liquid level in the joint is decreased and a gas 

under pressure situation in the upper part of the joint (see figure 2.5) is created. 

Consequently, the upper high voltage connector will be located at the edge between the low 

pressure gas and insulation liquid. A situation occurs where a low pressure gas is present 

between the connector and the wall of the joint. This may result in the following undesirable 

situations: 

 The partial discharge inception voltage of the fluid surface decreases with the 

decreased gas pressure [11] 

 At the edge of the connector a field concentration is present and discharges will take 

place over the fluid surface and result in floating carbonised oil parts 

 A carbonised particle path may be formed between the connector and the earthed 

lead screen until the oil breakdown value is reached.   
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Displacement of conductors  

 Another example according to reference 

[5] is the case when conductors are 

displaced during assembly of a joint. 

Because the conductors are 

asymmetrically placed, regions inside the 

joint are present where the electric field 

strength is increased. Due to this, local 

heating of the conductor may occur. 

Usually, it is common in distribution 

networks to place over dimensioned 

accessories, so that the effect of 

increased field is minimal. Still there is a 

risk present for breakdown when 

multiple defects would occur, for 

example, asymmetric conductor 

poisoning in combination with cavities or 

moisture penetration.  

 

XLPE Joint Failure 

 

Figure 2.7: A tree like erosion on the 

surface of polymeric insulation material in 

a cable joint [5], [13]. 

 

This example according to [5] and [13] gives an 

indication of the effect on breakdown by chemical 

changes. Chemical changes may occur in 

polymer/air interfaces due to moisture ingress and 

is accompanied by partial discharges which degrade 

the interface. Chemical changes can result in the 

formation of crystals on the surface and at these 

points field intensification will occur, increasing the 

discharge activities. Due to this increased 

breakdown strength a tree like erosion (see figure) 

will be noticeable on the insulation material surface. 

At the tree tip, the field strength is increased and 

new breakdowns over short distances of the 

insulation material occur. The tree will grow over 

the surface of the polymeric material, bridging the 

electrode. The formation of a tree may take months 

or years, however, once a tree is initiated 

breakdown may follow within hours or minutes.   

 

Figure 2.6: Conductor displacement inside a resin 

insulated joint [5]. 
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Probable Moisture Ingress 

 

Figure 2.8: Fluid filled joint from a certain circuit containing electrical tracking marks (left) and 

probable moisture ingress [14].  

 

This example according to reference [14] is a filled cable joint which revealed traces of 

electrical tracking as result of probable moisture ingress. The joint was replaced and 

examined after excessive partial discharge activities were spotted. The probability of failure 

by moisture penetration in the cable insulation depends on the regional circumstances. In 

the Netherlands the ground water level can be relative high. Defective water barriers in 

combination with lowered insulation fluid levels (the case in the first example) will result in 

easy moisture penetration in cable joints.  
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2.3 Historical Failure Statistics 

 

2.3.1 Failure Statistics of 10 kV Distribution Networks 

 

The service area for electricity of Stedin can be divided in five areas. The 

geographical representation of these areas is given in figure 2.9.  

 

Figure 2.9:  Geographical representation of the service area of electricity of Stedin 

In this section, the historical failure statistics in the three largest areas of the 10 kV 

distribution networks of Stedin for the period 2004 until 2009 are described.  

 

Figure 2.10: Failure analysis of three 10 kV network related outages   
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Outages find their origin in a number of components such as: cable systems, 

switchgears, transformers, rail systems and others. The relative number of outage causes 

related to these categories is shown in figure 2.10. When these failure patterns of the three 

largest service areas of Stedin are investigated and compared with each other, it becomes 

clear that cable systems are associated to 88% of the outages in the MV networks. Under 

the label ―others‖ outage related to switching actions, protection malfunction, secondary 

installations and unknown reasons are reflected. 

The number of cable system failures for the area ―Region X‖ (1339 cable system 

related failures) is significantly higher than the other areas. It is interesting to investigate the 

historical failure statistics associated to cable system failures for the area ―Region X‖, 

especially if the focus is on components level failure patterns. By pursuing a component level 

analysis of the historical failure statistics, different failure behaviour of particular component 

groups can be found.  

 

Figure 2.11: Failure distribution for particular MV cable system parts. The failures are divided 

according to: internal and external failure causes and the associated cable system parts are: cable 

part, cable joint and cable termination  

From the historical failure statistics shown in figure 2.11, for the area ―Region X‖, it is 

indicated that external, third party, damages are causing 35.8% of the failures in the 10 kV 

cable network of Stedin. Furthermore, we found that cable parts are related to the most 

external causes, namely 32.6%. This is due to the extensive lengths of the cable 

infrastructure. Contrary to cables, cable joints are discrete confined components, and the 

probability of striking a joint during digging activities is by far smaller. 

Besides the external damages, the majority of breakdowns, which is 64.2%, are still 

caused by internal component related defects of the cable network. Noticeably, the majority 

of failures caused by internal defects occur in the cable joints (43.2%). The historical failure 

statistics for the 10 kV cable joints of the particular network ―Region X‖ is further analyzed in 

the next section. 
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2.3.2 Cable Joint Failures 

 

In the records of the failure database the cable joint types can be divided into three 

categories for the 10 kV distribution network. The three categories are based on the principle 

of joint insulation used. These three categories are: 

 Mass insulated joints (liquid mixture of oil and resin) 

 Oil insulated joints 

 Synthetic insulated joints (shrink or resin) 

For the area ―Region X‖, the failure distribution for the three cable joint categories is 

depicted in figure 2.12.  

 

 

 

 

 

 

 

 

 

 

The mass insulated joints have the highest amount of failures (57%), followed by the 

oil insulated joints (25%) and the synthetic insulated joints (18%) respectively. For the mass 

and oil insulated joints the typical cause of failure is due to ageing and ground conditions 

(environmental stresses). The failure data records also indicate that moisture ingress plays a 

key role in the failures of oil insulated joints. As result of water penetration, the insulation 

quality of the material decreases tremendously [15], as was already highlighted in section 

2.2 on cable joint failure examples.  

It is also important to touch on the fact that the joint population for mass insulated 

joints is larger and older than the oil and synthetic insulated joints. This may explain the 

higher share of joint failures for mass filled joints. Likewise, it is worth mentioning that the 

synthetic insulated joints have the youngest population, but still turn out to have a 

considerable share in the joint failure statistics. This could be due to early failure caused by 

poor workmanship or manufacture errors (human induced stresses).  

 

57%25%

18%

Joint Failure Distribution (Internal defect)

Mass Joint

Oil Joint

Synthetic Joint

Figure 2.12: Recorded failure distribution overview related to three categories of 

cable joints. The three categories are: mass filled, oil filled and synthetic 

insulated joints 
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 2.4 Conclusions 

 

We can conclude that from a general point of view, the MV distribution networks in the 

Netherlands are almost 100% constructed of underground power cables. It is common 

perception that underground systems are more reliable than overhead systems. Therefore, 

the reliability in the Netherlands is among the highest in Europe. However, we have found 

that, when the total (HV, MV and LV) power grid is considered, the MV distribution network 

is responsible for the major part of power-delivery outages. From many consulted literature 

we have found that the vast majority of distribution grid outages is due to failures in MV 

cables and more specifically their joints. 

We can conclude that, besides, external defect of non-electrical nature, more than 60-

70% of the breakdowns in the MV cable systems are caused by internal defects in the 

insulation systems. Furthermore, we can conclude that cable joints have higher likelihood of 

failure in a cable system due to various reasons. The most significant reasons why cable 

joints are subjected to higher likelihood of failure are because: 

 they are subjected to higher electrical, mechanical and thermal stresses 

 they are mounted in the field and most of the time under non ideal circumstances, 

particularly during outage situations 

 they are not subjected to expensive reliability testing procedures than the cable itself 

 the quality of mounting the accessories is quite sensitive to workmanship, experience 

and care of the involved employee.    

 

These conclusions, which are mostly based on literature review, are confirmed by 

findings from a historical failure database analysis for 10 kV MV distribution networks of 

Stedin. From this analysis we have found that cable systems are associated to 88% of the 

outages in these MV networks. A further analysis of cable system failures for an area named 

―Region X‖ indicates that 35.8% of failure causes are due to external (third party) influences, 

while 64.2% are due to internal (component) related causes. From this, we can conclude 

that a large portion of MV cable systems failures are due to ―real‖ component related issues. 

Furthermore, from an in-depth analysis on the historic failure statistics for cable joints we 

found that mass insulated joints have the highest amount of failures (57%), followed by the 

oil insulated joints (25%) and the synthetic insulated joints (18%). 
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3  

Statistical Failure of Components  
 

In chapter 2, an overview of the construction of general Dutch distribution networks 

and its characteristics was provided, with special emphasis on underground distribution 

network. Added to this, chapter 2 highlighted the most common defects that can occur in 

cable insulations and cable accessories, as it is these types of components that form the 

backbone of an underground distribution network. From the investigated failure data, in the 

last section of chapter 2, it became clear that cable systems contribute to the majority of 

outages in distribution networks. More specifically, cable joints are found to have the highest 

contribution to outages in the distribution network. In this chapter, the attention is shifted to 

the statistical modelling of component failure data. Statistical modelling can be used for 

developing failure rate models which can give insight into the failure behaviour of a certain 

population of components.  

Chapter 3 starts in section 3.1 with a general background of component failure rates 

and how they are related to the well-known bathtub curve. A distinction is made between 

the standard bathtub curve and the saw-tooth bathtub curve, and the latter describes the 

failure behaviour of a population of components when subjected to ageing and maintenance 

activities. This section ends with an example of deteriorating failure rates for different MV 

cable joints. 

In section 3.2, the theoretical background of statistical failure distributions is 

described. These statistical failure distributions are used for modelling component life data.  

Furthermore, statistical functions used for describing the failure distributions are provided, 

together with the most commonly used failure distributions. 

Statistical Life Data Analysis (LDA) is described in section 3.3 and, here, two methods 

are introduced which can be used for analysing continuous life data, namely the parametric 

method and the non-parametric method. The difference between these two methods lies in 

the assumption whether or not to use a predetermined failure distribution for describing the 

underlying data. Parametric methods are used when the purpose of life data analysis is to 

describe large amounts of information, characteristics and behaviours by a small number of 

parameters. Non-parametric methods are most appropriate when the data sets are small. In 

this section a straightforward procedure for applying parametric life data analysis is 

provided.  

Finally, section 3.4 gives an overview of the main conclusions of this chapter and also 

indicates how the knowledge gained in this chapter will contribute in chapter 4.    
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3.1 Background 

 

3.1.1 Component Failure Rate and Bathtub Curve 

 

Generally speaking, a distribution system is a building block of many components 

such as transformers, underground cables, cable accessories, circuit breakers and fuse cut-

outs. These components can be installed and interconnected together in different ways to 

form a working power delivery system. Usually, the occurrence of a power outage means 

that the system has failed in doing its job, which is delivering continuous and reliable power 

to the customer. Basically, outages occur because one or more of these building blocks have 

failed to fulfil its role in the system. In section 2.3, we found that many distribution system 

outages are due to component failures. 

Every distribution system component can be described by a set of reliability 

parameters [16]. Component failure rates and component repair times are examples of 

simple reliability models. Other sophisticated models are, amongst others, Probability of 

Operational Failures (POF), Permanent Short Circuit Failure Rate (PSCFR), Mean Time To 

Switch (MTTS) etc. These mentioned reliability parameters are important, but component 

failure rates have historically received the most attention [16]. The reason for this is that 

failure rates have unique characteristics and are essential for all types of reliability analysis. 

Before proceeding with the aspects behind failures and failure rates, it is necessary to first 

give a definition for these terms [16], [17]. 

Failure – The definition of failure as used in the context of this thesis will be an event that 

ends the life of a device.  

Failure rate – Failure rate is defined as the annual rate of failure. This can be either, the 

likelihood of failures (when predicting the future) as a portion of a population, or, the actual 

rate of failures as a portion of a population (if analyzing the past).  

Using scalar values, such as 0.025 failures per year for a transformer, might indicate 

that the failure rate is constant. But, it is commonly observed that the failure rates of certain 

components tend to vary with time (thus with age). In many reliability studies, the failure 

rate is assumed to be constant during the useful life thereafter it increases with component 

age. A graph that is commonly used to represent how components failure rate changes with 

time is the well know bathtub curve, which is shown in figure 3.1 [18], [19], [20].  
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Figure 3.1: A standard bathtub curve that is characteristic for failure rates of many electrical 

components that are prone to manufacturing errors, installation flaws and wear out 

It is important to note that the bathtub curve does not depict the failure rate of a 

single item, but the relative failure rate of an entire population of components over time. 

Figure 3.1 shows that in the early life time stages, newly installed electrical equipment has a 

relative high failure rate. This could be attributed to the possibility that the equipment may 

have manufacturing errors, was maybe damaged during transportation, or damaged during 

installation or installed poorly. This period, with monotonically decreasing failure rate, is also 

called the infant mortality period, the break-in period or the early failure period.  

The intermediate period, after the infant mortality period, is characterized by a nearly 

constant failure rate for a relatively long period. This period is also called useful life or 

normal life period. In this period failure rates can be modelled by single scalar numbers. All 

equipment age during their lifetime, and will eventually reach the end of useful life. This 

period is accompanied by an exponential increase in the failure rate due to ageing and wear-

out. This is why this period is referred to as the wear out period or end-of-life period. 

Different causes of failure could lead to several levels of rate of rise of the failure 

rate. Therefore, there is not a general consensus on the best way for modelling the wear-out 

period. However, it is clear that depending on the degree of ageing the slope of the failure 

rate curve can be large or small. This implies that failure rates tend to vary with time [16].  

 

3.1.2 Impact of Ageing on Component Failure Rate 

 

The degree of ageing will eventually result in an increase of the failure rate of 

components. Much of the available data [17] indicate that, inevitably, failure rates will 

increase when equipment are in the final stages of ageing. This increase is attributed to 

wear and ageing, and can be mitigated by maintenance. In practice, maintenance cannot be 

performed perfectly and often create their own temporary ―infant mortality‖ increase in the 

failure rate. This can be represented by using a saw-tooth bathtub curve [16], [17], [19]. 

The reason for the temporary increases in the failure rate is due to the possibility of 

maintenance crews causing damage or making errors during assembly. Equipment surviving 



43 
 

this short period of time is actually maintained properly and, therefore, the failure rates 

decrease accordingly. This situation is depicted in figure 3.2.  

 

Figure 3.2: The saw-tooth bathtub curve, which models the increasing failure rate of a component 

between maintenance services and indicates the reliability improvement after each maintenance 

service. Note however, that the failure rate still increases over time and that maintenance services 

create their own infant mortality 

In figure 3.3 an example, according to [16], for cable joint failure rates of different 

types is shown. In typical cases the failure rate increases slowly over time, while in other 

cases the failure rate can increase exponentially. It can also occur that in some cases the 

failure rate does not increase over time; it might even decrease over time. Unfortunately, 

these specific situations are rare and are not seen for power system equipment. In general, 

electrical equipment experience sufficient deterioration with time and therefore, failure rates 

does increase over time.  

 

Figure 3.3: This graph show an example of deteriorating failure rates for different MV cable joints. It 

also shows that joints of different voltage classes and with different features can have completely 

different failure characteristics. 

 

 



44 
 

3.2 Component Modelling 

 

3.2.1 Statistical Failure Distribution 

 

In reliability engineering and life data analysis, many component reliability 

parameters vary from component to component or from situation to situation. These 

parameters depend on many physical causes that individually or collectively might be 

responsible for the failure of a component at any particular instant [19]. For example, such a 

parameter is the time-to-failure of a component. Since the exact time-to-failure varies and 

cannot be known beforehand, it is considered a random variable. Random variables can be 

either discrete or continuous. Life time data analysis will deal almost exclusively with 

continuous random variables [21]. Random variables are represented by probability 

distribution functions, also known as failure distributions. Failure distribution functions are 

mathematical equations allowing a large amount of information, characteristics and 

behaviours to be described by a small number of parameters. 

In general, a certain failure distribution for a component is chosen based on one of 

the following considerations [19]: 

 The dominant failure mechanism satisfies most or all assumptions which underlie 

a certain statistical distribution 

 The choice is limited to the failure distribution that best fits the life time data.  

 A simple distribution, which is well suitable for analytical computations. 

A rough estimate of the reliability can be achieved in this way. The estimate is more 

accurate when the first two above mentioned considerations for choosing a distribution are 

better fulfilled. However, it is not possible to isolate all physical causes that might be 

responsible for a component failure and mathematically account for all of them, and 

therefore, the choice of a failure distribution is not simple and requires expertise and 

experience. 

Often used statistical functions, which describe the failure distributions are the 

probability density function (pdf), the cumulative distribution function (cdf), the reliability 

function (R) and the failure rate function (λ). These functions are described briefly here. 

From statistical reliability engineering, given a continuous random variable X, the 

following statistical failure functions can be denoted [22]: 

Probability Density Function – The probability density function (pdf) of a continuous 

random variable, X, is a function that describes the probability that X assumes a value in the 

interval [a, b]. If X is a continuous random variable, then the pdf, of X, is a function f(x) 

such that for two numbers, a and b with a<b: 

                  
 

 
and                                                                                                     

That is, the probability that X assumes a value in the interval [a, b] is the area under the 

density function. 
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Figure 3.4: Probability density function (pdf), which indicates the probability that X takes on a value in 

the interval [a, b] is the area under the density curve from a to b 

Cumulative Density Function – A cumulative distribution function, cdf, refers to the 

probability that the value of a random variable falls within a specific range. The cdf is a 

function F(x) of a random variable, X, and is defined for a number x by: 

                                                                                                                                          
 

    

 

The cdf is the integral of the pdf, and reflects the probability that f(x) will be equal to or less 

than x. 

 

Figure 3.5: A graphical representation of the cumulative distribution function (cdf), which describes 

the probability that a continuous random variable will be equal to or less than x 

Reliability Function – The reliability function, R (t), can be derived using the previous 

definition of the cdf function. This cdf (3.2) is also called the unreliability function, Q (t), 

which is the probability of failure in the region of 0 and t. From equation (3.2) the 

association between F(t) and Q(t) becomes: 

                                                                                                                                                       
 

 
     

In general, there are only two states that can occur: success or failure. These two states are 

also mutually exclusive (they cannot occur at the same time). Since reliability and 
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unreliability are the probabilities of two mutually exclusive states, the sum of both is always 

equal to unity. Therefore: 

            

            

              
 

 

 

            
 

 
                                                                                                                                                                                    

 

Figure 3.6: A graphical illustration of the reliability, which may be expressed through the pdf as the 

probability of survival and the probability of failure 

The Failure Rate Function – The failure rate function, λ(t), is a function of time and has a 

probabilistic interpretation, namely λ(t).dt  represents the probability that a device of age t 

will fail in the interval (t, t+dt). The failure rate function is equal to the probability of a 

component failing if it has not yet failed. Since the pdf is the probability of a component 

failing and the cdf is the probability that it has already failed, the failure rate can be 

mathematically characterized as follows; 

     
    

      
 

    

         
 

 

 
    

    
                                                                                                         

The failure rate function can be expressed as failures per unit time, e.g. 2 failures per year.  

 

Figure 3.7: This graph show an increasing failure rate function   
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The above mentioned quantities f(t), F(t), R(t) and λ(t) can be converted into each other. 

Therefore, they contain all information about the failure process of the system under 

consideration.  

The Mean Life Function – Another often used statistical measure is the mean life function, 

which provides a measure of the average life to failure of a component. 

   

             
 

 

                                                                                                                                            

The mean life is a global quantity that does not anymore contain time-dependent information 

previously stored in f(t), F(t), R(t) and λ(t) contain. 

Now that the basic theory and vocabulary for failure distribution functions have been 

discussed, the next section will present some common and useful failure distribution 

functions, which are applicable to life data analysis. 

 

3.2.2 Most Commonly Used Failure Distributions  

 

In general, a statistical distribution is fully described by the pdf. Throughout the 

literature many statistical probability distribution can be found and entire texts are dedicated 

to defining probability distributions. Some of these distributions seem to better represent life 

data and each one of them has a predefined form of pdf. The following failure distribution 

will be described briefly in this section and more detail can be found in [16], [19], [21], [22], 

[23]: 

 Normal distribution 

 Lognormal distribution 

 Exponential distribution 

 Weibull distribution 

 

3.2.2.1 Normal Distribution 

 

The normal distribution is one of the best known distributions and is the most widely 

used general purpose distribution. This distribution is used for several problems in HV 

technology especially regarding air insulated systems. The normal distribution is commonly 

referred to as a ―bell curve‖ because its pdf resembles the cross section of a bell. A normal 

distribution describes components which only fail as a result of wear process and, therefore 

the failure rate increases monotonically. The normal distribution is mathematically 

characterized by two parameters, which are the mean life, μ, and its standard deviation, σ. 

The standard deviation gives the extent of a certain spread. Formulae corresponding to the 

normal distribution are: 
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so: 

         
 

    
 
 
      

                                                                                                                                   

and: 

                  
 
 
      

   

  
 
      

      
 

 

                                                                                                              

One disadvantage of the normal distribution for modelling lifetime data is the 

possibility to allow negative time at the left hand limit of the distribution. Especially in the 

area of electric distribution system component modelling, random variables characterizing 

component reliability parameters are typically constrained to positive time to failures. 

However, provided that the normal distribution has a relatively high mean and relatively 

small standard deviation, the issue of negative failure times should not present itself as a 

problem.      

 

Figure 3.8: This figure shows the pdf, cdf, and failure rate function for the normal distribution for 

specific distribution parameters. In this example the mean value is 10 and the standard deviation is 3  

 

3.2.2.2 Exponential Distribution 

 

The exponential distribution is the most common failure distribution function used in 

the field of reliability analysis. This is due to the characteristic of a constant failure rate, 

which is representative of electrical components during their useful life. Mathematically, it is 

a simple distribution that is fully characterized by a single parameter, λ. The exponential 

distribution is used to model the behaviour of components with a constant failure rate or 

units that do not degrade with time or wear out. Formulae related to this distribution are: 
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so: 

                                                                                                                                                             

and: 

                                                                                                                                                         

The exponential distribution is not symmetric, thus it has no symmetric probability density 

function. 

 

Figure 3.9: This figure shows the pdf, cdf and failure rate function for the exponential distribution for 

specific (λ=0.3) distribution parameters   

 

3.2.2.3 Log-normal Distribution 

 

The log-normal distribution is closely related to the normal distribution and is a 

transformed distribution of the normal distribution. The log-normal distribution differs from 

the normal distribution because it uses the natural logarithm of the random variable, and the 

random variable is constrained to be nonnegative (it only exists for t>0). In this sense, it is 

assumed that, instead of the random variable t, the random variable g(t) is distributed 

normally. The lognormal distribution is commonly used to model lives of units whose failure 

modes are of fatigue-stress nature. Formulae related to the log-normal distribution are: 

         
 

     
 

 

 
 
 
          

        
 

 

                                                                                                       

Here μ’ is the mean of the natural logarithm of the time to failure and σ’ is the 

standard deviation of the natural logarithm of the time to failure. The constant k is related to 

the transformation g(t)=ln kt. The pdf is: 
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  The failure rate can be calculated with the expression of equation (3.5): 

     
    

      
 

    

         
 

 

 
    

    
                                                                                                      

The log-normal distribution is a distribution skewed to the right. Density functions of 

this shape are useful for characterizing reliability parameters such as repair times and 

switching times. 

 

Figure 3.10: This figure shows the pdf, cdf and failure rate function for the log-normal distribution for 

specific (σ=2 and μ=0.5) distribution parameters 

 

3.2.2.4 Weibull Distribution 

 

The Weibull distribution, named after Waloddi Weibull1, is the most generally used 

distribution for ageing failures and often used for power system components [23]. It is a 

flexible distribution that assumes various shapes to fit varying data sets, based on the value 

of the shape parameter, β, and the scale parameter, ƞ. The Weibull distribution is related to 

the exponential distribution and is a transformed version of it. In this sense, it is assumed 

that, instead of the random variable t, the random variable g(t) is distributed exponentially, 

where g(t) = tβ  and β changes the shape of the distribution. The formulae related to the 

Weibull distribution are: 

            
  

   

 
  
                                                                                                                                    

so: 

         
 

 
 
   

 
      

  
   
 

  
                                                                                                              

where,                                                                                

                                            
1 Ernst Hjalmar Waloddi Weibull (18 june 1887-12 oct 1979) was a Swedish engineer, scientist and mathematician 
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and: 

                  
 

 
 
   

 
 
   

                                                                                                             

Equations (3.15) through (3.17) are the probability equations for the three-parameter 

Weibull distribution. In these equations the parameter β, ƞ and γ are respectively the shape 

parameter, scale parameter and the location parameter. 

If the location parameter, γ, is assumed to be zero, the distribution then becomes the 

two-parameter Weibull and the pdf equations then is: 

         
 

 
 
 

 
      

  
 
 
  
                                                                                                                           

The power of the Weibull distribution lies not so much in a certain theoretical failure 

model, but in its flexibility to describe the different life stages of a population of components. 

The Weibull distribution is often used to model the bathtub curve. The shape parameter is 

able to model the different service lifetimes modes of the bathtub curve as follows: 

 0<β<1 represents infant mortality 

 β=1 represent random failures (similar to the exponential distribution) 

 β>1 represents ageing failure modes    

Three examples of Weibull distributions are shown in figure 3.11, in which the effect of 

varying shape and scale parameters on the distribution shape is shown. 

 

 

Figure 3.11: An illustration of three different 2-parameter Weibull distributions. By varying the scale 

parameter, ƞ, and the shape parameter, β, a wide variety of distribution shapes can be modelled. 

Figure (a) represents an infant mortality period with decreasing failure rate. Figure (b) represents an 

ageing period with β>1. Figure (c) also represents an ageing period, however with a higher rate of 

rise of the failure rate. When figures (b) and (c), both describing ageing periods, are compared 

witheach other, we find that the peaks of the pdf function are situated around the scale parameter. 

Additionally, in figure (c) the failure probability is less spread (low variability) than in figure (b).       

 

ƞ=0.5 

β=0.5 

ƞ=2 

β=4 

ƞ=6 

β=8 

(a) (b) (c) 
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3.3 Statistical Life Data Analysis (LDA) 

 

3.3.1 Parametric Distribution Fitting Method 

 

Methods for analysing continuous life data fall into two classes, distinguished by 

whether or not they make assumptions about the distribution of the data [24]. The failure 

distributions mentioned in the previous section are theoretical distributions that are 

described by their related parameters (shape parameter, scale parameter, mean, standard 

deviations etc). Methods that use distributional assumptions are called parametric methods, 

because parameters of the distribution are estimated based on the life data. All of the 

commonly used parametric methods assume that in some way the data follows the chosen 

failure distribution. Parametric methods are most appropriate for large data samples.  

An alternative method is the non-parametric method, which allows the user to 

analyze data without assuming an underlying failure distribution, and therefore, it is also 

known as the distribution free method. With this method, the data can be analysed based on 

histograms of the life data, and the cumulative distribution function (cdf) is based on the 

histogram and has no underlying mathematical distribution [25]. This method can have 

certain advantages as well as disadvantages. Non-parametric methods avoid potentially large 

errors caused by making incorrect assumptions about the distribution. However, the 

confidence intervals associated with non-parametric analysis are usually much wider than 

those calculated by parametric methods [21]. Another disadvantage of the non-parametric 

method is that making predictions outside the range of the observation is not possible. Non-

parametric methods are most appropriate when the data sizes are small.  

In general, non-parametric methods are less statistically powerful than their 

parametric counterparts, especially when the life data analysis is intended for creating more 

knowledge with regard to the failure behaviour of a population. Typically, by using the 

parametric method, the information associated with many data points can be reasonably 

modelled with one or two parameters. The parametric distribution fitting method will be used 

in this study for the life data analysis. Parametric distribution fitting comprises a number of 

steps and a straightforward procedure is depicted in figure 3.12 [18], [26]. In the following 

paragraphs, the process of parametric distribution fitting is discussed.  

 

 

Figure 3.12: Evaluation flowchart for life data analysis 
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3.3.2 Data Types 

 

The first step in the process of parametric distribution fitting is the collection of life 

data. Statistical failure distribution models rely extensively on the data, life data or time-to-

failure of a component, to make predictions. The accuracy of any prediction is directly 

proportional to the quality and completeness of the supplied data. The combination of good 

data and appropriate model choice, will usually results in acceptable predictions [21]. Typical 

for life data is that failure data is considered as a failure while the un-failed components (in-

service data) are used as suspended data. Suspended data means that the units are still 

operating at the time the reliability of these units is to be determined. The life data is 

gathered during the whole life of a technical component, starting with the installation and 

ending with its disposal. Furthermore, the collected life data for statistical analysis should 

have the following properties [18]: 

 Randomness  

 Independency 

 Homogeneity 

 Sufficient amount of data 

In the analysis of life data it is deemed to be advisable to use all available data. In 

practise, however, it is hard, expensive and sometimes impossible to collect all required life 

data. Therefore most of the time, the available data is incomplete or includes uncertainties 

as to when a component failed exactly. To interpret this, life data can be separated into two 

categories [21], [22]: 

 Complete Data (all units have failed) 

 Censored Data (not all units have failed) 

Complete Data – Complete data is used when the value of an observation is known 

completely. For example, if the time-to-failure for a cable joint population with 200 units is 

observed and all 200 units have failed (and the time-to-failures has been recorded), then the 

complete information as to the time of each failure is known. It goes without saying that 

processing complete data is much more efficient and easier than censored data. 

Censored Data – Censoring occurs when the value of an observation is only known to 

some extent. Censored data is often encountered when analysing practical life data, 

especially in case of electrical power systems where the majority of installed equipment is 

still in-service, and most of the time the exact age of equipment at the moment of failure is 

unknown. Three censoring schemes are possible, which are:  

1. Right-censored data (suspended data): When a data set is composed of components 

that did not fail, it can be referred to as right-censored data or suspended data. The 

term ―right-censored‖ indicates that the event is located to the right of the data set, 

which implies that certain components are still operating. 

 

2. Interval-censored data: This reflects uncertainty as to the exact times the equipment 

failed or exact age of an equipment upon failure. Interval data is often encountered 



54 
 

in asset related databases when components are not constantly monitored. 

   

3. Left-censored data: This censoring scheme is a special case of interval-censored 

data. With left-censored data the time-to-failure for a particular component is known 

to occur between time zero and some inspection time.   

In the present study, life data analysis is performed for 10 kV cable joints, and the 

consulted databases contain right-censored as well as interval-censored data. 

  

3.3.3 Failure Distribution Fitting and Parameter Estimation 

 

After life data is collected and prepared (categorized), the statistical analysis can be 

performed, which addresses the question of determining which failure distribution function to 

use and what the estimated parameter value is. Distribution fitting can be seen as a process 

that fits the data points from the life data with an appropriate distribution. After a certain 

distribution is selected to fit the data, the next step is to estimate the parameters of this 

distribution. Subsequently, these estimates can be used to construct reliability functions and 

plots. Estimated distribution parameters can be calculated on several methods. Three 

methods that are applicable to life data analysis are presented [21]. These are: 

 Probability Plotting 

 Rank Regression Analysis (Least Squares Estimation, LSE) 

 Maximum Likelihood Estimation (MLE) 

 

Probability Plotting – This is the simplest and least mathematically intensive method for 

parameter estimation and uses a specially constructed plotting paper. Based on the scales of 

the plot, the parameters can be estimated. This is illustrated by using an example according 

to reference [21] for the well-known Weibull distribution. In order to construct a probability 

plotting paper, the cumulative distribution function (cdf) of the Weibull distribution needs to 

be linearized to the form       .  

The cdf or unreliability function of the 2-parameter Weibull distribution is given by: 

            
  

 
 
  
                                                                                                                                    

The function can be linearized and becomes: 

      
 

      
                                                                                                                           

Setting the term in front of the equal sign to: 
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and: 

                                                                                                                                                                         

Then equation (3.20) can be rewritten as: 

                                                                                                                                                                 

Equation (3.23) is now a linear equation with slope β and an intercept with the y-axis 

of βln(ƞ). The next step is to construct the x and y-axis of the Weibull probability plotting 

paper. Such probability papers are available in standard formats for different distributions. 

The a-axis value will correspond to the failure time, since x=ln(T). Each x-value is simply the 

natural logarithm of each time-to-failure. For the y-axis value an additional step is required 

because we see from equation 3.21 that the y-coordinate is based on the unreliability, F(t). 

Therefore, we need to come up with an estimate for the unreliability for each time to failure 

in order to plot the data points. Usually, these unreliability estimates are accomplished with 

Median Ranks. Detailed explanation of the median ranks can be found in [21]. An 

approximation that can be used to estimate median ranks is called the Benard’s 

approximation [21] and has the form: 

   
     

     
                                                                                                                                                               

where N is the total number of failures and j is the failure order number. Based on 

the Benard’s approximation, we can calculate unreliability estimates for each time-to-failure 

as shown here: 

Table 3.1: This table shows the calculated unreliability estimates with the Benard’s approximation 

Units Time-to-Failure (hours) Median Ranks (%) 

1 16 10.91 

2 34 26.44 

3 53 42.14 

4 75 57.86 

5 93 73.56 

6 120 89.10 

   

Then, given the y and x value for each point, the points can easily be put on the plot 

as shown in figure 3.13. Once the points have been placed on the plot, a straight line is 

drawn through these points. Afterwards, the slope of the line can be obtained and this is the 

parameter β. To determine the scale parameter, ƞ, a mathematical manipulation of the cdf is 

required by setting T=ƞ. 

Substituting T=ƞ in equation (3.19) results in: 
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Thus, if F(t)=63.2% is entered for the y-axis, the corresponding value of T will be equal to ƞ.  

 

Figure 3.13: Probability plot for estimating Weibull distribution parameters by means of linearizing the 

cdf function. The slope of the probability plot is the shape parameter, β, and the x-axis intercept for 

F(t)=63.2% is the scale parameter, ƞ. In this example β=1.4 and ƞ=76 [21]   

This example has illustrated a simple but rather time consuming probability method 

for the 2-parameter Weibull distribution for a complete data set. The methodology can be 

more difficult, for example, if the data set contains suspensions. This method of parameter 

estimation requires much effort and is not consistent in the results. Furthermore, this 

method was used primarily before the widespread use of computers that are well capable of 

performing the calculations for more complicated parameter estimation methods, such as 

least squares and maximum likelihood methods [21]. 

Rank Regression Estimation – Rank regression parameter estimation or least squares 

method is, in essence, a more formalized method of probability plotting, in that it is a 

mathematically based version of probability plotting. The process of using rank regression to 

analyse life data requires a straight line to be fitted to a set of data points, in such a way 

that the sum of the squares of the distance of the points to the fitted line is minimized. This 

minimization can be performed in either the vertical or horizontal direction. If the regression 
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is on the x-axis, then the line is fitted so that the horizontal deviations from the points to the 

line are minimized. If the regression is on the y-axis, then this means that the distance of 

the vertical deviations from the points to the line is minimized. This is illustrated in figure 

3.14.  

 

Figure 3.14: This figure illustrates the rank regression method for parameter estimation. Rank 

regression in the y-direction minimizes the distance in the y-direction, while rank regression in the x-

direction minimizes the distance in the x-direction  

Detailed information on the equations for rank regression can be found in reference [21]. 

Essentially, the rank regression estimation method is quite good for functions that can be 

linearized and is generally best used with data sets containing complete data. For data sets 

containing large quantities of suspended data points, the next method called Maximum 

Likelihood Estimation can be a preferable estimation technique. 

Maximum Likelihood Estimation (MLE) – The MLE process is a method for estimating 

the most likely parameters, for a given distribution, that will best describe the data. This is 

achieved for a set of data by maximizing the value of the so called ―likelihood function‖ [21], 

[22]. The likelihood function is based on the probability density function (pdf) for a given 

distribution. For instance, consider a generic pdf: 

                                                                                                                                                                          

where, x represents the time-to-failures, and θ1, θ2,...,θk are the parameters to be estimated. 

In case of 2-parameter Weibull distributions, the parameters would be β and ƞ. The 

likelihood function for complete data is the product of the pdf functions, with one element 

for each data point in the data set. The likelihood function is: 

                    

 

   

                                                                                                                                  

where R is the number of failure data points in the complete data set. According to [21] it is 

often mathematically easier to manipulate the likelihood function by taking the logarithm of 

the function. Using the log-likelihood function does not affect the validity of the results. The 

log-likelihood function is: 

Rank Regression in 
the y-direction

Rank Regression in 
the x-direction
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It is required to find the values for the parameters that result in the highest value 

(maximum) for the log-likelihood function. This is commonly done by setting the partial 

derivative of each of the log-likelihood function of each parameter to zero: 

  

   
                                                                                                                                                              

Equation (3.28) results in a number of equations with an equal number of unknowns, which 

can be solved simultaneously.  

When dealing with censored data, be it right-censored or interval-censored data, another 

term should be included in the likelihood function. The term that is included for censored 

data includes the cumulative density function (cdf). The extended likelihood function has the 

form: 

                                      

 

   

 

   

                                     

 

   

                                                                

with, M is the number of suspended units, P is the number of units with interval time-to-

failures. And, Sj, is the j th time of suspension, while Il1 and Il2 are, respectively, the 

beginning and ending of the time interval.  

With this function (3.29), the analysis procedure proceeds as described in equations (3.27) 

and (3.28). The ability to take into account large number of suspensions is the foremost 

advantage that MLE analysis has over other parameter estimation techniques. MLE analysis 

is preferred over the other parameter estimation techniques when large number of 

suspensions are present and also when the data set gets larger. MLE is asymptotically 

consistent, which means that as the data set gets larger, the estimates converge to the true 

value.  

 

3.3.4 Goodness-of-fit Test 

 

When modelling life data, it is often desirable to diagnose the fitted model in order to 

assess whether the assumed model matches the data that it is supposed to represent. While 

engineering knowledge should always govern the choice of a failure distribution, 

nevertheless, there are many statistical tools that can help in deciding whether or not a 

distribution model is a good choice from a statistical point of view. The method for 

calculating the best fitting distribution is called the Goodness-of-fit Tests [21], [25], [27]. 

These methods can also be used to compare different distribution with each other. 
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  Graphical methods, e.g. probability plots, can give a visual assessment of the models 

fit. This method can be used with rank regression estimation, but should not be used for 

MLE. Another widely used goodness-of-fit test, when the rank regression estimation is 

applied, is the use of the correlation coefficient. This describes the distance between the 

data points and the fitted distribution and is usually denoted by ρ (rho). The closer the value 

of ρ is to 1 or -1, the better the linear fit is assumed to be. If the value of ρ is zero, it means 

that the data are randomly scattered and have no pattern or correlation in relation to the 

regression line model. When using the MLE method to estimate parameters of the 

distribution model, the likelihood value L can be used to assess the fit to the distribution data 

set. Contrary to the correlation coefficient, the likelihood value is not constrained by a certain 

range of possible values. The likelihood value L can be used to compare the fit of multiple 

distributions and the distribution with the largest L value is the best fit statistically. Other 

methods which can be used for rank regression and MLE are e.g. the Kolmogorov-Smirnov 

(K-S) test, chi-squared test, Anderson-Darling test [21] [27].  

Finally, the failure model that, according to engineering knowledge and statistical 

tests, is the best fit should be selected for further analysis.  

 

3.3.5 Confidence Bounds 

 

Estimating the precision of an estimate can be confusing, however, this is an 

important concept in the field of reliability engineering, leading to the use of confidence 

bound (or intervals). A confidence bound can be seen as an estimated range of values which 

are likely to include an unknown population parameter. To illustrate this concept, consider 

independent samples that are taken repeatedly from the same population. When the 

confidence interval is calculated for each repeated sample, then a certain percentage 

(confidence level) of the intervals will include the unknown population parameters. For 

example, when taking independent samples from a population, it may be noticed that 90% 

of the time the estimate is between X1% and X2%. The width of the confidence interval 

gives an indication of how uncertain the estimate of an unknown parameter is, and what the 

range of the plausible value could be.  

Confidence limits are the lower and upper boundaries of a confidence bound, which is 

the value that defines the range of a confidence bound. The confidence limits are generally 

described as being one-sided or two-sided.  

         There are several ways to calculate reliability confidence bounds for different 

distribution [21]. The Fisher matrix (FM) described in [28] and the likelihood ration bound 

method (LRB) method are both used very often. Detailed description and mathematical 

derivations of the different goodness-of-fit test can be found in reference [21]. 
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3.4 Conclusions 

 

Failure rates and statistical modelling of life data has been the central theme of this 

chapter. Overall, it can be concluded that a failure is an event that ends the life of a device. 

In general, failure rates are defined as the annual rate of failure. Moreover, it can be 

concluded that failure rates tend to vary with time. The levels with which time varying failure 

rates changes depend on the degree of ageing, maintenance actions and the actual age of 

components. In general, it is found that electrical equipment experience deterioration with 

time, and as a consequent, failure rates will increase over time.  

It is found that life data describes the entire life of a given component and 

qualitatively can be explained best by referring to the bathtub curve. It can be concluded 

that it is possible to model life data of components by applying parametric or non-parametric 

distribution fitting methods. The choice of an appropriate method is based on the goal of the 

application. When the purpose of the statistical life data analysis is to create knowledge with 

regard to the failure behaviour of a population, the use of parametric distribution fitting 

methods is to be preferred. In that way, large amounts of information, characteristics and 

behaviours can be described by a small number of parameters.  

In general, a statistical distribution is fully described by the pdf. From the pdf other 

functions such as cumulative distribution function F(t), reliability function R(t) and failure 

rate function λ(t) can be derived. These functions play an important role in reliability and life 

data analysis. Many failure distributions are possible and described thoroughly in literature. 

Some of these distributions tend to better represent life data and each one of them has a 

predefined form of f(t).  

3.4.1 Parametric Distribution Fitting Method Procedure 

 

The parametric distribution fitting method will be used for this study. Parametric 

distribution fitting comprises a number of steps and a straightforward procedure is illustrated 

in this chapter. In summary, the procedure steps for parametric distribution fitting are: 

 Data collection and preparation 

 Complete data 

 Censored data 

 Distribution parameter estimation 

 Probability plotting 

 Rank Regression 

 Maximum Likelihood Estimation (MLE) 

 Goodness-of-fit Test 

 Visual inspection 

 Correlation coefficient  

 Likelihood Value 

 Other methods, Kolmogorov-Smirnov test, Anderson-Darling test etc  

 Confidence bound  
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Finally, a statistical failure distribution is selected for the associated life data based on 

engineering knowledge and additional statistical tests. In the way forward, the results of the 

statistical analysis can be adopted for creating different information about the failure 

behaviour of components in the near future. With the failure rate function of the selected 

distribution and the population of components still in service a failure prediction for the 

coming years can be estimated. This will be the central theme in the following chapters. 
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4  

Application of Statistical Life Data 

Analysis for 10 kV Cable Joints  
 

 In chapter 3, the background of life data analysis and the corresponding statistical 

theory was described. In this chapter the application of statistical life data analysis for 10 kV 

cable joints is described.  

 Section 4.1 starts with the background of the case study. The analysis is carried out 

for a particular area within the total service area for electricity of Stedin. The reasons for 

selecting the 10 kV cable joints from this particular area will be listed in this section.  

 Subsequently, in section 4.2, the process of collecting life data for the cable joints, 

which is a combination of failure data and information of components that are still in service, 

is described. The available data from the dedicated databases are shown and, when 

required, additional assumptions for improving missing data are described in this section. It 

should be noted that the process of collecting and sorting data for the life data analysis has 

been the most time consuming process throughout this study. 

 The core of this chapter is discussed in section 4.3. In this section, the application of 

parametric distribution fitting is performed, followed by the selection of appropriate failure 

distribution for each type of cable joint population. The reliability software tool, Weibull++ 7, 

is used for performing the parametric distribution fitting analysis. Maximum Likelihood 

Estimation (MLE) is used for parameter estimation in accordance with Goodness-of-fit Tests 

and engineering knowledge of the failure mechanisms. The Goodness-of-fit Tests includes 

the Kolomogorov-Smirnov (K-S) test, a correlation coefficient and likelihood value test.  

Several conclusions of this chapter are drawn in section 4.4. These conclusions 

together with the results from this chapter will be used in chapter 5 to provide a number of 

tools required to support typical AM decision making processes.  

 

4.1 Background 

 

4.1.1 Case Study: Area “Region X” 

 

A case study for the application of statistical life data analysis is carried out for a 

particular 10 kV distribution network of Stedin. This area is called ―Region X‖. The reason for 

choosing this area as case study is twofold.  
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First of all, the frequency of 10 kV cable joint failures resulting in power delivery 

outages in this region is higher when compared to the other areas. In terms of statistics, this 

ensures that the statistical estimations are based on sufficient number of failure events (data 

points). Secondly, the available in-service population data for this particular analysis has 

been recorded with more accuracy and consistency for this area. These installation records 

constitute the historical population data, from which the age distribution for the overall cable 

system can be derived.  

Furthermore, in chapter 2 the historic failure statistics for 10 kV distribution network 

were discussed. From the component level failure analysis it was found that failures caused 

by internal defects in cable joints make up the majority of component related failures. 

Therefore, cable joint failure data together with their population data will be used for the 

application of statistical life data analysis.  

 

4.1.2 Analysis Steps 

 

In chapter 3.3, methods for analysing continuous life data were discussed. Out of 

these methods, the parametric distribution fitting method will be used and a straightforward 

procedure for applying this method is depicted in figure 3.12. A more detailed, case specific, 

procedure of the analysis is illustrated in figure 4.1 and 4.2. The different steps of the 

procedure will be discussed in this chapter, starting with the collection of available life data 

followed by the statistical analysis itself.  

 

 

Figure 4.1: Application of statistical life data analysis for 10 kV cable joints. This figure illustrates the 

procedure for performing the life data analysis. The relevant databases used for extracting failure and 

in-service data are shown 
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Figure 4.2: Detailed procedure flowchart for the life data analysis. In general the process follows two 

steps, which are: 1. Data Collection & Sorting and 2. The Parametric Distribution Fitting. When 

censored data is present, MLE parameter estimation may be used. The choice for using MLE depends 

on where the suspensions are located in the population and how many of them are available. MLE 

must be used when the suspensions are at the end of the population. In the study case for the 10 kV 

cable joints the suspensions are almost always located at the end of the population   

Note: 

In the past, the Dutch power distribution networks were owned and operated by 

many small regional utilities. These utilities managed and operated the network in different 

ways, and sometimes used different voltage levels. Later, during the regulation of the power 

sector, many smaller regional network operators merged into larger consolidated Distribution 

System Operators (DSO). For similar reasons the area ―Region X‖ can be further divided into 

two smaller areas. These areas are known as ―Region X1‖ and ―Region X2‖ in this report. In 

the remainder of this report only 10 kV cable joint data of ―Region X1‖ is considered. This 

choice is made because the in-service population data for the ―Region X2‖ was not 

completely available at the time of this study. 
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4.2 Collection of Available 10 kV Cable Joint Life Data 

 

4.2.1 Available Failure Data 

 

The Dutch utilities have been collecting outage data since 1976. This was the case for 

HV, MV and LV systems. In these early days, the failure data collection was primarily a paper 

matter and not all utilities participated in the reporting. Since 1991, a specific data collection 

tool is in use, developed by KEMA, and named ―KEMA Nestor‖. This failure reporting 

database has developed throughout the years and has improved.  

During the past years, the type of network components have changed, new voltage 

levels have been introduced, the utilities involved have changes and merged, the way of 

data collection has changed and the data definition has been adapted etc. More important 

are the changes imposed by the liberalization of the power sector, causing the importance of 

such failure databases to grow, especially as benchmarking tools. In Stedin, much effort is 

put into recording accurate failure information into the Nestor database. However, as result 

of the above mentioned changes, useful failure data has been lost or became incomplete. At 

the same time, discrepancies in databases are caused by changes in the way data is 

recorded. As a result, the available MV failure data for the period 2004 until 2009 could be 

used in a viable way for the present study.  

This implies that incomplete failure data is available, and, it should be addressed if 

and how this can be taken into account when performing distribution parameter estimation. 

The situation of incomplete failure data is schematically illustrated in figure 4.3. 

 

Figure 4.3: Typical availability of failure data in distribution network for the present study. The time 

window reflects the period where failure data is available. In the intermediate period, starting in 1991, 

failure data is often unavailable or incomplete 

 

In section 2.3.2 the failure statistics for cable joints have been discussed. It was 

mentioned that three categories of 10 kV cable joints can be distinguished. The differences 

between these three categories are in the principle of joint insulation used. The three 

categories of cable joints and the related share of failures, as described in section 2.3.2, are: 

~ 1976 ~ 1991  2004  2009

Time Window

Failure Data Available

Paper matter 
data collection 

Introduction of Kema 
Nestor database

New network components

New voltage levels

New way of data collection

Many utility merges

New data definition

Failure Data Unavailable
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 Mass insulated joints (57% of internal defect related failure share) 

 Oil insulated joints (25% of internal defect related failure share) 

 Synthetic insulated joints (18% of internal defect related failure share) 

Besides for information regarding the cause of failure and the number of joints failed, 

additional information about the age of the joints at the moment of failure is available. Most 

of the time, the exact age of the joints at the moment of failure is not known to the utility. 

To circumvent this problem, rough estimations of the age are reported by using age intervals 

(age bins). The total number of reported failures for the period 2004 until 2009 for each 

category of 10 kV cable joint together with the reported age intervals are shown in figure 

4.4. 

 

Figure 4.4: 10 kV joint failure records for the period 2004-2009 for three categories of cable joints. As 

result of unknown exact age at the moment of failure of a component, age intervals are used to 

estimate the age of the failed components 

 

It becomes evident from figure 4.4, that interval-censored data is available and 

should be taken into account when performing the failure distribution parameter estimation. 

This is due to the fact of the age bins, which are recorded to estimate the age of the joint at 

the moment of failure.  

In order to perform statistical analysis, the data should have properties such as, 

independency and homogeneity. However, due to the lack of detailed recorded information, 

it is necessary to make certain assumptions. From a statistical point of view, it is necessary 

to assume that the cable joint constructions are comparable with each other and operated 

under equivalent conditions (i.e. the same load and ambient temperature). 
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4.2.2 Available In-Service Data 

 

Prior to the mergers of small network companies, different database systems were 

used for collecting and keeping asset information. Nowadays, the intention is to move the 

different database systems to more centralized asset information inventories. The 

information required for this study, particularly the in-service data for the area ―Region X‖, is 

available in a data inventory system named TKV2. In this system, asset specific information 

can be found. The features recorded for the joint data in the TKV asset inventory database 

are used for analyzing the age distribution of the joints populations.  

Although Stedin is presently keeping complete and accurate asset installation data in 

dedicated databases, such records are often missing for assets that were installed more than 

20 to 30 years ago. Added to this, as mentioned earlier, the various mergers of smaller 

regional network operators to single distribution operators has caused losses of data records. 

While tracing back the lost data is a challenging task, the regulators however are forcing the 

utilities to manage and improve the asset data inventories more accurately. In this context, 

Stedin is applying data enhancement methods to improve asset inventory. Unfortunately, 

these data quality enhancement projects are still in progress and the results were not yet 

available for the present study. To circumvent this problem, assumptions were often made to 

compensate for the missing data. These assumptions were based on expert knowledge from 

the utility itself. 

The features captured for the joint data in the TKV database are used for analysing 

the age distribution of the joint population. However, for a large portion of the joint 

population the exact age (year of installation) is not specified, as result of missing data 

records. Likewise, for some part of the joint population the corresponding joint type is 

unknown.  

The first shortcoming is dealt with by dividing in terms of percentages, the number of 

joints without age proportionally and adding these joint to the joints installed in particular 

years. This way a new estimation of the number of joints with a particular age is achieved. A 

formula related to this procedure is: 

                      

 
                         

                          
                                                                           

With age,i being the age in years.  

The second shortcoming is dealt with by using information, based on expert 

knowledge, regarding the historic application of certain joint types. These experts still have 

knowledge regarding the history of when a certain type of joint was taken into operation. 

Using the expert knowledge, a rough estimation of the type of joints, for the unknown 

group, can be made. 

                                            
2 TKV: Ten Kilo Volt system (in Dutch: 10 kV systeem)  
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Table 4.1 illustrates the amount and quality of the available data for each category of 

10 kV cable joints population. 

Table 4.1: Installed number of joints for 3 categories of joint types. Also shown are the number of 

joints of which the age is not specified and the type of insulation material is unknown 

 Joint Data from TKV database  

Joint type 

# of joints without 

specified year of 

installation 

# of joint with 

specified year of 

installation 

Total number of 

recorded joints 

Percentage of 

―bad‖ data 

Synthetic insulated  10 754 764 1.3 % 

Mass insulated 8295 5351 13.646 60.8 % 

Oil insulated 785 14.525 15.311 5.1 % 

Unknown 994 803 1797 55.3 % 

   

Using the installation records which constitute the historical population data together 

with the appropriate estimated values for missing data, the age distribution of the overall 

cable joint populations can be depicted. This is illustrated in figure 4.5 for mass and oil 

insulated joints. In figure 4.6, the age distribution for the synthetic insulated joint population 

is shown. Both figures correspond to the area ―Region X‖. 

 

Figure 4.5: Age distribution in years of 10 kV mass & oil insulated cable joints population 
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Figure 4.6: Age distribution in years of 10 kV synthetic insulated cable joints population 

 

Figure 4.5 shows that a large portion of the mass insulated 10 kV joint population is 

older than 20 years. The oil insulated joints are still used frequently and the population is 

concentrated between 5 and 20 years. Figure 4.5 also reflects that mass insulated joint are 

not used anymore in ―Region X‖. The policy of Stedin in this area is to replace failed mass 

insulated joint with oil insulated joints. The numbers of installed mass and oil joints are 

larger than synthetic joints. The reason for this is that paper-insulated lead-covered (PILC) 

cables were, historically, applied for the majority of MV cable networks. Mass and oil 

insulated joints are usually used with PILC cables. Although polymeric cables have already 

been available since the early 1950s, it was only until several tens of years later that they 

could commercially compete with PILC cables [15]. Polymeric cables (usually XLPE cables) 

are often jointed by using synthetic insulated joints. From figure 4.6 it can be seen that the 

majority of synthetic joints are between 5 and 15 years old.  

The failure data, as well as the population still in service, are used as input for the 

statistical analysis. This analysis is carried out in the following section. 

 

4.3 Statistical Life Data Analysis 

 

4.3.1 Case 1: 10 kV Synthetic Insulated Cable Joint 

 

The parametric distribution fitting method, which is described in chapter 3, is used for 

modelling the life data of the 10 kV synthetic insulated joints. The proposed procedure which 

is described in section 3.3.1 is followed. In this case study, the failure data and in-service 

data for synthetic insulated joints is used.  
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4.3.1.1 Distribution Parameter Estimation & Goodness-of-Fit Test 

 

The reliability software tool, Weibull++ 7, is used for performing the parametric 

distribution fitting analysis. The Maximum Likelihood Estimation (MLE) is used for estimating 

the parameters of the failure distributions. During the life data analysis, Weibull++ 7 

provides guidance in selecting a distribution based on statistical tests. The program uses 

three factors in order to rank distributions. These factors include  

1. the Kolmogorov-Smirnov (K-S) test,  

2. a correlation coefficient (ρ)  

3. the likelihood value (LKV)  

In order to determine the ranking, these three tests are used in conjunction with 

weights assigned to each test. Each one of the above tests are weighted and combined into 

an overall value (OV), as shown in equation 4.2: 

                                                                               

The weight (or importance) assigned to each test can be defined by the user and 

depends on whether the parameter estimation method is rank regression or MLE. Once all 

test results have been calculated for each distribution, distributions are ranked for each test. 

From a statistical point of view, the distribution that is ranked first is the best fit for the data. 

This method as described above will be used for analysing the life data of the 10 kV 

synthetic insulated cable joints. From the analysis, it was found that more than one 

distribution seem to represent the data. In such situations, engineering knowledge is used 

together with the statistical test results to select an appropriate distribution. 

Table 4.2: Analysis details (Goodness-of-Fit) results for two competing distribution. With the K-S Test 

and the Normalized Correlation Coefficient, the higher the number, the worse is the fit. With the 

likelihood value, the closer the value to zero, the better the fit 

 K-S Test Normalized Correlation 

Coefficient 

Likelihood Value 

Normal Distribution 99.994 7.326 -232.638 

2-Parameter 

Weibull Distribution  

97.844 11.214 -214.004 

    

Generally, some rule of thumbs can be applied to judge the values of table 4.2. 

According to [21], the values in table 4.2 in themselves for each test do not mean much. 

These values are only useful when they are used for comparing two models of the same 

population. When the values for the K-S test and the Normalized Correlation Coefficient are 

high numbers, it is an indication that the distribution is not the best fit, statistically. In case 

of the Likelihood Value, the closer the value is to zero, indicates that the fit to the data set is 

better. From table 4.2 it can be seen that the 2-parameter Weibull distribution forms a better 
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fit to the data set in compliance with the K-S test and the Likelihood Value. A visual 

assessment, shown in figure 4.7, of the failure rate plots reveals that the two models, in fact, 

have no significant difference for the time interval of interest (0 and 50 years).  

Figure 4.7 shows a visual comparison of the normal distribution and the 2-parameter 

Weibull distribution. It is noticeable that the two models differ after roughly 55 years, after 

which the failure rates for the Weibull distribution are higher. However, from figure 4.6 it 

becomes clear that the oldest population of in-service synthetic joints are 50 years. Based on 

this, the choice for the Weibull distribution would not have significant impact on further 

analysis of the joint population. Furthermore, according to reference [29], Weibull 

distributions are found to represent breakdowns in polyethylene power cables insulation & 

accessories. Resulting from these two arguments, it is chosen to select the 2-parameter 

Weibull distribution for this case. 

It is important to note, as seen in this case, that visual verification is very useful in 

choosing the best fitting distribution. More specifically, if the there is little difference between 

the distributions, then visual inspections are necessary to make the final decision.  

      

 

Figure 4.7: Visual comparison of the failure rate curves for the same data set. The normal distribution 

is compared with the 2-parameter Weibull distribution. After 56 years the failure rates start to differ 

from each other 
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4.3.1.2 Statistical Analysis 

 

Based on the selected failure model, it is possible to describe the behaviour and 

characteristics of the 10 kV synthetic insulated cable joint population in terms of failure 

probability, failure rates and other related variables. The distribution functions for the 2-

parameter Weibull distribution are used for calculating the related failure probabilities.  

The fitted Weibull distribution results in a value for the shape parameter of β=4.48 

and for the scale parameter (characteristic life) of ƞ=52.39. The high value of the shape 

parameter, β>1, indicates that ageing is a predominating cause of failure. Additionally, a 

high shape parameter also indicates that failures are occurring close together, what simply 

implies a low spread (low variability) in the failures. This should not be a problem as long as 

the onset of the failures is relatively far on the time scale (scale parameter). This onset of 

the failures is related with the value of the scale parameter.  

The corresponding probability plots for the 2-parameter Weibull distribution of the 

synthetic joints are shown in figures 4.8, 4.9 and 4.10 for the cumulative distribution 

function (cdf), probability density function (pdf) and failure rate function, respectively. 

 

Figure 4.8: Probability plot of the 2-parameter Weibull Cumulative Distribution Function (cdf) for 

synthetic insulation joints with its corresponding 90 % confidence bounds (red lines). 

blue line: probability line 

red lines: upper and lower 90% confidence bound 

blue points: ranked failure data points 
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Figure 4.9: Probability density function (pdf) for the 2-parameter Weibull distribution. The probability 

that a synthetic insulated cable joint will fail within a certain range of age is indicated by the pdf plot  

 

Figure 4.10: 2-parameter Weibull Failure Rate Function for the synthetic insulated cable joint 

population. The corresponding 90 % confidence bound are shown in red. From approximately 28 

years the failure rate starts to increase steeper  
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The cdf plot shown in figure 4.8 refers to the probability that a synthetic insulated 

cable joint with a certain age will fail within a specific range. The statistical precision of the 

analysis is indicated in figure 4.8 by the corresponding confidence bounds. In figure 4.8, the 

90 % confidence bounds are shown, which are relatively narrow because of the large 

amount of data.  

It should be noted, that the data points shown in figure 4.8 do not seem to fit the 

related cdf curve. The reason for this is that when using MLE to draw a probability plot, the 

points are placed using a ranking method, while the line is drawn by using the estimated 

parameters (which are estimated with the MLE method). The MLE method is a numerical 

method, not a graphical method. This phenomenon will especially occur when the given data 

set contains many suspensions. Detailed explanations are outside the scope of this research, 

but for this report, it is important to note that when a line plotted using MLE does not seem 

to fit the ranked data points on the plot this does not necessarily imply a bad fit. Detailed 

information can be found in [21] [30].  

From the pdf plot shown in figure 4.9, the expected average lifetime of the synthetic 

insulated cable joint population can be estimated. This expected average lifetime, also called 

mean life, is calculated and estimated to be 48 years with an upper confidence bound of 51 

years and a lower confidence bound of 45 years.  

Furthermore, the failure rate curve depicted in figure 4.10 indicates that the failure 

rates of synthetic insulated cable joints are increasing as the population gets older and 

eventually this failure rate starts to get steeper. This resembles the wear-out period of the 

bathtub curve. Despite the fact that the failure rate is increasing, it can be seen that the 

relative increase is slow.  

 

4.3.2 Case 2: 10 kV Mass Insulated Cable Joint 

 

Again, the parametric distribution fitting method is used for modelling the life data of 

the 10 kV mass insulated joints. The proposed procedure which is described in section 3.3.1 

is followed. In this case study, the failure data and in-service data for mass insulated cable 

joints is employed. 

 

4.3.2.1 Distribution Parameter Estimation & Goodness-of-Fit Test 

 

From the life data analysis for the mass insulated cable joints, it is found that the 

lognormal distribution and the 2-parameter Weibull distribution are competing with each 

other. Taking into account the values of the statistical test (Goodness-of-fit test) together 

with engineering knowledge, the most suitable failure model is selected. 
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Table 4.3: Analysis results for two competing failure models based on the data set for mass insulated 

cable joints. With the K-S Test and the Normalized Correlation Coefficient, the higher the number, the 

worse is the fit. With the likelihood value, the closer the value to zero, the better the fit 

 K-S Test Normalized Correlation 

Coefficient 

Likelihood Value 

Lognormal 

Distribution 

97.89 2.26 -1056.08 

2-Parameter 

Weibull Distribution  

80.85 1.66 -1110.16 

 

 From table 4.3, it can be seen that the 2-parameter Weibull distribution forms a 

better fit to the data set in compliance with the K-S test and the Normalized Correlation 

Coefficient. Resulting from this, the 2-parameter Weibull distribution is selected as failure 

distribution for the gives data set of the mass insulated cable joints.  

 

4.3.2.2 Statistical Analysis 

 

The selected failure distribution, namely the 2-parameter Weibull function, is used to 

describe the behaviour and characteristics of the 10 kV mass insulated cable joint population 

in terms of failure probability, failure rates and other related variables. The distribution 

functions for the 2-parameter Weibull distribution are used for calculating the related failure 

probabilities.  

The fitted Weibull distribution results in a value for the shape parameter of β=4.93. 

The scale parameter (characteristic life) is ƞ=69.95. The characteristic life, ƞ, is the lifetime 

which on average 36.8% of the components under consideration would reach. This was 

discussed in chapter 3. The high value of the shape parameter, β>1, indicates that ageing is 

a predominating cause of failure. Additionally, a high shape parameter also indicates that 

failures are occurring close together, what simply implies a low variability in the failures. The 

corresponding probability plots for the 2-parameter Weibull distribution of the synthetic 

joints are shown in figures 4.11, 4.12 and 4.13 for the cumulative distribution function (cdf), 

probability density function (pdf) and failure rate function, respectively.        
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Figure 4.11: Cumulative distribution function (cdf) for the 10 kV mass insulated cable joint population. 

The 90 % confidence bounds are shown in red. It can be seen that the confidence bounds are 

narrow, because of the large amount of data 

 

Figure 4.12: Probability density function (pdf) for the 2-parameter Weibull distribution. The probability 

that a mass insulated cable joint will fail within a certain range of age is indicated by the pdf plot 
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Figure 4.13: The failure rate curve for the 10 kV mass insulated cable joint population. The 90 % 

confidence bounds are relatively narrow. Starting at 28 years the failure starts to increase slowly 

From the pdf plot depicted in figure 4.12, the expected average lifetime of the mass 

insulated cable joint population can be estimated. This expected average lifetime, also called 

mean life, is calculated and estimated to be 64 years with an upper confidence bound of 66 

years and a lower confidence bound of 63 years. As can be seen from this, the characteristic 

life is not the same as the expected average lifetime. The characteristic life, ƞ, is the lifetime 

which on average 36.8% of the components under consideration would reach, as mentioned 

earlier. 

 

4.3.3 Case 3: 10 kV Oil Insulated Cable Joint 

 

The parametric distribution fitting method is used for modelling the life data of the 10 

kV oil insulated joints. The proposed procedure which is described in section 3.3.1 is 

followed. In this case study, the failure data and in-service data for oil insulated cable joints 

is employed. 

 

4.3.3.1 Distribution Parameter Estimation & Goodness-of-fit Test 

 

 The life data for the 10 kV oil insulated cable joint population is fitted by means of 

statistical distributions. The results of the Goodness-of-fit Tests are used to determine the 
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best fit. In this case, the normal distribution forms a better fit to the data set in compliance 

with the K-S test, the Normalized Correlation Coefficient and the Likelihood value. In table 

4.4 a comparison between the Goodness-of-fit Test for the normal and 2-parameter Weibull 

distribution is made. Therefore, the normal distribution is selected as failure distribution for 

the gives data set of the oil insulated cable joints. 

Table 4.4: Goodness-of-fit Test results for the normal distribution and the 2-parameter Weibull 

distribution based on the data set for oil insulated cable joints. With the K-S Test and the Normalized 

Correlation Coefficient, the higher the number, the worse is the fit. With the likelihood value, the 

closer the value to zero, the better the fit 

 K-S Test Normalized Correlation 

Coefficient 

Likelihood Value 

Normal Distribution 4.13E-8 1.5113 -449.4378 

2-Parameter 

Weibull Distribution  

0.605 4.3889 -450.1114 

 

 

4.3.3.2 Statistical Analysis 

 

The selected failure distribution, namely the normal function, is used to describe the 

behaviour and characteristics of the 10 kV oil insulated cable joint population in terms of 

failure probability, failure rates and other related variables. The distribution functions for the 

normal distribution are used for calculating the related failure probabilities. 

The estimation of the parameters of the fitted normal distribution results in a mean 

value of μ= 54.03 and standard deviation σ= 15.02. The corresponding probability plots for 

the 2-parameter Weibull distribution of the synthetic joints are shown in figures 4.14, 4.15 

and 4.16 for the cumulative distribution function (cdf), probability density function (pdf) and 

failure rate function, respectively. 
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Figure 4.14: The cumulative distribution function (cdf) for the 10 kV oil insulated cable joint based on 

the normal distribution. The value of μ is said to be the point where R(t) = 50 %. This means that the 

estimate of μ can be read from the point where the plotted line crosses the 50 % cdf line  

 

Figure 4.15: Probability density function (pdf) for the normal distribution. The probability that an oil 

insulated cable joint will fail within a certain range of age is indicated by the area under the pdf plot.   
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Figure 4.16: The instantaneous normal failure rate for the oil insulated cable joint population. The 

corresponding 90 % confidence bound are shown in red 

From the normal pdf plot, depicted in figure 4.15, the expected average lifetime, also 

called mean life, μ, is 54 years. The upper limit for the mean life is 57 year, while the lower 

limit is 51 year. The mean life, μ, is also the location parameter of the normal pdf, as it 

located the pdf along the x-axis. The normal pdf has no shape parameter. This means that 

the normal pdf has only one shape, the bell shape. The standard deviation, σ, is the scale 

parameter of the normal pdf. 

 

4.3.4 Comparison of the three types of cable joint populations 

 

 Generally, for electrical components, the failure rate and the pdf are the most 

important criteria besides the failure time [31]. The failure rate and pdf allow electrical 

components of different assets to be compared with each other. In this context, the failure 

rates and pdf of the three types of cable joint populations are compared with each other. In 

order to compare the pdf curves, the calculated results for the three different types of 10 kV 

cable joints are shown together in figure 4.17. Subsequently, the calculated failure rates of 

the different cable joints are shown in figure 4.18.  



81 
 

 

Figure 4.17: Probability density functions (pdf) for three different types of 10 kV cable joints. Green 

pdf line – Synthetic Insulated Cable joint; Red pdf line – Oil Insulated Cable joint; Blue pdf line – Mass 

Insulated Cable joints  

 

Figure 4.18: Failure rate curves for the three different types of cable joint populations. The failures 

can be compared with each other. For all three populations their failure rates rise over years according 

to the increasing right wing of the bathtub curve. However, each joint population shows different 

behaviour  
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From figure 4.17, the density of failure probability can be examined for the three 

types of cable joints. The peak value of the density of failure probability for the synthetic 

insulated cable joint is higher than the ones for the mass and oil insulated cable joints. 

Typically, this illustrates that synthetic insulated cable joints have a higher probability of 

failure when the components age is near the peak value. Furthermore, it can be seen from 

figure 4.17 that the probability of failure for the mass insulated cable joints is lower than for 

the synthetic and oil insulated cable joints. For instance, from figure 4.17, the failure 

probabilities of the cable joints for the first 10, 20 and 30 year of operation are listed in table 

4.5. 

Table 4.5: Gives the probability of failure for a specific mission time for three cable joint types 

Type of cable joint Failure prob. for 10 

years 

Failure prob. for 20 

years 

Failure prob. 

for 30 years 

Synthetic insulated 0.06 % 1.33 % 7.90 % 

Mass insulated 0.0069 % 0.21 % 1.53 % 

Oil insulated 0.17 % 1.17 % 5.47 % 

 

Figure 4.18 depicts the failure rate over time for three different cable joint types. It 

can be seen that the failure behaviour is different for each population. Additionally, it can be 

seen that the populations get older quite similarly; however, the rate of rise of the failure 

rate with equipment age differs slightly from each other. Furthermore, as shown in figure 

4.18, the failure rates of the three cable joint populations are constantly low during the first 

several years of operation. In accordance with a typical wear-out failure mechanism, the 

failure rates will grow as the joints ages up to 20 years. Hence, the failure rate plots 

illustrate the increasing characteristic so that the distinct dependency on age is observable.  

In the case of synthetic insulated joints, it can be seen that the failure rates are 

higher at earlier ages. This can be as result of improper joint installation and the influence of 

this on early failures. Improper assembly of cable joints can cause defect, and therefore may 

result in breakdown on the mid-long term.   

 Subsequently, the failure behaviours of oil insulated joints and of mass insulated 

joints differ from each other, even though they belong to the group of filled joints. An 

important reason why the failure rates for the oil insulated cable joints are higher can be the 

result of lower liquid levels in oil type joints. As mentioned in section 2.2.3.1, a lowered 

liquid level in joints filled with viscous material is often due to thermal heat cycles as result of 

the daily load cycles. Basically, a lowered liquid levels results in an impaired breakdown 

strength, which leads to partial discharges and finally to a breakdown.  

 Finally, it is very important to note that the failure probability plots shown in this 

section are based on calculation with incomplete failure data. The historical failure data used 

for the joints is a subset of the total number of failures. Historic failure data for 6 years have 

been used. At the same time, assumptions that are based on utility specific knowledge are 
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made for the age distribution of the population which is still in service. Therefore, the failure 

rates obtained here are conservative values. In practice, the failure rates will tend to be 

higher than those implied by the models, since not all historical failures are reflected in this 

analysis. 

 

4.5 Conclusions 

 

 This chapter has discussed the application of life data analysis for practical data. The 

analysis was carried out for three different types of 10 kV cable joints used in the MV 

distribution cable network of an area named ―Region X‖. It was found that this area has the 

highest failure frequency for cable joints of this particular voltage level. Added to this, the 

quality of the available information, which is necessary for life data analysis, was found to be 

in relatively better condition when compared to the other areas. 

 Generally speaking, there are two types of data required for performing life data 

analysis, namely, failure data and suspensions (survived components). It was found that 

failure data for the three types of cable joints are completely available for a period of six 

years (2004-2009). Prior to that period, the databases have undergone many chances and 

many useful data was lost or incomplete. It can be concluded, that in most of the cases the 

exact age of a cable joint at the moment of failure is unknown to the repairman in the field. 

For that reason, estimations are made for the age by means of age intervals. Furthermore, it 

was found that information with reference to cable joints that are still in operation have 

discrepancies. Most of the time, the year of installation, hence age, of the cable joints is not 

specified. Especially, for mass insulated cable joints, a large portion (approximately 60 %) of 

the year of installation is not specified.   

 However, by using appropriate estimation techniques based on expert knowledge 

within the utility, much of the missing data can still be reasonably estimated to be used in 

the analysis. At the same time, it should be mentioned that Stedin has launched a data 

quality enhancement project in order to improve the missing data. This is necessary, 

because as a consequence of ageing workforce problems, it will be hard in the future to find 

experts with knowledge of installation records of old asset populations. 

 The collected failure data and survived unit data is used for performing the 

parametric distribution fitting analysis. From the analysis, it was found that the failure 

distribution with the best fit for: 

 the synthetic insulated cable joint population was the 2-parameter Weibull 

distribution 

 the mass insulated cable joint population was the 2-parameter Weibull 

distribution 

 the oil insulated cable joint population was the normal distribution            

When the probability plots for the three populations of 10 kV cable joints were 

compared with each other, it was found that the synthetic insulated joints have the highest 
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failure rate, followed by the oil insulated joints and finally by the mass insulated joints. At 

the same time, we can conclude that the failure rates will grow as the joints ages up to 20 

years in accordance with typical wear-out failure mechanisms. Before this time, the failure 

rates for the cable joints are constantly low. This suggests that the failure rates will tend to 

vary in different ways for each type of cable joint. When taking into account the probability 

density function (pdf), the expected average lifetime of the joints can be estimated. For the 

synthetic insulated joints the expected average lifetime was estimated to be 48 years, for the 

mass insulated joints 64 years and for the oil insulated joints 54 years. 

Fundamentally, the life data analysis performed in this chapter has illustrated that by 

applying appropriate statistical tools, large amounts of information, characteristics and 

behaviours of a certain distribution can be described by small numbers of parameters. 

Subsequently, the probability functions allow different assets to be compared with each 

other, and make reference to criteria like age, rate of rise of failure rates and mean life of 

components.  

With the results of the failure rate function and the population of joints still in 

operation, the expected number of failures can be calculated. This will be covered in the 

next chapter. In this way, it is possible to estimate the failure behaviour of the joint 

populations and to verify the developed failure probability models. 
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5  

AM Decision Support for Cable 

Joint Failures 
 

In chapter 4, the application of parametric distribution fitting for three different types 

of 10 kV cable joint life data was described. Probability models were developed for each joint 

population. Based on the selected failure probability model, we found that it was possible to 

describe the behaviour and characteristics of the joint population in terms of failure 

probability, failure rates and other related variables. In this chapter, the developed failure 

models are used to facilitate the asset manager with tools in order to make sound decisions. 

Firstly, section 5.1 starts with the background of possible tools which can be used to 

support the asset manager decision process, regarding the failure behaviour of a given 

population of components. Topics such as B(x)-lives, forecasting future failures and the 

failure count diagram will be described in this section. 

Subsequently, in section 5.2, the B(x)-lives, forecasting future failures and the failure 

count diagrams are analyzed for all three types of 10 kV cable joint populations. In this 

section a subsequent sensitivity analysis is carried out for the synthetic insulated joints. From 

this sensitivity analysis the usefulness of the probability models to assess certain suspects 

groups of joints is shown. Furthermore, having performed these different failure 

assessments, more knowledge with regard to failure probability, ageing and failure frequency 

at a certain age will be created.  

Finally, in section 5.3, conclusions considering the key findings of this chapter are 

described.     

    

5.1 Background 

 

5.1.1 Asset Management Support 

 

 Asset Management (AM) relies heavily on the use of information and data to facilitate 

the decision making process [2]. Even when databases are found to have missing or 

incomplete data, it is still possible to develop sensible failure probability models. Aspects, 

such as, failure probability, ageing and failure frequency are important [32]. Knowledge and 

information of these aspects can contribute in the decision process of AM. With the results of 

the statistical analysis from chapter 4, information regarding the failure probability and 

failure frequency at a certain age of asset groups in the near future of the three types of 10 

kV cable joints can be extracted. As a verification, the actual failures that occurred over the 
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past 6 years (period from 2004 to 2009 will be named verification period for the remainder 

of the text) can be used to assess whether the developed failure rate models are acceptable.  

Therefore, the results from chapter 4 will be used to assess the reliability of the three 

cable joint populations by means of evaluating the level of reliability based on the age of the 

components. Afterwards, the developed failure rate models will be used to estimate the 

expected number of failure in the future. Furthermore, a failure count diagram will be 

proposed, which would give valuable information about the number of failures occurring at 

certain ages for each population.  

  

5.1.2 B(x)-Lives 

 

Statistics give the possibility of comparing populations of components with each 

other. The use of the percentile life, or B(x)-lives in engineering terminology, is encountered 

in almost every industry. The B(x)-lives indicates a certain level of reliability based on the 

age of the component, see [18] [21] [25] [26] [32].  

In general, these parameters give the estimated time when the probability of failure 

will reach a specific point. For instance, if 10% of the cable joints are expected to fail by 15 

years of operation, then, it can be stated that the B(10) life is 15 years. Hence, a B(x)-life of 

B(10) means that 10% of the total population will fail at a certain age and that 90% 

survives. The values of the B(x)-lives can assist the asset manager in anticipating which level 

of reliability is acceptable and at which age this level of reliability is reached.  

Likewise, the asset manager can compare different groups of populations with each 

other. According to [32], different values can be used as an anticipated value for 

unreliability/reliability depending on the criticality of a failure. Furthermore, when the 

probability of failure becomes too high (unacceptable), components with ages higher than 

the accepted B(x)-life should be replaced or overhauled.     

 

5.1.3 Predicting Future Failures 

 

Ultimately, the asset manager is interested in anticipating how failure rates of certain 

assets will develop in the future. Predicting future performance is a very important objective 

for the asset manager. In this context, with the failure rate functions of the fitted 

distributions and with the population of components in operation (survived), a failure 

prediction for the near future (5 to 8 years) can be estimated.  

At the same, this enables a methodology for the validation of the developed failure 

rate model. Simply, this means that with the developed failure rate models, the predicted 

failures for the verification period can be compared to the actual (real) occurred failures. If 

the predicted failures for the verification period and the actual failures are comparable, it 
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means that the failure rate models are acceptable for predicting the future failures. 

According to [32], the expected number of failures Nf,e is calculated as: 

              

          

   

                                                                                                                                      

where       is the failure rate at age i, and     is the number of units (cable joints) 

with age i in-service. Furthermore, the corresponding confidence bounds can be taken into 

account. By doing this, the variation in the number of expected failure can also be 

addressed.  

 

5.1.4 Failure Count Diagram 

 

From figure 4.4 (number of reported cable joint failures for the period 2005-2009), 

we found that the age at which a failure occurs is not exactly known in many cases. 

However, with the calculated failure rates, a failure count diagram can be developed. This 

diagram is basically a probability distribution of when a component can be expected to fail. 

This diagram gives, in relative term, how many components of an installed population of a 

particular age contribute to failures.   

According to [17], the information from the failure count diagrams can be used to 

estimate the failure of components at a certain age, and additionally can be used for 

developing replacement or maintenance policies.        

The mentioned tools in sections 5.1.2, 5.1.3 and this section, when developed for a 

specific case, can form the foundation for studies of proposed maintenance actions, 

replacement policies as well as other AM strategies. The most important aspect in the 

following analytical results is the fact that such analysis of age and failures can provide the 

type of tool required to support AM decision making. 

 

5.2 10 kV Cable Joint Failure Assessment 

5.2.1 B(x)-Lives 

 

As already explained, the B(x)-lives can be used to obtain the age of a component 

where a certain level of reliability is obtained. With this information the asset manager can 

decide which level of reliability he or she is willing to accept, and what age the components 

need to reach in order to fulfil such levels of reliability. The B(x)-lives for the three different 

populations of 10 kV cable joints are shown in table 5.1. The following B(x)-lives are listed: 

B(1), B(10), B(25), and B(50). Note that B(50) is the same as the mean life of the 

populations under consideration. 

 



89 
 

 

Table 5.1: B(x)-lives of synthetic, mass and oil insulated 10 kV cable joints. The corresponding upper 

and lower 90 % confidence bounds are also listed for all three populations of cable joints 

 Synthetic Insulated 
Cable Joint Population 

Mass Insulated Cable 
Joint Population 

Oil Insulated Cable 
Joint Population 

Component Age (year) Component Age (year) Component Age (year) 

 90 % 
Bound 

B-life 90 % 
Bound 

90 % 
Bound 

B-Life 90 % 
Bound 

90 % 
Bound 

B-life 90 % 
Bound 

B(1)-life 17 19 21 26 27 28 18 19 20 

B(10)-life 30 31 33 43 44 45 33 35 37 

B(25)-life 38 40 42 53 54 56 42 44 46 

B(50)-life (mean life) 45 48 52 67 65 63 51 54 57 

 

From table 5.1, the asset manager can assess and compare the reliability of the three 

cable joint population with each other. For instance, it can be seen that 10% (B(10)-life) of 

the total synthetic insulated joint population will fail at an age of roughly 31 years. The oil 

insulated cable joints reach comparable ages (35 years) for the same level of reliability, while 

the mass insulated joints reach a higher age of roughly 44 years.  

Additionally, the B(x)-lives can be used to assess how many cable joints are actually 

older than a certain chosen B(x) level. The level of B(x)-life which the asset manager can 

choose for a certain population of components, depends on the network type, component, 

impact of failure etc. If, for example, the asset manager is interested in getting to know how 

many cable joints of each population are older than the B(10)-life, then the calculated B(10)-

life together with the in-service cable joints can be used for this. In table 5.2, the amount of 

cable joints older than the B(1) and B(10)-life is listed for each type of 10 kV cable joint. 

Table 5.2: The level of reliability for a given population together with the % of cable joints which are 

older than the related B(x)-life. The asset manager can decide which level of reliability criteria to set 

for each population 

 % of population older 
for synthetic joints 

% of population older 
for mass joints 

% of population older 
for oil joints 

B(1)-Life 35% 46% 23% 

B(10)-Life 21% 5% 2% 

 

 From table 5.2 it is found that 35% (680 joints) of the synthetic insulated cable joint 

population is older than the B(1)-life, while 21% (410 joints) of the same population is older 

than the B(10)-life. In case of the mass insulated joints, 46% (6530 joints) of the 

populations is older than the B(1)-life, while 5% (640 joints) is older than the B(10)-life. For 
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the oil insulated joints the values are 23% (3160 joints) and 2% (125 joints) older than, 

respectively, the B(1)-life and B(10)-life. The total population for the synthetic, mass and oil 

insulated joints are approximately, 1950, 14460 and 15340, respectively.   

Based on these analytical results, the asset manager can decide which portion of the 

population is in the end of life given the selected level of reliability. From these analytical 

results, more knowledge is created on the reliability of the total population. In the way 

forward, the asset manager can prepare maintenance or replacement policies in order to 

deal with the portion of the population which has exceeded the required reliability criteria.  

 

5.2.1.1 Sensitivity Analysis 

 

In this section, a sensitivity analysis is performed for the synthetic insulated cable 

joint population. In section 4.2, the collection of available 10 kV cable joint data was 

described. Both, failure data and in-service data for all three types of 10 kV cable joints was 

discussed and presented in section 4.2. The total number of reported failures for the period 

2004 and 2009 for the 10 kV synthetic joints is shown in figure 5.1. 

 

Figure 5.1: In this figure the internal defect failures for 10 kV synthetic insulated joints is shown for 

the period 2004-2009. 

Stedin, indicated that the failures which are reported in the age intervals [20-40] and 

[>40] years are probably failures of 10 kV resin joints that were applied in the 1970s. 

Usually, these types of joints were registered as synthetic insulated joints. These types of 

joints were used in 10 kV three-phase paper-oil insulated MV cables. These joints are known 

as ―Nekaldiet‖ joints.  

These joints have contributed significantly to outages because of breakdown of the 

resin insulation; however, they are not applied anymore. Therefore, Stedin was interested to 

assess whether the population of synthetic cable joints without the suspect ―Nekaldiet‖ 
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failures had a higher reliability or not. In order to analyse this it was required to exclude the 

recorded ―Nekaldiet‖ failures in the age intervals [20-40] and [>40] years from the statistical 

analysis.  

By using expert knowledge from the utility, we decided to exclude all the failures that 

were recorded in the age bin [>40] years from the analysis, because we had the impression 

that the ―Nekaldiet‖ joints are in operation long enough to have reached ages higher than 40 

years. Furthermore, a number of failures from the age interval [20-40] years were also 

excluded from the statistical analysis. We had the impression that, not only ―Nekaldiet‖ 

joints, but also other types of synthetic insulated joints could have been in operation longer 

than approximately 20 years. In this context, two scenarios were used to exclude recorded 

failures from the age interval [20-40] years. In the first scenario 10 failures were excluded, 

while in the second scenario 20 failures were excluded. 

 A sensitivity analysis is performed in this section for two scenarios. The parametric 

distribution fitting method was used for calculating the probability distributions and 

parameters. 

 Besides the recorded failure data, the in-service population data for synthetic joints 

was also adjusted for this sensitivity analysis. Together with the experts we decided to 

exclude all installed synthetic joints which were older than 40 years. We had the impression 

that it was very likely that this group of synthetic joints belonged to the ―Nekaldiet‖ type of 

cable joint, since; these joints were installed a few decades ago. 

 Two scenarios were analyzed. Scenario 1 excludes all failures from the age bin [>40] 

years and 10 failures from the age bin [20-40] years. Scenario 2 excludes all failures from 

the age bin [>40] years and 20 failures from the age bin [20-40] years. The corresponding 

B(x)-lives of these two scenarios were compared with the B(x)-lives of the original case 

(described in section 5.2). The results are shown table 5.3. 

Table 5.3: B(x)-lives of synthetic insulated 10 kV cable joints for the original case and two other 

scenarios. 

 Synthetic Insulated 
Cable Joint Population 

Original 

Synthetic Insulated Cable 
Joint Population  

Scenario 1 

Synthetic Insulated 
Cable Joint Population 

Scenario 2 

Component Age (year) Component Age (year) Component Age (year) 

 90 % 
Bound 

B-life 90 % 
Bound 

90 % 
Bound 

B-Life 90 % 
Bound 

90 % 
Bound 

B-life 90 % 
Bound 

B(1)-life 17 19 21 12 15 17 11 14 17 

B(10)-life 30 31 33 31 33 37 34 39 46 

B(25)-life 38 40 42 42 49 56 49 62 78 

B(50)-life (mean life) 45 48 52 55 67 82 67 92 125 
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 From the analytical results shown in table 5.3, we can conclude that the reliability 

(B(x)-life) of the 10 kV synthetic insulated joint populations is higher when the suspect 

―Nekaldiet‖ joints are excluded from the analysis. 

 In figure 5.2 the failure rate plots for the original data and the two mentioned 

scenarios are shown for the synthetic insulated cable joints. Resulting from figure 5.2, it can 

be found that the failure rates are considerably lower for the synthetic joints when the 

suspect ―Nekaldiet‖ failure records are excluded from the statistical analysis. Thus, the 

―Nekaldiet‖ joints negatively impact the overall reliability of the synthetic insulated joint 

population. 

More specifically, the asset manager should consider removing all ―Nekaldiet‖ cable 

joints which are still in operation in the area ―Region X‖ and probably other areas as well.        

 

 

Figure 5.2: This figure shows the failure rate plots for three subsets of life data for synthetic insulated 

cable joints. The blue failure plot represents the original data record, while the black failure plot 

represents scenario 1 and the green failure plot represents scenario 2 
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5.2.2 Predicting Future Cable Joint Failures 

 

With the developed failure rate models for each population and the number of 

components in operation, the asset manager can anticipate the development of future cable 

joint failures. This is illustrated in this section for the three cable joint populations. Before 

proceeding with the analysis, some basic aspects need to be mentioned, which are: 

 Each time one cable joint fails, it is repaired by two new cable joints. Therefore 

when predicting the number of failure for the next year, this should be addressed. 

However, mass insulated joints that failed are not replaced by two new mass 

insulated joint. Instead of this, it is the policy of Stedin to repair all mass insulated 

joint failures with two new oil insulated joints. This is taken into account in the 

analysis. 

 

 Every failed cable joint is removed from the population and the failure predictions 

are estimated by taking into account the remaining population of cable joints. The 

numbers of failed joints in a particular year are replaced by new joint for the next 

year of interest. 

 

 When predicting the future failures, it is required to increase the age of the 

remaining population for every next year. Therefore, the population of cable 

joints is made one year older for every subsequent year to come. 

By using equation 5.1, the expected failures are estimated. This is estimated for the 

coming 6 years for all three types of cable joints. Besides predicting the future number of 

failures, an additional analysis is performed in order to assess whether the developed failure 

rate model is in agreement with the actual historic failures. 
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5.2.2.1 Failure Prediction for Synthetic Insulated Joints 

 

The calculated failure rate curve shown in figure 4.10 for the synthetic insulated cable 

joint data together with the population of synthetic joints still in operation is used for 

predicting the number of expected failures for the coming 6 years. This is illustrated in figure 

5.3. 

Figure 5.3: Estimation of the number of total expected failures for the coming six years for 10 kV 

synthetic insulated joints. The red line gives the number of predicted failure starting at 2010 until 

2016. The corresponding 90% confidence bounds are also shown. In the period 2004-2009 the actual 

number of failure (purple line) is compared to the estimated number of failures for that period 

From figure 5.3, it can be seen that the estimated number of failure (green line) 

based on the analysis are comparable with the actual number of failures in the period 2004-

2009. As result of this, it can be concluded that the developed failure rate model reasonably 

describes the failure behaviour of the considered population.  

The developed failure rate model for the synthetic joints is used together with the 

population of 2010 to predict the number of failures in that particular year. For 2010, a 

number of 18 failures are predicted with a variation between 13 and 25 when taking into 

account the respective 90% lower and upper confidence bounds.  

From this point on, for every next year, the ages of the remaining population of joints 

are made one year older. At the same time, the estimated failures from the previous year 

are subtracted from the population. It is also taken in account that every joint failure 

introduces two new joints. With this information, the asset manager can determine whether 

the expected numbers of future failures are acceptable, or, whether structural replacement is 

necessary in the coming years. 
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5.2.2.2 Failure Prediction for Mass Insulated Joints 

 

The calculated failure rate curve, shown in figure 4.13, for the mass insulated cable 

joint data together with the population of mass joints still in operation is used for predicting 

the number of expected failures for the coming 6 years. This is illustrated in figure 5.4. 

 

Figure 5.4: Failure prediction for the mass insulated joints together with the corresponding 90% 

confidence bounds. From these analytical results it can be seen that actual failures are higher than the 

estimated failure for the period 2004-2009. However, the number of failures is rising for the coming 6 

years. 

From figure 5.4, it can be seen that, for the period 2004-2009, the estimated failures 

are lower than the actual occurred failures. This might indicate that the developed failure 

rate model does not properly describe the failure behaviour of the mass joint population. 

However, it might also mean that the estimations that were made for the part of the 

population with unknown age are not in accordance to the actual situation.  

It should be noted, that for almost 60% of the mass joint population no exact age 

was specified in the database. This 60% of the population corresponds to roughly 5300 mass 

joints. These joints were divided proportionally to the joint with age. In order to assess 

whether this estimation, regarding the 5300 joints, might be an improper estimation, the 

5300 joints are not divided proportionally but according to a certain age interval. The new 

estimation for the in-service joints is based on engineering knowledge from the utility.  

From this expert knowledge, it was found that mass joints were mostly used a few 

decades ago. Thus, it is assumed that the 60% of mass joints without specified age might be 

between 25 and 50 years old. Based on the new assumption, the parametric distribution 
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fitting procedure is performed again and the resulting failure rate function together with the 

population of mass joints in-service (including the new estimation) is used to determined the 

expected future failures. In figure 5.5, the expected number of failures based on the new 

population estimations is shown. 

 

Figure 5.5: Second failure prediction for mass insulated joints based on new assumption for the 

portion of the joint population without specified age. In this case, it is assumed that the joints without 

specified age are 25-50 years old. With this information a new failure prediction is made. For the 

period 2004-2009 it is found that the total number of actual failures is comparable with the total 

number of estimated failure for that period     

From figure 5.5 it can be seen that with the developed failure rate model and the 

second attempt of estimating the 60% of unknown population, the number of calculated 

expected failures is more is agreement with the actual occurred failures in the period 2004-

2009. Under these circumstances, it can be concluded that based on the analytical results, it 

seems probable that the population of mass joints without recorded age (60% of the 

population) is older than 25 years.  

However, it should be noted, that these assumptions are based on the available data 

at the moment of the present study. Another way of arguing might reveal that there have 

been more failures of mass joints in the past, of which the records are missing, and 

therefore the failure rates obtained here are conservative values. Whether the mass joint 

population is older or the number of failures in the past is higher, in either case, the asset 

manager now has more knowledge on the failure behaviour of the mass insulated joints.  

This case illustrates that, by choosing appropriate statistical models and engineering 

reasoning it is still possible to create valuable information on the failure behaviour of 

population, even in case of uncertain or missing data.  
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Subsequently, if it is assumed that the expected failure shown in figure 5.5 is 

representative for the mass joint population, then it can be found that the number of failure 

will be increasing every year. In 2010, roughly 77 failures are expected and this number will 

grow to approximately 125 failures in 2016. Even though failed mass joints are replaced by 

oil insulated joints, the number of failures in the coming years will gradually increase. Finally, 

this information can form the foundation for the asset manager to determine if the expected 

numbers of future failures are acceptable, or, whether structured replacement is necessary 

in the coming years. 

 

5.2.2.3 Failure Prediction for Oil Insulated Joints 

 

The calculated failure rate curve, shown in figure 4.16, for the oil insulated cable joint 

data together with the population of oil joints still in operation is used to predict the number 

of expected failures for the coming six years. This is illustrated in figure 5.6. 

 

Figure 5.6: The number of calculated expected failures for the oil insulated cable joints. Also shown 

are the corresponding 90 % confidence lower and upper bounds. For the period 2004-2009, the 

number of calculated expected failures for the oil joints (green line) is reasonably comparable with the 

number of actual occurred failures (purple line). Furthermore, the failure prediction for six year from 

now illustrates that the number of failures are increasing gradually every next year    

From figure 5.6, it is found that the number of actually occurred failures for the 

period 2004-2009 is reasonably comparable to the calculated number of failures, except for 

the year 2009. In 2009 Stedin encountered higher number of failures then in the years prior 

to 2009. Ground conditions (ground sagging mostly due to peaty soil) are recorded as the 

main cause of this higher number of failures in 2009.   
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In general, it can be concluded that the developed failure rate model reasonably 

describes the failure behaviour of the considered population. Subsequently, the failure rate 

model is used for predicting the number of failure in the future. Resulting from this, it is 

found that the number of failures is increasing for every following year. From this point on, 

for each following year, the population of joints in service are made one year older. 

Concurrently, the estimated failures from the previous year are subtracted from the 

population. It is also taken into account that every joint failure introduces two new joints.  

With this information, the asset manager can determine if the expected numbers of 

future failures are acceptable or whether structured replacement is necessary in the coming 

years.      

 

5.2.3 Failure Count Diagram 

  

With the failure count diagram, it will be possible to assess the impact that typical 

increasing failure rates have on the installed equipment base. This diagram gives, in relative 

terms, how many components of a particular age contribute to the total number of failures 

of the installed population. 
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5.2.3.1 Failure Count Diagram for Synthetic Insulated Joints 

 

As figure 5.7a shows, every year, as the cable joints grow older, their failure rate 

increases. 

 

 

(a) 

 

(b) 

Figure 5.7: Shows the failure rate plot and failure count diagram for the synthetic insulated joint 

population. (a) Shows the failure rates as function of age. (b) Shows the number of failures occurring 

each year. The maximum is reached in year 47, when the combination of escalating failure rate and 

number of remaining units peaks 
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However, every year, because many joints have already failed in the previous years, 

there are fewer units remaining to potentially fail in the next year. In this case, the number 

of units that can be expected to fail in any year is the failure rate for that age multiplied with 

the number of remaining in that year. It is interesting for the asset manager to anticipate 

when this value reaches a maximum. Figure 5.7b illustrates this for the 10 kV synthetic 

insulated cable joint population. Resulting from figure 5.7b, it is found that the maximum 

number of failures is reached in year 47 for synthetic insulated joints.  

This maximum is reached when a combination of rapidly increasing failure rate and 

high number of remaining units peaks. More than half of the failures occur in the range of 21 

and 51 years. Despite the higher failure rate for joints older than 51 years, (see figure 5.7a) 

it can nevertheless be concluded that failures in intermediate years are the real cause of the 

system reliability problem. It is still those synthetic joints that have reached 47 years of 

service that contribute most to the systems problems. Perhaps, cable joints older than that 

fail with higher likelihood but there are most of the time too few to generate a high total 

failure count. The failure count diagram is a representation of the relative contribution to 

failures of synthetic joints as function of their age. This diagram can be seen as an important 

tool in managing reliability and replacement policies.  

5.2.3.2 Failure Count Diagram for Mass Insulated Joints 

 

 Similar failure count analysis is performed for the mass insulated joint population 

assuming, that for the 60% of the population with unknown age, the age is between 25 and 

50 years. In figure 5.8, the corresponding failure rate plot and failure count diagram are 

depicted. 

 

(a) 
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(b) 

Figure 5.8: Shows the failure rate plot (a) and failure count diagram (b) for the 10 kV mass insulated 

joint population. From figure (b) is can be seen that no failures occur for mass joints younger than 16 

years. Due to the fact that mass joint are not applied anymore, and resulting from this, every failed 

mass joint is replaced by oil joints. The failure count diagram peaks at 46 years 

 As figure 5.8a shows, every year, as the mass cable joints grow older, their failure 

rate increases. From figure 5.8b, it is found that the maximum number of failures is reached 

in year 46 for mass insulated joints. Again, this maximum is reached when a combination of 

escalating failure rate and high number of remaining units peaks. Although, the failure rate 

for this population increases after 56 years (see figure 5.8a) it is found from the failure count 

diagram that few mass joints survive to encounter such high failure rates and to impact the 

reliability. Instead, as was the case for the synthetic joints, the high impact failure level that 

is the main source of failures for the utility are found to be caused by mass joint of 

intermediate age (36 years until 51 years). 
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5.2.3.3 Failure Count Diagram for Oil Insulated Joints 

 

 The failure rate plot and the failure count diagram for the oil insulated joints are 

depicted in figure 5.9. 

 

 

(a) 

 

(b) 

Figure 5.9: The failure rate function and failure count diagram for the 10 kV oil insulated cable joint 

population are shown in this figure. From figure (b) is can be seen that the maximum value is reached 

at 20 years, while after 36 years the number of failure slightly increase again. The first peak at 20 

years is due to high number of oil joints applied in last two decades 

The failure count diagram for the oil insulated cable joint population looks different 

than the ones for the synthetic and mass insulated joints. In figure 5.9b, it can be seen that 
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the maximum value for failures is reached at an earlier time, at year 20. Because the policy 

of Stedin is to replace all failed mass joints with oil joints, the population of oil joints for the 

past two decades has grown. Resulting from this, there are many units with ages between 

11 and 26 years and therefore, the contribution to failures is high.  

From here on, the number of failures decreases until age 36 and then gradually 

increases again. This peak in failures is reached when a combination of escalating failure 

rate and high number of remaining units peaks again. Thereafter, even though the failure 

rate keeps increasing every year, the number of failures actually occurring decreases, 

because there are fewer and fewer oil joint left each year and therefore the net number of 

failures decreases. 

 

5.3 Conclusions 

 

In this chapter, the results of the statistical analysis are used as a fundament to 

develop a number of tools for evaluating the failure behaviour of the three types of 

investigated cable joint populations. The information from these evaluations can be used to 

assist the asset manager in his or her decision, regarding the failure behaviour of the three 

types of investigated cable joint populations. In general, the most important conclusion that 

can be drawn from the foregoing analytical results of this chapter is that the analysis of age, 

expected future failures and total number of failures can provide the type of tool needed to 

support the AM decision making processes.  

It is found that with the results of the B(x)-lives the asset manager can anticipate 

which level of reliability is acceptable. With the selected B(x)-life, the asset manager can 

assess at what age this level of reliability is reached. Furthermore, when the probability of 

failure exceeds a certain value, components with ages higher than the selected B(x)-life can 

be replaced or overhauled. When the B(1)-lives for the three joint population are compared 

with each other, it is found that 35%, 46% and 23% of the population for respectively the 

synthetic, mass and oil joints are older than the B(1)-life. The B(10)-lives are also compared, 

and from this, it is found that 21%, 5% and 2% of the population for respectively the 

synthetic, mass and oil insulated joints are older than the B(10)-life. In the end, the level of 

B(x)-life which the asset manager can choose for a certain population of components, 

depends on the network type, component type, impact of failure etc. 

Additionally, we found from the sensitivity analysis that with the failure probability 

models technical reliability assessment can be carried out for suspect group of assets within 

a population. From the sensitivity analysis for the ―Nekaldiet‖ joints, we found that the failure 

records of these joints had a negative impact on the overall reliability of the synthetic joint 

population.   

Forecasting asset performance is one of the main responsibilities of the asset 

manager. With the developed failure rate models for each population and the number of 

components in operation, the asset manager can anticipate the development of future cable 

joint failures. From the analysis of the synthetic joints, it can be concluded that the number 
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of failure will increase in the years to come. Furthermore, it is found that the backward 

estimated number of failures, based on the analysis, is comparable with the actual number 

of failures in the period 2004-2009. As result of this, it can be concluded that the developed 

failure rate model reasonably describes the failure behaviour of this population.  

A similar conclusion can be drawn for the oil insulated cable joint population.  

In case of the mass joints the situation was found to be different. For the mass joints 

the actual failures occurred in the period 2004-2009 where higher than the calculated 

number of failures. Therefore, a second recalculation was performed for analyzing this 

population. In the second attempt the 60% of mass joints without specified age where not 

divided proportionally across the existing population, but divided according to a certain age 

interval. Based on utility knowledge, the 60% of mass joints without known age were 

assumed to be between 25 and 50 years old. Afterwards, the failure rate model and the new 

age distribution for the mass joint population were used to calculate the number of failures. 

From this, it is found that the calculated number of failures is comparable with actual 

occurred failure for the period 2004-2009. Thus, it can be concluded that the mass joint 

population might be older than previously estimated. Another way of arguing might reveal 

that there have been more failures of mass joints, of which the records are missing, and 

therefore the failure rates obtained here are conservative values. 

The failure count diagram makes it possible to determine when a component can be 

expected to fail. From the failure count diagram analysis, it can be concluded that the 

maximum number of failures is reached when a combination of escalating failure rate and 

high number of remaining units peaks. This maximum value is found to be different for each 

cable joint population. A general conclusion, which holds for all three joint populations, is 

that failures in intermediate years are the real cause of system reliability problems. 

 Accordingly, it can be concluded that the very high failure rates that develop after 50 

to 60 years of operation have little impact on the utilities quality of service, because few 

component survive to see such high failure rates. From the analysis, it arises that the 

synthetic joint population reaches the maximum number of failures for components with 

ages of roughly 47 years. From the failure count diagram for the mass joints, it can be 

concluded that the maximum number of failures for mass joints can be expected to occur 

with an age of roughly 46 years. Finally, for the oil insulated joints, it can be concluded that 

the expected number of failures peaks for components with an age of around 20 years. 

Added to this, another peak is found for component with an age of roughly 46 year.  

With the information, which has now been developed for each joint population, the 

asset manager can determine which level of reliability is acceptable and which part of the 

population has a high failure probability and thus deteriorates the utilities quality of service. 

The maximum age of certain components in relation to the requested reliability and the 

failure expectation gives valuable information to the asset manager. Basically, resulting from 

the analytical results, it can be concluded that even though the data was either missing or 

incomplete, it is still possible to develop sensible probability methods in order to provide the 

asset manager with useful information for supporting AM decision processes. 
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6  

Conclusions & Recommendations 
 

In this chapter, the conclusions of this study are presented and recommendations on 

further improvement of this study are made. 

Firstly, in section 6.1, the conclusions are presented in two parts. In the first part, 

conclusions are presented with regard to the failure related defects in MV underground 

distribution networks and the analyzed historic failure statistics for 10 kV MV underground 

networks. In the second part, conclusions are presented with regard to the applied statistical 

life data analyses method. Some general conclusions are drawn with regard to the statistical 

life data analyses. Thereafter, some conclusions are drawn with regard to the investigated 

10 kV cable joint populations. 

Lastly, in section 6.2 recommendations will be made on further improvement of this 

study. Data availability will form an important aspect, as well as challenge, in further 

improvements and thus adoption of probabilistic models in AM decision-making processes.      

 

6.1 Conclusions 

 

Historic Failure Statistics 

 From the analyzed historic failure statistics, we can conclude that more than 80% 

of power-delivery outage related failures in 10 kV MV networks are caused by 

failures in cable systems. 

 

 From a component level failure pattern analysis of cable systems, we can 

conclude that, for area ―Region X‖, approximately 65% of breakdowns are caused 

by internal component related defects. The remaining 35% of failures are caused 

by external defects such as excavator digging. 

 

 We also concluded that out of the 65 % of internal component related defects, 

the majority of failures (44%) occur in 10 kV cable joints. 

 

 From  more in-depth historic analysis, we can conclude that in data records three 

types of 10 kV cable joints can be distinguished and their share in the overall 44 

% of joint failures are: 

 Mass Insulated Joints -> 57% 

 Oil Insulated Joints -> 25% 

 Synthetic Insulated Joints -> 18% 
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Statistical Life Data Analysis (LDA) 

 It was found that, when sufficient life data and appropriate statistical tools (which 

take into account interval-data and censored-data) are available, then, statistical 

life data analysis can be applied to assess the failure probability of a certain 

population. 

 

 We can conclude that, with life data analysis large amounts of information, 

characteristics and behaviours can be described by small numbers of parameters. 

Subsequently, the probability functions allow different assets to be compared with 

each other, and make reference to criteria like age, rate of rise of failure rates 

and mean life of components.   

 

 We can conclude that the failure probability models of a certain population of 

components can give valuable information with regard to failure behaviour, which 

can facilitate sound AM decision processes in a mid and long term basis. 

 

Application of LDA with regard to three types of 10 kV cable joint populations 

 From the LDA we found that the failure distribution with the best fit for: 

 the synthetic insulated joint populations was the 2-parameter 

Weibull distribution 

 the mass insulated joint population was the 2-parameter Weibull 

distribution 

 the oil insulated joint population was the normal distribution 

 

 When the failure rate plots of the three populations are compared with each 

other, we can conclude that the synthetic insulated joints have the highest failure 

rate, followed by the oil insulated joints and finally by the mass insulated joints. 

 

 We can conclude that, during the first 20 years of operation the failure rates for 

all three populations of joints are constantly low, however, after this period the 

failure rates grow as the joints ages. Each cable joint population exhibits a 

different rate of rise of the failure rate over time. 

 

 Furthermore, we found that the average expected lifetime for the synthetic 

insulated joint population was estimated to be 48 years, for the mass insulated 

joint population 64 years and for the oil insulated joint population 54 years. 

The failure probability models are applied as a fundament to develop a number of 

tools for evaluating the failure behaviour of the three types of 10 kV cable joint populations.  

 We can conclude that, with the B(x)-life concept the asset manager can assess 

which level of reliability is acceptable. If the probability of failure exceeds a 

certain accepted level of reliability, then the asset manager can consider 

structured replacement/overhauling or maintenance. 
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 Furthermore, we found that the developed failure rate models can be used to 

statistically predict the occurrence of joint failures in the future. These analytical 

results can facilitate the asset manager to determine if the forecasted joint 

failures are acceptable or if replacement is necessary in the coming years. 

 

 With the developed failure count diagrams, it is possible to determine when a 

component can be expected to fail based on the installation records and failure 

rates. 

 

 From the failure count diagram, we can conclude that the maximum number of 

failures for a population of cable joints is reached when the rapidly increasing 

failure rate and high number of remaining units coincide. 

 

 We can conclude that the failures in intermediate years are the real cause of 

system reliability problems. For instance, we found for the synthetic and mass 

insulated joint population that the failures in intermediate years are around 20-50 

years. However, for oil insulated joints the numbers of failures are found to peak 

around 10-25 years and a small peak after 36 years.  

 

 Accordingly, we can conclude that the very high failure rates that develop after 

50-60 years of operation make little impact on the utilities quality of service, 

because few components survive to see such high failure rates.     

 

On the whole, we can conclude that, even though the data was either missing or 

incomplete, the analytical results described in this thesis have shown that it is possible to 

develop sensible probability models to facilitate the asset manager in typical AM decision 

processes. 

As underground cable systems age in service, these systems will be characterized by 

increasing failure rates and result in higher costs for repair and consumer costs for degraded 

system performance. Presently, most approaches are reactive and are not able to strictly 

address the fact that cable system failure rates will rise in future years. Probabilistic failure 

rate modelling can help utilities to better predict failures and asset managers in their decision 

support regarding replacement, maintenance and cost-effective budget plans.  

  

6.2 Recommendations 

 

 To further adopt statistical failure probability modelling into the AM decision-

making framework, data collection will play an important role in the usefulness of 

these models. Therefore, it is recommended that power distribution utilities keep 

complete and accurate records with regards to cable system installation, 

replacement, repair and outage data. Understanding and estimating the costs and 
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benefits of such database systems is an important aspect for companies, as 

database systems are costly for an organisation. Therefore, the utilities are 

recommended to only record data that is required for certain decision-making 

goals. Based on the goal and strategy of the asset manager, the level of detail of 

recording data can be better focused. 

 

 The developed annual failure rate models can be applied to determine the 

economical optimum replacement time and cost. Therefore, further economic 

evaluations considering annual failure probability are recommended. 

 

 In this thesis, the effect of component age on failure probability was extensively 

discussed, however in literature it is found that the electro-thermo-mechanical 

stresses should also be addressed in representative life models. For instance, a 

thorough electro-thermo-mechanical life model of electrical components can be 

established by the Arrhenius Model. Most of the time utilities do not have detailed 

electro-thermo-mechanical information; however, with the shift towards more 

condition based maintenance in distribution networks, this information will 

become more available in the near future. Further research in this context is 

recommended. 

 

 Finally, the presented parametric distribution fitting method has been applied to 

cable joint data, however, it should also be applicable to other asset groups. 

Based on this, it is recommended to study the application of this method for other 

asset groups in order to gain more knowledge of statistical methods for different 

component groups. Preferably, the analysis can be beneficial for transformer, 

underground cable, circuit breakers, voltage and current transformers etc, 

however, it can be applied to non-electrical components such as gas and heat 

pipe infrastructures.  
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Appendix A 

MLE vs. Rank Regression 
 

In this appendix, we will discuss why Maximum Likelihood Estimation (MLE) is 

suggested to be used for parameter estimation when the data set contains a large number of 

suspensions. This will be explained with an example [33] of a comparison of MLE and Rank 

Regression analysis when the data set contains suspensions.  

Rank regression method is the most widely used method for performing suspended 

items analysis; however, there is a shortcoming to the method that is important to 

understand.  When using rank regression methods to take into account that some 

components did not fail, only the position (time-to-failure) where the failure occurred is 

taken into account, and not the exact time-to-suspension. The following example illustrates 

this for two cases of life data. 

Table A1: Two data sets to be analyzed with rank regression and MLE methods for comparison 

purposes [33] 

Case 1 Case 2 

Number State*, 

F or S 

Life of item, 

hr 

Number State*, 

F or S 

Life of item, 

hr 

1 F1 1000 1 F1 1000 

2 S1 1100 2 S1 9700 

3 S2 1200 3 S2 9800 

4 S3 1300 4 S3 9900 

5 F2 10000 5 F2 10000 

* F-> Failed, S-> Suspended 

    

Usually, the shortfall mentioned above for rank regression is significant when the 

number of failures is small and the number of suspensions is large and not spread uniformly 

between failures. This is the case for the example data in table A1. In cases like this it is 

usually recommended to use the MLE instead of rank regression, since MLE does not look at 

the ranks or plotting positions, but rather considers each time-to failure or suspension. 

The estimated parameters for the Weibull 3-parameter distribution using rank 

regression method are for both cases (case 1 and 2): 

 β=0.81 and ƞ= 11,383 hr 
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However, the MLE results for case 1 are: 

 β=1.32 and ƞ=6883 hr 

And the MLE results for case 2 are: 

 β=0.93 and ƞ=21,447 hr 

This example has shown that there is a difference in the results of the two data sets 

calculated using MLE and the results using rank regression. The results for both cases are 

the same when the rank regression estimation technique is used. This is due to the fact that 

rank regression considers only the positions of the suspensions. However, the MKE results 

are quite different for the two cases. For case 2 the value of ƞ is much higher, which is due 

to the higher values of suspension times in case 2. This is because MLE technique, unlike 

rank regression, considers the value of the suspensions when estimating the parameters. 
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Appendix B 

Cable Joint Type Overview  
 

In this appendix, we will briefly indicate the type of cable joints that are categorized 

under synthetic, mass and oil insulated joints. Most of the time the type of cable joint that 

belongs to a certain category is based on the insulation material used for the cable joint and 

the brand. In table B1 an overview of which type of joint belongs to which category is 

shown. The categorization is based on information from the utility itself. 

 

Table B1: In this table an overview of the different types and categories of 10 kV cable joints as 

recorded in the TKV database is shown. The information in this table has been made available by 

Stedin 

Date 9/4/2009 

Code Description from TKV Type of Insulation 

0 Lovink KGX Oil 

1 Lovink Oil 

2 Massa  Mass 

3 Nekaldiet Synthetic 

4 Olie Oil 

5 Raychem Synthetic 

6 DON SO127  Unknown 

7 Schutmof  Mass 

8 Onbekend Unknown 

9 Cellpack  Synthetic 

A Tece  Synthetic 

B Euromold Synthetic 

C Kabeldon SMTD Oil 

D Elastimold Synthetic 

E Tyco Synthetic 

F Kabeldon ABB Oil 

 

 From table B1 it can be seen that for a number of cable joints the utility was unable 

to specify the type of insulation material. Furthermore, the names mentioned in the second 

column of the table are vendor specific names. For instance, a Kabeldon cable joint is a 

product of ABB. The information from this table is used to categorize the three different 

cable joints population, namely, synthetic insulated, mass insulated and oil insulated 10 kV 

cable joints. 
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