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A B S T R A C T

The frequency response analysis describes the steady-state responses of a system to sinusoidal inputs at
different frequencies, providing control engineers with an effective tool for designing control systems in the
frequency domain. However, conducting this analysis for closed-loop reset systems is challenging due to
system nonlinearity. This paper addresses this challenge through two key contributions. First, it introduces
novel analysis methods for both open-loop and closed-loop reset control systems at steady states. These
methods decompose the frequency responses of reset systems into base-linear and nonlinear components.
Second, building upon this analysis, the paper develops closed-loop higher-order sinusoidal-input describing
functions for reset control systems at steady states. These functions facilitate the analysis of frequency-domain
properties, establish a connection between open-loop and closed-loop analysis. The accuracy and effectiveness
of the proposed methods are successfully validated through simulations and experiments conducted on a reset
Proportional–Integral–Derivative (PID) controlled precision motion system.
1. Introduction

This paper aims to develop a method for analyzing the frequency
response of reset control systems. The development of the reset element
starts from the Clegg integrator (CI), introduced in 1958 (Clegg, 1958).
The CI is a linear integrator encapsulating with a reset mechanism,
which enables the output of the CI to be reset to zero whenever its
input crosses zero. Through the Describing Function (DF) analysis, the
CI demonstrates the same gain-frequency characteristics as a linear
integrator but exhibits a significant phase lead of 51.9°. This phase-
frequency characteristic highlights the ability of the reset element to
overcome the Bode gain-phase restriction in linear controllers (Chen
et al., 2018). Numerous other reset elements have been developed, in-
cluding the First-order Reset Element (FORE) (Horowitz & Rosenbaum,
1975; Krishnan & Horowitz, 1974), the Second-order Reset Element
(SORE) (Hazeleger et al., 2016), partial reset techniques (Beker et al.,
2004), Proportional-Integral (PI) + CI (Baños & Vidal, 2007), reset
control systems with reset bands (Baños et al., 2011), Fractional-order
Reset Element (FrORE) (Saikumar & HosseinNia, 2017; Weise et al.,
2019, 2020), and Constant in gain Lead in phase (CgLp) (Saikumar
et al., 2019). Leveraging their gain-phase advantages, reset control el-
ements have demonstrated improvements in steady-state and transient
performance compared to linear controllers, including enhanced distur-
bance rejection, improved tracking, and reduced overshoot, see Deenen
et al. (2021), Heertjes et al. (2016), Karbasizadeh and HosseinNia
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E-mail addresses: X.Zhang-15@tudelft.nl (X. Zhang), MBKaczmarek@tudelft.nl (M.B. Kaczmarek), S.H.HosseinNiaKani@tudelft.nl (S.H. HosseinNia).

(2022), Saikumar et al. (2019), Zhao et al. (2020, 2019), Zhao and
Wang (2015, 2016).

Frequency response analysis is a method used to assess the magni-
tude and phase properties of a control system by analyzing its steady-
state responses to sinusoidal inputs across various frequencies (Tian &
Gao, 2007). Engineers can shape and tune the performance of closed-
loop systems based on their open-loop analysis, a technique referred to
as loop shaping (Ogata, 2010; Van Loon et al., 2017). The frequency-
domain-based loop shaping approach has proven effective for designing
linear control systems, including PID controllers, in industries (Deenen
et al., 2017; Saikumar et al., 2021, 2019). Reset controllers are seam-
lessly integrated into the classical PID framework, thus attracting in-
terest for their potential applications across various industries (Beerens
et al., 2021). However, the lack of effective frequency-domain analysis
tools tailored for reset control systems has hindered their widespread
adoption in industries.

The frequency response analysis includes both open-loop and
closed-loop analysis. For open-loop reset controllers, the DF (Guo et al.,
2009) was first employed to analyze their frequency response, but it
falls short in capturing the complete dynamics of reset control systems
as it only analyzes the first harmonic of the outputs. The Higher-Order
Sinusoidal Input Describing Function (HOSIDF) (Saikumar et al., 2021),
which accounts for higher-order harmonics, proves to be an effective
method for analyzing open-loop reset control systems.
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Fig. 1. The block diagram of the reset control system, where 𝑟(𝑡), 𝑒(𝑡), 𝑣(𝑡), 𝑢(𝑡), and
(𝑡) denote the reference input signal, the error signal, the reset output signal, the
ontrol input signal, and the output signal, respectively. The blue lines indicate the
eset-triggered actions, with 𝑒(𝑡) serving as the reset-triggered signal in this system. (For
nterpretation of the references to color in this figure legend, the reader is referred to
he web version of this article.)

However, in closed-loop reset control systems, the existence of high-
rder harmonics in the output signals leads to the generation of higher-
rder sub-harmonics through the feedback loop, presenting challenges
or frequency response analysis. Existing tools for analyzing closed-loop
eset control systems, such as pseudo-sensitivity functions in Dast-
erdi et al. (2022), primarily rely on time-domain responses analysis
pproaches and lack a direct connection between open-loop and closed-
oop analysis of reset control systems. The current frequency-domain-
ased analysis method for reset control systems in Saikumar et al.
2021) lacks precision as it overlooks certain higher-order harmonics
n the closed-loop outputs.

The lack of precise frequency response analysis methods for closed-
oop reset systems and the disconnect between open-loop and closed-
oop analysis in reset systems motivates this research. The objective of
his research is to develop new frequency response analysis methods for
oth open-loop and closed-loop reset control systems with sinusoidal
nputs. These methods aim to (1) enable more accurate frequency-
omain analysis of steady-state closed-loop reset control systems by
ectifying the inaccuracies present in previous approaches, and (2)
stablish a reliable connection between the frequency-domain analysis
f open-loop and closed-loop reset control systems.

The structure of the study is organized as follows. Section 2 provides
efinitions, discusses existing frequency response analysis methods for
eset control systems, and states the research problems. The main
ontributions are detailed in Section 3 (for the open-loop reset system)
nd Section 4 (for the closed-loop reset system), including:

1. Theorem 1 presents a new pulse-based approach for analyzing
open-loop reset systems. This method decomposes the steady-
state outputs of open-loop reset systems into base-linear outputs
and pulse-based nonlinear signals. Building on Theorem 1, Theo-
rem 2 proposes an open-loop HOSIDF for the frequency response
analysis of reset controllers.

2. Building upon the open-loop analysis in Theorem 2, Theorem 3
introduces a closed-loop analysis model for the Single-Sinusoid-
Input Single-Output (SSISO) reset control system featuring two
reset instants per steady-state period (referred to as a two-reset
system). This model decomposes the closed-loop system’s steady-
state output into its base-linear and nonlinear components.

3. Based on Theorem 3, a closed-loop HOSIDF is developed for the
frequency response analysis of reset control systems, as detailed
in Theorem 4. This analysis connects the open-loop and closed-
loop responses of reset control systems, enabling the application
of loop-shaping techniques in nonlinear systems for the first
time.

ection 5 assesses the accuracy and highlights limitations of the pro-
osed methods on a reset control system within the PID framework,
emonstrated through simulations and experiments. In Section 6, a
wo-reset control structure is proposed to address the limitations iden-
ified in Section 5. Simulated and experimental results on this new
ontrol system validate the effectiveness of the proposed analysis meth-
ds. Additionally, this section discusses the application of the proposed
ethods in reset control system design. Finally, the study concludes in

ection 7.
 e

2 
. Background and problem statement

This section begins by offering background information on reset
ontrol systems. It then discusses existing frequency response analysis
ethods for reset systems, highlighting their limitations. Finally, the

esearch problems are introduced.

.1. The definition of the reset control system

Fig. 1 shows the block diagram of the Single-Input Single-Output
SISO) reset control system. This system consists of a reset controller
, a Linear Time-Invariant (LTI) system 𝛼 , a plant  , and a feedback

oop. The blue lines depict the resetting mechanism activated by the
eset trigger signal (which is 𝑒(𝑡) in this diagram). The signals 𝑟(𝑡), 𝑒(𝑡),
(𝑡), 𝑢(𝑡), and 𝑦(𝑡) correspond to the reference input signal, the error
ignal, the reset output signal, the control input signal, and the output
ignal, respectively. In the reset system under a sinusoidal input signal
(𝑡) = |𝑅| sin(𝜔𝑡) (𝜔 ∈ R+), these signals are functions of both time 𝑡 and
nput frequency 𝜔. In the time domain, they are expressed as functions
f 𝑡 for a specific 𝜔 for simplicity. Under the condition of the existence
f steady states, in the Fourier domain, 𝑅(𝜔), 𝐸(𝜔), 𝑉 (𝜔), 𝑈 (𝜔), and
(𝜔) represent their respective Fourier transforms.

The state-space equations of the reset controller  in Fig. 1 are given
y:

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�̇�𝑐 (𝑡) = 𝐴𝑅𝑥𝑐 (𝑡) + 𝐵𝑅𝑒(𝑡), 𝑡 ∉ 𝐽 ,

𝑥𝑐 (𝑡+) = 𝐴𝜌𝑥𝑐 (𝑡), 𝑡 ∈ 𝐽 ,

𝑣(𝑡) = 𝐶𝑅𝑥𝑐 (𝑡) +𝐷𝑅𝑒(𝑡).

(1)

n (1), 𝑥𝑐 (𝑡) ∈ R𝑛𝑐×1 represents the state of the reset controller , where
𝑐 denotes the number of states. The matrices 𝐴𝑅 ∈ R𝑛𝑐×𝑛𝑐 , 𝐵𝑅 ∈ R𝑛𝑐×1,
𝑅 ∈ R1×𝑛𝑐 , and 𝐷𝑅 ∈ R1×1 describe the continuous dynamics of the
ase-linear controller (BLC), denoted as 𝑏𝑙(𝜔), given by

𝑏𝑙(𝜔) = 𝐶𝑅(𝑗𝜔𝐼 − 𝐴𝑅)−1𝐵𝑅 +𝐷𝑅, (𝑗 =
√

−1). (2)

The base-linear system (BLS) of the reset control system in Fig. 1 is
the system characterized by substituting the reset controller  with its
ase-linear counterpart 𝑏𝑙.

The reset controller employs the ‘‘zero-crossing law’’ as the reset
mechanism, which enables the state 𝑥𝑐 (𝑡) of  resets to a predetermined
alue whenever the reset-triggered signal crosses zero (Banos & Bar-
eiro, 2012; Guo & Chen, 2019). In Fig. 1, the reset triggered signal
s 𝑒(𝑡). The second equation in (1) describes the reset action, which
s an instantaneous or impulsive change of the state (𝑥𝑐 (𝑡) → 𝑥𝑐 (𝑡+))

applied whenever 𝑒(𝑡𝑖) = 0 (Barreiro et al., 2014). The reset instant,
denoted as 𝑡𝑖, is defined as the time at which the reset condition is
satisfied, i.e., 𝑒(𝑡𝑖) = 0. The set of reset instants for  is defined as
∶= {𝑡𝑖|𝑒(𝑡𝑖) = 0, 𝑖 ∈ Z+}. The symbol 𝐴𝜌 represents the reset matrix,

iven by

𝜌 =
[

𝛾
𝐼𝑛𝑙

]

∈ R𝑛𝑐×𝑛𝑐 , (3)

here 𝛾 = diag(𝛾1, 𝛾2,… , 𝛾𝑜,… , 𝛾𝑛𝑟 ), 𝑜 ∈ Z+. 𝛾𝑜 ∈ (−1, 1) denotes
he ratio of the after-reset state value (at 𝑡+𝑖 ) to the before-reset state
alue (at 𝑡𝑖). The subscripts 𝑛𝑟 and 𝑛𝑙 denote the numbers of reset
tates and non-reset (linear) states, respectively, where 𝑛𝑐 = 𝑛𝑟 + 𝑛𝑙.
hen 𝛾 = 𝐼𝑛𝑟 , the reset controller  is referred to as its BLC 𝑏𝑙. This

tudy specifically focuses on the reset controller  that employs the
‘Zero-crossing Law’’ and involves a single reset state, where 𝑛𝑟 = 1
n (3). The reset controllers with 𝑛𝑟 = 1 encompass common elements
uch as the CI, the FORE, and the higher-order reset elements like
he ‘‘Second-Order Single State Reset Element (SOSRE)’’ (Karbasizadeh
t al., 2021).
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In Fig. 1, the linear controller 𝛼 combined with the plant  is
defined as 𝛼 = 𝛼 . The state-space representation of 𝛼 is defined
as:

𝛼 =

⎧

⎪

⎨

⎪

⎩

�̇�𝛼(𝑡) = 𝐴𝛼𝑥𝛼(𝑡) + 𝐵𝛼𝑣(𝑡),

𝑦𝛼(𝑡) = 𝐶𝛼𝑥𝛼(𝑡),
(4)

where 𝐴𝛼 ∈ R𝑛𝛼×𝑛𝛼 , 𝐵𝛼 ∈ R𝑛𝛼×1, and 𝐶𝛼 ∈ R1×𝑛𝛼 are the state-space
matrices for 𝛼 . 𝑥𝛼 ∈ R𝑛𝛼×1 represents the state of 𝛼 and 𝑛𝛼 ∈ N is the
number of the state.

Combining (1) and (4), the state-space representative of the reset
control system without inputs is given by

 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�̇�(𝑡) = 𝐴𝑐𝑙𝑥(𝑡), 𝑥 ∉ 𝐽𝐻 ,

𝑥(𝑡+) = 𝐴𝜌𝑐𝑙𝑥(𝑡), 𝑥 ∈ 𝐽𝐻 ,

𝑦(𝑡) = 𝐶𝑐𝑙𝑥(𝑡),

(5)

where 𝑥𝑇 = [𝑥𝑐𝑇 𝑥𝛼𝑇 ] ∈ R𝑛𝑠×1 is the state of the reset control system ,
with the number of 𝑛𝑠 = 𝑛𝑐 + 𝑛𝛼 . 𝐽𝐻 ∶= {𝑥 ∈ R𝑛𝑠×1

|𝐶𝑐𝑙𝑥 = 0} is defined
to be the set of reset instants satisfying 𝑒(𝑡) = 0. The matrices in (5) are
given by

𝐴𝑐𝑙 =
[

𝐴𝑅 −𝐵𝑅𝐶𝛼
𝐵𝛼𝐶𝑅 𝐴𝛼

]

∈ R𝑛𝑠×𝑛𝑠 ,

𝐶𝑐𝑙 =
[

01×𝑛𝑐 𝐶𝛼
]

∈ R1×𝑛𝑠 ,

𝐴𝜌𝑐𝑙 =
[

𝐴𝜌 0
0 𝐼𝑛𝛼

]

∈ R𝑛𝑠×𝑛𝑠 .

(6)

2.2. The stability and convergence conditions for reset systems

The stability and convergence of systems are crucial for achieving
a steady-state solution and enabling frequency response to sinusoidal
inputs (Pavlov et al., 2007, 2006). The reset system (1) with input
signal of 𝑒(𝑡) = |𝐸| sin(𝜔𝑡 + ∠𝐸), 𝜔 > 0 has a globally asymptotically
stable 2𝜋∕𝜔-periodic solution if and only if (Guo et al., 2009)

|𝜆(𝐷𝑅𝑒
𝐴𝑅𝛿)| < 1, ∀𝛿 ∈ R+, (7)

where 𝜆(⋅) represents the eigenvalues of the matrix. where 𝜆(⋅) repre-
sents the eigenvalues of the matrix. Thus, to ensure the existence of
steady-state solutions for the frequency response analysis of open-loop
reset control system, the following assumption is made:

Assumption 1. The reset system (1) with input 𝑒(𝑡) = |𝐸| sin(𝜔𝑡+∠𝐸)
meets the condition in (7). The LTI system 𝛼 is Hurwitz.

The closed-loop reset control system (5) is quadratically stable if
and only if it satisfies the well-known 𝐻𝛽 condition (Beker et al., 2004;
Carrasco et al., 2008), i.e., there exists a 𝛽 ∈ R𝑛𝑟×1 and a positive
definite matrix 𝑃𝑛𝑟 ∈ R𝑛𝑟×𝑛𝑟 such that the transfer function

𝐻𝛽 (𝑠)
𝛥
=
[

𝑃𝑛𝑟 0𝑛𝑟×𝑛𝑙 𝛽𝐶𝛼
]

(𝑠𝐼 − 𝐴𝑐𝑙)−1
⎡

⎢

⎢

⎣

𝐼𝑛𝑟
0𝑛𝑙×𝑛𝑟
0𝑛𝛼×𝑛𝑟

⎤

⎥

⎥

⎦

(8)

is strictly positive real and additionally a non-zero reset matrix 𝛾 in (3)
satisfies the condition

𝛾𝑇 𝑃𝑛𝑟𝛾 − 𝑃𝑛𝑟 ⩽ 0, (9)

where 𝐼𝑛𝑟 is an identity matrix of size 𝑛𝑟 × 𝑛𝑟.
Referring to the literature (Dastjerdi et al., 2022), the following

assumption for the uniformly exponential convergence of closed-loop
reset systems (5) is made:

Assumption 2. The closed-loop reset control system (5) is assumed
to satisfy the following conditions: the initial condition of the reset

controller  is zero, there are infinitely many reset instants 𝑡𝑖 with i

3 
lim𝑡𝑖→∞ = ∞, the input signal is a Bohl function (Barabanov & Konyukh,
2001), there is no Zeno behavior, and the 𝐻𝛽 condition (in (8) and (9))
is satisfied.

The Assumption 2 can be met through appropriate design considera-
tions, as detailed in Banos and Barreiro (2012), Saikumar et al. (2021),
Samad et al. (2019).

The closed-loop reset control system (5) under a sinusoidal input
signal 𝑟(𝑡) = |𝑅| sin(𝜔𝑡), satisfying Assumption 2, exhibits a peri-
odic steady-state solution. This solution can be represented as 𝑥(𝑡) =
(sin(𝜔𝑡), cos(𝜔𝑡), 𝜔) for some function  ∶ R3 → R𝑛𝑐+𝑛𝛼 (Dastjerdi et al.,
2022).

Hybrid systems may encounter the Zeno phenomenon, where in-
finitely many actions occur within a finite time span (Wang et al.,
2014). According to research (Barreiro et al., 2014), the outputs of a
reset system are Zeno-free (non-Zeno) if the reset time interval 𝜎𝑖 =
𝑡𝑖+1 − 𝑡𝑖, 𝑖 ∈ Z+ between any two consecutive reset instants (𝑡𝑖, 𝑡𝑖+1) is
lower bounded:

𝜎𝑖 > 𝜎min, 𝜎min ∈ R+, (10)

at least in some working domain 𝛺 (Barreiro et al., 2014).

2.3. Current frequency response analysis of the open-loop reset system

For an open-loop reset controller  (1), with the input signal and the
reset triggered signal of 𝑒(𝑡) = |𝐸| sin(𝜔𝑡) and satisfying Assumption 1,
there exist 𝑛 ∈ N harmonics in the reset output signal 𝑣(𝑡). Utilizing
the ‘‘Virtual Harmonic Generator’’ (Heinen, 2018), the input signal 𝑒(𝑡)
generates 𝑛 harmonics 𝑒1𝑛(𝑡) = |𝐸| sin(𝑛𝜔𝑡). The function 𝐻𝑛(𝜔), where
𝑛 denotes the number of harmonics involved, is defined to represent the
transfer function from 𝑒1𝑛(𝑡) to the 𝑛th harmonic in 𝑣(𝑡) at steady states.
The expression for 𝐻𝑛(𝜔) is provided by Heinen (2018), Saikumar et al.
(2021):

𝐻𝑛(𝜔) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐶𝑅(𝑗𝜔𝐼 − 𝐴𝑅)−1(𝐼 + 𝑗𝛩𝐷(𝜔))𝐵𝑅 +𝐷𝑅, for 𝑛 = 1,

𝐶𝑅(𝑗𝑛𝜔𝐼 − 𝐴𝑅)−1𝑗𝛩𝐷(𝜔)𝐵𝑅, for odd 𝑛 > 1,

0, for even 𝑛 ⩾ 2,

(11)

ith

𝛬(𝜔) = 𝜔2𝐼 + 𝐴𝑅
2,

𝛥(𝜔) = 𝐼 + 𝑒(
𝜋
𝜔𝐴𝑅),

𝛥𝑟(𝜔) = 𝐼 + 𝐴𝜌𝑒
( 𝜋𝜔𝐴𝑅),

𝛤𝑟(𝜔) = 𝛥−1
𝑟 (𝜔)𝐴𝜌𝛥(𝜔)𝛬−1(𝜔),

𝐷(𝜔) =
−2𝜔2

𝜋
𝛥(𝜔)[𝛤𝑟(𝜔) − 𝛬−1(𝜔)].

(12)

The expression for the first-order harmonic 𝐻1(𝜔) aligns with the
classical DF representation for the reset controller in Guo et al. (2009).

2.4. Problem statement

Under Assumption 2, in a SISO closed-loop reset control system with
a sinusoidal reference input signal 𝑟(𝑡) = |𝑅| sin(𝜔𝑡) (in Fig. 1), the
steady-state signals 𝑒(𝑡), 𝑣(𝑡), 𝑢(𝑡), and 𝑦(𝑡) are periodic and nonlinear.

he Fourier transformations of these signals are define as 𝐸(𝜔), 𝑉 (𝜔),
(𝜔), and 𝑌 (𝜔), respectively. These signals encompass infinite harmon-
cs and share the fundamental frequency of 𝑟(𝑡) (Pavlov et al., 2006).
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They can be expressed as follows:

𝑒(𝑡) =
∞
∑

𝑛=1
𝑒𝑛(𝑡) =

∞
∑

𝑛=1
|𝐸𝑛| sin(𝑛𝜔𝑡 + ∠𝐸𝑛),

𝑣(𝑡) =
∞
∑

𝑛=1
𝑣𝑛(𝑡) =

∞
∑

𝑛=1
|𝑉𝑛| sin(𝑛𝜔𝑡 + ∠𝑉𝑛),

𝑢(𝑡) =
∞
∑

𝑛=1
𝑢𝑛(𝑡) =

∞
∑

𝑛=1
|𝑈𝑛| sin(𝑛𝜔𝑡 + ∠𝑈𝑛),

𝑦(𝑡) =
∞
∑

𝑛=1
𝑦𝑛(𝑡) =

∞
∑

𝑛=1
|𝑌𝑛| sin(𝑛𝜔𝑡 + ∠𝑌𝑛),

(13)

where ∠𝐸𝑛, ∠𝑉𝑛, ∠𝑈𝑛, ∠𝑌𝑛 ∈ (−𝜋, 𝜋]. The signals 𝑒𝑛(𝑡), 𝑣𝑛(𝑡), 𝑢𝑛(𝑡)
and 𝑦𝑛(𝑡) are the 𝑛th harmonics of 𝑒(𝑡), 𝑣(𝑡), 𝑢(𝑡) and 𝑦(𝑡), respectively.
The Fourier transformations of these signals are define as 𝐸𝑛(𝜔), 𝑉𝑛(𝜔),
𝑈𝑛(𝜔), and 𝑌𝑛(𝜔), respectively. Conducting a frequency response anal-
ysis is an effective method for understanding the frequency-domain
dynamics of closed-loop reset control systems (Saikumar et al., 2021).
For instance, the low-frequency sensitivity function of the system serves
as a crucial metric for assessing the tracking precision of the system.
Currently, two frequency response analysis methods for closed-loop
reset control systems are available, denoted as Method A and Method
B.

Method A (Guo et al., 2009): For a SISO reset system with a
reference input signal 𝑟(𝑡) = |𝑅| sin(𝜔𝑡) under Assumption 2, as shown
in Fig. 1, the sensitivity function 𝐷𝐹 (𝜔), complementary sensitivity
function 𝐷𝐹 (𝜔), and control sensitivity function 𝐷𝐹 (𝜔) based on the
steady-state DF analysis are defined as

𝐷𝐹 (𝜔) =
𝐸(𝜔)
𝑅(𝜔)

= 1
1 +𝐻1(𝜔)𝛼(𝜔)(𝜔)

,

𝐷𝐹 (𝜔) =
𝑌 (𝜔)
𝑅(𝜔)

=
𝐻1(𝜔)(𝜔)

1 +𝐻1(𝜔)𝛼(𝜔)(𝜔)
,

𝐷𝐹 (𝜔) =
𝑈 (𝜔)
𝑅(𝜔)

=
𝐻1(𝜔)𝛼(𝜔)

1 +𝐻1(𝜔)𝛼(𝜔)(𝜔)
,

(14)

where 𝐻1(𝜔) represents the first-order harmonic transfer function of ,
as defined in (11). However, Method A is inaccurate for predicting the
performance of closed-loop reset control systems since it only considers
the first-order harmonic of the reset control system, thus being valid
only when 𝑒𝑛(𝑡) = 0 for 𝑛 > 1 in (13). In contrast, the following Method
B incorporates the higher-order harmonics, which is more accurate.

Method B (Saikumar et al., 2021): For a SISO reset control system
in Fig. 1 with a reference input signal 𝑟(𝑡) = |𝑅| sin(𝜔𝑡), under three
assumptions: (1) Assumption 2, (2) the reset triggered signal is 𝑒1(𝑡)
which results in two reset instants occurring 𝜋∕𝜔 apart per cycle, and
(3) the error 𝑒𝑛(𝑡) for 𝑛 > 1 does not undergo reset actions, the 𝑛th (𝑛 ∈
N) steady-state sensitivity function, complementary sensitivity function,
and control sensitivity function denoted as 𝑛(𝜔), 𝑛(𝜔), and 𝑛(𝜔) are
given by

𝑛(𝜔) =
𝐸𝑛(𝑛𝜔)
𝑅𝑛(𝜔)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑙1(𝜔), for 𝑛 = 1,

−𝑛(𝜔)𝑏𝑙(𝑛𝜔)(||𝑙1(𝜔)||∠(𝑛∠𝑙1(𝜔))), for odd 𝑛 >

0, for even 𝑛 ⩾

𝑛(𝜔) =
𝑌𝑛(𝑛𝜔)
𝑅𝑛(𝜔)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 − 𝑙1(𝜔), for 𝑛 = 1,

𝑛(𝜔)𝑏𝑙(𝑛𝜔)(||𝑙1(𝜔)||∠(𝑛∠𝑙1(𝜔))), for odd 𝑛 > 2,

0, for even 𝑛 ⩾ 2

𝑛(𝜔) =
𝑈𝑛(𝑛𝜔)
𝑅𝑛(𝜔)

= 𝑛(𝜔)∕(𝑛𝜔),

(15)
4 
where
𝑙𝑛(𝜔) = 1∕(1 + 𝑛(𝜔)),

𝑅𝑛(𝜔) = |𝑅|ℱ [sin(𝑛𝜔𝑡)],

𝑏𝑙(𝑛𝜔) = 1∕(1 + 𝑏𝑙(𝑛𝜔)),

𝑛(𝜔) = 𝐻𝑛(𝜔)𝛼(𝑛𝜔)(𝑛𝜔),

𝑏𝑙(𝑛𝜔) = 𝑏𝑙(𝑛𝜔)𝛼(𝑛𝜔)(𝑛𝜔).

(16)

The first-order harmonic in Method B is identical to Method A.
lthough Method B takes the higher-order harmonics (for 𝑛 > 1)

nto consideration, Assumption 3 overlooks the higher-order harmonics
enerated by 𝑒𝑛(𝑡)(𝑛 > 1) in (13). This oversight will result in analysis
naccuracies in 𝑛(𝜔), 𝑛(𝜔), and 𝑛(𝜔) in (15), motivating the contri-
utions made in this paper. The main idea of this paper is to introduce
ew methods for analyzing the open-loop and closed-loop frequency
esponses of SISO reset control systems depicted in Fig. 1. The study
egins with the open-loop analysis of the reset controller by presenting
novel analytical method to decompose the steady-state outputs 𝑣(𝑡)

f the reset controller  in Fig. 1 under sinusoidal inputs into its base-
inear component 𝑣𝑏𝑙(𝑡) and pulse-based nonlinear components 𝑣𝑛𝑙(𝑡),
iven by:

(𝑡) = 𝑣𝑏𝑙(𝑡) + 𝑣𝑛𝑙(𝑡).

he detailed expressions for 𝑣𝑏𝑙(𝑡) and 𝑣𝑛𝑙(𝑡) will be provided in Sec-
ion 3. This decomposition approach facilitates the development of
ew open-loop frequency response analysis for the reset controller ,
ecomposed into its base-linear controller 𝑏𝑙 and nonlinear elements
n the frequency domain.

The proposed open-loop analysis enables the development of a
losed-loop frequency response analysis method, which will be pro-
ided in Section 4. This closed-loop analysis addresses inaccuracies
n previous methods, particularly correcting the assumptions (Assump-
ion 3) in Method B (Saikumar et al., 2021), by introducing new
ensitivity functions 𝑛(𝜔), 𝑛(𝜔), and 𝑛(𝜔) for reset control systems.
hese functions describe the sensitivity of the closed-loop reset systems
o input variations in the frequency domain, including higher-order har-
onics. Furthermore, the sensitivity functions effectively connect the

requency-domain open-loop analysis and closed-loop analysis. Finally,
imulations and experiments on a precision motion stage validate the
ffectiveness of these analysis methods.

. The frequency response analysis for the open-loop reset system

This section introduces a pulse-based analysis model for the open-
oop reset controller at steady states. The model separates the out-
ut of a SSISO reset controller into its base-linear sinusoidal output
nd a filtered pulse signal. The term ‘‘filtered pulse signal’’ refers to
signal obtained by filtering a normalized pulse signal through a

inite-dimensional LTI transfer function.
The reset controller  (1) is based on the classical Clegg integrator

CI) (Banos & Barreiro, 2012). To develop the analysis model for a
eneralized reset controller, the study first focuses on analyzing the
I. The Generalized CI (GCI) is defined as the reset controller  (1)
ith 𝐴𝑅 = 0, 𝐵𝑅 = 1, 𝐶𝑅 = 1, 𝐷𝑅 = 0, and 𝐴𝜌 = 𝛾 ∈ (−1, 1), under
ssumption 1 and the Zeno-free condition in (10). Lemma 1 illustrates

hat the output of the GCI under a sinusoidal input is the sum of its
ase-linear output and a square wave component.

emma 1 (The Pulse-Based Model for the Open-Loop GCI). For a GCI
ubjected to a sinusoidal input signal 𝑒(𝑡) = |𝐸1| sin(𝜔𝑡), its steady-state
utput signal denoted by 𝑢𝑐𝑖(𝑡) consists of two components: one is its base-
inear output 𝑢𝑖(𝑡) and another is a square wave represented as 𝑞𝑖(𝑡),
xpressed by:

(𝑡) = 𝑢 (𝑡) + 𝑞 (𝑡), (17)
𝑐𝑖 𝑖 𝑖
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Fig. 2. 𝑢𝑐𝑖(𝑡) (solid line), 𝑢𝑖(𝑡) (dotted line), and 𝑞𝑖(𝑡) (dashed line) of open-loop CI.

where 𝑢𝑖(𝑡) = −|𝐸1|[cos(𝜔𝑡) − 1]∕𝜔, and 𝑞𝑖(𝑡) is a 2𝜋∕𝜔-periodical square
wave given by

𝑞𝑖(𝑡) =

⎧

⎪

⎨

⎪

⎩

−2|𝐸1|𝛾(𝛾 + 1)−1∕𝜔, for 𝑡 ∈ [2𝑘, 2𝑘 + 1) ⋅ 𝜋∕𝜔,

−2|𝐸1|(𝛾 + 1)−1∕𝜔, for 𝑡 ∈ [2𝑘 + 1, 2𝑘 + 2) ⋅ 𝜋∕𝜔,
(18)

where 𝑘 ∈ N.

Proof. The proof can be found in Appendix A. □

Fig. 2 displays the simulation results of an open-loop CI with the
input signal 𝑒(𝑡) = sin(𝜔𝑡) (𝜔 = 𝜋 rad/s and 𝛾 = 0). In this case, 𝑞𝑖(𝑡)
is a square wave with a period of 2 s and amplitudes of 0 and 0.64, as
calculated by (18).

Theorem 1 extends the pulse-based analysis model from the GCI to
an open-loop reset controller  (1), where the input and reset-triggered
signals are different .

Theorem 1 (The Pulse-Based Analysis Model for the Open-Loop Reset
Controller). Consider a reset controller  described by (1), where 𝑛𝑟 = 1,
subject to a sinusoidal input signal 𝑒(𝑡) = |𝐸𝑛| sin(𝑛𝜔𝑡 + ∠𝐸𝑛) with ∠𝐸𝑛 ∈
(−𝜋, 𝜋] and 𝑛 = 2𝑘+1 for 𝑘 ∈ N, along with a 2𝜋∕𝜔-periodic reset triggered
signal denoted by 𝑒𝑠(𝑡) = |𝐸𝑠| sin(𝜔𝑡 + ∠𝐸𝑠), where ∠𝐸𝑠 ∈ (−𝜋, 𝜋], meeting
the condition in (7) and adhere to the Zeno-free condition outlined in (10).
The input signal 𝑒(𝑡) = |𝐸𝑛| sin(𝑛𝜔𝑡 + ∠𝐸𝑛) varies as a function of time 𝑡,
while the parameters 𝜔 and 𝑛 remain constant. The steady-state reset output
𝑣(𝑡) is expressed as:

𝑣(𝑡) = 𝑣𝑏𝑙(𝑡) + 𝑣𝑛𝑙(𝑡), (19)

where 𝑣𝑏𝑙(𝑡) is the steady-state base-linear output given by

𝑣𝑏𝑙(𝑡) = |𝐸𝑛𝑏𝑙(𝑛𝜔)| sin(𝑛𝜔𝑡 + ∠𝐸𝑛 + ∠𝑏𝑙(𝑛𝜔)). (20)

The nonlinear signal 𝑣𝑛𝑙(𝑡) shares the same phase and period as the reset-
triggered signal 𝑒𝑠(𝑡), as obtained by

𝑣𝑛𝑙(𝑡) =
∞
∑

𝜇=1
ℱ −1[𝛥𝑥(𝜇𝜔)𝑄𝜇(𝜔)], 𝜇 = 2𝑘 + 1, 𝑘 ∈ N, (21)

where
𝛥𝑙(𝑛𝜔) = (𝑗𝑛𝜔𝐼 − 𝐴𝑅)−1𝐵𝑅,

𝛥𝑥(𝜇𝜔) = 𝐶𝑅(𝑗𝜇𝜔𝐼 − 𝐴𝑅)−1𝑗𝜇𝜔𝐼,

𝛥𝑛
𝑐 (𝜔) = |𝛥𝑙(𝑛𝜔)| sin(∠𝛥𝑙(𝑛𝜔) + ∠𝐸𝑛 − 𝑛∠𝐸𝑠),

𝑄𝜇(𝜔) = 2|𝐸𝑛|𝛥
𝑛
𝑞(𝜔)ℱ [sin(𝜇𝜔𝑡 + 𝜇∠𝐸𝑠)]∕(𝜇𝜋),

𝛥𝑛
𝑞(𝜔) = (𝐼 + 𝑒𝐴𝑅𝜋∕𝜔)(𝐴𝜌𝑒

𝐴𝑅𝜋∕𝜔 − 𝐼)−1(𝐼 − 𝐴𝜌)𝛥𝑛
𝑐 (𝜔).

(22)

Proof. The proof is provided in Appendix B. □

The reset controller  in Fig. 1 with the same input signal and
reset-triggered signal 𝑒(𝑡) = |𝐸1| sin(𝜔𝑡 + ∠𝐸1), corresponds to the
reset controller discussed in Theorem 1 when 𝑒𝑠(𝑡) = 𝑒(𝑡). Based on
Theorem 1, Theorem 2 presents the Higher-order Sinusoidal Input
Describing Function (HOSIDF) for the open-loop reset controller  in
Fig. 1. The corresponding HOSIDF block diagram for  is depicted in
Fig. 3.
 l

5 
Fig. 3. The HOSIDF block diagram of an open-loop reset controller .

Theorem 2 (The HOSIDF for the Open-Loop Reset Controller). Consider
a reset controller  (1) with one reset state where 𝑛𝑟 = 1 in response to the
input signal and reset-triggered signal 𝑒(𝑡) = |𝐸1| sin(𝜔𝑡 + ∠𝐸1), (∠𝐸1 ∈
(−𝜋, 𝜋]), meeting the condition in (7) and satisfying the Zeno-free condition
in (10). The steady-state output signal 𝑣(𝑡) comprises 𝑛 ∈ N harmonics,
expressed as 𝑣(𝑡) =

∑∞
𝑛=1 𝑣𝑛(𝑡), with the Fourier transform defined as

(𝜔) =
∑∞

𝑛=1 𝑉𝑛(𝜔). In Fig. 3, the application of the ‘‘Virtual Harmonic
enerator’’ (Nuij et al., 2006; Saikumar et al., 2021) introduces 𝑒1𝑛(𝑡) =
𝐸1| sin(𝑛𝜔𝑡 + 𝑛∠𝐸1), with Fourier transform denoted as 𝐸1𝑛(𝜔). The 𝑛th

steady-state transfer function of , denoted as 𝑛(𝜔), represents the ratio of
𝑉𝑛(𝜔) to 𝐸1𝑛(𝜔) and is given by:

𝑛(𝜔) =
𝑉𝑛(𝜔)
𝐸1𝑛(𝜔)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑏𝑙(𝜔) + 𝑛𝑙(𝜔), for 𝑛 = 1,

𝑛𝑙(𝑛𝜔), for odd 𝑛 > 1,

0, for even 𝑛 ≥ 2,

(23)

here 𝑏𝑙(𝜔) is the base-linear transfer function given in (2) and 𝑛𝑙(𝑛𝜔) is
erived by

𝛥𝑙(𝜔) = (𝑗𝜔𝐼 − 𝐴𝑅)−1𝐵𝑅,

𝛥𝑞(𝜔) = (𝐼 + 𝑒𝐴𝑅𝜋∕𝜔)𝛥𝑣(𝜔),

𝛥𝑐 (𝜔) = |

|

𝛥𝑙(𝜔)|| sin(∠𝛥𝑙(𝜔)),

𝑛𝑙(𝑛𝜔) = 2𝛥𝑥(𝑛𝜔)𝛥𝑞(𝜔)∕(𝑛𝜋),

𝛥𝑥(𝑛𝜔) = 𝐶𝑅(𝑗𝑛𝜔𝐼 − 𝐴𝑅)−1𝑗𝑛𝜔𝐼,

𝛥𝑣(𝜔) = (𝐴𝜌𝑒
𝐴𝑅𝜋∕𝜔 − 𝐼)−1(𝐼 − 𝐴𝜌)𝛥𝑐 (𝜔).

(24)

roof. The proof can be found in Appendix C. □

orollary 1. Consider a reset controller  (1) with one reset state where
𝑟 = 1 in response to the input signal and reset-triggered signal 𝑒(𝑡) =
𝐸1| sin(𝜔𝑡 + ∠𝐸1), (∠𝐸1 ∈ (−𝜋, 𝜋]). The reset controller  (1) operates
nder the condition in (7) and satisfies the Zeno-free condition in (10). The
teady-state reset output signal 𝑣(𝑡) is expressed as:

𝑣(𝑡) = 𝑣𝑏𝑙(𝑡) + 𝑣𝑛𝑙(𝑡), (25)

here 𝑣𝑏𝑙(𝑡) is the steady-state base-linear output given by

𝑏𝑙(𝑡) = |𝐸1𝑏𝑙(𝜔)| sin(𝜔𝑡 + ∠𝑏𝑙(𝜔)). (26)

he nonlinear signal 𝑣𝑛𝑙(𝑡) is given by

𝑛𝑙(𝑡) =
∞
∑

𝑛=1
ℱ −1[𝐸1𝑛(𝜔)𝑛𝑙(𝑛𝜔)]. (27)

roof. The proof is provided in Appendix D. □

Note that the prior work (Kaczmarek et al., 2022) introduced the
ulse-based model for the open-loop reset controller but did not extend
his model to include a frequency-domain analysis for the controller.
heorem 2 completes this research and presents a new HOSIDF for
nalyzing the open-loop reset controller.

Applying Theorem 2, Remark 1 provides the analysis for the open-

oop reset control system in Fig. 1.
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Fig. 4. The comparison between the simulated and Theorem 2-predicted output signals
in a reset control system.

Remark 1. For an open-loop reset control system in Fig. 1 with the
sinusoidal input signal 𝑒(𝑡) = |𝐸1| sin(𝜔𝑡+∠𝐸1) and under Assumption 1,
he transfer function 𝑛(𝜔), 𝑛 ∈ N from the input 𝑒(𝑡) to the steady-

state output 𝑦(𝑡) is composed of a linear transfer function 𝑏𝑙(𝜔) and
nonlinear transfer functions 𝑛𝑙(𝑛𝜔), given by

𝑛(𝜔) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑏𝑙(𝜔) + 𝑛𝑙(𝜔), for 𝑛 = 1,

𝑛𝑙(𝑛𝜔), for odd 𝑛 > 1,

0, for even 𝑛 ⩾ 2,

(28)

with
𝑏𝑙(𝑛𝜔) = 𝑏𝑙(𝑛𝜔)𝛼(𝑛𝜔)(𝑛𝜔),

𝑛𝑙(𝑛𝜔) = 𝑛𝑙(𝑛𝜔)𝛼(𝑛𝜔)(𝑛𝜔),
(29)

where 𝑏𝑙(𝑛𝜔) and 𝑛𝑙(𝑛𝜔) are given in (2) and (24), respectively.
From Eq. (28), the steady-state output signal 𝑦(𝑡) of the open-loop

reset system is given by

𝑦(𝑡) = ℱ −1[𝐸1𝑛(𝜔)𝑛(𝜔)],

𝐸1𝑛(𝜔) = |𝐸1| sin(𝑛𝜔𝑡 + 𝑛∠𝐸1).
(30)

To validate the accuracy of Theorem 2 and Remark 1, Fig. 4
compares the simulated and Eq. (30)-predicted output signals 𝑦(𝑡) in
an reset control system with input signal of 𝑒(𝑡) = sin(400𝜋𝑡). The
parameters of the system are designed as: the reset controller has a
base-linear transfer function 𝑏𝑙(𝑠) = 1∕(𝑠∕(300𝜋) + 1) with 𝛾 = 0,
𝛼(𝑠) = (𝑠∕(75𝜋) + 1)∕(𝑠∕(1200𝜋) + 1), and (𝑠) = 1.

The results demonstrate the accuracy of Theorem 2 and Remark 1.
Note that that in the zoom-in plot, the slight discrepancy at the signal
edges between the two plots arises from the consideration of 5000
harmonics during the calculation process, whereas the actual output
comprises an infinite number of harmonics. The choice of the number
of harmonics considered in the calculation allows readers to balance
computation time and prediction precision.

The newly introduced HOSIDF 𝑛(𝜔) (23) is mathematically equiv-
alent to the function 𝐻𝑛(𝜔) (11) when the input signal and reset-
triggered signal for the reset controller are the same, denoted as 𝑒(𝑡) =
|𝐸1| sin(𝜔𝑡 + ∠𝐸1). However, the new HOSIDF offers several new in-
sights: (1) It facilitates the separation of the output 𝑣(𝑡) of the reset
controller into linear 𝑣𝑏𝑙(𝑡) (26) and nonlinear 𝑣𝑛𝑙(𝑡) (27) components.
Specifically, 𝑣𝑏𝑙(𝑡) is derived from the base-linear transfer function
𝑏𝑙(𝜔) (2), while 𝑣𝑛𝑙(𝑡) is obtained from 𝑛𝑙(𝑛𝜔) (24). (2) The nonlinear
signal 𝑣𝑛𝑙(𝑡) is a filtered pulse signal that shares the same phase and
period as the reset-triggered signal 𝑒𝑠(𝑡). (3) The magnitude of the signal
𝑣𝑛𝑙(𝑡) is determined by 𝑛𝑙(𝑛𝜔). These insights enable the connection
between open-loop analysis and closed-loop frequency analysis, as
discussed in Section 4.

4. The frequency response analysis for the closed-loop reset sys-
tem

Based on the open-loop analysis in Theorem 2, this section develops
the closed-loop frequency response analysis for the reset control system
depicted in Fig. 1.
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Fig. 5. Block diagrams for the closed-loop RCS, wherein (a) the resetting actions
are indicated by the blue lines. In (b), the reset controller is decomposed into two
components: the linear part 𝑏𝑙 within the gray box and the nonlinear part 𝑛𝑙 contained

ithin the blue box. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

In a closed-loop reset control system under a sinusoidal input signal
(𝑡) = |𝑅| sin(𝜔𝑡) at steady states, a ‘‘two-reset system’’ is defined
s a reset system having two reset instants per steady-state cycle,
hile a ‘‘multiple-reset system’’ involves more than two reset instants
er steady-state cycle. In the two-reset system, the dominated com-
onent of the error signal 𝑒(𝑡) is the first-order harmonic 𝑒1(𝑡) in

(13). Multiple-reset actions, such as those implemented in the PI+CI
control system, introduce excessive higher-order harmonics compared
to two-reset actions (Baños & Vidal, 2007). This issue can be miti-
gated through careful design considerations (Karbasizadeh et al., 2022;
Saikumar et al., 2019). Conditions for achieving periodic output in a
multiple-reset system, where the interval between successive resets is
not constant, are discussed in Beker (2001). Classical DF also assumes
the 𝑒1(𝑡) results in reset actions. Moreover, based on the authors’ best
knowledge, most practical reset control systems in the literature are
designed to take advantage of two-reset systems (Banos & Barreiro,
2012). Given these insights, it is essential to explore frequency-domain
analysis methods tailored to two-reset systems. Hence, the following
assumption is introduced:

Assumption 3. There are two reset instants in a SISO closed-loop reset
control system with a sinusoidal reference input signal 𝑟(𝑡) = |𝑅| sin(𝜔𝑡)
at steady states, where the reset-triggered signal is 𝑒1(𝑡).

Note that achieving Assumption 3 is feasible through practical
reset control design. For instance, the CgLp reset element introduced
in Saikumar et al. (2019) enables the realization of wide-band two-reset
systems.

Under Assumptions 2 and 3, the reset actions in the closed-loop
SISO reset control system occur when 𝑒1(𝑡) = |𝐸1| sin(𝜔𝑡 + ∠𝐸1) = 0,
where ∠𝐸1 ∈ (−𝜋, 𝜋]. The set of reset instants for this closed-loop reset
ystem is denoted as 𝐽𝑚 ∶= {𝑡𝑚 = (𝑚𝜋 − ∠𝐸1)∕𝜔|𝑚 ∈ Z+}. Since the
eset interval 𝜎𝑚 = 𝑡𝑚+1 − 𝑡𝑚 = 𝜋∕𝜔 > 𝛿min (Barreiro et al., 2014), the
rajectories for the reset system are Zeno-free.

Fig. 5(a) constructs the first block diagram for the closed-loop reset
ontrol system under Assumptions 2 and 3. In this block diagram, first,
tilizing the ‘‘Virtual Harmonic Separator’’ (Nuij et al., 2006), the error
ignal 𝑒(𝑡) is decomposed into its harmonics, 𝑒𝑛(𝑡), as defined in (13).
ext, each 𝑒𝑛(𝑡) is filtered by the reset controller , resulting in a

esponse denoted as 𝑣𝑛(𝑡). By summing up 𝑣𝑛(𝑡), the reset output signal
(𝑡) is obtained. In this context,  with the input signal 𝑒 (𝑡) is referred
𝑛
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to as the 𝑛th reset controller. Theorem 1 illustrates that the steady-
tate output of a reset controller  under a sinusoidal input signal is

composed of base-linear 𝑣𝑏𝑙(𝑡) and nonlinear 𝑣𝑛𝑙(𝑡) components.
Let 𝑣𝑛𝑏𝑙(𝑡) and 𝑣𝑛𝑛𝑙(𝑡) represent the steady-state base-linear and non-

linear output signals for the 𝑛th . Then, the steady-state reset output
signal 𝑣(𝑡) in the closed-loop reset system is given by:

𝑣(𝑡) =
∞
∑

𝑛=1
𝑣𝑛(𝑡),

𝑣𝑛(𝑡) = 𝑣𝑛𝑏𝑙(𝑡) + 𝑣𝑛𝑛𝑙(𝑡).

(31)

From (31), by defining

𝑣𝑙(𝑡) =
∞
∑

𝑛=1
𝑣𝑛𝑏𝑙(𝑡),

𝑣𝑛𝑙(𝑡) =
∞
∑

𝑛=1
𝑣𝑛𝑛𝑙(𝑡),

(32)

𝑣(𝑡) can be written as

𝑣(𝑡) = 𝑣𝑙(𝑡) + 𝑣𝑛𝑙(𝑡). (33)

In the Fourier domain, Eq. (31) is expressed as

𝑉 (𝜔) =
∞
∑

𝑛=1
𝑉𝑛(𝜔),

𝑉𝑛(𝜔) = 𝑉 𝑛
𝑏𝑙(𝜔) + 𝑉 𝑛

𝑛𝑙(𝜔).

(34)

Derived from (20), 𝑉 𝑛
𝑏𝑙(𝜔) is given by

𝑉 𝑛
𝑏𝑙(𝜔) = 𝐸𝑛(𝜔)𝑏𝑙(𝑛𝜔). (35)

Based on the block diagram for the closed-loop reset system shown
in Fig. 5(a), Theorem 3 concludes the development of the pulse-based
model for the closed-loop reset control system, visually represented in
Fig. 5(b).

Theorem 3 (The Pulse-Based Analysis Model for the Closed-Loop Reset
System). In a closed-loop reset control system (with reset controller  (1)
where 𝑛𝑟 = 1), as depicted in Fig. 1 with a sinusoidal reference input signal
𝑟(𝑡) = |𝑅| sin(𝜔𝑡) and under Assumptions 2 and 3, the steady-state reset
output signal 𝑣(𝑡) is expressed as:

𝑣(𝑡) = 𝑣𝑙(𝑡) + 𝑣𝑛𝑙(𝑡),

𝑣𝑙(𝑡) =
∞
∑

𝑛=1
𝑣𝑛𝑏𝑙(𝑡),

𝑣𝑛𝑙(𝑡) = 𝛤 (𝜔)
∞
∑

𝑛=1
𝑣1𝑛𝑙(𝑡),

𝑣𝑛𝑏𝑙(𝑡) = ℱ −1[𝐸𝑛(𝜔)𝑏𝑙(𝑛𝜔)],

𝑣1𝑛𝑙(𝑡) =
∞
∑

𝑛=1
ℱ −1[𝐸1𝑛(𝜔)𝑛𝑙(𝑛𝜔)],

(36)

where

𝛥1
𝑐 (𝜔) = |𝛥𝑙(𝜔)| sin(∠𝛥𝑙(𝜔)),

𝐸1𝑛(𝜔) = |𝐸1|ℱ
−1[sin(𝑛𝜔𝑡 + 𝑛∠𝐸1)],

𝛤 (𝜔) = 1∕(1 −
∞
∑

𝑛=3
𝛹𝑛(𝜔)𝛥𝑛

𝑐 (𝜔)∕𝛥
1
𝑐 (𝜔)),

𝛹𝑛(𝜔) = |𝑛𝑙(𝑛𝜔)|∕|1 + 𝑏𝑙(𝑛𝜔)|, 𝑛 = 2𝑘 + 1, 𝑘 ∈ N,

𝛥𝑛
𝑐 (𝜔) = −|𝛥𝑙(𝑛𝜔)| sin(∠𝑛𝑙(𝑛𝜔) − ∠(1 + 𝑏𝑙(𝑛𝜔)) + ∠𝛥𝑙(𝑛𝜔)), for 𝑛 > 1.

(37)

Functions 𝑏𝑙(𝜔), 𝑛𝑙(𝜔), 𝛥𝑙(𝑛𝜔), 𝑏𝑙(𝑛𝜔) and 𝑛𝑙(𝑛𝜔) can be found in (2),
(24), (22) and (29), respectively.
Proof. The proof is provided in Appendix E. □
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Remark 2. From (32) and (36), 𝛤 (𝜔) in (37) represents the ratio
of 𝑣𝑛𝑙(𝑡) = 1 +

∑∞
𝑛=3 𝑣

𝑛
𝑛𝑙(𝑡) to 𝑣1𝑛𝑙(𝑡) at the input frequency 𝜔. It serves

as an indicator of the relative magnitude of higher-order harmonics
∑∞

𝑛=3 𝑣
𝑛
𝑛𝑙(𝑡) compared to the first-order harmonic 𝑣1𝑛𝑙(𝑡). A larger value of

𝛤 (𝜔) indicates a relatively larger magnitude of higher-order harmonics
in closed-loop reset systems.

Building upon the analytical model introduced in Theorem 3, a
new Higher-Order Sinusoidal Input Describing Function (HOSIDF) for
the frequency response analysis of closed-loop reset control systems is
proposed. The detailed formulation is presented in Theorem 4.

Theorem 4 (The Closed-Loop HOSIDF for SISO Reset Control Systems).
Consider a closed-loop SISO reset control system in Fig. 1 with a reset
controller  (1) (where 𝑛𝑟 = 1) and to a sinusoidal reference input signal
𝑟(𝑡) = |𝑅| sin(𝜔𝑡). This system complies with Assumptions 2 and 3. By
employing the ‘‘Virtual Harmonics Generator’’ to the input signal 𝑟(𝑡), the
signal 𝑟𝑛(𝑡) = |𝑅| sin(𝑛𝜔𝑡), 𝑛 ∈ N is introduced, along with its Fourier
transform 𝑅𝑛(𝜔). The transfer functions 𝑛(𝜔), 𝑛(𝜔), and 𝑛(𝜔) of the
closed-loop reset system at steady states are defined as follows:

𝑛(𝜔) =
𝐸𝑛(𝜔)
𝑅𝑛(𝜔)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
1+𝑜(𝜔)

, for 𝑛 = 1,

− 𝛤 (𝜔)𝑛𝑙 (𝑛𝜔)|1(𝜔)|𝑒𝑗𝑛∠1(𝜔)

1+𝑏𝑙 (𝑛𝜔)
, for odd 𝑛 > 1,

0, for even 𝑛 ⩾ 2,

(38)

𝑛(𝜔) =
𝑌𝑛(𝜔)
𝑅𝑛(𝜔)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑜(𝜔)
1+𝑜(𝜔)

, for 𝑛 = 1,

𝛤 (𝜔)𝑛𝑙 (𝑛𝜔)|1(𝜔)|𝑒𝑗𝑛∠1(𝜔)

1+𝑏𝑙 (𝑛𝜔)
, for odd 𝑛 > 1,

0, for even 𝑛 ⩾ 2,

(39)

𝑛(𝜔) =
𝑈𝑛(𝜔)
𝑅𝑛(𝜔)

=
𝑛(𝜔)
(𝑛𝜔)

, (40)

where
𝑅𝑛(𝜔) = |𝑅|ℱ [sin(𝑛𝜔𝑡)],

𝑜(𝑛𝜔) = 𝑏𝑙(𝑛𝜔) + 𝛤 (𝜔)𝑛𝑙(𝑛𝜔).
(41)

Functions 𝑏𝑙(𝑛𝜔), 𝑛𝑙(𝑛𝜔), and 𝛤 (𝜔) are given in (29) and (37).

roof. The proof is provided in Appendix F. □

emark 3. Consider a SISO reset control system under Assumption 2
nd with a sinusoidal reference signal 𝑟(𝑡) = |𝑅| sin(𝜔𝑡), as depicted in
ig. 1. By utilizing the ‘‘Virtual Harmonic Generator’’, the input signal
(𝑡) generates 𝑛 = 2𝑘 + 1(𝑘 ∈ N) harmonics 𝑟𝑛(𝑡) = |𝑅| sin(𝑛𝜔𝑡). The
ourier transform for 𝑟𝑛(𝑡) is denoted as 𝑅𝑛(𝜔). The steady-state error
ignal 𝑒(𝑡), output signal 𝑦(𝑡), and control input signal 𝑢(𝑡) are expressed
s follows:

𝑒(𝑡) =
∞
∑

𝑛=1
𝑒𝑛(𝑡) =

∞
∑

𝑛=1
ℱ −1 [𝑛(𝜔)𝑅𝑛(𝜔)

]

,

(𝑡) =
∞
∑

𝑛=1
𝑦𝑛(𝑡) =

∞
∑

𝑛=1
ℱ −1 [𝑛(𝜔)𝑅𝑛(𝜔)

]

,

𝑢(𝑡) =
∞
∑

𝑛=1
𝑢𝑛(𝑡) =

∞
∑

𝑛=1
ℱ −1 [𝑛(𝜔)𝑅𝑛(𝜔)

]

.

(42)

Remark 4. The function 𝛤 (𝜔) in (37), represents the ratio of the
nonlinear outputs 𝑣𝑛𝑙(𝑡) to 𝑣1𝑛𝑙(𝑡) in (36) at input frequency 𝜔. Previous
frequency response analysis methods, Method A and Method B, intro-
duced in Section 2.4, assume that the higher-order harmonics 𝑣𝑛𝑛𝑙(𝑡) (for
𝑛 > 1) generated by 𝑒𝑛(𝑡) are zero, thereby implying 𝛤 (𝜔) = 1. However,
this assumption does not hold across the entire frequency spectrum
of the reset control system, leading to inaccuracies in the analysis.
Theorem 4 addresses these inaccuracies analytically by introducing

𝛤 (𝜔) in (37). While Theorem 4 exhibits comparable accuracy to Method
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Fig. 6. (a) The planar precision positioning system. (b) The FRF data from actuator
𝐴1 to attached mass 𝑀1.

B within the frequency range where 𝛤 (𝜔) = 1, it has superior accuracy
compared to Method B when 𝛤 (𝜔) ≠ 1, particularly in scenarios
where the magnitudes of higher-order harmonics 𝑣𝑛𝑛𝑙(𝑡) (for 𝑛 > 1) are
significant.

5. Case study 1: Proportional-Clegg-Integrator Proportional-
Integrator-Derivative (PCI-PID) control system

This section designs a PCI-PID controller on a precision motion stage
for validating Theorem 4.

5.1. Precision positioning setup

The plant utilized in this study is a planar motion system with three
degrees of freedom as depicted in Fig. 6(a), referred to as ‘‘Spyder’’
stage. This system employs dual leaf flexures, each associated with
corresponding masses (𝑀1, 𝑀2, 𝑀3), for connection to the base (𝑀𝑐).
These masses are driven by three voice coil actuators labeled 𝐴1,
𝐴2, and 𝐴3. Linear encoders (denoted as ‘‘Enc’’), specifically Mercury
M2000 with a resolution of 100 nm and sampled at 10 kHz, are utilized
to monitor the positions of the masses. Additionally, with additional
oversampling introduced on the FPGA, this resolution is increased to
3.125 nm. For the SISO investigation, only actuator 𝐴1 is used to
position mass 𝑀1. The control systems are implemented on an NI
compactRIO platform and incorporate a linear current source power
amplifier.

Fig. 6(b) depicts the measured Frequency Response Function (FRF)
of the system, which exhibits a collocated double mass–spring–damper
system with additional high-frequency parasitic dynamics. To improve
control clarity, the system is approximated to a single eigenmode mass–
spring–damper system using Matlab’s identification tool. The transfer
function of the system is expressed as:

(𝑠) = 6.615𝑒5 . (43)

83.57𝑠2 + 279.4𝑠 + 5.837𝑒5
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Fig. 7. The open-loop block diagram of the PCI-PID control system.

5.2. The validation and the limitation of Theorem 4 on the analysis of the
PCI-PID control system

The PID controller is widely used in industries. Within the PID
framework, a PCI-PID controller on the precision motion stage is de-
signed, as shown in Fig. 7. The parameters of the PCI-PID system are
as follows: the reset value 𝛾 = 0, 𝐾𝑝 = 20.5, the cut-off frequency
𝜔𝑐 = 2𝜋 ⋅ 150 [rad/s], 𝜔𝑑 = 𝜔𝑐∕4.8, 𝜔𝑡 = 𝜔𝑐 ⋅ 4.8, 𝜔𝑓 = 10𝜔𝑐 , and 𝜔𝑖 =
0.1𝜔𝑐 . The design specifications for the PCI-PID system aim to achieve a
crossover frequency of 150 Hz and a phase margin (PM) of 50◦ in the
open-loop. Additionally, the stability and convergence of the system
have been verified through testing. Based on simulation observations,
in this PCI-PID system under sinusoidal inputs, input frequencies below
37 Hz demonstrate multiple-reset actions, whereas frequencies above
37 Hz exhibit two-reset actions. Note that the frequency range in which
multiple-reset systems occur is not limited to low frequencies and
can vary depending on the specific reset system structure and design
parameters. Further research is needed to develop analytical methods
for identifying multiple-reset systems across different configurations.

The steady-state errors indicate the tracking precision of the motion
control system. Figs. 8(𝑐1), (𝑐2), (𝑑1), and (𝑑2) depict the steady-state
errors 𝑒(𝑡) of the PCI-PID system under input signal 𝑟(𝑡) = 1𝐸−7 sin(2𝜋𝑓 )
at input frequencies 𝑓 of 100 Hz and 500 Hz, as predicted, simulated,
and measured in experiments. The alignment between the predictions,
simulations, and experiments suggests that Theorem 4 accurately pre-
dicts the system behavior. Note that the reference input signal used in
the experiments is 𝑟(𝑡) = 1𝐸 − 7 sin(2𝜋𝑓𝑡) [m].

However, the accuracy of the method in Theorem 4 is limited by
Assumption 3. Examples in Fig. 8(𝑎1), (𝑎2), (𝑏1), and (𝑏2) at input
frequencies of 5 Hz and 10 Hz are applied to illustrate this limitation.
The jagged noises observed in the experimental signals arise from the
sensor’s resolution limitations. In these two cases, multiple resets per
cycle occur, and Assumption 3 is not satisfied, resulting in inaccuracies
in the analysis method. Nevertheless, in practical scenarios, multiple
resets may introduce excessive higher-order harmonics to the system,
leading to undesired performance issues such as large steady-state error
spikes, as shown in Fig. 8(𝑎1) and (𝑏1), and limit cycle problems in the
PI+CI system (Baños et al., 2011). Therefore, it is preferable to design
reset systems without multiple resets across the entire frequency range.

Section 6 introduces a new reset control structure as a case study
aimed at addressing the multiple-reset limitation observed in the PCI-
PID control structure. This new structure is designed to achieve two
reset instants per steady-state cycle, thereby satisfying Assumption 3
required for Theorem 4.

6. Case study 2: Two-reset-PCI-PID (T-PCI-PID) control system

6.1. The two-reset control system

This section introduces a new reset control structure termed the
Two-Reset Control System (T-RCS), illustrated in Fig. 9. This structure
forces the system to reset twice per steady-state cycle under a single
sinusoidal reference input signal, serving as an illustrative example for
validating Theorem 4.

In a traditional closed-loop reset system under sinusoidal input
𝑟(𝑡) = |𝑅| sin(𝜔𝑡), the error signal 𝑒(𝑡) is nonlinear and includes infinitely
many harmonics 𝑒 (𝑡) as defined in (13). This new T-RCS introduces a
𝑛
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Fig. 8. The steady-state errors 𝑒(𝑡) for the PCI-PID system under sinusoidal input 𝑟(𝑡) = sin(2𝜋𝑓𝑡) at input frequencies 𝑓 of 5 Hz in (𝑎1) and (𝑎2), 10 Hz in (𝑏1) and (𝑏2), 100 Hz
n (𝑐1) and (𝑐2), and 500 Hz in (𝑑1) and (𝑑2) as predicted, simulated, and experimentally measured. The gray background indicates scenarios involving multiple-reset actions.
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Fig. 9. Block diagram of the T-reset system, where 𝑠(𝑠) is given in (44) and 𝑒𝑠(𝑡) is
the reset signal.

Fig. 10. Bode Plot of 𝑠(𝑠) for 𝜔 = 2𝜋 ⋅ 10 [rad/s].

transfer function 𝑠 between the error signal 𝑒(𝑡) and the reset-triggered
signal 𝑒𝑠(𝑡). The transfer function of 𝑠(𝑠) is given by

𝑠(𝑠) = 𝑘𝑐𝑠

[

(𝑠∕(𝜔))2 + 𝑠∕(𝜔 ⋅𝑄1) + 1
(𝑠∕(𝜔))2 + 𝑠∕(𝜔 ⋅𝑄2) + 1

]

, (44)

where 𝑄1 < 𝑄2 ∈ R+. In this paper, the parameters are set as 𝑄1 = 1,
𝑄2 = 100, and 𝑘𝑐𝑠 = 0.05.

From (44), 𝑠(𝑠) functions as an anti-notch filter. This filter allows
frequencies within a specific range to pass through while attenuating
all others. By adjusting the parameters 𝑄1 and 𝑄2, the frequency range
of interest can be tailored. For example, selecting 𝑄 = 1, 𝑄 =
1 2 c

9 
Fig. 11. The open-loop block diagram of the T-PCI-PID control system.

100, 𝑘𝑐𝑠 = 0.05 for a frequency of 𝜔 = 2𝜋 ⋅10 [rad/s] yields the Bode plot
depicted in Fig. 10. At the frequency 𝜔 = 2𝜋 ⋅ 10 [rad/s], ∠𝑠(𝜔) = 0,
nd the magnitude |𝑠(𝜔)| is relatively a peak to other frequencies.
herefore, 𝑠(𝑠) approximately allows signals with a frequency of 𝜔 to
ass through. By aligning 𝜔 with the first-order input frequency in 𝑒(𝑡)

(13), the reset-triggered signal 𝑒𝑠(𝑡) is approximately expressed as:

𝑠(𝑡) = |𝐸1𝑠| sin(𝜔𝑡 + ∠𝐸1). (45)

rom (45), the reset-triggered signal 𝑒𝑠(𝑡) shares the same frequency
nd phase as the first-order harmonic 𝑒1(𝑡) in the error signal 𝑒(𝑡).
ince the reset-triggered signal 𝑒𝑠(𝑡) is phase-dependent and amplitude-
ndependent, Eq. (45) indicates that the reset action of  is triggered
ased on 𝑒1(𝑡). Thus, within this structure, the T-RCS ensures two reset
nstants per steady-state. This example serves to validate Theorem 4,
atisfying Assumption 3.

.2. The application of Theorem 4 to analyze the T-PCI-PID system

.2.1. The accuracy of Theorem 4
Fig. 11 shows the structure of the Two-reset-PCI PID (T-PCI-PID)

ontrol System. The transfer function 𝑠 is defined in (44). Except for
he setting for shaping filter 𝑠 with 𝑄1 = 1, 𝑄2 = 100, 𝐾𝑐𝑠 = 0.05, the
arameters of the T-PCI-PID system are specified the same as those of
he PCI-PID control system in Case Study 1. It has been verified that
he T-PCI-PID system is stable and convergent.

Fig. 12 (𝑎1)-(𝑑1) illustrates the simulated and Theorem 4-predicted
teady-state errors 𝑒(𝑡) for the T-PCI-PID system. In the prediction

alculations, 1001 harmonics are included. These simulations consider
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Fig. 12. The steady-state error 𝑒(𝑡) for the T-PCI-PID system under sinusoidal input 𝑟(𝑡) = sin(2𝜋𝑓𝑡) at input frequencies 𝑓 of 5 Hz in (𝑎1) and (𝑎2), 10 Hz in (𝑏1) and (𝑏2), 100 Hz
in (𝑐1) and (𝑐2), and 500 Hz in (𝑑1) and (𝑑2) as predicted, simulated, and experimentally measured. 𝑒𝑠(𝑡) represents the reset triggered signal.
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able 1
he experimentally measured maximum steady-state errors ||𝑒||∞ [m] for PCI-PID and
-PCI-PID control systems at input frequencies of 5 Hz, 10 Hz, 100 Hz, and 500 Hz.
Systems Frequencies [Hz]

5 10 100 500

PCI-PID 1.47E−09 9.57E−10 8.43E−08 1.22E−07
T-PCI-PID 1.01E−09 6.89E−10 8.27E−08 1.22E−07
Error Reduction 31.29% 28.00% 1.90% 0

a reference input signal 𝑟(𝑡) = 1𝐸 − 7 sin(2𝜋𝑓𝑡) at frequencies 𝑓 of
Hz, 10 Hz, 100 Hz, and 500 Hz. Given the amplitude-independence of

he reset action, the reset-triggered signals are scaled for visual clarity.
he reset triggered signal 𝑒𝑠(𝑡) forces two reset instants per steady-state
eriod in multiple-reset systems at input frequencies 5 Hz and 10 Hz,
hile it maintains the reset instants unchanged in two-reset systems at

nput frequencies 100 Hz and 500 Hz.
The analytical predictions closely align with the simulations in T-

CI-PID systems, validating the accuracy of Theorem 4. Then, this
onclusion is further supported by the experimental results in Fig. 12
𝑎2)-(𝑑2). Note that the jagged signal observed at input frequencies 5 Hz
nd 10 Hz in the measured results arises from sensor limitations.

Experimental results presented in Fig. 12 not only validate the
ccuracy of Theorem 4 but also demonstrate the superior performance
chieved by the T-PCI-PID system compared to the PCI-PID under
inusoidal inputs. Table 1 compares the maximum steady-state er-
ors ‖𝑒‖∞ for the T-PCI-PID and PCI-PID systems at various input
requencies. Additionally, the table includes the relative error reduction
chieved by the T-PCI-PID system compared to the PCI-PID system,
ighlighting the effectiveness of the proposed design in improving low-
requency precision while preserving high-frequency performance. For
xample, at an input frequency of 5 Hz, the T-PCI-PID system enhances
ositioning precision by 31.29%. However, as this paper primarily
ocuses on developing frequency response analysis for closed-loop reset
ystems, the broader advantages and limitations of the T-RCS structure
n various applications will be examined in future research.
 t

10 
Fig. 13. The PE of the T-PCI-PID control system under the input 𝑟(𝑡) = sin(2𝜋𝑡) for
ifferent numbers of harmonics (𝑁ℎ) included in the prediction calculation process,
pecifically 301, 501, and 1001.

.2.2. The relation of the accuracy of Theorem 4 and the number of
armonics

Let 𝑒sim(𝑡) and 𝑒pre(𝑡) denote the simulated and predicted steady-
tate errors in the T-PCI-PID system, respectively. The Prediction Error
PE) between them is defined as PE = |𝑒sim(𝑡) − 𝑒pre(𝑡)|.

Fig. 13 shows the relationship between the PE and the number
f harmonics (denoted as 𝑁ℎ) included in the prediction calculation
rocess, in the T-PCI-PID control system under a sinusoidal input
ignal 𝑟(𝑡) = sin(2𝜋𝑡). As the number of harmonics 𝑁ℎ increases, the
ccuracy of the method increases. Ideally, PE approaches 0 as 𝑁ℎ

ends to infinity. The zoom-in plot emphasizes the differences in pre-
ictions between the simulation and Theorem 4, resembling vibration
ignals. This discrepancy arises because Theorem 4 calculates outputs
y summing a finite number of sinusoidal harmonics. The unaccounted
nfinite harmonics contribute to the prediction error, creating a pattern
esembling multi-sine vibrations. Thus, there is a trade-off between the
E and 𝑁ℎ (indicating the calculation time in practice). In practice,
eaders can strive to minimize PE while considering the computational
ime trade-off.
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Fig. 14. The 𝛤 (𝜔) of the T-PCI-PID control system.

.3. Discussion: The importance of Theorem 4 in the reset systems design

In linear systems, the analytical connection between open-loop and
losed-loop frequency-domain analysis serves as an effective tool for
esigning and predicting the performance of the systems. Let 𝑛(𝜔)
nd 𝑛(𝜔) represent the open-loop transfer function and the closed-
oop sensitivity function, respectively. However, in reset systems, the
elationship 𝑛(𝜔) = 1∕(𝑛(𝜔) + 1) does not hold, neither for the first-
rder harmonic (for 𝑛 = 1) nor higher-order harmonics (for 𝑛 > 1). The
eveloped closed-loop sensitivity functions in (38) illustrate that the
irst and higher-order harmonics in the open-loop have a cross effect
n the first and higher-order harmonics in the closed-loop, mediated
y the parameter 𝛤 (𝜔).

As highlighted in Remark 4, Method A and Method B assume 𝛤 (𝜔) =
for all 𝜔, which implies that higher-order harmonics 𝑒𝑛(𝑡) for 𝑛 > 1

undergo no reset actions, leading to inaccuracies. Theorem 4 addresses
this issue by introducing the parameter 𝛤 (𝜔). The parameter 𝛤 (𝜔)
affects computations for both first-order and higher-order harmonics, as
demonstrated in Eqs. (38) to (41). Its introduction provides a more ac-
curate representation of the system’s behavior, particularly in scenarios
involving significant higher-order harmonics. Moreover, 𝛤 (𝜔) can be
used to design and tune reset systems to be less affected by higher-order
harmonics, for improving system performance.

Fig. 14 illustrates the 𝛤 (𝜔) values in the T-PCI-PID system when
subjected to sinusoidal inputs across frequencies ranging from 1 Hz to
1000 Hz. It is evident from the figure that 𝛤 (𝜔) = 1 does not hold across
the entire frequency range. Given this context, comparing the new
method with previous Methods A and B would be redundant, as these
methods have already been shown to make inaccurate assumptions. To
validate the accuracy of the new theorem, its predictions are directly
compared with simulation and experimental results in Section 6.2.1.
Note that the depiction of 𝛤 (𝜔) in Fig. 14 specifically pertains to the
system described in case study 2. For different reset control systems,

𝛤 (𝜔) will vary as determined by (37).

11 
As discussed in Remark 2, 𝛤 (𝜔) provides a measure of the relative
magnitude of higher-order harmonics ∑∞

𝑛=3 𝑣
𝑛
𝑛𝑙(𝑡) compared to the first-

order harmonic 𝑣1𝑛𝑙(𝑡). This metric can be utilized in future system
designs to adjust system parameters and mitigate the relative effects
of higher-order harmonics in closed-loop systems, while retaining the
first-order harmonic performance.

6.4. Discussion: Future work of Applying Theorems 1–4 in the Reset Systems
Design

For the steady-state performance analysis of closed-loop reset sys-
tems, as discussed in the last subsection, relying solely on open-loop
analysis is inadequate due to the influence of higher-order harmon-
ics. The sensitivity function 𝑛(𝜔) in Theorem 4 serves as a critical
closed-loop indicator of steady-state error across different frequencies.

For instance, Fig. 15 illustrates the sensitivity function derived from
Theorem 4 for the closed-loop T-PCI-PID system. A low magnitude of
|𝑛(𝜔)| signifies high accuracy in the system’s steady-state response.
This metric can guide the tuning of reset systems to achieve enhanced
positioning accuracy at targeted frequencies.

Moreover, research (Karbasizadeh et al., 2022) demonstrated that
higher-order harmonics in closed-loop reset systems are tunable. How-
ever, the underlying theoretical principles for the closed-loop har-
monics remain unclear. Ideally, the goal is to maintain the benefits
of first-order harmonics while minimizing higher-order harmonics to
negligible levels. Achieving this would allow the superposition law
hold for closed-loop reset systems under multiple inputs. The open-loop
and closed-loop analysis presented in Theorems 1 through 4 provide
effective tools for such tuning and designing of reset control systems.

For transient-state performance analysis, the peak of the sensitiv-
ity function 𝑛(𝜔), denoted as 𝑀𝑠, serves as an indicator. For in-
stance, in linear systems, a high 𝑀𝑠 value at frequencies correspond-
ing to significant disturbances or errors often correlates with higher
overshoot (Shamsuzzoha & Skogestad, 2010). When the magnitudes
of higher-order harmonics are relatively much lower compared to
the first-order harmonics at frequencies where the sensitivity func-
tion peaks, this linear relationship can be approximately extended to
closed-loop reset systems.

For illustration, three PCI-PID reset systems with different design
parameters are presented. The design parameters of System 1 are
detailed in Section 5.2. System 2 is configured with the following
parameters: reset value 𝛾 = 0, 𝐾𝑝 = 13.9, 𝜔𝑐 = 2𝜋 ⋅ 140 rad/s, 𝜔𝑑 =
𝜔𝑐∕6.1, 𝜔𝑡 = 𝜔𝑐 ⋅ 6.1, 𝜔𝑓 = 10𝜔𝑐 , and 𝜔𝑖 = 0.1𝜔𝑐 . System 3 is designed
with the following parameters: reset value 𝛾 = 0, 𝐾𝑝 = 28.5, 𝜔𝑐 = 2𝜋⋅160

rad/s, 𝜔𝑑 = 𝜔𝑐∕3.9, 𝜔𝑡 = 𝜔𝑐 ⋅ 3.9, 𝜔𝑓 = 10𝜔𝑐 , and 𝜔𝑖 = 0.1𝜔𝑐 .
Fig. 15. The Bode plot of the closed-loop Higher Order Sinusoidal Input Sensitivity Function (HOSISF) 𝑛(𝜔) for the closed-loop T-PCI-PID control system, with the first three
harmonics 1, 3, and 5.
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Fig. 16. (a) The 𝑛(𝜔) with the first and third harmonics 1 and 3 for three closed-loop PCI-PID control system. (b) The step responses of these three systems by simulation.
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Fig. 16(a) illustrates the sensitivity functions of three reset systems.
or clarity, only the two primary harmonics — the first-order (𝑛 = 1)
nd third-order (𝑛 = 3) harmonics — are displayed. Among these
hree systems, System 2 exhibits the lowest peak sensitivity function
𝑀𝑠). Additionally, at the frequencies where 𝑀𝑠 peaks, the magnitudes
f higher-order harmonics are relatively low and therefore negligible,
atisfying the two-reset assumptions of Theorem 4. The step response
omparison among the three systems presented in Fig. 16(b) further
eveals that System 2 has the lowest overshoot. These findings suggest
hat when higher-order harmonics can be omitted, higher 𝑀𝑠 values
n the first-order harmonics are associated with larger overshoot in
he closed-loop system, consistent with observations in linear systems.
herefore, maintaining 𝑀𝑠 below a specified threshold helps prevent
xcessive overshoot and reduces sensitivity to inputs. However, this
nalysis provides only a preliminary evaluation of frequency-domain
haracteristics and transient response. A more rigorous investigation
nto the relationship between transient response behavior and the
ensitivity function 𝑛(𝜔) is crucial for a deeper understanding and
ptimization of reset control systems. Additionally, the step response
nalysis for closed-loop reset systems detailed in Zhang and HosseinNia
2024) serves as a tool for conducting the transient response analysis.

In summary, developing designing and tuning guideline to optimize
oth steady-state and transient responses in reset systems is crucial for
heir industrial application. The contributions in this work, including
heorems 1 to 4, provide foundational frequency-domain tools for this
urpose.

. Conclusion

To conclude, this study develops frequency response analysis meth-
ds for open-loop and closed-loop reset control systems with two reset
ctions per steady-state cycle. These methods establish connections
etween the open-loop and closed-loop analysis of reset systems. Simu-
ation and experimental results on a precision motion stage validate the
ccuracy and efficacy of the proposed methods. Moreover, the results
ighlight the potential application of these methods to facilitate future
eset control system design in the frequency domain.

However, the proposed frequency response analysis is currently
imited to two-reset systems. In practical design, it is preferable to avoid
ultiple-reset systems since they introduce high-magnitude higher-

rder harmonics, which may degrade performance. Nonetheless, in
cenarios where multiple-reset actions are unavoidable, future research
ill be necessary to develop accurate analysis methods tailored to these
ystems. s

12 
Additionally, the frequency response analysis for closed-loop reset
ystems under sinusoidal disturbance and noise inputs follows a similar
erivation process to the theorems presented in this paper. To maintain
larity on the contribution of this work, this analysis is not included
ere but will be addressed in future research.

Furthermore, the newly introduced Two-Reset Control System (T-
CS) is designed to ensure two-reset systems, which serves as an illus-

rative example validating the main contribution of this work. Notably,
he T-RCS has demonstrated improved steady-state tracking precision at
ow frequencies compared to traditional reset systems when subjected
o sinusoidal reference inputs. This enhanced performance can be at-
ributed to the elimination of multiple-reset occurrences achieved by
he T-RCS. Future research will comprehensively explore the practical
pplication of the T-RCS under various types of inputs.
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Appendix A. Proof for Lemma 1

Proof. Consider a GCI (with 𝐴𝑅 = 0, 𝐵𝑅 = 1, 𝐶𝑅 = 1, 𝐷𝑅 = 0) subjected
to a sinusoidal input signal 𝑒(𝑡) = |𝐸1| sin(𝜔𝑡), under Assumption 1 and
the Zeno-free condition in (10), at steady states.

Based on (1), the output signal 𝑢𝑐𝑖(𝑡) of the GCI is given by

⎧

⎪

⎨

⎪

⎩

�̇�𝑐𝑖(𝑡) = 𝑒(𝑡), 𝑒(𝑡) ≠ 0,

𝑢𝑐𝑖(𝑡+) = 𝛾𝑢𝑐𝑖(𝑡), 𝑒(𝑡) = 0.
(A.1)

For its BLS (which is an integrator), we have

̇ 𝑖(𝑡) = 𝑒(𝑡). (A.2)

Define 𝑞𝑖(𝑡) = 𝑢𝑐𝑖(𝑡) − 𝑢𝑖(𝑡). From (A.1) and (A.2), we have

⎧

⎪

⎨

⎪

⎩

�̇�𝑖(𝑡) = �̇�𝑐𝑖(𝑡) − �̇�𝑖(𝑡) = 0, 𝑒(𝑡) ≠ 0,

𝑞𝑖(𝑡+) = 𝛾𝑞𝑖(𝑡) + (𝛾 − 1)𝑢𝑖(𝑡), 𝑒(𝑡) = 0.
(A.3)

The reset instant of the GCI with a sinusoidal input signal 𝑒(𝑡) =
|𝐸1| sin(𝜔𝑡) is determined by 𝑡𝑖 = 𝑖𝜋∕𝜔, where 𝑖 ∈ Z+ and 𝑒(𝑡𝑖) = 0.
Utilizing (A.3), the signal 𝑞𝑖(𝑡) between two consecutive reset instants
[𝑡+𝑖 , 𝑡𝑖+1] (where 𝑡+𝑖 denotes the after-reset instant) is expressed as:

𝑞𝑖(𝑡) = 𝑞𝑖(𝑡+𝑖 ) + ∫

𝑡

𝑡𝑖
�̇�𝑖(𝜏)𝑑𝜏 = 𝑞𝑖(𝑡+𝑖 ), 𝑡 ∈ [𝑡+𝑖 , 𝑡𝑖+1]. (A.4)

Given the input signal 𝑒(𝑡) = |𝐸1| sin(𝜔𝑡) and based on the state-space
equation in (1), at the reset instant 𝑡𝑖 = 𝑖𝜋∕𝜔, the base-linear output
𝑢𝑖(𝑡𝑖) is given by:

𝑢𝑖(𝑡𝑖) =

⎧

⎪

⎨

⎪

⎩

0, for even 𝑖,

2|𝐸1|∕𝜔, for odd 𝑖.
(A.5)

Combining (A.3), (A.4), and (A.5), at the reset instant 𝑡𝑖, 𝑞𝑖(𝑡+𝑖 ) is given
by

𝑞𝑖(𝑡+𝑖 ) = 𝛾𝑞𝑖(𝑡+𝑖−1) + (𝛾 − 1)𝑢𝑖(𝑡𝑖)

=

⎧

⎪

⎨

⎪

⎩

𝛾𝑞𝑖(𝑡+𝑖−1), for even 𝑖,

𝛾𝑞𝑖(𝑡+𝑖−1) + 2|𝐸1|(𝛾 − 1)∕𝜔, for odd 𝑖.

(A.6)

Based on (A.6), for an odd 𝑖, 𝑞𝑖(𝑡+𝑖 ) is given by

𝑞𝑖(𝑡+𝑖 ) = 𝑞𝑖(𝑡+𝑖+2)

= 𝛾𝑞𝑖(𝑡+𝑖+1) + 2|𝐸1|(𝛾 − 1)∕𝜔

= 𝛾2𝑞𝑖(𝑡+𝑖 ) + 2|𝐸1|(𝛾 − 1)∕𝜔.

(A.7)

Eqs. (A.6) and (A.7) can be concluded that

𝑞𝑖(𝑡+𝑖 ) =

⎧

⎪

⎨

⎪

⎩

−2|𝐸1|𝛾(𝛾 + 1)−1∕𝜔, for even 𝑖,

−2|𝐸1|(𝛾 + 1)−1∕𝜔, for odd 𝑖.
(A.8)

Combining (A.4) and (A.8), 𝑞𝑖(𝑡) in the time domain can be derived as
follows:

𝑞𝑖(𝑡) =

⎧

⎪

⎨

⎪

⎩

−2|𝐸1|𝛾(𝛾 + 1)−1∕𝜔, for 𝑡 ∈ [2𝑘, 2𝑘 + 1) ⋅ 𝜋∕𝜔,

−2|𝐸1|(𝛾 + 1)−1∕𝜔, for 𝑡 ∈ [2𝑘 + 1, 2𝑘 + 2) ⋅ 𝜋∕𝜔.
(A.9)

Here we conclude the proof. □

Appendix B. Proof for Theorem 1

Proof. Consider a reset controller  (1) where 𝑛𝑟 = 1 with an input
signal of 𝑒(𝑡) = |𝐸𝑛| sin(𝑛𝜔𝑡 + ∠𝐸𝑛) (∠𝐸𝑠 ∈ (−𝜋, 𝜋), 𝑛 = 2𝑘 + 1, 𝑘 ∈ N)
and a reset triggered signal of 𝑒 (𝑡) = |𝐸 | sin(𝜔𝑡+∠𝐸 ) (∠𝐸 ∈ (−𝜋, 𝜋)),
𝑠 𝑠 𝑠 𝑠
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at steady states. Let 𝑥𝑐 (𝑡) and 𝑥𝑏𝑙(𝑡) denote the state and the base-linear
state of the  and the BLC 𝑏𝑙, respectively. Define

𝑥𝑛𝑙(𝑡) = 𝑥𝑐 (𝑡) − 𝑥𝑏𝑙(𝑡) (∈ R𝑛𝑐×1), (B.1)

where 𝑛𝑐 is the number of states of the reset controller  and 𝑥𝑏𝑙(𝑡) is
given by

𝑥𝑏𝑙(𝑡) = |𝐸𝑛𝛥𝑙(𝑛𝜔)| sin(𝑛𝜔𝑡 + ∠𝐸𝑛 + ∠𝛥𝑙(𝑛𝜔)), (B.2)

where

𝛥𝑙(𝑛𝜔) = (𝑗𝑛𝜔𝐼 − 𝐴𝑅)−1𝐵𝑅 (∈ R𝑛𝑐×1). (B.3)

Based on (1) and (B.1), we have:

⎧

⎪

⎨

⎪

⎩

�̇�𝑛𝑙(𝑡) = 𝐴𝑅𝑥𝑛𝑙(𝑡), 𝑒𝑠(𝑡) ≠ 0,

𝑥𝑛𝑙(𝑡+) = 𝐴𝜌𝑥𝑛𝑙(𝑡) + (𝐴𝜌 − 𝐼)𝑥𝑏𝑙(𝑡), 𝑒𝑠(𝑡) = 0.
(B.4)

For the reset controller  with a reset triggered signal of 𝑒𝑠(𝑡) =
|𝐸𝑠| sin(𝜔𝑡 + ∠𝐸𝑠), the set of reset instants is denoted by 𝐽𝑜 ∶= {𝑡𝑖 ∣ 𝑡𝑖 =
(𝑖𝜋−∠𝐸𝑠)∕𝜔, 𝑖 ∈ Z+}. The reset interval is given by 𝜎𝑖 = 𝑡𝑖+1− 𝑡𝑖 = 𝜋∕𝜔.
According to (B.4), between two consecutive reset instants [𝑡+𝑖 , 𝑡𝑖+1]
where 𝑒𝑠(𝑡) ≠ 0, the expression for 𝑥𝑛𝑙(𝑡) is given by

𝑥𝑛𝑙(𝑡) = 𝑒𝐴𝑅(𝑡−𝑡𝑖)𝛥𝑛(𝜔), for 𝑡 ∈ [𝑡+𝑖 , 𝑡𝑖+1], (B.5)

where 𝛥𝑛(𝜔) ∈ R𝑛𝑐×1 is a constant matrix independent of time 𝑡.
Based on (B.5), at the reset instant 𝑡𝑖+1 ∈ 𝐽𝑜, 𝑥𝑛𝑙(𝑡𝑖+1) is given by

𝑥𝑛𝑙(𝑡𝑖+1) = 𝑒𝐴𝑅(𝑡𝑖+1−𝑡𝑖)𝛥𝑛(𝜔) = 𝑒𝐴𝑅𝜋∕𝜔𝛥𝑛(𝜔). (B.6)

From (B.4), 𝑥𝑛𝑙(𝑡+) at the reset instant 𝑡𝑖+1 is given by

𝑥𝑛𝑙(𝑡+𝑖+1) = 𝐴𝜌𝑥𝑛𝑙(𝑡𝑖+1) + (𝐴𝜌 − 𝐼)𝑥𝑏𝑙(𝑡𝑖+1). (B.7)

Substituting 𝑥𝑛𝑙(𝑡𝑖+1) from (B.6) into (B.7), 𝑥𝑛𝑙(𝑡+𝑖+1) is obtained as

𝑥𝑛𝑙(𝑡+𝑖+1) = 𝐴𝜌𝑒
𝐴𝑅𝜋∕𝜔𝛥𝑛(𝜔) + (𝐴𝜌 − 𝐼)𝑥𝑏𝑙(𝑡𝑖+1). (B.8)

From (B.2), at the reset instant 𝑡𝑖 = (𝑖𝜋 − ∠𝐸𝑠)∕𝜔, the base-linear state
is given by

𝑥𝑏𝑙(𝑡𝑖) = |𝐸𝑛𝛥𝑙(𝑛𝜔)| sin(𝑛𝑖𝜋 + ∠𝐸𝑛 + ∠𝛥𝑙(𝑛𝜔) − 𝑛∠𝐸𝑠)

=

⎧

⎪

⎨

⎪

⎩

|𝐸𝑛𝛥𝑙(𝑛𝜔)| sin(∠𝛥𝑙(𝑛𝜔) + ∠𝐸𝑛 − 𝑛∠𝐸𝑠), for even 𝑖,

−|𝐸𝑛𝛥𝑙(𝑛𝜔)| sin(∠𝛥𝑙(𝑛𝜔) + ∠𝐸𝑛 − 𝑛∠𝐸𝑠), for odd 𝑖,

(B.9)

where 𝛥𝑙(𝑛𝜔) is given in (B.3).
Define

𝛥𝑛
𝑐 (𝜔) = |𝛥𝑙(𝑛𝜔)| sin(∠𝛥𝑙(𝑛𝜔) + ∠𝐸𝑛 − 𝑛∠𝐸𝑠) (∈ R𝑛𝑐×1), (B.10)

and substitute 𝛥𝑛
𝑐 (𝜔) from (B.10) into (B.9), we have

𝑥𝑏𝑙(𝑡𝑖) =

⎧

⎪

⎨

⎪

⎩

|𝐸𝑛|𝛥𝑛
𝑐 (𝜔), for even 𝑖,

−|𝐸𝑛|𝛥𝑛
𝑐 (𝜔), for odd 𝑖.

(B.11)

From (B.11), at the reset instant 𝑡𝑖+1 = ((𝑖+1)𝜋−∠𝐸𝑠)∕𝜔, the expression
for 𝑥𝑏𝑙(𝑡𝑖+1) is written as:

𝑥𝑏𝑙(𝑡𝑖+1) =

⎧

⎪

⎨

⎪

⎩

−|𝐸𝑛|𝛥𝑛
𝑐 (𝜔), for even 𝑖,

|𝐸𝑛|𝛥𝑛
𝑐 (𝜔), for odd 𝑖,

(B.12)

Substituting 𝑥𝑏𝑙(𝑡𝑖+1) from (B.12) into (B.8), 𝑥𝑛𝑙(𝑡+𝑖+1) is derived as

𝑥𝑛𝑙(𝑡+𝑖+1) =

⎧

⎪

⎨

⎪

𝐴𝜌𝑒𝐴𝑅𝜋∕𝜔𝛥𝑛(𝜔) − (𝐴𝜌 − 𝐼)|𝐸𝑛|𝛥𝑛
𝑐 (𝜔), for even 𝑖,

𝐴𝜌𝑒𝐴𝑅𝜋∕𝜔𝛥𝑛(𝜔) + (𝐴𝜌 − 𝐼)|𝐸𝑛|𝛥𝑛
𝑐 (𝜔), for odd 𝑖.

(B.13)
⎩
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From (B.13), we have

𝑥𝑛𝑙(𝑡+𝑖 ) =

⎧

⎪

⎨

⎪

⎩

𝐴𝜌𝑒𝐴𝑅𝜋∕𝜔𝛥𝑛(𝜔) + (𝐴𝜌 − 𝐼)|𝐸𝑛|𝛥𝑛
𝑐 (𝜔), for even 𝑖,

𝐴𝜌𝑒𝐴𝑅𝜋∕𝜔𝛥𝑛(𝜔) − (𝐴𝜌 − 𝐼)|𝐸𝑛|𝛥𝑛
𝑐 (𝜔), for odd 𝑖.

(B.14)

From (B.5), at the reset instant 𝑡+𝑖 , we have

𝑥𝑛𝑙(𝑡+𝑖 ) = 𝛥𝑛(𝜔). (B.15)

Let Eqs. (B.14) and (B.15) be set equal to each other. Then, 𝛥𝑛(𝜔) is
derived as follows:

𝛥𝑛(𝜔) =

⎧

⎪

⎨

⎪

⎩

|𝐸𝑛|𝛥𝑛
𝑣(𝜔), for even 𝑖,

−|𝐸𝑛|𝛥𝑛
𝑣(𝜔), for odd 𝑖,

(B.16)

where

𝛥𝑛
𝑣(𝜔) = (𝐴𝜌𝑒

𝐴𝑅𝜋∕𝜔 − 𝐼)−1(𝐼 − 𝐴𝜌)𝛥𝑛
𝑐 (𝜔) (∈ R𝑛𝑐×1). (B.17)

Since the reset interval 𝜎𝑖 = 𝜋∕𝜔, Eqs. (B.5) and (B.16) together
illustrate that 𝑥𝑛𝑙(𝑡) is bounded and has the same period 2𝜋∕𝜔 as the
reset triggered signal 𝑒𝑠(𝑡). The absolute integrability of 𝑥𝑛𝑙(𝑡) implies
the existence of its Fourier and Laplace transforms. Let 𝑋𝑛𝑙(𝑠) denote
the Laplace transform of 𝑥𝑛𝑙(𝑡). From (B.5), for 𝑡 ∈ [𝑡+𝑖 , 𝑡𝑖+1], the Laplace
transform of 𝑥𝑛𝑙(𝑡) is expressed as:

𝑋𝑛𝑙(𝑠) = ℒ [𝑥𝑛𝑙(𝑡)] = (𝑠𝐼 − 𝐴𝑅)−1𝑒−𝐴𝑅𝑡𝑖𝛥𝑛(𝜔). (B.18)

Define a parameter 𝑄(𝑠) = ℒ [𝑞(𝑡)] as:

𝑄(𝑠) = (𝑠𝐼)−1(𝑠𝐼 − 𝐴𝑅)𝑋𝑛𝑙(𝑠). (B.19)

Then, based on (B.18) and (B.19), for 𝑡 ∈ [𝑡+𝑖 , 𝑡𝑖+1], 𝑄(𝑠) is given by

𝑄(𝑠) = (𝑠𝐼)−1𝑒−𝐴𝑅𝑡𝑖𝛥𝑛(𝜔). (B.20)

From (B.16) and (B.20), during the time interval [𝑡+𝑖 , 𝑡𝑖+1], the inverse
Laplace transform of 𝑄(𝑠) is given by:

𝑞(𝑡) = ℒ−1[𝑄(𝑠)] =

⎧

⎪

⎨

⎪

⎩

|𝐸𝑛|𝛥𝑛
𝑣(𝜔)𝑢(𝑡 − 𝑡𝑖) + 𝐶𝛽1, for even 𝑖,

−|𝐸𝑛|𝛥𝑛
𝑣(𝜔)𝑢(𝑡 − 𝑡𝑖) + 𝐶𝛽2, for odd 𝑖,

(B.21)

where 𝑢(𝑡) is an unit step signal. The parameters 𝐶𝛽1 ∈ R𝑛𝑐×1 and
𝐶𝛽2 ∈ R𝑛𝑐×1 are the values of 𝑞(𝑡) at the reset instant 𝑡𝑖. From (B.21),
we obtain that 𝑞(𝑡) remains a constant matrix during the time interval
[𝑡+𝑖 , 𝑡𝑖+1].

From (B.5), at the time instant 𝑡𝑖+1, 𝑥𝑛𝑙(𝑡𝑖+1) = 𝑒𝐴𝑅𝜋∕𝜔𝛥𝑛(𝜔). From
(B.16), 𝑥𝑛𝑙(𝑡𝑖) is given by

𝑥𝑛𝑙(𝑡𝑖) =

⎧

⎪

⎨

⎪

⎩

−|𝐸𝑛|𝑒𝐴𝑅𝜋∕𝜔𝛥𝑛
𝑣(𝜔), for even 𝑖,

|𝐸𝑛|𝑒𝐴𝑅𝜋∕𝜔𝛥𝑛
𝑣(𝜔), for odd 𝑖,

(B.22)

From (B.5) and (B.16), at the time instant 𝑡+𝑖 , 𝑥𝑛𝑙(𝑡+𝑖 ) is given by

𝑥𝑛𝑙(𝑡+𝑖 ) =

⎧

⎪

⎨

⎪

⎩

|𝐸𝑛|𝛥𝑛
𝑣(𝜔), for even 𝑖,

−|𝐸𝑛|𝛥𝑛
𝑣(𝜔), for odd 𝑖.

(B.23)

From the time instant 𝑡𝑖 to 𝑡+𝑖 , 𝑥𝑛𝑙(𝑡𝑖) jumps to 𝑥𝑛𝑙(𝑡+𝑖 ). From (B.22) and
(B.23), this jump is given by

𝑥𝑛𝑙(𝑡+𝑖 ) − 𝑥𝑛𝑙(𝑡𝑖) =

⎧

⎪

⎨

⎪

|𝐸𝑛|(𝐼 + 𝑒𝐴𝑅𝜋∕𝜔)𝛥𝑛
𝑣(𝜔), for even 𝑖,

−|𝐸𝑛|(𝐼 + 𝑒𝐴𝑅𝜋∕𝜔)𝛥𝑛
𝑣(𝜔), for odd 𝑖.

(B.24)
⎩ 𝑞
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Substituting 𝛥𝑛
𝑣(𝜔) from (B.17) into (B.24), we have

𝑥𝑛𝑙(𝑡+𝑖 ) − 𝑥𝑛𝑙(𝑡𝑖) =

⎧

⎪

⎨

⎪

⎩

|𝐸𝑛|(𝐼 + 𝑒𝐴𝑅𝜋∕𝜔)(𝐴𝜌𝑒𝐴𝑅𝜋∕𝜔 − 𝐼)−1(𝐼 − 𝐴𝜌)𝛥𝑛
𝑐 (𝜔), for even 𝑖,

−|𝐸𝑛|(𝐼 + 𝑒𝐴𝑅𝜋∕𝜔)(𝐴𝜌𝑒𝐴𝑅𝜋∕𝜔 − 𝐼)−1(𝐼 − 𝐴𝜌)𝛥𝑛
𝑐 (𝜔), for odd 𝑖.

(B.25)

Define

𝛥𝑛
𝑞(𝜔) = (𝐼 + 𝑒𝐴𝑅𝜋∕𝜔)(𝐴𝜌𝑒

𝐴𝑅𝜋∕𝜔 − 𝐼)−1(𝐼 − 𝐴𝜌)𝛥𝑛
𝑐 (𝜔) (∈ R𝑛𝑐×1) (B.26)

and substitute 𝛥𝑛
𝑞(𝜔) from (B.26) into (B.25), we have

𝑥𝑛𝑙(𝑡+𝑖 ) − 𝑥𝑛𝑙(𝑡𝑖) =

⎧

⎪

⎨

⎪

⎩

|𝐸𝑛|𝛥𝑛
𝑞(𝜔), for even 𝑖,

−|𝐸𝑛|𝛥𝑛
𝑞(𝜔), for odd 𝑖.

(B.27)

This jump indicates that from the time instant 𝑡𝑖 to 𝑡+𝑖 , 𝑥𝑛𝑙(𝑡) is an
impulse signal denoted by 𝜁𝑛𝑙(𝑡). From (B.27), 𝜁𝑛𝑙(𝑡) is expressed as:

𝜁𝑛𝑙(𝑡) = [𝑥𝑛𝑙(𝑡+𝑖 ) − 𝑥𝑛𝑙(𝑡𝑖)]𝛿(𝑡 − 𝑡𝑖)

=

⎧

⎪

⎨

⎪

⎩

|𝐸𝑛|𝛥𝑛
𝑞(𝜔)𝛿(𝑡 − 𝑡𝑖), for even 𝑖,

−|𝐸𝑛|𝛥𝑛
𝑞(𝜔)𝛿(𝑡 − 𝑡𝑖), for odd 𝑖,

(B.28)

where 𝛿(𝑡) represents the Dirac delta function.
Since the Laplace transform of the delta function is 1, the Laplace

transform of the impulse signal 𝜁𝑛𝑙(𝑡) in (B.28) is given by:

𝜁𝑛𝑙(𝑠) =

⎧

⎪

⎨

⎪

⎩

|𝐸𝑛|𝛥𝑛
𝑞(𝜔)𝑒

−𝑡𝑖𝑠, for even 𝑖,

−|𝐸𝑛|𝛥𝑛
𝑞(𝜔)𝑒

−𝑡𝑖𝑠, for odd 𝑖.
(B.29)

The impulse response is defined as the response of a system to a Dirac
delta input (Pesaran & Shin, 1998). Define a signal 𝜁𝑞(𝑡) as the impulse
response of the impulse signal 𝜁𝑛𝑙(𝑡) filtered through the linear time
invariant (LTI) transfer function (𝑠𝐼)−1(𝑠𝐼 − 𝐴𝑅). From (B.29), 𝜁𝑞(𝑡) is
given by:

𝜁𝑞(𝑡) = ℒ−1[(𝑠𝐼)−1(𝑠𝐼 − 𝐴𝑅)𝜁𝑛𝑙(𝑠)]

=

⎧

⎪

⎨

⎪

⎩

|𝐸𝑛|𝛥𝑛
𝑞(𝜔)𝛿(𝑡 − 𝑡𝑖) − |𝐸𝑛|𝐴𝑅𝛥𝑛

𝑞(𝜔), for even 𝑖,

−|𝐸𝑛|𝛥𝑛
𝑞(𝜔)𝛿(𝑡 − 𝑡𝑖) + |𝐸𝑛|𝐴𝑅𝛥𝑛

𝑞(𝜔), for odd 𝑖.

(B.30)

Eq. (B.30) demonstrates that at the time instant 𝑡𝑖, 𝜁𝑞(𝑡𝑖) has an initial
value of ±|𝐸𝑛|𝐴𝑅𝛥𝑛

𝑞(𝜔) and undergoes a jump of:

𝜁𝑞(𝑡+𝑖 ) − 𝜁𝑞(𝑡𝑖) =

⎧

⎪

⎨

⎪

⎩

|𝐸𝑛|𝛥𝑛
𝑞(𝜔), for even 𝑖,

−|𝐸𝑛|𝛥𝑛
𝑞(𝜔), for odd 𝑖.

(B.31)

From (B.19), the signal 𝑥𝑛𝑙(𝑡) filtered by (𝑠𝐼)−1(𝑠𝐼 − 𝐴𝑅) generates the
signal 𝑞(𝑡). Eqs. (B.30) and (B.31) demonstrate that at the time instant
𝑡𝑖 to 𝑡+𝑖 , the signal 𝑥𝑛𝑙(𝑡𝑖) jumps to 𝑥𝑛𝑙(𝑡+𝑖 ). The jump 𝜁𝑛𝑙(𝑡), filtered by
the transfer function (𝑠𝐼)−1(𝑠𝐼 − 𝐴𝑅), generates a jump 𝜁𝑞(𝑡+𝑖 ) − 𝜁𝑞(𝑡𝑖)
in (B.31). Thus, from (B.19), (B.30), and (B.31), the jump in 𝑞(𝑡) =
ℒ−1[𝑄(𝑠)] at the time instant 𝑡𝑖 is given by:

𝑞(𝑡+𝑖 ) − 𝑞(𝑡𝑖) = 𝜁𝑞(𝑡+𝑖 ) − 𝜁𝑞(𝑡𝑖). (B.32)

Based on (B.31) and (B.32), at the time instant 𝑡𝑖, we have

(𝑡+𝑖 ) =

⎧

⎪

⎨

⎪

⎩

𝑞(𝑡𝑖) + |𝐸𝑛|𝛥𝑛
𝑞(𝜔), for even 𝑖,

𝑞(𝑡𝑖) − |𝐸𝑛|𝛥𝑛
𝑞(𝜔), for odd 𝑖.

(B.33)

rom (B.21), 𝑞(𝑡+𝑖 ) for even 𝑖 is given by

+ 𝑛
(𝑡𝑖 ) = |𝐸𝑛|𝛥𝑣(𝜔) + 𝐶𝛽1. (B.34)
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From (B.33), at the time instant 𝑡𝑖 for even 𝑖, 𝑞(𝑡+𝑖 ) = 𝑞(𝑡𝑖) + |𝐸𝑛|𝛥𝑛
𝑞(𝜔).

hen, based on (B.21) and (B.33), 𝑞(𝑡+𝑖 ) for even 𝑖 can be written as

(𝑡+𝑖 ) = −|𝐸𝑛|𝛥
𝑛
𝑣(𝜔) + 𝐶𝛽2 + |𝐸𝑛|𝛥

𝑛
𝑞(𝜔). (B.35)

y setting Eqs. (B.34) and (B.35) equal to each other, we get:

𝛽1 = 𝐶𝛽2 − 2|𝐸𝑛|𝛥
𝑛
𝑣(𝜔) + |𝐸𝑛|𝛥

𝑛
𝑞(𝜔). (B.36)

ubstituting 𝐶𝛽1 from (B.36) to (B.21), 𝑞(𝑡) is given by

(𝑡) =

⎧

⎪

⎨

⎪

⎩

−|𝐸𝑛|𝛥𝑛
𝑣(𝜔)𝑢(𝑡 − 𝑡2𝑘) + |𝐸𝑛|𝛥𝑛

𝑞(𝜔) + 𝐶𝛽2, for 𝑡 ∈ [𝑡+2𝑘, 𝑡2𝑘+1],

−|𝐸𝑛|𝛥𝑛
𝑣(𝜔)𝑢(𝑡 − 𝑡2𝑘+1) + 𝐶𝛽2, for 𝑡 ∈ [𝑡+2𝑘+1, 𝑡2𝑘+2],

(B.37)

where 𝑘 ∈ N.
Let 𝑓 (𝑡)𝑘 (𝑘 ∈ Z+) represent the 𝑘th state of a function 𝑓 (𝑡).

Considering the reset controller  (1) with resetting the first state where
𝑛𝑟 = 1, the first state 𝑥𝑐 (𝑡𝑖)1 in the state 𝑥𝑐 (𝑡𝑖) is reset to 𝛾𝑥𝑐 (𝑡𝑖)1, and
there are no reset actions in state 𝑥𝑐 (𝑡)𝑘 for 𝑘 > 1. Therefore, we have

𝑥𝑐 (𝑡)𝑘 = 𝑥𝑏𝑙(𝑡)𝑘, for 𝑘 > 1. (B.38)

From (B.1), (B.28), and (B.38), we have

𝑥𝑛𝑙(𝑡)𝑘 = 0, for 𝑘 > 1,

𝛥𝑛
𝑞(𝜔)𝑘 = 0, for 𝑘 > 1.

(B.39)

From (B.19) and (B.39), we have

𝑞(𝑡)𝑘 = 0, for 𝑘 > 1. (B.40)

Eq. (B.37) indicates that during the time interval [𝑡+𝑖 , 𝑡𝑖+1], 𝑞(𝑡) is a
constant matrix. Eq. (B.33) demonstrates that at the time instant 𝑡𝑖 ∈ 𝐽𝑜,
𝑞(𝑡) has a jump of ±|𝐸𝑛|𝛥𝑛

𝑞(𝜔). Therefore, the signal 𝑞(𝑡) is absolutely
integrable, ensuring the existence of its Fourier and Laplace transforms.
Since 𝜎𝑖 = 𝑡𝑖+1− 𝑡𝑖 = 𝜋∕𝜔, from (B.33), (B.37), and (B.40), the first state
of 𝑞(𝑡) denoted by 𝑞(𝑡)1 is a square wave with a period of 2𝜋∕𝜔. It shares
the same phase as the reset triggered signal 𝑒𝑠(𝑡) and has a magnitude
of |𝐸𝑛|𝛥𝑛

𝑞(𝜔)1. Define a normalized square wave signal 𝑞𝑠(𝑡) with the
same phase as the reset-triggered signal 𝑒𝑠(𝑡), expressed as follows:

𝑞𝑠(𝑡) =
4
𝜋

∞
∑

𝜇=1

sin(𝜇𝜔𝑡 + 𝜇∠𝐸𝑠)
𝜇

, 𝜇 = 2𝑘 + 1(𝑘 ∈ N), (B.41)

whose Fourier transform is given by

𝑄𝑠(𝜔) = ℱ [𝑞𝑠(𝑡)] = 4
∞
∑

𝜇=1
ℱ [sin(𝜇𝜔𝑡 + 𝜇∠𝐸𝑠)]∕(𝜇𝜋). (B.42)

According to (B.37), (B.40) and (B.41), 𝑞(𝑡) can be expressed as:

𝑞(𝑡) = |𝐸𝑛|𝛥
𝑛
𝑞(𝜔)𝑞𝑠(𝑡)∕2 − |𝐸𝑛|𝛥

𝑛
𝑣(𝜔) + 𝐶𝛽2 + |𝐸𝑛|𝛥

𝑛
𝑞(𝜔)∕2. (B.43)

For a time-domain signal 𝑞(𝑡), the frequency 𝜔 is a constant. A constant
function corresponds to a delta function in the frequency domain.
Defining 𝑄(𝜔) = ℱ [𝑞(𝑡)], we derive 𝑄(𝜔) from (B.43) as follows:

𝑄(𝜔) = |𝐸𝑛|𝛥
𝑛
𝑞(𝜔)𝑄𝑠(𝜔)∕2 + (|𝐸𝑛|𝛥

𝑛
𝑞(𝜔)∕2 − 𝛥𝑛

𝑣(𝜔) + 𝐶𝛽2)𝛿(𝜔). (B.44)

Since 𝛿(𝜔) is a Dirac delta function, which is zero for 𝜔 ≠ 0, Eq. (B.44)
is simplified as:

𝑄(𝜔) = |𝐸𝑛|𝛥
𝑛
𝑞(𝜔)𝑄𝑠(𝜔)∕2. (B.45)

From (B.42) and (B.45), 𝑄(𝜔) is given by

𝑄(𝜔) = 2|𝐸𝑛|𝛥
𝑛
𝑞(𝜔)

∞
∑

𝜇=1
ℱ [sin(𝜇𝜔𝑡 + 𝜇∠𝐸𝑠)]∕(𝜇𝜋). (B.46)

Both 𝑄(𝜔) (B.46) and 𝑄𝑠(𝜔) (B.42) contain 𝜇 harmonics. Let 𝑄𝜇(𝜔)
and 𝑄𝜇(𝜔) represent the 𝜇-th (𝜇 ∈ Z+) harmonics of 𝑄(𝜔) and 𝑄 (𝜔),
𝑠 𝑠 E
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respectively. They are expressed as:

𝑄(𝜔) =
∞
∑

𝜇=1
𝑄𝜇(𝜔),

𝑄𝑠(𝜔) =
∞
∑

𝜇=1
𝑄𝜇

𝑠 (𝜔).

(B.47)

From (B.42), (B.46), and (B.47), 𝑄𝜇
𝑠 (𝜔) and 𝑄𝜇(𝜔) are given by

𝑄𝜇
𝑠 (𝜔) = 4ℱ [sin(𝜇𝜔𝑡 + 𝜇∠𝐸𝑠)]∕(𝜇𝜋),

𝑄𝜇(𝜔) = 2|𝐸𝑛|𝛥
𝑛
𝑞(𝜔)ℱ [sin(𝜇𝜔𝑡 + 𝜇∠𝐸𝑠)]∕(𝜇𝜋).

(B.48)

Let 𝑋𝑛𝑙(𝜔) = ℱ [𝑥𝑛𝑙(𝑡)], and 𝑋𝜇
𝑛𝑙(𝜔) represents the 𝜇-th harmonic of

𝑋𝜇
𝑛𝑙(𝜔), defined as:

𝑋𝑛𝑙(𝜔) =
∞
∑

𝜇=1
𝑋𝜇

𝑛𝑙(𝜔). (B.49)

From (B.19), (B.48) and (B.49), 𝑋𝜇
𝑛𝑙(𝜔) is derived as

𝑋𝜇
𝑛𝑙(𝜔) = (𝑗𝜇𝜔𝐼 − 𝐴𝑅)−1𝑗𝜇𝜔𝐼𝑄𝜇(𝜔). (B.50)

According to (B.1), (B.49), and (B.50), 𝑋𝑐 (𝜔) = ℱ [𝑥𝑐 (𝑡)] is obtained as

𝑋𝑐 (𝜔) = 𝑋𝑏𝑙(𝜔) +
∞
∑

𝜇=1
(𝑗𝜇𝜔𝐼 − 𝐴𝑅)−1𝑗𝜇𝜔𝐼𝑄𝜇(𝜔), (B.51)

where 𝑋𝑏𝑙(𝜔) = ℱ [𝑥𝑏𝑙(𝑡)].
Let 𝑉 (𝜔) = ℱ [𝑣(𝑡)]. According to (1), 𝑉 (𝜔) is given by

𝑉 (𝜔) = 𝐶𝑅𝑋𝑐 (𝜔) +𝐷𝑅𝐸(𝜔). (B.52)

Substituting 𝑋𝑐 (𝜔) from (B.51) into (B.52), 𝑉 (𝜔) is given by

𝑉 (𝜔) =𝐶𝑅𝑋𝑏𝑙(𝜔) +𝐷𝑅𝐸(𝜔) +
∞
∑

𝜇=1
𝐶𝑅(𝑗𝜇𝜔𝐼 − 𝐴𝑅)−1𝑗𝜇𝜔𝐼𝑄𝜇(𝜔).

(B.53)

rom (1), we have

𝑏𝑙(𝜔) = 𝐶𝑏𝑙(𝜔)𝐸(𝜔) = 𝐶𝑅𝑋𝑏𝑙(𝜔) +𝐷𝑅𝐸(𝜔). (B.54)

hen, substituting 𝑉𝑏𝑙(𝜔) from (B.54) into (B.53), 𝑉 (𝜔) is given by

(𝜔) = 𝑉𝑏𝑙(𝜔) +
∞
∑

𝜇=1
𝐶𝑅(𝑗𝜇𝜔𝐼 − 𝐴𝑅)−1𝑗𝜇𝜔𝐼𝑄𝜇(𝜔). (B.55)

efine

𝑉𝑛𝑙(𝜔) =
∞
∑

𝜇=1
𝑉 𝜇
𝑞 (𝜔),

𝑉 𝜇
𝑞 (𝜔) = 𝛥𝑥(𝜇𝜔)𝑄𝜇(𝜔),

𝑥(𝜇𝜔) = 𝐶𝑅(𝑗𝜇𝜔𝐼 − 𝐴𝑅)−1𝑗𝜇𝜔𝐼 (∈ R1×𝑛𝑐 ).

(B.56)

nd substitute 𝑉 𝜇
𝑞 (𝜔) from (B.56) into (B.55), 𝑉 (𝜔) is then given by

(𝜔) = 𝑉𝑏𝑙(𝜔) + 𝑉𝑛𝑙(𝜔) = 𝑉𝑏𝑙(𝜔) +
∞
∑

𝜇=1
𝑉 𝜇
𝑞 (𝜔). (B.57)

n the time domain, Eq. (B.57) is given by

(𝑡) = 𝑣𝑏𝑙(𝑡) + 𝑣𝑛𝑙(𝑡). (B.58)

rom (B.56), 𝑣𝑛𝑙(𝑡) is given by

𝑛𝑙(𝑡) = ℱ −1
[ ∞
∑

𝜇=1
𝛥𝑥(𝜇𝜔)𝑄𝜇(𝜔)

]

, 𝜇 ∈ Z+, (B.59)

here 𝑄𝜇(𝜔) and 𝛥𝑥(𝜇𝜔) are defined in (B.56) and (B.48), respectively.

qs. (B.58) and (B.59) conclude the proof. □



X. Zhang et al.

t

𝑣

S

𝐸

w

Control Engineering Practice 152 (2024) 106063 
Appendix C. Proof for Theorem 2

Proof. The reset controller , operating with the input signal and reset-
triggered signal 𝑒(𝑡) = |𝐸1| sin(𝜔𝑡 + ∠𝐸1) at steady states is defined as
the reset controller discussed in Theorem 1 when 𝑒𝑠(𝑡) = 𝑒(𝑡).

Following a similar proof process as in Appendix B, consider that
there are 𝑛 ∈ N harmonics in the reset output signal 𝑣(𝑡). Referring to
(B.57), let 𝑉 (𝜔) =

∑∞
𝑛=1 𝑉𝑛(𝜔), we obtain 𝑉𝑛(𝜔) as

𝑉𝑛(𝜔) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑉𝑏𝑙(𝜔) + 𝑉 1
𝑞 (𝜔), for 𝑛 = 1,

𝑉 𝑛
𝑞 (𝜔), for odd 𝑛 > 1,

0, for even 𝑛 ≥ 2.

(C.1)

By applying the ‘‘Virtual Harmonic Generator’’ (Saikumar et al., 2021),
the input signal 𝑒(𝑡) generates 𝑛 harmonics 𝑒1𝑛(𝑡) = |𝐸1| sin(𝑛𝜔𝑡+𝑛∠𝐸1),
whose Fourier transform is 𝐸1𝑛(𝜔) = |𝐸1|ℱ [sin(𝑛𝜔𝑡 + 𝑛∠𝐸1)]. From
(B.56), 𝑛𝑙(𝑛𝜔) is defined as

𝑛𝑙(𝑛𝜔) =
𝑉 𝑛
𝑞 (𝜔)

𝐸1𝑛(𝜔)
= 2𝛥𝑥(𝑛𝜔)𝛥𝑞(𝜔)∕(𝑛𝜋). (C.2)

From (B.54), (C.1), and (C.2), the 𝑛th HOSIDF for , denoted as 𝑛(𝜔),
is defined as

𝑛(𝜔) =
𝑉𝑛(𝜔)
𝐸1𝑛(𝜔)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑏𝑙(𝜔) + 𝑛𝑙(𝜔), for 𝑛 = 1,

𝑛𝑙(𝑛𝜔), for odd 𝑛 > 1,

0, for even 𝑛 ≥ 2.

(C.3)

This concludes the proof. □

Appendix D. Proof for Corollary 1

Proof. Define

𝑉𝑛𝑙(𝜔) =
∞
∑

𝑛=1
𝑉 𝑛
𝑞 (𝜔). (D.1)

From (C.2), we have

𝑉 𝑛
𝑞 (𝜔) = 𝐸1𝑛(𝜔)𝑛𝑙(𝑛𝜔). (D.2)

From (D.1) and (D.2), the inverse Fourier transform of 𝑉𝑛𝑙(𝜔) is given
by

𝑣𝑛𝑙(𝑡) =
∞
∑

𝑛=1
ℱ −1[𝐸1𝑛(𝜔)𝑛𝑙(𝑛𝜔)]. (D.3)

From (B.57) and (D.1), 𝑉 (𝜔) given by

𝑉 (𝜔) = 𝑉𝑏𝑙(𝜔) + 𝑉𝑛𝑙(𝜔). (D.4)

The inverse Fourier transform of 𝑉 (𝜔) is given in (25). This concludes
the proof. □

Appendix E. Proof for Theorem 3

Proof. Consider a closed-loop reset control system (with reset con-
troller  (1) where 𝑛𝑟 = 1), as depicted in Fig. 1 with a sinusoidal
reference input signal 𝑟(𝑡) = |𝑅| sin(𝜔𝑡) and under Assumptions 2 and
3, at steady states.

The Fourier transform of (32) is given by

𝑉𝑙(𝜔) =
∞
∑

𝑛=1
𝑉 𝑛
𝑏𝑙(𝜔),

𝑉𝑛𝑙(𝜔) =
∞
∑

𝑉 𝑛
𝑛𝑙(𝜔).

(E.1)
𝑛=1 
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Based on (35) and (E.1), the signal 𝑣𝑙(𝑡) in (33) is given by

𝑣𝑙(𝑡) =
∞
∑

𝑛=1
ℱ −1[𝐸𝑛(𝜔)𝑏𝑙(𝑛𝜔)]. (E.2)

The following section outlines the derivation of the signal 𝑣𝑛𝑙(𝑡) in (33).
This process commences with the derivation of its first-order harmonic
𝑣1𝑛𝑙(𝑡). According to (25), the first  under an input signal and the reset-
riggered signal of 𝑒1(𝑡) = |𝐸1| sin(𝜔𝑡 + ∠𝐸1), yields the base-linear

output denoted by 𝑣1𝑏𝑙(𝑡) and the nonlinear output signal denoted by
1
𝑛𝑙(𝑡). To generate the signal 𝑣1𝑛𝑙(𝑡), the ‘‘Virtual Harmonic Generator’’

is employed to generate harmonics 𝑒1𝑛(𝑡) from 𝑒1(𝑡), as illustrated in
Fig. 5(a), as given by:

𝑒1𝑛(𝑡) = |𝐸1| sin(𝑛𝜔𝑡 + 𝑛∠𝐸1), 𝑛 = 2𝑘 + 1(𝑘 ∈ N), (E.3)

whose Fourier transform is 𝐸1𝑛(𝜔) = ℱ [𝑒1𝑛(𝑡)].
The signal 𝑣1𝑏𝑙(𝑡) is derived by (35). From (C.2), the signal 𝑣1𝑛𝑙(𝑡) is

given by:

𝑣1𝑛𝑙(𝑡) =
∞
∑

𝑛=1
ℱ −1[𝐸1𝑛(𝜔)𝑛𝑙(𝑛𝜔)]. (E.4)

In Fig. 5(a), consider a reset controller  with a sinusoidal input signal
𝑒𝑛(𝑡) = |𝐸𝑛| sin(𝑛𝜔𝑡+∠𝐸𝑛) and a reset triggered signal 𝑒1(𝑡) = |𝐸1| sin(𝜔𝑡+
∠𝐸1). From (34), 𝑉 𝑛(𝜔) is given by

𝑉 𝑛(𝜔) = 𝑉 𝑛
𝑏𝑙(𝜔) + 𝑉 𝑛

𝑛𝑙(𝜔). (E.5)

From (21), 𝑉 𝑛
𝑛𝑙(𝜔) is given by

𝑉 𝑛
𝑛𝑙(𝜔) =

∞
∑

𝜇=1
𝛥𝑥(𝜇𝜔)𝑄𝜇(𝜔), (E.6)

where 𝛥𝑥(𝜇𝜔) and 𝑄𝜇(𝜔) are given in (22).
From (E.6), 𝑉 𝑛

𝑛𝑙(𝜔), for a constant 𝜔 and varying 𝑛, exhibit the same
phase as the reset-triggered signal 𝑒1(𝑡). Considering that 𝑉 𝑛

𝑛𝑙(𝜔) exhibits
the same phase for different 𝑛, as indicated in (E.1), we introduce a
function 𝛤 (𝜔) to express the ratio of 𝑉𝑛𝑙(𝜔) to 𝑉 1

𝑛𝑙(𝜔):

𝛤 (𝜔) =
𝑉𝑛𝑙(𝜔)
𝑉 1
𝑛𝑙(𝜔)

=
∑∞

𝑛=1 𝑉
𝑛
𝑛𝑙(𝜔)

𝑉 1
𝑛𝑙(𝜔)

. (E.7)

From (E.4) and (E.7), 𝑉𝑛𝑙(𝜔) is given by

𝑉𝑛𝑙(𝜔) =
∞
∑

𝑛=1
𝛤 (𝜔)𝐸1𝑛(𝜔)𝑛𝑙(𝑛𝜔). (E.8)

From (E.1) and (E.8), we have

𝑉 𝑛
𝑛𝑙(𝜔) = 𝛤 (𝜔)𝐸1𝑛(𝜔)𝑛𝑙(𝑛𝜔). (E.9)

Eqs. (33), (E.2), and (E.8) describe the new block diagram for the
closed-loop RCS, presented in Fig. 5(b). In the new block diagram,
the unknown parameter 𝛤 (𝜔) will be elucidated in the subsequent
derivation.

By substituting 𝑉 𝑛
𝑛𝑙(𝜔) from (22) and (E.6) into (E.7), 𝛤 (𝜔) is simpli-

fied as

𝛤 (𝜔) =
∑∞

𝑛=1 |𝐸𝑛|𝛥𝑛
𝑐 (𝜔)

|𝐸1|𝛥1
𝑐 (𝜔)

. (E.10)

As illustrated in Fig. 5(b), in the closed-loop configuration, we have

𝐸𝑛(𝜔) = −𝑉𝑛(𝜔)𝛼(𝑛𝜔)(𝑛𝜔). (E.11)

Substituting (35) and (E.9) into (34), 𝑉𝑛(𝜔) is given by

𝑉𝑛(𝜔) = 𝐸𝑛(𝜔)𝑏𝑙(𝑛𝜔) + 𝛤 (𝜔)𝐸1𝑛(𝜔)𝑛𝑙(𝑛𝜔). (E.12)

ubstituting (E.12) into (E.11), we have

𝑛(𝜔) = −𝐸𝑛(𝜔)𝑏𝑙(𝑛𝜔) − 𝛤 (𝜔)𝐸1𝑛(𝜔)𝑛𝑙(𝑛𝜔), (E.13)

here
𝑏𝑙(𝑛𝜔) = 𝑏𝑙(𝑛𝜔)𝛼(𝑛𝜔)(𝑛𝜔),

(E.14)

𝑛𝑙(𝑛𝜔) = 𝑛𝑙(𝑛𝜔)𝛼(𝑛𝜔)(𝑛𝜔).
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Based on the definitions of 𝑒𝑛(𝑡) and 𝑒1𝑛(𝑡) provided in (13) and (E.3),
e express (E.13) in the time domain as follows:

𝐸𝑛 ∥ 1 + 𝑏𝑙(𝑛𝜔)| sin(𝑛𝜔𝑡 + ∠𝐸𝑛 + ∠(1 + 𝑏𝑙(𝑛𝜔))) =

− 𝛤 (𝜔)|𝐸1 ∥ 𝑛𝑙(𝑛𝜔)| sin(𝑛𝜔𝑡 + 𝑛∠𝐸1 + ∠𝑛𝑙(𝑛𝜔)).
(E.15)

From (E.15) and the given condition |𝐸𝑛| > 0, we can deduce the
ollowing equations:

|𝐸𝑛| =
𝛤 (𝜔)|𝑛𝑙(𝑛𝜔)|
|1 + 𝑏𝑙(𝑛𝜔)|

|𝐸1|, for 𝑛 = 2𝑘 + 1 > 1, and

∠𝐸𝑛 = 𝑛𝜋 + 𝑛∠𝐸1 + ∠𝑛𝑙(𝑛𝜔) − ∠(1 + 𝑏𝑙(𝑛𝜔)), for 𝑛 = 2𝑘 + 1 > 1.

(E.16)

From (22), 𝛥𝑛
𝑐 (𝜔) is given by

𝛥𝑛
𝑐 (𝜔) = |𝛥𝑙(𝑛𝜔)| sin(∠𝛥𝑙(𝑛𝜔) + ∠𝐸𝑛 − 𝑛∠𝐸1). (E.17)

Substituting the relation between ∠𝐸1 and ∠𝐸𝑛(𝑛 > 1) from (E.16) into
(E.17), we obtain:

1. For 𝑛 = 1,

𝛥1
𝑐 (𝜔) = |𝛥𝑙(𝜔)| sin(∠𝛥𝑙(𝜔)). (E.18)

2. For 𝑛 > 1,

𝛥𝑛
𝑐 (𝜔) = −|𝛥𝑙(𝑛𝜔)| sin(∠𝛥𝑙(𝑛𝜔) + ∠𝑛𝑙(𝑛𝜔) − ∠(1 + 𝑏𝑙(𝑛𝜔))).

(E.19)

Then, substituting 𝛥𝑛
𝑐 (𝜔) from (E.18) and (E.19) into (E.10), we have

𝛤 (𝜔) = 1 +
∑∞

𝑛=3 |𝐸𝑛|𝛥𝑛
𝑐 (𝜔)

|𝐸1|𝛥1
𝑐 (𝜔)

. (E.20)

Define

𝛹𝑛(𝜔) = |𝑛𝑙(𝑛𝜔)|∕|1 + 𝑏𝑙(𝑛𝜔)| (E.21)

and substitute 𝛹𝑛(𝜔) from (E.21) into (E.16), we then obtain:

|𝐸𝑛| = 𝛤 (𝜔)𝛹𝑛(𝜔)|𝐸1|, for 𝑛 > 1. (E.22)

Substituting (E.21) and (E.22) into (E.20), 𝛤 (𝜔) is given by

𝛤 (𝜔) = 1 + 𝛤 (𝜔)
∑∞

𝑛=3 𝛹𝑛(𝜔)𝛥𝑛
𝑐 (𝜔)

𝛥1
𝑐 (𝜔)

. (E.23)

Derived from (E.23), 𝛤 (𝜔) is obtained as below:

𝛤 (𝜔) = 1∕

(

1 −
∞
∑

𝑛=3
𝛹𝑛(𝜔)𝛥𝑛

𝑐 (𝜔)∕𝛥
1
𝑐 (𝜔)

)

. (E.24)

Here, 𝛤 (𝜔) is derived and the proof of Theorem 3 is concluded. □

Appendix F. Proof for Theorem 4

Proof. Consider a closed-loop SISO reset control system in Fig. 1 with
a reset controller  (1) (where 𝑛𝑟 = 1) and to a sinusoidal reference
input signal 𝑟(𝑡) = |𝑅| sin(𝜔𝑡), complying with Assumptions 2 and 3, at
steady states.

From the block diagram for the closed-loop reset system in Fig. 5(b),
we can express the first harmonic of the output 𝑌 (𝜔) as 𝑌1(𝜔), given by

𝑌1(𝜔) = 𝐸1(𝜔)[𝑏𝑙(𝜔) + 𝛤 (𝜔)𝑛𝑙(𝜔)], (F.1)

where 𝑏𝑙(𝑛𝜔) and 𝑛𝑙(𝑛𝜔) are given in (E.14).
Let 𝑅𝑛(𝜔) = |𝑅|ℱ [sin(𝑛𝜔𝑡)], in the closed loop, we have

𝑌 (𝜔) = 𝑅 (𝜔) − 𝐸 (𝜔). (F.2)
1 1 1

17 
Combining (F.1) and (F.2), the first order sensitivity function for the
closed-loop reset system, denoted as 1(𝜔) is given by

1(𝜔) =
𝐸1(𝜔)
𝑅(𝜔)

= 1
1 + 𝑏𝑙(𝜔) + 𝛤 (𝜔)𝑛𝑙(𝜔)

. (F.3)

efine

𝑜(𝑛𝜔) = 𝑏𝑙(𝑛𝜔) + 𝛤 (𝜔)𝑛𝑙(𝑛𝜔). (F.4)

ubstituting (F.4) into (F.3), 1(𝜔) is given by

1(𝜔) =
1

1 + 𝑜(𝜔)
. (F.5)

From (E.3) and (F.3), we obtain

𝐸1𝑛(𝜔) = |1(𝜔)|𝑒𝑗𝑛∠1(𝜔)𝑅𝑛(𝜔), (F.6)

where 𝑅𝑛(𝜔) = |𝑅|ℱ [sin(𝑛𝜔𝑡)].
Combining (E.13) and (F.6), the 𝑛th (for 𝑛 = 2𝑘 + 1 > 1, 𝑘 ∈ N)

order sensitivity function for the closed-loop reset system, denoted by
𝑛(𝜔) is given by

𝑛(𝜔) =
𝐸𝑛(𝜔)
𝑅𝑛(𝜔)

=
−𝛤 (𝜔)𝑛𝑙(𝑛𝜔)
1 + 𝑏𝑙(𝑛𝜔)

𝐸1𝑛(𝜔)
𝑅𝑛(𝜔)

= −
𝛤 (𝜔)𝑛𝑙(𝑛𝜔)|1(𝜔)|𝑒𝑗𝑛∠1(𝜔)

1 + 𝑏𝑙(𝑛𝜔)
.

(F.7)

According to Theorems 2 and 3, the even harmonics of 𝑛(𝜔) are zeros.
The 𝑛th order complementary sensitivity function 𝑛(𝜔) in (39) and the
control sensitivity function 𝑛(𝜔) in (40) can be derived using the
same method from (F.1) to (F.7). This concludes the proof. □
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