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ABSTRACT
Mobile vision systems, often battery-powered, are now in-
credibly powerful in capturing, analyzing, and understanding
real-world events uncovering interminable opportunities for
new applications in the areas of life-logging, cognitive aug-
mentation, security, safety, wildlife surveillance, etc. There
are two complementary challenges in the design of a mobile
vision system today - improving the recognition accuracy at
the expense of minimum energy consumption. In this work,
we posit that best-effort sensing with degradable featuriza-
tion and an elastic inference pipeline offers an interesting
avenue to bring energy autonomy to mobile vision systems
while ensuring acceptable recognition performance. Borrow-
ing principles from Intermittent Computing, and Numeri-
cal Computing we propose such best-effort sensing using a
Degradable-Inference pipeline supported by a parameterized
Discrete Cosine Transformation (DCT) based featurization
and an Anytime Deep Neural Network. These two principles
aim at extending the lifetime of a mobile vision system while
minimizing compute and communication cost without com-
promising recognition performance. We report the design
and early characterization of our proposed solution.

CCS CONCEPTS
• Computing methodologies → Neural networks; Im-
age compression; •Human-centered computing→Ubiq-
uitous and mobile computing systems and tools.

KEYWORDS
Energy autonomous, anytime algorithms, neural networks.
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1 INTRODUCTION
The advent of the Internet of Things (IoT)—whereby billions
or trillions of devices sense and act in the environment—has
catalysed the “Deploy and Forget” vision. With the scaling of
IoT devices comes significant effort and cost barriers to mass
deployability and maintenance. Energy harvesting sensing
systems, also known as battery-less or energy autonomous
systems, support and simplify this vision. By taking advan-
tage of freely available energy, mass deployment and main-
tenance barriers can be potentially eliminated or greatly
reduced. Additionally, operating without batteries liberates
such systems from safety or environmental concerns and
reduces their overall size.

Vision-based tasks are emerging as ambitious use cases of
ultra-low power devices. Examples include elderly care [22],
spotting the presence of certain wild animals in remote loca-
tions [10], cognitive augmentation [14], and intruder detec-
tion. While ultra-low power systems are unable to compete
on high-fidelity performance metrics, they could act as a
scalable cost-effective solution to spotting events of interest
and subsequently triggering more expensive scene analy-
ses. Our work herein targets this class of applications. The
term Visual Wake Words [7] encapsulates such concept and
draws parallels with conventional audio hot keyword detec-
tion wherein a certain spoken word triggers a fully-fledged
speech recognition system.

Clearly, energy autonomous systems are characterized by
high uncertainty in power availability; the time at which
they are awake and can sense the environment or process
incoming data is highly unpredictable. Moreover, given that
the energy distribution is not uniform over time, the duration
of the awake periods is uncertain too. This behavior is de-
noted as intermittent computing [25]. Enabling vision-based
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Figure 1: Energy-aware execution whereby inference can be
degraded in order to track an intermittent energy envelope.

applications on such constrained devices involves great chal-
lenges which we delineate in the next section.

Challenges and Requirements
The two main requirements to enabling practical and useful
energy-autonomous vision applications are: (1) low latency
response and (2) high system availability. These requirements
ensure such systems could be deployed in environments
where a prompt response is necessary (e.g., continuous face
identification for cognitive assistance. The composite chal-
lenge in this context is the optimal use of scarce, sporadic
energy while reducing the overhead of the runtime system.

Advancements in the field of intermittent computing have
mainly focused on the continuation of computation across
power failures [5, 8, 29]. Underpinning these importantworks
is the need to allow a computational task to span across multi-
ple power failures, thereby ensuring consistency of the task’s
internal state. While these works represent essential building
blocks to simplifying the development of user applications,
significant latency might be introduced between sensing and
the resultant action. Another strand of prior work concerns
runtime systems that allow developers to define time con-
straints in order to ensure data timeliness [16]. By means of
these time constraints, “stale” data—i.e., data that is no longer
relevant to current state of the environment—is discarded as
to avoid wasting precious energy and compute.

Contrary to the above state-of-the-art techniques, we con-
sider in this work a class of visual classification applications
for which low latency computation is paramount in order to
facilitate responsive data consumption within the available
energy envelope.

Overview of Proposed Approach
To overcome the limitations of previous work described
above, we propose the system architecture depicted in Fig-
ure 1. At a high level, the system adapts to a fluctuating
energy budget through two control mechanisms: (i) variable
Discrete Cosine Transform (DCT) quantization and (ii) an
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Figure 2: Examples of processing on input images when con-
stant power is available (top) and when energy is harvested
from the environment and therefore intermittent (bottom).
In traditional intermittent computing systems, a computa-
tional task spans across power failures and is complete, de-
livering a result with 100% confidence. Instead, degradable
inference produces an approximate result whose confidence
is proportional to available energy, thus simultaneously op-
timizing responsiveness and energy utility.

anytime deep neural network (DNN) with many interme-
diate output stages. Such adaptations are denoted by the
diagonal arrows in Figure 1.

Given our focus on vision processing, we propose the adop-
tion of Discrete Cosine Transform (DCT) quantization as a
tunable pre-processing block that reduces the complexity of
subsequent steps. The aim is to marry DCT-based degradable
pre-processing to anytime neural network architectures in
an end-to-end energy-ware execution framework. The DNN
follows the paradigm of anytime algorithms [6] and pro-
duces a valid answer even if interrupted before completion.
Further, it refines initial results when allocated more time
for computations. Such framework would adapt the amount
of required computations based on the dynamic energy en-
velope generated by environmental harvesters.

When a sudden power failure occurs, traditional runtime
systems resort to storing the internal state of the task along
with intermediate results in non-volatile memory [5, 8, 29].
Upon power resumption, computations are continued and
the cycle is repeated until task completion. In contrast, the
proposed system matches approximate results to available
power budget, thereby guaranteeing a timely response. That
is, the system trades off confidence in results for energy and
compute efficiency. Figure 2 illustrates this behavior.
In the following, we show how JPEG-style DCT can be

used in principle to gracefully degrade image representation
subject to instantaneous energy budget. We justify our for-
mulation with early feasibility characterization and further
posit its merits within the context of highly unpredictable
energy autonomous system.
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2 ARCHITECTURE
In meeting the challenges of an energy autonomous mobile
vision application, we propose a system which relies on two
main components to adapt computation in accordance to a
variable energy budget: (i) variable DCT quantization and
(ii) anytime DNN (Figure 1). We elaborate further on these
two subsystems.
(i) DCTquantization.Onewould think that—in accordance
with decades of vision processing domain expertise both in
still images (e.g. JPEG) or video (e.g MPEG)—spatial frequen-
cies should come as a natural building block representation
for subsequent processing. However, it was not until very re-
cently that the machine learning community has discovered
the optimality of DCT as a pre-processor for state-of-the-art
image classification DNNs [13]. Gueguen et al. show that a
JPEG-style DCT layer applied on images outperforms any
other learnt alternative both in terms of classification accu-
racy and speed (i.e., computational efficiency). Such obser-
vation motivates us to rely on a JPEG-style DCT stage that
feeds a DNN spatial coefficients as shown in Figure 1. This
neural pre-processig stage allows us to sparsify the input
layer of the DNN as a linear function of available energy
budget. By virtue of DCT linearity, image representation
fidelity can be gracefully traded off for compute efficiency.
We posit that such formulation is of particular benefit to the
emerging paradigm of approximate computation.
(ii) Anytime Deep Neural Network. Despite the energy-
aware adaptation described above, deep neural networks
remain computationally heavy for small micro-controllers.
A recent work tackles loop-heavy computations in DNNs
as to allow efficient forward execution under power fail-
ures [12]. However, when computations are interrupted, no
valid output is produced by the network because data can no
longer traverses the remainder of the computational graph.
Consequently, additional latency in incurred until another
charge cycle would allow the resumption and completion
of the computational task. To overcome this fundamental
limitation, we propose to utilize a DNN which conforms to
the anytime paradigm [6] through the dynamic rerouting of
the computational graph subject to available energy budget.
Specifically, a class of DNNs in machine learning is de-

signed to output lower-fidelity inferences at certain inter-
mediate layers in addition to the final deepest output infer-
ence [18, 28]. As a byproduct, these lower-fidelity intermedi-
ate inferences represent a controlled grading of performance
as a function of feature embedding complexity/sophistication.
These models, despite the enhancing inference efficiency,
remain hard to port to devices with stringent resource con-
straints. Careful co-design of inference models and the un-
derlying hardware is necessary to enable efficient execution
on ultra-low power devices. We leave this to future work.

Figure 3: Example compression versus image distortion
curve arrived at by varying quantization levels in JPEG’s 2D
cosine transform.

We dub the combined linear and nonlinear energy-ware
operation degradable inference. Next section provides early
investigations designed to shed more light on variable DCT
quantization as a viable mechanism for energy-aware adap-
tation.

3 PRELIMINARY RESULTS
In this section we report initial results regarding the two com-
ponents of our proposed system: input DCT quantization and
anytime deep neural network, as well as their combination
in a preliminary degradable inference pipeline.

DCTQuantization
Method.We use CIFAR10 image dataset [23]. We implement
a standard JPEG image compression pipeline in Python. In
order to characterize the amount of distortion introduced
by variable DCT quantization, we implement the following.
First, an RGB image is converted to its YCbCr representation.
Second, variable DCT quantization is applied as per the JPEG
standard and the amount of compression is calculated i.e.
ratio of remaining coefficients to full image fidelity. Third,
the quantized DCT coefficients are converted to YCbCr and
then back to RGB. Forth, the Peak Signal-to-Noise Ratio [27]
(PSNR) between the round-trip image reconstruction and the
original image is computed. Finally, a compression-distortion
curve is arrived at as shown in Figure 3 by repeating for a
range of quality factors during DCT quantization. In order to
study the statistics of this procedure, a subset of 5000 images
from CIFAR10 dataset is processed as outlined.
Results. The distributions of image quality (PSNR) for three
equally-spaced quantization levels are shown in Figure 4(a)
across the CIFAR10 subset. Specifically, these quantization
levels gradually and systematically seem to gracefully control
PSNR. The corresponding compression distributions at the
same quantization levels are shown in Figure 4(b). Remember
compression here equates to input layer sparsification for
subsequent DNN. That is, 2× compression sparsifies input
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(a) Distortion

(b) Compression

Figure 4: Examples of 3 DCT quantization levels gracefully
controlling amount of compression and distortion.

activations by half, which proves that the DCT linear “knob”
is in principle capable of gracefully degrading input subject
to instantaneous energy budget.

In order to further study the fine-grained distortion- com-
pression trade-off, we turn to the joint 2D density of Figure 5.
Specifically across the CIFAR10 subset, greater than 40% spar-
sification of input is achieved while maintaining a PSNR in
excess of 43 dB. Further sparsification gains are possible with
a 41+ PSNR. These early findings suggest that it is possible to
build sparsification profiles at design-time that are able track
dynamic energy budgets whilst gracefully degrading input
quality. Further validation on the inference performance is
ongoing.

Anytime DNN
Method. We build a ResNetv2 model [15] with 11 layers
(10 convolutional and 1 dense, together with batch normal-
ization and average pooling). Inspired by the BranchyNet
architecture [28], we add two additional branches at progres-
sively deeper positions in the network. The first branch adds
two convolutional layers and one dense layer, while the sec-
ond branch has one convolutional and one dense layer. Thus
we obtain a model with 3 outputs (or stages). The network,
therefore, is “anytime” because even when a prediction is
computed at the first output branch, computations could
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Figure 5: Joint compression-distortion density across a sub-
set of CIFAR10 images.

Table 1: Accuracy on the CIFAR10 test set and estimated
number of floating point operations (FLOPS) for each out-
put of the model.

Output Accuracy # FLOPS
Stage 1 73% 263k
Stage 2 77% 336k
Stage 3 80% 668k

continue—progressively building onmore complex features—
to produce a refined prediction at the second output branch,
and/or at the third branch.
Results. We train and test the above model on the CIFAR10
dataset, using the Adam optimizer [21] and data augmenta-
tion during training. Table 1 shows how the accuracy of the
model progressively increase at deeper outputs. Table 1 also
lists the computational workloads in flops associated with
deeper network stages. We leave for future work the design
of amore sophisticatedmodel, evaluation on bigger andmore
realistic datasets (e.g. ImageNet) and the implementation on
an energy autonomous system.

Degradable Inference
Method. In an experiment aimed at early concept valida-
tion, we combine a variable JPEG-style DCT quantization
with a 3-stage Anytime DNN. This particular DNN operates
on raw RGB pixels. However, we emulate the effect of DCT
input layer sparsification through a round-trip quantization
in the spatial frequency domain. Specifically, for a CIFAR10
testset, we sweep the quantization quality factor as per the
JPEG standard [19, 26] in order to effect a controlled image
degradation. We proceed to feed the Anytime DNN with
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(a) Distortion

(b) Compression

Figure 6: Accuracy of a 3-stage Anytime DNN under variable
DCT-based input sparsification.

the degraded CIFAR10 testset corresponding to these quan-
tization levels on a test-by-test basis. We then measure the
classification performance at the three DNN stages.
Results. Figure 6 shows the accuracy of the three DNN
stages as a function of DCT quantization distortion in 6(a)
and compression in 6(b). For instance, it is evident from
Figure 6(b) that as we proceed to more aggressively spar-
sify the input image DCT representation, we obtain pro-
portional inference degradation across the three DNN out-
put stages, consistently. The trend is equivalently conveyed
by the distortion-accuracy trade-offs of Figure 6(a). These
preliminary results, despite having been generated using a
round-trip emulated controlled grading, serve to highlight
the feasibility of our proposal, subject to adapting the DNN
network to operate directly on the DCT image representa-
tion as opposed to raw RGB pixels. Recent prior art not only
confirms the feasibility of this DCT approach, but also un-
covers its optimality vis-à-vis DNNs trained on raw RGB
pixels [13].

4 OUTLOOK
Low power micro-controllers are the preferred choice when
low cost computation is required, for example in industrial or
smart-home applications. Further, it has recently become fea-
sible to use low power micro-controllers for traditional com-
puter vision tasks [3] or to run deep learning models [1, 2].

That said, the combined effect of limited compute and mem-
ory resources on such small chips presents great challenges
for computer vision tasks. As touched on earlier, the inter-
mittent behaviour of energy harvester systems further com-
pounds these challenges [25]. In such peculiar environment,
ensuring the forward progression of computational work-
loads despite power failures, as tackled by several previous
works [5, 8, 29], is crucial.

In this paper, we propose a complementary approach
which adapts computations to the dynamic energy budget
(or envelope) following the anytime paradigm [6]. The cen-
tral premise behind anytime algorithms is the ability to be
interrupted before workload completion—say as a result of
energy depletion—while retaining the ability to output a
valid, albeit degraded, result. Further, a wider energy enve-
lope allows anytime algorithms to progressively refine their
earlier approximate result. Anytime algorithms have been
originally used for time-dependent planning and decision-
making [9, 17, 24]. They are particularly suited for appli-
cations with stringent real-time requirements which can
tolerate lower accuracy but where response time is para-
mount. To the best of our knowledge, the only work to apply
this concept to energy harvesting systems is [11]. In this
work, Ganesan et al. propose a hardware-software co-design
approach to process data at a subword granularity. This en-
ables approximate computation of a certain family of opera-
tions which can be further improved if the entire data words
are used for the computation. However, this work requires
hardware modifications of existing processors and its appli-
cability is limited to specific operations. Outside intermittent
computing, a similar notion of degradable coding has been
proposed in wireless communications whereby video fidelity
gracefully tracks instantaneous channel conditions [4, 20].
In contrast to prior art, we focus on a vision application

reliant on two software-only subsystems, which together
provide control mechanisms to adjust the amount of com-
putation in order to track a dynamic energy envelope. The
idea is, in part, motivated by recent advancements in ma-
chine learning research that demonstrate the optimality of
established vision coding techniques from expert domains
(e.g. JPEG and MPEG) over any learnt approach operating
on raw pixels [13]. Through a preliminary investigation we
characterize the amount of distortion introduced by variable
Discrete Cosine Transform (DCT) quantization and show
how in principle it is capable of gracefully degrading in-
put subject to instantaneous energy budget. Additionally,
we demonstrate how variable input quantization, emulated
through a round-trip DCT compression, can be combined
with an anytime deep neural network, as to result in a two-
“knob” control for inference degradability.

Future work will adapt the DNN model to work directly
on the DCT coefficients, instead of the raw RGB pixels. We
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will also investigate interaction between training and levels
of input degradation. We will further improve the anytime
network in order to achieve better performance and gen-
eralizability to larger datasets. The ultimate objective is to
demonstrate an end-to-end system whereby an embedded
device utilizes a combination of energy harvesters (e.g., solar
and radio) and ultra-low power communication techniques
in order to communicate degradable inferences to a remote
intermittent host system.
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