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Abstract

The evaluation of evidence found at a crime scene is primarily conducted through comparison of two com-
peting statistical hypotheses. In forensic science, there is currently no consensus on the formulation of the
competing hypotheses. A main point of discussion is the difference between common source and specific
source problems. In a common source problem, all evidence is assumed to come from unknown sources,
whereas the specific source problem states that one of the sources is fixed. Since the value of evidence is
affected by the choice of hypotheses, this thesis tries to shed more light on the statistical framework under-
lying the common and specific source problem. Both a frequentist and a Bayesian approach can be followed
to quantify the value of evidence, resulting in the likelihood ratio and the Bayes Factor, respectively. The
theoretical framework is put into practice through two frequently used models in forensic science, namely
the continuous two-level normal-normal model and the discrete one-level Bernoulli model. Since calcula-
tion of the Bayes Factor for the two-level normal-normal model cannot be done analytically, Markov Chain
Monte Carlo methods are proposed and the theoretical convergence properties of the resulting methods are
discussed. An explicit expression of the Bayes Factor does exist for the one-level Bernoulli model. For both
models, more conservative values of the Bayes Factor are observed within the common source problem than
in the specific source problem. Two approaches are considered to calculate the posterior probability of guilt
and explicit bounds are derived for the difference between both techniques applied to the one-level Bernoulli
model. The opportunities and challenges of a copula-based method and permutation tests are discussed as
alternatives to the models generally used in evaluating forensic evidence.
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1
Introduction

When evidence is found at a crime scene, the main interest is in the information the corresponding traces
provide about the origin of the evidence. The evaluation of evidence is realised through a close cooperation
between the law and forensic science. In the Netherlands, most of the forensic investigations are performed
by the Netherlands Forensic Institute (NFI). Forensic experts assist legal decision makers in reconstructing
past events, where the main focus is on quantifying the value of evidence. Considering just the traces without
a framework to evaluate the evidence, there is little to say about their value. Over the past decades, forensic
scientist have cautiously studied the process of evidence evaluation, where the following position has been
reached:

“In court as elsewhere, the data cannot ‘speak for themselves’. They have to be interpreted in the light of two
competing hypotheses put forward, against a background of knowledge and experience about the world.” [39]

This quote illustrates the main idea of forensic evidence evaluation. The formulation of hypotheses is of
great importance, since it is closely related to the value of evidence. Moreover, the hypotheses should be
formulated such that background knowledge sheds light on the interpretation of the evidence. However, cur-
rently there is no consensus on the formulation of the competing hypotheses. The primary dispute is on the
difference between common source and specific source problems, as formulated by [33]. In a common source
problem, all evidence is assumed to come from unknown sources, whereas the specific source problem states
that one of the sources is fixed.
To quantify the value of evidence, statistical models are proposed by [32] based on the framework specified by
the competing hypotheses. This means that changing the hypotheses will also change the value of evidence.
Therefore, the difference between the common source and specific source problem will be a recurring subject
in this research. The proposed models can be used for evidence that can be expressed in terms of continuous
data as well as discrete data. To illustrate the forensic context, two examples will be used throughout this
thesis: for the continuous evidence, the elemental composition of glass fragments is considered, whereas the
discrete evidence is illustrated by DNA profiles.

Thesis outline
This research was started by addressing the different forensic identification of source questions posed by [33].
Existing literature on this subject was studied and summarized to provide a clear statistical framework, with
explicit mentioning of the underlying assumptions. Both the common and specific source model from [31–
33] are presented in Chapter 2, where also general expressions for the corresponding likelihood functions are
restated. These likelihood functions will play an important role in quantifying the value of evidence.
Chapter 3 describes how the value of evidence is defined. In forensic statistics, there are two commonly used
approaches to quantify the value of evidence: frequentists will say that the evidential value is given by the
likelihood ratio, whereas Bayesians believe that the Bayes Factor should be considered. Both the likelihood
ratio and the Bayes Factor from [32] will be restated for the common source and specific source problem,
and two interesting relationships between the statistics will be presented from [31, 32] for ease of reference.
Moreover, some explanation will be given about how the value of evidence is interpreted in practice.

1



2 1. Introduction

After the theoretical framework is completed for both the common and specific source problem, a commonly
used continuous model in forensic science is introduced in Chapter 4. This two-level normal-normal model
is a hierarchical model that assumes normality in two levels. Since conjugate priors are proposed, the possi-
bilities of analytical calculation of the Bayes Factors are investigated. The NFI prefers analytical expressions
for the value of evidence because approximation methods can lead to numerical errors that could be diffi-
cult to quantify. Moreover, the results of a stochastic approximation can be hard to justify in court, which is
undesirable for a transparent lawsuit.
Unfortunately, the Bayes Factor of the two-level normal-normal cannot be computed analytically, and there-
fore Chapter 5 considers alternative methods to compute the value of evidence. Here, Monte Carlo inte-
gration is combined with Gibbs sampling and the theoretical convergence of the resulting Markov chain is
discussed for both the common and specific source problem.
The proposed Markov Chain Monte Carlo method is put into practice in Chapter 6. The two-level normal-
normal model is applied to both simulated and real datasets. First, only one-dimensional data are considered
to investigate some interesting properties of the model, such as the influence of the prior distributions on the
Bayes Factor. Later on, the model is applied to higher dimensional data and the results of the described model
are compared with a (frequentist) approach currently used at the NFI.
In the frequentist approach, estimators are needed to evaluate the likelihood ratio corresponding to the two-
level normal-normal model. In forensic statistics, two estimators are commonly used to estimate the overall
mean. The effect of choosing either of the mean estimators is explored in Chapter 7.
Because the two-level normal-normal model is quite a restrictive model and does not always provide the best
fit to the data, copulas are considered in Chapter 8 as a possible alternative approach. Unfortunately, the
most general form of the copula model is found to be too difficult to apply in practice. Some alternative ap-
proaches from literature are considered to show how copulas can be used to model forensic evidence.

Since using the theoretical framework for the common and specific source problem in a discrete setting is not
straightforward, Chapter 9 explains this procedure in more detail. The resulting models are consistent with
the approach usually taken in the literature, although the relation with the general framework as described in
Chapter 2 has not been made before.
In Chapter 10 a frequently used model for discrete evidence in forensic science is considered: the one-level
Bernoulli model. The discrete setup from the previous chapter is used to derive the Bayes Factor for both the
common and specific source problem. This derivation sheds more light on the debate about which traces
should be added to the background material in the evidence evaluation process. A benefit of the one-level
Bernoulli model is that for certain priors a closed form expression of the Bayes Factor exists. Under this
model, the difference between the two identification of source problems is shown to be significant when a
rare type trace is recovered.
When evidence is found in a criminal case, the court is mainly interested in the probability of guilt given all
available evidence. Therefore, Chapter 11 considers two approaches to calculate this posterior probability of
guilt. The theoretical differences and similarities of these two approaches are presented. Using the common
source one-level Bernoulli problem, the posterior probability of guilt is evaluated and an upper and lower
bound for the difference between the two approaches is derived.

Finally, an alternative to the ‘standard’ forensic approach to quantify the value of evidence is given in Chapter
12. Here, the distributional assumptions on the evidence are dropped and permutation tests are used to
consider the exchangeability of the evidence sets. Different test statistics are applied to both simulated and
real data and their performance is measured through the evaluation of type I and type II errors.



2
Forensic identification of source

This chapter contains a literature study on the forensic identification of source, primarily based on the work
from [31–33]. The aim of this chapter is to give an overview for ease of reference and to provide some extra
explanation of the underlying theory.

The main task of a forensic scientist is to provide help in deciding between two competing forensic hypothe-
ses. One of these hypotheses will be presented by the prosecution, denoted Hp , and one by the defence,
denoted Hd . The formulation of the forensic hypotheses depends upon the source identification question
of interest [31]. Although other types of identification problems may be encountered in forensic science, in
this research the focus will be on the common source and specific source identification question. In the spe-
cific source identification question, one is interested whether a trace originates from a fixed specific source,
whereas the common source identification problem seeks to answer the question if two traces of unknown
origin share the same common source, which is not known [32].

To test these types of hypotheses, an alternative to the traditional hypothesis testing methods has to be pro-
vided. In the traditional textbook tests, the two competing hypotheses specify parametric models for the data
up to the point of a finite dimensional vector space for the indexing parameter θ. Then the hypothesis that
θ ∈Θ0 would be tested against the hypothesis θ ∈Θ1 for two disjoint subsetsΘi ⊂Θ, i = 0,1, of the parameter
space Θ. Of course, alternative tests, such as goodness of fit tests, exists. However, in forensic science the
interest is not only in the parameters, but also in the process of generating the evidence. Therefore, the pa-
rameter space now consists of a set of possible sampling models from which a selection has to be made [32].
This means that there is uncertainty about both the parameter and the corresponding parametric model.

The setup from [32] is used as a starting point of this research. To model the forensic evidence, three main
components need to be specified. The first is the statement of the sampling models, which provide infor-
mation about the exchangeability of the evidence given each hypothesis. Secondly, the class of parametric
models approximating the true sampling distributions used in the sampling models has to be determined.
Finally, a prior belief structure has to be chosen for the parameters characterizing the class of probability
models specified by each of the parametric models. This can be either an estimate of the parameter to fit the
frequentist framework or a prior distribution under the Bayesian paradigm.

This chapter will be devoted to uncovering the assumptions made in the construction of the models for both
the common source and specific source problems. Moreover, the sampling models as discussed in Chapter
3 from [32] will be reformulated to clarify the underlying mathematical models. Finally, following [32], the
sampling models will be used to derive the likelihood functions for the evidence given each of the hypotheses.
These will be used later on in quantifying the value of evidence.

2.1. Common source problem
Suppose two traces are found, possibly at two different crime scenes, and one is interested if the traces come
from the same unknown source. Several features can be measured from samples of each trace, and these fea-

3



4 2. Forensic identification of source

tures are the same for both traces. The measurements of each sample can be represented by a vector of values
with length the number of features. The collection of these sample measurements of the two traces forms the
unknown source evidence. In this common source identification problem, the following hypotheses could be
considered [32, 33]:

Hp :
Hd :

The two sets of unknown source evidence (eu1 and eu2 ) both originate from the same unknown source.
The two sets of unknown source evidence (eu1 and eu2 ) originate from two different unknown sources.

To give meaning to these forensic hypotheses in a testing setting, a sampling scheme is needed, as proposed
in [32]. Suppose the discovered traces consist of glass fragments and one is interested if these fragments orig-
inate from the same (unknown) window.

Before making any statement about this, the forensic expert has to consider some background material of
windows for comparison. The windows used for this comparison can be seen as a random sample from the
total population of windows. In the most general scenario, all types of glass could be considered in the total
population of windows, ranging from car window glass to centuries old stained glass. The elemental com-
position can differ significantly in each type of glass [43]. In practice, the forensic expert will have some idea
about the type and dating of the glass fragments corresponding to the traces. Therefore, only the relevant
sources as determined by the forensic expert will be considered. For each window, the elemental composi-
tion of a sample of glass fragments can be evaluated and the most discriminative elements in glass can be
used as features [2]. This means that for each source, only the k relevant features as determined by the foren-
sic expert will be considered. With these assumptions on the data, the first modelling assumption is:

Assumption 1
The total population of (alternative) sources follows a certain k-dimensional distribu-
tion G(·|θa) indexed by parameter θa . The sources Ai used for the background material

are random samples from the total population of (alternative) sources, i.e., Ai
iid∼ G(·|θa).

If the windows used for the background material are known, the background material can be generated by
randomly sampling some glass fragments from one of the windows and by measuring each feature per frag-
ment. For each fragment, it is assumed that there is only dependency on the variation of the most discrimina-
tive elements within the window. For example, if the elemental composition of the glass depends on the year
the window was manufactured, the variation of the most discriminative elements is assumed to be indepen-
dent of the year of manufacturing, and the time dependency should be entirely captured by the distribution
G and the parameter θa . This leads to the second modelling assumption:

Assumption 2
Given source Ai = ai , the background samples Yi j follow a certain k-dimensional
distribution Fa(·|ai ,θa) indexed by ai and parameter θa . The background samples

Yi j |Ai = ai are random samples from within the source, i.e., Yi j |Ai = ai
iid∼ Fa(·|ai ,θa).

The distribution G gives the general elemental composition of each window, while the distribution Fa models
the variation of the elements within each window. The distribution G is in forensic science usually referred
to as the between-source distribution and Fa is called the within-source distribution. Since the samples are
assumed to be organised at both a between-source level and a within-source level, one usually speaks of a
two-level model.
For the common source problem, the unknown source evidence is assumed to be generated similarly to the
background material, although the prosecution will argue that only one time a source was sampled, whereas
according to the defence two sources were sampled.

2.1.1. Sampling models
In [32], the sampling models for the common source problem at first seem to be described as simple random
sampling models, where a finite total population of sources is considered and sampling is done without re-
placement. However, sampling distributions are described later on, which is consistent with the definition of
G and Fa in the modelling assumptions. While the simple random sampling models are easy to interpret and
intuitively clear, here it is chosen to give the formal definition of the sampling models.

Following [32], let ea denote the background material, eu1 the traces from the first unknown source, and eu2

the traces from the second unknown source. Under Assumption 1 and 2, sampling models implied by the



2.1. Common source problem 5

prosecution hypothesis and the defence hypothesis can be constructed for each set of evidence.

The prosecution will argue that the background material ea has been generated according to sampling model
Ma and that the recovered evidence, eu1 and eu2 , has been generated according to sampling model Mp . On
the other hand, the defence will claim that the background material ea has been generated according to
sampling model Ma , but that the recovered evidence, eu1 and eu2 , has been generated according to sampling
model Md . Thus, both the prosecution and the defence agree on the generation of the background material
ea . All three sampling models will be described here [31, 32]:

Ma : • Sample na sources from the total population of sources,

Ai
iid∼ G(·|θa), for i = 1,2, . . . ,na .

• For each of the sampled sources, sample ni elements from within the i th source,

Yi j |Ai = ai
iid∼ Fa(·|ai ,θa) for j = 1,2, . . . ,ni

and set

Yi =
[
Yi 1 Yi 2 · · · Yi ni

]=


Yi ,11 Yi ,12 · · · Yi ,1ni

Yi ,21 Yi ,22 · · · Yi ,2ni

...
...

. . .
...

Yi ,k1 Yi ,k2 · · · Yi ,kni

 . (2.1)

Here, Yi , j l denotes the j th measurement of the l th sample from source ai . Since there are k mea-
surements and ni samples, Yi is a k ×ni matrix for i = 1,2, . . . ,na . Each measurement per sample
corresponds to one feature, so this is equivalent to saying that there are ni observations of k fea-
tures.

• Let yi =
[
yi 1 yi 2 · · · yi ni

]
denote the realisations of the measurements on the samples from

the i th source. The realisations from all background sources can be represented by the following
block matrix structure:

ya = [
y1 | y2 | · · · | yna

]
, (2.2)

where each block corresponds to a sampled source. This results in a k × (∑na
i=1 ni

)
dimensional

matrix. The background material is then given by the composed measurement vector ea = (yi j ,1 ≤
i ≤ na ,1 ≤ j ≤ ni ).

Mp : • Sample a single source from the total population of sources,

P ∼G(·|θa).

• Sample the first set of nu1 elements from within source P = p,

Yu1 j |P = p iid∼ Fa(·|p,θa) for j = 1,2, . . . ,nu1 .

• Keep p fixed and sample the second set of nu2 elements from within source p, independently of
the first sample

Yu2 j |P = p iid∼ Fa(·|p,θa) for j = 1,2, . . . ,nu2 .

• Set

Yui =
[
Yui 1 Yui 2 · · · Yui nui

]=


Yui ,11 Yui ,12 · · · Yui ,1nui

Yui ,21 Yui ,22 · · · Yui ,2nui
...

...
. . .

...
Yui ,k1 Yui ,k2 · · · Yui ,knui

 for i = 1,2, (2.3)

where Yui , j l denotes the j th measurement of the l th sample from source p. This results in a k×nui

matrix for i = 1,2.
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• Let yui =
[
yui 1 yui 2 · · · yui nui

]
denote the realisations of the measurements on the samples

from source p, for i = 1,2. The material originating from the first unknown source is then given by
the composed measurement vector eu1 = (yu1 j ,1 ≤ j ≤ nu1 ) and the material originating from the
second unknown source is eu2 = (yu2 j ,1 ≤ j ≤ nu2 ).

Md : • Independently sample two sources from the total population of sources,

D1 ∼G(·|θa) and D2 ∼G(·|θa).

• Sample nu1 elements from within the first source,

Yu1 j |D1 = d1
iid∼ Fa(·|d1,θa) for j = 1,2, . . . ,nu1 .

• Sample nu2 elements from within the second source,

Yu2 j |D2 = d2
iid∼ Fa(·|d2,θa) for j = 1,2, . . . ,nu2 .

• Set

Yui =
[
Yui 1 Yui 2 · · · Yui nui

]=


Yui ,11 Yui ,12 · · · Yui ,1nui

Yui ,21 Yui ,22 · · · Yui ,2nui
...

...
. . .

...
Yui ,k1 Yui ,k2 · · · Yui ,knui

 for i = 1,2, (2.4)

where Yui , j l denotes the j th measurement of the l th sample from source di . This results in a
k ×nui matrix for i = 1,2.

• Let yui =
[
yui 1 yui 2 · · · yui nui

]
denote the realisations of the measurements on the samples

from source di , for i = 1,2. The material originating from the first unknown source is then given
by the composed measurement vector eu1 = (yu1 j ,1 ≤ j ≤ nu1 ) and the material originating from
the second unknown source is eu2 = (yu2 j ,1 ≤ j ≤ nu2 ).

Note that under the prosecution model Mp , eu1 and eu2 are conditionally independent given the common
source P, i.e., both evidence sets consist of random samples from the same common source. Under the
defence model Md , eu1 and eu2 are unconditionally independent, since both evidence sets contain random
samples from different sources.

2.1.2. Likelihood functions
Let e = {eu1 ,eu2 ,ea} denote the collection of three datasets containing the available forensic evidence. In
Section 2.1.1, the three sampling models for the common source problem were explained and the resulting
evidence was given in both matrix notation and as composed measurement vectors.

The background material ea is according to both hypotheses obtained from the hierarchical sampling model
Ma . Using the same notation as in equation (2.1) and (2.2), ya is a block matrix (also known as partitioned
matrix) where each block represents a source, each column within a block corresponds to a sample from that
source, and each row corresponds to a measurement on a sample. Given the source, each sample can be seen
as a random vector that is independent of and identically distributed to the other samples within that source.
In this modelling stage it is assumed that θa is known, either from an estimate (frequentist) or as the result of
a prior distribution (Bayesian). More details about the parameter θa will be given in Chapter 3. The sampling
model Ma can be represented by setting

Ai
iid∼ G(·|θa) and Yi j |Ai = ai

iid∼ Fa(·|ai ,θa) for i = 1,2, . . . ,na and j = 1,2, . . . ,ni . (2.5)

Here, G is the probability distribution function indexed by parameter θa used to sample source Ai from the
total population of sources. Given the source ai , the ni samples Yi j are obtained from the probability distri-
bution Fa corresponding to the probability measure under model Ma .
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Let fa denote the probability density function corresponding to Fa and let g be the probability density func-
tion corresponding to G . Following [32], the likelihood functions corresponding to the common source prob-
lem will be derived in this section. The probability density function for vector yi j for fixed i and j can be
defined by

fa(yi j |θa) =
∫

fa(yi j ,ai |θa) dai =
∫

fa(yi j |ai ,θa)g (ai |θa) dai . (2.6)

Note that for fixed i , yi j are conditionally independent and identically distributed for j = 1,2, . . . ,ni . How-
ever, dependency still exists if all samples in ea are considered. This means that within each block in ya the
columns are conditionally independent, but that the set of all columns in the matrix is dependent. Using
equation (2.6), the joint probability density function of yi j , j = 1,2, . . . ,ni , can be defined for fixed i as

fi (yi 1,yi 2, . . . ,yi ni |θa) =
∫ ni∏

j=1
fa(yi j |ai ,θa)g (ai |θa) dai . (2.7)

Let f denote the likelihood structure of the evidence. Since the sources ai are sampled randomly from the
total population of sources for i = 1,2, . . . ,na , the likelihood function for ea can now be expressed as

f (ea |θa , Hp ) = f (ea |θa , Hd ) =
na∏

i=1
fi (yi 1,yi 2, . . . ,yi ni |θa)

=
na∏

i=1

(∫ ni∏
j=1

fa(yi j |ai ,θa)g (ai |θa) dai

)
. (2.8)

Note that the likelihood function for ea is the same given both the prosecution and defence hypothesis and
therefore the notational dependence on Hp or Hd is typically dropped, i.e., f (ea |θa , Hp ) = f (ea |θa , Hd ) =
f (ea |θa) [31, 32].

Now consider both datasets with unknown source evidence eui , for i = 1,2, which consist of nu1 and nu2

random samples from the first and second unknown source, respectively. Using the same notation as in
equations (2.3) and (2.4), yu1 and yu2 are matrices where each column corresponds to a sample from one
of the unknown sources, and each row corresponds to a measurement on a sample. Given the source, each
sample can be seen as a random vector that is independent of and identically distributed to the other samples
within that source. The sampling model Mp can be represented by

P ∼G(·|θa) and Yui j |P = p iid∼ Fa(·|p,θa) for i = 1,2 and j = 1,2, . . . ,nui .

Given Hp , eu1 and eu2 consist of samples drawn from the same randomly selected source p from the total
population of sources. Conditional on the selected source, the samples are independent. Therefore, the joint
likelihood function for eu1 and eu2 given Hp is defined as

f (eu1 ,eu2 |θa , Hp ) = fu(yu11, . . . ,yu1nu1
,yu21, . . . ,yu2nu2

|θa)

=
∫ (nu1∏

j=1
fa(yu1 j |p,θa)

)(nu2∏
j=1

fa(yu2 j |p,θa)

)
g (p|θa) dp.

Assuming exchangeability of yu11, . . . ,yu1nu1
and yu21, . . . ,yu2nu2

, this expression can be simplified by setting
yu = (yu11, . . . ,yu1nu1

,yu21, . . . , yu2nu2
) and nu = nu1 +nu2 :

f (eu1 ,eu2 |θa , Hp ) =
∫ nu∏

j=1
fa(yu j |p,θa)g (p|θa) dp (2.9)

Conversely, given Hd , eu1 and eu2 consist of samples drawn from two independent randomly selected sources
from the total population of sources. The sampling model Md can be represented by

D1 ∼G(·|θa) and Yu1 j |D1 = d1
iid∼ Fa(·|d1,θa) for j = 1,2, . . . ,nu1 ,

D2 ∼G(·|θa) and Yu2 j |D2 = d2
iid∼ Fa(·|d2,θa) for j = 1,2, . . . ,nu2 .
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This means that the samples from eu1 and eu2 are independent unconditional on the source, which leads to
the following joint likelihood function for eu1 and eu2 :

f (eu1 ,eu2 |θa , Hd ) = f (eu1 |θa , Hd ) f (eu2 |θa , Hd )

= fu1 (yu11, . . . ,yu1nu1
|θa) fu2 (yu21, . . . ,yu2nu2

|θa)

=
(∫ nu1∏

j=1
fa(yu1 j |d1,θa)g (d1|θa) dd1

)(∫ nu2∏
j=1

fa(yu2 j |d2,θa)g (d2|θa) dd2

)
. (2.10)

The likelihood functions obtained in equation (2.9) and (2.10) will play an important role in Chapter 3 to
quantify the value of evidence for the common source problem.

2.2. Specific source problem
Suppose a trace is found at a crime scene and one is interested if a specific suspect can be linked to this trace.
Several features from samples of the trace can be measured, and the same features can be measured from
samples of the suspect. The measurements of each sample can be represented by a vector of values with
length the number of features. The collection of the sample measurements of the trace forms the unknown
source evidence and the collection of the sample measurements of the suspect forms the specific source evi-
dence.

Now suppose a trace is found on a suspect and one is interested if a specific crime scene can be linked to this
trace. After measuring several features from both samples of the trace and samples of the crime scene, the
collection of the sample measurements of the trace forms the unknown source evidence and the collection
of the sample measurements of the crime scene forms the specific source evidence.

Both scenarios describe a specific source identification problem, where the following hypotheses could be
considered [32, 33]:

Hp :

Hd :

The unknown source evidence eu and the specific source evidence es both originate from the specific
source.
The unknown source evidence eu does not originate from the specific source, but from some other
source in the alternative source population.

To give meaning to these forensic hypotheses in a testing setting, again a sampling scheme is needed, as pro-
posed in [32]. Suppose that glass fragments are found on the clothes of the suspect. Then the question of
interest is whether or not the glass fragments on the suspect originate from the (known) window at the crime
scene. Again, the forensic expert has to consider some background material of windows for comparison. As
in the common source problem, several assumptions are made when modelling the specific source problem.
The assumptions on the data as well as Assumptions 1 and 2 remain unchanged, but the specific source prob-
lem leads to two more modelling assumptions:

Assumption 3

Assumption 4

The specific source is known and does not depend on the total population of alternative
sources or a between-source distribution.

Given the specific source, the samples Ys j follow a certain k-dimensional distribution
Fs (·|θs ) indexed by parameter θs . The specific source samples Ys j are random samples

from within the specific source, i.e., Ys j
iid∼ Fs (·|θs ).

Note that in the specific source problem, the background material is generated from sources sampled from
the total population of alternative sources [32, 33], i.e., other sources than the specific source. This means
that it is assumed that the specific source is not contained in the total population of alternative sources.

In the specific source problem, the prosecution will argue that the unknown source evidence is generated
similarly to the specific source evidence, whereas according to the defence it is generated similarly to the
background material, which was described in Assumptions 1 and 2.



2.2. Specific source problem 9

2.2.1. Sampling models
In [32], the sampling models for the specific source problem at first seem to be described as simple random
sampling models. However, sampling distributions are described later on, which is consistent with the defi-
nition of G , Fa and Fs in the modelling assumptions. Again here it is chosen to give the formal definition of
the sampling models.

Following [32], let ea denote the background material, eu the traces from the unknown source, and es the
traces from the specific source. Under Assumptions 1-4, sampling models implied by the prosecution hy-
pothesis and the defence hypothesis can be constructed for each set of evidence.

The prosecution will argue that the background material ea and the specific source evidence es have been
generated according to model Ma and Ms , respectively, and that the recovered evidence eu has been gener-
ated according to model Mp . On the other hand, the defence will claim that the background material ea and
the specific source evidence es have been generated according to model Ma and Ms , respectively, but that
the recovered evidence eu has been generated according to model Md . Thus, both the prosecution and the
defence agree on the generation of the background material ea and the specific source evidence es . All four
sampling models will be described here [31, 32]:

Ms : • Sample ns elements from within the specific source,

Ys j
iid∼ Fs (·|θs ) for j = 1,2, . . . ,ns

and set

Ys =
[
Ys1 Ys2 · · · Ysns

]=


Ys,11 Ys,12 · · · Ys,1ns

Ys,21 Ys,22 · · · Ys,2ns

...
...

. . .
...

Ys,k1 Ys,k2 · · · Ys,kns

 . (2.11)

Here, Ys, j l denotes the j th measurement of the l th sample from the specific source. Since there
are k measurements and ns samples, Ys is a k ×ns matrix. Each measurement per sample corre-
sponds to one feature, so this is equivalent to saying that there are ns observations of k features.

• Let ys =
[
ys1 ys2 · · · ysns

]
denote the realisations of the measurements on the samples from

the specific source. The material originating from the specific source is then given by the com-
posed measurement vector es = (ys j ,1 ≤ j ≤ ns ).

Ma : • Sample na sources from the total population of sources,

Ai
iid∼ G(·|θa), for i = 1,2, . . . ,na .

• For each of the sampled sources, sample ni elements from within the i th source,

Yi j |Ai = ai
iid∼ Fa(·|ai ,θa) for j = 1,2, . . . ,ni

and set

Yi =
[
Yi 1 Yi 2 · · · Yi ni

]=


Yi ,11 Yi ,12 · · · Yi ,1ni

Yi ,21 Yi ,22 · · · Yi ,2ni

...
...

. . .
...

Yi ,k1 Yi ,k2 · · · Yi ,kni

 .

Here, Yi , j l denotes the j th measurement of the l th sample from source ai . Since there are k mea-
surements and ni samples, Yi is a k ×ni matrix for i = 1,2, . . . ,na . Each measurement per sample
corresponds to one feature, so this is equivalent to saying that there are ni observations of k fea-
tures.

• Let yi =
[
yi 1 yi 2 · · · yi ni

]
denote the realisations of the measurements on the samples from

the i th source. The realisations from all background sources can be represented by the following
block matrix structure:

ya = [
y1 | y2 | · · · | yna

]
,
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where each block corresponds to a sampled source. This results in a k × (∑na
i=1 ni

)
dimensional

matrix. The background material is then given by the composed measurement vector ea = (yi j ,1 ≤
i ≤ na ,1 ≤ j ≤ ni ). Note that this sampling model is identical to the sampling model Ma in the
common source problem.

Mp : • Sample nu elements from within the specific source,

Yu j
iid∼ Fs (·|θs ) for j = 1,2, . . . ,nu

and set

Yu = [
Yu1 Yu2 · · · Yunu

]=


Yu,11 Yu,12 · · · Yu,1nu

Yu,21 Yu,22 · · · Yu,2nu

...
...

. . .
...

Yu,k1 Yu,k2 · · · Yu,knu

 . (2.12)

Here, Yu, j l denotes the j th measurement of the l th sample from the specific source. This results
in a k ×nu matrix.

• Let yu = [
yu1 yu2 · · · yunu

]
denote the realisations of the measurements on the samples from

the specific source. The material originating from the unknown source is then given by the com-
posed measurement vector eu = (yu j ,1 ≤ j ≤ nu).

Md : • Sample a single source from the total population of alternative sources,

D iid∼ G(·|θa).

• Sample nu elements from within source D = d,

Yu j |D = d iid∼ Fa(·|d,θa) for j = 1,2, . . . ,nu

and set

Yu = [
Yu1 Yu2 · · · Yunu

]=


Yu,11 Yu,12 · · · Yu,1nu

Yu,21 Yu,22 · · · Yu,2nu

...
...

. . .
...

Yu,k1 Yu,k2 · · · Yu,knu

 . (2.13)

Here, Yu, j l denotes the j th measurement of the l th sample from source d. This results in a k ×nu

matrix.

• Let yu = [
yu1 yu2 · · · yunu

]
denote the realisations of the measurements on the samples from

source d. The material originating from the unknown source is then given by the composed mea-
surement vector eu = (yu j ,1 ≤ j ≤ nu).

Note that under the prosecution model, eu and es are conditionally independent given the parameters of the
specific source, i.e., both evidence sets consist of randomly selected elements from the same specific source,
and both eu and es are unconditionally independent of ea . However, under the defence model, eu and es

are unconditionally independent, just like ea and es , since in both cases the evidence sets contain randomly
selected elements from different sources, whereas eu and ea are only conditionally independent given the
corresponding sources.

2.2.2. Likelihood functions
Let e = {eu ,es ,ea} denote the collection of three datasets containing the available forensic evidence. In Sec-
tion 2.2.1, the four sampling models for the specific source problem were explained and the resulting evi-
dence was given in both matrix notation and as composed measurement vectors.

Since the sampling model Ma of the specific source problem is identical to the one from the common source
problem, the matrix structure of ya is the same as in equation (2.1) and (2.2). The sampling model Ma can
be represented by equation (2.5). The derivation of the likelihood function for ea is also equivalent to the
derivation given for the common source problem, resulting in equation (2.8).
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Now consider the dataset es , which consists of ns random samples from the specific source. Using the same
notation as in equation (2.11), ys is a matrix where each column corresponds to a sample from the specific
source, and each row corresponds to a measurement on a sample. Each sample can be seen as a random
vector that is independent of and identically distributed to the other samples within the specific source. In
this modelling stage it is assumed that θs is known, either from an estimate (frequentist) or as the result of a
prior distribution (Bayesian). More details about the parameter θs will be given in Chapter 3. The sampling
model Ms can be represented by

Ys j
iid∼ Fs (·|θs ) for j = 1,2, . . . ,ns .

Here, the ns samples Ys j are obtained from the probability distribution Fs corresponding to the probability
measure under model Ms . Note that, in contrast to the common source problem, there is no distribution to
sample the specific source since this source is assumed to be known. Let fs denote the probability density
function corresponding to Fs and let f denote the likelihood structure of the evidence. Again following [32],
the likelihood functions corresponding to the specific source problem will be derived in this section. The
likelihood function for es can be defined by

f (es |θs , Hp ) = f (es |θs , Hd ) =
ns∏

j=1
fs (ys j |θs ).

Finally, consider the dataset with the unknown source evidence eu , which consists of nu random samples
from the unknown source. Using the same notation as in equations (2.12) and (2.13), yu is a matrix where
each column corresponds to a sample from the unknown source, and each row corresponds to a measure-
ment on a sample.

Given Hp , eu consists of samples drawn from the specific source. Each column of yu can be seen as the
realisation of a random vector that is independent of and identically distributed to each of the other columns
within the specific source. The sampling model Mp can be represented by

Yu j
iid∼ Fs (·|θs ) for j = 1,2, . . . ,nu .

Therefore, the likelihood function for eu given Hp is defined as

f (eu |θs , Hp ) =
nu∏
j=1

fs (yu j |θs ). (2.14)

Conversely, given Hd , eu consists of samples drawn from a randomly selected source from the total popula-
tion of alternative sources. Given the source, each column of yu can be seen as the realisation of a random
vector that is independent of and identically distributed to each of the other columns within that source. The
sampling model Md can be represented by

D ∼G(·|θa) and Yu j |D = d iid∼ Fa(·|d,θa) for j = 1,2, . . . ,nu .

Conditional on the selected source d, the samples in eu are independent. Therefore, the likelihood function
for eu given Hd is defined as

f (eu |θa , Hd ) = fu(yu1,yu2, . . . ,yunu |θa) =
∫ nu∏

j=1
fa(yu j |d,θa)g (d|θa) dd. (2.15)

The likelihood functions obtained in equation (2.14) and (2.15) will play an important role in Chapter 3 to
quantify the value of evidence for the specific source problem.

2.3. Common source versus specific source
Now that both the common and specific source problem are made precise, the question arises which prob-
lem should be considered in forensic casework. Although this choice mainly depends on the assumptions a
forensic expert makes based on the context of the evidence, the differences between the two identification of



12 2. Forensic identification of source

source problems will be briefly discussed here.

The main difference between the common and specific source problem is whether the unknown source ev-
idence is compared to evidence originating from either a fixed or a random source. Assuming a random
source, only a single background population is under consideration where all sources are assumed to be
part of. Assuming a fixed source results in two ‘background’ populations: one corresponding to the ran-
dom sources and one related to the specific source [33]. This was already highlighted in the third modelling
assumption stated in the previous section. Of course, one could argue that all evidence is generated from
an overall distribution and that the specific evidence under consideration is also a realisation of a random
source, which would be an argument in favor of the common source problem.

For the common source problem it is not necessary to specify a suspected source, whereas for the specific
source problem the suspected source needs to be identified. The common source problem often leads to a
more conservative value of evidence1 than the specific source problem, since in the common source problem
an extra level of uncertainty is considered. The court will be mostly interested in answering a specific source
question, which would help provide a decision between guilt and innocence of a suspect. However, if there
is not enough specific source evidence available, the corresponding specific source distribution cannot be
modelled and the common source framework should be used instead [33].

1See next chapter for an explanation of the value of evidence. In Chapter 6 and 10 this effect is illustrated for both continuous and
discrete evidence.
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Value of evidence

This chapter contains a literature study on the value of evidence, primarily based on the work from [31–33].
The aim of this chapter is to give an overview for ease of reference and to provide some extra explanation of the
underlying theory.

The decision between two competing forensic hypotheses should be made as transparent and objective as
possible. Multiple people take various roles in the decision making process, each within their own field of ex-
pertise. The people involved can roughly be divided into two groups: legal experts, such as judges and jurors,
and forensic experts. Each group has its own responsibility in the decision making process. The forensic ex-
perts are tasked to provide the value of evidence, whereas the legal experts have to determine the probability
of occurrence of the two hypotheses without considering the recovered evidence.

Let e denote the entire set of available forensic evidence and I the relevant background information for both
hypotheses. To decide which hypothesis is most probable after observing all evidence, the ratio

P(Hp |e, I )

P(Hd |e, I )

should be considered. This ratio is referred to as the posterior odds [34]. If the posterior odds are larger
than one, this means that given all evidence the prosecution hypothesis is more probable than the defence
hypothesis. However, neither the legal experts nor the forensic experts can determine these probabilities
directly. Therefore, Bayes’ theorem is used to split the posterior odds into two parts.

Theorem 1 (Bayes’ theorem). Let A and B be events where P(A) > 0 and P(B) > 0. Then

P(B |A) = P(A|B)P(B)

P(A)
.

Bayes’ theorem follows from the definition of conditional probabilities. [36]

Applying Bayes’ theorem and the definition of conditional probability to the posterior odds gives

P(Hp |e, I )

P(Hd |e, I )
= P(e, I |Hp )P(Hp )

P(e, I )

P(e, I )

P(e, I |Hd )P(Hd )
= P(e|Hp , I )

P(e|Hd , I )
· P(I |Hp )

P(I |Hd )
· P(Hp )

P(Hd )
.

Then, using Bayes’ theorem once more results in the odds form of Bayes’ theorem

P(Hp |e, I )

P(Hd |e, I )
= P(e|Hp , I )

P(e|Hd , I )
· P(Hp |I )

P(Hd |I )
,

or in words
Posterior odds = Value of Evidence×Prior odds.

In general, explicit mention of the background information I is omitted for ease of notation [2]. The forensic
experts are responsible for determining the value of evidence, whereas the legal experts have to report the

13
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prior odds. The prior odds summarize the personal belief regarding the validity of the prosecution and de-
fence hypotheses before observing the evidence. This personal prior belief is then updated by the value of
evidence to arrive at the posterior odds [32].

In the statistics community, there are two commonly used approaches to evaluate the value of evidence.
Following [32], let eu denote the unknown source evidence, where eu = {eu1 ,eu2 } for the common source
problem. The evidence is assumed to be generated according to the sampling models as discussed in Chapter
2. Frequentists will say that the value of evidence is given by the likelihood ratio

LR(θ;eu) = f (eu |θ, Hp )

f (eu |θ, Hd )
,

i.e., the ratio of the likelihood functions derived in the previous chapter, which is a function of the unknown
parameter θ and eu . To improve readability, θ is used in this chapter as if it is a one-dimensional parameter,
but bear in mind that the same results hold for the parameter vector θ. Suppose that θ0 is the true value of the
parameter θ. Then LR(θ0;eu) denotes the ‘true’ likelihood ratio, which is a single point of the likelihood ratio
function for θ = θ0. In practice, the true parameter is unknown and there are many ad-hoc solutions to eval-
uate the likelihood ratio, such as taking some estimate of the unknown parameter based on the background
material and substituting it into the likelihood ratio function [2, 32, 34].

Instead of using the likelihood ratio with some plug-in estimate of θ, it is also possible to consider a Bayesian
approach. Here, the uncertainty is incorporated into the value of evidence by constructing the Bayes Factor.
Following the notation of [31–34] the Bayes Factor is given by

BF (e) =
∫

f (e|θ, Hp ) dΠ(θ|Hp )∫
f (e|θ, Hd ) dΠ(θ|Hd )

,

where Π(θ) denotes the proper prior probability measure on the parameter space Θ, with corresponding
prior density π(θ), when it exists. The Bayes Factor is, in contrast to the likelihood ratio, a function of the
entire set of evidence and represents the ratio of the marginal likelihood of observing all evidence under the
prosecution model to the marginal likelihood of observing all evidence under the defence model [32]. In the
next sections, the likelihood ratio and Bayes Factor will be made precise for the common source problem and
for the specific source problem.

3.1. Common source problem
Let e = {eu1 ,eu2 ,ea} denote the collection of the available forensic evidence. For the common source problem,
the likelihood ratio becomes

LRC S (θa ;eu1 ,eu2 ) = f (eu1 ,eu2 |θa , Hp )

f (eu1 ,eu2 |θa , Hd )
= f (eu1 ,eu2 |θa , Hp )

f (eu1 |θa , Hd ) f (eu2 |θa , Hd )
.

Note that the likelihood ratio is a function of the unknown source evidence and θa only, although the param-
eter θa is based on the background material.

It is reasonable to assume that the marginal likelihood of the background material ea is the same given both
hypotheses, i.e., f (ea |Hp ) = f (ea |Hd ). Under this assumption, the Bayes Factor can be written as

BFC S (e) =
∫

f (e|θa , Hp ) dΠ(θa |Hp )∫
f (e|θa , Hd ) dΠ(θa |Hd )

=
∫

f (eu1 ,eu2 |θa , Hp ) f (ea |θa , Hp ) dΠ(θa |Hp )∫
f (eu1 |θa , Hd ) f (eu2 |θa , Hd ) f (ea |θa , Hd ) dΠ(θa |Hd )

=

∫
f (eu1 ,eu2 |θa , Hp )

f (ea |θa , Hp ) dΠ(θa |Hp )

f (ea |Hp )∫
f (eu1 |θa , Hd ) f (eu2 |θa , Hd )

f (ea |θa , Hd ) dΠ(θa |Hd )

f (ea |Hd )

(3.1)

=
∫

f (eu1 ,eu2 |θa , Hp ) dΠ(θa |ea , Hp )∫
f (eu1 |θa , Hd ) f (eu2 |θa , Hd ) dΠ(θa |ea , Hd )



3.2. Specific source problem 15

=
∫

f (eu1 ,eu2 |θa , Hp ) dΠ(θa |ea)∫
f (eu1 |θa , Hd ) f (eu2 |θa , Hd ) dΠ(θa |ea)

. (3.2)

which was found in Derivation (3.7) from [32] and is included here for ease of reference. Here, in (3.1) the
assumption on the marginal likelihood of ea is used, and step (3.2) follows from the assumption that the
prior belief of θa , given the background material, is the same according to both hypotheses. The rest of the
derivation follows from standard Bayesian analysis.

3.1.1. Relation between Bayes Factor and likelihood ratio
Using the expressions found for the Bayes Factor and the likelihood ratio, it is possible to relate the two statis-
tics [31, 32]. This might help to bring the Bayesian and the frequentist framework closer together. Moreover,
the computational complexity of the Bayes Factor could be reduced for some common source problems.

Starting from equation (3.2) and using some standard Bayesian analysis, it was found in Derivation (5.1) from
[32] that

BFC S (e) =
∫

f (eu1 ,eu2 |θa , Hp ) dΠ(θa |ea)∫
f (eu1 |θa , Hd ) f (eu2 |θa , Hd ) dΠ(θa |ea)

= 1

f (eu1 ,eu2 |ea , Hd )

∫
f (eu1 ,eu2 |θa , Hp ) dΠ(θa |ea)

=
∫ f (eu1 ,eu2 |θa , Hp )

f (eu1 ,eu2 |ea , Hd )
× f (eu1 ,eu2 |θa , Hd )

f (eu1 ,eu2 |θa , Hd )
dΠ(θa |ea)

=
∫ f (eu1 ,eu2 |θa , Hp )

f (eu1 ,eu2 |θa , Hd )
× f (eu1 ,eu2 |θa , Hd ) dΠ(θa |ea)

f (eu1 ,eu2 |ea , Hd )

=
∫

LRC S (θa ;eu1 ,eu2 ) dΠ(θa |eu1 ,eu2 ,ea , Hd ), (3.3)

where in the second-last equation the assumption is used that the prior belief of θa , given the background
material, is the same according to both hypotheses. This alternative expression of the Bayes Factor shows that
the frequentist likelihood ratio can be adapted to the Bayesian framework by imposing a prior for θa given
the entire set of evidence under the defence model. Furthermore, only one integral has to be evaluated to
compute the Bayes Factor.

Similarly, following Derivation (5.3) from [32], for the reciprocal of the Bayes Factor in equation (3.2) it holds
that

1

BFC S (e)
= 1

f (eu1 ,eu2 |ea , Hp )

∫
f (eu1 ,eu2 |θa , Hd ) dΠ(θa |ea)

=
∫

f (eu1 ,eu2 |θa , Hd )

f (eu1 ,eu2 |θa , Hp )
× f (eu1 ,eu2 |θa , Hp ) dΠ(θa |ea)

f (eu1 ,eu2 |ea , Hp )

=
∫

1

LRC S (θa ;eu1 ,eu2 )
dΠ(θa |eu1 ,eu2 ,ea , Hp ),

which gives

BFC S (e) =
[∫

1

LRC S (θa ;eu1 ,eu2 )
dΠ(θa |eu1 ,eu2 ,ea , Hp )

]−1

. (3.4)

Note that in both expressions the prior for θa given the available forensic evidence explicitly depends on the
hypothesis.

3.2. Specific source problem
Let e = {eu ,es ,ea} denote the collection of the available forensic evidence. For the specific source problem,
the likelihood ratio becomes

LRSS (θ;eu) = f (eu |θs , Hp )

f (eu |θa , Hd )
,

where θ = (θa ,θs ). Again, the likelihood ratio is a function of the unknown source evidence and θ only, al-
though the parameters θa and θs are based on the background material and the specific source evidence,
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respectively.

In the formulation of the specific source problem, the specific source is not contained in the total population
of alternative sources and therefore it is reasonable to assume that the prior for θs is independent of the prior
for θa [32]. Under this assumption, the Bayes Factor can be written as

BFSS (e) =
∫

f (e|θ, Hp ) dΠ(θ|Hp )∫
f (e|θ, Hd ) dΠ(θ|Hd )

=
∫

f (eu |θs , Hp ) f (es |θs , Hp ) f (ea |θa , Hp ) dΠ(θa ,θs |Hp )∫
f (eu |θa , Hd ) f (es |θs , Hd ) f (ea |θa , Hd ) dΠ(θa ,θs |Hd )

(3.5)

=
∫

f (eu |θs , Hp ) f (es |θs , Hp ) dΠ(θs |Hp )∫
f (es |θs , Hd ) dΠ(θs |Hd )

×
∫

f (ea |θa , Hp ) dΠ(θa |Hp )∫
f (eu |θa , Hd ) f (ea |θa , Hd ) dΠ(θa |Hd )

= (1)× (2)

which was found in Derivation (3.7) from [32] and is included here for ease of reference.
Under the assumption that the marginal likelihood of the background material ea as well as of the specific
source evidence is the same according to both hypotheses, i.e., f (ea |Hp ) = f (ea |Hd ) and f (es |Hp ) = f (es |Hd ),
these fractions can be simplified significantly:

(1) =
∫

f (eu |θs , Hp ) f (es |θs , Hp ) dΠ(θs |Hp )∫
f (es |θs , Hd ) dΠ(θs |Hd )

× f (es |Hd )

f (es |Hp )

=
∫

f (eu |θs , Hp )
f (es |θs , Hp ) dΠ(θs |Hp )

f (es |Hp )
× f (es |Hd )∫

f (es |θs , Hd ) dΠ(θs |Hd )

=
∫

f (eu |θs , Hp ) dΠ(θs |es , Hp )× f (es |Hd )

f (es |Hd )

=
∫

f (eu |θs , Hp ) dΠ(θs |es , Hp ).

Similarly,

(2) =
∫

f (ea |θa , Hp ) dΠ(θa |Hp )∫
f (eu |θa , Hd ) f (ea |θa , Hd ) dΠ(θa |Hd )

× f (ea |Hd )

f (ea |Hp )

=
∫

f (ea |θa , Hp ) dΠ(θa |Hp )

f (ea |Hp )
× f (ea |Hd )∫

f (eu |θa , Hd ) f (ea |θa , Hd ) dΠ(θa |Hd )

= f (ea |Hp )

f (ea |Hp )
×

(∫
f (eu |θa , Hd )

f (ea |θa , Hd ) dΠ(θa |Hd )

f (ea |Hd )

)−1

=
(∫

f (eu |θa , Hd ) dΠ(θa |ea , Hd )

)−1

.

So for the specific source problem, the Bayes Factor reduces to

BFSS (e) =
∫

f (eu |θs , Hp ) dΠ(θs |es , Hp )∫
f (eu |θa , Hd ) dΠ(θa |ea , Hd )

=
∫

f (eu |θs , Hp ) dΠ(θs |es )∫
f (eu |θa , Hd ) dΠ(θa |ea)

, (3.6)

where the assumption is used that the prior belief of θa and θs , given the background material and the specific
source evidence respectively, is the same according to both hypotheses. This derivation is slightly different
than the one given in [32], where the notational dependence on the hypothesis is not made explicit and
therefore some assumptions that follow from the sampling models are not mentioned explicitly.

3.2.1. Relation between Bayes Factor and likelihood ratio
For the specific source problem it is also possible to relate the Bayes Factor and the likelihood ratio. In the
derivation given in [32], the notational dependence on the hypothesis is again not made explicit. Here, the
hypotheses will be incorporated in the derivation and the required assumptions will be mentioned explicitly.
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Starting from equation (3.5), it follows that

BFSS (e) =
∫

f (eu |θs , Hp ) f (es |θs , Hp ) f (ea |θa , Hp ) dΠ(θa ,θs |Hp )∫
f (eu |θa , Hd ) f (es |θs , Hd ) f (ea |θa , Hd ) dΠ(θa ,θs |Hd )

= 1

f (eu ,es ,ea |Hd )

∫
f (eu |θs , Hp ) f (es |θs , Hp ) f (ea |θa , Hp ) dΠ(θa ,θs |Hp )

=
∫ f (eu |θs , Hp ) f (es |θs , Hp ) f (ea |θa , Hp )

f (eu ,es ,ea |Hd )
× f (eu |θa , Hd )

f (eu |θa , Hd )
dΠ(θa ,θs |Hp )

=
∫ f (eu |θs , Hp )

f (eu |θa , Hd )
× f (eu |θa , Hd ) f (es |θs , Hp ) f (ea |θa , Hp ) dΠ(θa ,θs |Hp )

f (eu ,es ,ea |Hd )

=
∫

LRSS (θa ,θs ;eu)× f (eu |θa , Hd ) f (es |θs , Hd ) f (ea |θa , Hd ) dΠ(θa ,θs |Hd )

f (eu ,es ,ea |Hd )

=
∫

LRSS (θa ,θs ;eu) dΠ(θa ,θs |eu ,es ,ea , Hd ). (3.7)

Here, in the second-last step it is used that the sampling models for the specific source evidence and the back-
ground material are the same according to both hypotheses, i.e., f (es |θs , Hp ) = f (es |θs , Hd ) and f (ea |θa , Hp ) =
f (ea |θa , Hd ) [31, 32]. Moreover, the prior belief of θa and θs is the same given each hypothesis. Again, the like-
lihood ratio can be adapted to the Bayesian framework by imposing a prior for (θs ,θa) given the entire set of
evidence under the defence model. However, the computational complexity of the Bayes Factor does not re-
duce, since still two integrals have to be evaluated.

Following Derivation (5.6) from [32], for the reciprocal of the Bayes Factor from equation (3.5) it holds that

1

BFSS (e)
= 1

f (eu ,es ,ea |Hp )

∫
f (eu |θa , Hd ) f (es |θs , Hd ) f (ea |θa , Hd ) dΠ(θa ,θs |Hd )

=
∫

f (eu |θa , Hd ) f (es |θs , Hd ) f (ea |θa , Hd )

f (eu ,es ,ea |Hp )
× f (eu |θs , Hp )

f (eu |θs , Hp )
dΠ(θa ,θs |Hd )

=
∫

f (eu |θa , Hd )

f (eu |θs , Hp )
× f (eu |θs , Hp ) f (es |θs , Hd ) f (ea |θa , Hd ) dΠ(θa ,θs |Hd )

f (eu ,es ,ea |Hp )

=
∫

1

LRSS (θa ,θs ,eu)
× f (eu |θs , Hp ) f (es |θs , Hp ) f (ea |θa , Hp ) dΠ(θa ,θs |Hp )

f (eu ,es ,ea |Hp )

=
∫

1

LRSS (θa ,θs ;eu)
dΠ(θa ,θs |eu ,es ,ea , Hp ),

so that

BFSS (e) =
[∫

1

LRSS (θa ,θs ;eu)
dΠ(θa ,θs |eu ,es ,ea , Hp )

]−1

. (3.8)

Note that in both expressions the prior for (θa ,θs ) given the available forensic evidence explicitly depends on
the hypothesis.

In summary, for both the common and specific source problem, the Bayes Factor and the likelihood ratio can
be related by the following general expressions:

BF (e) =
∫

LR(θ;eu) dΠ(θ|e, Hd ) and BF (e) =
[∫

1

LR(θ;eu)
dΠ(θ|e, Hp )

]−1

.

These relations will play an important role in Chapters 5, 10 and 11, where two commonly used models in
forensic science will be considered.

3.3. Interpreting the value of evidence
In the previous sections, different methods to obtain the value of evidence were explained. This numerical
value indicates how many times more probable the evidence is if the prosecution hypothesis is true com-
pared to the defence hypothesis. Such a quantitative expression can be hard to interpret for some people.
Moreover, people tend to understand the same verbal probability expression differently which can easily lead
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to miscommunication. A well-known example is the prosecutor’s fallacy: the probability of observing the evi-
dence given the hypothesis is wrongly interpreted as the probability of the hypothesis given the evidence [45].
Another example is given by the weak evidence or boomerang effect: weak evidence supporting a prosecution
hypothesis is sometimes wrongly interpreted as evidence supporting the defence hypothesis [27].

As explained before, a lot of people are involved in the decision making process regarding two competing
forensic hypotheses. Especially legal experts might be less familiar with interpreting the value of evidence
than forensic experts. Since clear communication is crucial for an objective and fair lawsuit, it is important
to provide a connection between numerical and verbal values of evidence. To this end, the Association of
Forensic Science Providers have proposed a scale for the translation of numerical values of evidence into
verbal formats [5], which can be found in Table 3.1.

Value of evidence Verbal equivalent

>1−10 Weak support for proposition
10−100 Moderate support
100−1,000 Moderately strong support
1,000−10,000 Strong support
10,000−1,000,000 Very strong support
>1,000,000 Extremely strong support

Table 3.1: Standards for numerical and verbal expression of the value of evidence.

Now suppose that glass fragments are found on the clothes of a suspect and one is interested if these frag-
ments originate from the broken window at a crime scene. In the quantitative framework, a forensic expert
might give the following statement in court:

“In my opinion, the correspondence between the glass fragments found on the clothes of the accused and frag-
ments from the window at the crime scene is 5,900 times more likely if the fragments originated from the same
window than if the fragments originated from different windows.”

Translating this to the verbal format would result in:

“... the correspondence between the glass fragments found on the clothes of the accused and fragments from the
window at the crime scene offers strong support to the proposition that the fragments originated from the same
window ...”

Although this research will mainly consider the numerical value of evidence, it is important to keep in mind
that in practice also the verbal expression of support is used.



4
Two-level normal-normal model

One commonly used model in forensic science is the two-level normal-normal model. In this model, both the
between-source variation and the within-source variation of the evidence are assumed to follow a (multivari-
ate) normal distribution. The two-level normal-normal model is briefly discussed in [32], but only applied in a
Markov Chain Monte Carlo simulation study. Since conjugate priors are proposed, this chapter will consider
the possibilities of analytical calculation of the Bayes Factor for both the common source and the specific
source problem.

Adapting the notation from the definition of the common and specific source problem, the two-level normal-
normal model can be used as sampling model for the forensic evidence. This model is also known as the
hierarchical simple random effects model. As before, let Yi j denote the k-dimensional column vector of mea-
surements on the j th sample from the i th source for j = 1,2, . . . ,ni and i = 1,2, . . . ,na . Then the two-level
normal-normal model is obtained by setting θa = (µa ,Σa ,Σw ) and

Ai
iid∼ Nk

(
µa ,Σa

)
and Yi j |Ai = ai

iid∼ Nk (ai ,Σw ) for i = 1,2, . . . ,na and j = 1,2, . . . ,ni . (4.1)

Here,µa denotes a k-dimensional column vector, where for each i = 1,2, . . . ,k, (µa)i denotes the overall mean
of the i th measurement on every sample from all sources. This is equivalent to saying that (µa)i is the overall
mean of the i th feature from all observations of this feature. Then ai denotes the k-dimensional column vec-
tor that is the realisation of the random vector Ai . The matrices Σa and Σw denote the covariance matrices
corresponding to the total population of sources and the samples within the sources, respectively.

Equivalently, this model can be represented as simple random effects model by writing

Yi j = Ai +Wi j =µa +Bi +Wi j for i = 1,2, . . . ,na and j = 1,2, . . . ,ni ,

where Bi
iid∼ Nk (0k ,Σa), Wi j

iid∼ Nk (0k ,Σw ), and 0k denotes the k-dimensional column vector with all ele-
ments equal to zero.

For the common source problem, all evidence sets are assumed to follow this two-level model as explained
in Section 2.1. However, for the specific source problem, only the evidence sets obtained by sampling models
Ma and Md follow a two-level model. The other two sampling models, Ms and Mp , assume that the evidence
is sampled from a specific and known source, which is not randomly selected from the total population of
alternative sources and therefore no sampling distribution has to be specified for the between-source distri-
bution. This means that for the sampling models Ms and Mp , θs = (µs ,Σs ) and only a one-level normal model
is needed:

Ys j
iid∼ Nk

(
µs ,Σs

)
for j = 1,2, . . . ,ns , (4.2)

where Ys j denotes the k-dimensional column vector of measurements on the j th sample from the specific
source.

19
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A fully Bayesian approach is obtained by specifying priors for all elements of θa . For the common source
problem and for the sampling models Ma and Md of the specific source problem, the two-level normal-
normal model is completely defined by (4.1) with priors for θa = (µa ,Σa ,Σw ) given by

µa ∼Nk (µπ,λΣb), Σa ∼W −1
k (Σb ,νb), and Σw ∼W −1

k (Σe ,νe )

as proposed in [32]. Here, λ is a scalar and W −1
k denotes the inverse Wishart distribution. For the sampling

models Ms and Mp of the specific source problem, the one-level normal model is completely defined by (4.2)
with priors for θs = (µs ,Σs ) given by

µs ∼Nk (µπ,Σb) and Σs ∼W −1
k (Σe ,νe )

as proposed by [32]. The argumentation for choosing the multivariate normal distribution and the inverse
Wishart distribution as priors for respectively the mean and covariance of the multivariate normal distribu-
tion given in [32] is that they are conjugate priors for the multivariate normal distribution (see also [16]). The
hyperparameters of these prior distributions are estimated from the evidence.

Usually, this conjugacy has a lot of advantages, since the posterior is given by a known distribution and there-
fore an analytical solution of the Bayes Factor should exist. However, in the next section it will be shown that
in this formulation the conjugacy does not hold and no analytical solution of the Bayes Factor can be derived.

4.1. Common source Bayes Factor
For simplicity, suppose only one feature is measured for the common source problem. Then the two-level
normal-normal model reduces to a one-dimensional problem, which is schematically given in Figure 4.1.

Yi j

Ai

µa

µπλσ2
b

σ2
a

νbσ2
b

σ2
w

νeσ2
e

Figure 4.1: Common source hierarchical structure.

The integration problem can be summarized by

Yi j |ai ,σ2
w

iid∼ N
(
ai ,σ2

w

)
(4.3)

Ai |µa ,σ2
a

iid∼ N
(
µa ,σ2

a

)
(4.4)

µa ∼ N
(
µπ,λσ2

b

)
(4.5)

σ2
a ∼ Scale-inv-χ2 (

νb ,σ2
b

)
(4.6)

σ2
w ∼ Scale-inv-χ2 (

νe ,σ2
e

)
, (4.7)

where the last two distributions are the univariate specialisation
of the inverse Wishart distribution [16].

In Section 3.1, an explicit expression of the Bayes Factor for the common source problem was given. Since
π(θa |ea) =π(µa ,σ2

a ,σ2
w |ea) is difficult to compute for the two-level normal-normal model, the expression for

the Bayes Factor as given in equation (3.2) cannot be used directly. Therefore, the original definition of the
Bayes Factor

BFC S (e) =
∫

f (eu1 ,eu2 |θa , Hp ) f (ea |θa , Hp ) dΠ(θa)∫
f (eu1 |θa , Hd ) f (eu2 |θa , Hd ) f (ea |θa , Hd ) dΠ(θa)

will be evaluated.

First, consider the numerator of the Bayes Factor. Using the likelihood found in Section 2.1.2, this integral
can be written as∫ (∫ nu∏

j=1
fa(yu j |p,θa)g (p|θa) d p

)(
na∏

i=1

∫ ni∏
j=1

fa(yi j |ai ,θa)g (ai |θa) d ai

)
dΠ(θa). (4.8)

Since p is sampled similarly as all the ai , the unknown source evidence can be merged with the background
material to simplify this expression to∫ (

na+1∏
i=1

∫ ni∏
j=1

fa(yi j |ai ,θa)g (ai |θa) d ai

)
dΠ(θa),
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where y(na+1) j := yu j for all j , nna+1 := nu and ana+1 := p. Now applying the two-level normal-normal model,
the integral becomes∫ ∞

0

∫ ∞

0

∫ ∞

−∞

(
na+1∏
i=1

∫ ∞

−∞

ni∏
j=1

fa(yi j |ai ,σ2
w )g (ai |µa ,σ2

a) d ai

)
π(µa)π(σ2

a)π(σ2
w ) dµa dσ2

a dσ2
w . (4.9)

The integral between the brackets in equation (4.9) will be evaluated first. From Derivation 1 in Appendix A
it follows that

na+1∏
i=1

∫ ∞

−∞

ni∏
j=1

fa(yi j |ai ,σ2
w )g (ai |µa ,σ2

a) d ai =

na+1∏
i=1

(
2πσ2

w

)−ni /2
(

σ2
w

niσ
2
a +σ2

w

)1/2

exp

[
−

∑ni
j=1 y2

i j

2σ2
w

− µ2
a

2σ2
a

]
exp

1

2

(
σ2

a
∑ni

j=1 yi j +µaσ
2
w

)2

σ2
aσ

2
w

(
niσ

2
a +σ2

w
)


Clearly, this cannot be expressed as a normal distribution with mean µa and variance σ2

a or σ2
w . Therefore,

the choice for the prior distributions seems to be rather arbitrary and one could argue that using a non-
informative prior would make more sense [4]. Similar problems arise when considering the denominator of
the Bayes Factor for the common source problem. Note that in this definition of the model it is not allowed
to change the order of integration to∫ ∞

0

∫ ∞

−∞
g (ai |µa ,σ2

a)π(µa)π(σ2
a) dµa dσ2

a ,

which would lead to at least semi-conjugacy in the first level (see Section 3.4 in [16]).

4.2. Specific source Bayes Factor
Again, suppose only one feature is measured, but now consider the specific source problem. Then the two-
level normal-normal model reduces to a one-dimensional problem for the specific source evidence. Given
the defence hypothesis, the model for the unknown source evidence can still be represented by Figure 4.1.
However, given the prosecution hypothesis the model for the unknown source evidence simplifies signifi-
cantly and is schematically given in Figure 4.2.

Ys j

µs

σ2
bµπ

σ2
s

νeσ2
e

Figure 4.2: Specific source hierarchical structure.

This integration problem for the specific source evidence can be
summarized by

Ys j |µs ,σ2
s

iid∼ N
(
µs ,σ2

s

)
(4.10)

µs ∼ N
(
µπ,σ2

b

)
(4.11)

σ2
s ∼ Scale-inv-χ2 (

νe ,σ2
e

)
, (4.12)

where the last distribution is the univariate specialisation of the
inverse Wishart distribution [16].

In Section 3.2, an explicit expression of the Bayes Factor for the specific source problem was given. Again,
since both π(θa |ea) = π(µa ,σ2

a ,σ2
w |ea) and π(θs |es ) = π(µs ,σ2

s |es ) are difficult to compute, the expression for
the Bayes Factor as given in equation (3.6) cannot be used directly. Therefore, the original definition of the
Bayes Factor will be used, i.e.,

BFSS (e) =
∫

f (eu |θs , Hp ) f (es |θs , Hp ) f (ea |θa , Hp ) dΠ(θa ,θs )∫
f (eu |θa , Hd ) f (es |θs , Hd ) f (ea |θa , Hd ) dΠ(θa ,θs )

.

Using the likelihood as found in Section 2.2.2, the numerator of the Bayes Factor can be written as∫ nu∏
j=1

fs (yu j |θs )
ns∏

j=1
fs (ys j |θs ) dΠ(θs )×

∫ (
na∏

i=1

∫ ni∏
j=1

fa(yi j |ai ,θa)g (ai |θa) d ai

)
dΠ(θa),

which can be simplified to∫ nu+ns∏
j=1

fs (yt j |θs ) dΠ(θs )×
∫ (

na∏
i=1

∫ ni∏
j=1

fa(yi j |ai ,θa)g (ai |θa) d ai

)
dΠ(θa)
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by setting yt = (yu1, . . . , yunu , ys1, . . . , ysns ). Note that the integration with respect toΠ(θa) was already consid-
ered in the previous section, where it was found that conjugacy did not hold. Therefore, only the integration
with respect to Π(θs ) will be considered here. Applying the two-level normal-normal model, the integral
becomes ∫ ∞

0

∫ ∞

−∞

nu+ns∏
j=1

fs (yt j |µs ,σ2
s )π(µs )π(σ2

s ) dµs dσ2
s . (4.13)

Now the priors specified for this problem are semi-conjugate [16]. The marginal likelihood can only be com-
puted analytically if the prior for µs is adjusted to

µs |σ2
s ∼ N

(
µπ,

σ2
s

κπ

)
for some scalar κπ, so that conjugacy is achieved. Then it follows from Derivation 2 in Appendix A that (4.13)
is equal to

Γ
(νe+nu+ns

2

)
Γ

(νe
2

) √
κπ

κπ+nu +ns

(νeσ
2
e )νe /2(

(νe +nu +ns )σ2
n
)(νe+nu+ns )/2

1

π(nu+ns )/2
,

where

σ2
n = 1

νe +nu +ns

(
νeσ

2
e +

nu+ns∑
j=1

(yt j − ȳt )2 + (nu +ns )κπ
κπ+nu +ns

(µπ− ȳt )2

)
and ȳt = 1

nu +ns

nu+ns∑
j=1

yt j .

The denominator of the Bayes Factor is of similar form as the numerator and is given by∫ ns∏
j=1

fs (ys j |θs ) dΠ(θs )×
∫ (∫ nu∏

j=1
fa(yu j |p,θa)g (p|θa) d p

)(
na∏

i=1

∫ ni∏
j=1

fa(yi j |ai ,θa)g (ai |θa) d ai

)
dΠ(θa).

Again, the prior density functions corresponding toΠ(θs ) are semi-conjugate and can be adjusted to achieve
conjugacy, but the integration with respect to Π(θa) does not result in an analytical solution. Therefore, the
specific source Bayes Factor cannot be computed analytically and the choice for the prior distributions is
questionable.
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Convergence of the Gibbs sampler

Since the Bayes Factor of the two-level normal-normal model cannot be computed analytically, as seen in
Chapter 4, alternative methods have to be considered. This chapter will describe how the two-level normal-
normal model can be put into practice and considers the theoretical convergence properties of the proposed
method. The details of the study should be sufficient to reproduce this procedure for other models following
the discussed common source or specific source framework. In the next chapter, the actual results of apply-
ing the two-level normal-normal model will be discussed.

For the computation of the Bayes Factor it was chosen to use Monte Carlo integration combined with Gibbs
sampling, as suggested in [32]. To apply these methods, one of the relationships between the likelihood ratio
and the Bayes Factor as given in Chapter 3 is used:

BF (e) =
∫

LR(θ;eu) dΠ(θ|e, Hd ) = EΘ|e,Hd [LR(Θ;eu)] .

Here, the subscript notation indicates under which probability measure the expectation is calculated. Note
that the likelihood ratio as well as the probability measure Π(θ|e, Hd ) are different for the common and spe-
cific source problem.

In classical Monte Carlo integration the generic problem of evaluating an integral of the form

E f [h(X )] =
∫

h(x) f (x) d x

is considered. Using a sample
(
X (1), X (2), . . . , X (m)

)
generated from the density f , this integral can be approxi-

mated by the empirical average

ĥm = 1

m

m∑
i=1

h(x(i ))

since ĥm converges almost surely to E f [h(X )] by the Strong Law of Large Numbers, provided the expectation
is finite [37]. Applying this to the two-level normal-normal model, the Bayes Factor can be approximated by

B̂F (e) = 1

m

m∑
i=1

LR(θ(i );eu)

where
(
Θ(1),Θ(2), . . . ,Θ(m)

)
is a sample from π(θ|e, Hd ). The problem here is that the density π(θ|e, Hd ) is not

known. However, Gibbs sampling can be incorporated to obtain the sample.

As explained in [38], the general multistage Gibbs sampler works as follows. Suppose that a sample is needed
from p(x), where X = (X1, . . . , Xh) is a random vector for some h > 1. Moreover, suppose that the correspond-
ing conditional densities p1, . . . , ph are known, where pi denotes the conditional density of Xi given all X j ’s
except for Xi , so that it is possible to simulate

Xi |x1, x2, . . . , xi−1, xi+1, . . . , xh ∼ pi (xi |x1, x2, . . . , xi−1, xi+1, . . . , xh) for i = 1,2, . . . ,h.

23
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The densities p1, . . . , ph are called the full conditionals. The associated Gibbs sampler is given by the transition
from X(t ) to X(t+1) as explained in Algorithm 1. In the next sections, the full conditionals and the approxima-
tion procedure will be made precise for the common source and the specific source problem in the two-level
normal-normal setting. In this chapter, only one-dimensional problems are considered. Chapter 6 will ex-
plain how the approximation procedure can be adapted for higher dimensional problems.

Algorithm 1: The general Multistage Gibbs Sampler

1 for iteration t = 1,2, . . ., given x(t ) = (x(t )
1 , . . . , x(t )

h ) do
2 Generate X (t+1)

1 ∼ p1(x1|x(t )
2 , . . . , x(t )

h )

3 Generate X (t+1)
2 ∼ p2(x2|x(t+1)

1 , x(t )
3 , . . . , x(t )

h )
...

4 Generate X (t+1)
h ∼ ph(xh |x(t+1)

1 , x(t+1)
2 , . . . , x(t+1)

h−1 )

5 end

5.1. Common source problem
To approximate the Bayes Factor, both the likelihood ratio and the full conditionals for the Gibbs sampler
corresponding to the two-level normal-normal common source problem need to be derived. The likelihood
ratio for the common source problem was given in Chapter 3:

LRC S (θa ;eu1 ,eu2 ) = f (eu1 ,eu2 |θa , Hp )

f (eu1 |θa , Hd ) f (eu2 |θa , Hd )

=
∫ ∏nu1+nu2

j=1 fa(yu j |p,θa)g (p|θa) dp(∫ ∏nu1
j=1 fa(yu1 j |d1,θa)g (d1|θa) dd1

)(∫ ∏nu2
j=1 fa(yu2 j |d2,θa)g (d2|θa) dd2

) ,

where θa = (µa ,σ2
a ,σ2

w ) and yu = (yu11, yu12 . . . , yu1nu1
, yu21, yu22, . . . , yu2nu2

). These likelihoods can be calcu-
lated explicitly and from Derivation 1 in Appendix A it follows that

LRC S (θa ;eu1 ,eu2 ) =
(
σ2

a

(
nu1σ

2
a +σ2

w

)(
nu2σ

2
a +σ2

w

)
(nu1 +nu2 )σ2

a +σ2
w

) 1
2

exp

[
µ2

a

2σ2
a

]
exp

[
1

2

(
σ2

a
∑

j yu j +µaσ
2
w

)2

σ2
aσ

2
w

(
(nu1 +nu2 )σ2

a +σ2
w

)]

×exp

[
−1

2

(
σ2

a
∑

j yu1 j +µaσ
2
w

)2

σ2
aσ

2
w

(
nu1σ

2
a +σ2

w
) ]

exp

[
−1

2

(
σ2

a
∑

j yu2 j +µaσ
2
w

)2

σ2
aσ

2
w

(
nu2σ

2
a +σ2

w
) ]

. (5.1)

This is the same likelihood ratio as for example given in [7], which has been proven in [22].

The full conditionals for the Gibbs sampler can be found from

π(ai |µa ,σ2
a ,σ2

w ,y, Hd ) ∝ π(ai |µa ,σ2
a)

ni∏
j=1

fa(yi j |ai ,σ2
w ) for i = 1,2, . . . ,na +2

π(µa |a1, a2, . . . , ana+2,σ2
a ,σ2

w ,y, Hd ) ∝ π(µa)
na+2∏
i=1

g (ai |µa ,σ2
a)

π(σ2
a |a1, a2, . . . , ana+2,µa ,σ2

w ,y, Hd ) ∝ π(σ2
a)

na+2∏
i=1

g (ai |µa ,σ2
a)

π(σ2
w |a1, a2, . . . , ana+2,µa ,σ2

a ,y, Hd ) ∝ π(σ2
w )

na+2∏
i=1

ni∏
j=1

fa(yi j |ai ,σ2
w )

(5.2)

where y = (y1, . . . ,yna ,yu1 ,yu2 ), ana+1 = d1 and ana+2 = d2, since in the defence model the unknown source
evidence comes from two different sources. Note that the latent variables ai have to be incorporated into the
full conditionals. It follows from (5.2) that

Ai |µa ,σ2
a ,σ2

w ,y, Hd ∼ N

(
σ2

aσ
2
w

σ2
w +niσ

2
a

[
1

σ2
w

ni∑
j=1

yi j + µa

σ2
a

]
,

σ2
aσ

2
w

σ2
w +niσ

2
a

)
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µa |a1, a2, . . . , ana+2,σ2
a ,σ2

w ,y, Hd ∼ N

(
λσ2

bσ
2
a

σ2
a + (na +2)λσ2

b

[
1

σ2
a

na+2∑
i=1

ai + µπ

λσ2
b

]
,

λσ2
bσ

2
a

σ2
a + (na +2)λσ2

b

)

σ2
a |a1, a2, . . . , ana+2,µa ,σ2

w ,y, Hd ∼ Scale-inv-χ2

(
νb +na +2,

νbσ
2
b +

∑na+2
i=1 (ai −µa)2

νb +na +2

)

σ2
w |a1, a2, . . . , ana+2,µa ,σ2

a ,y, Hd ∼ Scale-inv-χ2

νe +
na+2∑
i=1

ni ,
νeσ

2
e +

∑na+2
i=1

∑ni
j=1(yi j −ai )2

νe +∑na+2
i=1 ni

 .

So although the priors for the two-level normal-normal model as proposed in [32] do not result in an analyt-
ical expression of the Bayes Factor, they are conveniently chosen to easily derive the full conditionals for the
Gibbs sampler. Since the values ofσ2

b ,σ2
e and µπ are unknown, in practice the estimates σ̂2

b , σ̂2
e and µ̂π will be

plugged into the full conditionals. The total approximation procedure of the common source Bayes Factor is
described in the next algorithm:

Algorithm 2: Common source approximation of Bayes Factor

Data: eu1 ,eu2 ,ea

Result: Approximation of common source Bayes Factor
1 Initialization

ngibbs = 20,000, nburn = 5,000, µ (1)
a = 1, σ2 (1)

a = 1, σ2 (1)
w = 1, a (1)

i = 1 for i = 1,2, . . . ,na +2

2 Approximate hyperparameters µ̂π, σ̂2
b and σ̂2

e

3 for iteration t = 1,2, . . . ,ngibbs do
4 Generate a (t+1)

i ∼π(ai |µ (t )
a ,σ2 (t )

a ,σ2 (t )
w ,y, Hd ) for i = 1,2, . . . ,na +2

5 Generate µ (t+1)
a ∼π(µa |a (t+1)

1 , a (t+1)
2 , . . . , a (t+1)

na+2 ,σ2 (t )
a ,σ2 (t )

w ,y, Hd )

6 Generate σ2 (t+1)
a ∼π(σ2

a |a (t+1)
1 , a (t+1)

2 , . . . , a (t+1)
na+2 ,µ (t+1)

a ,σ2 (t )
w ,y, Hd )

7 Generate σ2 (t+1)
w ∼π(σ2

a |a (t+1)
1 , a (t+1)

2 , . . . , a (t+1)
na+2 ,µ (t+1)

a ,σ2 (t+1)
a ,y, Hd )

8 if t > nburn then

9 Calculate log
{

LRC S (θ(t )
a ;yu1 ,yu2 )

}
and LRC S (θ(t )

a ;yu1 ,yu2 ) with formula (5.1)

10 end
11 end

12 B̂F C S = 1
ngibbs−nburn

∑ngibbs

t=nburn+1 exp
[

log
{

LRC S (θ(t )
a ;yu1 ,yu2 )

}]
13 B̂F C S = 1

ngibbs−nburn

∑ngibbs

t=nburn+1 LRC S (θ(t )
a ;yu1 ,yu2 )

The motivation to calculate the approximate Bayes Factor using the logarithm of the likelihood ratio is that
very large or very small values often result in ‘infinity’ or ‘not a number’ because of machine precision. By
calculating the logarithm of the likelihood ratio and transform it later on, this can be prevented in some cases.
Both approximations give the same result if the likelihood ratio can be calculated directly. In the next section,
the convergence of the Gibbs sampler will be discussed.

5.1.1. Convergence properties
The two-level normal-normal model is frequently studied in literature, usually under the name one-way or
simple random effects model. The formulation of the hierarchical structure is slightly different in the sense
that in the literature the priors on the variance parameters are specified by

σ−2
a ∼ Γ(a1,b1) σ−2

w ∼ Γ(a2,b2).

Lemma 2 and 3 show that the two-level normal-normal as discussed here can be reformulated to coincide
with the problem in the literature by setting a1 = νb/2, b1 = νbσ

2
b/2, a2 = νe /2 and b2 = νeσ

2
e /2 in the Gamma

priors above. This means that convergence results from the literature can immediately be applied.

Lemma 2. If a random variable X follows a Scale-inv-χ2
(
ν,τ2

)
-distribution, then this is equivalent to saying

that X follows a Γ−1
(
ν
2 , ντ

2

2

)
-distribution.
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Proof. This follows directly from the probability density function of the Scale-inv-χ2
(
ν,τ2

)
-distribution

f (x) = (ν/2)ν/2

Γ(ν/2)

(
τ2)ν/2

x−(ν/2+1) exp

[
−ντ

2

2x

]
, x > 0

and the probability density function of the Γ−1(α,β)-distribution

f (x) = βα

Γ(α)
x−(α+1) exp

[
−β

x

]
, x > 0.

Lemma 3. If a random variable X follows a Γ−1(α,β)-distribution, then X −1 follows a Γ(α,β)-distribution.

Proof. Let F denote the cumulative distribution function of X and let G denote the cumulative distribution
function of X −1, with corresponding densities f and g , respectively. Since both distributions are only defined
for x > 0, it follows that

G(x) =P(
X −1 ≤ x

)= 1−P(
X ≤ x−1)= 1−F

(
x−1) .

This implies that

g (x) = d

dx

(
1−F

(
x−1))= x−2 f

(
x−1)= βα

Γ(α)
xα−1 exp

[−βx
]

,

which is indeed the density of the Γ(α,β)-distribution.

To ensure that the results from Algorithm 2 are reliable, one has to make sure that the Markov Chain obtained
by the Gibbs sampler has converged from the starting value to stationarity. A burn-in of 5,000 is chosen to
realise this. It is assumed here that the burn-in is large enough to accomplish stationarity. Estimating the
sufficient burn-in is difficult and depends heavily on the prior variance on σ2

a , see for example [20].

Another subject of interest is the rate of convergence of the Gibbs sampler. Therefore, the concept of geomet-
ric ergodicity needs to be introduced.

Definition 4. Let E be a subset of Euclidean k-space, E be the corresponding Borel σ-algebra, and P : E ×E →
[0,1] a Markov transition function defining a discrete time, time homogeneous Markov chain {Xn : n = 0,1, . . .}.
Assume that this Markov chain is µ-irreducible (where µ is Lebesgue measure on E ), aperiodic and positive
Harris. Let P n : E ×E → [0,1], n = 2,3, . . ., denote the n-step Markov transition functions, and π the invariant
probability measure. The Markov chain is called geometrically ergodic if there exists a π-integrable function
M : E →R>0, and a constant 0 < r < 1 such that

||P n(x, ·)−π|| ≤ M(x)r n

for all x ∈ E and n = 0,1,2, . . ., where || · || represents total variation distance. [18]

The Gibbs Markov chain considered in [18] coincides with the one in Algorithm 2 and satisfies the assump-
tions given in Definition 4. The probability measure π(θ|e, Hd ) is the invariant measure for the chain. Ge-
ometric ergodicity ensures quick convergence of the Markov chain to its stationary distribution, which is
crucial for achieving effective simulation results in finite time and it is a key sufficient condition for the exis-
tence of a central limit theorem [19]. The next theorem will give sufficient conditions to establish geometric
ergodicity of the Gibbs sampler.

Theorem 5. The Gibbs sampler corresponding to the two-level normal-normal common source problem is
geometrically ergodic whenever

n′ > (
p

5−2)n′′ and
νb

2
≥ 3(na +2)−2

2(na +2)−2
,

where n′ = min(n1,n2, . . . ,nna ,nu1 ,nu2 ) and n′′ = max(n1,n2, . . . ,nna ,nu1 ,nu2 ).

Proof. See [18].

If the conditions in Theorem 5 are met, this means that the algorithm to approximate the common source
Bayes Factor converges fast and reliable approximations are obtained. In practice, the rate of convergence
will also depend on the burn-in. There are many possibilities to check if the chosen burn-in is sufficient,
such as considering autocorrelation or trace plots [32].



5.2. Specific source problem 27

5.2. Specific source problem
Since the specific source problem corresponds to a different statistical model than the common source prob-
lem, the likelihood ratio as well as the full conditionals for the Gibbs sampler need to be derived again in order
to approximate the Bayes Factor. The likelihood ratio for the specific source problem was given in Chapter 3:

LRSS (θ;eu) = f (eu |θs , Hp )

f (eu |θa , Hd )
=

∏nu
j=1 fs (yu j |θs )∫ ∏nu

j=1 fa(yu j |d ,θa)g (d |θa) dd
,

where θa = (µa ,σ2
a ,σ2

w ) and θs = (µs ,σ2
s ) for the two-level normal-normal model. This likelihood ratio can be

calculated explicitly using Derivation 1 in Appendix A:

LRSS (θ;eu) =
(
σ2

w

σ2
s

) nu
2

(
σ2

w

nuσ
2
a +σ2

w

)− 1
2

exp

[∑
j y2

u j

2σ2
w

+ µ2
a

2σ2
a

]
exp

[
− 1

2σ2
s

∑
j

(yu j −µs )2

]

×exp

[
−1

2

(
σ2

a
∑

j yu j +µaσ
2
w

)2

σ2
aσ

2
w

(
nuσ

2
a +σ2

w
) ]

. (5.3)

Note that this is a different likelihood ratio than for example given in [7], since a different model is proposed
for the evidence.

The Gibbs sampler is used to sample from π(θa ,θs |ea ,eu ,es , Hd ) = π(θa |ea ,eu , Hd )π(θs |es .Hd ). The two
posterior densities are independent, which means that the full conditionals from equation (5.2) hold with
y = (y1, . . . ,yna ,yu) and ana+1 = d , augmented with the full conditionals on the specific source parameters
that can be found from

π(µs |σ2
s ,ys , Hd ) ∝ π(µs )

ns∏
j=1

fs (ys j |µs ,σ2
s )

π(σ2
s |µs ,ys , Hd ) ∝ π(σ2

s )
ns∏

j=1
fs (ys j |µs ,σ2

s ).

(5.4)

It follows from (5.2) and (5.4) that

Ai |µa ,σ2
a ,σ2

w ,y, Hd ∼ N

(
σ2

aσ
2
w

σ2
w +niσ

2
a

[
1

σ2
w

ni∑
j=1

yi j + µa

σ2
a

]
,

σ2
aσ

2
w

σ2
w +niσ

2
a

)

µa |a1, a2, . . . , ana+1,σ2
a ,σ2

w ,y, Hd ∼ N

(
λσ2

bσ
2
a

σ2
a + (na +1)λσ2

b

[
1

σ2
a

na+1∑
i=1

ai + µπ

λσ2
b

]
,

λσ2
bσ

2
a

σ2
a + (na +1)λσ2

b

)

σ2
a |a1, a2, . . . , ana+1,µa ,σ2

w ,y, Hd ∼ Scale-inv-χ2

(
νb +na +1,

νbσ
2
b +

∑na+1
i=1 (ai −µa)2

νb +na +1

)

σ2
w |a1, a2, . . . , ana+1,µa ,σ2

a ,y, Hd ∼ Scale-inv-χ2

νe +
na+1∑
i=1

ni ,
νeσ

2
e +

∑na+1
i=1

∑ni
j=1(yi j −ai )2

νe +∑na+1
i=1 ni


µs |σ2

s ,ys , Hd ∼ N

(
σ2

bσ
2
s

σ2
s +nsσ

2
b

[
1

σ2
s

ns∑
j=1

ys j + µπ

σ2
b

]
,

σ2
bσ

2
s

σ2
s +nsσ

2
b

)
(5.5)

σ2
s |µs ,ys , Hd ∼ Scale-inv-χ2

(
νe +ns ,

νeσ
2
e +

∑ns
j=1(ys j −µs )2

νe +ns

)
. (5.6)

Again, the estimates σ̂2
b , σ̂2

e and µ̂π will be plugged into the full conditionals, since it is assumed that the real
values of σ2

b ,σ2
e and µπ are unknown. The total approximation procedure of the specific source Bayes Factor

is described in Algorithm 3. The convergence of the Gibbs sampler will be discussed in the next section.
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Algorithm 3: Specific source approximation of Bayes Factor

Data: eu ,es ,ea

Result: Approximation of specific source Bayes Factor
1 Initialization

2 ngibbs = 20,000, nburn = 5,000, µ (1)
a = 1, σ2 (1)

a = 1, σ2 (1)
w = 1, µ (1)

s = 1, σ2 (1)
s = 1,

3 a (1)
i = 1 for i = 1,2, . . . ,na +1

4 Approximate hyperparameters µ̂π, σ̂2
b and σ̂2

e

5 for iteration t = 1,2, . . . ,ngibbs do
6 Generate a (t+1)

i ∼π(ai |µ (t )
a ,σ2 (t )

a ,σ2 (t )
w ,y, Hd ) for i = 1,2, . . . ,na +1

7 Generate µ (t+1)
a ∼π(µa |a (t+1)

1 , a (t+1)
2 , . . . , a (t+1)

na+1 ,σ2 (t )
a ,σ2 (t )

w ,y, Hd )

8 Generate σ2 (t+1)
a ∼π(σ2

a |a (t+1)
1 , a (t+1)

2 , . . . , a (t+1)
na+1 ,µ (t+1)

a ,σ2 (t )
w ,y, Hd )

9 Generate σ2 (t+1)
w ∼π(σ2

a |a (t+1)
1 , a (t+1)

2 , . . . , a (t+1)
na+1 ,µ (t+1)

a ,σ2 (t+1)
a ,y, Hd )

10 Generate µ (t+1)
s ∼π(µs |σ2 (t )

s ,ys , Hd )

11 Generate σ2 (t+1)
s ∼π(σ2

s |µ(t+1)
s ,ys , Hd )

12 if t > nburn then

13 Calculate log
{

LRSS (θ(t )
a ,θ(t )

s ;yu)
}

and LRSS (θ(t )
a ,θ(t )

s ;yu) with formula (5.3)

14 end
15 end

16 B̂F SS = 1
ngibbs−nburn

∑ngibbs

t=nburn+1 exp
[

log
{

LRSS (θ(t )
a ,θ(t )

s ;yu)
}]

17 B̂F SS = 1
ngibbs−nburn

∑ngibbs

t=nburn+1 LRSS (θ(t )
a ,θ(t )

s ;yu)

5.2.1. Convergence properties
The Gibbs sampler for the specific source problem generates two independent Markov chains: one corre-
sponding toπ(θa |ea ,eu , Hd ) and the other corresponding toπ(θs |es , Hd ). The convergence of the first Markov
chain was already discussed in Section 5.1.1. Therefore, only the convergence of the second chain will be dis-
cussed in this section. The following theory is needed to prove geometric ergodicity:

Definition 6. A positive function w is unbounded off compact sets if for every γ> 0 the level set {x : w(x) ≤ γ}
is compact. [18]

Definition 7. A Markov chain {X t : t = 0,1, . . .} is Feller continuous if

E[ f (X t+1)|X t = xn] → E[ f (X t+1)|X t = x] if xn → x in X

for all bounded continuous f : X →R. [6]

Proposition 8. Suppose the Markov chain {X t : t = 0,1, . . .} is Feller continuous. If for some positive function
w : X → [1,∞] that is unbounded off compact sets

E [w(X t+1)|X t = x] ≤ ρw(x)+L for all x ∈X (5.7)

for some ρ < 1 and L <∞, then the Markov chain is geometrically ergodic. [18]

Theorem 9. The Gibbs sampler corresponding to the model

Ys j |µs ,σ2
s

iid∼ N
(
µs ,σ2

s

)
, j = 1, . . . ,ns

µs ∼ N
(
µπ,σ2

b

)
σ−2

s ∼ Γ
(
νe

2
,
νeσ

2
e

2

)
is geometrically ergodic whenever νe +ns > 2.

Proof. The proof is based on [18]. To show Feller continuity of the chain, let f : X → R be bounded and
continuous, and consider
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E
[

f (µ(t+1)
s ,σ2 (t+1)

s )
∣∣ (µ(t )

s ,σ2 (t )
s )= (µn ,σ2

n), ys
]=∫ ∫

f
(
µ(t+1)

s ,σ2 (t+1)
s

)
π

(
µ(t+1)

s

∣∣ σ2 (t )
s =σ2

n , ys
)
π

(
σ2 (t+1)

s

∣∣ µ(t+1)
s , ys

)
dµ(t+1)

s dσ2 (t+1)
s ,

where the last two functions correspond to the distributions given in (5.5) and (5.6), respectively. Using the
Dominated Convergence Theorem, the Feller continuity is found from this expression.

Next, define the functions

w1(µs ,σ2
s ) =σ2

s

w2(µs ,σ2
s ) = (µs − ȳs )2, where ȳs = 1

ns

ns∑
j=1

ys j

w3(µs ,σ2
s ) = ec/σ2

s , 0 < c < νeσ
2
e

2
.

Consider the function w(µs ,σ2
s ) = ∑3

i=1 Bi wi (µs ,σ2
s ), where the Bi are positive constants to be determined.

Clearly, w is positive and continuous by construction. To show that w is unbounded off compacts sets, Defi-
nition 6 states that

Kγ =
{(
µs ,σ2

s

)
: w

(
µs ,σ2

s

)≤ γ}
needs to be compact for every γ > 0. Since w is continuous, the level set Kγ is closed and it suffices to show
that Kγ is bounded. This can be done by showing that for (µs ,σ2

s ) ∈ Kγ, |µs | is bounded and σ2
s is bounded

away from both 0 and ∞. Therefore, note that for (µs ,σ2
s ) ∈ Kγ

wi (µs ,σ2
s ) ≤ 1

Bi
w(µs ,σ2

s ) ≤ γ

Bi
for i = 1,2,3.

Using this property, it follows that

c

log(γ/B3)
≤σ2

s ≤
γ

B1
and ȳs −

√
γ

B2
≤µs ≤ ȳs +

√
γ

B2
,

which gives the desired bounds for γ large enough, i.e., γ> B3. Since closed subsets of a compact set are again
compact, this shows that Kγ is compact for every γ> 0 and therefore w is unbounded off compact sets.

In order to use Proposition 8, it remains to show that (5.7) holds. Therefore the conditional expectation

E
[
w

(
µ (t+1)

s ,σ2 (t+1)
s

) ∣∣ µ (t )
s ,σ2 (t )

s ,ys
]= E[

E
[
w

(
µ (t+1)

s ,σ2 (t+1)
s

) ∣∣ µ(t+1)
s ,ys

] ∣∣ µ (t )
s ,σ2 (t )

s ,ys
]

= B1 ·E
[
E[w1

(
µ (t+1)

s ,σ2 (t+1)
s

) | µ(t+1)
s ,ys]

∣∣ µ(t )
s ,σ2 (t )

s ,ys
]

+B2 ·E
[
w2

(
µ (t+1)

s ,σ2 (t+1)
s

) ∣∣ µ(t )
s ,σ2 (t )

s ,ys
]

+B3 ·E
[
E[w3

(
µ (t+1)

s ,σ2 (t+1)
s

) | µ(t+1)
s ,ys]

∣∣ µ(t )
s ,σ2 (t )

s ,ys
]

will be considered. The third term is easy to bound using the moment generating function of the Gamma
distribution and equation (5.6):

E
[
w3

(
µ (t+1)

s ,σ2 (t+1)
s

) ∣∣ µ (t+1)
s ,ys

]= E[
ec/σ2 (t+1)

s

∣∣∣ µ (t+1)
s ,ys

]
=

 1
2νeσ

2
e + 1

2

∑ns
j=1

(
ys j −µ (t+1)

s

)2

1
2νeσ

2
e + 1

2

∑ns
j=1

(
ys j −µ (t+1)

s

)2 − c


νe+ns

2

≤
(

νeσ
2
e

νeσ
2
e −2c

) νe+ns
2

= const.

It follows from (5.7) that constants are irrelevant, so it is not necessary to keep track of them since it is always
possible to choose an L <∞ larger than the sum of all the constants. Note that w3 is only included in w to
ensure that it is unbounded off compact sets.
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Next, using (5.6) and the identity
∑ns

j=1(ys j −µs )2 =∑ns
j=1(ys j − ȳs )2 +ns (µs − ȳs )2 it is found that

E
[
w1

(
µ (t+1)

s ,σ2 (t+1)
s

) ∣∣ µ(t+1)
s ,ys

]= E[
σ2 (t+1)

s

∣∣ µ(t+1)
s ,ys

]= νeσ
2
e +
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j=1

(
ys j −µ(t+1)

s

)2

νe +ns −2

= νeσ
2
e

νe +ns −2
+

∑ns
j=1

(
ys j − ȳs

)2

νe +ns −2
+

ns

(
µ(t+1)

s − ȳs

)2

νe +ns −2

= const.+ ns

νe +ns −2
w2

(
µ (t+1)

s ,σ2 (t+1)
s

)
.

In order to calculate E
[
E
[

w1

(
µ (t+1)

s ,σ2 (t+1)
s

) ∣∣∣ µ(t+1)
s ,ys

] ∣∣∣ µ(t )
s ,σ2 (t )

s ,ys

]
, the following conditional expecta-

tion is required:

E
[
w2

(
µ (t+1)
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]
= Var

(
µ(t+1)

s − ȳs
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= σ2
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(
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b +nsσ
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s
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s +nsσ

2
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s σ2 (t )

s + (µπ− ȳs )2 = n−1
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(
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s ,σ2 (t )
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)+ const.

Therefore,
E
[
w1

(
µ (t+1)

s ,σ2 (t+1)
s

) ∣∣ µ(t )
s ,σ2 (t )

s ,ys
]≤ const.+δ1w1

(
µ (t )

s ,σ2 (t )
s

)
and

E
[
w2

(
µ (t+1)

s ,σ2 (t+1)
s

) ∣∣ µ(t )
s ,σ2 (t )

s ,ys
]≤ const.+δ2w1

(
µ (t )

s ,σ2 (t )
s

)
where

δ1 = 1

νe +ns −2
<∞ and δ2 = 1

ns
<∞.

Now, there exist an ε> 0 and a 0 < ρ < 1 such that ε(δ1 +δ2) < ρ. Therefore,

E
[
ε
(
w1

(
µ (t+1)

s ,σ2 (t+1)
s

)+w2
(
µ (t+1)

s ,σ2 (t+1)
s

))+w3
(
µ (t+1)

s ,σ2 (t+1)
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≤ ε(δ1 +δ2)w1
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(
µ (t )

s ,σ2 (t )
s

)+const.,

which implies geometric ergodicity by Proposition 8.

From Theorem 5 it follows that the Gibbs sampler corresponding to π(θa |ea ,eu , Hd ) is geometrically ergodic
whenever

n′ > (
p

5−2)n′′ and
νb

2
≥ 3(na +1)−2

2(na +1)−2
,

where n′ = min(n1,n2, . . . ,nna ,nu) and n′′ = max(n1,n2, . . . ,nna ,nu). Moreover, Theorem 9 shows that the
Gibbs sampler corresponding to π(θs |es , Hd ) is geometrically ergodic as long as νe +ns > 2. If all these con-
ditions are satisfied, fast convergence of the algorithm to approximate the specific source Bayes Factor is
ensured. In the next chapter, the approximation of both the common source and specific source Bayes Factor
will be put into practice. The conditions from Theorem 5 and 9 will be considered to ensure reliable approxi-
mations.



6
Application of the two-level

normal-normal model

To assess the performance of the algorithms discussed in the previous chapter, the two-level normal-normal
model was applied to both simulated and real datasets. First, the simulation procedure will be explained
and simulated data in only one dimension will be considered to investigate the effect of the hyperparame-
ters. Then the two-level normal-normal model is applied to three-dimensional simulated data. Finally, real
datasets containing measurements on glass, MDMA tablets and knives will be used, and the results are com-
pared with methods currently used at the Netherlands Forensic Institute (NFI).

6.1. Data simulation
Data needs to be simulated according to both the common source and specific source sampling models. For
simplicity, first only one feature will be considered. The simulation procedure for the data corresponding to
the common source problem is given in the following algorithm:

Algorithm 4: Common source data simulation (basic setup)

1 Specify hyperparameters for k = 1 features

σ2
b ∈ { 1

8 , 1
4 , 1

2 ,1,2,3,4
}

; µπ = 5; σ2
e = 1; νb = 4; νe = νb ; λ= 10.

2 Generate parameters µa ,σ2
a ,σ2

w according to the prior distributions (4.5), (4.6) and (4.7).

3 Generate background material Yi j with na = 100 sources and ni = 5 measurements per source
according to (4.4) and (4.3).

4 Generate a set of separate background material Y hyp
i j for hyperparameter fitting with nhyp

a = 100

sources and nhyp
i = 5 measurements per source according to (4.4) and (4.3).

5 Generate first unknown source material with nu1 = 5 measurements where P ∼ N (µa ,σ2
a) and

Yu1 j |P = p iid∼ N (p,σ2
w ), j = 1, . . . ,nu1 .

6 if Hp is assumed to be true then
7 Generate second unknown source material with nu2 = 5 measurements where

Yu2 j |P = p iid∼ N (p,σ2
w ), j = 1, . . . ,nu2 .

8 else
9 Generate second unknown source material with nu2 = 5 measurements where D ∼ N (µa ,σ2

a) and

Yu2 j |D = d iid∼ N (d ,σ2
w ), j = 1, . . . ,nu2 .

10 end

31
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This simulation procedure will be referred to as the common source ‘basic setup’. In the next section, the
basic setup will be altered to investigate the effect of the hyperparameters. Note that in the basic setup the
background material is split. The effect of splitting the background material will also be further evaluated.
Since the simulated data is balanced, the first condition from Theorem 5 is automatically satisfied. To sat-
isfy the second condition, νb is set to a value larger than 3. Therefore, if the approximation procedure from
Algorithm 2 is applied to this data, the corresponding Gibbs sampler is geometrically ergodic and reliable
approximation results should be obtained.

To study the Bayes Factor corresponding to the specific source problem, data needs to be simulated accord-
ing to the specific source sampling models. Again, only one feature will be considered for simplicity. The
simulation procedure from Algorithm 4 is altered to the specific source setup and given in Algorithm 5.

Algorithm 5: Specific source data simulation (basic setup)

1 Specify hyperparameters and generate parameters and background material according to steps 1-4 in
Algorithm 4.

2 Generate parameters µs , σ2
s according to the prior distributions (4.11) and (4.12).

3 Generate specific source material with ns = 5 measurements where Ys j
iid∼ N (µs ,σ2

s ), j = 1, . . . ,ns .

4 if Hp is assumed to be true then

5 Generate unknown source material with nu = 5 measurements where Yu j
iid∼ N (µs ,σ2

s ), j = 1, . . . ,nu .
6 else
7 Generate unknown source material with nu = 5 measurements where D ∼ N (µa ,σ2

a) and

Yu j |D = d iid∼ N (d ,σ2
w ), j = 1, . . . ,nu .

8 end

Since for the specific source problem ns = 5 and νe = 4, the condition of Theorem 9 is satisfied, which means
that the Gibbs sampler corresponding to π(θs |es , Hd ) is geometrically ergodic. Again, since the simulated
data is balanced and νb > 3, the conditions from Theorem 5 are also satisfied. Therefore, the Gibbs sampler
corresponding to π(θa |ea ,eu , Hd ) is also geometrically ergodic and fast convergence of the approximation
procedure is ensured.

6.2. One-dimensional problem
For the one-dimensional problem, data are simulated according to the sampling models corresponding to Hp

or Hd as described in Algorithms 4 and 5. Seeds are used to ensure reproducible results and to be able to study
the effect of changing the basic setup. For each setting of the parameter values, only one run of Algorithms 4
and 5 will be considered. The Bayes Factor is then approximated using Algorithm 2 or 3, depending on which
problem is considered. Pretending that the values of the hyperparameters are unknown, estimates for σ2

b , σ2
e

and µπ are obtained from the separate background material for the hyperparameter fitting as described in [2]
and given by:

µ̂π = ȳ , σ̂2
e =

1

nhyp
a

n
hyp
a∑

i=1
s2

i w , σ̂2
b = s2

b −
1

nhyp
i

σ̂2
e , (6.1)

where

ȳi = 1

nhyp
i

n
hyp
i∑

j=1
yhyp

i j , ȳ = 1

nhyp
a

n
hyp
a∑

i=1
ȳi , s2

i w = 1

nhyp
i −1

n
hyp
i∑

j=1

(
yhyp

i j − ȳi

)2
, s2

b = 1

nhyp
a −1

n
hyp
a∑

i=1
(ȳi − ȳ)2.

Different values ofσ2
b are evaluated and since the between-source variation increases whenσ2

b increases, it is
expected that a more extreme Bayes Factor is obtained for larger values of σ2

b . Other interesting properties of
the model are also investigated, such as the influence of using separate background material for the hyper-
parameter estimation. Two sets of background material are used in the basic setup, whereas in the situation
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denoted by ‘Yhyp = Y ’ only one set of background material is simulated and both hyperparameter estima-
tion and the Gibbs sampler use the same set of background material. The impact of the parameters λ and
νb = νe is considered by changing their values to 1 and 6, respectively. Lastly, in the situations ‘Yu2 = Yu1 ’
and ‘Yu = Ys ’ the unknown source material Yu2 and Yu is not simulated but is set exactly equal to Yu1 and Ys ,
respectively. It is expected that this artificial choice will result in the largest Bayes Factors. The results for the
common source and specific source approximate Bayes Factors are given in Figures 6.1-6.4, where the data
are simulated assuming that either the prosecution hypothesis or the defence hypothesis is true.

Considering Figures 6.1 and 6.2 it may seem as if some lines are missing in the graphs, because the results
for the basic setup, ‘Yhyp = Y ’ and ‘λ = 1’ almost coincide. This means that both the separate background
material and the parameter λ have little impact on the Bayes Factor. Since both sets of background material
are simulated similarly, approximately the same hyperparameter estimations should be obtained. Moreover,
the estimates are only used in the second level of the hierarchical model, which explains the small impact on
the Bayes Factor. The parameter λ is used in the simulation of all evidence sets and the effect is therefore
limited.

Increasing the parameter νb = νe results in a significantly smaller Bayes Factor when the evidence is gener-
ated according to the prosecution model. This can be explained by the fact that the scaled inverse chi-square
distributions become more centered around σ2

b and σ2
e , meaning that the values of both the within- and

the between-source variation are less spread out. Consequently, it is harder to indicate same sources which
is beneficial for the defence and reduces the Bayes Factor. The approximate Bayes Factor for ‘Yu1 = Yu2 ’ is
slightly smaller than for the basic setup. Looking at formula (5.1), this is probably caused by the fact that the
absolute value of the sum of Yu2 , when it is sampled, is slightly larger than the sum of Yu1 .

Figure 6.1: Approximate values of the Bayes Factor for the common source problem with unknown source evidence generated according
to the prosecution model. The dashed line indicates the value 1.

A horizontal line is added to Figure 6.1 to indicate where the Bayes Factor is equal to 1. When σ2
b is greater

than or equal toσ2
e = 1, the model is able to correctly determine that the evidence was generated according to

the prosecution model. However, when σ2
b is significantly smaller than σ2

e , false negatives are obtained. This
should not be surprising, since in this situation the within-source variation is much larger than the between-
source variation, making it nearly impossible to distinguish different sources.

In Figure 6.2 the effect of a small within-source variation can also be seen. When the data are generated
according to the defence model, it is expected that the Bayes Factor decreases as σ2

b increases. However, for

σ2
b ≤ 1

2 increasing values are obtained. A larger value of νb = νe is again beneficial for the defence, increasing

the Bayes Factor when σ2
b > 1

2 and reducing the Bayes Factor when the model incorrectly behaves like the
data are generated according to the prosecution model. For all values of σ2

b a good result is obtained in the
sense that the approximate Bayes Factor is smaller than 1.
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Figure 6.2: Approximate values of the Bayes Factor for the common source problem with unknown source evidence generated according
to the defence model.

Figure 6.3 gives the results of the approximate specific source Bayes Factor when the unknown source ev-
idence is generated according to the prosecution model. It is immediately visible that changing the basic
setup has a significant effect on the results. Using the same background material for the hyperparameter es-
timation and the Gibbs sampler leads to a smaller Bayes Factor, but this is presumably only because a smaller
estimate of σ2

b is obtained when using Y instead of Yhyp, while the estimates for σ2
e and µπ are similar. Since

σ̂2
b is now used in the first level of the hierarchical model for the unknown source evidence, it has a lot more

influence. A smaller estimated value of σ2
b results in less diffuse sources, making the model less confident.

Figure 6.3: Approximate values of the Bayes Factor for the specific source problem with unknown source evidence generated according
to the prosecution model. The dashed line indicates the value 1.

The impact of using Y instead of Yhyp is negligible when the evidence is simulated according to the defence
model, because then the estimate σ̂2

b is only used in the second level of the hierarchical model for the un-
known source evidence (see Figure 6.4). Setting the parameterλ equal to 1 leads to less extreme Bayes Factors
when σ2

b ≥ σ2
e in both Figure 6.3 and 6.4. When λ = 1, the means of the background material and the mean

of the specific source material are simulated similarly and lie more closely together, which makes the model
less confident about the difference between the unknown source evidence and the background material. In-
creasing the parameter νb = νe gives a less extreme approximate Bayes factor, which can be explained by the
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same reasoning as was done for the common source problem.

Figure 6.4: Approximate values of the Bayes Factor for the specific source problem with unknown source evidence generated according
to the defence model.

A critical note should be added to the use of seeds in the simulation of the evidence. Here, only one setting of
the seeds is considered. For different seeds, the approximation of the Bayes Factor might give incorrect results
in the sense that a value smaller than 1 is found when the data are generated according to the prosecution
model, or a value larger than 1 when the data are generated according to the defence model. This does not
necessarily mean that the model does not work: for some seeds the simulated data just gives more support
to agree with the other hypothesis, for example when the parameters are sampled from the tails of the prior
distributions.

6.3. Higher dimensional problems
In practice, multiple features of the evidence have to be taken into account, leading to higher dimensional
problems. The simulation procedure explained in Algorithms 4 and 5 can easily be adapted using the mul-
tivariate distributions given in Chapter 4. The estimates for the hyperparameters given in equation (6.1)
remain valid and can be adjusted to the higher dimensional setup by replacing the squares with outer vector
products, i.e., u⊗ v = uvT . For both the common and specific source problem, the likelihood ratio and the
full conditionals for the Gibbs sampler can be found in Appendix A so that Algorithms 2 and 3 can be used to
approximate the Bayes Factor.

The higher dimensional model was tested for 3 features, where the initial hyperparameters are specified as
follows:

Σb =
 6 3 5

3 4 2
5 2 9

 , Σe =
 3 0 3

0 1 −2
3 −2 8

 , µπ =
 3

5
4

 , νb = νe = 27, λ= 10. (6.2)

Note that not every randomly chosen matrix suffices for Σb and Σe ; the proposed model requires that the
matrices are symmetric and positive definite.

Increasing the number of features leads to a far more computationally intensive approximation procedure.
For the three-dimensional problem with ngibbs = 20,000 and nburn = 5,000 the computation already takes
about 10 minutes. This is mainly caused by the fact that in each iteration of the Gibbs sampler several matrix
inverses have to be calculated. Because of this computational intensity, the simulation study is only repeated
for three different evidence sets, keeping the initial hyperparameters unchanged. The results can be found in
Table 6.1.
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Scenario B̂F C S B̂F SS

1. Hp true 1.349179 5.65137 ·1017

Hd true 2.336728 ·10−5 2.372235 ·10−21

2. Hp true 32.65359 2.905801 ·1025

Hd true 1.683076 ·10−11 3.234398 ·10−33

3. Hp true 28.04373 6.38302 ·10−12

Hd true 1.743259 ·10−39 5.133723 ·10−223

Table 6.1: Approximate Bayes Factors for three different evidence sets for the three-dimensional common and specific source problem.

For the common source problem, the results of the approximate Bayes Factor look good: a Bayes Factor larger
than 1 is found when the evidence is simulated assuming that Hp is true and a Bayes Factor smaller than 1
when the evidence is simulated assuming that Hd is true. Note that more extreme values are found when
the evidence is simulated according to the defence model; for example, in the third simulation a value of the
order 10−39 is found when the evidence is simulated assuming that Hd is true, but only a value of 28 for the
competing hypothesis. It is unclear why these results are so unbalanced. More thorough research on the (hy-
per)parameters might give more insights.

The values found for the approximate Bayes Factor of the specific source problem are more balanced. How-
ever, the model fails to support the true hypothesis in the third simulation when the evidence is generated
according to the prosecution model. On the other hand, an extremely small approximate Bayes Factor is
found when the evidence is generated according to the defence model. This suggests that for this scenario
the method tends to agree with the defence no matter how the evidence is generated, which can be caused by
extreme values of the simulated parameters. Moreover, there might not be enough specific source evidence
available to accurately model the specific source distribution. Note that the common source problem leads
to more conservative values for the Bayes Factor than the specific source problem.

Little is known about the convergence of the Gibbs sampler for the higher dimensional problem. Since the hy-
perparameters are chosen randomly and geometric ergodicity is not proven, it is hard to explain peculiarities
in the results. Other ad-hoc methods might be used to ensure convergence of the Gibbs sampling algorithm.
For example, in [32] a thinning interval is used to obtain approximately independent Gibbs samples. When
a thinning interval of size i is chosen, only every i th value is used from the Gibbs sampler. The approximate
independence suggests that the Central Limit Theorem applies to the resulting samples.

6.4. Application to real datasets
Lastly, the two-level normal-normal model is applied to real data. To this end, one open source dataset from
the Federal Bureau of Investigation (FBI) is used as well as two anonimised datasets provided by the Nether-
lands Forensic Institute (NFI). It is interesting to compare the results of the described model with the methods
currently used at the NFI. In many casework, customised models are developed to ensure the best fit for the
evidence. A more unified framework is provided by SAILR, Software for the Analysis and Implementation of
Likelihood Ratios. This is a graphical user-friendly interface (GUI) that helps forensic experts calculate nu-
merical likelihood ratios for a selection of statistical models.

The two-level normal-normal model implemented in SAILR for feature-based comparison is similar to the
common source model described in Chapter 4, where a normal distribution for both the within- and between-
source variation is assumed. However, SAILR computes the likelihood ratio in a frequentist way, using the
following estimates for µa ,Σa ,Σw [23]:

µ̂a = ȳ = 1∑na
i=1 ni

na∑
i=1

ni∑
j=1

yi j , Σ̂w = 1∑na
i=1 ni −na

na∑
i=1

ni∑
j=1

(yi j − ȳi )(yi j − ȳi )T , Σ̂a = MS2
between − Σ̂w

κ
, (6.3)

where

ȳi = 1

ni

ni∑
j=1

yi j , MS2
between = 1

na −1

na∑
i=1

ni (ȳi − ȳ)(ȳi − ȳ)T , κ= 1

na −1

(
na∑

i=1
ni −

∑na
i=1 n2

i∑na
i=1 ni

)
.
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In the next sections, a short description of each dataset will be provided and the results of the approximate
common source Bayes Factor will be compared to the likelihood ratio from SAILR. For the approximate Bayes
Factor 100,000 iterations of the Gibbs sampler are computed with a burn-in of 5,000. The parameters νb and
νe are both set to 27 and the chosen value for λ is 10. No separate background material is used in the Gibbs
sampler to keep both models as closely related as possible.

6.4.1. Glass
The first dataset consists of measurements made on a group of glass fragments from 16 different window
panes. This data was collected by Dr. JoAnn Buscaglia of the FBI Laboratory Division and is publicly available
online through the Journal of the Royal Statistical Society [2]. The composition of the chemical elements cal-
cium (C a), potassium (K ), silicion (Si ) and iron (Fe) are measured for each of the fragments. The values used
for the analysis are the natural logarithms of the ratios C a/K , C a/Si and C a/Fe as suggested in [2] and [32].

From the dataset it is known which fragments belong to which window pane. Therefore, it is possible to con-
struct two scenarios corresponding to situations where either Hp or Hd is true. Following [32], the evidence
sets are composed as follows:

ea : Five measurements from each of 14 windows, excluding windows number 10 and 48;

eu1 : Two measurements from window number 10;

eu2 : Three different measurements from window number 10 (Hp true);
Five measurements from window number 48 (Hd true).

Figure 6.5: Pairwise plot of the three features of the background material from the glass dataset.

This means for SAILR that the recovered data is eu2 , the control data is eu1 and the background data is ea . The
results can be found in Table 6.2. Although the assumption of two-level normality is not verified, both meth-
ods result in a value of evidence supporting the true hypothesis for each scenario. In practice, evaluating the
assumption of two-level multivariate normality is difficult, since both the number of sources and the number
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of measurements per source are limited. Note that the value of evidence calculated with the approximate
Bayes Factor results in more conservative values than the likelihood ratio obtained from SAILR.

Scenario B̂F C S LRSAILR

Hp true 38.189 88.433
Hd true 3.886 ·10−18 4.182 ·10−21

Table 6.2: Values of evidence for the two-level normal-normal model applied to the glass dataset.

6.4.2. MDMA tablets
A commonly used dataset within the NFI comes from the CHAMP (Collaborative Harmonization of Methods
for Profiling of Amphetamine Type Stimulants) project. The data contains measurements on four charac-
teristics of MDMA tablets: diameter, thickness, weight and purity. Since the last feature is not measured for
each tablet, it is not used in this analysis. The dataset is expanded with street samples consisting of 160 con-
signments with 2 or more tablet measurements where it is not known whether there are links between the
consignments.

Several tablets per batch are measured and since for each tablet is indicated from which batch or consign-
ment it originates, again scenarios can be constructed corresponding to situations where either Hp or Hd is
true. The evidence sets are composed as follows:

ea : Four measurements of each of 77 different street sample consignments;

eu1 : 42 measurements of batch 9 of the CHAMP data;

eu2 : Five measurements of batch 9 of the CHAMP data (Hp true);
Three measurements of the CHAMP data, from batch 1, 7 and 12, and two from two different street
sample consignments (Hd true).

Figure 6.6: Pairwise plot of the three features of the background material from the MDMA dataset.
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For the background material, the consignments with less than four tablet measurements are removed and
for the consignments with more measurements, only the first four are used. This is only done because the
hyperparameter estimation for the approximate Bayes Factor simplifies significantly when an equal amount
of measurements per source is obtained. Still a reasonably large background dataset is left, but of course
the analysis could be repeated using all background data from the street samples. Here, it is chosen to test
the hypothesis that all tablets in eu1 and eu2 originate from the same source or different sources. Another
approach would be to test each tablet from eu2 separately, but because of the computational intensity of the
approximate Bayes Factor this has not been done yet.

The results can be found in Table 6.3. In the scenario when Hp is true, both methods find a similar value of
evidence. However, the values of evidence differ extremely in the scenario that Hd is true. Looking at Figure
6.6 this might be caused by the discrete behaviour of the diameter feature, which suggests that the restrictive
prior distributions are not appropriate for this dataset.

Scenario B̂F C S LRSAILR

Hp true 2591.901 2488.846
Hd true 3.487 ·10−8 2.493 ·10−88

Table 6.3: Values of evidence for the two-level normal-normal model applied to the MDMA dataset.

6.4.3. Knives
The last dataset consists of the chemical composition of several knives, measured by seven features indicated
with the letters A-G . The data is provided by the department of chemical and physical traces at the NFI (Peter
Zoon and colleagues). To reduce the computational intensity, only three of the seven features are used in the
analysis. It is chosen to work with the features A, C and E , because they do not show discrete behaviour as
some of the other features do, see Figure 6.7.

This time two traces are measured without knowing the actual source of the traces. Therefore, it is not possi-
ble to decide beforehand what the true hypothesis is. The evidence sets for the two scenarios are composed
as follows:

ea : 50 measurements of each of 15 different knives;

eu1 : 10 measurements of one knife;

eu2 : One measurement of one knife (scenario 1);
One measurement of one knife (scenario 2).

The results are given in Table 6.4. As in the glass dataset, the value of evidence calculated with the approx-
imate Bayes Factor results in more conservative values than the likelihood ratio obtained from SAILR. Both
methods suggest that in scenario 1 the measurements are from the same knife, although the support is mini-
mal, and that in scenario 2 the measurements are from different knives.

Scenario B̂F C S LRSAILR

1. 7.630 14.290
2. 3.428 ·10−4 6.679 ·10−6

Table 6.4: Values of evidence for the two-level normal-normal model applied to the knives dataset.
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Figure 6.7: Pairwise plot of the seven features of the background material from the knives dataset.



7
Estimating the overall mean

Instead of using a Bayesian approach and a Gibbs sampler to calculate the Bayes Factor for the two-level
normal-normal model, it is possible to use a frequentistic approach and calculate the likelihood ratio with
estimates of all unknown parameters. The latter was already discussed in Section 6.4. In forensic statistics,
two estimators are used to estimate the overall mean µa from the background material: the weighted and
unweighted mean. The effect of choosing either of these mean estimators has already been investigated by
ir. F.S. Kool for the univariate case. This research has been extended to the multivariate case and has resulted
in the submission of the paper “Overall mean estimation of trace evidence in a two-level normal-normal
model” by Kool, F.S.; Van Dorp, I.N.; Bolck, A.; Leegwater, A.J.; and Jongbloed, G. to be published in the
journal Forensic Science International. This chapter contains the submitted paper and therefore the notation
is slightly different than in the rest of this thesis.

Overall mean estimation of trace evidence in a
two-level normal-normal model

Kool, F.S.; Van Dorp, I.N.; Bolck, A.; Leegwater, A.J.; and Jongbloed, G.

Abstract
In the evaluation of measurements on characteristics of forensic trace evidence, Aitken and Lucy (2004)
model the data as a two-level model using assumptions of normality where likelihood ratios are used as a
measure for the strength of evidence. A two-level model assumes two sources of variation: the variation
within measurements in a group (first level) and the variation between different groups (second level). Esti-
mates of the variation within groups, the variation between groups and the overall mean are required in this
approach. This paper discusses three estimators for the overall mean. In forensic science, two of these esti-
mators are known as the weighted and unweighted mean. For an optimal choice between these estimators,
the within- and between-group covariance matrices are required. In this paper a generalization to the latter
two mean estimators is suggested, which is referred to as the generalized weighted mean. The weights of
this estimator can be chosen such that they minimize the variance of the generalized weighted mean. These
optimal weights lead to a “toy estimator”, because they depend on the unknown within- and between-group
covariance matrices. Using these optimal weights with estimates for the within- and between-group covari-
ance matrices leads to the third estimator, the optimal “plug-in” generalized weighted mean estimator. The
three estimators and the toy estimator are compared through a simulation study. Under conditions gener-
ally encountered in practice, we show that the unweighted mean can be preferred over the weighted mean.
Moreover, in these situations the unweighted mean and the optimal generalized weighted mean behave simi-
larly. An artificial choice of parameters is used to provide an example where the optimal generalized weighted
mean outperforms both the weighted and unweighted mean. Finally, the three mean estimators are applied
to real XTC data to illustrate the impact of the choice of overall mean estimator.

41
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7.1. Introduction
The likelihood ratio is a generally accepted measure for the strength of evidence in many forensic compari-
son problems. Modelling the data as a two-level random effects model using assumptions of normality is a
well-known approach in likelihood ratio calculation [2, 24]. The use of a two-level model leads to a likelihood
ratio which depends on the unknown parameters of the two-level model. Within the Likelihood Paradigm
[40] estimates of these parameters are required to estimate the likelihood ratio. Alternatively, it is possible
to assign priors to all parameters following a full-Bayesian approach [4, 9, 47]. In this paper, different meth-
ods are described to estimate one of the parameters: the overall mean vector of the two-level model. Two
currently used estimators in forensic statistics, the weighted and unweighted mean, are compared. There
is still discussion which of these mean estimators should be used when the data are unbalanced, i.e., when
the number of data points differs per group [2, 41]. Moreover, a general class of estimators for the overall
mean, referred to as generalized weighted mean, is suggested. This class contains the two aforementioned
estimators as special cases. The choice of the mean estimator is important for the commonly used analysis
of variance estimator to estimate the between-source covariance matrix, which is another parameter to be
estimated in the two-level model [41].
In Section 7.2 the likelihood ratio approach in the setting of a two-level model is described, yielding an ex-
plicit expression for the likelihood ratio in terms of the model parameters. Section 7.3 covers the explanation
of the estimators and their relative efficiencies in terms of (partly) unknown parameters. In Section 7.4 a
comparison of the estimation techniques is given through a simulation study and in Section 7.5 the estima-
tors are applied to real XTC data. In this paper the results are given for the multivariate case. The results for
the univariate case are obtained by replacing the (traces of the) covariance matrices with the corresponding
variances.

7.2. Likelihood ratio approach
In forensic comparison problems it is investigated whether a control item (e.g. XTC tablets from consignment
C1) and a recovered item (e.g. XTC tablets from consignment C2) originate from the same unknown source1.
Very generally stated, a prosecutor’s hypothesis (Hp ) and a hypothesis of the defence (Hd ) may be as follows:{

Hp : The control and recovered item originate from the same source.

Hd : The control and recovered item originate from different sources.

Comparison of the control and recovered item given the two hypotheses involves evidence E . This evidence
concerns certain characteristics or features of the two items. The likelihood ratio approach refers to a well-
known probabilistic framework based on Bayes’ rule to evaluate the strength of the evidence in such forensic
comparison problems. In this approach, the likelihood ratio is the ratio of the probability of evidence E given
the two hypotheses Hp and Hd :

LR = P (E | Hp )

P (E | Hd )
. (7.1)

This likelihood ratio expresses how much more likely it is to find the evidence under the prosecutor’s hypoth-
esis than under the hypothesis of the defence. Therefore, the likelihood ratio can be seen as a measure to
quantify the strength of evidence.

7.2.1. Model
Various types of models exist to compute the likelihood ratio in equation (7.1). In this paper, the focus will
be on a feature-based two-level random effects model using assumptions of normality which is applicable to
continuous data [3, 24].
Consider the situation that several continuous features of the control and recovered item are measured by
forensic experts, e.g. the diameter, thickness and weight of the XTC tablets in consignment C1 and C2. Let
k denote the number of features and let n1 be the number of measurements of these features on the control
item, e.g. the number of tablets that is measured in consignment C1. The composed continuous random

1In the context of [32], this problem is known as a common source problem. The model corresponds to the situation where the sources
are assumed to be random realizations from a probability distribution. For more details about the difference between common and
specific source problems, see [33].
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vector Y1 represents the n1 measurement vectors of the features on the control item,

Y1 = (Y11, . . . ,Y1n1 ) =




Y11,1

Y11,2
...

Y11,k

 , . . . ,


Y1n1,1

Y1n1,2
...

Y1n1,k


 .

This vector can be referred to as control data. The control data will be compared to the recovered data Y2,
i.e., the composed random vector which represents the n2 measurements of the features on the recovered
item. Thus, the composed random vectors Yl = (Yl j ,1 ≤ j ≤ nl ), l = 1,2, represent for example the diameters,
thicknesses and weights of the tablets from consignments C1 and C2. To compare the control and recovered
item, the means of the control and recovered data can be used as the evidence, i.e.,

E = (Y1,Y2)

where

Yl =
1

nl

nl∑
j=1

Yl j for l = 1,2

denotes the mean over the nl measurements.

The data are modelled using a (two-level) random effects model under the assumption of normality [3, 24].
The use of such a two-level model is appropriate, because the data are organized at more than one level: the
measurements (first level) are nested within the items (second level), such as the control and recovered item.
The variation between the nl measurements within the same item is known as the within-source variation.
The variation between the items is known as the between-source variation. It is assumed that both the within-
and between-source variation are multivariate normally distributed. This means that within a source, the
control and recovered data are independent and normally distributed around their group means θ1 and θ2,
i.e.

Yl | θl ∼Nk
(
θl ,n−1

l Σ
)

for l = 1,2

and the between-source variation is modelled by independent normally distributed random variables

θl ∼Nk (µ,T) for l = 1,2.

7.2.2. Likelihood ratio
In the literature, explicit likelihood ratio formulas under the normality assumptions in the two-level model are
derived [2, 24, 51]. In this paper we will use the following likelihood ratio of the observed evidence E = (y1,y2)
[8]:

LR(y1,y2|µ) = |U0| 1
2

|Un | 1
2

exp

[
1

2

(
(y2 −µ)T U−1

0 (y2 −µ)− (y2 −µn)T U−1
n (y2 −µn)

)]
(7.2)

where

U0 = T+n−1
2 Σ,

Un = Tn +n−1
2 Σ,

µn = T(T+n−1
1 Σ)−1y1 +n−1

1 Σ(T+n−1
1 Σ)−1µ,

Tn = T−T(T+n−1
1 Σ)−1T.

The explicit likelihood ratio formulas depend on the unknown overall mean µ, the between-source covari-
ance matrix T and the within-source covariance matrix Σ of the described two-level model. Hence, in the
Likelihood Paradigm, estimates of these parameters are required to estimate the likelihood ratio. In Section
7.3, estimators for the overall mean µ are described. Estimators for the covariance matrices T and Σ are for
example the multivariate analysis of variance estimators [41, 44]. Next to the computation of the likelihood
ratio, the choice of the mean estimator µ̂ is important for the analysis of variance estimator of the between-
source covariance matrix T, because this quantity depends on the mean µ [41]. As an alternative to these
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approaches, maximum likelihood estimators can be used [44]. However, in the two-level normal-normal
setup no explicit formulas exist for these estimators. Therefore, iterative methods are required [41]. Another
option is to use a full-Bayesian approach with priors assigned to all parameters [4, 9, 47]. In this paper, we
will focus on the non-Bayesian approach with Σ and T fixed, and we will compare several estimators for µ.

7.2.3. Background data
To estimate the parameters of the two-level model, background data that represent the population are re-
quired. The background data consist of measurements of the continuous features on a random sample of m
items or groups, which represent the population. In each of the m groups, ni (i = 1, . . . ,m) measurements are
taken. The background data are denoted as {Zi j | 1 ≤ i ≤ m,1 ≤ j ≤ ni }, where Zi j represents the vector of
measured features within group i of measurement j . The background data are modelled by the extension of
the two-level model described in Section 7.2.2 [2],

Zi j | θi
iid∼ Nk (θi ,Σ), 1 ≤ j ≤ ni ,

θi
iid∼ Nk (µ,T), 1 ≤ i ≤ m.

Under these assumptions, the background data are in fact modelled by a random effects model [44], i.e.,

Zi j =µ+αi +εi j for 1 ≤ i ≤ m, 1 ≤ j ≤ ni ,

with µ the overall mean,

αi
iid∼ Nk (0k ,T), 1 ≤ i ≤ m,

the random group effect and, independent of theαi ’s,

εi j
iid∼ Nk (0k ,Σ), 1 ≤ j ≤ ni ,

the random noise vectors or within-source variation.

7.3. Estimating the overall mean
First, the weighted mean and the unweighted mean are discussed as estimators for the overall mean µ. In
Section 7.3.2 it is shown that what is the best estimator (the estimator with smallest variance) depends on
the ratio of the traces of the within- and between-source covariance matrices. To derive this, a multivariate
generalization of variance is given in Section 7.3.1. In Section 7.3.3 a generalization of the weighted and un-
weighted mean estimators is suggested, which is referred to as the generalized weighted mean. The weights of
this estimator can be chosen such that they minimize the variance of the generalized weighted mean. These
optimal weights lead to what we will call a “toy estimator”. We use the term “toy estimator”, because the op-
timal weights depend on the unknown within- and between-source covariance matrices Σ and T. Hence, in
practice only an estimate of the optimal weights can be obtained and the resulting estimator will be referred
to as the optimal “plug-in” generalized weighted mean estimator.

7.3.1. Multivariate generalization of variance
A natural choice for the multivariate concept of variance for unbiased estimators is to consider the expected
value of the squared Euclidean distance between the estimator and the true parameter of interest, i.e.,

Var(µ̂) := E
[||µ̂−µ||2] .

Note that we will prefer the unbiased estimator with minimal expected distance to the true parameter. For
unbiased estimators it follows that

Var(µ̂) = E
[||µ̂−E[µ̂]||2]= E

[
(µ̂−E[µ̂])T (µ̂−E[µ̂])

]
= E

[
k∑

i=1
(µ̂i −E[µ̂i ])2

]
=

k∑
i=1

Var(µ̂i ) = tr (Σ),

where Σ denotes the covariance matrix of µ̂. Any further mention of variance will refer to this definition.
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7.3.2. Weighted versus unweighted mean
The group means of the background data are defined as the average of the observations Zi j in each group,

Zi = 1

ni

ni∑
j=1

Zi j , 1 ≤ i ≤ m, (7.3)

such that Zi ∼ Nk (µ,T +n−1
i Σ). These group means are used to approximate θi . Two estimators for the

overall mean µ are the weighted mean and the unweighted mean. The weighted mean is the average over all
observations Zi j in the background data [44],

µ̂w = 1

N

m∑
i=1

ni Zi = 1

N

m∑
i=1

ni∑
j=1

Zi j , (7.4)

where N is the total number of observations, i.e. N =∑m
i=1 ni . The weighted mean is unbiased, since

E[µ̂w ] = 1

N

m∑
i=1

ni∑
j=1

E
[
Zi j

]= 1

N

m∑
i=1

ni∑
j=1

E
[
µ+αi +εi j

]= 1

N

m∑
i=1

ni∑
j=1
µ=µ.

The variance of the weighted mean is equal to

Var(µ̂w ) = tr (T)

N 2

m∑
i=1

n2
i +

tr (Σ)

N
,

see Appendix 7.7.1. The unweighted mean is the mean of the group means [41],

µ̂u = 1

m

m∑
i=1

Zi . (7.5)

The unweighted mean is also unbiased, since

E[µ̂u] = 1

m

m∑
i=1

E
[
Zi

]= 1

m

m∑
i=1
µ=µ

and its variance is equal to

Var(µ̂u) = tr (T)

m
+ tr (Σ)

m2

m∑
i=1

1

ni
,

see Appendix 7.7.1.

First note that if the data are balanced, i.e., ni = n for all i = 1, . . . ,m, the weighted and unweighted mean
are exactly the same. For unbalanced data where the number of measurements differs per group, there is a
dispute whether to use the weighted mean or the unweighted mean [2, 41]. The weighted mean fits naturally
with a designed experiment or other reasons where the unequal number of measurements reflects the com-
position of the population or the importance of the groups. In that case it is important that groups with more
measurements have more weight in the estimation of the overall mean, which is an argument in favor of the
weighted mean. In cases where the number of measurements is more or less randomly chosen or determined
by factors independent of the population composition (e.g. sampling costs) the number of measurements is
not important. It is then beneficial that groups have equal importance, despite the number of observations,
which is an argument in favor of the unweighted mean. In fact, below it is shown that the best choice between
these estimators depends on the situation.

Since both estimators are unbiased, it will be examined which estimator has smallest variance. Hence, con-
sider the efficiency of µ̂w relative to µ̂u [36]:

eff(µ̂u ,µ̂w ) = Var(µ̂w )

Var(µ̂u)
=

tr (T)
N 2

∑m
i=1 n2

i + tr (Σ)
N

tr (T)
m + tr (Σ)

m2

∑m
i=1

1
ni

. (7.6)
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Multiplying the numerator and denominator in equation (7.6) with the term m2N 2 and setting r = tr (Σ)
tr (T) re-

sults in

eff(µ̂u ,µ̂w ) = m2 ∑m
i=1 n2

i +m2N r

mN 2 + r N 2 ∑m
i=1

1
ni

. (7.7)

Using Jensen’s inequality it can be shown that the efficiency can have larger and smaller values than one,
see Appendix 7.7.2. Therefore, one cannot be conclusive about which estimator has smallest variance. From
Appendix 7.7.2, it follows that

eff(µ̂u ,µ̂w ) > 1 iff r < m2 ∑m
i=1 n2

i −mN 2

N 2 ∑m
i=1

1
ni

−m2N
=: c. (7.8)

Note that both the numerator and the denominator of c are positive because of inequalities (7.17) and (7.18)
(see Appendix 7.7.2), hence the constant c is always positive. Therefore,{

Var(µ̂w ) > Var(µ̂u) if tr (Σ) < c · tr (T),

Var(µ̂w ) < Var(µ̂u) if tr (Σ) > c · tr (T).
(7.9)

From the inequalities in (7.9) it follows that the best choice of the estimator depends on two factors. The first
is the ratio between the trace of the within-source covariance matrix Σ and the trace of the between-source
covariance matrix T. For example, if the trace of the within-source covariance matrix Σ is small, i.e. Zi ≈ θi ,
the unweighted mean virtually equals the maximum likelihood estimator based on the (unobservable) θi ’s
and we would prefer the unweighted mean. This example corresponds to the first inequality in expression
(7.9). Since the parameters Σ and T are unknown, this factor relies on prior knowledge or on experience of
the forensic expert. The second factor that affects the choice between the weighted and unweighted mean
is the value of the constant c, which depends on the number of groups m and the number of measurements
within each group ni . The following lemma gives more insight in the possible values of the constant c.

Lemma 10. The constant

c = m2 ∑m
i=1 n2

i −mN 2

N 2 ∑m
i=1

1
ni

−m2N

is always greater than or equal to 1.

The proof of this lemma can be found in Appendix 7.7.3. This lemma illustrates that when tr (Σ) < tr (T) the
unweighted mean will always have a smaller variance than the weighted mean. In many forensic comparison
problems it is realistic to assume that within-source variation is smaller than between-source variation. For
instance, in XTC comparison problems this is due to the fact that the errors that cause the within-group
variation (e.g. measurement errors, production errors, inhomogeneity within a batch) are often smaller than
the between-group variation (mainly based on the preference of the producers). Consequently, in many XTC
comparison problems it can be assumed that the trace of the within-source covariance matrix Σ is smaller
than the trace of the between-source covariance matrix T, i.e., tr (Σ) < tr (T). Since c ≥ 1 always holds, the
unweighted mean should in these situations be preferred over the weighted mean.

7.3.3. Generalized weighted mean
This section suggests a more general estimator for the mean compared to the weighted and unweighted mean
described in Section 7.3.2. This general estimator will be referred to as the generalized weighted mean2.
Define the generalized weighted mean as [36]

µ̂=
m∑

i=1
Wi Zi where Wi is a k ×k matrix such that

m∑
i=1

Wi = Ik . (7.10)

Here, Ik denotes the k×k-dimensional identity matrix. The weighted and unweighted mean are special cases
of the generalized weighted mean given in equation (7.10). It can be seen that the weighted mean µ̂w is the
generalized weighted mean with weight matrices Wi = ni

N Ik for 1 ≤ i ≤ m. The unweighted mean µ̂u is the

2In the literature this estimator is called the weighted mean. However, in forensic literature the estimator in equation (7.4) is called the
weighted mean. Therefore, we will refer to this estimator as generalized weighted mean.
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generalized weighted mean with weight matrices Wi = 1
m Ik for 1 ≤ i ≤ m.

Since the weight matrices W1, . . . ,Wm in equation (7.10) add up to the identity matrix, it follows that the gen-
eralized weighted mean is unbiased, i.e.,

E(µ̂) =
m∑

i=1
Wi E

(
Zi

)= (
m∑

i=1
Wi

)
µ=µ.

The covariance matrix of µ̂ is equal to

Cov(µ̂,µ̂) =
m∑

i=1
Wi Cov

(
Zi ,Zi

)
WT

i =
m∑

i=1
Wi (T+n−1

i Σ)WT
i (7.11)

so that its variance is given by

Var(µ̂) =
m∑

i=1
tr

(
Wi (T+n−1

i Σ)WT
i

)
.

Since the variance depends on the choice of the weight matrices W1, . . . ,Wm , the question arises how to
choose these weights to minimize Var(µ̂) subject to the constraint

∑m
i=1 Wi = Ik .3

Lemma 11. The weights W1, . . . ,Wm that minimize Var(µ̂) subject to the constraint
∑m

i=1 Wi = Ik are given by

Wi =
(

m∑
j=1

(T+n−1
j Σ)−1

)−1

(T+n−1
i Σ)−1 (7.12)

where i = 1, . . . ,m.

The proof of this lemma is given in Appendix 7.7.4. This lemma shows that the weights in equation (7.12)
minimize the variance of the generalized weighted mean. Hence, these optimal weights lead to the following
“toy estimator”:

µ̂opt =
(

m∑
i=1

(T+n−1
i Σ)−1

)−1 (
m∑

i=1
(T+n−1

i Σ)−1Zi

)
. (7.13)

Since the weights in equation (7.12) yield minimum variance for µ̂we can thus conclude that, if the parame-
ters Σ and T are known, µ̂opt is the best of these three estimators.

However, in practice this result is not immediately useful because the optimal weights depend on the un-
known parameters Σ and T. If estimated values for these parameters are substituted in the optimal weights,
this will influence the variance of the toy estimator in equation (7.13) and the resulting estimator will be bi-
ased. For example, the multivariate analysis of variance estimators [41] for Σ and T could be used, which are
given by

Σ̂= 1

N −m

m∑
i=1

ni∑
j=1

(zi j −zi ·)(zi j −zi ·)T where zi · = 1

ni

ni∑
j=1

zi j ,

T̂ = MS2
between − Σ̂

κ
where κ= 1

m −1

(
N −

∑m
i=1 n2

i

N

)
, (7.14)

MS2
between = 1

m −1

m∑
i=1

ni (zi ·−z)(zi ·−z)T and z = 1

N

m∑
i=1

ni∑
j=1

zi j .

The performance of the plug-in estimator µ̂plug based on these estimates for Σ and T will be further eval-
uated in the following sections. Introducing the toy estimator gives more theoretical insight in the various
estimators for the overall mean µ. In the results of the simulation study in Section 7.4 this will be further
explored.

3If only diagonal matrices would be considered, a similar analysis shows that the matrix with weights wi = (wi 1, . . . , wi k )T on the diago-
nal that minimizes Var(µ̂) subject to the constraint

∑m
i=1 wi = 1k is found from

wi =
 m∑

j=1

1

diag(T+n−1
j Σ)

−1
1

diag(T+n−1
i Σ)

, 1 ≤ i ≤ m,

where all vector products and divisions are elementwise. Choosing the diagonal matrix with these weights results in a better mean
estimator in terms of variance than µ̂w and µ̂u , but it will not be as good as µ̂opt, which is the optimal mean estimator.
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7.4. Simulation study
In this section the mean estimators of Section 7.3 are compared in a simulation study. In Section 7.4.1 the
performance of the weighted and unweighted mean estimators is compared using Monte Carlo simulation.
In Section 7.4.2, this comparison is extended with the optimal generalized weighted mean estimator. Since
this is a toy estimator and cannot be computed in practice, the optimal generalized weighted mean with es-
timates for the within- and between-source covariance matrices will also be considered, which will be called
the optimal “plug-in” generalized weighted mean estimator. Finally, in Section 7.4.3 an artificial choice of
parameters is used to show some examples where the optimal generalized weighted mean outperforms both
the weighted and unweighted mean.

7.4.1. Weighted versus unweighted mean
In expression (7.9) we have seen that the best choice between the weighted and unweighted mean depends
on the ratio of the traces of the within- and between-source covariance matrices Σ and T. However, the
covariance matrices Σ and T are unknown. Hence, to use expression (7.9) in practice, one should have prior
knowledge about the ratio between tr (Σ) and tr (T). In many comparison problems the trace of the within-
source covariance matrix can be assumed to be smaller than the trace of the between-source covariance
matrix. Furthermore, in Lemma 10 it is shown that the value of the constant c will always be larger than one.
Therefore, it is expected that in most cases the unweighted mean has a smaller variance than the weighted
mean.

Given this result, it is interesting to compare the performance of the weighted and the unweighted mean in
estimating the true mean µ. To this end, we perform two Monte Carlo simulations. In these simulations,
the values for the number of groups m are set to m = 10 and m = 1200, respectively, and the number of
measurements in each group ni ,1 ≤ i ≤ m, is drawn randomly, where values 1 ≤ ni ≤ 20 are used. Given
these values of ni and m, a background data set is generated M times according to the model described in
Section 7.2.3. To simulate the background data set in both situations, the parameters µ, Σ and T are fixed
based on diameter (in millimeters), thickness (in millimeters) and weight (in milligrams) observations in real
XTC tablet comparisons. These values are given by:

µ=
 8.242

4.528
276.0

 , Σ=
 0.002013 0.0007271 0.01408

0.0007271 0.03046 0.6133
0.01408 0.6133 90.61

 , T =
 0.6026 0.06689 31.56

0.06689 0.6371 32.90
31.56 32.90 3562

 . (7.15)

The results of the two Monte Carlo simulations are given for each element of the three-dimensional estimated
mean vector and can be found in the box plots in Figure 7.1. From these figures it can be seen that the es-
timated values of the two mean estimators are close. As can be expected, if there are more observations in
the background data (1200 groups), the estimates are more accurate compared to the estimates using fewer
observations (10 groups).

The mean squared error (MSE) [36] is chosen as a measure of performance for the estimators. The MSE
measures the average of the squared values of the errors, i.e. the Euclidean distance between the estimate
and the true value µ:

E
[||µ̂−µ||2] .

Hence, a mean squared error of zero means that the estimator estimates the true mean µ perfectly. The
estimators can be compared by using their MSEs, where the smallest MSE is preferred. For the unbiased
weighted and unweighted mean, the MSE equals the variance of the estimators. Hence, minimizing the mean
squared error is equivalent to minimizing the variance and the estimators with the lowest MSE are thus the
most efficient.

To compute the MSE based on the Monte Carlo simulation, for each simulation i , with 1 ≤ i ≤ M , the squared
Euclidean distance between the estimate and the true value is computed. After M simulations the average
over these squared distances is taken as the (numerically approximated) mean squared error. The resulting
mean squared errors are given in Table 7.1.
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Figure 7.1: Box plots of estimated values from µ̂w , µ̂u , µ̂opt and µ̂plug for two Monte Carlo simulations (M = 1000) with parameters
given as in equation (7.15). The red dot indicates the true overall mean value.

m MSE µ̂w MSE µ̂u MSE µ̂opt MSE µ̂plug

10 406 352 352 352
1200 3.93 2.96 2.96 2.96

Table 7.1: Mean squared errors of the estimated mean using the weighted mean µ̂w , the unweighted mean µ̂u , the toy estimator µ̂opt
and the plug-in estimator µ̂plug for two Monte Carlo simulations (M = 1000) with parameters as given in equation (7.15).

From these MSE values it is clear that the performance of the estimators increases when the number of groups
m is higher. Since the MSEs of the unweighted mean are smaller than the MSEs of the weighted mean, the un-
weighted mean should be preferred over the weighted mean. For both simulations the constant c can be com-
puted and equals c = 4.48 for 10 groups and c = 3.43 for 1200 groups and with tr (Σ) = 90.6 and tr (T) = 3563
it can be seen that tr (Σ) < c · tr (T). Consequently, from expression (7.9) it follows that the variance of the
unweighted mean is smaller than the variance of the weighted mean.

Since the values for the overall mean µ and the covariance matrices Σ and T are fixed, it is possible to deter-
mine the true value of the likelihood ratio for this problem. Therefore, five measurements for both the control
and recovered data are generated, assuming that the prosecutor’s hypothesis is true, i.e., that the control and
recovered item originate from the same source. Using equation (7.2) with the parameters given in equation
(7.15), the true value of the likelihood ratio is found. Keeping the covariance matrices Σ and T fixed, the
likelihood ratios based on µ̂w and µ̂u can also be calculated. The approximated mean squared error for the
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likelihood ratio values is then computed by

1

M

M∑
i=1

[
LR(y1,y2|µ)−LR(y1,y2|µ̂(i ))

]2

for each Monte Carlo simulation i , with 1 ≤ i ≤ M . The resulting mean squared errors can be found in Table
7.2.
Clearly, the MSE values of the likelihood ratios reduce significantly when the number of groups m is higher.
Moreover, the performance of the unweighted mean is significantly better than the performance of the weigh-
ted mean. Combining this observation with the fact that the unweighted mean is more efficient than the
weighted mean, the unweighted mean should in this situation be preferred over the weighted mean.

m MSE LR(y1,y2|µ̂w ) MSE LR(y1,y2|µ̂u) MSE LR(y1,y2|µ̂opt) MSE LR(y1,y2|µ̂plug)

10 3.97 ·106 2.61 ·106 2.60 ·106 2.61 ·106

1200 6.34 ·103 4.99 ·103 4.96 ·103 4.96 ·103

Table 7.2: Mean squared errors of the estimated likelihood ratio using the weighted mean µ̂w , the unweighted mean µ̂u , the toy estimator
µ̂opt and the plug-in estimator µ̂plug for two Monte Carlo simulations (M = 1000) with parameters as given in equation (7.15). The true

likelihood ratio is equal to 1.11 ·103.

7.4.2. Generalized weighted mean
In the Monte Carlo simulations in Section 7.4.1 the values for the covariance matrices Σ and T are fixed, see
equation (7.15). Substituting these values into the toy estimator in equation (7.13), the toy estimator yields
the minimum variance estimator. It is therefore interesting to examine the difference between this estima-
tor and the weighted and unweighted mean that can be used in practice more easily. We will also consider
the plug-in estimator based on the multivariate analysis of variance estimates for Σ and T, given by (7.14).
Note that the plug-in estimator is a biased estimator, which motivates the use of the mean squared error to
compare the mean estimators and not only the variance. To compare the performance of the toy estimator
and the plug-in estimator with the performance of the weighted and unweighted mean, the simulations as
described in Section 7.4.1 based on the same values of m and corresponding ni ’s are used. The results of
these Monte Carlo simulations are given in Table 7.1 and 7.2 and Figure 7.1.

An interesting observation from Table 7.1 and 7.2 is that the optimal generalized weighted mean has (approx-
imately) the same mean squared errors as the unweighted mean in this simulation. This can be explained by
the small value for the parameter Σ in comparison to the value for T, see equation (7.15). Consequently, it
follows that T+n−1

i Σ≈ T. Hence,

Cov
(
µ̂u ,µ̂u

)≈ 1

m2

m∑
i=1

T = T

m
and therefore Var(µ̂u) ≈ tr (T)

m
.

The weight matrices for the optimal generalized weighted mean are approximately equal to

Wi ≈
(

m∑
i=1

T−1

)−1

T−1 = 1

m
Ik

so that the variance of the optimal generalized weighted mean is approximately

Var
(
µ̂opt

)
≈

m∑
i=1

tr

(
1

m
Ik T

1

m
Ik

)
= tr (T)

m
.

Thus, if the within-source variation is small relative to the between-source variation it follows that

Var
(
µ̂u

)≈ Var
(
µ̂opt

)
.

Hence, for such situations the unweighted mean is as good as the minimum variance estimator µ̂opt. Note
that the plug-in estimator µ̂plug also behaves similarly to the minimum variance estimator.
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7.4.3. Artificial choice of parameters
For the covariance matrices Σ and T from equation (7.15), we have seen that the within-source variation
Σ is very small so that T +n−1

i Σ ≈ T and therefore the unweighted mean is approximately as good as the
minimum variance estimator µ̂opt. It is interesting to consider some situations where µ̂opt outperforms both
the weighted and unweighted mean estimator. To this end, the following artificial choice of parameters was
made:

µ=
 3

5
4

 , Σ=
 0.3 0.0 0.3

0.0 0.1 −0.2
0.3 −0.2 0.8

 , T =
 0.6 0.3 0.5

0.3 0.4 0.2
0.5 0.2 0.9

 . (7.16)

Again a Monte Carlo simulation study is performed for m = 1200 groups, as was described in Section 7.4.1.
The values of r and c for the simulated data set are equal to 0.632 and 3.49 respectively, so that the inequality
tr (Σ) < c · tr (T) holds. The mean squared errors of both the mean estimates and the likelihood ratio values
are given in Table 7.3.

µ̂w µ̂u µ̂opt µ̂plug

MSE µ̂ 2.13 ·10−3 1.76 ·10−3 1.73 ·10−3 1.73 ·10−3

MSE LR(y1,y2|µ̂) 4.54 ·10−3 3.59 ·10−3 3.56 ·10−3 3.56 ·10−3

Table 7.3: Mean squared errors of the estimated mean and likelihood ratio using the weighted mean µ̂w , the unweighted mean µ̂u , the
toy estimator µ̂opt and the plug-in estimator µ̂plug for a Monte Carlo simulation (M = 1000) with parameters as given in equation (7.16)
and m = 1200 groups. The true likelihood ratio is equal to 2.47.

Indeed, the optimal generalized weighted mean performs better than the other overall mean estimators, al-
though the performance is comparable to that of the unweighted mean estimator and the plug-in mean esti-
mator.

Another interesting situation is when the inequality tr (Σ) < c · tr (T) does not hold. Therefore, the parameter
Σ is multiplied by 10 whereas the other parameters as well as the sampled ni ’s remain unchanged. Again a
Monte Carlo simulation study is performed for m = 1200 groups, but we now have r = 6.32 and c = 3.49 so
that tr (Σ) > c · tr (T). This means that the weighted mean should perform better than the unweighted mean.
Note that the values of r and c do not influence µ̂opt and that this is still the minimum variance unbiased
estimator. The results of the simulation study can be found in Table 7.4.

µ̂w µ̂u µ̂opt µ̂plug

MSE µ̂ 2.96 ·10−3 3.31 ·10−3 2.67 ·10−3 2.67 ·10−3

MSE LR(y1,y2|µ̂) 1.65 ·10−2 1.71 ·10−2 1.45 ·10−2 1.45 ·10−2

Table 7.4: Mean squared errors of the estimated mean and likelihood ratio using the weighted mean µ̂w , the unweighted mean µ̂u , the
toy estimator µ̂opt and the plug-in estimator µ̂plug for a Monte Carlo simulation (M = 1000) with parameters as given in equation (7.16),
where Σ is multiplied by 10, and m = 1200 groups. The true likelihood ratio is equal to 4.58.

As expected, the weighted mean now performs better than the unweighted mean, but the optimal generalized
weighted mean is still the best of all estimators. Again, the performance of the toy estimator and the plug-in
estimator is similar.

7.5. Estimating the overall mean of XTC data
In this section, the different estimators will be applied to real XTC data to illustrate the impact of the choice of
overall mean estimator. The XTC data come from the CHAMP (Collaborative Harmonization of Methods for
Profiling of Amphetamine Type Stimulants) project. Instead of generating the control and recovered data Y1

and Y2 based on the parameters given in equation (7.15), it is also possible to apply the three mean estimators
to real XTC trace evidence. Since the true meanµ and the true likelihood ratio LR(y1,y2|µ) are now unknown,
we cannot say anything about mean squared errors. Therefore, this application is purely meant to indicate
the difference in results when using the weighted, unweighted or optimal plug-in generalized weighted mean.
The latter will again be based on the multivariate analysis of variance estimates as given in equation (7.14). In
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fact, these are the same estimates as used to obtain the parameters Σ and T in equation (7.15) from the real
XTC data.

The control data Y1 now consists of 42 measurements of the diameter, thickness and weight of tablets from
consignment C1, and the recovered data Y2 consists of 5 measurements on tablets that also come from con-
signment C1. This means that the prosecutor’s hypothesis is true and likelihood ratio values larger than 1
are expected. It is assumed that the origin of consignment C1 is unknown, i.e., it is not known which pro-
duction process produced the tablets, so that indeed the described two-level model applies to this situa-
tion. The background data consists of 186 consignments with two or more tablet measurements where it
is not known whether there are links between the consignments. For this data set, we have c = 11.0 and
r = tr (Σ)/tr (T) = 0.0254, so that the inequality tr (Σ) < c · tr (T) holds. The following estimates for the overall
mean µ are obtained:

µ̂w =
 8.242

4.528
276.0

 , µ̂u =
 8.240

4.211
260.0

 , µ̂plug =
 8.240

4.212
260.1

 .

Using the same estimates from equations (7.14) for Σ and T and the likelihood ratio formula from equation
(7.2), the likelihood ratio values can be calculated for each of the overall mean estimates:

LR(y1,y2|µ̂w ) = 1455, LR(y1,y2|µ̂u) = 2073, LR(y1,y2|µ̂plug) = 2072.

This shows that there is a significant difference in likelihood ratio values when using µ̂w instead of µ̂u or
µ̂plug. The analysis in the previous sections showed that, since tr (Σ) < c ·tr (T), both µ̂u and µ̂plug outperform
µ̂w . Hence, it would be strongly discouraged to use the weighted mean when reporting likelihood ratio values
for this evidence set.

7.6. Conclusion
In this paper three estimators for the mean are presented, which can be used if the evidence is modelled as
a two-level model using assumptions of multivariate normality: the weighted mean, the unweighted mean
and a generalized weighted mean estimator. The choice of the estimator of the overall mean is important
for the estimation of the between-source covariance matrix and for the calculation of the likelihood ratio.
There is no consensus on which of these two estimators to use when the data are unbalanced. In this paper
a relation is found which can be used to find the most efficient estimator and thus to decide whether the
weighted or the unweighted mean should be used. The unweighted mean is preferred over the weighted
mean if tr (Σ) < c · tr (T), where the constant c depends on the number of groups in the background data
and the number of measurements in each group. It is argued that in many forensic comparison problems
the within-source variation can be assumed to be smaller than the between-source variation. Moreover, it
is proven that the value of c will never be smaller than one. Therefore, it is expected that in practice the
unweighted mean will often be preferred over the weighted mean. Of course, there might also be contextual
reasons to prefer one of the overall mean estimators over the other.

The weights of the generalized weighted mean are derived such that they minimize the variance of this es-
timator. These optimal weights lead to a toy estimator, because they depend on the unknown within- and
between-source covariance matrices. If these parameters would be known, the derived toy estimator has
smaller (or equal) variance than the weighted and the unweighted mean. Using the optimal weights with es-
timates for the within- and between-source covariance matrices leads to a plug-in estimator. When compar-
ing the multivariate mean estimators in a simulation study where the unweighted mean should be preferred
over the weighted mean, the unweighted mean and plug-in estimator perform similarly to the toy estimator
which yields minimum variance. Using an artificial choice of parameters provides some examples where the
toy estimator outperforms both the weighted and unweighted mean, regardless of the number of groups and
number of measurements in the background data. Applying the weighted mean, the unweighted mean and
the plug-in mean estimator to real data shows the impact that the choice of estimator has on the value of
evidence.
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7.7. Appendix
7.7.1. The variance of µ̂w and µ̂u
The covariance matrix of the weighted mean µ̂w is found by setting Wi = ni

N Ik in equation (7.11) so that

Cov(µ̂w ,µ̂w ) =
m∑

i=1

ni

N
Ik (T+n−1

i Σ)
ni

N
Ik = T

N 2

m∑
i=1

n2
i +

Σ

N
.

By linearity of the trace, we have

Var(µ̂w ) = tr (T)

N 2

m∑
i=1

n2
i +

tr (Σ)

N
.

Similarly, the covariance matrix of the unweighted mean µ̂u can be found by setting Wi = 1
m Ik in equation

(7.11) so that

Cov(µ̂u ,µ̂u) =
m∑

i=1

1

m
Ik (T+n−1

i Σ)
1

m
Ik = T

m
+ Σ

m2

m∑
i=1

1

ni

and linearity of the trace gives

Var(µ̂u) = tr (T)

m
+ tr (Σ)

m2

m∑
i=1

1

ni
.

7.7.2. The efficiency of µ̂u relative to µ̂w
To find the relation of the efficiency as given in expression (7.9), Jensen’s inequality can be used. Consider the
random variable U , uniformly distributed on n1, . . . ,nm , ordered integers ≥ 1. By Jensen’s inequality it follows
that

1

m

m∑
i=1

1

ni
= E

[
1

U

]
≥ 1

E[U ]
= 1

1
m

∑m
i=1 ni

= m

N
. (7.17)

Here is used that the function φ(x) = 1
x is convex for x > 0, which is sufficient since only positive values are

considered. Applying Jensen’s inequality to the function φ(x) = x2 it follows that

1

m

m∑
i=1

n2
i = E

[
U 2]≥ (E[U ])2 =

(
1

m

m∑
i=1

ni

)2

= N 2

m2 . (7.18)

Moreover, from inequality (7.18) it follows that

tr (T)

N 2

m∑
i=1

n2
i ≥

tr (T)

N 2

mN 2

m2 = tr (T)

m
,

which refers to the first terms in the numerator and denominator of equation (7.6). On the other hand, from
inequality (7.17) it follows that

tr (Σ)

m2

m∑
i=1

1

ni
≥ tr (Σ)

N
,

which refers to the second terms in the denominator and numerator of equation (7.6).

7.7.3. Proof of Lemma 10
Multiplying both the numerator and the denominator by 1

m3 and using N =∑m
i=1 ni , the expression for c can

be re-written to

c =
1
m

∑m
i=1 n2

i −
( 1

m

∑m
i=1 ni

)2( 1
m

∑m
i=1 ni

)2
(

1
m

∑m
i=1

1
ni

)
− 1

m

∑m
i=1 ni

.

To simplify notation a bit, consider the random variable U as defined in Appendix 7.7.2. Then we can write

c−1 = (E[U ])2 E[U−1]−E[U ]

Var(U )
.
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Consider the convex function φ on [1,nm] defined by

φ(y) = y−1.

Since φ is a convex function, the tangent lines to φ are below the graph of φ. The idea of the proof is to find a
parabola that can be added to the tangent lines so that it will always be above the graph of φ, see Figure 7.2.
It follows that for fixed u ∈ [1,nm] we have for any y ∈ [1,nm]

φ(y) ≤φ(u)+φ′(u)(y −u)+ (y −u)2

u2 . (7.19)

Indeed,
1

y
≤ 1

u
− 1

u2 (y −u)+ 1

u2 (y −u)2,

which can be re-written to
(y −1)(u − y)2

u2 y
≥ 0

and holds as long as u ≥ 1 and y ≥ 1.

Figure 7.2: Illustration of equation (7.19) for u = 5.

Choosing u = E[U ] ≥ 1 and substituting the random variable U ≥ 1 for y results in

1

U
≤ 1

E[U ]
− 1

(E[U ])2 (U −E[U ])+ 1

(E[U ])2 (U −E[U ])2.

Now taking expectations, we get

E[U−1] ≤ 1

E[U ]
+ 1

(E[U ])2 Var(U ).

Hence,

(E[U ])2 E[U ]−1 −E[U ] ≤ Var(U ),

which implies that c−1 ≤ 1, i.e., c ≥ 1.
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7.7.4. Proof of Lemma 11
To minimize Var(µ̂) subject to the constraint W1 + ·· · +Wm = Ik a k2-dimensional Lagrange multiplier λ =
(λ11,λ12, . . . ,λkk ) is introduced such that the Lagrange function is equal to:

Lλ(W1, . . . ,Wm ,λ11,λ12, . . . ,λkk ) = f (W1, . . . ,Wm)−
k∑

j=1

k∑
l=1

λ j l g j l (W1, . . . ,Wm),

where

f (W1, . . . ,Wm) =
m∑

i=1
tr

(
Wi (T+n−1

i Σ)WT
i

)
and

g j l (W1, . . . ,Wm) =
[

m∑
i=1

Wi − Ik

]
j l

.

I.e., g j l (W1, . . . ,Wm) is equal to the matrix element with index j l . Let

∂

∂Wi
=



∂
∂wi ,11

∂
∂wi ,12

· · · ∂
∂wi ,1k

∂
∂wi ,21

∂
∂wi ,22

· · · ∂
∂wi ,2k

...
...

. . .
...

∂
∂wi ,k1

∂
∂wi ,k2

· · · ∂
∂wi ,kk


denote the derivative with respect to the matrix Wi . Then we have

∂

∂Wi

(
m∑

j=1
tr

(
W j (T+n−1

j Σ)WT
j

))
= ∂

∂Wi
tr

(
Wi (T+n−1

i Σ)WT
i

)= 2Wi (T+n−1
i Σ)

since (T+n−1
i Σ) is symmetric and

∂ tr (XAXT )

∂X
= X(A+AT ) [35]. Clearly,

∂

∂wi , j l
g j l (W1, . . . ,Wm) = 1

and zero for all other indices. Therefore, it follows that

∂Lλ

∂Wi
= 2Wi (T+n−1

i Σ)−


λ11 λ12 · · · λ1k

λ21 λ22 · · · λ2k
...

...
. . .

...
λk1 λk2 · · · λkk

 := 2Wi (T+n−1
i Σ)−Λ

and the Lagrange function will be minimized over Rk×k . Setting the derivative equal to the k ×k zero matrix
results in

Wi = 1

2
Λ(T+n−1

i Σ)−1, 1 ≤ i ≤ m.

Now using the constraint
∑m

i=1 Wi = Ik gives

m∑
i=1

1

2
Λ(T+n−1

i Σ)−1 = Ik .

Hence,

1

2
Λ=

(
m∑

i=1
(T+n−1

i Σ)−1

)−1

.

Thus,

Wi =
(

m∑
j=1

(T+n−1
j Σ)−1

)−1

(T+n−1
i Σ)−1, 1 ≤ i ≤ m

which proves the lemma.
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Copula models

In the sampling models described in Chapter 2 it is assumed that the sources of the forensic evidence are
generated from a certain multivariate distribution. The sources are represented by a k-dimensional vector
consisting of k relevant features and this multivariate distribution models the dependencies and distribution
of these features simultaneously. However, considering for example Figures 6.6 and 6.7 from Chapter 6, it is
not immediately evident that using the two-level normal-normal model provides the best fit to each type of
data. One could argue that it would make more sense to first model the marginal distribution of each of the
k features and then consider the dependencies between the features separately. This could be accomplished
by replacing the multivariate distribution of the sources with a copula.

Definition 12. A k-dimensional copula (or k-copula) is a function C from [0,1]k to [0,1] with the following
properties:

1. For every u in [0,1]k , C (u) = 0 if at least one coordinate of u is 0, and if all coordinates of u are 1 except
ui , then C (u) = ui ;

2. For every a and b in [0,1]k such that a ≤ b, i.e., ai ≤ bi for all i = 1,2, . . . ,k, VC ([a,b]) ≥ 0.

Here, VC ([a,b]) denotes the C -volume of [a,b] = [a1,b1]× [a2,b2]×·· ·× [ak ,bk ] given by

VC ([a,b]) =∑
sgn(t)C (t),

where the sum is taken over all vertices t of [a,b], and sgn(t) is given by

sgn(t) =
{

1, if tk = ak for an even number of k’s,
−1, if tk = ak for an odd number of k’s.

[30]

Theorem 13 (Sklar’s theorem in k dimensions). Let R denote the extended real line [−∞,∞]. Let H be a k-
dimensional distribution function with margins F1,F2, . . . ,Fk . Then there exists a k-copula C such that for all

x in R
k

,
H(x1, x2, . . . , xk ) =C(F1(x1),F2(x2), . . . ,Fk (xk )). (8.1)

If F1,F2, . . . ,Fk are all continuous, then C is unique; otherwise, C is uniquely determined on Range(F1) ×
Range(F2)× ·· · ×Range(Fk ). Conversely, if C is a k-copula and F1,F2, . . . ,Fk are distribution functions, then
the function H defined by (8.1) is a k-dimensional distribution function with margins F1,F2, . . . ,Fk . [30]

Let Ai = (Ai 1, Ai 2, . . . , Ai k )T denote the k-dimensional vector corresponding to the i th source. Suppose that
for fixed m

Ai m
iid∼ Gm(·), for i = 1,2, . . . ,na ,

i.e., Gm(·) denotes the marginal distribution for feature m. Then, by Sklar’s theorem, there exists a k-dimensional
copula C to model the dependencies between the features, so that

Ai
iid∼ C(G1(·),G2(·), . . . ,Gk (·)), for i = 1,2, . . . ,na .
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Then the elements within source i can be sampled from the within-source distribution as before:

Yi j |Ai = ai
iid∼ Fa(·|ai ,θa), for j = 1,2, . . . ,ni .

This theoretical framework looks nice, but difficulties arise when putting this statistical model into practice.
For example, assuming that c is the copula density corresponding to C and gm is the probability density
function corresponding to the marginal distribution Gm , the likelihoods from equation (2.9) and (2.10) for
the common source problem would become

f (eu1 ,eu2 |θa , Hp ) =
∫ nu∏

j=1
fa(yu j |p,θa)h(p) dp

and

f (eu1 ,eu2 |θa , Hd ) =
(∫ nu1∏

j=1
fa(yu1 j |d1,θa)h(d1) dd1

)(∫ nu2∏
j=1

fa(yu2 j |d2,θa)h(d2) dd2

)
,

where

h(x) = h(x1, x2, . . . , xk ) = c(G1(x1),G2(x2), . . . ,Gk (xk ))
k∏

m=1
gm(xm).

These integrals will in general be very difficult to evaluate. Moreover, a lot of distributions have to be fitted
and a lot of parameters have to be estimated, either in a frequentist or Bayesian way; besides the within-
source distribution, all k marginal distributions are needed as well as an appropriate copula to model their
dependencies, and all these distributions will have unknown parameters. Since the Ai m are latent variables, it
might be hard to accurately determine the marginal distribution of the features. Furthermore, if the number
of features is large it can be difficult to find a suitable copula outside the family of Archimedean copulas and
one might even need to consider vine copula structures, which would make the model even more complex.

To overcome some of these problems, several approaches have been suggested in literature. Two of them will
be discussed in the following sections.

8.1. Gaussian copula model
First of all, in [29] a Gaussian copula is used and maximum likelihood estimates for the copula and marginal
distribution parameters are obtained through a two-stage estimation procedure.

Definition 14. For a given correlation matrix Σ ∈ [−1,1]k×k , the Gaussian copula with parameter matrix Σ is
given by

C (u1,u2, . . . ,uk ;Σ) =ΦΣ(Φ−1(u1),Φ−1(u2), . . . ,Φ−1(uk )), um ∈ (0,1), m = 1,2, . . . ,k,

whereΦΣ denotes the k-dimensional normal cumulative distribution function with mean zero and correlation
matrixΣ, andΦ−1 denotes the inverse of the standard univariate normal cumulative distribution function. Its
density is given by

c(u1,u2, . . . ,uk ;Σ) = |Σ|−1/2 exp

[
−1

2
qTΣ−1q+ 1

2
qT q

]
= |Σ|−1/2 exp

[
−1

2
qT (Σ−1 − Ik )q

]
,

where q = (q1, q2, . . . , qk )T with qm = Φ−1(um),m = 1,2, . . . ,k, and Ik denotes the k-dimensional identity ma-
trix. [50]

Let Gm(·|ψm) be some marginal distribution and let um =Gm(pm |ψm) for all m = 1,2, . . . ,k. Using the Gaus-
sian copula as proposed in [29], the likelihood of the evidence given Hp in the common source problem
would become

L (ψ,p,Σ|yu) = |Σ|−1/2 exp

[
−1

2
qT (Σ−1 − Ik )q

] nu∏
j=1

fa(yu j |p)
k∏

m=1
gm(pm |ψm). (8.2)

Note that here it is assumed that the within-source distribution Fa only depends on the source p. When k
is large, it can become difficult to estimate Σ, since there are too many parameters. This can be solved by
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consideringΣ as a function of a single parameter ρ corresponding to the Pearson correlation. ThenΣ :=Σ(ρ)
can have either a uniform correlation structure

Σ(ρ) =


1 ρ · · · ρ

ρ 1 · · · ρ
...

. . .
. . .

...
ρ ρ · · · 1


which could be used for a intra-class correlation model, or a serial correlation structure

Σ(ρ) =


1 ρ · · · ρk−1

ρ 1 · · · ρk−2

...
. . .

. . .
...

ρk−1 ρk−2 · · · 1


corresponding to a first order autoregressive correlation model [52] .

The likelihood (8.2) can be written as L (ψ,p,Σ|yu) =LC ×Lyu ,p, where

LC = |Σ(ρ)|−1/2 exp

[
−1

2
qT (Σ(ρ)−1 − Ik )q

]
and Lyu ,p =

nu∏
j=1

fa(yu j |p)
k∏

m=1
gm(pm |ψm).

In the first stage of the estimation procedure,ψ is estimated by integrating the pm out of Lyu ,p and optimizing
the result,

Lyu =
∫ nu∏

j=1
fa(yu j |p)

k∏
m=1

gm(pm |ψm) dp,

which can be obtained analytically for some choices of gm and fa . Then it is possible to use Lyu ,p with ψ
fixed at ψ̂ to obtain p̂. In the second stage, ρ is estimated by optimizing LC with q replaced by q̂, where

q̂m =Φ−1(Gm(p̂m |ψ̂m)).

Plugging the estimates ψ̂, p̂, q̂ and Σ(ρ̂) in the likelihood from equation (8.2) results in an estimate of the
likelihood f (eu1 ,eu2 |Hp ). This method can be repeated to estimate the other likelihood functions discussed
in Chapter 3.

Note that this is quite a computational intensive procedure and would become even more complicated when
the maximum likelihood estimates would be replaced by a Bayesian estimation procedure. Extending the
model to a version where the within-source distribution also depends on a parameter θa would require some
extra optimization steps of Lyu in the first stage. However, the model lacks the possibility of incorporat-
ing background material into the estimation procedure; something that is highly valued in forensic science.
Moreover, the model proposed here would result in different marginal distributions Gm under the prosecu-
tion or defence model, which contradicts the first modelling assumption described in Chapter 2.

8.2. Score-based copula model
A more simplified approach is considered in [46], where instead of features only scores are used. The mea-
surements of two traces can be converted to scores using some similarity measure d . Let sm denote the score
obtained by comparing the mth feature from both traces for m = 1,2, . . . ,k, i.e., sm = d(yu1,m ,yu2,m) for the
common source problem, where yu1,m and yu2,m denote the vectors of the nu1 or nu2 observations, respec-
tively, of feature m. These scores will have a different distribution fscore depending on which hypothesis is
assumed to be true, so that the likelihood ratio would become

fscore(s1, s2, . . . , sk |Hp )

fscore(s1, s2, . . . , sk |Hd )
.

Let Gm(·) denote the marginal distribution for score m. Both multivariate distributions can be decomposed
using Sklar’s theorem into

c(G1(s1|Hp ),G2(s2|Hp ), . . . ,Gk (sk |Hp )|Hp )

c(G1(s1|Hd ),G2(s2|Hd ), . . . ,Gk (sk |Hd )|Hd )

k∏
m=1

gm(sm |Hp )

gm(sm |Hd )
. (8.3)
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Note that the last term is actually the product of k individual likelihood ratios, i.e.,

k∏
m=1

gm(sm |Hp )

gm(sm |Hd )
=

k∏
m=1

LRm(sm).

Equation (8.3) can be split into two parts, which will be evaluated separately: the copula fraction will be called
the correction factor and the product of individual likelihood ratios is the Naive Bayes part.

For the correction factor, [46] proposes to use modified empirical distribution functions Ĝm(·) based on back-
ground material to model the marginal distributions given each hypothesis. Therefore, assume that the back-
ground material is transformed to n vectors of feature scores where for each vector it is known if either the
prosecution hypothesis or the defence hypothesis is true. Let np and nd denote the number of score vectors
where Hp or Hd is true, respectively. If sm,1, sm,2, . . . , sm,np are all scores in the background material for feature
m where Hp is true, the modified empirical distribution function for feature m is given by

Ĝm(s|Hp ) = 1

np +1

np∑
i=1

I (sm,i ≤ s)

and a similar definition holds for Ĝm(s|Hd ). The copula densities c(·|Hp ) and c(·|Hd ) are determined by con-
sidering a finite set of possible copulas and choosing the one that gives the best result according to some
self-defined performance measure.

The Naive Bayes part is computed using the method of Pool Adjacent Violators (PAV). For every feature m =
1,2, . . . ,k, the scores from the background material are sorted and a posterior probability of 1 is assigned to
scores where Hp is true and 0 where Hd is true. The PAV algorithm then searches for non-monotonic adjacent
groups of probabilities and replaces it with the average of that group. Repeating this step until the whole
sequence of probabilities is monotonically increasing results in an estimate p̂m(·) of the posterior probability
P(Hp |·) for feature m. Assuming that the prior P(Hp ) is known, the Naive Bayes part can then be found from

L̂Rm(sm) = p̂m(sm)

1− p̂m(sm)

1−P(Hp )

P(Hp )
.

Note that this model does not have the possibility to be adjusted to a Bayesian setup and that only a selection
of possible copulas is considered, which are two severe restrictions of the score-based copula model.

The Netherlands Forensic Institute also uses a score-based approach for some casework. Instead of comput-
ing a score for every feature, the measurements are transformed to one single score so that the likelihood
ratio becomes

fscore(d(yu1 ,yu2 )|Hp )

fscore(d(yu1 ,yu2 )|Hd )
= fscore(s|Hp )

fscore(s|Hd )

for some similarity measure d(·, ·), where only the within-source score distribution fscore(·|Hp ) and between-
source score distribution fscore(·|Hd ) need to be fitted. Further research should decide if modelling the feature
scores separately would give better results and thus if the score-based copula approach is worth the extra
work.



9
Discrete evidence

Forensic scientists often have to work with discrete evidence, for example when DNA traces are found at a
crime scene. In this case, certain features of the DNA profile of the trace are compared with a suspect’s DNA
profile. If the features from the trace and the suspect are the same, one speaks of a match. Only certain
features of the DNA profile are considered and a match does not necessarily mean that the suspect is the per-
petrator: there may be other people in the population of potential perpetrators having the same features in
their DNA profile. Therefore the features of the DNA profile of the trace are compared with a DNA database
to be able to say something about the rarity of the features. This is reflected by the random match probability,
i.e., the proportion of that profile among the population of potential perpetrators [12].

The proposed framework from Chapter 2 using the sampling models can be adopted for discrete evidence.
One important difference with continuous evidence is that there is no variation of the features within the
source. It is therefore useless to consider more than one sample per source, since all samples will be identi-
cal. The modelling assumptions still hold, but Assumption 2 will be reformulated to clarify the discrete setup:

Assumption 2*

Given source Ai = ai , the background samples Yi j are identical to Ai and follow the
k-dimensional distribution Fa(·|ai ) = H(ai − · ). Here, H(ai − · ) denotes the Heaviside
function, which splits to product form for higher dimensional ai . The background sam-

ples Yi j |Ai = ai are random samples from within the source, i.e., Yi j |Ai = ai
iid∼ Fa(·|ai ).

The Heaviside function H(ai − · ) is a degenerate distribution function that can be seen as a cumulative dis-
tribution function placing probability mass 1 at ai and 0 elsewhere. This is the limiting case of a normal
within-source distribution where the variance goes to zero. It might seem cumbersome to use this setup to
enforce equality of the source and the background sample, but by doing so all expressions derived for the
likelihood ratio and the Bayes Factor remain valid. Moreover, this shows that the sampling models in [32]
indeed hold for all types of forensic evidence. Note that using the Heaviside functions in the two-level model
is equivalent to considering a one-level model, where only the between-source distribution is of interest.

The likelihood functions for both the common source problem and the specific source problem simplify sig-
nificantly for discrete evidence. Let Yi 1 denote the k-dimensional column vector of features from the i th
source for i = 1,2, . . . ,na . For ai = (ai 1, ai 2, . . . , ai k ), the probability mass function corresponding to H(ai − · ) =∏k

j=1 H(ai j − · ) is the Dirac delta function δ(ai − · ) =∏k
j=1δ(ai j − · ). The delta function is defined such that

any nonlinear multivariate real function can be expressed with delta functions and integrals as

f (x1, x2, . . . , xn) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
f (µ1, . . . ,µn)δ(µ1 −x1) · · ·δ(µn −xn) dµ1 · · · dµn ,

see [13]. This definition will be used to derive the simplified likelihood functions for the common source and
specific source problem in the next sections.
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9.1. Common source problem
For the common source problem, the likelihood function from equation (2.8) reduces for discrete background
material to

f (ea |θa , Hp ) = f (ea |θa , Hd ) =
na∏

i=1

(∫
fa(yi 1|ai )g (ai |θa) dai

)
=

na∏
i=1

(∫
δ(ai −yi 1)g (ai |θa) dai

)
=

na∏
i=1

g (yi 1|θa). (9.1)

Given the prosecution hypothesis, the unknown source evidence eu = {eu1 ,eu2 } consists of the samples Yu11

and Yu21 that are both identical to P ∼ G(·|θa). Therefore, Yu11 is also identical to Yu21 and the likelihood
function from equation (2.9) for the unknown source evidence becomes

f (eu1 ,eu2 |θa , Hp ) = f (eu2 |eu1 ,θa , Hp ) f (eu1 |θa , Hp )

=
∫

fa(yu11|p)g (p|θa) dp

=
∫
δ(p−yu11)g (p|θa) dp

= g (yu11|θa),

where the property f (eu2 |eu1 ,θa , Hp ) = 1 is used, since for the discrete common source problem the evidence
of the second unknown source is equal to the evidence of the first unknown source by definition of sampling
model Mp .

Given the defence hypothesis, the first unknown source evidence eu1 consists of a sample Yu11 that is identical
to D1 ∼ G(·|θa) and the second unknown source evidence is a sample Yu21 that is identical to D2 ∼ G(·|θa),
where D1 6= D2. This means that the likelihood function from equation (2.10) shortens to

f (eu1 ,eu2 |θa , Hd ) = f (eu1 |θa , Hd ) f (eu2 |θa , Hd )

=
(∫

fa(yu11|d1)g (d1|θa) dd1

)(∫
fa(yu21|d2)g (d2|θa) dd2

)
=

(∫
δ(d1 −yu11)g (d1|θa) dd1

)(∫
δ(d2 −yu21)g (d2|θa) dd2

)
= g (yu11|θa)g (yu21|θa).

These derivations are consistent with the approach usually taken to model discrete forensic evidence. The
problem is equivalent to

Yu11 ∼G(·|θa)

and Yu21 is equal to Yu11 with probability 1 according to the prosecution hypothesis, and

Yu11 ∼G(·|θa) and Yu21 ∼G(·|θa) independently

according to the defence hypothesis.

9.2. Specific source problem
For the specific source problem, two extra modelling assumptions on the specific source evidence were for-
mulated in Chapter 2. Assumption 3 remains unchanged in the discrete setup, but Assumption 4 cancels:
Assumption 2* and 3 completely define the discrete specific source evidence, which is assumed to be known
without uncertainty. Note that the parameter θs is not defined in this setting.

Since the sampling model Ma of the specific source problem is identical to the one in the common source
problem, the derivation of the likelihood function for ea is also equivalent to the derivation given for the com-
mon source problem, resulting in equation (9.1).
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Given the prosecution hypothesis, the unknown source evidence eu consists of a sample Yu1 that is identical
to the specific source evidence. This means that the likelihood is simply

f (eu |Hp ) = I (yu1 = ys1),

where I (·) denotes the indicator function. Note that in practical discrete evidence evaluation the situation
yu1 6= ys1 will never occur: it does not make sense to determine the value of evidence if it is already observed
that the discrete features do not match (which would give a value of 0).

Given the defence hypothesis, the unknown source evidence eu consists of one sample Yu1 that is identical
to D ∼G(·|θa). Therefore, the likelihood function from equation (2.15) becomes

f (eu |θa , Hd ) =
∫

fa(yu1|d)g (d|θa) dd =
∫
δ(d−yu1)g (d|θa) dd = g (yu1|θa).

These derivations are equivalent to considering the problem where it is assumed that Yu1 = ys1 with proba-
bility 1 according to the prosecution hypothesis, and

Yu1 ∼G(·|θa)

according to the defence hypothesis.

In the next chapter, the derived likelihood functions will be used to quantify the value of evidence in a discrete
setting.





10
One-level Bernoulli model

One frequently used model for discrete evidence in forensic science is the one-level Bernoulli model. Suppose
a DNA trace is found at a crime scene originating from an unknown source, in particular from an unknown in-
dividual. It is natural to assume that each individual in the total population of sources matches with this DNA
profile with probability θa . If every DNA profile from every source would be known, this probability would be
equal to the number of individuals with this DNA profile divided by the size of the total population. However,
in practice it is impossible to consider every individual in the total population of sources. Therefore θa is
either estimated in a frequentist way or the Bayesian framework with a prior distribution on θa is used. Note
that this framework immediately reduces the complex DNA profiles to one-dimensional Bernoulli random
variables with probability of success equal to θa . Of course, it is also possible to consider certain characteris-
tics of the DNA profile separately, leading to higher dimensional random variables.

Here, the Bayes Factor will be calculated for both the common source and the specific source problem in the
one-dimensional situation. Suppose that

Ai
iid∼ Ber (θa) and Yi 1|Ai = ai ∼ H(ai − · ) for i = 1,2, . . . ,na .

Since this enforces that Yi 1 is identical to Ai for i = 1,2, . . . ,na , it is equivalent to set

Yi 1
iid∼ Ber (θa) for i = 1,2, . . . ,na .

For a fully Bayesian setup, a prior distribution needs to be specified for θa . One common choice is a beta
prior, because of the known conjugacy with the Bernoulli distribution. This leads to convenient closed form
expressions of the Bayes Factor, as will be seen in the next sections. Therefore, set

Θa ∼ Bet a(α,β), where α> 0,β> 0.

Conditional on the background material ea , the parameters of the prior can be updated. The background
material can be represented by ea = (yi 1,1 ≤ i ≤ na) and sa =∑na

i=1 yi 1, so that

Θa |ea ∼ Bet a(α+ sa ,β+na − sa).

The updated distribution of θa will be needed to calculate the common source and specific source Bayes
Factor in this chapter.

10.1. Common source Bayes Factor
Recall from equation (3.2) that the Bayes Factor of the common source problem is given by

BFC S (e) =
∫

f (eu1 ,eu2 |θa , Hp ) dΠ(θa |ea)∫
f (eu1 |θa , Hd ) f (eu2 |θa , Hd ) dΠ(θa |ea)

.

By definition of the problem, only the situation when yu11 = 1 and yu21 = 1 will be considered: the DNA profile
of one of the two traces will be seen as ‘success’ and there is no use in reporting the value of evidence if the
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other trace does not match with this DNA profile. Note that this does not mean that the random variables
Yu11 and Yu21 are the same. Using the simplified expressions of the likelihood functions for discrete evidence
as found in Chapter 9, the Bayes Factor reduces to

BFC S (e) =
∫

g (yu11|θa)π(θa |ea) dθa∫
g (yu11|θa)g (yu21|θa)π(θa |ea) dθa

.

The numerator can be calculated as follows:∫
g (yu11|θa)π(θa |ea) dθa =

∫
θa

Γ(α+β+na)

Γ(α+ sa)Γ(β+na − sa)
θ
α+sa−1
a (1−θa)β+na−sa−1 dθa

= Γ(α+β+na)

Γ(α+ sa)Γ(β+na − sa)

∫
θ
α+sa
a (1−θ)β+na−sa−1 dθa

= Γ(α+β+na)

Γ(α+ sa)Γ(β+na − sa)

Γ(α+ sa +1)Γ(β+na − sa)

Γ(α+β+na +1)

= (α+β+na −1)!(α+ sa)!

(α+ sa −1)!(α+β+na)!

= α+ sa

α+β+na
,

where in the second-last equation the identity Γ(n) = (n −1)! is used.

Similarly, for the denominator of the Bayes Factor,∫
g (yu11|θa)g (yu21|θa)π(θa |ea) dθa =

∫
θa ·θa · Γ(α+β+na)

Γ(α+ sa)Γ(β+na − sa)
θ
α+sa−1
a (1−θa)β+na−sa−1 dθa

= Γ(α+β+na)

Γ(α+ sa)Γ(β+na − sa)

∫
θ
α+sa+1
a (1−θ)β+na−sa−1 dθa

= Γ(α+β+na)

Γ(α+ sa)Γ(β+na − sa)

Γ(α+ sa +2)Γ(β+na − sa)

Γ(α+β+na +2)

= (α+β+na −1)!(α+ sa +1)!

(α+ sa −1)!(α+β+na +1)!

= (α+ sa)(α+ sa +1)

(α+β+na)(α+β+na +1)
.

Therefore, the Bayes Factor of the one-level Bernoulli common source problem is equal to

BFC S (e) = α+β+na +1

α+ sa +1
.

This expression corresponds to the value of evidence proposed in for example [14] and [48].

10.1.1. Alternative calculation: adding traces to background material
Since the Bayes Factor of the one-level Bernoulli model can be calculated analytically, it is also possible to use
the expressions found in Section 3.1.1 to do the calculation. To use these, the likelihood ratio corresponding
to this common source problem has to be derived first. Luckily, the likelihood ratio is easily found using the
simplified likelihood functions for discrete evidence:

LRC S (θa ;eu1 ,eu2 ) = f (eu1 ,eu2 |θa , Hp )

f (eu1 |θa , Hd ) f (eu2 |θa , Hd )
= g (yu11|θa)

g (yu11|θa)g (yu21|θa)
= θa

θ2
a
= 1

θa
.

To use the relation between the likelihood ratio and the Bayes Factor from equation (3.3) for the calculation of
the common source Bayes Factor, the prior distribution of θa given Hd and the entire evidence set is needed.
Under the defence model, the unknown source evidence eu = {eu1 ,eu2 } consists of two i.i.d. Bernoulli dis-
tributed random variables. Updating the prior for θa given the entire set of evidence thus results in

Θa |ea ,eu1 ,eu2 , Hd ∼ Bet a(α+ sa +2,β+na − sa).
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This means that given Hd , both traces eu1 and eu2 are added to the background material to determine the
distribution of θa |ea ,eu1 ,eu2 . Then, the Bayes Factor is found by

BFC S (e) =
∫

LRC S (θa ;eu1 ,eu2 )π(θa |ea ,eu1 ,eu2 , Hd ) dθa

=
∫

1

θa

Γ(α+β+na +2)

Γ(α+ sa +2)Γ(β+na − sa)
θ
α+sa+1
a (1−θa)β+na−sa−1 dθa

= Γ(α+β+na +2)

Γ(α+ sa +2)Γ(β+na − sa)

∫
θ
α+sa
a (1−θa)β+na−sa−1 dθa

= Γ(α+β+na +2)

Γ(α+ sa +2)Γ(β+na − sa)

Γ(α+ sa +1)Γ(β+na − sa)

Γ(α+β+na +1)

= α+β+na +1

α+ sa +1
.

Similarly, to use equation (3.4) for the calculation of the Bayes Factor, the prior distribution of θa given Hp

and the entire evidence set is needed. Under the prosecution model, the unknown source evidence consists
of one Bernoulli distributed random variable. Updating the prior for θa given the entire evidence set gives

Θa |ea ,eu1 ,eu2 , Hp ∼ Bet a(α+ sa +1,β+na − sa).

This means that given Hp , only one trace is added to the background material to determine the distribution
of θa |ea ,eu1 ,eu2 . Hence, the Bayes Factor can also be calculated by

1

BFC S (e)
=

∫
1

LRC S (θa ;eu1 ,eu2 )
π(θa |ea ,eu1 ,eu2 , Hp ) dθa

=
∫
θa

Γ(α+β+na +1)

Γ(α+ sa +1)Γ(β+na − sa)
θ
α+sa
a (1−θa)β+na−sa−1 dθa

= Γ(α+β+na +1)

Γ(α+ sa +1)Γ(β+na − sa)

∫
θ
α+sa+1
a (1−θa)β+na−sa−1 dθa

= Γ(α+β+na +1)

Γ(α+ sa +1)Γ(β+na − sa)

Γ(α+ sa +2)Γ(β+na − sa)

Γ(α+β+na +2)

= α+ sa +1

α+β+na +1
,

which gives

BFC S (e) = α+β+na +1

α+ sa +1
.

Note that for this problem both derivations of the Bayes Factor using the likelihood ratio result in significantly
shorter calculations, since only one integral needs to be evaluated.

10.2. Specific source Bayes Factor
The Bayes Factor of the specific source problem was given in equation (3.6) and equals

BFSS (e) =
∫

f (eu |θs , Hp ) dΠ(θs |es )∫
f (eu |θa , Hd ) dΠ(θa |ea)

.

By definition of the problem, only the situation when yu1 = 1 and ys1 = 1 will be considered: the DNA profile
of the specific source will be seen as ‘success’ and there is no use in reporting the value of evidence if the
unknown source trace does not match with this DNA profile. Plugging in the simplified expressions of the
likelihood functions for discrete evidence from Chapter 9, the Bayes Factor becomes

BFSS (e) =
∫

I (yu1 = ys1) dΠ(θs |es )∫
g (yu1|θa)π(θa |ea) dθa

=
∫

1 dΠ(θs |es )∫
g (yu1|θa)π(θa |ea) dθa

= 1∫
g (yu1|θa)π(θa |ea) dθa

.

The denominator is equivalent to the numerator of the common source Bayes Factor, which gives∫
g (yu1|θa)π(θa |ea) dθa =

∫
θa

Γ(α+β+na)

Γ(α+ sa)Γ(β+na − sa)
θ
α+sa−1
a (1−θa)β+na−sa−1 dθa = α+ sa

α+β+na
.
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The Bayes Factor for the one-level Bernoulli specific source problem thus equals

BFSS (e) = α+β+na

α+ sa
.

This expression is similar to the one obtained in [47] and [49], where the posterior mean of θa |ea is used as a
plug-in estimate for θa in the likelihood ratio to arrive at the value of evidence. Note that

BFC S (e) = α+β+na +1

α+ sa +1
< α+β+na

α+ sa
= BFSS (e) ⇐⇒ sa <β+na

and since sa ≤ na and β > 0 per definition, this will always be true. This means that the common source
problem leads to a more conservative Bayes Factor than the specific source problem.

10.2.1. Alternative calculation: adding traces to background material
For the one-level Bernoulli specific source problem, the Bayes Factor can also be calculated using the relation
with the likelihood ratio as can be found in Section 3.2.1. The likelihood ratio corresponding the specific
source problem equals

LRSS (θa ,θs ;eu) = f (eu |θs , Hp )

f (eu |θa , Hd )
= I (yu1 = ys1)

g (yu1|θa)
= 1

θa
.

To use equation (3.7), the prior distribution of (θa ,θs ) given Hd and the entire evidence set is needed. Since
θs and θa are assumed to be independent, it is possible to consider both priors separately. Under the defence
model, the distribution of θs |es ,eu ,ea does not depend on eu and ea , and the distribution of θa |es ,eu ,ea does
not depend on es . The prior for θa can therefore be updated to

Θa |eu ,ea , Hd ∼ Bet a(α+ sa +1,β+na − sa).

Hence, only the trace eu is added to the background material to determine the distribution of θa |ea ,eu . This
gives for the specific source Bayes Factor:

BFSS (e) =
∫ ∫

LRSS (θa ,θs ;eu)π(θa ,θs |es ,eu ,ea , Hd ) dθa dθs

=
∫ ∫

1

θa
π(θa |eu ,ea , Hd )π(θs |es , Hd ) dθa dθs

=
∫
π(θs |es , Hd ) dθs

∫
1

θa
π(θa |eu ,ea , Hd ) dθa

= 1 ·
∫

1

θa

Γ(α+β+na +1)

Γ(α+ sa +1)Γ(β+na − sa)
θ
α+sa
a (1−θa)β+na−sa−1 dθa

= Γ(α+β+na +1)

Γ(α+ sa +1)Γ(β+na − sa)

∫
θ
α+sa−1
a (1−θa)β+na−sa−1 dθa

= Γ(α+β+na +1)

Γ(α+ sa +1)Γ(β+na − sa)

Γ(α+ sa)Γ(β+na − sa)

Γ(α+β+na)

= α+β+na

α+ sa
.

Similarly, to use equation (3.8) for the calculation of the Bayes Factor, the prior distribution of (θa ,θs ) given
Hp and the entire evidence set is needed. Again, both priors for θa and θs can be considered separately.
Under the prosecution model, the distribution of θs |es ,eu ,ea does not depend on ea , and the distribution of
θa |es ,eu ,ea does not depend on es and eu . The distribution of θa |ea was given before and does not depend
on the hypothesis. This means that none of the traces is added to the background material. The derivation of
the Bayes Factor becomes

1

BFSS (e)
=

∫ ∫
1

LRSS (θa ,θs ;eu)
π(θa ,θs |es ,eu ,ea , Hp ) dθa dθs

=
∫ ∫

θa π(θa |ea , Hp )π(θs |es ,eu , Hp ) dθa dθs
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=
∫
π(θs |es ,eu , Hp ) dθs

∫
θa π(θa |ea , Hp ) dθa

= 1 ·
∫
θa

Γ(α+β+na)

Γ(α+ sa)Γ(β+na − sa)
θ
α+sa−1
a (1−θa)β+na−sa−1 dθa

= Γ(α+β+na)

Γ(α+ sa)Γ(β+na − sa)

∫
θ
α+sa
a (1−θa)β+na−sa−1 dθa

= Γ(α+β+na)

Γ(α+ sa)Γ(β+na − sa)

Γ(α+ sa +1)Γ(β+na − sa)

Γ(α+β+na +1)

= α+ sa

α+β+na
,

so that

BFSS (e) = α+β+na

α+ sa
.

Note that for the specific source one-level Bernoulli problem the calculation of the Bayes Factor does not
simplify using the alternative expressions.

The difference between the common source and specific source Bayes Factor might look small and therefore
the discussion about which traces to add to the background material might sound irrelevant. However, in
forensic casework the number of DNA matches sa in a database is very often equal to zero (which is called a
rare type match problem [12]). Considering Figure 10.1, it can be seen that for small values of sa the difference
between the common source and specific source Bayes Factor is significant. Therefore, it is important to
indicate which identification of source problem is considered when reporting the value of evidence.

Figure 10.1: Common source and specific source Bayes Factor corresponding to the one-level Bernoulli problem as function of sa , where
α= 1, β= 4 and na = 100.





11
Posterior probability of guilt

When evidence is found in a criminal case, the court is mainly interested in the probability that the prosecu-
tion hypothesis is true given all available evidence, i.e., P(Hp |e). This probability will be called the posterior
probability of guilt. In Chapter 3 the posterior probability of guilt was already used in the posterior odds.
Here, the posterior odds will be viewed both dependent and independent of the parameter θ. This will have
a significant effect on the outcome of the posterior probability of guilt.

Two approaches can be taken when calculating the posterior probability of guilt:

(1) Using the Bayes Factor, the posterior odds can be expressed, independent of the parameter θ, as

P(Hp |e)

P(Hd |e)
= BF (e)× P(Hp )

P(Hd )
.

Under the assumption that P(Hd |e) = 1−P(Hp |e), the posterior probability of guilt becomes

PBF (Hp |e) := P(Hp )×BF (e)

P(Hd )+P(Hp )×BF (e)
= P(Hp )×∫

LR(θ;eu) dΠ(θ|e, Hd )

P(Hd )+P(Hp )×∫
LR(θ;eu) dΠ(θ|e, Hd )

,

where the last equality follows from the relation between the Bayes Factor and the likelihood ratio as
discussed in Chapter 3.

(2) Using the likelihood ratio, the posterior odds can be expressed as a function of θ, i.e.,

P(Hp |e,θ)

P(Hd |e,θ)
= LR(θ;eu)× P(Hp )

P(Hd )
.

Under the assumption that P(Hd |e,θ) = 1−P(Hp |e,θ), this can be written as

P(Hp |e,θ) = P(Hp )×LR(θ;eu)

P(Hd )+P(Hp )×LR(θ;eu)
.

Therefore, the posterior probability of guilt can be found by

PLR (Hp |e) :=
∫
P(Hp |e,θ) dΠ(θ|e) =

∫
P(Hp )×LR(θ;eu)

P(Hd )+P(Hp )×LR(θ;eu)
dΠ(θ|e).

Intuitively, one would say that it does not matter which approach is taken, since in the end the same proba-
bilities are calculated. However, mathematically there is a difference between both expressions for the pos-
terior probability of guilt: the first approach considers the ratio of two integrals, while the second approach
evaluates the integral of the same ratio, and these are in general not the same. Moreover, the integration in
approach (1) is with respect to a different measure than the integration in approach (2).
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The Netherlands Forensic Institute often uses the likelihood ratio in their casework and is interested if it is
possible to combine this with a Bayesian prior on the parameter, as is done in the second approach. The
question then arises, “What is the difference in the posterior probability of guilt obtained from the first and
second approach, and how big is this difference?". This chapter will be devoted to answering these questions
for the common source one-level Bernoulli problem, since for this problem the Bayes Factor can be calculated
analytically, as seen in Chapter 10. The analysis can easily be repeated to evaluate the specific source one-
level Bernoulli problem by using the insights from the previous chapter.

11.1. Theoretical differences and similarities
In many situations, the first approach to calculate the posterior probability of guilt will be straightforward. Af-
ter the Bayes Factor is obtained from either an analytical calculation, a numerical approach or Markov Chain
Monte Carlo methods, the probability follows directly from the formula given in approach (1). The second
approach needs more clarification: here, the frequentist likelihood ratio is combined with a Bayesian prior.
This means that the unknown parameter θ is first seen as a fixed quantity, with no specific value assigned.
After the likelihood ratio is obtained, the probability P(Hp |e,θ) is averaged over all possible values for θ as
assigned by a prior distribution.

Since the unknown source evidence is generated according to different sampling models corresponding to
each of the two hypotheses, the prior on θ|e also depends on the hypothesis. Abbreviating P(Hp ) = π1 and
using P(Hp )+P(Hd ) = 1, the law of total probability gives

π(θ|e) =π1 ·π(θ|e, Hp )+ (1−π1) ·π(θ|e, Hd )

so that the posterior probability of guilt from the second approach splits into two integrals:

PLR (Hp |e) =π1

∫
π1 ·LR(θ;eu)

1−π1 +π1 ·LR(θ;eu)
dΠ(θ|e, Hp )+ (1−π1)

∫
π1 ·LR(θ;eu)

1−π1 +π1 ·LR(θ;eu)
dΠ(θ|e, Hd ).

These integrals can be seen as expectations with respect to different measures, i.e.,

PLR (Hp |e) = π1 ·EΘ|e,Hp

[
π1 ·LR(Θ;eu)

1−π1 +π1 ·LR(Θ;eu)

]
+ (1−π1) ·EΘ|e,Hd

[
π1 ·LR(Θ;eu)

1−π1 +π1 ·LR(Θ;eu)

]
=: π1 ·E1 + (1−π1) ·E2.

Here, the subscript notation is used to indicate under which probability measure the expectation is calcu-
lated.

To compare the first approach with this convex combination of expectations, the Bayes Factor also has to be
viewed as an expectation. Recall that the alternative expressions of the Bayes Factor from Chapter 3 were
given by

BF (e) = 1∫
LR(θ;eu)−1 dΠ(θ|e, Hp )

= 1

EΘ|e,Hp

[
LR(Θ;eu)−1

]
and

BF (e) =
∫

LR(θ;eu) dΠ(θ|e, Hd ) = EΘ|e,Hd [LR(Θ;eu)] .

Therefore, the posterior probability of guilt from approach (2) can be expressed as

PBF (Hp |e) =
π1 ·

(
EΘ|e,Hp

[
LR(Θ;eu)−1

])−1

1−π1 +π1 ·
(
EΘ|e,Hp

[
LR(Θ;eu)−1

])−1 = π1

(1−π1) ·EΘ|e,Hp

[
LR(Θ;eu)−1

]+π1
(11.1)

and

PBF (Hp |e) = π1 ·EΘ|e,Hd [LR(Θ;eu)]

1−π1 +π1 ·EΘ|e,Hd [LR(Θ;eu)]
. (11.2)

The goal is to relate equation (11.1) and (11.2) to E1 and E2, respectively. To achieve this, Jensen’s inequality
for conditional expectations will be used:



11.2. Common source one-level Bernoulli problem 73

Theorem 15 (Jensen’s inequality for conditional expectations). Let φ :R→R be a convex function and let ξ be
an integrable random variable on a probability space (Ω,F ,P) such that φ(ξ) is also integrable. Then

φ
(
E[ξ|G ]

)≤ E[
φ(ξ)|G ]

a.s.

for any σ-field G onΩ contained in F . [10]

Now define φ1(x) := π1
(1−π1)x+π1

with 0 < π1 < 1 and x > 0 (since BF−1 > 0). Then φ1 is a convex function.
Hence, Jensen’s conditional inequality and equation (11.1) give

PBF (Hp |e) = π1

(1−π1) ·EΘ|e,Hp

[
LR(Θ;eu)−1

]+π1
=φ1

(
EΘ|e,Hp

[
LR(Θ;eu)−1])

≤ EΘ|e,Hp

[
φ1

(
LR(Θ;eu)−1)]= EΘ|e,Hp

[
π1

(1−π1) ·LR(Θ;eu)−1 +π1

]
= EΘ|e,Hp

[
π1 ·LR(Θ;eu)

(1−π1)+π1 ·LR(Θ;eu)

]
= E1.

Similarly, define φ2(x) := π1x
(1−π1)+π1x with 0 < π1 < 1 and x > 0 (since BF > 0). Then φ2 is a concave function

and thus −φ2 is convex. Applying Jensen’s conditional inequality to −φ2 gives

−φ2
(
E[ξ|G ]

)≤ E[−φ2(ξ)|G ]=−E[
φ2(ξ)|G ]

a.s. ⇐⇒ φ2
(
E[ξ|G ]

)≥ E[
φ2(ξ)|G ]

a.s.

Using this last inequality and equation (11.2), it follows that

PBF (Hp |e) = π1 ·EΘ|e,Hd [LR(Θ;eu)]

1−π1 +π1 ·EΘ|e,Hd [LR(Θ;eu)]
=φ2

(
EΘ|e,Hd [LR(Θ;eu)]

)
≥ EΘ|e,Hd

[
φ2 (LR(Θ;eu))

]= EΘ|e,Hd

[
π1 ·LR(Θ;eu)

1−π1 +π1 ·LR(Θ;eu)

]
= E2.

This shows that PLR (Hp |e) is a convex combination of an element that is always greater than or equal to
PBF (Hp |e) and an element that is always less than or equal to PBF (Hp |e). Equality is only obtained when
both φ1 and φ2 are linear functions. Asymptotically, this is reached when BF →∞, since

lim
x→0

φ1(x) = 1 and lim
x→∞φ2(x) = 1.

Therefore, the two approaches to calculate the posterior probability of guilt will only give approximately the
same result if the Bayes Factor is very large. In this case, both E1 and E2 will be approximately equal to
PBF (Hp |e), implying that PLR (Hp |e) will be approximately equal to 1. Since

PBF (Hp |e) = π1

(1−π1)BF (e)−1 +π1
,

it can easily be seen that PBF (Hp |e) will also be approximately equal to 1 when the Bayes Factor is very large.
However, the fact that the posterior probability of guilt will approach 1 for large Bayes Factor should already
be clear from intuition. Note that the theoretical results in this section are valid independently of the model
under consideration.

11.2. Common source one-level Bernoulli problem
Recall from Chapter 10 that for the one-dimensional common source Bernoulli problem, the following setup
is used to represent the background material:

Yi 1
iid∼ Ber (θa) for i = 1,2, . . . ,na and Θa ∼ Bet a(α,β) where α> 0,β> 0.

This resulted in a Bayes Factor of

BFC S (e) = α+β+na +1

α+ sa +1
,

where sa = ∑na
i=1 yi 1. If na →∞ and na >> sa , also BFC S (e) →∞ and according to the previous section the

two approaches to calculate the posterior probability of guilt should approximately give the same result.
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Abbreviating P(Hp ) = π1 and using P(Hp )+P(Hd ) = 1, the posterior probability of guilt from approach (1)
becomes

PBF (Hp |eu1 ,eu2 ,ea) = π1(α+β+na +1)

(1−π1)(α+ sa +1)+π1(α+β+na +1)
.

However, calculating the posterior probability of guilt using approach (2) is a lot harder. Since the likelihood
ratio corresponding to this problem is 1/θa (see Chapter 10), the integral

PLR (Hp |eu1 ,eu2 ,ea) =
∫ π1 × 1

θa

1−π1 +π1 × 1
θa

π(θa |eu1 ,eu2 ,ea) dθa

has to be evaluated. The prior π(θa |eu1 ,eu2 ,ea) depends on the hypothesis. Given Hp , the unknown source
evidence eu = {eu1 ,eu2 } consists of one Ber (θa) random variable, whereas given Hd , eu = {eu1 ,eu2 } consists of
two i.i.d. Ber (θa) random variables. Therefore,

Θa |eu1 ,eu2 ,ea , Hp ∼ Bet a(α+ sa +1,β+na − sa)

and
Θa |eu1 ,eu2 ,ea , Hd ∼ Bet a(α+ sa +2,β+na − sa).

The law of total probability gives

π(θa |eu1 ,eu2 ,ea) =π1 ·π(θa |eu1 ,eu2 ,ea , Hp )+ (1−π1) ·π(θa |eu1 ,eu2 ,ea , Hd )

so that the posterior probability of guilt splits into:

PLR (Hp |eu1 ,eu2 ,ea) = π1

∫
π1

(1−π1)θa +π1
π(θa |eu1 ,eu2 ,ea , Hp ) dθa

+ (1−π1)
∫

π1

(1−π1)θa +π1
π(θa |eu1 ,eu2 ,ea , Hd ) dθa

=: I1 + I2.

Another way to see that PLR (Hp |eu1 ,eu2 ,ea) is approximately equal to 1 for large na follows from this expres-
sion. Using the property that the Bet a(α,β) distribution becomes a degenerate distribution with all mass
located at x = 0 for β/α→∞ implies that for na →∞

PLR (Hp |eu1 ,eu2 ,ea) −→ π1

∫
π1

(1−π1)θa +π1
δ(θa) dθa + (1−π1)

∫
π1

(1−π1)θa +π1
δ(θa) dθa

=π1 · π1

(1−π1) ·0+π1
+ (1−π1) · π1

(1−π1) ·0+π1
= 1,

where δ(·) denotes the Dirac delta function.

To determine the size of the difference between the two approaches, the expression for PLR (Hp |eu1 ,eu2 ,ea)
has to be further investigated. This can be done by evaluating the two integrals separately:

I1 =π1

∫
π1

(1−π1)θa +π1

Γ(α+β+na +1)

Γ(α+ sa +1)Γ(β+na − sa)
θ
α+sa
a (1−θa)β+na−sa−1 dθa

=π2
1

Γ(α+β+na +1)

Γ(α+ sa +1)Γ(β+na − sa)

∫
1

1− (1−θa)(1−π1)
θ
α+sa
a (1−θa)β+na−sa−1 dθa

=C1 ×
∫ ∞∑

k=0
(1−θa)k (1−π1)kθ

α+sa
a (1−θa)β+na−sa−1 dθa , |(1−θa)(1−π1)| < 1

=C1 ×
∞∑

k=0
(1−π1)k

∫
θ
α+sa
a (1−θa)β+na−sa−1+k dθa

=C1 ×
∞∑

k=0
(1−π1)k Γ(α+ sa +1)Γ(β+na +k − sa)

Γ(α+β+na +k +1)

=π2
1
Γ(α+β+na +1)

Γ(β+na − sa)

∞∑
k=0

(1−π1)k Γ(β+na +k − sa)

Γ(α+β+na +k +1)
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=π2
1 · 2F1(1,β+na − sa ;α+β+na +1;1−π1),

where integration and summation can be swapped because of Tonelli’s theorem for non-negative functions.
Here, 2F1(a,b;c; z) denotes the Gauss hypergeometric series as described in [1]:

2F1(a,b;c; z) = Γ(c)

Γ(a)Γ(b)

∞∑
k=0

Γ(a +k)Γ(b +k)

Γ(c +k)

zk

k !
.

The series converges for |z| < 1 and it can be analytically continued onto the entire complex plane cut along
[1,∞] [21].

Similarly,

I2 = (1−π1)
∫

π1

(1−π1)θa +π1

Γ(α+β+na +2)

Γ(α+ sa +2)Γ(β+na − sa)
θ
α+sa+1
a (1−θa)β+na−sa−1 dθa

=π1(1−π1)
Γ(α+β+na +2)

Γ(α+ sa +2)Γ(β+na − sa)

∫
1

1− (1−θa)(1−π1)
θ
α+sa+1
a (1−θa)β+na−sa−1 dθa

=C2 ×
∫ ∞∑

k=0
(1−θa)k (1−π1)kθ

α+sa+1
a (1−θa)β+na−sa−1 dθa , |(1−θa)(1−π1)| < 1

=C2 ×
∞∑

k=0
(1−π1)k

∫
θ
α+sa+1
a (1−θa)β+na−sa−1+k dθa

=C2 ×
∞∑

k=0
(1−π1)k Γ(α+ sa +2)Γ(β+na +k − sa)

Γ(α+β+na +k +2)

=π1(1−π1)
Γ(α+β+na +2)

Γ(β+na − sa)

∞∑
k=0

(1−π1)k Γ(β+na +k − sa)

Γ(α+β+na +k +2)

=π1(1−π1) · 2F1(1,β+na − sa ;α+β+na +2;1−π1).

This gives for the posterior probability of guilt:

PLR (Hp |eu1 ,eu2 ,ea) = π2
1 · 2F1(1,β+na − sa ;α+β+na +1;1−π1)

+π1(1−π1) · 2F1(1,β+na − sa ;α+β+na +2;1−π1)
(11.3)

However, this expression only has an analytical solution for certain values of α, β, na and sa .

From identity (15.3.4) from [1] it can be derived that

2F1(a,b;c; z) = (1− z)−a
2F1

(
a,c −b;c;

z

z −1

)
⇐⇒ (1− z)a

2F1(a,b;c; z) = 2F1

(
a,c −b;c;

z

z −1

)
.

This can be used to write equation (11.3) as

PLR (Hp |eu1 ,eu2 ,ea) = π1 · 2F1

(
1,α+ sa +1;α+β+na +1;−1−π1

π1

)
+ (1−π1) · 2F1

(
1,α+ sa +2;α+β+na +2;−1−π1

π1

)
,

(11.4)

which shows that the posterior probability of guilt from approach (2) results in a convex combination of Gauss
hypergeometric functions.

11.3. Gauss hypergeometric functions and continued fractions
To be able to say something about the difference between the posterior probability of guilt from approach
(1) and (2), the properties of the Gauss hypergeometric functions need to be further investigated. In [21] it is
explained that Gauss hypergeometric functions of the form 2F1(1,b;c;−z) can be represented by a continued
fraction. The Gauss hypergeometric functions obtained in equation (11.4) are exactly of this form. Therefore,
some theory of continued fractions and its relation to the Gauss hypergeometric functions will be explained
in this section.
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A continued fraction is an infinite structure which works as an alternative to infinite series. The standard
form of a continued fraction is

a0 +
b1

a1 +
b2

a2 +
b3

a3 +
b4

a4 +
. . .

which can be converted to simple form

c0 +
1

c1 +
1

c2 +
1

c3 +
1

c4 +
. . .

by setting

c0 = a0, c1 = a1

b1
, c2 = a2b1

b2
, c3 = a3b2

b1b3
, c4 = a4b1b3

b2b4
.

The convergence of a continued fraction can be discussed in terms of the approximants or convergents . Each
convergent fn is obtained by truncating the continued fraction after n fraction terms. Then the continued
fraction converges to the value f if and only if limn→∞ fn = f [25]. The first five convergents for a continued
fraction in simple form are given by:

f0 := c0

1
, f1 := c1c0 +1

c1
, f2 := c2(c1c0 +1)+ c0

c2c1 +1
, f3 := c3(c2(c1c0 +1)+ c0)+ c1c0 +1

c3(c2c1 +1)+ c1
,

f4 := c4(c3(c2(c1c0 +1)+ c0)+ c1c0 +1)+ c2(c1c0 +1)+ c0

c4(c3(c2c1 +1)+ c1)+ c2c1 +1
.

The continued fraction corresponding to the Gauss hypergeometric functions of the form 2F1(1,b;c;−z) is
given by

2F1(1,b;c;−z) = c −1

c −1+ bz

c + (c −b)z

c +1+ c(b +1)z

c +2+ . . .

This continued fraction converges and has positive elements when z > 0 and c > b > 1. Moreover, its conver-
gents have a very interesting property: the even convergents form an increasing sequence and approximate
the value of 2F1(1,b;c;−z) from below, while the odd convergents form a decreasing sequence and approx-
imate 2F1(1,b;c;−z) from above [21]. Therefore, convergent f3 gives an upper bound for 2F1(1,b;c;−z) and
convergent f4 gives a lower bound for 2F1(1,b;c;−z).

Applying this theory to the Gauss hypergeometric functions from equation (11.4) gives for

2F1

(
1,α+ sa +1;α+β+na +1;−1−π1

π1

)
the lower and upper bound

L1 = c4c3c2 + c4 + c2

c4c3c2 + c4c3 + c4 + c2 +1
and U1 = c3c2 +1

c3c2 + c3 +1
,
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respectively, with

c2 = π1(α+β+na +1)

(1−π1)(α+ sa +1)
, c3 = (α+β+na +2)(α+ sa +1)

β+na − sa
, c4 = π1(α+β+na +3)(β+na − sa)

(1−π1)(α+ sa +1)(α+ sa +2)(α+β+na +1)
.

Similarly, for

2F1

(
1,α+ sa +2;α+β+na +2;−1−π1

π1

)
the lower and upper bound are given by

L2 = c4c3c2 + c4 + c2

c4c3c2 + c4c3 + c4 + c2 +1
and U2 = c3c2 +1

c3c2 + c3 +1
,

respectively, with

c2 = π1(α+β+na +2)

(1−π1)(α+ sa +2)
, c3 = (α+β+na +3)(α+ sa +2)

β+na − sa
, c4 = π1(α+β+na +4)(β+na − sa)

(1−π1)(α+ sa +2)(α+ sa +3)(α+β+na +2)
.

Therefore, the posterior probability of guilt from approach (2) is bounded by

π1L1 + (1−π1)L2 <PLR (Hp |eu1 ,eu2 ,ea) <π1U1 + (1−π1)U2.

11.4. Difference between Bayes Factor and likelihood ratio approach
To answer the question of interest, the difference in the posterior probability of guilt obtained from the ap-
proach using the Bayes Factor and the likelihood ratio should be considered. Using the bounds from the
previous section leads to

Lbound <PBF (Hp |eu1 ,eu2 ,ea)−PLR (Hp |eu1 ,eu2 ,ea) <Ubound,

where

Lbound = π1(α+β+na +1)

(1−π1)(α+ sa +1)+π1(α+β+na +1)
−π1U1 − (1−π1)U2

and

Ubound = π1(α+β+na +1)

(1−π1)(α+ sa +1)+π1(α+β+na +1)
−π1L1 − (1−π1)L2.

These expressions for Lbound and Ubound are explicit, but not very tractable. Therefore, Maple™ is used to
evaluate the difference between the lower and upper bound. Since in general na >>α,β, sa , the highest power
of na in both the numerator and denominator will mainly determine the size of this difference. Neglecting
lower order terms, it is found that

Ubound −Lbound ≈ 1

n3
a

[
(2α+2sa +4)π1 − (α+ sa +9)(α+ sa +2)+ (3α+3sa +15)(α+ sa +2)

1

π1

−(3α+3sa +11)(α+ sa +2)
1

π2
1

+ (α+ sa +3)(α+ sa +2)
1

π3
1

]

=:
C (α, sa ,π1)

n3
a

=O

(
1

n3
a

)
where C (α, sa ,π1) > 0 for 0 <π1 < 1 and all α> 0 (see Figure 11.1).

Hence, the difference between the posterior probability of guilt obtained from the two approaches is of order
1/n3

a , where na denotes the number of sources in the background material ea . This means that, if a reason-
ably large set of background material is used compared to the number of matches, the difference becomes
negligible and it does not really matter which approach is used. If one is interested in the size of the differ-
ence, C (α, sa ,π1)/n3

a will provide an accurate estimate (see Figure 11.2).
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Figure 11.1: C (α, sa ,π1) as function of sa , for α= 2 and different values of π1.

Figure 11.2: Exact difference between upper and lower bound together with the estimated difference, for α = 2, β = 5, sa = 10 and
π1 = 0.3.
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In Figure 11.3 the posterior probability of guilt obtained from both approaches is visualized as function of
na . For PLR (Hp |e) the graph is split into two parts: the dotted line up to na = 180 shows the result of the
hypergeometric functions using Euler’s integral representation [21]

2F1(1,b;c;−z) = Γ(c)

Γ(b)Γ(c −b)

∫ 1

0

t b−1(1− t )c−b−1

1+ zt
d t ,

evaluated using numerical contour integrals, whereas the solid line is obtained by the continued fraction
expansion of the hypergeometric functions, as discussed in the previous section. This distinction is made
because the continued fraction expansion sometimes fails to converge to the correct value for small na , and
Euler’s integral representation gives numerical errors for large na .

Figure 11.3: Posterior probability of guilt from both the Bayes Factor and likelihood ratio approach, for α= 2, β= 5, sa = 10 and π1 = 0.3.

Although both graphs for the posterior probability of guilt look very similar, Figure 11.4 illustrates how they
still differ. The upper and lower bound on the difference are also added to the plot and seem to be very accu-
rate. For small na , the lower bound could be more strict. Since the odd convergents from the hypergeometric
functions form a decreasing sequence, a stricter lower bound on the difference could be obtained by consid-
ering convergent f5 for both hypergeometric functions in formula (11.4) and replace U1 and U2 in Lbound by
this fifth convergent. The spikes in the difference around na = 170 are most likely caused by numerical errors.

11.5. Conclusions
To conclude this chapter, a short summary of the most important findings regarding the posterior probability
of guilt obtained from the Bayes Factor and likelihood ratio approach will be given. From a theoretical point
of view, it is clear that both probabilities will never be exactly the same. Only for problems where the Bayes
Factor is very large, the probabilities will be approximately the same and will both approach 1.

Whereas the calculation of the posterior probability of guilt using the Bayes Factor is straightforward, the ap-
proach using the likelihood ratio might lead to some difficulties. For the common source one-level Bernoulli
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problem, PLR (Hp |e) can be represented by a convex combination of hypergeometric functions. Extreme care
has to be taken when evaluating these functions, since numerical errors can occur easily and continued frac-
tion expansions might fail to converge to the correct value.

The difference between the posterior probability of guilt from both methods for the common source one-
level Bernoulli problem was shown to be of order 1/n3

a . However, this means that for small values of na the
difference is still noticeable. The upper and lower bound on the difference are accurate, and the lower bound
could be made even sharper by considering the fifth convergent of the hypergeometric functions.

Taking all these arguments into account, it should be clear that using the likelihood ratio as described here to
calculate the posterior probability of guilt can easily lead to errors. Moreover, combining a frequentist like-
lihood ratio with a Bayesian prior in this manner is questionable from a theoretical perspective. Therefore,
if a Bayesian prior on the parameter is required, using the Bayes Factor to calculate P(Hp |e) would be pre-
ferred in most situations. Only when the number of sources in the background material is reasonably large
compared to the number of matches, the likelihood ratio approach as described in this chapter should be
used. Note that even in this case one still has to be careful when evaluating the hypergeometric functions for
the common source one-level Bernoulli model. For the sake of completeness, the bounds on the difference
between both posterior probabilities of guilt could be reported.

Figure 11.4: Difference between the posterior probability of guilt from the Bayes Factor and likelihood ratio approach, together with
bounds on the difference, for α= 2, β= 5, sa = 10 and π1 = 0.3.



12
Permutation tests

Until now, the ‘standard’ forensic approach to quantify the value of evidence has been considered, which was
explained in Chapter 3 and proceeds via a two step procedure. In the first step it is determined whether it
is probable that two traces share the same source, and the value of this belief is expressed in the numerator
of the likelihood ratio or Bayes Factor. The second step is the assessment of the probability that the trace
of interest comes from a randomly selected source, which is used in the denominator of the likelihood ra-
tio or Bayes Factor. These probabilities depend heavily on distributional assumptions and are usually not
straightforward to calculate. Therefore, it is argued in [11] that this two step approach is neither desirable nor
necessary, since the first step could be replaced by a much simpler nonparametric test based on the concept
of exchangeability.

Definition 16. A finite set X1, . . . , Xn of random quantities is said to be exchangeable if every permutation of
(X1, . . . , Xn) has the same joint distribution as (X1, . . . , Xn). An infinite collection of random variables is ex-
changeable if every finite subcollection is exchangeable. [42]

Both the common and specific source problem, as discussed in Chapter 2, boil down to the question which of
the evidence sets are exchangeable. If the prosecution hypothesis is true, the (first) unknown source evidence
is assumed to be generated similarly as the second set of unknown source evidence or the specific source ev-
idence, respectively, for the common and specific source problem. This means that given Hp the two sets
of evidence are exchangeable, whereas given Hd they are not. The concept of exchangeability can easily be
evaluated through the use of permutation testing.

The basic idea of permutation testing is that changing the labelling of the measurements to assign them to
one of the two evidence sets does not significantly change the value of a predetermined test statistic if the
prosecution hypothesis is true. In [17] the “five steps” to construct a permutation test are given:

1. Identify the hypothesis and alternative(s) of interest. For example, in the forensic setting with two traces

X = (X1, X2, . . . , Xnx ) and Y = (Y1,Y2, . . . ,Yny ) where it is assumed that Xi
iid∼ F (·) for i = 1,2, . . . ,nx and

Yi
iid∼ G(·) for i = 1,2, . . . ,ny , the competing hypotheses might be Hp : F =G and Hd : F 6=G .

2. Choose a relevant test statistic to confirm or disprove the prosecution hypothesis Hp .

3. Compute the test statistic based on the original labelling of the observations.

4. Recompute the test statistic for all possible rearrangements of the labels. Repeat this computation until
you obtain the distribution of the test statistic for all rearrangements.

5. Accept or reject the prosecution hypothesis using this permutation distribution as a guide.

In practice, the number of possible permutations might be too large to evaluate in step 4. Therefore, a random
or Monte Carlo permutation test can be considered, where only a random sample of all possible permutations
is taken. The decision of accepting or rejecting the hypothesis in step 5 is usually based on a p-value . This is
the probability of observing a test statistic from a permutation that is at least as unusual as the one observed
from the two traces. If the p-value is smaller than a pre-defined significance level α (usually 0.05 or 0.01), the
prosecution hypothesis is rejected.

81
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It is important to mention that permutation tests exist, but were not designed for forensic purposes. There-
fore, they should not be used for the interpretation of evidence in court, but only for laboratory based pre-
screening. If the permutation test shows strong evidence against the prosecution hypothesis, then it might
not be worthwhile completing further statistical interpretation in light of this evidence [11]. Since the ob-
tained p-value does not fit in the Bayesian framework and cannot be combined with the prior odds, extreme
care has to be taken when drawing conclusions. However, permutation tests were already discussed in [49]
for the evaluation of DNA evidence.

Note that for Monte Carlo permutation testing only an approximate p-value is obtained. It is possible to
construct an approximate 95% confidence interval for the true p-value based on the approximate p-value
p̂. Under the prosecution model, each sampled permutation has a probability equal to p of observing a test
statistic at least as extreme as the test statistic based on the original labelling. Let B denote the total number
of samples with a test statistic at least as extreme as the one based on the original labelling. For a Monte Carlo
permutation test of size M , B follows a binomial distribution with parameters M and p. This means that

p̂ = B

M
∼ N

(
p,

p(1−p)

M

)
by the Central Limit Theorem. As a result, an approximate 95% confidence interval is given by

p̂ ±1.96

√
p̂(1− p̂)

M
.

This ensures that as long as M is large or p̂ is small, a good approximation of the true p-value is obtained.

There are many possibilities when choosing a test statistic in permutation testing. In this chapter, four test
statistics will be discussed and applied to both simulated and real data. The real glass and MDMA data from
Section 6.4 is used, and the simulated data is generated as described in Section 6.3. The knives data is not used
since only one measurement is available from both traces, which makes it unsuitable for permutation testing.

Throughout this chapter, the measurements of the k features of the traces will be denoted by x and y, where
nx and ny denote the number of measurements for each trace:

x = [
x1 x2 · · · xnx

]=


x11 x12 · · · x1nx

x21 x22 · · · x2nx

...
...

. . .
...

xk1 xk2 · · · xknx


and

y = [
y1 y2 · · · yny

]=


y11 y12 · · · y1ny

y21 y22 · · · y2ny

...
...

. . .
...

yk1 yk2 · · · ykny

 .

This notation is slightly different than in the previous chapters, but it is used to avoid multiple indices and to
provide a general framework for both the common and specific source problem. Note that for the common
source problem x := yu1 and y := yu2 , whereas for the specific source problem x := ys and y := yu .

12.1. Feature mean difference
Let x̄ = (x̄1, . . . , x̄k )T and ȳ = (ȳ1, . . . , ȳk )T denote the k-dimensional vectors of feature means, where

x̄i = 1

nx

nx∑
j=1

xi j and ȳi = 1

ny

ny∑
j=1

yi j for i = 1,2, . . . ,k.

The first test statistic considers the norm of the difference in feature means x̄−ȳ. Three different vector norms
will be evaluated:
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• Using the `1-norm, the test statistic becomes

T1 = ||x̄− ȳ||1 =
k∑

i=1
|x̄i − ȳi |.

• Using the `2-norm, the test statistic becomes

T2 = ||x̄− ȳ||2 =
√√√√ k∑

i=1
(x̄i − ȳi )2.

• Using the `∞-norm, the test statistic becomes

T∞ = ||x̄− ȳ||∞ = max
(|x̄1 − ȳ1|, . . . , |x̄k − ȳk |

)
.

If the two traces originate from the same source, the difference in feature means will be small and therefore
test statistics close to zero will be expected. The approximate p-value is calculated by

p̂ = 1

M

M∑
i=1

I (T (i ) > T (obs)),

where I (·) denotes the indicator function, T (i ) the test statistic corresponding to the i th sampled permutation
and T (obs) the test statistic based on to the original labelling.

12.2. Hotelling’s T 2

Let x j and y j denote the k-dimensional measurement vectors, and again let x̄ = (x̄1, . . . , x̄k )T and ȳ = (ȳ1, . . . , ȳk )T

be the vectors of feature means. In [11] it is suggested to use Hotelling’s T 2 as test statistic, which is defined
as

T 2 = nx ny

nx +ny

(
x̄− ȳ

)T S−1
k

(
x̄− ȳ

)
,

where Sk denotes the estimator of the pooled covariance matrix

Sk =
∑nx

j=1(x j − x̄)(x j − x̄)T +∑ny

j=1(y j − ȳ)(y j − ȳ)T

nx +ny −2
.

A restriction to the Hotelling’s T 2 test statistic is that the total number of measurements, nx +ny , should be
larger than the number of features plus one to ensure that the inverse of Sk exists. Again, the difference in
feature means will be small when the two traces originate from the same source and therefore a small test
statistic will be expected. Hence, the approximate p-value is calculated by

p̂ = 1

M

M∑
i=1

I
(
T 2(i ) > T 2(obs)

)
.

12.3. Average intra- and inter-measurement similarity
Let x j and y j denote the k-dimensional measurement vectors and let x̄ j = 1

k

∑k
i=1 xi j and ȳ j = 1

k

∑k
i=1 yi j

denote the corresponding measurement means. Since taking measurement means only makes sense if the
features have the same unit, this test statistic can only be used in certain settings, such as the glass dataset
from Section 6.4. The test statistic is based on [28] and compares the average intra-measurement similarity
with the average inter-measurement similarity. Therefore, let

r (xu ,yv ) =
∑k

i=1(xi u − x̄u)(yi v − ȳv )√∑k
i=1(xi u − x̄u)2

√∑k
i=1(yi v − ȳv )2

denote the Pearson correlation coefficient between measurements xu and yv . The Fisher transformation of
the Pearson correlation coefficient between two measurements is used as similarity measure:

f (xu ,yv ) = 0.5ln

[
1+ r (xu ,yv )

1− r (xu ,yv )

]
.
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The motivation for this transformation is that for small values of r , f is nearly equal to r , but as r increases
to unity, f approaches infinity [15]. This means that the difference between almost perfect correlation and
lower correlations, i.e., the difference between intra-measurement correlations and inter-measurement cor-
relations from different sources, is better noticeable in f (xu ,yv ) than in r (xu ,yv ). The sign of the correlation
coefficient remains unchanged after the transformation.

Let Ix = {1,2, . . . ,nx } denote the set of all measurement indices corresponding to x and let Iy = {1,2, . . . ,ny } be
the set of all measurement indices corresponding to y. Then the test statistic is given by

W0 =
∑

(u,v)∈Ix ,u 6=v f (xu ,xv )+∑
(u,v)∈Iy ,u 6=v f (yu ,yv )

nx (nx −1)+ny (ny −1)
−

∑
u∈Ix ,v∈Iy f (xu ,yv )

nx ny
. (12.1)

The first term in (12.1) represents the intra-measurement similarity and the second term represents the inter-
measurement similarity. Since intra-measurement correlations will be positive and close to one, the first
term will be positive. If the two traces originate from the same source, the intra-measurement and inter-
measurement similarities behave the same and therefore the test statistic is expected to be close to zero.
Otherwise, the intra-measurement similarity will be greater than the inter-measurement similarity, which
leads to larger values of W0. Note that this also holds if the second term in (12.1) is negative. The approximate
p-value is calculated by

p̂ = 1

M

M∑
i=1

I (W0(i ) >W0(obs)).

12.4. Ranks of interpoint distances
Let x j and y j denote the k-dimensional measurement vectors and define the pooled measurement sample
z = [

z1 z2 · · · znx+ny

]
, where z j = x j for j = 1,2, . . . ,nx and znx+ j = y j for j = 1,2, . . . ,ny . To overcome

the limitations of the Hotelling’s T 2 test statistic, [26] proposed a test statistic based on interpoint distances.
Therefore, choose one of the measurements from x at random and denote this measurement by xr . The
following steps have to be followed to compute the test statistic:

1. Compute the distance between xr and the other measurements of the pooled sample z, obtaining the
vector Lr of the nx +ny −1 interpoint distances lr j , j 6= r , where

lr j = ||xr −z j ||2 =
√√√√ k∑

i=1
(xi r − zi j )2 for j = 1,2, . . . ,nx +ny , j 6= r.

2. Compute the ranks rr j of lr j .

3. Compute the statistic Tr =∑nx+ny

j=nx+1 rr j . Large values of Tr are evidence against the prosecution hypoth-
esis.

4. The test statistic P0 is obtained by computing the p-value of the Tr statistic.

Note that this approach is similar to the one-sided Wilcoxon rank sum test applied to the two samples of in-
terpoint distances of observations with fixed xr , where the first sample is lr j for j = 1, . . . ,nx , j 6= r, and the
second sample is lr j for j = nx +1, . . . ,ny . It is a one-sided test since under the defence model it is expected
that the interpoint distances between xr and the measurements from y are greater than the interpoint dis-
tances between xr and the measurements from x.

A permutation test can be performed by randomly permuting the pooled sample z and by computing the
test statistic using the r th measurement from the permuted pooled sample z∗ following the steps described
above. Given the prosecution hypothesis that the distributions to be compared are the same, i.e., the traces
originate from the same source, the measurements of z are exchangeable which justifies the use of a permu-
tation test. The approximate p-value is then found from

p̂ = 1

M

M∑
i=1

I (P0(i ) < P0(obs)).
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12.5. Results
To see how the different test statistics perform, several permutation tests have been applied to both real and
simulated data. The real data consists of the glass and MDMA datasets as discussed in Section 6.4. Both
the error of rejecting the prosecution hypothesis when it is true (type I error) and the error of accepting the
prosecution hypothesis when the defence hypothesis is true (type II error) will be addressed in this section.

12.5.1. Type I error
The following setup is used to consider the type I error in the three different datasets:

Glass: x consists of two measurements from window number 10 with three features;
y consists of three measurements from window number 10 with three features.

MDMA: x consists of 42 measurements from batch 9 of the CHAMP data with three features;
y consists of five measurements from batch 9 of the CHAMP data with three features.

Simulated: x consists of five measurements generated by

µa ∼N3(µπ,λΣb), Σa ∼W −1
3 (Σb ,νb), Σw ∼W −1

3 (Σe ,νe )

P ∼N3(µa ,Σa), X j |P = p iid∼ N3(p,Σw ), for j = 1,2, . . . ,5,

where µπ,Σb ,Σe ,νb ,νe and λ are as given in (6.2);
y consists of five measurements generated by

Y j |P = p iid∼ N3(p,Σw ), for j = 1,2, . . . ,5.

A Monte Carlo permutation test of size M = 10,000 is performed for every test statistic as described in the pre-
vious sections. Note that the number of possible permutations for the glass and MDMA datasets are smaller
than 10,000. Since every permutation is sampled with equal probability, it is allowed to do Monte Carlo
permutation testing to avoid implementing all possible permutations. This means that instead of an exact
p-value an approximate p-value is obtained. The results are given in Table 12.1, where also an approximate
95% confidence interval for p̂ can be found. Unfortunately, the test statistic W0 cannot be computed for the
MDMA data, since two measurements are exactly equal which gives a Pearson correlation of 1, and therefore
the Fisher transformation cannot be applied.

Dataset Observed test statistic p̂ Confidence interval Decision

Glass T1 0.0775 0.5058 [0.4960, 0.5156] Accept
T2 0.0977 0.5058 [0.4960, 0.5156] Accept
T∞ 0.0760 0.5058 [0.4960, 0.5156] Accept
T 2 37.2308 0.2916 [0.2827, 0.3005] Accept
W0 -0.1799 0.5972 [0.5876, 0.6068] Accept
P0 0.2500 0.0000 - Reject

MDMA T1 0.6634 0.9338 [0.9289, 0.9387] Accept
T2 0.9357 0.9325 [0.9276, 0.9374] Accept
T∞ 0.5809 0.9178 [0.9124, 0.9232] Accept
T 2 2.0494 0.7503 [0.7418, 0.7588] Accept
W0 - - - -
P0 0.5422 0.5027 [0.4929, 0.5125] Accept

Simulated T1 1.5183 0.0822 [0.0768, 0.0876] Accept
T2 2.2278 0.0837 [0.0783, 0.0891] Accept
T∞ 1.1884 0.1460 [0.1391, 0.1529] Accept
T 2 8.1948 0.2111 [0.2031, 0.2192] Accept
W0 -0.2179 0.7087 [0.6998, 0.7176] Accept
P0 0.7937 0.7671 [0.7588, 0.7754] Accept

Table 12.1: Results of several Monte Carlo permutation tests of size M = 10,000 applied to three different datasets, with significance level
α= 0.05.
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All permutation tests result in the correct decision of accepting the prosecution hypothesis, except for the
test based on the ranks of interpoint distances applied to the glass dataset. This is caused by the fact that the
number of measurements in x is equal to two, which means that only one reference interpoint distance can
be calculated. Looking at the measurements corresponding to window number 10, the measurements that
are assigned to x lie closer to each other than the ones assigned to y. The reference interpoint distance will
therefore always have rank 1 and the observed test statistic Tr will be equal to 9. Permuting z can only result
in smaller test statistics Tr which implies larger p-values and therefore the p-value based on the original
labelling can never be exceeded.

12.5.2. Type II error
To be able to say something about the type II error, x remains the same as described previously for every
dataset, but the values of y are changed. For the glass dataset, y is iteratively set equal to the first three
measurements from every window in the background material. Similarly, in the MDMA dataset y is now
given by the first five measurements from every other batch of the CHAMP data than batch 9. Batches with
less than five measurements are discarded from the analysis. Finally, background data is simulated by

Ai
iid∼ N3(µa ,Σa), Yi j |Ai = ai

iid∼ N3(ai ,Σw ), for i = 1,2, . . . ,100 and j = 1,2, . . . ,5

and y is iteratively set equal to the five measurements corresponding to source i . For each possible com-
position of y a Monte Carlo permutation test of size M = 10,000 is performed for every test statistic and the
resulting approximate p-values are saved. The averages of these approximate p-values are given in Table 12.2
together with the percentage of approximate p-values exceeding α= 0.05. The behaviour of the approximate
p-values is also visualized by the boxplots given in Figures 12.1, 12.2 and 12.3. Note that in these figures the
names of the test statistics are only given to indicate which one was used in the permutation tests, but that
the data represent approximate p-values.

Test statistic Average p̂ Percentage of type II errors
used in Glass MDMA Simulated Glass MDMA Simulated

permutation tests (15 tests) (65 tests) (100 tests) (15 tests) (65 tests) (100 tests)

T1 0.0600 0.0524 0.1258 26.7% 10.8% 52.0%
T2 0.0467 0.0465 0.1144 26.7% 9.2% 48.0%
T∞ 0.0736 0.0529 0.1383 33.3% 10.8% 53.0%
T 2 0.0540 0.0178 0.0496 40.0% 3.1% 25.0%
W0 0.3877 - 0.2569 73.3% - 69.0%
P0 0.0000 0.1620 0.4352 0% 24.6% 76.0%

Table 12.2: Average approximate p-values of several Monte Carlo permutation tests of size M = 10,000 applied to three different datasets.

Figure 12.1: Approximate p-values from Monte Carlo permutation tests of size M = 10,000 for 15 possible compositions of y using six
different test statistics. The red line indicates α= 0.05.
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Figure 12.2: Approximate p-values from Monte Carlo permutation tests of size M = 10,000 for 65 possible compositions of y using five
different test statistics. The red line indicates α= 0.05.

Figure 12.3: Approximate p-values from Monte Carlo permutation tests of size M = 10,000 for 100 possible compositions of y using six
different test statistics. The red line indicates α= 0.05.

It is possible that the selection of measurements for the composition of y also influences the results. There-
fore, the six test statistics were further examined using the glass dataset. The glass background material con-
sists of 15 sources, each containing five measurements. Therefore there are

(5
3

)
= 10 possibilities to assign

three measurements to y. For every source and for every possible composition of y permutation tests were
performed to compute the approximate p-value using each of the six test statistics. The results per test statis-
tic can be found in the boxplots in Appendix B.1. Clearly, both the source and the composition of y have a lot
of influence on the results. The windows corresponding to the labels 3, 4 and 13 result in large approximate
p-values for almost every test statistic, indicating that the measurements from these windows are similar to
the measurements in x.

Taking both the type I and type II error into account, it seems that Hotelling’s T 2 test statistic performs best
for these datasets. Of course, the test statistics evaluated here are only a selection of all possibilities. Other
test statistics might be considered based on contextual assumptions of the traces. To obtain accurate results
from the permutation tests, a sufficient amount of measurements from the traces should be available. Due
to the simplicity of the tests and the absence of distributional assumptions, permutation tests can be a useful
approach to laboratory based pre-screening of evidence. However, if the value of evidence is required in
court, the permutation tests do not offer a solution and other forensic approaches need to be considered.





13
Conclusion

In this research, several statistical models are considered for both continuous and discrete forensic evidence.
First, a literature study was carried out to give an overview of the general framework provided by [32] based
on the concept of sampling models. These sampling models describe how the different sets of evidence are
assumed to be generated. The setup for both the common and specific source problem is clarified and the
most important differences between the two problems are highlighted. Using this framework, two statistics
to quantify the value of evidence are presented: the likelihood ratio and the Bayes Factor. A summary of the
general expressions derived to quantify the evidential value is given and relationships between the two statis-
tics in both the common source and specific source setting from [32] are presented.

The general framework is put into practice by considering the two-level normal-normal model, which is often
used for continuous forensic evidence. Using conjugate priors for the (multivariate) normal distribution, an
attempt is made to evaluate the Bayes Factor analytically. However, for both the common and specific source
problem no explicit expression for the Bayes Factor exists. Therefore, the Bayes Factor is approximated using
an appropriate Markov Chain Monte Carlo procedure. The theoretical convergence properties of the methods
are discussed for the one-dimensional two-level normal-normal model. For both the common and specific
source problem, the resulting Markov chain is proven to be geometrically ergodic under certain constraints.
The two-level normal-normal model is applied to both simulated and real data. Using one-dimensional sim-
ulated data, the impact of the choice of hyperparameters on the value of evidence is investigated and ex-
plained where possible. Moreover, within the common source problem more conservative values for the
Bayes Factor are observed than in the specific source problem. Applying the model to real data, both the
likelihood ratio and the Bayes Factor are compared in evaluating the value of evidence.
The likelihood ratio corresponding to the two-level normal-normal model is based on, among others, an es-
timate of the overall mean. In forensic statistics, the weighted as well as the unweighted mean are commonly
used to estimate the overall mean. Under conditions generally encountered in practice, it is shown that the
unweighted mean can be preferred over the weighted mean in the sense of mean squared error. Further-
more, a generalisation to the two estimators is given which can be constructed such that an approximation is
achieved with a smaller mean squared error than the other candidates. However, this approximation depends
on unknown model parameters so that in practice only a ‘toy estimator’ is obtained.
As an alternative to the two-level normal-normal model, copula models are proposed to model the depen-
dencies between features separately. Unfortunately, the general copula model is found to be too difficult to
use in practice. Two other existing copula models, using either a Gaussian copula or scores, are briefly dis-
cussed to give some idea about how copula theory could be used in forensic evidence evaluation.

For discrete evidence, the general framework is slightly adapted to remove within-source variation from the
model. By doing so, the framework from [32] is shown to be suitable for all types of forensic evidence, both
continuous and discrete. The one-level Bernoulli model is chosen to exemplify the discrete setup, since this
model is frequently used for discrete forensic evidence. The relation between the likelihood ratio and the
Bayes Factor is used to indicate which traces should be added to the background material when quantifying
the value of evidence. For both the common and specific source problem, the Bayes Factor is calculated
analytically. Again, it turns out that within the common source problem more conservative values of evidence
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are observed than in the specific source problem. The difference between the two problems is found to be
most noticeable in case a rare type trace is recovered, i.e., when the number of matches in a database is very
small.
Although the main focus in this research is on the value of evidence, the court is primarily interested in the
probability that the prosecution hypothesis is true given all available evidence. This posterior probability of
guilt is achieved by combining the value of evidence with the prior odds. Two approaches are considered to
calculate the posterior probability: using the Bayes Factor, the probability directly follows from an explicit
formula, whereas using the likelihood ratio, an integral over the model parameters needs to be evaluated.
The theoretical differences and similarities of both approaches are considered and it is found that only when
the Bayes Factor is large, the two approaches result in approximately the same probability. For the one-level
Bernoulli problem, this means that the two approaches are approximately equal when the size of the back-
ground material is large. Moreover, explicit lower and upper bounds are derived for the difference between
the two approaches and the difference is shown to be of order 1/n3

a , where na denotes the size of the back-
ground material.

Permutation tests are introduced as a nonparametric alternative to the general framework to evaluate foren-
sic evidence. Using the concept of exchangeability, two evidence sets are compared according to a certain
test statistic. Different test statistics are considered and both simulated and real data is used for the ana-
lysis. Since the permutation tests neither take background material into account nor quantify the value of
evidence explicitly, this approach should only be used for laboratory based pre-screening. If the permutation
test shows strong evidence against the prosecution hypothesis, then it might not be worthwhile to complete
further statistical analysis using the general framework.

Future work and recommendations
Statistical modelling of forensic evidence is an extremely broad subject and this research has only covered a
part of it. There already exists a lot of literature on forensic statistics, but from the subjects addressed in this
thesis the following future work and recommendations can be formulated:

• In this research, the main focus is on the two-level normal-normal model and the one-level Bernoulli
model. Both models are quite restrictive and are made even more strict by the priors imposed on the
model parameters. In practice, it is unlikely that recovered evidence exactly fits in this framework.
Therefore, other (nonparametric) models, for instance based on kernel density estimates, are often
considered. Alternatively, non-informative priors could be used for the model parameters. It is inter-
esting to explore what impact such models would have on the (difference between) common source
and specific source problems.

• The Bayes Factor can often not be computed analytically, but iterative methods can be considered.
Besides Monte Carlo integration, other numerical approximation methods of the Bayes Factor, such as
Bernstein von Mises or Laplace approximation [32], could be used. New approximation methods will
also bring new questions about convergence, which could be investigated from both a theoretical and
a practical point of view.

• Until recently, only common source problems were considered in forensic statistics. The introduction
of the specific source problem has raised a lot of questions about which approach should be used in
practice. To be able to accurately model the specific source distribution, there needs to be a sufficient
amount of specific source evidence available. More application to real evidence should decide if using
the specific source framework is attainable in practice or that the more conservative common source
setup should be preferred.

• Although there already exist many statistical models to evaluate forensic evidence, it is important to
keep in mind that alternatives still remain. This is illustrated in this research by considering copula
models and permutation tests. Even though the copula models were found to be too complicated to
apply to feature-based evidence, the possibilities for score-based evidence could be further investi-
gated. And where the permutation test might be too simplistic to present in court, their nonparametric
approach is interesting and could be further explored for the development of new methods to evaluate
the value of evidence.
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Detailed calculations

A.1. Two-level normal-normal model
A.1.1. Derivation 1
For the two-level normal-normal model, it follows that∫ ∞
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A.1.2. Derivation 2
The probability density function of the scaled inverse chi-squared distribution with parameters ν and σ2 is
given by [16]
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(µπ− ȳt )2

)
and ȳt = 1
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A.1.3. Likelihood ratios for higher dimensional model
A similar calculation as Derivation 1 is needed to derive the likelihood ratios for the higher dimensional
models with k features:∫
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Using this derivation with the appropriate evidence sets and sources, the likelihood ratios can be easily com-
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puted. For the multidimensional common source problem, the likelihood ratio becomes:
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where yu = (yu11, . . . ,yu1nu1
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). This likelihood ratio is the same as the one given in for example
[7], which was proven in [22].

For the multidimensional specific source problem, the likelihood ratio is given by:
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This is a different likelihood ratio than for example given in [7], since a different model is proposed for the
evidence.

A.1.4. Full conditionals for higher dimensional model
To sample from π(θa |ea ,eu1 ,eu2 , Hd ) for the common source problem, the following full conditionals are
needed:
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To sample fromπ(θa |ea ,eu , Hd ) andπ(θs |es , Hd ) for the specific source problem, the following full condition-
als are needed:
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Additional figures

B.1. Boxplots of approximate p-values for glass data

Figure B.1: Approximate p-values from Monte Carlo permutation tests of size M = 10,000 for 10 possible compositions of y for each of
15 windows using the test statistic T1. The red line indicates α= 0.05.

Figure B.2: Approximate p-values from Monte Carlo permutation tests of size M = 10,000 for 10 possible compositions of y for each of
15 windows using the test statistic T2. The red line indicates α= 0.05.
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Figure B.3: Approximate p-values from Monte Carlo permutation tests of size M = 10,000 for 10 possible compositions of y for each of
15 windows using the test statistic T∞. The red line indicates α= 0.05.

Figure B.4: Approximate p-values from Monte Carlo permutation tests of size M = 10,000 for 10 possible compositions of y for each of
15 windows using the test statistic T 2. The red line indicates α= 0.05.

Figure B.5: Approximate p-values from Monte Carlo permutation tests of size M = 10,000 for 10 possible compositions of y for each of
15 windows using the test statistic W0. The red line indicates α= 0.05.

The boxplot for the test statistic P0 based on the ranks of interpoint distances is not given, since all approxi-
mate p-values are equal to 0.
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