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A Joint Extrinsic Calibration Tool for Radar,
Camera and Lidar

Joris Domhof , Julian F. P. Kooij , and Dariu M. Gavrila

Abstract—We address joint extrinsic calibration of lidar, camera
and radar sensors. To simplify calibration, we propose a single cal-
ibration target design for all three modalities, and implement our
approach in an open-source tool with bindings to Robot Operating
System (ROS). Our tool features three optimization configurations,
namely using error terms for a minimal number of sensor pairs,
or using terms for all sensor pairs in combination with loop clo-
sure constraints, or by adding terms for structure estimation in a
probabilistic model. Apart from relative calibration where relative
transformations between sensors are computed, our work also
addresses absolute calibration that includes calibration with respect
to the mobile robot’s body. Two methods are compared to estimate
the body reference frame using an external laser scanner, one based
on markers and the other based on manual annotation of the laser
scan. In the experiments, we evaluate the three configurations for
relative calibration. Our results show that using terms for all sensor
pairs is most robust, especially for lidar to radar, when minimum
five board locations are used. For absolute calibration the median
rotation error around the vertical axis reduces from 1◦ before
calibration, to 0.33◦ using the markers and 0.02◦ with manual
annotations.

Index Terms—Calibration, camera, intelligent vehicles, lidar,
optimization, ROS, radar, robots.

I. INTRODUCTION

NOWADAYS, mobile robots have sensor setups consisting
of multiple sensors for environmental perception. To in-

crease robustness, these sensor setups consist of various sensing
modalities such as lidars, cameras and radars [1], [2]. For effec-
tive sensor data fusion, a geometrical description is needed that
describes the location and orientation of all the robot’s sensors
with respect to each other, and to its body. For that, all sensors
need to be calibrated.

One can distinguish two types of calibration tasks, namely
intrinsic calibration and extrinsic calibration. Intrinsic calibra-
tion involves estimating the internal parameters of the sensor.
For a camera, this calibration procedure consists of estimating
all entries of the camera projection matrix (focal length, skew
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parameter and principal point [3]) and the distortion coefficients
of the lens. For a lidar, the intrinsic parameters are range offset,
scale factor, vertical offset, elevation angle and azimuth an-
gle [4]. Extrinsic calibration instead estimates the orientation
and the position of the sensor (i.e. sensor pose) with respect to a
frame of reference, which is also called pose estimation [5] and
sensor registration [6].

Extrinsic calibration methods can further be split into two
groups: target-less and target-based methods. Target-less meth-
ods (e.g. [7]–[9]) are potentially able to perform online cali-
bration as these methods use natural features in the environ-
ment to calibrate the sensors. However, target-less calibration
methods are challenging since these methods need to deal with
asynchronous and heterogeneous sensors. Target-based methods
instead use specifically designed physical calibration objects
(i.e. targets) to obtain robust features. A typical example of a
calibration target is the checkerboard pattern for intrinsic and
extrinsic (stereo) calibration of cameras [3], [5], [10]. Since each
sensing modality (lidar, camera and radar) works on a different
wavelength and operating principles, it is challenging to find
corresponding features across sensing modalities. Therefore, we
focus on target-based procedures to obtain accurate key points
for all involved sensors at once. Multiple correspondences can be
found by repositioning the calibration target at various locations
in the overlapping Field of View (FOV) of the sensors.

While reasonable initial estimates of all sensor poses can be
obtained from technical drawings of the robot (e.g. computer-
aided design (CAD) models), an extrinsic calibration considers
the sensor measurements to determine their actual poses. In this
work, we consider a rigid robot body, which means that the
transformations between the sensors and the body coordinate
frame are constant (i.e. no relative movement). Extrinsic sensor
calibration can be split into two procedures: First, a relative cali-
bration procedure estimates the sensor poses relative to all other
sensors, see Fig. 1. Second, an absolute calibration procedure
estimates sensor poses with respect to a body coordinate frame
of the robot. If a relative calibration is done first, the Absolute
calibration only needs to estimate the transformation of one
sensor to the robot body to complete the geometric model.

Existing multi-modal calibration methods usually only
address combinations of two sensor sensing modalities.
Accordingly, each approach uses a calibration target design that
only works for their sensor pair, e.g. lidar and monocular camera.
For more complex sensors setups involving radar, camera and
lidar calibration, such as intelligent vehicles, multiple calibration
boards and calibration tools would be needed to calibrate all
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Fig. 1. Schematic overview of an example sensor setup with three coordinate
frames (lidar, camera and radar) with transformation matrices from one reference
frame to another, e.g. l2c for lidar to camera. Joint multi-sensor calibration
requires detections from multiple target locations which can be detected by all
sensors simultaneously.

Fig. 2. Optimization configurations for joint calibration. The symbolsSi stand
for sensor reference frames, andT i,j for coordinate frame transformations from
sensor reference frame i to j. 2(a) Minimally connected pose estimation (MCPE)
relies on a reference sensor S1; 2(b) Fully connected pose estimation (FCPE)
adds the loop constraintT 2,3 · T 1,2 = T 1,3. 2(c) Pose and structure estimation
(PSE) also estimates latent variables M that represent the true board locations
(i.e. the structure).

sensors. However, as we will show, optimization of all sensor
pairs jointly should be preferred over separate pairwise calibra-
tion. Furthermore, a joint extrinsic calibration procedure reduces
the calibration effort and calibration time, since the sensors poses
are estimated at once using a single calibration target design.
Related work also typically only addresses relative calibration,
while in practice absolute calibration is often needed.

In this work, we focus on a joint extrinsic sensor calibration
procedure for sensor setups containing lidars, radars and/or
cameras, using a single target design for all these sensing
modalities. We consider three configurations to jointly cali-
brate such multi-modal setups, as shown in Fig. 2: Minimally
Connected Pose Estimation (MCPE) estimates sensor-to-sensor
transformations with respect to a single reference sensor. Fully
Connected Pose Estimation (FCPE) provides transformations
between all sensor pairs by adding a constraint that forces
loop closure. The configuration Pose and Structure Estimation
(PSE) jointly estimates sensor poses as well as the structure (i.e.
calibration board poses). Additionally, we address the problem
of target-based absolute calibration to relate the sensors to a
robot’s body coordinate frame. Our work is implemented in
an open-source tool with bindings to Robot Operating System
(ROS).

The next section addresses the related work in detail. After
that, our proposed approach is presented that elaborates on
the three joint calibration configurations and the procedure to
calibrate the sensors with respect to the robot coordinate frame.

Finally, the experimental section provides comparisons of these
three configurations on real sensor data from a sensor setup
with a lidar, a stereo camera and a radar. Furthermore, the two
methods are evaluated to determine the body reference frame
for absolute calibration.

II. RELATED WORK

An overview of related work on multi-modal extrinsic calibra-
tion is provided in Table I, which is elaborated on in the following
subsections. Note that a sensor pair with a stereo camera could
be calibrated as two separate monocular cameras, however this is
suboptimal if a full point cloud of the stereo camera is available
(i.e. in case of a calibrated stereo camera).

A. Pairwise Calibration

The method of Peršić et al. [11] focuses on lidar to radar
calibration. Rectangular shaped objects are inaccurate to detect
in a lidar sensor, because nearly vertical or horizontal edges
might fall between lidar scan planes (finite resolution issues).
Therefore the authors use a triangular shaped Styrofoam cali-
bration target with an attached metal trihedral corner reflector.
Corner reflectors are a common target for radar because of their
distinct reflectivity, the Radar Cross Section (RCS) value. The
reprojection error between point cloud data and radar detections
is minimized in their optimization procedure. In addition, the
RCS values of multiple target locations are used to refine a subset
of the transformation parameters.

Lidar to stereo calibration can be performed using the method
of Guindel et al. [12]. This method uses a calibration target with
four circles to calibrate a lidar and a stereo camera. Iterative
Closest Point (ICP) [28] minimizes the error between the de-
tected circle centers in both sensors.

For lidar to monocular camera calibration there are more
methods available, namely [4], [8], [13]–[20]. Mirzaei et al. [4]
perform intrinsic calibration of the lidar as well extrinsic calibra-
tion with respect to a monocular camera. The authors refine an
analytical solution for intrinsic and extrinsic parameters by an
optimization procedure based on iterative least squares. Geiger
et al. [14] use data from multiple checkerboard patterns that
are positioned in the environment to calibrate a lidar and a
monocular camera. A set of initial transformation hypothesis
are generated by a global registration procedure that minimizes
the distance between the normal vectors and the centroids of
the checkerboard patterns. After that, the set of transformation
hypothesis is refined using ICP that minimizes the sum of
point-to-point distances.

Extrinsic calibration of radar and monocular camera is per-
formed by several methods [11], [21]–[23], [29]. El Natour
et al. [21] solve a system of equations with additional spherical
and geometrical constraints to obtain the transformation matrix.
Both [22] and [23] estimate a homography projection between
the two sensors, which means that the full 3D transformation is
not available.
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TABLE I
RELATED WORK ON MULTI-MODAL EXTRINSIC SENSOR CALIBRATION. THE ABBREVIATIONS IN COLUMN OPTIMIZATION (OPTIM.) DENOTES THE OPTIMIZATION

PROCEDURE WHERE PAIRWISE REFERS TO OPTIMIZATION OF THE TRANSFORMATION BETWEEN A PAIR OF SENSORS AND WHERE JOINT REFERS TO JOINT

OPTIMIZATION OF THE WHOLE POSE GRAPH. IN ADDITION, THE COLUMN ABS./REL. INDICATES IF THE WORK CONSIDERS ABSOLUTE CALIBRATION OR RELATIVE

CALIBRATION. FURTHERMORE, THE LETTERS L, R, S AND M STAND FOR LIDAR, RADAR, STEREO CAMERA AND MONOCULAR CAMERA, RESPECTIVELY. FOR

INSTANCE, THE COLUMN L & M STANDS FOR CALIBRATION OF THE SENSOR PAIR OF LIDAR AND MONOCULAR CAMERA. SYMBOLS � AND ✗ INDICATE

WHETHER THE EXPERIMENTS, DOCUMENTATION OR SOFTWARE SHOW THAT THE WORK CAN CALIBRATE A PARTICULAR SENSOR PAIR. SYMBOL ∼ INDICATES

THAT A SENSOR PAIR WITH A STEREO CAMERA COULD BE CALIBRATED AS TWO SEPARATE MONOCULAR CAMERAS, IN PRINCIPLE. THE COLUMN SW INDICATES

IF THE SOFTWARE IS OPEN-SOURCE AND AVAILABLE TO THE COMMUNITY.

1Our repository contains a calibration board detector for monocular cameras, therefore sensor pairs with a monocular camera can also be calibrated.

B. Joint Calibration

In order to calibrate a multi-modal sensor setup, one could
simply pairwise calibrate all sensors with respect to one refer-
ence sensor, i.e. minimally connected pose estimation.

Alternatively, one could get inspiration from Simultaneous
Localization and Mapping (SLAM), where loop closure is ap-
plied to readjust a trajectory of poses when the robot revisits
the same location [30]. Fully connected pose estimation, a
loop closure can be added as a constraint in the optimization
procedure in extrinsic sensor calibration. In case of loop closure,
moving over the edges in the loop (see Fig. 2(b)) should result
in the original pose, i.e. the multiplication of the transformation
matrices of sensors in a loop results in the identity matrix. Sim
et al. [25] use this ‘loop closure’ constraint for calibration of a
lidar with multiple cameras.

Visual Odometry estimates the ego-motion based on matched
features in consecutive images, and it could include bundle
adjustment that refines all poses in a (sub)trajectory [31]. Bun-
dle adjustment simultaneously refines sensor poses and 3D
coordinates of landmarks [31]. A similar approach can be ap-
plied to extrinsic calibration. Pusztai et al. [26] uses a ‘bundle
adjustment-like’ approach that consists of two steps, where in
the first step the lidar errors are minimized and in the second
step the camera re-projection errors are minimized. Owens
et al. [27] use a graph optimization approach to calibrate a setup
consisting of multiple lidars and cameras.

C. Contributions

The overview in Table I reveals several open issues: Existing
work only addresses relative calibration, is not able to calibrate
all combinations of radar, lidar, and (stereo) camera jointly, and
the community lacks an open-source tool to jointly calibrate
such a multi-modal sensor setup.

Our work addresses these issues with four contributions. First,
we examine three extrinsic calibration configurations to jointly
calibrate a sensor setup consisting of lidars, cameras and radars.
Important factors like configuration choice, required number of
calibration board locations and choice for the reference sensor
are investigated using a real multi-modal sensor setup. Second,
we propose and compare two methods to estimate the pose of the
body reference frame of the robot in order to perform absolute
calibration. Third, a calibration target design that is detectable
by lidar, camera and radar is presented. Fourth, the software
is released as an open-source extrinsic calibration tool with
bindings to Robot Operating System (ROS)1. For ROS users, we
also provide a tool that updates the Unified Robot Description
Format (URDF) file that describes the robot model, to facilitate
user-friendly usage of our tool on real robotic platforms.

This article extends our conference contribution [32], which
only considered relative calibration. In the experiments, we
have increased the number of combinations of calibration board
locations. In addition to relative calibration, we now also discuss
absolute calibration, and compare two approaches to estimate
the body’s reference frame using an external laser scanner. Addi-
tional outdoor experiments with a moving vehicle are performed
to assess the impact of calibration.

III. PROPOSED APPROACH

In this section we present our joint extrinsic calibration tool to
calibrate lidar, camera and radar jointly with respect to the body
reference frame of the robot. Fig. 3 shows the pipeline with all
steps to calibrate the sensors with respect to the body reference
frame of the robot.

The next section discusses the calibration board design. Then,
the detectors are described that extract the key points from this

1github.com/tudelft-iv/multi_sensor_calibration
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Fig. 3. Extrinsic multi-sensor calibration pipeline. The first three steps perform relative calibration estimating the transformation matrices between all sensors
using one of three optimization configurations (MCPE, FCPE, PSE). For absolute calibration, the next two steps relate the sensor frames to the robot body frame,
by scanning the calibration targets and the robot body with an external laser scanner. The final step updates the URDF file with the new calibration results.

Fig. 4. From left to right, front view drawing, side view drawing, and an image
of the back of the target. The trihedral corner reflector is indicated in red (triangle
and arrow).

calibration board design. Using the detections, we present the
details on pairwise calibration and then we extend that to joint
calibration of a multi-modal sensor setup that consists of more
than two sensors. The last part contains the proposed approach
for absolute calibration.

A. Calibration Target Design

The design of the calibration target should facilitate accu-
rate detections for all sensing modalities. For accurate radar
detections, we use a trihedral corner reflector that facilitates
radar reflections with specific RCS values. To limit the effect
on detectability of the corner reflector, Styrofoam is chosen as
material for the calibration target [33]. As target for lidar and
camera, we pursue the approach of [12], [15] and use circular
holes. These holes have edges, which are perfect features to
detect in both sensors. The layout of the target, with a size of
1.0 m by 1.5 m, with circle diameter a1 = 15 cm, and distance
between the centers a2 = 24 cm is shown in Fig. 4. The reflector
is positioned in the middle of the four circles at the back of the
Styrofoam plate (at a3 = 10.5 cm from the front).2

B. Detection of Calibration Target

We have adapted the lidar detector and the stereo detector
of [12]. For lidar and camera, the 3D location of the circle centers
are returned as features. Incorrect detections can be discarded
since the geometry of the board is known and there are four
feature points. If the ratio between the diagonal and the side of
the square is not equal to

√
2, detections can be discarded.

2See README file in the repository for details on the calibration board.

The radar measurements consist of 2D locations in polar
coordinates and a RCS value. First, all detections are kept that
are within the expected RCS range. From all those detections,
the closest measurement to the robot is taken as radar detection
as we assume that the calibration board is the closest target in
the vicinity of the robot.

For the monocular camera detector, the four circles are de-
tected based on edges in the 2D image plane. Using the known
geometry of the calibration board, perspective-n-point algorithm
(PnP) [34] can be used to extract the 3D locations of the circle
centers.

C. Pairwise Calibration

First, we will explain pairwise calibration, which we then
extend to joint calibration of a setup with N sensors in
Section III-D.

The calibration target is positioned atK different locations in
FOV of two sensors, referred to as sensor 1 and sensor 2. Each
detector returns K detections y1 = {y1

1, . . . ,y
1
K} for sensor 1

and y2 = {y2
1, . . . ,y

2
K} for sensor 2. Each calibration board

location provides four detections in 3D for lidar and camera:
yk = (yk(1), . . . , yk(4)). Furthermore, the radar detector only
returns a single detection as the target has one trihedral corner
reflector. This detectionyk = (yk(1)) is defined in 2D Euclidean
coordinates. Since a detector might not always detect the target,
for instance if the target is not in the sensor’s FOV, we use an
indicator variables μi

k to represent if the detector of sensor i
was able to successfully detect calibration board location k.
This means that μi

k = 1 if the target was detected and μi
k = 0

otherwise.
Extrinsic calibration between the two sensors aims to estimate

the relative rigid transformation T 1,2. This transformation can
be used to project a point from the coordinate frame of sensor 1
to the coordinate frame of sensor 2. The rigid transformation is
expressed as a 4× 4 matrix for homogeneous coordinates that
consists of a 3× 3 rotation matrixR and 3D translation t vector,

T 1,2 =

[
R t
0 1

]
. (1)

To use this homogeneous representation, each 3D point (x, y, z)
is represented as an augmented 4D vector (x, y, z, 1). To
parametrize the 6 degrees of freedom of transformation T 1,2, we

Authorized licensed use limited to: TU Delft Library. Downloaded on February 02,2022 at 12:23:11 UTC from IEEE Xplore.  Restrictions apply. 
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use the vector θ1,2 = (tx, ty, tz, vx · α, vy · α, vz · α). The rota-
tion part is expressed by an axis-angle representation (using Ro-
drigues’ rotation formula), namely as a unit vector (vx, vy, vz)
for the axis of rotation, and an angle α.

For the k-th target location, the total squared Euclidean dis-
tance of the four detected circle centers is used to define the
transformation error between lidar and camera detections,

εk
(
θ1,2

)
=

4∑
p=1

∥∥∥y2k(p) − T 1,2 · y1k(p)
∥∥∥2 . (2)

If the sensor pair contains a radar, a different error term is used.
Let yR

k represents the radar measurement of target k, then the
squared Euclidean error equals

εk
(
θ1,R

)
=

∥∥∥yRk(1) − p(T 1,R · g(y1
k))

∥∥∥2 . (3)

Here, function g(yk) calculates the expected 3D position of
the trihedral corner reflector in the reference frame of sensor
1 by using the four circle center locations in detection yk and
the geometry of the calibration board. Then, function p(qk)
first converts 3D Euclidean point qk to spherical coordinates
(rk, φk, ψk), disregards the elevation angle ψk, and converts
(rk, φk) back to 2D Euclidean coordinates.

In addition, we add constraints that enforce that the projected
3D points lie within radar Field of View (FOV). To achieve
that, the elevation angles ψk for all calibration board locations
k should be within the maximum view angle ψmax of the radar,

|ψk| − ψmax ≤ 0, ∀k. (4)

Pairwise calibration is now formulated as an optimization
problem that finds the optimal transformation between both
sensors by minimizing the total error f(θ1,2) between all K
calibration targets,

f(θ1,2) =

K∑
k=1

μ2
k · μ1

k · εk
(
θ1,2

)
. (5)

The indicator variables μ2
k · μ1

k ensure calibration board loca-
tions K that are detected by both sensors are included. By
minimizing the error criterion f(θ) subject to zero or more
(in)equality constraints (e.g. equation (4)), the optimal relative
transformation are obtained.

Sequential Least SQuares Programming (SLSQP) from the
SciPy library [35] is used to solve the optimization problem,
which is potentially subject to constraints. To initialize the opti-
mization procedure, an initial solution is required. For that, the
optimal rotation between the point cloud containing centroids
of the four circle detections for all calibration board locations
K is computed by Kabsch algorithm [36]. Using this rotation
matrix, the initial translation vector can be determined. To find
an initial transformation for a sensor pair containing a radar, it
is assumed that detections lie on the radar plane (zero elevation
angle).

D. Joint Calibration With More Than Two Sensors

To generalize extrinsic calibration from pairwise calibration
to N sensors, three configurations are considered to jointly

calibrate a multi-sensor sensor setup, namely MCPE, FCPE,
PSE. Instead of estimating a single edge (i.e. sensor-to-sensor
transformation), now multiple edges are present. The three con-
figurations for relative calibration are visualized in Fig. 1 and
will be discussed in this section.

a) Minimally connected pose estimation (MCPE). In the first
configuration, all sensors are calibrated in a pairwise manner
with respect to a selected ‘reference’ sensor. This results in a
minimally connected graph, which is visualized in Fig. 2(a). The
edges describe the transformation from the ‘reference sensor’ to
the other sensors. Without loss of generality, let’s assume that
the first sensor is selected as the reference sensor. In this case,
the optimization criterion is formulated as

f(θ) =

N∑
i=2

[
K∑

k=1

μi
k · μ1

k · εk
(
θ1,i

)]
. (6)

Note that transformations between any non-reference sensors
i, j can be computed from the known transformations in this
graph, i.e. T i,j = T 1,j · (T 1,i)−1.

b) Fully connected pose estimation (FCPE). In the second
configuration, we consider optimizing transformations between
all sensors at once, without assigning a specific reference sensor.
This results in optimizing edges in a fully connected graph (see
Fig. 2(b)), akin to a loop closure optimization in SLAM. Instead
of estimating N − 1 transformation matrices with respect to a
reference sensor, all transformation matrices between all

(
N
2

)
combinations of two sensors are computed. In this case, the
error functions equals

f(θ) =

N∑
i=1

N∑
j=i+1

[
K∑

k=1

μi
k · μj

k · εk
(
θi,j

)]
. (7)

To ensure that all loops l equal the identity matrix, the loop
closure constraint is included in the optimization problem,

(T sl,1 · T sl−1,sl · . . . · T 1,2)− I = 0, ∀l (8)

where sl equals the number of sensors in this loop l. In this
work, we only consider all

(
N
3

)
combinations of sl = 3 sensors.

The advantage of this optimization is that it is potentially more
robust against noisy observations from one reference sensor.
The disadvantages are that the number of error terms increases
with the number of sensors N and that by adding extra sensors,
additional loop constraints must be included as well.

c) Pose and structure estimation (PSE). The third configu-
ration is called pose and structure estimation and it is visual-
ized in Fig. 2(c). This configuration has similarities to bundle
adjustment since it simultaneously estimates all sensor poses
and calibration board poses. This means that both the unknown
structureM = (m1, . . . ,mK) of the true target poses in a fixed
coordinate frame, and the transformation TM,i from the fixed
frame to each sensor i are estimated. Observations are consid-
ered samples from a probabilistic measurement model, which
uses ŷMk(p) = h(mk, p), with zero-mean Gaussian noise,

yik(p) = TM,i · ŷMk(p) + ηi, ηi ∼ N (0,Σi). (9)
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Fig. 5. For absolute calibration, the transformation between body reference
frame B and a sensor Si (solid arrow) is found indirectly by first determining
the transformations to both frames from an external reference sensor E (dashed
arrows).

Therefore, instead of the squared Euclidean distance, we use the
squared Mahalanobis distance, which equals

D2
Σ(a, b) = [a− b]� (Σ)−1 [a− b] (10)

with vectors a and b, and covariance Σ. In the optimization, we
jointly optimize the transformations and structure,

εk
(
θM,i,M

)
=

4∑
p=1

D2
Σi

(
yik(p), T

M,i · ŷMk(p)
)
, (11)

f(θ,M) =

N∑
i=1

[
K∑

k=1

μi
k · εk

(
θM,i,M

)]
, (12)

and initialize all Σi as identity. We use an iterative procedure
to calculate the diagonal elements of the noise covariances.
Using the result of the first optimization, the noise covariances
are recalculated and updated, after which the optimization of
f(θ,M) is repeated. This process is continued until all variances
have converged. Note that to determine a unique solution, one
transformation TM,i must be fixed.

This probabilistic formulation has the potential advantage
that it avoids having heterogeneous error functions (pixel ver-
sus Euclidean). Instead, a homogeneous error function is used
that comprises of the sum of squared Mahalanobis distances.
Furthermore, it provides the option to include prior knowledge
on board and sensor poses, however we have not pursued this
direction here. The disadvantages are also twofold. First, the
optimization is more complex and therefore it takes more time.
Second, the loop closure constraint is not explicitly enforced.

E. Pose Estimation of Body Reference Frame

To estimate the pose of the body reference frame of the
robot, minimal three 3D reference points on the exterior of the
robot are required. To determine the set of 3D points during
calibration, an external sensor must be used which can detect
these reference points, and the calibration target at multiple
locations. This sensor should have a high resolution and large
field of view to accurately locate both the 3D reference points
on the exterior as well as the calibration target. From the shared
detected calibration targets, the transformation from the external
sensor to the robot sensor can be found, similar to for relative
calibration. After the robot reference frame is determined in the
external sensor frame too, the sought transformations between
the sensor and the robot frame can be computed directly, as
illustrated in Fig. 5.

To localize the 3D body reference points within the external
sensor point cloud, two general approaches can be taken:

1) Manual labeling: The locations of the set of the 3D
reference points can be manually labeled in the sensor
data. These locations can be obtained by manually labeling
each individual 3D reference point in the point cloud.
Alternatively, multiple points can be labeled on a visible
part of the robot’s exterior with a specific geometric shape
(e.g circular shape). After that, a geometrical shape can be
fitted on the set of labeled points.

2) Markers: The locations of the 3D reference points can
be extracted by placing physical markers that the external
sensor can easily detect. This is less laborious than labeling
the data afterwards, but the accuracy depends fully on how
precise the markers could be placed when the calibration
procedure was performed.

In practice, we use a lidar laser scanner to construct a point
cloud model of the body, and either select the 3D reference points
in this point cloud, or use markers that the scanner can accurately
detect.

IV. EXPERIMENTS

To evaluate the performance of our tool, sensor data of lidar,
camera and radar is recorded with our Toyota Prius vehicle. Our
Toyota Prius vehicle is equipped with:
� a Velodyne HDL-64E lidar (on roof)
� a Continental ARS430 radar (behind front bumper)
� a stereo camera 2×UI-3060CP Rev. 2 (behind windscreen)
For our experimental validation, we calibrate the vehicle with

the calibration target in our garage. The calibration target is
positioned in front of the car at 30 different locations within ap-
proximately 5 meters. From these 30 calibration board locations,
29 locations were within the field of view of all three sensors
(lidar, the stereo camera and the radar). See Fig. 6(a) for the
output of our calibration tool, where the detected calibration
target locations for all three sensors are shown in the lidar
reference frame. For absolute calibration, we use a Leica P40
laser scanner as the external sensor, see Fig. 6(b). The P40 is
a high resolution laser scanner which is able to localize itself
in the environment using multiple black-white markers on the
walls and floor. The Leica scanner was placed at several positions
around the car, and using the markers and Leica software a
merged point cloud of the vehicle is obtained, shown in Fig. 6(c).
During calibration, the P40 is positioned next to the car such
that this sensor can see both the car and 12 calibration board
locations.

We evaluate the three configuration (MCPE, FCPE and PSE)
for relative calibration on data from 29 calibration board loca-
tions. The computation time of the optimization depends on the
number of sensors and the number of calibration board locations.
If all 29 calibration board locations are used, the computation
time is less than 1 s for the MCPE configuration, approximately
10 seconds for the FCPE configuration and approximately
5 minutes for PSE configuration on a high-end computer (with
an Intel Xeon W-2123 @ 3.60 GHz CPU).

Authorized licensed use limited to: TU Delft Library. Downloaded on February 02,2022 at 12:23:11 UTC from IEEE Xplore.  Restrictions apply. 



DOMHOF et al.: A JOINT EXTRINSIC CALIBRATION TOOL FOR RADAR, CAMERA AND LIDAR 577

Fig. 6. (a) Output of our calibration tool. All sensors poses and all detections
of the calibration board are plotted in the lidar reference frame. 6(b) Absolute
calibration setup, using an external Leica laser scanner, for a vehicle with a lidar,
stereo camera, and radar. 6(c) Merged point cloud from the Leica scanner, with
the calibrated coordinate systems of the three sensors after absolute calibration
using the Manual labeling approach.

In Section IV-A, we investigate the performance of our tool
for relative calibration, and in Section IV-B for absolute cali-
bration. Finally, in Section IV-B, we present additional outdoor
experiments to demonstrate the impact outside the garage in the
intended environment of the vehicle.

TABLE II
COMPARISON WITH BASELINE METHOD

TABLE III
MEDIAN OF THE RMSE [MM] FOR 200 COMBINATIONS OF 10

CALIBRATION BOARD LOCATIONS

A. Relative Calibration

To assess calibration quality, we compute for each pair of
sensors the residual error, i.e. the Euclidean distance between
the measured target positions after applying the found transfor-
mation to put all measurements in the same reference frame.
We report the root mean squared error (RMSE) of all pairwise
transformations, namely lidar to stereo camera (l2c), lidar to
radar (l2r), stereo camera to radar (c2r). In the following sec-
tions, we compare our relative calibration approach to baseline
calibration methods, and assess the choice of reference sensors,
the number of target locations, and sensitivity to additional noise.

1) Comparison to Baseline Method: First, we compare our
method with the single-target method of Guindel et al. [12] that
only calibrates a lidar to stereo camera pair. For our MCPE
implementation when using sensor data of a single target loca-
tion and the single target method of Guindel, the calibration is
performed for all 29 calibration board locations and the mean
and standard deviation of the RMSE are provided in Table II.
It can be seen that both single target implementations provide
a similar result. In addition, we investigate the benefit of using
multiple calibration board locations. Table II shows that the l2c
RMSE reduces from 39 mm to 15 mm.

2) Choice of MCPE Reference Sensor: Next, we investigate
if the choice for reference sensor of the MCPE configuration
influences its results. We randomly pick 200 times 10 calibration
board locations and calibrate the sensors. Table III shows the
median RMSE for MCPE with all three reference sensors and
for FCPE and PSE. The Table shows that all choices (lidar,
camera and radar) give similar RMSE, however selecting the
radar as reference sensors results in two links that contain radar
measurements. Since radar data is 2D (range and angle) having
two links with radar data might result in less accurate results,
therefore we use the lidar, with a FOV of 360◦, as reference
sensor from now on. Furthermore, the RMSE for the sensor pairs
l2r and c2r shows that configurations FCPE and PSE perform
better than the MCPE configuration.

3) Dependence on the Number of Calibration Board Loca-
tions: To understand the impact of the number of calibration
board locations, K, we vary K from 3 to 29 locations. For
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Fig. 7. The median and median absolute deviation of the RMSE on 100 board
locations for varying number of calibration board locations (K).

each value of K, 100 sets of K randomly selected locations
are used to calibrate the sensor setup. Fig. 7 shows the median
and median absolute deviation of the RMSE over all 100 sets.
Both FCPE and PSE show smaller RMSE than MCPE for the
l2r transform. The RMSE for l2c and l2r transforms for FCPE
and PSE configurations have converged to ≤ 2 cm if more than
10 calibration board locations are used. The configuration FCPE
shows the best performance for l2r, since the RMSE is smaller
than 1.5 cm when using all 29 board locations.

4) Sensitivity to Observation Noise: We also compare the
robustness of the three configuration under additional measure-
ment noise for a sensor, and wonder how it affects the other
sensor pairs. Zero-mean Gaussian noise N (0, σ2I3) is added to
the 3D measurements of the lidar detections. The median and
median absolute deviation of the RMSE for various values of
σ are plotted in Fig. 8, and it can be seen that the RMSE of
sensor pairs with lidar increase as a result, though the c2r errors
for both FCPE and PSE remain fairly constant as more noise
is added. Furthermore, the RMSE for l2c and l2r remain lower
than the RMSE c2r for most of values of σ.

B. Absolute Calibration

For absolute calibration, we seek the additional transforma-
tion between the Velodyne lidar coordinate frame and the vehi-
cle’s body reference frame using the external Leica laser scanner.
This means that the transformation between the Velodyne and
the body reference frame TB,i (see Fig. 5) needs to be assessed.
In our application, the origin vehicle’s body reference frame
is at the center of the rear axle projected onto the ground, the
X-axis is pointing forward, the Y-axis is pointing to the left rear
wheel and the Z-axis is perpendicular to the ground (pointing
upwards). Hence, to determine the pose of the body reference
frame, the location of the wheel centers and ground plane must
be determined.

In Section III, several practical approaches are discussed to
determine 3D reference points on the body reference frame,
namely Markers and Manual labeling, which we implemented
as follows:

Fig. 8. RMSE error as function of Gaussian observation noise N (0, σ2I3)
added to the lidar observations. The plotted median and median absolute devi-
ation are based on 100 random combinations of 10 calibration board locations.

TABLE IV
COMPARISON OF THE STANDARD DEVIATIONS OF THE WHEEL CENTER

LOCATION FOR THE MANUAL LABELING APPROACHES

1) As a first Manual labeling approach, each wheel center
location is manually labeled by selecting a single point
in the Leica point cloud (see Fig. 6(c)). To project those
locations to the ground, the normal vector and distance to
the ground is found by fitting a planar model on the lower
part of the point cloud.

2) Another Manual labeling approach is to manually select
N points on the rim of the wheel, and fit a 3D circle through
those N points to determine the wheel center.

3) For the Markers approach, we position four Leica markers
next to the wheels on the ground (see markers in Fig. 6(b))
below the axles.

This section will compare the robustness of the labeling
options over multiple repetitions, and compare the rotational
errors of the approaches with respect to the ground normal.

1) Robustness of Manual Labeling: First, we compare the
two manual labeling approaches by labeling the left rear wheel
of the car 10 times. Table IV shows the standard deviations in X,
Y and Z positions in Leica reference frame. The results shows
that labeling the wheel centers using multiple points (N = 10)
on the rim and fitting a 3D circle provides slightly better results
than labeling wheel centers using a single 3D point. Despite that
the differences between the labeling approaches are small, we
will use a 3D circle fit on the rim to determine the wheel centers
from now on.
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More importantly, we observe that the standard deviation
between multiple annotations is in the order of millimeters. We
conclude that this is sufficiently robust given the operating scale
and physical size of the vehicle.

2) Rotation Error Around X-Axis and Y-Axis Combined:
Now, we quantify the the error in angle between the estimated
and expected Z-axis. The rotational error around the vertical
Z-axis will be assessed later in Section IV-C2.

Since the Z-axis of the body reference frame is perpendicular
to the ground, we expect that the observed normal vector of the
ground in the vehicle sensors is aligned with the body’s Z-axis.
Our recordings were recorded in a large garage space at the
same time as the absolute calibration was performed, meaning
that the state of the suspension and state of the tires is unchanged.
We can assume that the ground within 6 meters of the vehicle
center is flat. We estimate the ground normal vector in the point
cloud of the vehicle’s Velodyne by segmenting the planar ground
floor, using a maximum distance tolerance of 2.5 cm, and use
the calibration to transform it to the body reference frame. The
angular error θ between the observed normal vector nobs and
the expected normal vector nexp = [0, 0, 1] is

θ = arccos

(
nobs · nexp

‖nobs‖ ‖nexp‖
)
. (13)

Initially when the sensors were positioned based on manual
adjustments, the angle θ was 0.13◦, and we find that after
calibration the angle θ has decreased to 0.07◦ using the Markers
approach, and 0.02◦ using the Manual labeling approach.

C. Outdoor Experiments

Finally, we report on additional experiments performed out-
side the garage at two outdoor locations. These enable us to asses
the calibration impact on multi-modal perception in realistic
environments, and at larger distances than possible in the garage
to highlight the reduced rotational errors.

1) Location 1: Qualitative Assessment: We first qualitatively
demonstrate the overall spatial and rotational accuracy of rel-
ative calibration for all vehicle sensors in an urban outdoor
scene with obstacles at 7 to 14 m distance, see Fig. 9. Before
calibration, with initial manually set sensor poses, the data from
lidar and the stereo camera have a mismatch in the Z direction,
and the radar detection on the person on the left does not match
the measurements from the other two sensors. After calibration
the data from all sensors are well aligned, even though the used
calibration targets were only placed at a few meters in front of
the vehicle.

2) Location 2: Rotation Error Around Vertical Z-Axis: To
assess the rotation error around the vehicle’s vertical axis for
absolute calibration, we measure the apparent lateral drift in the
sensor frame of static objects while the vehicle is moving straight
forward, i.e. along the X-axis of the body reference frame. On
a well calibrated setup, we expect that the measured lateral
position of static objects, when transformed to the vehicle’s body
reference frame, is the same at the first and last measurement,
see Fig. 10. Therefore, we measure in the vehicle’s lidar the
lateral positions of eight street light poles distributed along the

Fig. 9. (a) Image of the recorded scene to test the calibration. There is a parked
car ∼ 6 m in front of the sensor setup, and a person with a checkerboard at
∼ 13 m. 9(b) The lidar (black) and stereo (blue) point cloud, and radar detections
(red) before extrinsic calibration (based on manual adjustments). 9(c) The sensor
data after extrinsic calibration. Radar detections are drawn as arcs since the
elevation angle is not measured.

right side of an empty 240 m long straight road. The poles are
extracted from the point cloud by clustering the lidar points [37].
The car drives with a maximum speed of 5.4 m/s over the
road marking line (closed road), and each pole is measured for
about 30 meters. To compensate for measurement errors, small
deviations of the straight trajectory, and outliers at the start and
end, we fit for each pole a line through all measured positions. A
pole’s amount of lateral shift (ΔY ) over the longitudinal range
that it is observed (ΔX) allows us to compute the angular error
α = arctan(ΔY/ΔX) of the lidar w.r.t. the body reference
frame. While small deviations in the car’s actual velocity can
affect the number of measured positions for each street light
in Fig. 11, e.g. driving faster would result in fewer measured
positions for each street light, we still expect similar angle
estimates as the speed only impacts the number of points that
are used for line fitting.

The measured positions of the street lights in the body frame
are shown in Fig. 11. We observe that the slopes for Manual
labeling are the smallest compared to the other cases. Overall,
the reported median α angles in the graph captions confirm
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Fig. 10. Experimental setup to assess the rotational error of absolute calibra-
tion in real-world setting over larger distances. 10(a) The vehicle drives in an
approximately straight line on a long straight road with streetlights. 10(b) The
angle of inclination α (slope) of the lateral position of the light in the vehicle’s
reference frame is expected to be near zero over the whole drive if the sensors
are properly calibrated (black lines). For a bad calibration (red lines) the results
would show a systematic lateral drift.

that the error has decreased from more than 0.95◦ to 0.33◦ for
Markers and 0.02◦ for Manual labeling.

V. DISCUSSION

Both the FCPE and the PSE configuration showed better
results than the MCPE configuration (see Table III and Fig. 7).
This was expected since the FCPE configuration includes all
error terms between sensors in the optimization and the PSE
configuration uses a probabilistic model to simultaneously es-
timate the calibration board poses and the sensor poses. We
found that the FCPE configuration shows the best results on
our sensor setup which consists of a lidar, a stereo camera and a
radar. Furthermore, the experiments showed that our method
that uses sensor data of multiple calibration board locations
outperforms the single target method of Guindel et al. [12]. With
more than ten calibration board locations, the median RMSE is
< 2 cm for lidar to camera, approximately 2 cm for lidar to radar
and approximately 2.5 cm for camera to radar. For the MCPE
configuration with fast computation time, the radar does not
seem to be a good choice as reference sensor, since it results in
having two links with 2D radar measurements (range and angle).

The PSE configuration simultaneously estimates the calibra-
tion board poses and sensor poses. The noise covariances are
estimated iteratively using sensor data of all calibration board
locations, however the noise covariances might not be constant
for all calibration board locations as the radar observation noise

Fig. 11. Locations of all streetlights in vehicle body reference frame while
driving on a straight road. The value in the title represents the median α angle
for each method.

is usually larger at the edges of the field of view. It is assumed
that the observations are samples from a probabilistic model with
zero-mean Gaussian noise and that for every sensor the (2D/3D
Euclidean) measurements are uncorrelated (i.e. all off-diagonal
entries of the observation covariance matrices are equal to zero).
In computation of the root mean squared error, the errors in the
various dimensions (e.g. X,Y,Z) are treated equally (i.e. identity
weights). These identity weights are also used in optimization of
Euclidean error terms in the MCPE and the FCPE configuration.
However in case of the PSE configuration, the total error term
in the optimizer is based on the squared Mahalanobis distance,
which means that the inverse covariance matrices are used as
weights (i.e. different weights for the various dimensions). This
means that in case of the PSE configuration, the total error is
internally optimized using the inverse covariance matrices as
weights, however when the RMSE is computed then identity
weights are used. This could explain why the PSE configuration
performs worse than the FCPE configuration.

Furthermore, some practical considerations are important for
users. Our calibration board design consists of four key points for
lidar and camera and one key point for radar (e.g. trihedral corner
reflector). The number of key points for every sensor affects the
optimization. In the FCPE configuration, the error term consists
of all pairwise errors and the total error for a single calibration
board locations consist of four error terms for lidar to camera
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and one error term for the other two links. In addition, all error
terms for sensor pairs with a radar are 2D Euclidean errors,
whereas lidar to camera terms are 3D Euclidean errors. This
means that the error in the FCPE configuration is dominated
by the lidar to camera errors, since it has four 3D Euclidean
errors for every calibration board location. Furthermore, there
are multiple loop closure constraints for the FCPE configuration
forN > 3 sensors. The number of constraints (loop constraints)
increases with the number of sensors in the FCPE configuration.
Therefore, the optimizer needs to deal with a increasing number
of constraints. This might influence the performance of this
configuration. In addition, the PSE configuration requires the
measurement noise covariances for all sensors, therefore these
are estimated in an iterative manner. In practice, this means that
the computation time is significantly affected by the number of
calibration board locations.

For calibration with respect to the body reference frame, we
used a circle fitting approach on the rims of the wheels to deter-
mine its center, which makes this calibration approach suitable
for robots with visible wheels. In absence of visible wheels,
the users should use other 3D reference points to determine the
pose of a body reference frame. The main difference between
the approach Markers and the approach Manual labeling can
be found in the rotation error around the vertical axis, which
can be explained by the fact that accurate marker placement is
challenging for the former method. Moreover, the accuracy com-
pletely depends on how well the markers were placed during the
calibration procedure. In case of inaccurate marker placement,
the calibration procedure needs be performed again. When the
Manual labeling needs to be performed again, the point cloud
model of the car (including the wheel center locations) can
be reused. In that case, the transformation between the point
cloud model and the current scan of the external sensor can be
estimated using point set registration techniques (e.g. ICP) to
determine the wheel center locations in the reference frame of
the Leica. In addition, the absolute calibration of the lidar sensor
was evaluated. For the lidar sensor, the method Manual labeling
using 3D circle fitting showed most accurate results, namely a
median angle of 0.02◦ around the vertical Z-axis. To provide
insights on how orientation errors affect position estimates at
a larger distance, the displacement error due to rotation errors
ε for objects located at distance dobj can be computed using:
Δ = sin(ε) · dobj . Initially when the sensors were positioned
based on manual adjustments a median angle error of 0.95◦

results in a displacement error of approximately 50 cm for an
object at 30 meters. After calibration, the median angle reduces
from approximately 1◦ to 0.02◦ with a factor 50, therefore
the displacement error decreased with a factor 50 assuming
small-angle approximation (sin(ε) ≈ ε where ε is in radians).

VI. CONCLUSION

We have presented an open-source extrinsic calibration tool
to jointly calibrate sensor setups consisting of lidar, camera and
radar sensors. Our tool offers three configurations to estimate
the sensor poses from simultaneous detections of multiple cal-
ibration board locations. Important factors like configuration

choice, dependency on the number of calibration board locations
and choice for the reference sensor are investigated using a real
multi-modal sensor setup that consists of a lidar, a stereo camera
and a radar. The experiments show that all configurations can
provide good calibration results, though fully connected pose
estimation showed the best performance. When ten calibration
board locations are used, the median RMSE is less than 2 cm
for lidar to camera, approximately 2 cm for lidar to radar and
approximately 2.5 cm for camera to radar. Our findings highlight
the importance of calibrating multiple sensors modalities jointly,
rather than separately for each pair.

In addition, we described two approaches to calibrate the
sensors to the body reference frame using an external laser
scanner, a process referred to as absolute calibration. To measure
the body frame pose of a vehicle in the external point cloud, we
found that the best approach was to manually annotate several
points on each wheel, and perform geometric shape fitting on
the wheels and ground plane. For the lidar sensor, we achieved
a low horizontal error w.r.t. the perceived ground plane normal,
< 0.2◦, an outdoor driving experiment showed a rotation error
around the vertical axis of 0.02◦, an order of magnitude smaller
than the alternatives.

We hope that by sharing our ROS compatible calibration
tool, and detailing our approach and findings, we facilitate other
researchers that need to regularly calibrate such multi-modal
sensor setups.
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[11] J. Peršić, I. Marković, and I. Petrović, “Extrinsic 6DoF calibration of
a radar-lidar-camera system enhanced by radar cross section estimates
evaluation,” Robot. Auton. Syst., vol. 114, pp. 217–230, 2019.

[12] C. Guindel, J. Beltrán, D. Martín, and F. García, “Automatic extrinsic
calibration for lidar-stereo vehicle sensor setups,” in Proc. IEEE 20th Int.
Conf. Intell. Transp. Syst., 2017, pp. 1–6.

[13] C.-Y. Chen and H.-J. Chien, “Geometric calibration of a multi-layer
LiDAR system and image sensors using plane-based implicit laser pa-
rameters for textured 3-D depth reconstruction,” J. Vis. Commun. Image
Representation, vol. 25, no. 4, pp. 659–669, 2014.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 02,2022 at 12:23:11 UTC from IEEE Xplore.  Restrictions apply. 



582 IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 6, NO. 3, SEPTEMBER 2021

[14] A. Geiger, F. Moosmann, Ö. Car, and B. Schuster, “Automatic camera
and range sensor calibration using a single shot,” in Proc. IEEE Int. Conf.
Robot. Automat., 2012, pp. 3936–3943.
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