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Abstract Cluster analysis in high dimensional data is a difficult but desirable task. Many existing meth-
ods fail to cluster high dimensional data due to what is known as the curse of dimensionality. Therefore,
sophisticated clustering methods are in wide development. Along these lines, spectral modularity maxi-
mization emerged from the theory of random matrices and graph modularity. The method is based on a
filtering of the spectral decomposition of similarity matrices. Despite the recent success of this method,
we uncover a fundamental challenge of spectral modularity: the spectral modularity breaks down as
the number of groups in a data set grows. To mitigate this challenge, we propose two solutions: one
solution based on a regularization and one solution based on a normalization. We perform a thorough
empirical analysis of the clustering performance of the solutions and find that, not only do our methods
resolve the breakdown of spectral modularity, but they also outperform existing clustering methods in
a variety of settings.
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Introduction

With today’s digital society, the ability to store and collect large amounts of data has become easier
than ever. The utility of this data is explored on a large scale in the supervised learning paradigm. The
benefit of machine learning with such clear objectives is ubiquitous in scientific communities as well as
industry. On the other hand, in many areas of research, the precise purpose of the collected data is
still ambiguous. These problems are encapsulated in the field of exploratory data analysis.

An essential task in exploratory data analysis is clustering. Clustering can be described as grouping
the objects in a dataset, so that objects within the same group are more similar [1]. Therefore, clus-
tering is a computational tool that is used to find patterns in data that give insight into the structure of
the underlying system in which the data is observed. Typically, these insights are used to determine
further research directions.

Specifically, in this study, we put an emphasis on data that is high dimensional, which adds a signif-
icant array of difficulties to the clustering problem. These challenges that are a consequence of high
dimensionality are commonly known as the curse of dimensionality [2, 3]. Application areas where
research and business practice heavily rely on clustering of high dimensional data are item response
analysis [4], financial market research [5], population genetics [6], single-cell sequencing [7], and many
more.

MacMahon and Garlaschelli [8] developed a seminal method for clustering high dimensional mul-
tivariate data. The method utilizes theory of random matrices [9, 10, 11] and theory of network mod-
ularity [12] in an emergent way. Conceptually, this method is based on the filtering of noise from a
matrix through the use of the spectral decomposition of the observed matrix compared with that of a
null model random matrix. The filtering implicitly reduces the data dimensionality in a sophisticated
way, as it only retains a smaller number of informative dimensions. This makes the method especially
useful for clustering high dimensional data. From now on, in this thesis, we refer to this method as
spectral modularity maximization.

Because of the reliance on the spectral decomposition, it is tempting to think that this spectral
modularity maximization might be equivalent to spectral clustering. Although it aligns with the general
philosophy of the spectral clustering paradigm [13, 14, 15, 16], spectral modularity maximization is
significantly different from existing work in that setting. In particular, the modularity inspired objective
in spectral modularity maximization, that is originally used for community detection in networks [12],
gives a different perspective on the clustering problem. Many of the methods from the spectral clus-
tering paradigm focus on clusterings that optimally separate clusters, while modularity based methods
focus on clustering objects that have higher than expected similarity.
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Within the spectral clustering paradigm, random matrix theory has been used fruitfully to explain
the suitability of using a spectral decomposition in the context of high dimensional data [17, 18, 19,
9]. Furthermore, the concept of filtering the spectral decomposition that is done in spectral modularity
borrows ideas from the wide variety of statistical applications of random matrix analysis, which has
been previously applied in denoising single-cell data [20], improving memory-based recommendation
systems [21], studying cross correlations of financial markets [22, 23, 24, 25, 26, 27, 28, 29], robust
portfolio optimization [30, 31], and, more fundamentally, covariance estimation [32, 33, 34] and time
series analysis [35].

While being a popular method, much of the work in response to its birth has been solely continuing
with the data clustering based on the correlation matrices of the data. This is mainly because a fun-
damental random matrix ensemble, the Wishart matrix, conveniently resembles correlation matrices.
Nevertheless, [36] have shown that the spectra of different random matrix ensembles, in particular sim-
ilarity matrices of discrete data, may still exhibit similar universal behavior as Wishart matrices. More
recently, [37] illustrates a random matrix perspective of sociological data, encompassing insights in the
ability of random matrix based methods to uncover complex cluster structures that are characterized
by overlaps and low internal uniformity [38]. To bridge this gap, this thesis concerns the extension
of spectral modularity maximization beyond correlation matrices, and consequentially, the potency of
spectral modularity maximization as a clustering algorithm.

1.1. Research Questions and Contributions

The aim of this thesis is to investigate the use of spectral modularity for clustering high dimensional
multivariate data. The main research question of the study is therefore as follows:

Main Research Question. To what extent is spectral modularity maximization a viable method for
clustering multivariate data?

In this thesis, we study the behavior of spectral modularity maximization, the underlying conceptual
challenges, and the necessary enhancements. The main contributions can be expressed in both the-
oretical and methodological work. Specifically, we theoretically uncover a fundamental challenge of
spectral modularity and introduce methodological enhancements to address this uncovered issue. Fur-
thermore, we perform a thorough performance evaluation of the (enhanced) spectral modularity max-
imization methods. The contributions in this thesis are structurally aligned with the following defined
research questions.

First, one may question whether the extension of spectral modularity from correlation matrices, as
is done originally in [8], to similarity matrices is theoretically valid. While the theoretical aspects of this
question are already addressed in [36] and [37], the feasibility of an application of spectral modularity
as a general similarity based clustering method is not yet studied. Therefore, the first research question
of this thesis is as follows:

Research Question 1. How does a naive application of spectral modularity behave in the context of
clustering multivariate data?

In answering research question 1 in this thesis, we discover that clustering with naive spectral mod-
ularity maximization, hereafter denoted by SMMO, has some fundamental challenges. In particular,
SMMO appears to be biased towards creating clusterings with relatively large groups. This observation
is obtained through the consideration of data with an increasingly large number of groups, a setting
that is often neglected in studying the performance of clustering methods. In this setting, where there
is a fine-grained group structure, the ability for spectral modularity maximization to detect all groups is
significantly flawed. At the same time, existing competitive methods are still capable of detecting the
group structure with high accuracy.

On the other hand, when the group structure is coarse, we do find that SMMO can be competitively
applied for high dimensional data and relatively difficult clustering problems. Therefore, it is worthwhile
to investigate the reason for the breakdown of spectral modularity, as it may lead to insights to enhance
the spectral modularity method. Our second research question is as follows:
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Research Question 2. Why does spectral modularity break for fine-grained group structures?

It appears that the phenomenon that drives this breakdown of spectral modularity lies in the saturation
of the informative group structure in the similarity matrix. To be precise, as the number of groups, K,
grows, the number of pairs of objects that are in different clusters grows with order K2, while the num-
ber of pairs of objects that are in the same cluster grows with only order K. Consequently, a filtering of
the similarity matrix, that is done in the computation of spectral modularity, is less and less powerful in
distinguishing internal similarities of a cluster and external similarities of objects in two different clusters.

Both the empirical observations and the theoretical understanding of the spectral modularity break-
down motivate the development of a particular class of enhancements that are able to overcome the
breakdown. This brings us to our third research questions:

Research Question 3. How do we overcome the breakdown of spectral modularity?

In principle, the inconsistency caused by the breakdown is demonstrated in two ways: clusterings have
fewer groups, and clusterings have heterogeneous group sizes. The combination of these two effects
is obtained through inconsistent mergers of the relatively weak groups. Therefore, two enhancements
can be proposed, both of which are based on mitigating the bias towards clusterings with fewer and
heterogeneous groups. First, a regularization term can be added to the maximization objective of SMMO
that penalizes clusterings with heterogeneous cluster sizes. This way, the bias towards heterogeneous
sized groups is extrinsically mitigated. This method neatly fits with the existing modularity maximization
frameworks, such as the Louvain method [39]. However, the regularization parameter needs to be
externally calibrated with a calibration scheme.

Contribution 1. We introduce a regularized spectral modularity maximization (SMM1) method that
can be maximized within the existing modularity maximization framework but requires a novel external
parameter calibration scheme.

The second enhancement is based on a normalization of the spectral modularity maximization objective.
This way, the bias towards heterogeneous-sized groups is intrinsically removed. In addition, the method
does not require parameter calibration like in SMM1. However, unlike SMM1, this method requires a
novel maximization procedure that we provide.

Contribution 2. We introduce a normalized spectral modularity maximization (SMM2) method that is
completely parameter-free but requires a novel maximization procedure.

Apart from these solutions, spectral modularity can be used to derive a parameter-free soft clustering
method, which is a particularly coveted feature when a data set contains groups with soft boundaries,
overlapping, and internally non-uniform groups.

Contribution 3. We introduce a parameter-free soft clustering method that is based on spectral mod-
ularity.

Finally, we investigate the performance of the spectral modularity based methods (SMMO0, SMM1,
and SMM2) in comparison with existing clustering methods. The emphasis of the empirical analysis is
on data with internally non-uniform groups, as this setting poses difficult problems with existing methods.
Our final research question is, therefore:

Research Question 4. How do the naive and enhanced spectral modularity maximization methods
perform for multivariate data clustering compared to existing methods?

In order to answer this research question, we use high dimensional synthetic data that we generated
with specific data generation processes related to the Gaussian Mixture Model, which resembles an
easier setting where groups are internally uniform, and the Prototype Model, introduced in [38], which
specifies internally non-uniform groups.
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1.2. Outline

The body of this thesis is divided into four parts. The first part provides essential background on the
context in which this thesis is written. The second part describes the main theoretical and methodologi-
cal contributions. The third part exposes an empirical performance analysis of the contributed methods.
The fourth part discusses the findings of this research, how they relate to existing work, and provides
recommendations for future research.

In Part 1, we first introduce mathematical and methodological foundations related to cluster analy-
sis in high dimensional data (Chapter 2). In particular, we discuss the concept of partitions and how
they can be compared through a metric called variation of information [40]. Furthermore, we discuss
a selection of existing clustering methods, including KMeans [41], KMedoids [42], and Spectral Clus-
tering [13]. Finally, we discuss the challenges of clustering in high dimensional data [3]. Then, we
elaborate on some important results from random matrix theory in the context of similarity matrices
(Chapter 3). Here, we demonstrate the distribution of eigenvectors of random matrices [9] and the well
known Marchenko-Pastur law [10]. Furthermore, we elaborate on the existence of spiked eigenvalues
outside the bulk of the eigenvalue distribution [34] and how they are related to the information contained
in the associated eigenvectors [43, 34]. Finally, we discuss how the number of spiked eigenvalues can
be detected in the absence of a theoretical threshold, through the use of permutation based parallel
analysis [44]. Finally, we provide the existing background on the spectral modularity (Chapter 4). Here,
we discuss the intuition behind the Girvan-Newman modularity [12] and how this optimization objective
can be maximized to provide clusterings of data. At last, we provide an explicit definition of the algo-
rithm concerned with naive spectral modularity maximization.

In Part 2, the primary observation in this part is that the naive spectral modularity maximization has
a fundamental flaw in that it breaks as the number of clusters is relatively large, relating to Research
Question 1 (Chapter 5). The chapter is oriented towards Research Question 2. Consequently, we illus-
trate the concept and formalize this observation through the use of theoretical derivation and numerical
analysis. The empirical observation of the spectral modularity breakdown is that the modularity maxi-
mization becomes increasingly biased towards large groups. Therefore, we propose two solutions to
combat this induced bias, answering Research Question 3. First, we propose a regularized adaptation
of the modularity objective, i.e. Contribution 1, that is jointly justified by an explicit regularization and a
correction of the bias within the modularity matrix (chapter 6). A benefit of this method is that the adjust-
ment is minimal, in the sense that we are still able to use the same modularity maximization methods
as in the literature, such as Louvain [39]. A disadvantage of this solution is that, for a parameter-free
method, we are required to calibrate a regularization parameter in a somewhat unstable and ad hoc
way. Second, we propose a normalized adaptation of the modularity maximization, i.e., Contribution 2,
(Chapter 7). This has the benefit that it fundamentally removes the bias, as opposed to regularizing
the problem. However, a downside is that we are required to develop novel maximization algorithms.
Finally, we introduce a natural extension of the spectral modularity maximization to encompass soft-
clustering (Chapter 8), i.e., Contribution 3. This is done in such a way, that the method can be applied
to an arbitrary hard partition as a post-processing step.

In Part 3, the objective is to thoroughly evaluate the performance of each of the contributed methods,
by addressing Research Question 4. First, we describe the evaluation setting through the description
of synthetic data generation processes that help with the construction of data that contains unambigu-
ous ground-truth partitions (Chapter 9). Then, the contributed methods, together with a selection of
existing methods, are evaluated in terms of their ability to recover the exact ground-truth partition and
their ability to recover representative data profiles of the individual clusters (Chapter 10). Finally, we
investigate the practical applicability of clustering methods with a selection of real empirical data sets
(Chapter 11). Here, we investigate the performance of the clustering methods on a specific categorical
data set that concerns soybeans [45]. Then, we use the well-known MNIST digits data set to demon-
strate the spectral modularity breakdown in a real data setting. Finally, in the MNIST setting, challenges
of the heuristic eigenvalue threshold procedure are demonstrated, as is the ability to detect the ground-
truth representative data profiles of the digits.
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In Part 4, the results demonstrated in this thesis are discussed. First, we position the contribution
of this thesis by studying the relations with existing scientific work in this direction (Chapter 12). In
particular, we highlight the related developments within the spectral clustering paradigm. In addition,
we elaborate on the broader use of modularity inspired objectives for clustering multivariate data. Then,
we discuss the contributions of this thesis and the associated limitations (Chapter 13). Here, we dis-
cuss the findings of our work related to theoretical and methodological contributions. Furthermore, we
discuss the results from our performance evaluation of the contributed methods and the limitations as-
sociated with the performance analysis. Finally, recommended directions for future research are given
(Chapter 14). Here, we provide insights that can inspire further theoretical analysis of spectral modular-
ity breakdown. Furthermore, we discuss potential methodological enhancements to the regularization
parameter calibration scheme and normalized spectral modularity maximization.

In Appendix A, three modular research proposals associated with results obtained in this thesis
are discussed. First, we propose a compact article that introduces the spectral modularity breakdown
and the two fixes in the context of correlation-based clustering. Second, we propose the extension of
enhanced spectral modularity to similarity-based clustering, with a specific emphasis on the internally
non-uniform groups, through studying the Categorical Mixed Prototype Model. Finally, we propose
a research direction to study a novel method to separate the informative eigenvectors from the non-
informative that is based on the observed limitations of the current permutation-based parallel analysis.

1.3. Notation

The following describes the most important notation details that are used throughout the thesis. In
cases where notation deviates, it is explicitly clarified from the context.

X denotes the data space. d is used to denote a distance metric on X'. p denotes the number of
dimensions. n denotes the number of objects. s is used to denote a similarity function on X. S denotes
a n x n similarity matrix. X denotes a n x p data matrix, with rows {x' ;} C X. ¢ denotes the ratio
between number of dimensions p and number of objects n, i.e. ¢ = %.

p = {C1,...,Ck} denotes a partition of {1,...,n} with Cy,...,Ck being the groups. K denotes
the number of groups. Specifically in the context of cluster analysis, we refer to p as a clustering if it is
obtained by a clustering method, where the elements of p are referred to as clusters. Where K denotes
the number of clusters, obtained from counting the number of spiked eigenvalues. In the context of a
ground-truth partition, we denote the partition with p* and the number of groups by K*.

{\m}" _, denote the eigenvalues of S that are always ordered \; > --- > \,. The associated
eigenvectors are typically denoted with {v(™)}" _, < R". The ith element of eigenvector associated to
the kth largest eigenvalue is denoted by vz(m) € R. Furthermore, to prevent ambiguity, the eigenvectors
are considered to be normalized such that ||v(™||, = 1 forallm € {1,..., K}

B generally denotes the spectral modularity matrix. R denotes the matrix of spectral modularity
vectors, such that B = RR . The rows of R are denoted by {r;}"_,.

Given some p of size K, the elements of the K x K matrix G denote the group affinity matrix, which
is the sum of all pairwise modularities between objects of two clusters, i.e., Gy, = ZieCk Zjech B,;.

M denotes the space of Markov matrices, which are n x K matrices with elements in [0, 1] such that
the rows of the matrix sum up to one. P € M denotes a (soft) partition matrix. If the elements of P are
in {0, 1} the matrix can be associated to a hard partition. .M represents the boundary of M, meaning
the entries in the matrices are binary and thus associated to hard partitions. Formally, denoted

k=1 k=1

K K
Mz{PE[OJ]"XK:ZPik:l} and 8M:{Pe{0,1}”XK:ZPik:1}. (1.1)
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High Dimensional Cluster Analysis

In this chapter, we introduce the essential background on cluster analysis in high dimensional data.
The task of clustering is to extract non-overlapping groups from a dataset such that objects inside the
same group are more similar than objects that are not in the same group. This objective is quite ab-
stract, therefore, a particular clustering algorithm is typically defined for a specific quantification of this
objective. In this way, the essence of cluster analysis is to find the best clustering of the data out of all
possible clusterings.

A specific clustering refers to one way that the objects of a dataset can be clustered together, and
is formally referred to as a partition of a set. The number of possible partitions of a set of objects is
huge. Therefore, clustering is typically considered to be a computationally hard task. For this reason,
many clustering algorithms are tailored to specific contexts. In this way, different clustering algorithms
are likely to be able to deal with different levels and types of difficulty. For example, certain algorithms,
like KMeans [41], require linear separability and convexity of the clusters, while other algorithms, like
spectral clustering [13], do not.

Although clustering itself is already a hard problem, an additional layer of difficulty is unavoidable
when considering high dimensional data. Apart from the added computational and interpretational
difficulties that are natural to large optimization problems, there are surprising characteristics in high di-
mensional data that may pose fundamental issues when applying traditional clustering algorithms. The
combination of these challenges is collectively known as the curse of dimensionality. Within all clus-
tering paradigms, many adaptations of traditional methods exist that are designed to deal with these
challenges, often through explicit dimensionality reduction or regularization.

In Section 2.1, the notion of a distance metric is defined to express closeness between objects. This
is typically an important aspect when describing the quality of a specific partition. In Section 2.2, the
partition is formally defined together with the notion of quality of a partition and how the discrepancy
between partitions can be computed with the variation of information. Furthermore, we discuss how
representative data profiles can be associated with a particular partition. In Section 2.3, a compact
overview of a few prominent clustering paradigms is given. In Section 2.4, the challenges of clustering
in high dimensional data are described. Furthermore, a compact overview of the typical approaches to
circumventing these challenges is given.

2.1. Distance Metrics

In most clustering objectives, the closeness between objects within clusters and the farness between
objects in different clusters are used. In order to obtain such measures between two objects in a
dataset, one needs to define a specific distance metric that is valid on the space in which the data lies.
We denote this data space with X'. This means that for some data set of size n, i.e., {x;}?_,, the objects
satisfy x; € X, forall i € {1,...,n}. Then, we define a particular function d to be a distance metric on
X. Specifically, the distance metric is a function d : X x X — R that satisfies the following properties for
all points z,y, z € X. First, d must be reflexive, i.e., the distance of objects to itself is zero; d(z,z) =0
for all x € X. Second, d must be positive, i.e., d(z,y) > 0 for z # y =,y € X. Third, d must be sym-
metric, i.e. d(z,y) = d(y, x). Finally, d must satisfy the triangle inequality, i.e., d(z, z) < d(z,y) +d(y, z).
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The combination of a data space X" and a distance metric d can be defined as a metric space (X, d),
if and only if the distance metric d is well-defined on X'. Examples of generally considered valid metric
spaces are

1. p-dimensional real space with Euclidean distance, i.e. (R?,d), where

p

d(xi, %) = | 3 |at — 2b|2. (2.1)
=1
2. Ordinal discrete space endowed with Manhattan distance, i.e., ({1,...,M}?,d) for some M € N,
where .
d(xi,%x;) = _|ah — b, (2.2)
1=1
3. Nominal discrete space endowed with Hamming distance, i.e., ({1,..., M}?,d) for some M € N,
where ,
d(xi, %) =d™ Y 1y (2.3)

=1

An example of an invalid metric space is the use of Manhattan or Euclidean distance in a nominal
space, as subtraction and summation in categorical data are not defined.

In the context of clustering, we may refer to distances or similarities as being internal or external,
where internal distance means the distance between two objects that are in the same group, and
external distance is computed for two objects that are in two different groups.

2.2. Partition

In cluster analysis, we are generally interested in finding a group assignment for each object in a set
according to some criteria. The mathematical object that is associated with this task is a partition. To
be precise, a partition, denoted by p, is defined for a set of n indices, {1,...,n}, associated with the
objects x1,...,x, € X. Then, the set of sets

p:{cla"'acK}a (24)
forCy,...,Cx C{1,...,n}and K € {1,...,n}isapartition of {1,...,n} if it satisfies the following prop-
erties for all k,h € {1,..., K}. First, groups are non-empty, i.e., C) # . Second, groups are disjoint,

i.e., |Cr, N Cy| = 0. Third, the union of the groups covers the entire set, i.e. UX  Cy = {1,...,n}. Here,
the number of non-empty and mutually exclusive subsets, or, in other words, the number of groups in
p is denoted by K = |p| and also referred to as the size of the partition. Furthermore, a K-partition
refers to a partition of size K.

Throughout this thesis, we use the term ’a partition’ to refer to the more general mathematical ob-
ject, and the term ’a clustering’ to refer to a partition that is obtained through cluster analysis methods.
Furthermore, we use the term ’a group’ to refer to some element of a partition in general and the term
‘a cluster’ to specifically refer to some element of a clustering.

One may recognize that the number of possible clusterings will grow fast with respect to the number
of objects. The space of partitions is denoted by P, and the size of this set is known as the nth Bell
number. To illustrate the size of this quantity, consider the first 7 Bell numbers that are depicted in Ta-
ble 2.1. Because of the large size of the space of partitions, it is not hard to see that finding an optimal
partition for some non-trivial objective is computationally hard. This should expose the intuition of the
algorithmic intricacies that are involved with cluster analysis in general, independent of the difficulty of
the particular data set or the high dimensionality.



2.2. Partition 9

Table 2.1: Bell number: the number of possible partitions of a set of size n.

n 1]
nth Bell number | 1 |

3 |
5

4 |
15

2
2

At last, from the definition of the partition, one may notice a pair of extreme partitions. Consider that
for a partition of a set of size n, the maximum size of p is n and the smallest size is 1. Both extremes
correspond to a trivial partition: one that groups all objects in a group, and one that groups all objects
in a separate group. These partitions can, respectively, be written as:

1. (Singleton Partition): p = {{1,...,n}} € P with |p| =1,
2. (Partition of Singletons): p = {{i} :i € {1,...,n} € P with |p| = n.

2.2.1. Group Representative Profiles

Given a partition p = {C1,...,Ck} of data setin X, one is often interested in determining the represen-
tative data profiles of the groups {C},}/ ,. The data profiles can be expressed as K points in X that
are representative of the objects in a particular group, and are denoted by {p }~_,. The procedure for
inferring these group centers depends on the data space. For example, a natural procedure in R? is to

use the mean of the objects in a group, i.e,, forall k € {1,..., K}
1
MBE= T ) Xi (2.5)
= i;k

However, in categorical data, summations are not defined. Therefore, to obtain a representative
profile of the groups, in that setting, we use the mode of the objects in a group instead. The mode
gives the most frequently occurring value in a dataset, making it a natural choice for representing the
group center. When dealing with categorical data, each attribute can take on a finite set of discrete
values. In this way, the categorical mode is an intuitive method for identifying central objects in groups
of categorical data, leveraging the frequency of attribute values to determine the most representative
instances. The group representative profile, therefore, can be defined by the mode of each attribute
within the group. Formally, for a particular group C, € p, the representative profile i is determined as
follows:

I _
pi = arg | max > gy (2.6)
i€Cly,
where {1,..., N} represents the set of all possible values for the [-th attribute, and 1g,i—qy is anindi-

cator function that equals 1 if the [-th attribute of x; is a, and 0 otherwise.

Note that representative profiles of groups may not always be well-defined. For example, the set of
canonical concentric rings in R?, which is further discussed in Section 2.3 and are depicted in Figure 2.1,
can not be effectively represented by a selection of K points in the data space R2. However, in this
thesis, we only consider data sets where such representative profiles are meaningful.

2.2.2. Clustering Quality

The purpose of a clustering algorithm is to define a function that uses the data set to encode a measure
of quality for the clustering and maximize this function. The quality function @ is a function from the
space of partitions to the real numbers, i.e.,

Q:P—R. (2.7)

Typically, a clustering p that satisfies Q(p) > Q(p’) for some other clustering p’, should be favored
over p'. A natural tendency in the specification of a specific quality function @ is to utilize the notion of
internal and external distances. However, this typically leads to ambiguous quality functions, as it is
unclear how to weigh the two quantities.
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An alternative approach is to use the distance of objects within a cluster to the representative profile
of the cluster. This is useful because the central points are by definition the center of the cluster, and
any object can be associated with a closest cluster center. Thereby leading to relatively unambiguous
expressions for the quality function.

An example for such a quality function @ that is defined for a Euclidean metric space, i.e., (R?,d)
with Euclidean metric d and some integer p > 1, is a function that uses the distance between the objects
in a cluster and the center of the cluster. Here, the center of the cluster is obtained by averaging the
elements of the cluster, i.e.,

Qlp)=— > > (xi— ), (2.8)

CrepiceCy

where {u;}H< | are the cluster representative data profiles of p defined in Equation 2.5.

2.2.3. Comparing Partitions

Using the notion of the quality function @, it is clear that we can favor certain partitions by comparing
their qualities. However, this does not demonstrate how much the two partitions differ. Indeed, two
completely different partitions may have the same partition quality, and two almost identical partitions
may have drastically different qualities.

Fortunately, if we have two partitions, p, o’ € P, the exact discrepancy between these two partitions
can be computed in numerous ways. Comparing two partitions can be useful when there is a particular
important partition p*, e.g., a known optimum to 2.7, and one is interested in the resemblance of a
clustering p to the partition p*.

The difference between the two partitions can be quantified by counting the overlapping partition
relationships of objects. In these criteria, there are four quantities of interest that are related to the ob-
servations of two objects being in the same group or not: true positives, true negatives, false positives,
and false negatives. Using these quantities, a plethora of evaluation metrics can be considered that
are all based on counting pairs [46, 47, 48, 40].

However, many of these criteria are difficult to use in comparing multiple pairs of partitions, e.g.,
when comparing the resemblance of p* and p with the resemblance of p* and p’. This is difficult be-
cause the criteria based on counting pairs do not satisfy metric properties akin to those specified in
Section 2.1. To this end, [40] use information theoretic principles to derive a metric on the space of
partitions, that is referred to as Variation of Information (VI). For the definition of VI, there are two im-
portant information theoretical principles that are extended to the context of partitions.

First, the entropy associated with a partition p can be quantified using the uncertainty of a uniformly
randomly drawn object belonging to a specific group. Specifically, given a data set of size n and a
partition p = {C4,...,Ck}, the probability that an arbitrary object is in the group Cj for some k €
{1,...,K}is % Then, the partition entropy is the entropy associated with the system of drawing
these arbitrary objects and is given by

H(p)=- > %log 1G], (2.9)

n
Créep

This entropy measure is always non-negative and takes a value of 0 if and only if there is no uncer-
tainty. This means that we are certain that a uniformly randomly drawn object belongs to a specific
group, which is only the case for the trivial partition p = {{1,...,n}}.
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The second information theoretical principle is the definition of the mutual information of two par-
titions, which is based on the mutual information between the groups of uniformly randomly drawn
objects from the two partitions. This is defined as:

, ICeNCrl,  [CrNCy
1 =— E g 1 . 2.10
Crep Crep’

The mutual information is always non-negative and symmetric. Furthermore, when p = p’, we have
that I(p,p’) = H(p) = H(p'). Then, VI can be defined as

VI(p,p") = H(p)+ H(p') = 2I(p,p'). (2.11)
For a detailed intuition and description of the mathematical properties of VI, the reader is referred to
[40].

2.3. Clustering Methods

In light of the previous section, the ideal clustering problem can be roughly expressed by the maximiza-
tion of a specific well-defined quality function @) over the space of all possible partitions P, i.e.

max Q(p). (2.12)

pEP

Because of the size of the search space P, this clearly is a difficult problem to solve naively. Therefore,
many constraints, adaptations, or alternative definitions of the clustering problem are used to obtain
tractable algorithms that can provide reasonable clusterings for specific contexts.

There are a few commonly used perspectives to describe the plethora of clustering algorithms:
statistical, partitional, hierarchical, and spectral. The statistical clustering methods are based on the
statistical inference of a clustering model. The partitional clustering methods are based on heuristic
partitioning of the data set. The hierarchical clustering methods are based on a dendrogram that can
be cut at various levels, thereby demonstrating group structure at different levels of granularity. Spec-
tral methods are based on the eigenvectors obtained through the spectral decomposition of certain
matrices that are related to the data.

These perspectives are not necessarily mutually exclusive but rather give an indication of the phi-
losophy behind the method. For example, the spectral methods often depend on a partitional clustering
algorithm as a subcomponent of the method. In [49] an overview of clustering algorithms is given. For
completeness, a description of the most important algorithms for this thesis is given below.

2.3.1. Statistical

It is tempting to approach a clustering problem from a statistical perspective, as it may provide an
insightful description of the processes behind the data. In this way, we assume there is an underlying
K-partition p, possibly endowed with a prior probability distribution, in which each of the objects within
different groups is associated with a single probability distribution. This gives us the statistical model
that is referred to as a finite mixture model and can be formally expressed by

x; ~ my forall ¢ € Cy, (2.13)
{C1,....Cx}=p~ fp (2.14)
Here, objects {x;}_, that belong to group C}, for some & € {1, ..., K} follow distribution 7.

An example of such a finite mixture model is a Gaussian mixture model (GMM). The GMM is defined
by the model where the objects of a group are distributed with multivariate Gaussian distributions, i.e.,
for some k € {1,..., K}, we have 7, = N (ux, Xi), where py, € R?, and X, € RP*P, The distribution
parameters p, and X and the underlying K-partition p can be estimated by maximum likelihood esti-
mation using the Expectation-Maximization framework.
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The most important benefit of this statistical perspective, is that the clusterings obtained from model
based clustering have high interpretability. In particular, being able to directly quantify uncertainties
through the explicit definition of group-specific probability distributions is a valuable aspect that is diffi-
cult to find in other clustering methods.

On the other hand, there are computational and domain dependency drawbacks that make statisti-
cal cluster analysis infeasible for many applications. Specifically, the number of parameters to estimate
can be incredibly large. For example, for a p dimensional GMM, all the O(p?) entries of the covariance
matrices of the K multivariate Gaussian distributions need to be estimated. In addition, prior to clus-
tering the data set, assumptions about the model of the statistical group distributions {m;}# , must be
made. This can be problematic for two reasons. First, it is often the case that the model is not known,
thereby creating an extra layer of bias through the model choice. Second, it may be difficult to define a
reasonable model for the specific context, e.g., when the random variables have more obscure depen-
dency structures.

Nevertheless, this statistical perspective is a highly desirable vantage point for clustering algorithms.
Therefore, much research is concerned with developments in this area [50, 51]. In particular, Bayesian
perspectives on the clustering problem have been recently embraced [52]. An additional important
application of this perspective is Latent Dirichlet Allocation [53], which relaxes strict cluster allocations
to allow soft clusterings. In Chapter 8, a soft clustering procedure is introduced that adheres to the
methodological context of this thesis.

2.3.2. Partitional

Partitional algorithms are purposed at clustering a set of objects directly based on some inter object
relation. Among those inter-object relations, the most commonly is distance. Other relations are density
[54] or connectivity [55]. Whenever a quality function of @) is uses distances within the data space
directly, we refer to these specific clustering problems as distance based. One commonly used class
of distance based clustering problems is the KMeans [41], which finds clusters whose objects are
minimally distanced to the cluster representative profile, or specifically the cluster center, akin to the
discussion of Equation 2.5. To be precise, the KMeans problem is defined as follows:

: L 2
min > > ki — melld, (2.15)

CrepieCy

where || - ||2 is the Euclidean norm. This is equivalent to max,c» Q(p), where Q is defined by the parti-
tion quality function in Equation 2.8.

The most commonly used algorithm that optimizes the KMeans problem is Lloyd’s algorithm [56].
This particular algorithm is done by alternating between two steps. The method initializes with K, ob-
tained from an approximation of K, positions in the data space that act as the initial centers of the K
clusters. In the first step, objects are assigned to one of the K clusters, decided by the closest repre-
sentative object. In the second step, the K representative objects are recomputed using Equation 2.5
with the newly found clustering. These two steps are performed until the objective does not improve.

The KMeans clustering paradigm is a fundamental heuristic method in the context of cluster analy-
sis, primarily because it reappears in different contexts. First, the KMeans problem can be equivalently
described as a matrix factorization problem [57], which allows for a broader theoretical analysis of the
problem. Second, KMeans is essentially equivalent to performing Expectation Maximization with an
isotropic Gaussian Mixture Model [58], i.e., the covariance matrices of the distributions are proportional
to the identity. The latter also demonstrates a limitation of the KMeans, as it assumes that the objects
are spherically distributed with the same variance for each cluster. Therefore, if the distributions of ob-
jects in different clusters have different variances, or are not exactly spherical, KMeans will not perform
well.
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The KMeans problem can only be applied to a setting where the mean of a set of objects is mean-
ingful. This is problematic in the case where data is nominal, where means are not defined due to the
absence of a summation operation. For this setting, a related clustering problem exists called KMe-
doids [59]. In contrast to KMeans, KMedoids chooses existing representative objects from the data
set instead of arbitrary representative points in the data space. This has the benefit that the KMedoids
algorithm has greater interpretability of the clusters; an observed object explicitly defines them. Fur-
thermore, instead of minimizing the squared Euclidean distance between the cluster centers and the
objects in that cluster, like is done in KMeans, KMedoids can be used with arbitrary distance metrics.
This makes it applicable for nominal data. The KMedoids problem can therefore be defined abstractly
for some arbitrary distance metric d, including Euclidean, Manhattan, or Hamming, as

min Jnin Z d(x;,x). (2.16)
Cr€Ep 1€C

A well-known heuristic algorithm for solving KMedoids is the partitioning around medoids algorithm,
as introduced in [59]. The algorithm is initialized with & objects that function as initial medoids for the
clusters. Then the objects are assigned to the cluster with the closest medoid. Then, a medoid object
and a non-medoid object are swapped such that this specific swap improves the objective the most.
This last step is repeated until no improvement can be made.

2.3.3. Hierarchical

Hierarchical clustering methods are based on clusterings that occur at different levels of granularity.
The hierarchical methods provide a hierarchical structure in the form of a dendrogram. The methods
generally start with a trivial partition and merge (or split) the clusters according to some criteria and a
value ¢t. In particular, for a given value ¢ > 0, a clustering p, and a specific criterion, two clusters C and
C}, in p are merged (or split) if the criterion, which is often based on distances between objects, is met.

The procedure to obtain the dendrogram can be performed in two ways. First, one can start from a
trivial partition that contains a single cluster with all the elements and split the clusters as the threshold
t grows. This approach is called divisive. Second, one can start from a trivial partition that contains
n clusters of single element sets and merge clusters as the threshold grows. This approach is called
agglomerative.

An example of a criterion is the single linkage criteria. In the agglomerative setting, these criteria
determine the merging of two clusters if a single pair of objects in the different clusters has a distance
smaller than the value t, i.e., Cy, and C}, are merged if

d(x;,x;) < t forsome i € Cy, j € Cp. (2.17)

Other criteria are complete linkage, which requires that all the distances between objects in the two
different clusters are smaller than the value ¢, and average linkage, which requires that the average
distances between objects in the two different clusters are smaller than the value t. Many more criteria
exist [60]. A limitation of these methods is that the approach provides an entire dendrogram as opposed
to a single, specific clustering. In order to obtain a clustering, one needs to choose a specific value of
t. Furthermore, in itself, the hierarchical methods do not directly relate to the framework as described
by the abstract objective in equation 2.7, as the hierarchical framework does not describe a cluster
objective directly.

2.3.4. Spectral

Spectral clustering [13] borrows ideas from graph theory, where the eigenvectors of the Laplacian matrix
are commonly used to perform clustering on the nodes of a graph. In the context of multivariate data,
we can use the distances between objects to represent a related graph. In particular, we can interpret
a similarity matrix S, of which the elements represent the pairwise similarities between objects, as a
weighted adjacency matrix of a graph with n nodes. Then, the Laplacian can be defined as

L=D-S, (2.18)
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Figure 2.1: Low dimensional clustering examples. The leftmost figure displays KMeans clustering on a two-dimensional
multivariate GMM with K = 3. The middle figure displays the KMeans clustering on the concentric ring example. The rightmost
figure displays the clusterings obtained with spectral clustering.

where D is a diagonal matrix with the node degrees on the diagonal, i.e., forall i € {1,...,n}, we have
D, = Zj S;;. The elements of S are obtained with a suitable similarity function s : X x X — [0, 1]
such that S,;; = s(x;,x;), of which the details are discussed in Chapter 3. In spectral graph theory,
the Laplacian is a useful representation of the graph given that it is guaranteed to be symmetric pos-
itive definite. Furthermore, the multiplicity of the zero eigenvalue of the Laplacian corresponds to the
number of connected components, and the sparsest cut of a graph can be approximated using the
second eigenvector associated with the second-smallest eigenvalue of the Laplacian matrix, known as
the Fiedler vector [61]. A more thorough discussion of spectral clustering methods and their relation to
the spectral modularity methods is given in Chapter 12

The scope of spectral clustering is large, with many ongoing developments [15]. To this end, in [13]
a specific spectral clustering algorithm is suggested to be the most generally applicable method. In
particular, the use of a normalized version of the Laplacian L.,,,,.,, as opposed to L poses to be more
suitable in many cases. The normalized Laplacian from [62] takes the following form:

Lyorm =1 - D7 1/28D~1/2, (2.19)

Therefore, for the remainder of the thesis, the use of spectral clustering (SC) refers to applying KMeans
to the eigenvectors associated with the K smallest eigenvalues of L,,,,..,, unless stated otherwise.

Apart from the graph theoretical motivation, the Laplacian matrix gives access to a particularly use-
ful Euclidean embedding of the data set {x;}!_; in an arbitrary data space X. For an arbitrary metric
space (X, d) and a suitable similarity function s, the eigenvectors of the Laplacian matrix induce a
mapping of the objects from X to R”, in which the distances between all objects in X" are equal to the
Euclidean distance between the objects in the embedding in R™. In particular, this can be done in such
a way that the number of dimensions of the embedding space can be much smaller than n. In this
way, using the Laplacian matrix, the data can be represented in a lower dimensional Euclidean space
[63]. The fact that the Laplacian eigenvectors provide a Euclidean embedding motivates the use of the
KMeans algorithm on the dataset projected on the Laplacian eigenvectors, which is a common choice
within the spectral clustering paradigm.

Finally, because of the construction of the similarity graph, the spectral clustering methods are typi-
cally capable of clustering non-linearly separable clusters, in contrast to more traditional methods like
KMeans. A canonical example is that of clustering concentric rings, depicted in Figure 2.1. Visually, the
groups are easy to distinguish, however, many clustering algorithms, such as KMeans and KMedoids,
require linear separation of the clusters. Therefore, these methods are unable to cluster meaningfully
in this context. On the other hand, the spectral clustering methods do cluster the rings conceptually
correctly.
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2.4. High Dimensional Data

The characteristics of high dimensional data can pose fundamental challenges. These challenges are
often summarized as the curse of dimensionality, a term that is first described in [64]. In the classical
setting, where most of the statistical methods are originally developed, one is often concerned with
data matrices of size n x p, where p is significantly smaller than n. However, in modern applications, it
is often the case that p and n are of the same order of magnitude or that p is significantly larger than n.
This modern setting, is what we refer to as the high dimensional regime.

2.4.1. Curse of Dimensionality

A relatively intuitive challenge is the computational complexity that is naturally accompanied by an in-
creasing number of dimensions. Numerical computations and optimizations in these high dimensional
spaces often require exponentially more steps. In particular, this can be illustrated by the growing state
space of d-dimensional binary data, that is, of size 2P. This phenomenon is associated with the common
characterization that high dimensional spaces are sparse. For example, the sample covariance ma-
trix, which is known to be consistent for small p and large n, requires O(p?) terms to be approximated.
Therefore, for large p, such that p ~ n the estimator is inconsistent [65]. This inconsistency of the
sample covariance matrix, which is further discussed in Chapter 3, is a fundamental challenge of high
dimensional data and is a core topic of random matrix theory [33]. In addition, a perhaps even more
intuitive challenge is the lack of visualization of data that has high dimensions. Clearly, data with more
than three dimensions cannot be visualized directly. This makes data analysis with high dimensional
data particularly difficult.

Apart from these intuitive challenges, there are, however, more surprising characteristics of high
dimensional geometry [3] that affect the ability to perform cluster analysis. In particular, as dimensions
grow, the notion of distances becomes less meaningful, making many clustering algorithms unable to
distinguish between internal and external distances. This phenomenon, known as distance concen-
tration, refers to the pairwise dissimilarities converging to the same value as the dimensionality of the
data increases. This makes it more and more difficult to distinguish between pairs of objects that are
far away and pairs of objects that are near.

Furthermore, it is not difficult to see that as the number of dimensions grows, more and more ran-
domness is added to the system. In principle, this is a relatively logical consequence of adding more
dimensions, which we refer to as noise accumulation. Indeed, under natural conditions, one can expect
that one extra dimension to provide for one more source of randomness. However, the challenge is, in
fact, more daunting than this. In particular, events that appear to be rare in a single dimension become
common with increasing dimensionality due to the increasing probability of a rare event in each of the
dimensions. This means that the existence of many dimensions suggests that it is likely that the object
has extreme attributes in at least a few directions. Interpreting these rare instances of the object’s indi-
vidual dimensions as meaningful. This way, one has a tendency to construct machine learning models
that are based on false information by treating noise as information. This is a particular example of
overfitting, which is generally considered malpractice in machine learning research.

2.4.2. Lower Dimensional Structure

While high dimensional geometry exhibits challenges that are hard to circumvent, data analysis in high
dimensions is often still possible. In particular, data is often represented by a lower dimensional struc-
ture, as opposed to being evenly distributed in a high dimensional space. This means that while the
data is high dimensional, there generally exists a latent representation of the data that is low dimen-
sional.

In order to illustrate why this is often the case, one can think of data as an outcome of a complex
system. In such a system, although the state space can be extremely large, the observed states are
produced by the logical coherence of the system. Therefore, one can think of all the states that are
coherent with the system as being represented in a lower dimensional latent state space.
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In the context of cluster analysis, this holds observation of a latent representation even more.
Namely, in the task of finding a clustering that describes the data, one can think of the clusters them-
selves as being a representation of the data. If the data cannot be effectively represented by a sig-
nificantly smaller number of dimensions, then it is also not possible to talk about the existence of a
clustering. This makes the assumption of a lower dimensional latent structure in which the data re-
sides especially sensible in cluster analysis.

Upon retrieving the representative lower dimensional structures, classical statistics can be applied
again. Therefore, the task of high dimensional statistics, and consequently, high dimensional cluster-
ing, is to retrieve these low dimensional latent representations. The most widely used technique in this
setting is principal component analysis, which aims to find the directions of the data that explain the
most variance, i.e., the principal components.

2.4.3. Clustering in High Dimensions

Because of the challenges in high dimensions, clustering with naive methods is not suitable. There-
fore, many adaptations have been provided. Model based clustering often suffers from extremely large
parameter spaces, and therefore regularization or dimensionality reductions [66, 67, 4] are used to mit-
igate the issues. In [68] the authors provide an overview of many heuristic based clustering methods
for high dimensional data. Most of the methods are based on finding a subspace in which the data
can be clustered more effectively and efficiently, using the sparsity and redundancy of the original data
space.

Specifically, it is not difficult to see that the use of KMeans will become problematic when the di-
mensionality of the data is high. In particular, the distance concentration will make it difficult for any
KMeans algorithm to distinguish between internal and external distances, leading to an increasing num-
ber of local optima. Therefore, many solutions are based on the use of a dimensionality reduction step.
For example, principal component analysis is used in [69], multidimensional scaling is used in [70],
and manifold algorithm, such as local linear embedding, local tangent space alignment, and Laplacian
eigenmap are considered in [71]. In particular, if we use the Laplacian eigenmap, i.e., with the proper-
ties of the Laplacian Euclidean embedding, then the combination of this dimensionality reduction and
KMeans gives us the exact spectral clustering algorithm described in Section 2.3.

Furthermore, for KMedoids in Euclidean data space, the same distance concentration phenomenon
will likely happen. However, in a discrete setting, KMedoids is also challenged by the noise accumu-
lation of high dimensional data. In particular, as the number of dimensions grows, the probability that
good representative objects exist diminishes fast. Therefore, KMedoids will have difficulty clustering
high dimensional data.

Unlike the other perspectives discussed in Section 2.3, spectral clustering methods are not heavily
affected by the challenges of high dimensional data. In essence, all spectral clustering algorithms can
be characterized by the fact that they utilize a selection of eigenvectors, often only the ones associated
with the largest or smallest eigenvalues, to obtain an optimal clustering. It is not difficult to see how
spectral clustering is suitable for high dimensional data, as its focus on a few eigenvectors shares
resemblance with the projection to a lower dimensional latent representation.



Random Similarity Matrices

In this chapter, the well-known results from random matrix theory are discussed in relation to similarity
matrices. Random matrix theory studies the statistical properties of matrices whose entries are ran-
dom variables [72] and is commonly studied in the context of machine learning and statistics [9, 11].
Therefore, we explore some of these key concepts and results, focusing on similarity matrices and
their properties. Of particular interest are random matrices that resemble the Wishart-type ensemble
[73]. The theory of Wishart matrices finds its use in multivariate statistics, mainly through its relation to
covariance matrices, which is widely applicable for research fields such as finance, signal processing,
and machine learning. In studying random similarity matrices, they are important, as they resemble
matrices that are symmetric and positive definite, a property that is natural to many similarity matrices.

A fundamental part of random matrix theory is the study of the eigenvalue distributions of random
matrices. When discussing the eigenvalue distribution of Wishart matrices, one often refers to the dis-
tribution of the so-called bulk of the eigenvalues of the matrix. In particular, for the simplest matrix with
Gaussian i.i.d. zero-mean entries, the eigenvalues of its sample covariance matrix follow a distribu-
tion known as the Marchenko-Pastur distribution [10]. Specifically, the distribution characterizes the
behavior of eigenvalues and provides well-defined minimum and maximum eigenvalues of the random
matrices.

In the context of statistics, it is not always the case that the purpose of the study lies in the under-
standing of pure random matrices. In fact, random matrix theory provides insights into the behavior of
the random part of observations and, consequentially, the non-random part. In the context of cluster
analysis, the non-random part refers to the group structure that is represented by higher internal sim-
ilarity than external similarity in the similarity matrix. Fortunately, random matrix theory shows that in
matrices that are not completely random, the eigenvalues can often be separated into a bulk component
and a number of spiked eigenvalues that are distinctively outside the bulk. The well-separated spikes
indicate a strong presence of information about the underlying system. On the other hand, if there
are no spiked eigenvalues, it is suggestive that no such information is available. In this way, the sepa-
ration of spiked eigenvalues and the bulk drives a phase transition in the detectability of the information.

In the context of cluster analysis, this distinctive feature of random matrices allows us to gain in-
sights into the existence of group structures in data, reduce dimensions, and determine the number of
groups that are present. The eigenvectors and eigenvalues of Hamming similarity matrices, Manhat-
tan similarity matrices, and a large class of Kernel matrices all attain universal behavior that resembles
that of the Wishart matrices, which inspires the practical usage of random matrix theory to separate the
informative spectral components from the uninformative ones in the following chapters. In the absence
of a theoretical threshold for separating the bulk eigenvalues from the spiked eigenvalues of general
similarity matrices, we can use a shuffling-based parallel analysis method. This method compares the
eigenvalues of a similarity matrix of shuffled data with the original data to determine which eigenvalues
belong to informative eigenvectors and which do not.

17
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In Section 3.1, the similarity matrices of interest and their properties are discussed. In Section 3.2,
the distribution of eigenvalues of the Wishart matrices is examined. Furthermore, the relationship to
the context of our defined similarity matrices is described. In Section 3.3, the phase transition related
to the detectability of information within the random matrices is discussed. In Section 3.4, a practical
approach to determining the existence of spiked eigenvalues is presented. In particular, this approach
can be used in contexts where theoretical insights into the eigenvalue distributions of a completely
random matrix are lacking.

3.1. Similarity Matrices

Similarity is typically defined as an inverse relation to a specific distance metric d. In particular, for
some metric d there exists a function s : X x X — [0, 1] that satisfies the following properties. First,
an object x € X has unit similarity with itself, i.e., s(x,x) = 1. Second, for all objects x,y € X, the
similarity is greater or equal to zero, i.e. s(x,y) > 0. Third, the similarity function is symmetric, i.e.,
s(x,y) = s(y,x). Fourth, the similarity function, s, has an inverse relation with the distance metric d,
ie.

s(x,y) > s(w,z) ifand only if d(x,y) < d(w,z) forall x,y,z,w € X. 3.1)

For the theory of random matrices to apply, we require the similarity functions to be associated with
a positive definite similarity matrix. A similarity matrix S is the n x n matrix associated with a set {x;}? ;
of n objects in a data space, i.e., forall i € {1,...,n},x; € X and a similarity function s defined on the
data space X that has the following correspondence:

Sij = s(xi,x;) Vi, je{l,...,n}. (3.2)

It is easy to see that S is a symmetric matrix, as these properties directly transfer from the definition
of the distance metric. In particular, we restrict our study to the similarity matrices that are symmetric
positive (semi-)definite. A matrix S is positive definite if, for all non-zero x € R”, we have x' Sx > 0.
If the inequality is not strict, the matrix is positive semi-definite. A property that is sometimes used
as a definition for positive definiteness is that for a symmetric positive definite matrix S, there exists a
matrix Q that satisfies S = QQ7. For this reason, it is easy to see the necessity of the relationship
between the positive definite similarity matrices, covariance matrices, which take the form X "X, and
Gram matrices, which take the form XX .

In [37] the positive definiteness of the Manhattan similarity matrix,

xi — %]

Sij=1- , (3.3)

SUpP; je{1,...,n} Ix; — x;]

and the Hamming similarity matrix,

1
Sij = Hle{l...p} - zp = i}, (3.4)

is shown.

Furthermore, a well known class of matrices that are often used to represent similarities between
objects is the matrices that are associated with kernel functions. A kernel matrix S is defined by an
implicit transformation ¢ : X — RP that satisfies the following:

Sij = s(xi,%x;) = d(x:)(x;) - (3.5)

These kernel matrices therefore coincide with the definition of symmetric positive definiteness similarity
matrices. A large body of work focuses on the derivation of random matrix equivalents of arbitrary kernel
matrices [18, 9]. In this thesis, we limit our study to a commonly used similarity metric for Euclidean
distances, as is discussed in [13]. Specifically, we consider a negative exponential of the squared
Euclidean distance, scaled by the number of dimensions. To be precise,



3.2. Eigenvalue Distribution 19

o~ ]]2
S,; = exp (-"‘p"”?) . (3.6)

The similarity matrix of this form is symmetric and positive definite. Furthermore, [19] and [18] have
shown that a similarity matrix of the form can be asymptotically approximated with a random matrix
equivalent, thereby adhering to the universal behavior eigenvalues appear in bulk and spikes.

3.1.1. Spectral Decomposition

The linear algebraic theory that enables a lot of random matrix theory is the spectral decomposition
of symmetric positive definite matrices. In particular, if S is a symmetric positive definite matrix, then
there exists a unique decomposition based on an orthonormal matrix V of which the columns are the
eigenvectors of S, and a diagonal matrix A of which the diagonal elements are the eigenvalues of S.
Specifically, let S be a matrix of size n x n, then the eigenvalue problem is denoted as

Sv(’ln) — Amv(m) for m E {17 e ,TI/}. (37)

The solutions to {v(™}” _, and {\,,}” _, in the above problem are the eigenvectors and the eigenval-

m=1

ues, respectively. We consider an ordering of the eigenvalues such that

AL > o> A, >0, (3.8)

where we know that the eigenvalues are positive because the matrix S is positive definite. Then, the
spectral decomposition of S is

S=VAV'T, (3.9)

where we define the two matrices V and A as

A =Diag(A1,..., \p)and V = (v vy (3.10)

Using this decomposition, it is easy to see the decomposition property of symmetric positive definite
matrices, i.e. for

Q=VAY? (3.11)

we have that

S=QQ". (3.12)

If X is n x p, with n larger than p, then the gram matrix XX " is not positive definite. To be precise,
it is positive semi-definite, which means that there exist zero eigenvalues. This is because XX ' is not
a full rank matrix. However, the non-zero eigenvalues of XX and X "X are equivalent. Therefore, if
the matrix S is semi positive definite, a spectral decomposition can still be obtained in a similar manner.

3.2. Eigenvalue Distribution

A large part of the research in random matrix theory is concerned with the eigenvalues of random ma-
trices. In our context, we are mainly concerned with the results related to Wishart matrices. Although
Wishart matrices are defined more precisely, these matrices resemble symmetric positive definite ma-
trices and are of interest for studying random similarity matrices. The precise definition of a Wishart
matrix is a n x n random matrix of the form XX, where X is a n x p matrix with independent and
identically distributed Gaussian entries.
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While Wishart matrices themselves are uniquely defined to be related to matrices with i.i.d. zero
mean Gaussian entries, most of the results that we see can be extended to matrices with non-zero
mean [74], non-Gaussian [75] and even dependent matrix entries [76]. These properties are of partic-
ular importance in the definition of general similarity matrices, as the type of data that we study is not
necessarily Gaussian or even continuous. Fortunately, [36] empirically studied the relation between the
eigenvalues of Hamming similarity matrices of categorical data and Wishart matrices. Additionally, [21]
utilizes results originally derived for Wishart matrices to cosine similarity of high dimensional discrete
data, based upon the observation that a finite rank perturbation of the Wishart matrix does not affect
the spectrum of a large part of the Wishart matrix. This result is formally derived in [74]. In other words,
most of the eigenvalues of a perturbed data matrix X are distributed as the eigenvalues of Wishart
matrices, while only a few spiked eigenvalues are not.

If X is a n x p matrix of Gaussian elements x; ~ N(0,I,4,), then the matrix S = %XXT is a
Wishart matrix. For fixed n and p — oo, the matrix S converges to I, as the random vectors {x;}? ,
have variance one and are uncorrelated. This is the setting of classical statistics. However, if p — o
and p — oo, such that ¢ = %, the convergence of S is no longer trivial and therefore inconsistently
estimates the theoretical limit. The only eigenvalue of Iis clearly one. However, in the high dimensional
data asymptotic setting, the eigenvalues of S are not one. In particular, the counting measure of the
eigenvalues of S has a specific limit [10], that is:

%|{>\e{/\m n N <a)| > Ha). (3.13)
If we define
A= (1-g)% and Ay == (1+,/q)%, (3.14)

then for all z € (A_, \;), the distribution of the eigenvalues is described by the following probability
density function:

H'(z) = ;T—I\/()\+—x)(x—)\,). (3.15)

The probability density is known as the Marchenko-Pastur law [10]. In Figure 3.1 the theoretical
eigenvalue distribution of a Wishart matrix is demonstrated. The eigenvalue distributions for three
standard Gaussian data matrices with different values for ¢. When ¢ > 1, many eigenvalues are lo-
cated at 0 due to the rank deficiency of the matrix. The shape of the distribution indicates that as ¢ is
smaller, which means the number of features p is much larger than the number of objects n, the eigen-
values of S approach the eigenvalues of 1, indicated by the vertical dashed line at 1. This is the case
as for vanishing ¢, we approach a setting that resembles the classical statistical regime. If ¢ is higher,
we clearly see the inconsistency between the eigenvalues of the random matrix S and the theoretical
limit of the classical statistical setting. For higher ¢, the eigenvalues spread around 1, and the bulk has
increased width.

The bulk specified by the Marchenko-Pastur law is relatively sharp. In particular, the largest eigen-
value \; converges almost surely to a fixed value [77]. Specifically, it converges strongly to the right
edge of the bulk of the limiting distribution, i.e., with probability one, we have

A 2N = (14 Vg)°. (3.16)

This indicates that the edge of the bulk is consistently approximated by the limiting value \,. In Fig-
ure 3.2 this convergence is demonstrated. Each point represents the value of \;, depicted on the
vertical axis, of a randomly sampled Wishart matrix with p indicated by the horizontal axis. For any
q, as p grows, the value of \; is closer to A, which is indicated by the horizontal dashed line, with a
vanishing variance. Note that the setting in this figure does not represent a fixed n regime, as n grows
with p through the relation n = ¢p.
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Figure 3.1: Theoretical eigenvalue distribution of Wishart matrix. The vertical dashed line represents the eigenvalues of
the population covariance matrix, which corresponds to all eigenvalues being 1.

The exact distribution of the largest eigenvalue \; appears not to be symmetric around the theoret-
ical limit A [78]. In fact, the distribution can be described by the so-called Tracy-Widom law [79]. The
Tracy-Widom law provides a hypothesis testing framework that allows the testing of the existence of
eigenvalues outside the bulk. This framework is particularly important when the eigenvalues are close
to the bulk edge. However, because little is known about this distribution outside the Wishart setting,
we refrain from studying the exact distribution of A\; in the context of different similarity matrices that
are not strictly Wishart. This can be partially substantiated by the fact that when p is not small (e.g.,
p > 100), the distribution of ), is relatively narrow, and its exact shape arguably becomes less impor-
tant for practical use.

While, in principle, the Marchenko-Pastur law is defined for sample covariance matrices, we can
observe a similar bulky distribution of the eigenvalues in a selection of similarity matrices. In Figure 3.3
the eigenvalue distribution of a selection of random similarity matrices is demonstrated. In the leftmost
panel, we see the eigenvalue distribution of a similarity matrix of the form described in Equation 3.6.
The data matrix X contains i.i.d. standard Gaussian entries. In the middle panel, we see the eigenvalue
distribution of a Hamming similarity matrix as described in Equation 3.4. The entries of the data matrix
are uniformly sampled from {1,...,10}. In the rightmost panel, we see the eigenvalue distribution of
a Manhattan similarity matrix as described in Equation 3.3. The entries of the data matrix are again
uniformly sampled from {1,...,10}. In the histograms, we find that most of the eigenvalues are again
located at a 'bulk’ except for a single large eigenvalue. This single large eigenvalue is indicative of what
we consider to be the global component, which is a non-bulk component of the spectrum of similarity
matrix that appears in completely random matrices. Therefore, it indicates a sense of global similarity
obtained through the structural definition of the metric space and underlying random processes. It is
therefore not representative of any group structures, as will be further discussed in Section 3.4.

The distributions of the eigenvalues of these similarity matrices are not theoretically equivalent to
that of the Wishart matrices. However, they appear to exhibit similar behavior. First, the eigenvalues
are positive due to the positive definiteness of the similarity matrices. Second, the distribution of the
eigenvalues displays a bulk that has a relatively strict edge. This resembles the behavior that we find in
the limiting distribution of the eigenvalues of Wishart matrices, i.e., the Marchenko-Pastur law displayed
in Figure 3.1. However, the eigenvalues of the similarity matrices exhibit a spiked eigenvalue outside
the bulk, as displayed in the histograms of Figure 3.3 and not in the Marchenko-Pastur law, which is
due to the global similarity structure of random processes and metric space.



3.2. Eigenvalue Distribution 22

.« g=2 q=73 . g=gy
T T T T T
6 :__. _________ .: _________ ® e A A -
-8 i l' '| 1 t
[ ] °
| i !
ar 3 :
<
2k | I | P A
T i 4 1 ' '
. !
0 C 1 " 1 i
10! 10%

Figure 3.2: Convergence of empirical )\; of Wishart matrix. The scatter plot shows A; of 20 samples of a n x n Wishart
matrix S = %XX-r with the rows of the n x p matrix X satisfying x; ~ N (0, I,% ) for different values of p indicated by the
horizontal axis and ¢ indicated by the color. The horizontal dashed line indicates the theoretical limit of the bulk edge, A .

Euclidean Hamming Manhattan
1 ' '2'.'..'..'--'-._'5 n 2] 10-_' I
50 F [ 25 [ 1 ! : 1]
wf SR i T T d: H 1
: [ HoF [ 11 6l [ 1
30 F oLoliliiddo7s | Lol dy OF o Lol 1
s 750 7751 : 195 200 203 i 695 700 703
20 F A J0.50 | A 1 4r A ]
10 F 1‘1‘:'-&,_:\"{0.25} 2 F ) .
O'. P B | L '0.00' A | O- PR .h!.a-ﬁl—‘_.'_‘.—l.

0.1 0.2 0 1 0.0 0.2 0.4

A A A

Figure 3.3: Eigenvalue distributions of random similarity matrices. In the leftmost panel, the entries of the data matrix are
standard Gaussian and the similarity matrix is defined by Equation 3.6. In the middle panel, the entries of the data matrix are

uniformly sampled on {1, ...,10} and the similarity matrix is defined by Equation 3.4. In the rightmost panel, the entries of the
data matrix are also uniformly sampled on {1, ..., 10} and the similarity matrix is defined by Equation 3.3. In all cases, n = 800
andg=2

P



3.3. Phase Transition 23

3.3. Phase Transition

The presence of spiked eigenvalues is indicative of more information than purely random. The sepa-
ration between the bulk and the spikes drives a phase transition in the detectability of this information.
The theoretical framework in which the phase transition is studied is often referred to as the spiked
eigenvalue model. The framework demonstrates the behavior of eigenvalues and eigenvectors in the
presence of a dominant signal. In the setting of similarity matrices, this may correspond to the pres-
ence of group components and global similarity components. In this model, the spectrum of the random
matrix is characterized by a bulk of eigenvalues that follow a certain distribution, e.g., the Marchenko-
Pastur law for Wishart matrices, along with a few isolated eigenvalues, referred to as spikes, that
deviate significantly from the bulk.

This spiked eigenvalue model has found applications in various fields such as signal processing,
statistical inference, and machine learning. Understanding the behavior of eigenvalues in this model
provides insights into the detection of signals in noisy data and the performance of estimation algo-
rithms. Several theoretical results have been established for the spiked eigenvalue model, including
phase transition phenomena, asymptotic behavior of eigenvalue distributions, and optimal detection
thresholds for signal recovery [43].

To demonstrate the behavior of the spiked eigenvalue model, we consider a model for the columns
of a n x p random matrix X. In particular, let x). ¢ R™ denote the Ith column of X for some [ €
{1,...,p}. The columns {x(}"_ follow a zero mean multivariate Gaussian distribution, i.e., x' ~
N(0,3) for some n x n matrix X4. If we consider the orthonormal matrix U, then we specifically
define the covariance matrix 3, of the multivariate distribution by

3y = UDiag(,1,1,...,1)U" where § > 1 and x' ~ N'(0, %) forl € {1,...,p}. (3.17)

The reason for the use of this specific example is that it gives us access to a n x n matrix S = %XXT,
which has a known theoretical limiting distribution of the eigenvalues. To be precise, for § = 1, the
eigenvalues follow a Wishart matrix as the elements of X are i.i.d. standard normal. Furthermore, as
q vanishes, S will converge to X as in the classical regime. On the other hand, if § > 1, 3, has all but
one eigenvalue set to 1, and one eigenvalue set to #1. In essence, this means that for § > 1, there is
one principal component, u(!), in the theoretical limit of S that is more significant than the rest. In gen-
eral, the eigenvalues of S of high dimensional data are not consistent with those of 3, due to the fact
that ¢ does not vanish. In particular, the eigenvalues of S are spread between A_ and )\, as defined in
Equation 3.14 and therefore the detection of the principal component of u(!) is not trivial for all 6 > 1.

In Figure 3.4 the eigenvalue distributions of both S and X4 are displayed. The different colors rep-
resent different values of 6. The eigenvalues of 3, are all 1, indicated by the black vertical line, except
for a single remaining eigenvalue which is exactly at 6, indicated by the shaded colored bars. All but
one eigenvalue of S are in a bulk between A_ and )\, that is identical to the eigenvalues of the Wishart
matrix, which follow the Marchenko-Pastur distribution. This is the case for all values of ¢, suggesting
that the bulk behavior is not heavily influenced by the size of the spiked eigenvalue. The remaining
spiked eigenvalue of S, A1, is positioned at roughly 8, which is indicated by the colored bars. It is note-
worthy that the largest eigenvalue of S is only near 6 when 6 is large. If 6 is one, then \; is near A\,
which is significantly larger than 1. This is suggestive of the fact that for small 6, the largest eigenvalue
of S is absorbed into the bulk, while for large 4 it is not.
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Figure 3.4: Spiked eigenvalue model. The empirical eigenvalue distributions of the spiked eigenvalue model for four different
values of 6 € {1, 2,4, 8} with n = 400 and p = 1600, i.e. ¢ = i. The spikes are indicated with the fully colored bars, the values
of 9 are indicated with the bars with slightly faded colors at positions {1, 2, 4, 8}. The remaining eigenvalues of the population
covariance matrix Xy are indicated by the black vertical line positioned at 1. The bulk of the eigenvalues of the sample
covariance matrix are indicated by the colored lines.

This clearly raises questions about the behavior of the eigenvector associated with \;, which we
denote by v(!). We know that in the limit of vanishing ¢ the eigenvector would be identical to u(®).
Furthermore, if ¢ is fixed but & — oo, the contribution of the principal component to the variance of X
is so large, that the v(!) is also identical to u("). On the other hand, if § = 1, the eigenvectors v(!) and
u() are near orthogonal. This is because, the multivariate Gaussian distribution is exactly spherical,
meaning that the probability of a particular sample matrix X is invariant to any rotations. Therefore, the
eigenvector associated with \; is completely independent to u("). Furthermore, in high dimensional
settings, random vectors are typically near orthogonal [3], and therefore the principal component of S
and X, for 6 = 1, are near orthogonal too.

This suggests that there is a phase transition that depends on 6, and implicitly on the separation
between the bulk eigenvalues and the spiked eigenvalues, that differentiates the two phases where
the eigenvectors align and where the eigenvectors do not align. Because of the theoretical framework,
the detection of these principal components can be studied explicitly [11]. In particular, we define the
alignment between the two vectors by

¢ =|(v)Tul]. (3.18)

Clearly, if = 0, the vectors are orthogonal, and if ¢ = 1 the vectors are identical up to a sign change.
The intuition described above about the phase transition is proven in [43], where it is shown that for
large 0 ¢ is close to 1 and for small 6, ¢ is close to 0. This corresponds to the idea that the spiked
eigenvalues, associated with the large 0 case, are associated with eigenvectors that contain informa-
tion about the data, while the eigenvalues in the bulk, associated with the small § case, do not.

In Figure 3.5, we demonstrate the phase transition of the angular alignment of eigenvectors ¢ as a
function of 0. This phase transition indeed shows the relevance of the right bulk edge that is present
in the histograms in Figure 3.1 and Figure 3.3. The exact behavior of the eigenvalues around the
edge is relatively complicated, as indicated by the smooth transition in Figure 3.5. The behavior of
the eigenvalues around the bulk edge is beyond the scope of this thesis, however, it is studied in
depth in [80]. Because we do not rely on any theoretical derivations of eigenvalue thresholds or phase
transitions due to the deviation from the exact Wishart model, we use a heuristic tool that can be used
to distinguish significant spiked eigenvalues from the bulk.
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Figure 3.5: Phase transition of eigenvector alignment. The entries of the data matrix are distributed according to the model
defined by Equation 3.17 with n = 200. The vertical axis displays the eigenvector alignment ¢ defined in Equation 3.18. If

¢ = 1 the eigenvector associated with the largest eigenvalue of XX /p and X4 are identical. If ¢ = 0 the eigenvectors are
orthogonal. The horizontal axis displays the value for 6 as defined in Equation 3.17. The vertical lines indicate the value of the
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Figure 3.6: Data and shuffled data The top row represents the original data. The bottom row represents the shuffled data.
The left column represents the 40 x 80 data matrices. The middle column represents the corresponding 40 x 40 similarity
matrices. The right column represents the eigenvalue distributions of the similarity matrices.
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3.4. Parallel Analysis

In a practical setting, we often encounter similarity matrices that contain information about group struc-
ture, but we do not have access to a theoretical derivation of the null model. Therefore, a bridge
between the non-null and the null models, where no group structure exists, needs to be constructed. In
particular, we must determine an eigenvalue threshold 7 that significantly separates the eigenvalues of
the bulk from the spiked eigenvalues. For Gaussian data, we can use the theoretical threshold implied
by the Marchenko-Pastur law. However, for non-Gaussian data, theoretical thresholds are unknown.
To surpass this, a commonly used heuristic is parallel analysis [44], which is done by comparing the
eigenvalues of a reasonable null model with the actual observed eigenvalues. Along these lines, a
practical approach to approximate r is to use permutation based parallel analysis [81], which uses a
data shuffling procedure to obtain a sample of the presumptive null model. In this way, one removes
any structural groups, in order to observe how the spectrum of a random matrix that approximately
follows the same marginal statistics behaves.

The specific shuffling procedure constructs a new matrix X’ that is of identical size as X, which
shuffles the entries of each column [ separately. In this way, if objects from a specific group have specific
correlated features, these correlations are no longer present in the shuffled matrix. However, the global
correlations among features that are present in all the objects in the data set are still maintained. Then,
using the eigenvalues of the similarity matrix derived from X’, we can distinguish the eigenvalues that
belong to the bulk from those that belong to the spikes. To be specific, the shuffling procedure is
performed N times. For each iteration, the similarity matrix is computed for the shuffled matrix. Then,
the second-largest eigenvalue )\, is saved. After the N iterations, the average of all the observed
second-largest eigenvalues is computed with

1 N

r=1
where )\ér) denotes the second-largest eigenvalues of the rth shuffle iteration. Furthermore, we com-
pute the standard deviation of the observed second-largest eigenvalues with

N
1 Z ) -
g = N r:1()\2 — 7’)2. (320)
Then, a heuristic threshold that separates the eigenvalues associated with the bulk and the spikes is

T=7+4 20. (3.21)

In Algorithm 1 we provide a formal description of the shuffling algorithm that determines a threshold 7,
such that eigenvalues above 7 are considered spiked eigenvalues. The number of shuffling operations
and the confidence interval to determine + are parameters of this algorithm. To limit the scope of this
thesis, we choose a relatively conservative 2 standard deviations, such that the number of shuffling
operations is not too influential.

In Figure 3.6 we illustrate the intuition behind the shuffling procedure on a data set with n = 40 and
p = 80. The top row corresponds to the observed data set and the bottom row corresponds to the
shuffled data set. In the left column of the figure, we display the two n x p data matrices of categorical
entries. The different colored pixels represent different values. The rows representing objects are or-
dered such that objects of the same group are adjacent. In the observed data matrix, we clearly see a
resemblance of the colors among objects of the same group. In the shuffled matrix, no such pattern can
be seen. In the middle column of the figure, we display the n x n Hamming similarity matrices. Brighter
colors indicate higher similarity. In the observed similarity matrix, we clearly see a group structure of
4 groups indicated by the diagonal blocks. Again, in the similarity matrix of the shuffled data, no such
pattern can be recognized. Finally, in the right column, we see histograms depicting the eigenvalues
of the observed similarity matrix and the shuffled similarity matrix.
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The eigenvalue distribution of the observed similarity matrix clearly shows 4 visible spiked eigen-
values that are significantly separated from the bulk on the left of the histogram. Upon shuffling the
data matrix and recomputing the eigenvalues of the associated similarity matrix, most of the spikes are
no longer visible. Instead, there is a bulk and a single spiked eigenvalue. The bulk eigenvalues are
associated with the random components, while the remaining spiked eigenvalue is associated with the
global component. The global component can be recognized from the eigenvalue distributions of the
completely random similarity matrices depicted in the histograms of Figure 3.3. The difference between
the spectrum of the observed similarity matrix and the spectrum of the shuffled similarity matrix moti-
vates the subtraction of the random component, i.e., the eigenvalues below the threshold 7, and the
global component, the largest eigenvalue, from the observed spectrum. The remaining 3 eigenvalues
are associated with the modularity component, which is the core concept in spectral modularity and is
discussed in Section 4.3.

Because the eigenvectors are orthogonal, it is tempting to interpret the number of spiked eigen-
values as the number of groups. The reasoning behind this is as follows. The largest eigenvalue is
associated with the global component, i.e., it represents the information that is present in all the objects.
The second-largest spiked eigenvalue is orthogonal to the largest, and therefore contains information
that distinguishes the similarities of a selection of objects from the remaining objects. The continuation
of this reasoning leads to the conjecture that the Kth spiked eigenvalue, leads to the distinction of K
groups. Then, if the K + 1th eigenvalue is not a spiked eigenvalue, i.e., it is absorbed in the bulk, the
eigenvector associated with it is suggested to contain no further information about the group structure.
Therefore, the number of spiked eigenvalues, i.e.

K= e{\"_,}:A>7}, (3.22)

m=1

is used to approximate the number of groups K. It should be noted that, the relation between the
number of spiked eigenvalues and the proposed number of groups is a relatively ad hoc assumption,
of which the exact theoretical inclinations are not known and may lead to conceptual mismatches when
the groups in a data set are explicitly ordered hierarchically.

A final observation from the comparison of the two similarity matrix spectra in the histograms of
Figure 3.6, is the deviating bulk shapes. In principle, this leads to an important challenge of the heuristic.
When spiked eigenvalues are close to the bulk, the shuffling procedure may not lead to a correct
estimate of the threshold. In most of our study, the studied data matrices are specified such that this
does not lead to problems, however in Chapter 11 we uncover that in realistic applications the shuffling
procedure may provide suboptimal thresholds.
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Algorithm 1 Shuffling Based Parallel Analysis

Input: n x p data matrix X with for all n rows, x; € X, similarity metric s : X x X — [0, 1], number of
shuffles N A
Output: Eigenvalue threshold 7 and number of spiked eigenvalues K

1. Non-random eigenvalues We solve the eigenvalue problem for matrix S, to obtain all the eigen-
values {\,,}2

m=1-

2. Random eigenvalues forr =1,..., N do

* Let X’ be a n x p matrix in which the rows share the same data space as X, i.e. X.

« Fori=1,...,p, consider the Ith column of, X denoted by x(!). Then, shuffling the elements
of x(!) can be done by formally by considering the indices {1,...,n} being randomly re-
ordered, i.e., uniformly sampled over the space of all n! possible permutations. Let ji, ..., j,
denote such a randomly sampled permutation. Then,

2" =2V foralli € {1,....n}. (3.23)
* We compute the similarity matrix of the shuffled data set {x}}! ,, with
Si; = s(x},x}). (3.24)

Rl

» We solve the eigenvalue problem for matrix S’, to obtain the second-largest eigenvalue, Aé’”),
i.e.

3. Comparison We compute the sample mean of {)\g)} and denote this by )}, i.e.

1 N
r=% ST (3.25)
r=1

Furthermore, we compute the sample standard deviation, i.e.

i

Then, we determine a relatively conservative value for 7 by increasing the threshold by 2 standard
deviation above the mean.

2 \

N
Z A — 72, (3.26)

T=7+420. (3.27)

Finally, we can determine K by counting the number of eigenvalues of S that are larger than the
threshold 7.

={rxe{A_1}: A>T} (3.28)




Modularity

In this chapter, we discuss modularity as originally introduced in [12] through the lens of the spectra of
random matrices, which we refer to as spectral modularity. This interpretation leads to the method that
is introduced in [8] for the task of clustering time series based on correlation matrices. The essence of
modularity is to quantify a relative definition of similarity instead of an absolute quantity. In particular,
observed relations between objects are compared to an expectation of that relation in a completely
random setting, the null model.

Modularity, as introduced [12], quantifies the quality of an estimation of the community structure in
a graph and can be used as an objective in an optimization problem that finds a clustering that has
a higher level of internal connection than expected and a lower level of external connection than ex-
pected. The maximization of modularity has since been a standard way of detecting communities in
networks [82]. Modularity maximization is NP-Hard, but can be heuristically maximized with greedy
methods such as Louvain.

For the purpose of clustering multivariate data with similarity matrices, spectral modularity can be
used, which is based on the separation of informative eigenvectors from the uninformative ones. This
is done by filtering out the global component, associated with the largest eigenvalue, and the random
component, associated with the bulk eigenvalues, from the spectral decomposition of a symmetric pos-
itive definite similarity matrix, as discussed in Chapter 3.

Spectral modularity is also a quantification of the relative similarity between pairs of objects. Both
positive and negative values are spanned by the values in a spectral modularity matrix, as opposed to
similarity, which only spans positive numbers. It transforms the similarity of objects into a quantifica-
tion, where an indifference of cluster memberships is expressed at 0. Therefore, a positive modularity
between two objects is associated with a higher similarity than would be expected in a null model. In
this way, the (spectral) modularity of a partition can be computed by summing over all the pairwise
(spectral) modularity values within each group of the partition.

In Section 4.1 we discuss the traditional interpretation of modularity and how it can be used to
detect communities in networks. In Section 4.2 we elaborate on the maximization procedure of the
optimization problem that maximizes the modularity objective. In Section 4.3 we discuss the interpreta-
tion of modularity of multivariate data through the lens of random matrices and how it leads to spectral
modularity.

29
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4.1. Girvan-Newman Modularity

Networks and complex systems, or more formally, graph-structured data, are often composed of nodes
(objects) and weighted edges (relations). For example, in a social network, objects are people, and
edges are (weighted) friendships between them. In sets of objects with attributes, a graph can be con-
structed by setting the similarity between objects as weighted edges. The latter interpretation directly
contextualizes our line of research. A common objective in the analysis of these systems is to detect
and recover groups of nodes that have a group structure with high internal similarities and low external
similarities. A well-known quantification of the nodal organization is Girvan-Newman modularity, which
is commonly referred to as simply modularity.

The modularity objective can be seen as a quality function from the space of partitions to a real
number @ : P — R, akin to the definition in Equation 2.7. Specifically, if we consider an n x n adjacency
matrix A of a particular graph representation of a dataset and the node degrees {d;}? ,, then the
modularity of a partition p = {C1, ..., Ck} is defined to be proportional to
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(4.1)

The elements in this particular sum can be thought of as a subtraction of a null model.

Specifically, for the adjacency matrix A, we can rewire all the edges such that one end is fixed, and
the other end is rewired to a random node. This way, we obtain a random graph where the existence
of an edge is Bernoulli distributed with probability ‘é’iffj, where m is the number of edges in the graph.

Formally, if we denote the adjacency matrix of this random graph as A, we have that it is a random
matrix of which the elements are distributed according to

A,; ~ Ber (‘éjj) : (4.2)

If we write the node degrees as a vector, i.e., d = (d; ... dn)T, we can see that the expected value of
this random matrix, which represents the randomized graph associated with A, is

- dd’
E[A] = —. 4.
A= - (4.3)
Then, the modularity objective can be written in terms of a subtraction of the expectation of a random

matrix associated with a null model of the particular observed graph, i.e.

Q(p) EK) > Y (a-EA)) (4.4)
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This conveys that a random graph that retains information about global connectivity, i.e., the degrees
of vertices remain the same, can be used to provide a relative quantification of the connectivity. In
Figure 4.1, we illustrate the observed graph and a randomized graph. The nodes are positioned in a
circle, such that the nodes in the lower half represent one group, indicated by the black color, and the
nodes in the upper half represent another group, indicated by the gray color. In Figure 4.2, we display
associated adjacency matrices. The left graph and left matrix, in Figure 4.1 and Figure 4.2 respectively,
the observed graph and the observed adjacency matrix, A, are illustrated. The black matrix elements
represent the edges between two nodes. From the figures, we clearly see that the internal connectivity
of the groups is significantly higher than the external connectivity, as indicated by the relatively few
edges between the two groups. In the second-to-left graph and second-to-left matrix, in Figure 4.1 and
Figure 4.2 respectively, we display the random graph and the associated random adjacency matrix A
that follows from the random sampling of the model specified in Equation 4.2. Here, the degrees of the
nodes are identical to the observed graph, but the clear distinction between the upper and lower half
groups is no longer visible.
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Figure 4.1: Graphs with and without clustered nodes. In the left figure, the graph has two strongly connected clusters,
namely the upper half of the circle and the lower half of the circle. This means that there are many internal edges between
nodes in the lower half and in the upper half, but there are only a few edges between the lower half and the upper half. The _
associated adjacency matrix is given in the left panel of Figure 4.2. In the middle figure, we see a sample adjacency matrix A
of the associated random graph model defined in Equation 4.2, of which the expected value as defined in Equation 4.3 is given
in the middle panel of Figure 4.2. In the right graph, the modularity graph is illustrated, where the edges are weighted with the
pairwise modularity values. Red edges indicate negative modularity, and green edges indicate positive modularity. In the right
panel of Figure 4.2, the associated adjacency matrix is given.
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Figure 4.2: Adjacency matrices with and without clustered nodes. The left figure displays the adjacency matrix A, where
black indicates an edge between the two nodes and white indicates no edge. The left graph displayed in Figure 4.1 is
associated with the same adjacency matrix. The second-to-left figure displays a sample of A as defined in Equation 4.2. The

middle graph in Figure 4.1 is a sample of the identical model. The second-to-right figure displays E [A] . The right matrix
shows the matrix that represents the pairwise modularity between two nodes.

In the second-to-right matrix in Figure 4.2, we see the associated expected value of the random
graph model, i.e., IE[A]. This matrix essentially reflects the degree of heterogeneity among nodes.
Therefore, when used as a subtraction term in the modularity definition, the existence of certain edges
in A is valued more than others. In particular, edges on which the nodes both have high degrees are
more likely to be connected, therefore, these connections are considered less important for the detec-
tion of modular structures. At the same time, the edges on which the nodes both have low degrees are
less likely to be connected, making these connections more important for the detection of the groups.
This perspective on the weighing of the edge contributions to the modularity of a partition is reflected
in the subtraction of E[A].

In the right graph in Figure 4.1 and the right adjacency matrix in Figure 4.2, we display a combina-
tion of the two concepts. In essence, the graph that is visualized is a weighted graph with adjacency
A — E[A] from Equation 4.4. The green edges and matrix elements correspond to positive pairwise
modularity between nodes, while the red edges and matrix elements indicate negative pairwise mod-
ularity. In this way, objects from the two different groups that have a positive link are still repelled in
the objective by the many negative links between neighbors of the objects. And nodes from the same

group that have a negative link are still attracted by the many positive links among the neighbors.
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4.2. Maximizing Modularity

The modularity maximization problem is defined as a maximization of () from Equation 4.1 over the
space of partitions:

max Q(p). (4.5)

pEP

There is an exact correspondence between this definition and the clustering objective defined in Sec-
tion 2.3, specifically Equation 2.7. Therefore, @ neatly fits in the framework of quantifying the quality
of a partition.

The modularity maximization problem is in fact an integer optimization problem on the space of all
possible partitions, which is extremely large, as discussed in Section 2.2. In particular, it can be shown
that modularity maximization is related to a 3-partition; therefore, this maximization problem is NP-Hard
[83].

Numerous greedy approaches exist that are able to provide high quality graph partitions in many
cases [82]. A particular successful method is Louvain [39]. The Louvain method consists of two phases.
In the first phase, objects are moved around sets such that the total modularity is maximized until no
move can be made to improve the modularity. In the second phase, all sets in the partition found in the
first stage are used to construct a new graph, on which we continue our search by employing the first
phase again. These alternating phases continue until no improvements can be made in the first step
of the first phase.

A property of the modularity method that enables the Louvain method is the ability to explicitly
express the change in the objective upon moving one object i from a specific cluster C, to a cluster

CY, for some partition p = {C,...,Cy,...,Ch,...,Ck}. To be precise, if we denote A,_, ¢, , we have
that
d;d; d;d;
Aise,Qp) = — Z <Aij ~ o > + Z <Az‘j ~ om > . (4.6)
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Using this value for each iteration of the first phase, only O(n) computations are required to determine
the most optimal move. This makes the method relatively efficient; it has an empirical time complexity
of O(nlogn), but a theoretical proof is not known. Furthermore, due to its greedy nature, it is likely that
the found local optimum is not a global optimum, sometimes leading to arbitrarily bad clusterings. This
makes clustering with the Louvain method not ideal in certain settings [39].

4.3. Spectral Modularity

In the context of graph clustering, the definition of modularity uses random matrices in the form of
expected values of null models to separate local connectivity behavior from its global connectivity be-
havior. When considering multivariate data, however, random matrix theory enables an alternative
approach to separate the observation from the null model. In particular, we do not have to choose an
implicit null model, as we directly extract the null model from the spectral information of the matrix.

Instead of using modularity to cluster nodes in a graph, we use it to cluster objects in a data set. Tak-
ing inspiration from the Girvan-Newman modularity matrix that defines the pairwise modularity between
nodes, we can describe an alternative for this modularity matrix that makes use of random matrix theory.
Modularity optimization in the context of multivariate data can be done by replacing the null model of a
graph with a null model based on random matrix theory. Specifically, the behavior of eigenvalues that
are present in a random matrix, without any specific group structure, can be used to filter out the infor-
mative eigenvalues from the uninformative ones. This way, the spectral decomposition of a similarity
matrix is filtered such that only the spike eigenvalues that are associated with informative eigenvectors
remain. Notably, this filtering procedure aligns well with the concept of modularity, thereby motivating
the use of modularity maximization.
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4.3.1. Spectral Modularity Matrix

For some symmetric positive definite matrix S, we can write the spectral decomposition, as introduced

in Section 3.1 in terms of its eigenvectors and eigenvalues, i.e., for some objects i,j € {1,...,n}
Sii= > Amvi™oi™, 4.7)
m=1

where {\,,}I,_, are the eigenvalues of S and {v}” _, are the associated eigenvectors, with vfm) de-
noting the ith entry of the mth eigenvector. Alternatively, we can write

S=> Apvm(vim)T, (4.8)
m=1

An example of the eigenvalues associated with the symmetric positive definite matrix S is given in Fig-
ure 4.3. From the study of the random similarity matrices in Chapter 3, we know that comparing the
eigenvalue spectrum of similarity matrices of randomly shuffled data gives us insights into the separa-
tion of the informative eigenvectors from the uninformative ones.

Global Component

In similarity matrices of data, it is common to assume that there exists a global component to the
similarities between objects that is motivated by the existence of a dominant pattern in every object,
irrespective of the groups. In the context of multivariate data, this may correspond to shared values
among features of every object, irrespective of the group. But even without the consideration of such
a dominant pattern, the constraints of the metric space make a global component unavoidable. For
example, in a categorical space of {1, ..., M}, the probability of two pure random samples being equal
is ﬁ resulting in an expected Hamming similarity of # As discussed in Section 3.2, in Figure 3.3
we see the metric space induced global component of three completely random similarity matrices, as
indicated by the large eigenvalue depicted in the inset of the figures.

To see how the global component is defined in the presence of a ground-truth partition representative
of the group structure in the data, we consider a p dimensional data set of n objects, for which we
elaborate on the asymptotic behavior. If n is fixed and p — oo, we obtain an asymptotic similarity that
is representative of the group structure and clear of any noise. Indeed, if the ground-truth partition is
sensible, the internal similarities are higher than the external similarities. Using this asymptotic context,
we see that if the asymptotic external similarity is non-zero, a global component must be well-defined.
Indeed, objects of different groups that have positive asymptotic similarity can only exist if there is a
dominant pattern or metric space constraints that produce a background level of external similarity.
Conceptually, the global component is represented by the dominant component in the similarity matrix
and is therefore associated with the eigenvector corresponding to the largest eigenvalue of the similarity
matrix:

sl — )\lv(l)(v(l))T. (4.9)

If the asymptotic external similarity vanishes, which may happen in certain cases, the global mode
vanishes. In practice, the similarities between objects are not asymptotic and are in fact obtained from
a finite dimensional data set, which means a global component of the similarity is present anyway.

In the second-to-right matrix of Figure 4.4, we see the global component S(9), of which the associ-
ated eigenvalue is depicted in Figure 4.3. From the histograms, we see that upon shuffling the data
and therefore removing the group structure, the global component of the shuffled similarity matrix is
still observed, as indicated by the green colored histogram.
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Figure 4.3: Spectral modularity histogram. The black solid line represents the eigenvalues of the observed similarity matrix,
which is identical to the similarity matrix in Figure 4.4 and Figure 3.6. The green lines show the eigenvalue distributions of
similarity matrices obtained from 50 shuffling procedures. The dashed lines are illustrative of the different components of the
eigenvalues. The red vertical solid line represents 7, while the red dashed and dotted lines represent 7 + o and 7 + 20,
respectively, for the standard deviation o of the observed second-largest eigenvalues during the shuffling procedure. The
threshold used to separate the bulk from the spikes is 7 = 7 + 20
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Figure 4.4: Random, global, and modularity matrix. The left figure displays a n x n similarity matrix, where the setting is
identical to that of Figure 3.6 and Figure 4.3. The second-to-left figure displays the random component S("), associated with
the eigenvalues in the random component of Figure 4.3. The second to right figure displays the global component S(9),
associated to the eigenvalues in the global component of Figure 4.3, associated to the eigenvalues in the modularity
component of Figure 4.3. In these images, the values are given by the color bar, where brighter colors represent higher values.
The rightmost figure displays the modularity matrix B, where the red colors represent negative values and the green colors
represent positive values.

Random Component

The finiteness of data makes similarity measurements subject to noise. From studying the eigenvalues
and eigenvectors of random matrices in Section 3.3, we know that there exists a threshold 7, such
that the eigenvalues below that threshold are associated with eigenvectors that do not contain infor-
mation about the group structure, i.e., the bulk, while the eigenvalues that are above the threshold 7
do correspond to informative eigenvectors, i.e., the spikes. Therefore, given this threshold 7 that sepa-
rates the spiked eigenvalues from the bulk, we can construct the following interpretation of the random
component associated with the similarity matrix:

s = > A v (v T (4.10)

me{l,...,n}: X\, <7

where the threshold 7 can be obtained from a procedure as described in Algorithm 1, and of which 7 is
depicted in red in Figure 4.3. Given that we use 7 = 7 + 20, as discussed in Section 3.4 and indicated
by the vertical dotted line to the right of , the threshold clearly separates the K = 3 spikes from the
bulk of the eigenvalues. In the second-to-left matrix of Figure 4.4, we see the matrix associated with
the random component.
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Modularity Component

Now that we have introduced the global component S(9) and the random component S("), we can use
these to define the spectral modularity matrix by subtracting the components associated with a null
model from the similarity matrix, which reads

K
B=8-8W -8 =% v (vim)T, (4.11)

m=2

where the number of spiked eigenvalues, &, is determined by the threshold procedure from Section 3.4.
In Figure 4.3, the eigenvalues associated with the modularity component are displayed in between the
random component and the global component. In the rightmost matrix of Figure 4.4, the associated
spectral modularity matrix is displayed, where we recognize the presence of positive and negative
elements similar to the Girvan-Newman modularity displayed in Figure 4.2. The spectral modularity
objective, from now on denoted by Qg : P — R, is

K
Qo(p)=>_ > > By, (4.12)
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where the equivalence to subtraction of a null model in the modularity framework from Equation 4.1
can be seen from that we subtract S(9) and S(") from S. The equivalence of the objective Q, to the
Girvan-Newman objective, specified in Equation 4.1, makes it possible to maximize spectral modularity,
which can be maximized with existing modularity maximization methods.

4.3.2. Spectral Modularity Vectors
Spectral modularity gives us access to a particular representation of objects {x;}_; C X in a lower

dimensional subspace, the spectral modularity vectors. To be precise, we use the set {r;} , C RK-1
defined by

r=(Via® . gl (4.13)

Then the spectral modularity vectors are related to the spectral modularity matrix B, such that
Bij =r;- I‘j, (414)
for some i,j € {1,...,n}. Therefore, the inner product of two objects, i, j, in this representation is

especially meaningful. A positive inner product signifies a positive pairwise modularity between the
two objects, and a negative product is equivalent to a negative pairwise modularity. A few instances of
the spectral modularity vectors are illustrated in Figure 4.5.

Figure 4.5: Spectral modularity vectors. The left figure displays the spectral modularity vectors of a data set with two groups
represented on R. In the middle figure, the spectral modularity vectors of a data set with 3 groups are presented in R2. In the
rightmost figure, the spectral modularity vectors of a dataset with 4 groups are present in R3.
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Spectral Modularity Breakdown

In this chapter, we demonstrate a fundamental challenge of spectral modularity maximization: the
spectral modularity breakdown. The phenomenon occurs as the number of groups of objects that are
present in a data set increases. In that setting, it appears that clusterings obtained with naive spectral
modularity maximization have a bias toward constructing clusterings with fewer clusters than one would
expect. In particular, naive spectral modularity maximization has a tendency to inconsistently merge
clusters, whose objects are in fact significantly different.

To be precise, consider a set of objects that are clearly structured in different groups, such that the
ground-truth number of groups, K, is correctly represented by the spiked eigenvalues, K. This means
that the K groups are well represented by the information in the eigenvectors of the similarity matrix.
This ensures that the clustering methods based on these eigenvectors, including the spectral modularity
method, should be capable of recovering the group structure with relatively high accuracy. However, it
appears that naive spectral modularity maximization fails to do so, as it detects fewer groups.

Even if the clustering problem is easy, such that existing spectral clustering methods provide an
almost exact recovery of the correct ground-truth partition, the naive spectral modularity method fails.
Therefore, it is tempting to believe that there is a fundamental flaw in naive spectral modularity maxi-
mization.

It is natural to question which part of the spectral modularity maximization is responsible for the
breakdown. In particular, three components can be studied: the spectral modularity matrix B from
Equation 4.11, the spectral modularity objective @, from Equation 4.12, and the maximization proce-
dure. We start by studying the theoretical properties of the spectral modularity matrix in combination
with the modularity objective function and find that the problem can be explained by these two com-
ponents. First, in the computation of the spectral modularity matrix, the information representing the
actual group structure becomes distorted by the number of pairs of objects that are in different groups.
Second, the objective function is heavily influenced by this distortion, such that when it is maximized,
inconsistent (locally) optimal partitions will be obtained. Because the combination of these two compo-
nents intrinsically displays inconsistency, the maximization procedure is rendered free of any scrutiny.

In Section 5.1, we discuss the intuition behind the breakdown of naive spectral modularity maxi-
mization and provide an illustrative example. In Section 5.2, we provide a consistency condition, which
becomes problematic as the number of groups grows. In Section 5.3, we see how increasing the num-
ber of groups brings us arbitrarily close to violating this condition by studying the asymptotic behavior
of the spectral modularity matrix in a highly ideal setting. In Section 5.4, we see how this leads to the
breakdown of spectral modularity by studying perturbations of the ideal setting.
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5.1. Illustrative Example and Intuition

The intuition of spectral modularity breakdown can be demonstrated with the use of a ground-truth par-
tition, i.e., a partition that is considered most meaningful. This ground-truth partition can be obtained
by artificially constructing a data set with a group structure such that objects in the same group are
significantly more similar than objects that are in different groups. For example, we can construct a
data set that follows the distribution of a Gaussian Mixture Model (GMM) as discussed in Section 2.3,
which is endowed with a specific partition that can be considered the ground truth.

In this setting, spectral modularity breakdown refers to the observation that naive spectral modular-
ity maximization provides a different group structure than ground-truth partition, specifically in relation
to underestimating the number of groups. On the other hand, within the context of random matrix the-
ory, and assuming the groups are significantly different enough, one can identify the correct number of
groups, K, from the number of spiked eigenvalues, K, as discussed in Section 3.4, and we therefore
assume K = K for the remainder of this chapter and use K to denote the quantity. This is important
because, using the correct number of groups, a relatively standard spectral clustering algorithm such
as the one demonstrated in Section 2.3 can recover the ground-truth partition with high accuracy.

To illustrate this, we consider a data set of n objects, i.e., {x;}?_,, and let p* = {C}, ..., Ck} denote
a symmetric K-partition of these n objects that satisfies

|Ci| =+ =|Ck| =M, (5.1)
where M denotes the size of the groups. In particular, the number of objects n should be seen as a
function of K with a constant M that satisfies the relation n = mK. This means that the number of
objects in a group does not shrink when K grows, and each group remains significant as the number of
groups grows. Note that the alternative of fixing » and implicitly varying M = z instead trivially results
in problematic clusterings, as the number of objects per group shrinks drastically. For example, if n is
fixed and K = n, then every object is contained in its own group, which is equivalent to saying that
there is no group at all. For a particular combination of n, M, and K, the ground-truth partition p* can
be written as

Ci={1,....m},Co={m+1,....2m},.. Ck ={(K —1)m+1,..., Km}. (5.2)

Now, we assume that the distribution of the data set follows a GMM as introduced in Section 2.3.
Formally, this means that for each C, € p* and for all ¢ € Cy,

x; ~ N (pr, T), (5.3)

where u; € RP. In addition, the distances between the means of the Gaussian distribution, {u;}% ,,
are symmetric, such that for some o« > 0 we have

[l — prll2 = a, forall k,h e {1,..., K} with k # h. (5.4)

Then, the n x n similarity matrix S is obtained using the Euclidean distance transformed with the neg-
ative exponential as described in Equation 3.6. Furthermore, assume that a > 0 is chosen such that
there are K eigenvalues of S that are spikes, i.e., they are significantly larger than the eigenvalues
in the bulk. This ensures that the number of groups in the ground-truth partition of the data is in the
detectable regime as specified in Section 3.3.

In Figure 5.1 we see an example of the n x n similarity matrix S of this setting for M = 30, K = 6,
n = MK = 180, and o = 0.15, associated with this example in the left panel. Here, we see that
there are indeed K = 6 brighter squares on the diagonal of the matrix, representing the higher internal
similarity within the groups. In the right panel of the figure, we see the eigenvalue distribution of the
similarity matrix S associated with this dataset. In the inset, we find that there is one large eigenvalue at
approximately 160. Furthermore, there are 5 spiked eigenvalues that are somewhat closer to the bulk
of the eigenvalues but still significantly spiked. Therefore, the histogram indeed shows K=6 spiked
eigenvalues, which corresponds to the correct number of groups, K = 6, that are present in the data
set as discussed in Section 3.4.
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Figure 5.1: Similarity matrix and its eigenvalue distribution of Gaussian mixture model data. The data set is a sample of
the GMM defined in Equation 5.3 with o = 0.15, p = 200, K = 6, n = 30 - K and a symmetric ground-truth partition. The n x n
similarity matrix is depicted in the left panel and is defined by Equation 3.6. Brighter colors are associated with higher values.
The eigenvalues are demonstrated in the histogram in the right panel. The inset in the right panel shows the size of the largest
eigenvalue.
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Figure 5.2: Breakdown of spectral modularity. The color bars demonstrate the clustering results of standard spectral
clustering (SC) as specified in Section 2.3 and naive spectral modularity maximization (SMMO) as specified in Section 4.3
compared to the symmetric ground-truth partition p* for different values of K. The data set follows the GMM model specified in
Equation 5.3 with a = 0.15 and M = 30. The different colors represent the different clusters.

To illustrate the breakdown, we consider this example data set for multiple values of K and per-
form clustering of the data set with two methods. First, we use the standard spectral clustering (SC)
as described in Section 2.3. Second, we use the naive spectral modularity maximization (SMMO) as
described in Section 4.3. In Figure 5.2, the clusterings of the example datasets, i.e., for K = 6, K =
12, K = 18, are demonstrated. There are three columns, where each contains the clustering of a syn-
thetic data set for a given number of clusters, K. The first row represents the ground-truth p*, the
second row represents the clustering obtained with SC, and the third row represents the clustering ob-
tained with SMMO. The clusters are indicated by objects having the same color. The horizontal position
of each bar represents the objects. Here, we see that when K = 6, both methods recover the exact
ground-truth partition, indicated by an exactly similar color order. When K = 12, we see that SMMO
merges two clusters (the clusters around 100 and 300, indicated by the same light blue color), while SC
has again an exact recovery of the ground-truth partition. When K = 18, SMMO merges more than a
few clusters, and the ground-truth partition is hardly recovered. At the same time, SC almost exactly
recovers the entire partition.
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Figure 5.3: Relative importance of internal and external pairs. The n x n matrices indicate the group structure of a
symmetric partition with n = 30 - K. The black colors indicate two objects belonging to the same group. The white colors
indicate two objects belonging to different groups.

The mechanism behind the inconsistency of spectral modularity has a link to a relatively intuitive
combinatorial aspect. To be precise, the inconsistency can be explained by the growth differences
in the number of internal pairs of objects within groups and external pairs of objects between groups.
Mathematically, this phenomenon can be described as the ratio between the size of a set, which rep-
resents the number of internal pairs and grows with order K, and the Cartesian product of the set,
which represents all external pairs and grows with order k2. Because the size of the Cartesian product
grows much faster, the set of information in the similarity matrix is dominated by the information of the
similarities of external pairs of objects for high K.

This is illustrated in Figure 5.3, where we see the structural matrices representing the group struc-
ture that follows the symmetric partition with M/ = 30. The black color in the figures indicates that the
objects are in the same group, while the white color indicates that the objects are not in the same group.
From these figures, we see that as K grows, the proportion of white entries in the figures becomes in-
creasingly bigger and essentially vanishes as K — oc.

The number of pairs of objects in the same group can be expressed as

M(M -1
# internal pairs of objects = K%, (5.5)
while the number of pairs of objects that are in different groups can be expressed as
K(K -1
# external pairs of objects = MQ(#), (5.6)
so the ratio between the two quantities reads:
# internal pairs of objects _ M-1 1 (5.7)

# external pairs of objects M K-1

which tends to zero for large K. This confirms the intuition obtained in Figure 5.3 and suggests that
the information in the similarity matrix is dominated by the external object pairs.

This saturation of the similarity matrix becomes problematic, as the external between-group modu-
larity should be smaller or equal to zero in order for the ground-truth partition p* to be consistent. If the
sum of pairwise modularities of objects two in two different groups is positive, a merge of the two groups
of the ground-truth partition is favored over the ground-truth partition, resulting in an inconsistency of
the model and modularity objective. However, the consistency of a ground-truth partition becomes in-
creasingly difficult to realize as K grows because of how the relative contribution of external object pairs
grows. This leads to a conceptual misalignment between, on the one hand, the theoretically correct
ground-truth partition and, on the other hand, the spectral modularity based optimum.
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5.2. Ground-Truth Consistency

The spectral modularity breakdown can be studied by comparing a non-ambiguously correct ground-
truth partition that is obtained from a simplistic model for the data and an optimal partition that is obtained
by maximization of the spectral modularity objective. This way, the consistency of a particular ground-
truth partition p* can be expressed in terms of the global optimality of the partition. In order for the
ground-truth partition p* to be consistent with @, no other partition should have a higher value in the
spectral modularity objective, which means that we require

Qo(p) < Qolp”) forallp e P. (5.8)

Then, using this definition, we write the following equivalent statement about the consistency of the
ground-truth partition p* with the spectral modularity objective Qy:

p*isconsistentwith Qy <= p"eO0:={peP:Qup) = max Qo(p)}, (5.9)
P

where the set O denotes the set of all partitions that attain the maximal value of )y, thereby denoting
the set of optimal solutions, which may be more than one solution. The expression on the left-hand
side of the equation is shortly referred to as p* being Qy-consistent.

If there is a partition almost identical to p* but with two of the groups merged that are favored by
Qo, then p* is not optimal. Therefore, we can derive a necessary condition for the Q-consistency of
p* that ensures no such partition is favored. In particular, for a given ground-truth partition p*, we use
a K x K matrix C, which we refer to as the group affinity matrix and is defined by

Gen=Y_ > Bjforallkhe{l,. .. K}, (5.10)
i€Cy, jECH
where p* = {C1,...,Ck} € P and B is some spectral modularity matrix, of which we make the details

precise in the next sections. Note that the spectral modularity objective function Qo can be concisely
written in terms of the group affinity matrix G, i.e.

Qo(p)=>_> > Bij=) Gu=T[G]. (5.11)
k=1

k=14€Cy j€Ck

The goal of the group affinity matrix is to demonstrate a condition based on the merging of two groups
of p* that is favored by Q, ensuring that p* ¢ O and therefore making p* inconsistent. In essence,
global optimality requires that merging any two groups in a partition p does not lead to a higher value
in the modularity objective. Specifically, the condition is shortly referred to by A and defined by

A < Gy, <O0forallk,he{l,..., K} with k # h. (5.12)

To see that A is indeed a necessary condition, consider that one of the inequalities does not hold, i.e.,
if Gy, > 0 forsome k,h € {1,..., K} and k # h, then p* is not a global maximum, as we can improve
the objective Q¢ by merging the two groups C}, and C},, i.e., for p’ identical to p* with the two groups
merged

Q(P) = Q(p") + G > Q(p"). (5.13)

Therefore, if A is broken, the ground-truth partition p* is no longer among the set of optimal solutions,
i.e., p* ¢ O, and is therefore inconsistent with ),. We can formally denote this by

-A < Gy, >0forsome k,h € {1,..., K} withk #£h = p* is not Qy-consistent. (5.14)
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Figure 5.4: Group affinity matrix The data set is identical to the setting of 5.1. Green represents positive values. Red
represents negative values. In the left figure, the diagonal elements of G are positive and the off-diagonal elements are
negative; therefore, condition C is met. On the other hand, in the other figures, there are positive off-diagonal elements,
suggesting a breaking of the condition and making the ground-truth partition inconsistent with Qg.
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In Figure 5.4, we demonstrate the breaking of the condition by showing the group affinity matrix
G. In the leftmost figure, with K = 6, we see that all the diagonal elements of the matrix are positive
and the off-diagonal elements are negative. In the middle figure, where K = 12, we see that a single
off-diagonal element is positive, even though it is still relatively close to 0. A modularity maximization
procedure would merge the two clusters that have a positive off-diagonal. This demonstrates an in-
consistency, as according to the ground-truth partition p*, the clusters should not be merged. In the
rightmost figure, where K = 18, we see a more extreme violation of A, where many of the off-diagonal
elements of G are positive.

5.3. Idealized Asymptotic Behavior of Spectral Modularity

To describe the asymptotic behavior of spectral modularity, we use a model of ideal similarity matrices
that is free of randomness. In particular, we demonstrate that the off-diagonal elements of the group
affinity matrix G are close to 0 for ground-truth partitions with many groups. To achieve this, we derive
an explicit expression for the spectral modularity matrix in the ideal setting, where we make use of
piece-wise constant eigenvectors that are due to the homogeneity and symmetry of the model. Using
the spectral modularity matrix, we then show that the off-diagonal elements of the group affinity matrix
associated with a correct ground-truth partition converge to zero, i.e.,

Gygn 1 0forsome k,h € {1,..., K} with k # h. (5.15)

Therefore, increasing the number of groups brings the ground-truth partition arbitrarily close to violating
the condition A defined in Equation 5.12.

5.3.1. Toy Model A

The specific model of ideal similarity matrices is referred to as Toy Model A (TM-A), as it describes a
rather simplistic view of similarity matrices without an underlying data matrix. Specifically, TM-A models
a similarity matrix of a data set with K equal-sized clusters. Furthermore, the clusters are completely
symmetric and homogeneous. This means that the similarity of two objects in any of the clusters takes
a constant value, a € [0, 1], and the similarity of two objects in any two different clusters takes a con-
stant value, b € [0, 1], with b < a.
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Figure 5.5: lllustration of toy model A. The leftmost figure shows the similarity matrix of TM-A with K = 5. The diagonal
elements take value 1, the diagonal blocks take values a and the remaining elements of the matrix take value b. In the middle
figure, we see the spectral modularity matrix of TM-A. The red color represents negative values, and the green color represents
positive values. The rightmost figure displays a histogram of the eigenvalues of the similarity matrix. The vertical axis is
logarithmically scaled and represents the multiplicity of the eigenvalue, while the vertical axis represents the value of \,,,. From
this, we see that \; ~ 23 is the highest, and A2 = - - - = A5 = 8, while the remaining eigenvalues are almost zero.

Specifically, a similarity matrix S is defined according to TM-A if the similarity between objects i and
jwithi,j € {1,...,n}is given by

1 ifi=j,
Sij=1<a ifi,jeC,forsomeke{l,...,K}, (5.16)
b ifieCyandje Cyforsomek,he{l,...,K}withk #h,

for some a,b € (0,1) with a > b and symmetric K-partition p* = {C4,...,Ck}. Furthermore, the
ground-truth partition in the toy model is unambiguously represented by the pairs of objects that have
higher similarity.

The model can be seen as an extreme version of the symmetric Gaussian mixture model data de-
scribed in Section 5.1. This is because the Euclidean distances between Gaussian random variables
are known to concentrate at a fixed value, as is discussed in Section 2.4. Therefore, as the dimen-
sionality p grows, the similarity matrix will converge to that described by TM-A, which highlights the
importance of TM-A for our asymptotic understanding. Figure 5.5 shows an instance of TM-A, along
with the associated spectral modularity matrix and eigenvalue spectrum. We denote the eigenvalues
of S by {\,,}",_, and the eigenvectors by {v(™}” _ with v§m> denoting the ith entry of the mth eigen-
vector.

Positive Definiteness

For consistency with the rest of this thesis, matrices S obtained from TM-A need to be positive semi-
definite, which can be shown through an equivalence to Hamming similarity matrices that are guaran-
teed to be positive definite, as discussed in Section 3.1. To be precise, for a n x p matrix X, the entries
satisfy the following definition:

0 forle{1,...,|p-b]},
o' =dk+1 forie{[p-b]+1,....[p al}, (5.17)
i forl e {[p-al,...,p},
foralli e {1,...,n} and € {1,...p}. The Hamming similarity matrix of X has the same similarity ma-

trix as that obtained from TM-A, up to rounding errors that become negligible for high p. The justification
behind the equivalence is that all objects have the same value for the first |p - (a — b)| features, the
objects in the same group share the same values for the next approximately |p - (a — b) | features, and
the remaining features are all different, which leads to internal similarities a« and external similarities b.
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Asymptotic Group Affinity Matrix
Accordingly, the group affinity matrix, as defined in Equation 5.10 of the ground-truth partition p*, can
be written with the spectral decomposition of the similarity matrix S, where we denote {\,,}?,_,s as the

eigenvalues of S and {v(™}" _, where v§m> denotes the ith entry of the mth eigenvector. Specifically,
we find an expression for the off-diagonal elements, i.e., k £ h, and G has

1
GkhOC—g, (5.18)

which will converge to zero from below. The derivation of this expression is based on the equivalence
to the K largest eigenvectors of a block matrix, i.e.,

S° = (S — (1—a)l), (5.19)

which is identical to S except with the diagonal set to a. Then, if v is an arbitrary eigenvector of S°
associated with the eigenvalue \°, then

Sv=S°+(1-a))v=S°v+(1—a)v=N+(1—a))v=2Av, (5.20)
which shows that the eigenvalues are related through A, = A9, + (1 — a).

m

5.3.2. Eigenvectors of Block Diagonal Matrix S°
We make use of the fact that the matrix S° can be conveniently written as a Kronecker product, denoted
by ®, of two simple symmetric positive definite matrices, i.e.

S°=M°®J°, with M° := bJKxK—i—(a—b)IKxK and  J°:=Juwm, (521)
where M° is a K x K matrix of b’s and a’s on the diagonal, and J° is a M x M matrix of 1’s. The only

non-zero eigenvalue of J° is M and is associated to a constant eigenvector (") = 1\/% € RM, while
the eigenvalues of M° are

py =b(K—-1)4aand us =---=py =a—>. (5.22)
The largest eigenvalue ¢ is associated with satisfying the constant eigenvector u(®) = 17% € RM,
ie.,

MeuY = bJ ey eu® + (a— b)IKxKu(l) = /fl’u(l). (5.23)

Furthermore, the K — 1 eigenvectors associated with the eigenvalue a — b are the solutions for u € R¥
in the following equation:

(MO — (afb)IKxK)u:bJKXKu:O. (524)
from which the multiplicity of the eigenvalue can be seen by the number of solutions. Because the
matrix in the left-hand side of the equation is equal to Jx « -, which is a rank 1 matrix, we have by the
rank-nullity theorem that there are K — 1 orthonormal solutions to the above problem, which leads us
to a K — 1 multiplicity of the eigenvalue a — b.

Then, because of the positivity of the eigenvalues, M° and J° satisfy the positive (semi-)definiteness
that is required for the spectral decompositions. This is convenient because the eigenvectors of a
Kronecker product of two symmetric positive definite matrices can be written as the Kronecker product
of the eigenvectors (Chapter 2, [84]), i.e.,

S°=(UA U ®(QAQ") = (U Q)(A1®A)(URQ)’, (5.25)
T T

where we use the mixed-product property of the Kronecker product. Combining the above, we can
write the eigenvalues \;, = Mu?, and the entries of the largest K eigenvectors of S°, and therefore
also of S, as

(m) L (m)
v, = uy, ’ forallm e {1,..., K}, 5.26
i /7M ki { } ( )

where k; refers to the group of object ¢, i.e., i € C},.
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5.3.3. Off-Diagonal Elements of G

Using the notation for \,,,, we can write the off-diagonal elements of the group affinity matrix as

Gkh _ Z Z Z )\o ) (m) (m) (527)
_,_/

1€Cy jeC m=2 2
m

for some k,h € {1,..., K} with k # h. The right-hand side of the equation can be decomposed into
two separate sums, i.e.,

K
Gup = Z Z Z )\o (m) (m)+ Z Z Z (’UL)U-;’HL). (528)

1€Cy, jeCp m=2 1€Cl JECL m=2

* *ok

For the first sum, we use that there are only K non-zero eigenvalues of S°, i.e.,\;, = 0 form > K, and
that the K associated eigenvectors of are identical to those associated with S. This way, we recognize
the spectral decomposition of S°, which can be used to write

f= 30 sy APy =2 | b-M [bE - ra | S | =T (529)
1€Cy jeCh \Sf/j

For the second term, we recognize the spectral decomposition of M° using the eigenvectors denoted
in Equation 5.26, which allows us to write

K

l—a 1 ™ 1 ulm™ 2(lzal !
_ R V2 el ° 5.30
PP M e SR Tt a—par (Min—rig ) ) 650
i€Cr jEC, 7":2afbform>1ﬁf—’H’_’
‘m v§7n)
l1—a 1 M(1—a)
Y R BV o _Mi-a 5.31
a—>b |~ w K K ( )
Mih Hs

Then, combining the two, we have

M?*(a—b) M(l-a)
e -— = —(M?(a —Ob) +M (1 —Oa)). (5.32)

Gpp =%+ *x = —

Since, by definition of TM-A, we have b < a < 1 and clearly M > 0, the factor before % is always
positive. Therefore, from the above, it follows that the off-diagonal elements of the group affinity matrix
in this idealized setting are proportional to —% and converge to zero from below, i.e.,

1
Gy X —— — Gy, 1T0as K — oo. (533)

K

This makes the necessary condition A increasingly difficult to satisfy for perturbations away from this
ideal setting, which we will study in the next section.
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(a) Regular K — 1-simplex. (b) lllustration of toy model B.

Figure 5.6: (a) K = 1 associates to a 0-simplex, which is a dot. K = 2 associates to a 1-simplex, which is a line piece. K = 3
associates to a regular 2-simplex, which is a regular triangle. (b) The triangle represents a 2-simplex. The black dots represent
the scaled corners of the simplex. The colored dots represent the perturbed spectral modularity vectors. The perturbations
{z;}}_, are i.i.d. zero mean Gaussian with variance 0.1. The left panel shows the spectral modularity vectors of TM-B for

v/u = 0.1, and the right panel shows the spectral modularity vectors of TM-B for \/u = 0.3.

5.4. Perturbing Spectral Modularity Vectors

Given that the partition affinity matrix in TM-A becomes arbitrarily close to violating the condition A, itis
tempting to think that only slight deviations away from the idealized similarity matrix will break. Unfor-
tunately, such a perturbation analysis is difficult to perform in the context of TM-A, as it would require
element-wise expressions for the eigenvectors of the perturbed matrices. To circumvent this mathe-
matical complexity, we can approach the problem from a different perspective by directly providing a
model for the spectral modularity matrix and the associated spectral modularity vectors described in
Section 4.3.

5.4.1. Toy Model B

Instead of considering a model for the n x n similarity matrices as is done in TM-A, we now consider
a set of n vectors in K — 1 dimensions that resemble the idealized spectral modularity vectors, which
we can then perturb directly. Using these vectors, the entries of the spectral modularity matrix can be
obtained by taking the inner product of the associated spectral modularity vectors.

Again, we consider an ideal setting of a symmetric ground-truth partition, where the group structure
is homogeneous and symmetric, akin to the structure specified in TM-A. If we consider such an ideal
setting where all groups are equally separated, are equally sized, and have equal densities, the only
reasonable candidate structure for the spectral modularity vectors in TM-B is the regular K — 1 simplex,
which is visualized in Figure 5.6a. This can be seen by the fact that the maximum number of vectors
in RE—1 that have pairwise negative dot products is K [85]. Furthermore, in order for the model to
represent a completely symmetrical setting, the spectral modularity vectors, described in Section 4,
of objects of the same group must all be identical, and the angles between any two objects from two
different groups must be identical. Therefore, a regular K — 1 simplex conceptually aligns with the
requirement of the vectors specified in TM-B, as it contains the maximum number of points attainable
in a K —1 dimensional real space with negative pairwise dot products that are also equally spaced apart.
To be precise, consider K > 0 and let {c;}_, € Rx_; be the corners of a regular (K — 1)-simplex,
then forall k,h € {1,..., K} with k # h,

1
Ck Ch =~ (5.34)
where we normalize the corners for convenience, such that ||cx||3 = 1 forall kK € {1,...,K}. This
makes the dot product between c; and c; identical to the cosine of the angle between the vectors,
which equivalently converges to 7 as K — occ.

From this description of the regular K — 1-simplex alone, we already recognize similar asymptotic
behavior as that of TM-A and the combinatorial relationship described in Section 5.1. In particular, in
model TM-B, the objects that are associated with one corner of the simplex belong to one group. Then,
the spectral modularity of two objects from different groups is of order —ﬁ. This means that, similar
to what we saw in the spectral modularity derivation of TM-A, the external modularity is negative but
grows to zero from below as the number of groups, K, grows.
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Using the corners of this regular K — 1-simplex, we define the following model for spectral modularity
vectors of a ground-truth symmetric K -partition:

r; = ucy foralli € Cy, forallk e {1,...,K}, (5.35)

where p* = {C},...,Cxk} is the ground-truth partition, v € (0,1), and {c;}f_, are the normalized
corners of K — 1 simplex. This notation allows us to write the elements of spectral modularity as

(5.36)

if 4,5 fi ke{l,....K
Bi, — 1 rj—{u ifi,j € C forsome k € {1,..., K},

-1 (ificeCyandjec Cyforsomek,hec{l,...,K}withk#h.

5.4.2. Ground-truth Violating Perturbations

Consider the perturbation of the ideal spectral modularity vectors with random vectors {z;} , ¢ R¥X~!
with independent and identically distributed entries that have a mean vector 0 and a constant variance
for each of the K — 1. The perturbed spectral modularity vectors are denoted by ¥; := r; + z;, of which
a few instances are visualized in Figure 5.6b. Then, the perturbed spectral modularity matrix can be
written as

Bij = f‘7 . f‘j = 7KL— +I‘ZTZ]’ + rozi =+ Z;ij, (537)
——
Bi;
forsome i € Cyand j € Cy with k,h € {1,..., K} and k # h. Then, we can also obtain a definition for

the perturbed group affinity matrix:

Gunim 3 3 By = ”_ﬂ

1€Ck jeCh, 1€C,j€CH
Gk-,h.

Because the goal of this chapter is to show that the spectral modularity breaks down as K grows,
we are merely interested in showing that the necessary Qy-consistency condition A, defined in 5.12, is
broken as K grows. In order to reason about the condition probabilistically, we use the following event
in the sample space of the perturbed group affinity matrix G, i.e., the event that condition A holds for
the perturbed group affinity matrix:

(r;-rzj + r;-rzi + z;rzj) . (5.38)

C:={Gp, <Oforallk,h e {1,...,K} with k # h}. (5.39)
Then, for a given probability measure P that is defined for the perturbations of TM-B, P(C) specifies

the probability that the condition A holds for the perturbed group affinity matrix G. The essence of the
spectral modularity breakdown is that this probability goes to zero relatively quickly as K grows.

In order to show this, we first consider that the off-diagonal elements in G are not mutually indepen-
dent. This can be seen as the elements G12, G13, and Go3 are not independent as they depend on the
same perturbations associated with the objects in Cy, Cs, and C3. Therefore, factoring out probabilities
in terms of perturbation distributions is relatively difficult. To circumvent this mathematical difficulty of
the matrix elements of G, we use the fact that the set of distinct pairs is independent. To be precise,
pick (approximately) K/2 pairs from the independent K (K — 1)/2 pairs of groups by considering the
pairs.

{(1,2),(3,4),(5,6),...,(K —1,K)} for even K, (5.40)
and

{(1,2),(3,4),(5,6), .., (K — 2, — 1)} for odd K. (5.41)

For the remainder of this section, we assume that K is even, and therefore there are exactly K/2 such
pairs. Then, in order to satisfy (Qo-consistency for the selected pairs, the condition must be satisfied
at the least; therefore, we can use this quantity to provide an upper bound to the probability of C, as
the event of satisfying the condition for the selected (independent) pairs is contained in the event of
satisfying the condition for all pairs.
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We denote this event with C’, i.e.,

C' == {Gprry <Oforallke{1,3,5,...,K—1}} (5.42)

Because C’ C C, the probability of C is bounded by the probability of C’, i.e., P(C) < P(C’). Moreover,
because of the independence of the pairs (k, k+1) with k € {1, 3, ..., K —1} specified in the description
of C’, we can factor out the probabilities, i.e.,

P(C') = II  P(Gii <0). (5.43)
ke{1,3,5,...,K—1}

Because of the symmetry in the model TM-B and the perturbations, the elements of G are identically
distributed. Therefore, we can replace the probability P(Gy, x+1 < 0) with P(G; 2 < 0) without loss of
generality. Then, we obtain a relatively simple bound for the probability of the event C in terms of the

probability of
K/2

P(0) < (P({Giz < 0})) (5.44)

Now for a given K, consider a real random variable zx that represents the sum of the elements de-
scribed in Equation 5.45 for all i € C; and j € (5, and consequently for the other pairs of groups
(k,k+1),ie.,

2 = g v/ z; + rozi + 2, z;. (5.45)
1€C1,j€C5

Then, the probability P({G 2 < 0}) can be expressed as

uM? uM?
Pl g —mr o <0p [ =P | {ar < o Fu, (wic). (5.46)
~—— — ——
Giz WK

Here, F., is the cumulative distribution function (CDF) for the random variable zx, and we use the
notation of wy for brevity. Therefore, an upper bound for the probability of satisfying the condition can
be expressed in terms of the distribution of the random variable z, i.e.

P(C) < (F., (wi))™?. (5.47)

5.4.3. Distribution of zx

Unfortunately, given an arbitrary perturbation distribution for {z;}?_,, the distribution function F,, is
difficult to determine explicitly because of the dependencies in the sum. Instead, we shed some light
on the mild requirements that the distribution £, should satisfy in order for the spectral modularity
breakdown to occur.

If we assume that the perturbations {z;}? ; are distributed such that the variance of zx remains
fixed, then it is tempting to think that the condition A is broken as K grows. Specifically, because
the term wy approaches zero, there exists a value of K’ where F,,  (wg ) will be smaller than 1 for all
K > K’, which makes the exponent in the bound of Equation 5.47 converge to zero.

On the other hand, one can think of a trivial example of a distribution for zx such that F,,.. The
example that corresponds to a situation without any perturbation and does not satisfy the above con-
dition is the Heaviside step H, or in terms of probability density functions, the Dirac delta function ¢
at 0. Therefore, a question can be raised about the minimal assumption on the perturbations and the
coinciding distribution of zx that the spectral modularity indeed breaks down.
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Figure 5.7: Pedagogical distribution of z. The left panel shows the cumulative distribution function for a selection of
example distributions for zx . The right panel shows the density functions for the same distributions. The black line represents
the Heaviside function H in the left panel and the Dirac delta function § in the right panel density. The colored lines represent

Gaussian distributions with mean zero and o € {1, %, %}. The vertical dotted lines represent wy for u = 0.2 and M = 10.

While this example is indeed trivial, as it essentially corresponds to the situation without any per-
turbations at all, one can imagine that the same idea may be extended to a more general class of
distributions that do not break the consistency condition A. In particular, these distributions would
behave such that the mass moves faster to zero than the evaluation point wx does as K grows, for
example, a distribution that satisfies

F

ZK

(wr) = p*'%, (5.48)

for some p > 0. Then it is clear that

lim (F., (wi))*=p>0, (5.49)

K—o0

which makes the upper bound of the probability of satisfying the consistency condition A high, which
therefore does not guarantee a spectral modularity breakdown.

This illustrates that spectral modularity breakdown only occurs for perturbations that are significant
enough. However, as K grows, these distribution functions become more and more similar to the Dirac
delta distribution, making their existence in the real world unlikely. Therefore, we make an assumption
that is formally required to show the spectral modularity breakdown should be that distributions for zx
that satisfy

lim (F., (wi))*"* =0. (5.50)
K—o0
This is achieved when F,,_ (wg ) does not converge to 1. For a symmetric distribution around 0, this
conceptually happens if the variance of zx vanishes slower than the speed at which the evaluation
point wx decreases to zero.

In Figure 5.7, we demonstrate a few pedagogical distributions that illustrate the triviality of the above-
specified requirement on F.,,.. The colored lines represent the CDF and density function for three
different Gaussian distributions, each with a different standard deviation. The black lines indicate the
distribution associated with the point density at zero, i.e., the example distribution that does not show
spectral modularity breakdown but is practically associated with having no perturbation at all. From the
figure, we clearly see that if the standard deviations are supposedly small, i.e., more concentrated at
zero, the distributions start to resemble the point density.
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Figure 5.8: Empirical probability of satisfying the necessary Q(-consistency condition A. The vertical axis represents
the empirical probability. The horizontal axis represents the number of groups K. The empirical probability is obtained from
Gaussian perturbations of the spectral modularity vectors for different values of o. The dashed lines represent the theoretical
upper bound for P(C) under the assumption that the sum z follows a Gaussian distribution.

5.4.4. Numerical Analysis of Breakdown

Now that we have obtained a theoretical understanding of the breakdown in terms of the sum of all
perturbations zx, what remains is studying the perturbations of the objects directly. However, because
of the complicated dependence relations, this is difficult to do analytically. Therefore, we demonstrate
how the perturbations of the spectral modularity vectors lead to breakdown with a numerical analysis.

Our numerical analysis is based on generating N random samples from TM-B with the perturbations
{z;}7, € RE~1 where z; ~ N(0,02I). Then, for the choice of K and o, we compute the N associated
group affinity matrices, where we count the number of times the consistency condition specified in 5.12
is satisfied. Then we compute the empirical probability itself with % where N¢ denotes the number of
times G.

In Figure 5.8, we demonstrate the spectral modularity breakdown of TM-B with the perturbation
model described above. In essence, we observe that the empirical probability of the necessary con-
dition being satisfied, i.e., event C shrinks to zero relatively fast and has a relatively sharp transition
point. This observation is in alignment with our theoretical understanding of the spectral modularity
breakdown, as the exponent in Equation 5.47 is of order K thereby enforcing an exponential decay
after the transition point. Before the transition point, the number of groups and the perturbations are
small enough that inconsistency in the group affinity matrix is not present. Additionally, it is clear that
as the perturbations of the spectral modularity vectors are smaller, namely as o decreases, the break-
down occurs only for larger K.

Furthermore, in the dashed lines of Figure 5.8 we display the theoretical bound, described by Equa-
tion 5.47, for some example distribution of zx, namely zx ~ N(0,02). This is to indicate that if the
sum zg from Equation 5.45 satisfies a central limit theorem, such that the sum converges to a normal
distribution, the quantity is indeed a theoretical upper bound to the probability satisfying Q-consistency
condition A. Although the transition points of these dashed lines appear at roughly the same points
as the solid lines, the decaying slopes are significantly less steep. This is for two reasons. Firstly, we
underline that the quantity expressed in Equation 5.47 and displayed by the dashed line represents an
upper bound of the probability. Secondly, the actual sum zx does not necessarily follow a Gaussian
distribution because of the dependencies in the sum, preventing the standard CLT results from applying.



Reqgularized Spectral Modularity

In this chapter, we introduce a regularization of the spectral modularity objective to mitigate the combi-
natorial saturation that causes the naive spectral modularity maximization to breakdown. In particular,
we discuss the derivation of this method in two ways. First, we give an intuitive perspective on the
correction for small positive modularity values that are the underlying cause of the inconsistent merges
in spectral modularity breakdown, as discussed in Chapter 5. In this way, we see how subtracting a
small constant from all entries of the spectral modularity matrix resolves the spectral modularity break-
down. Second, we show that this subtraction of a small constant is equivalent to adding an explicit
regularization term to the standard spectral modularity objective, which penalizes the construction of
heterogeneously sized groups. In this way, we see how the regularization reduces the bias towards
clusterings with heterogeneously sized groups that is implicitly caused by the inconsistent merges.

The conceptual benefit of this regularization solution is that the adjustment to the spectral modu-
larity framework lies only in changing the spectral modularity matrix by subtracting a small constant.
This makes it possible to utilize existing modularity maximization algorithms. On the other hand, the
regularization does require a parameter that needs to be calibrated separately.

In Section 6.1, the intuition behind the subtraction of a small constant from the spectral modularity
matrix is given. In Section 6.2, the relation between this correction term and an explicit regularization of
the original spectral modularity objective is given. In Section 6.3, a specific condition that reasonable
clusterings of a data set should adhere to is introduced. This condition is based on random matrix
theory and is used to calibrate the correction term. In Section 6.4, a practical calibration algorithm for
the correction term is given.

6.1. Correction term

The primary observation that is obtained through studying the spectral modularity matrix of toy models
in Chapter 5 is that the off-diagonal elements of the group affinity matrix, S, converge to zero from below
as the number of groups grows, even for easy clustering problems. Then, with only perturbations away
from the ideal setting in the toy models, the necessary condition of negative off-diagonal elements in
the group affinity matrix specified in Equation 5.12 is violated.

The saturation of the off-diagonal elements inspires the use of a small correction term. In particular,
itis used to subtract the bias that is obtained from the combinatorial saturation as the number of groups
grows. Therefore, to mitigate the spectral modularity breakdown, we employ the subtraction of a small
constant.

Specifically, if B is a spectral modularity matrix, as is obtained through the procedure described in
Section 4.3, then a corrected spectral modularity matrix is obtained by subtracting a constant ¢ € R
from all the elements of the matrix, i.e.,

B =B —eJ. (6.1)
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Here J is a n x n matrix of ones. In its original form, spectral modularity essentially transforms the
similarity measurements into modularity measurements, such that objects that are significantly simi-
lar have a spectral modularity above zero and objects that are significantly different have a spectral
modularity below zero. Along these lines, by subtracting the e correction term, we adapt the spectral
modularity measure by increasing the threshold for significant similarity to be slightly larger than zero.
This way, as the number of groups grows, the contribution of significantly different objects becomes
more dominant, and therefore, the value of ¢ supposedly should be larger.

Because this adaptation of the modularity matrix is relatively simple, in that we solely replace the
matrix B matrix with the corrected version B(¢), we are still able to use the well-established maximization
algorithms that are used in the naive spectral modularity maximization as given in Chapter 4, such as
Louvain. In fact, we can denote the e-corrected objective as

Q=3 Y Y BY. (6.2)

CrEPIEC) jECK

Here, it is clearly seen that in a comparison with the spectral modularity objective in Equation 4.1, the
only different element is the modularity matrix. While the maximization procedure itself is unchanged,
the constant correction term e is not known and therefore needs to be calibrated, which we discuss in
Section 6.3.

In Figure 6.1, we demonstrate the effect of the use of e correction on the group affinity matrix. For
a given spectral modularity matrix B and a value for ¢, we compute B(¢) and display the group affinity
matrix G(¢). The setting of this figure is the same as the setting of Figure 5.1 with K = 18. This means
that using naive spectral modularity maximization, a relatively large number of clusters are inconsis-
tently merged, as we see in the obtained clusterings in Figure 5.2, the structural matrices displayed in
Figure 5.3, and the group affinity matrix in Figure 5.4.
In the leftmost figure, a value ¢ = _W%o is subtracted from the entries in the spectral modularity
matrix. The resulting group affinity matrix for this value of ¢ has only positive elements. This will result
in a trivial clustering, with all elements in a single cluster. In the second figure, a value of ¢ = —ﬁ
is subtracted from the entries in the spectral modularity matrix. The associated group affinity matrix
shows that most of the off-diagonal elements are positive, but some are negative. In the third figure,
we evaluate ¢ = 0. Here, we have the original setting without any improvements. Indeed, we see that
while most of the off-diagonal elements of the group affinity matrix are negative, some of the off-diagonal
elements are positive. This way, a modularity maximization procedure will likely merge these clusters
with positive elements in the group affinity matrix. Clearly, choosing ¢ < 0 only worsens the behavior,
as indicated by an increased number of positive off-diagonal elements for ¢ = —ﬁ and e = —ﬁ. In
the fourth figure, we see that a value of ¢ = ﬁ corrects the inconsistent group affinity matrix. This
means that all the diagonal elements are positive and the off-diagonal elements are negative. Clearly,
among the tested values for ¢, this is the only value that does not break the QQy-consistency condition
A specified in Equation 5.12. In the fifth figure, however, we see that subtracting a too large value, i.e.,
€= ﬁ, will cause some diagonal elements to become negative. This will break the clusters associated
with these diagonal elements. In the last figure, we see that for ¢ = % all the clusters will be broken,
as indicated by the negativity of all the diagonal elements.
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0

Figure 6.1: Group affinity matrix with different c. The group affinity matrix G with K = 18 from Figure 5.4 with different
values for ¢, with the same color coding. Red specifies negative values, and green specifies positive values. The saturation of
the color represents the absolute value. In the leftmost figure, all values are negative. In the rightmost figure, all values are
negative.

6.2. Explicit Regularization

Although the interpretation of subtracting the constant correction term does align with our intuition ob-
tained from Chapter 5, there is a second perspective that motivates the solution and places the solution
in the more traditional explicit regularization paradigm. Namely, the subtraction of this constant can be
equivalently written as an explicit regularization of the spectral modularity objective. In particular, rewrit-
ing the subtraction introduces a regularization term that penalizes heterogeneously sized groups. As
seen in the empirical intuition demonstrated in Chapter 5, the spectral modularity breakdown causes
clusterings that are obtained with naive SMM to have fewer clusters and be more heterogeneously
sized than in the ground-truth. The heterogeneous sizes are explained by the fact that the positive off-
diagonal group affinity matrix implies that a merge of two clusters is favorable according to the naive
objective.

These inconsistent merges are the cause of large cluster size heterogeneity and a general under-
approximation of the number of clusters. Therefore, reducing the bias towards cluster size heterogene-
ity while still maintaining the correct number of clusters is a promising approach to resolving the spectral
modularity breakdown.

Consider that the e-corrected modularity objective can be rewritten as

Q=3 S Y BY = - o> (6.3)

CrepieCy jeCy Cr€p

The latter term can be seen as the regularization term. In particular, the term penalizes clusterings with
heterogeneously sized groups. Indeed, consider that the division is constrained to

K
> |Ck| =n. (6.4)
k=1

Then, because of the quadratic term in the regularization, a maximum is attained at ¢, = {1,...,n}
and C;, = () for all £ > 2. This term takes size n2. On the other hand, a minimum is attained when
|Ck| =  forall k € {1,..., K}. This term takes size % If any term |C}| is increased, it comes at the
cost of a decrease in a different term |C},| for h # k. Because of the quadratic relationship, the increase
in |Cy| is larger than the decrease in |C}[; therefore, the uniform distribution of objects among the K
groups is indeed a minimum.

Taking this regularization parameter to an extreme may pose a limitation for clustering data that
actually contains heterogeneously sized groups. However, subtle amounts of regularization are likely
to prevent inconsistent merges from occurring. Especially when maintaining the correct number of
groups within the clusterings.
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6.3. Calibration Condition
The behavior of the objective maximization at asymptotic values of ¢, i.e., large or small, is not difficult
to study. In particular, if € > max; ; B;;, we have that BZ(;) < Oforalli # j. And, if € < min,; ; B;;, we

have that BZ(.;) > 0 forall i # j. In the former case, it is clear that the optimal partition according to Q)
is the partition of singletons, i.e.,

P = {1}, {n}} (6.5)

and in the latter case, the optimal partition is the singleton partition, i.e.,

P9 ={1...,n}. (6.6)

This illustrates the refining behavior of values of ¢, and it clearly shows that finding a 'good’ value for ¢
is far from trivial, as we are able to choose values for ¢ that are associated with the most extreme trivial
partition choices. The way the optimal partitions, () change through moving from the minimal e_ to
the maximal e, is not completely arbitrary; however, the exact behavior is difficult to describe, as the
combination of many individual elements has a chaotic effect.

In practice, we do not know the ground-truth partition, and therefore there is no way to determine the
actual size of the bias that we need to correct by subtraction. This makes it difficult to practically apply
the algorithm, as one is required to choose a value for ¢ that constitutes the amount of subtraction.
However, because we know that choosing ¢ at its two extremes gives the two extreme trivial partitions,
where both are likely to have a large discrepancy with the ground-truth partition, it is probable that there
exists a value for ¢ in between these two extremes for which the parameter is optimally chosen. We
can make this assumption because if one of these extreme ftrivial partitions were present in the data,
then methods from random matrix theory would apprehend this before the stage in which spectral mod-
ularity maximization is employed, e.g., by showing that there are no spiked eigenvalues outside the
bulk and global component. Additionally, we know that there are as many different configurations of
the optimal partition as there are distinct values in the modularity matrix. This makes it reasonable to
expect enough flexibility obtained through the choice of ¢, such that there exists at least an optimal
value for it.

We can calibrate the parameter by comparing the approximated number of groups by detecting the
number of spiked eigenvalues with the size of the clustering obtained through modularity maximization,
where we make the assumption that K = K. Let H be a modularity maximization algorithm that can
be described by a function M that maps a modularity matrix to a clustering, i.e,

H:R™" — P. (6.7)
Then we denote the number of non-trivial sets in a clustering p by ¢4 (p), where by non-trivial, we mean
sets that are larger than size 1, i.e.
¢1(p) = [{Ck € p: [Ck| > 1}]. (6.8)
Furthermore, if K denotes the number of desired clusters in 0, which is approximated by the number
of spiked eigenvalues. Then, we want to find an approximate value for ¢ that satisfies the condition
p1(p)) =K, where p9=HBO). (6.9)
In this setting, we only want to find the minimum value for ¢ such that the above condition is satisfied,
i.e.,
é=min{ece_,e;] : ¢ (p\9) =K} (6.10)

This choice is mainly based on the philosophy that smaller adjustments to the original problem are
favorable. Nevertheless, other estimates, such as a midpoint between the minimum value and the
maximum value for which the condition is satisfied, may be meaningful too.
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Figure 6.2: lllustration of ¢ calibration. The horizontal line represents the ordered ¢ search space £. Arrows represent steps
from a previous value for € to a next value for €. The solid arrows represent cases where the number of clusters is
underestimated or correctly estimated. The dotted arrows indicate cases where the number of clusters is overestimated;
therefore, the step is reverted and a smaller step is taken instead.

6.4. Parameter Search Algorithm

In order to find the value ¢, it is possible to search in the finite set of all effective values. The number of
effective values for ¢ corresponds to the number of distinct values in the spectral modularity matrix B.
The search can be limited to this set because the optimal partitions associated with the use of € and ¢’
can only be different when the positive and negative values of B() and B(<) are different.

Specifically, to solve the problem in Equation 6.10, we consider the search space for ¢, denoted by
£, as follows:

E={Blie{l,....,n}andje {i+1,....n}}. (6.11)

Then observe that |£] < "(”2’1). Still, this can be cumbersome if the search space is not traversed

efficiently. In particular, for each of the point evaluations, a modularity maximization procedure must
be employed, which may take a considerable amount of time. For example, Louvain takes O(nlogn)
time. More importantly, we expect that there is not a big behavioral difference in the clustering when ¢
is only slightly different from another evaluation point.

Let N = |£| be the size of the ¢ search space. Then, we use the following ordering of elements as
follows:

€. =€ <€ <---<en_1 <EN =Eq. (6.12)

To efficiently evaluate the different values for ¢, we take large steps instead of small steps that are dy-
namically adjusted when the obtained clusterings are significantly adjusted. Specifically, if X denotes
the number of desired clusters, i.e., obtained through detecting the number of spiked eigenvalues as
discussed in Chapter 3, In principle, there are three cases to consider that depend on the non-trivial
size of a partition defined in Equation 6.8 and a desired number of clusters K. First, if ¢1(p(9)) < K,
we know that the partition underestimates the number of clusters, and we therefore should increase
e. Second, if ¢1(p(6)) > K, we know that the partition overestimated the number of clusters, and we
therefore should decrease e. Third, if ¢, (p(?)) = K, we know that the partition has the right number of
clusters, and therefore we want to find a value for ¢ that is close to the value used to obtain p(¢). In
particular, we choose the minimum value for ¢ in which this condition is satisfied.

The calibration scheme that we use starts at the leftmost end of the search space £. Therefore,
initially, the value for the chosen ¢ is equal to e_. We define an initially relatively small step size
j € {1,..., N} that satisfies j = 2M for the largest possible integer M. Then, if we increase ¢, we
simply add j to 4; therefore, if the current value for ¢ is ¢;, the next value is ¢, ;. If we decrease ¢, we
subtract j from ¢ and half the step size to j/2 and add this to i. Therefore, in this case, ¢; changes to

eifj/2-
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Algorithm 2 ¢ Calibration: provides a value for ¢

Input: j =2, i =1,¢é= 00, {¢}Y,, withforalli € {1,...,N},¢; € £ and ordered according to 6.12,
number of spiked eigenvalues K

Output: ¢

While the step size is greater than or equal to 1, i.e., j > 1,

» Correct: If ¢ (pl<)) = K: We set the value of ¢ that satisfies the condition of 6.9, i.e., we set
€ = €. (6.13)
Then, we move to a smaller value of ¢, i.e.,

(decrease) i=1i—j,j=3j/2,i=1i+]. (6.14)

« Overestimates: If ¢, (5(*)) > K, we move to a smaller value for ¢, i.e.,

(decrease) i=i—j,j=3j/2,i=1+]. (6.15)

+ Underestimates, not previously correct: If ¢,(p(¢")) < K and é = co: We move to a larger
value for e, i.e.
(increase) i=1i+j. (6.16)

« Underestimates, previously correct: If ¢,(5(“)) < K and ¢ < co: The current value does not
satisfy condition 6.9, but the previous value does. Therefore, we finish the while loop and return
€.

In Algorithm 2, we demonstrate the calibration algorithm. Using the initial value for i and j and a
large value for ¢, that indicates that no value has yet been found that satisfies the condition ¢, (5(€)) = K.
In the algorithm, this is denoted as oo, but in practice, an arbitrary large value suffices. The first case
specifies the case where the condition is met; at that point, the current value ¢ is chosen for é. The
second case is where the number of clusters is overestimated. The third case is where the number of
clusters is underestimated, but no satisfying value for ¢ has been found yet. The fourth case is where
a value for ¢ was previously found, but the current values are no longer satisfactory. Therefore, we
return the previously satisfactory value for ¢.

In Figure 6.2, we demonstrate an illustration of the e calibration scheme. The horizontal line repre-
sents the ordered e search space £. The arrows in the figure represent steps from a previous value for ¢
to a next value for e. The solid arrows represent cases where the number of clusters is underestimated
or correctly estimated. The dotted arrows indicate cases where the number of clusters is overestimated.
In those cases, the step is reverted, and a smaller step of size j/2 is taken instead. In particular, from
the initial position in the figure, a big step of size j is taken towards ¢;,. Then, considering ¢;;;, we
find that the number of clusters in the partition is overestimated; therefore, we halve the step size and
consider ¢;, ;2 instead. This procedure leads us to the value of €; ;24 /4.

Because of the resemblance to binary search, which is obtained through the halving of the step sizes,
we can observe that the calibration takes O(log N) steps in the worst case. Therefore, this procedure
is relatively efficient, especially considering linearly searching the search space requires O(N) steps.
Furthermore, because N is O(n?), we have that if we use Louvain as our modularity maximization
procedure of choice, the calibration procedure takes O(log N)O(nlogn) = O(nlog®n) time. On the
other hand, with linear search, the entire time complexity takes O(N)O(nlogn) = O(n®logn) time.
The most important difference between these time complexities is that the former is dominated by the
time complexity of computing the spectral decomposition O(n?), while the latter is not.



Normalized Spectral Modularity

In this chapter, we introduce a second solution to mitigate the breakdown of spectral modularity max-
imization by employing a modification to the modularity objective. Spectral modularity maximization,
in its naive form, maximizes the sum of all elements in the spectral modularity matrix B that are asso-
ciated with the internal pairs of objects. In this way, adding an object to a big group generally has a
larger increase in the objective function than adding an object to a small group, given that the individual
pairwise modularities are of the same size. While in principle this should not be a problem if all the
pairwise modularities are well-defined, the spectral modularity breakdown causes the naive maximiza-
tion to be inconsistent. Therefore, we are interested in a normalization that discounts this bias towards
creating large groups in the clustering. In Chapter 6, this mitigation is achieved by regularizing the
objective to penalize clusterings with heterogeneously sized groups. In normalized spectral modularity
maximization, we mitigate bias towards clusterings with heterogeneously sized groups by considering
an alternative objective that does not favor clusterings with heterogeneously sized groups.

Because we redefine the objective, we cannot use existing maximization methods. In contrast to the
explicit regularization solution from Chapter 6, we are required to develop new methods to maximize
the normalized modularity. In particular, this maximization method is based on the angular orientations
of the spectral modularity vectors of objects and cluster representative vectors. To do this, we first
define a set of seed objects that are initially used as candidate positions for the group representative
vectors. Using this set of seeds, a dynamic assignment phase can efficiently be used to provide a
clustering of the entire data set.

In Section 7.1, we introduce the specific normalized objective and how it differs from the standard
modularity and other normalizations of modularity. In Section 7.2, we present an interpretation of the
magnitudes and orientations of spectral modularity vectors that helps to define a clustering method
based on the normalized modularity objective. In Section 7.3, we define the set of seeds that are
representative objects for the clusters and describe the procedure for finding the seeds. In Section 7.4,
we describe the normalized spectral modularity maximization algorithm.

7.1. Normalized Objective

The essence of this solution lies in the adaptation of a normalization in the modularity objective defined
in Equation 4.1. However, as the modularity objective is changed, using existing maximization meth-
ods becomes cumbersome. In particular, this is the case because existing methods, such as Louvain,
make use of an explicit expression for the change of modularity by changing the clustering of a sin-
gle object. However, this is no longer possible when we consider a normalized objective. In order to
demonstrate the derivation of the normalized spectral modularity objective and why the existing max-
imization procedure cannot be used, like in the regularization-based solution discussed in Chapter 6,
we show how the normalized objective Q.. deviates from the standard modularity objective @y and
from an average modularity objective Q..
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Figure 7.1: Spectral modularity vectors. The black dots represent the objects represented by their spectral modularity
vectors in R2. The black circle is the unit circle. The different colors represent the different clusters. The dashed line represents
the z, associated with the standard modularity objective, Qo. The dot on the unit circle represents H:’;H associated with the
normalized modularity objective, Qnorm. The thick solid line represents 2« associated with the average modularity objective,

[Ckl
Qa’ug

The new spectral objective can be obtained by recognizing the use of the orientations of cluster
representative vectors in the traditional spectral modularity objective. In particular, given a K-partition
pof {1,...,n} and the spectral modularity vectors {r;}?_, C RE~! where K denotes the number of
spiked eigenvalues, as discussed in Chapter 3, a set of K representative spectral modularity vectors
can be obtained with the same philosophy that group representative data profiles, as discussed in
Sec 2.2. The angular orientations of these representative spectral modularity vectors, hereafter referred
to as 'cluster vectors’ and denoted with {z, X, are fundamental in the spectral modularity maximization.
In particular, the cluster vectors are defined by

Z) = Z rj, (7.1)
J€CK

where k € {1,..., K} and C}, € p for some partition p. In Figure 7.1 we display the spectral modularity
vectors {r;}1 ,, withr; € R* foralli € {1,...,n}, associated to a small data set with three groups, i.e.,
K = 3, which is correctly determined by the number of spiked eigenvalues, such that K =3.The group
sizes are deliberately heterogeneous in order to demonstrate the different behaviors of Qo, Q4v4, and
Qnorm- The colored dashed lines, thick solid lines, and dots represent different interpretations of the
representative spectral modularity vectors that are used implicitly or explicitly in the different objectives.

Standard Modularity
Recall the standard modularity objective, ), that is discussed in Section 4.3, i.e.

Q) =>_ Y. > Biy (7.2)
Cr€p 1€Cy jEC

This form is particularly useful, as it can be used to explicitly indicate a change in modularity. To be
precise, let A;_,; denote an operator on the argument of  that moves a single object i from C}, to
cluster C}, and computes the difference, i.e., for some p = {Cy,...Ch,...Ck,...,Ck}

AisxQo(p) = Q(p') — Q(p), (7.3)
where {C1,...C},...C},...,Cx}and C} = C, \ {i} and C}, = Cj, U {i}.
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This quantity can be explicitly expressed as

1~>kQO Z Blj + Z Bzy (74)

jeCy JECK

The computation of this quantity requires at most n summations. Therefore, an enumeration of all
possible moves at each stage, like in Louvain, is tractable. Because the gain in the modularity objective
Qo favors big groups, groups are merged inconsistently when the number of groups grows. This can
be seen from the modularity change expression in equation 7.4, where if C is much larger than C},
the expression is likely to be positive. Indeed, if B;; = a € [0,1] for all j € C}, U Cj, meaning the
individual pairwise modularities are all constant in both clusters, the term A;_,,.Qo(p) will be positive
simply because C}; is larger.

Now, consider the notation of the objective in terms of the spectral modularity vectors {r;}? ,, then
we can write

:ZZZW'PFZZH-ZrJ:ZZri-z;c. (7.5)

CrepieCy jelCy CrepieCy 7j€Cy CrepieCy

As we see in the right-hand side of the equality, modularity can be alternatively considered as a sum
of the inner products of the spectral modularity vectors with their respective cluster vectors. Using this
connotation, it is clear that large-magnitude cluster vectors are favored by the objective. The large
magnitude of relatively large groups is seen in Figure 7.1, as indicated by the red dashed line.

Average Modularity

Therefore, it is tempting to find an adjustment to the objective such that it does not favor clusterings
with relatively large groups. A simple way to think about this is by using averages. In the average
modularity objective, we want to find the partition p that uses the same objective in Equation 7.5, but
instead of using the term z;, = ZjECk r;, we use the average instead, i.e., ‘é—*k‘ This gives us the
following average modularity objective:

Qavg Z Z r;:

CrepieCy

(7.6)
|Cl k|

which can be equivalently written as

Qavg(p (7.7)

Cr€EpieCy jGCk
Average modularity does not favor large groups. Because the cluster vectors are averaged, the num-
ber of objects in a group does not influence the magnitude of the terms {‘éﬁ}le. This is indicated by

the roughly same size of the thick solid lines in Figure 7.1 that indicate these average cluster vectors,
even though the cluster sizes are significantly different.

Furthermore, the Q,., does have a relatively simple expression for A;_,,Q..4(p). Indeed, consider
some i € C}, that we move to C),. Then,

1 1 1
Al kQav Br ( > + Br' < — > (78)
K ’ #;C NI~ 1 |Ch‘ T;éi,;ck TNIC+1 |Gy
- Y By i+ > By (7.9)
jech | jEC |C | + 1

Because computing these sums is not too complicated, it is likely that an algorithm similar to Louvain
that efficiently uses these modularity-change quantities is feasible.
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Nevertheless, there is a fundamental problem with using Q.. The contributions of large-magnitude
objects, which indicate larger absolute pairwise modularities, are not accounted for. Indeed, consider
that the following two objects are in a cluster:

ry = <(1)) andrs = (8;) . (7.10)

This gives that z;, = (0.6 O.l)T, where both vectors contribute equally to the direction of the cluster
vector. Because r; has a large magnitude, we want its influence on the cluster vector z; to be more
important than the small magnitude vector r,. Especially as any object has a relatively insignificant
pairwise modularity with object 2, it is much less likely to be a representative object for that cluster. On
the other hand, objects have significant pairwise modularities that can be positive or negative. With rq,
this makes it much more representative of the cluster.

Unit Normalization

Fortunately, there is a more natural objective that does not have the problem that average modularity
suffers from. Instead, we consider the unit normalization of {z; }&_,, i.e., for Euclidean norm || - ||2, we
have

Qnorm(p) = Z Z r;- i

CrEpPIEC) ||z ]2

To illustrate the benefit of using Qnorm Over Qg4 and especially )y, we zoom in on the upper half
of Figure 7.1. In particular, we consider the addition of an object to one of the two clusters, i.e., the
red or the blue cluster. The newly added has a spectral modularity vector in R? at a radius of » and an
angle of 4 in R2. Specifically, if r denotes this spectral modularity vector representation, then

r = (rcosf,rsinf) € R%, (7.11)

In Figure 7.1, an example for r is position at » = 0.2,6 = 0.5, indicated with a cross. In Figure 7.2,
we display the effect on the objective functions of adding the new object, for different values of r and
0, to any of the two clusters. The effect of adding the object to the red cluster is indicated by the red
lines. The effect of adding the object to the blue cluster is indicated by the blue lines. In the top row, we
display a zoomed perspective of the spectral modularity vectors from Figure 7.1. The three different
colored half circles correspond to the object assignments made based on that objective for the position
of the newly added object. The color in the half circle indicates the decision based on that objective
for that position of r. For example, if at some point on the half circle the color is blue, then if the newly
added object is positioned at that point, the object is added to the blue cluster according to the specific
objective. The half circles are supposed to be displayed exactly at radius r, but are slightly spread
out to visualize all three of the objectives simultaneously. In the bottom three rows, we visualize the
objectives explicitly as a function of 6. The colors displayed in the half circles in the top row are exactly
the colors of the cluster with the highest value for the objective for that given value of 6. This is seen by
the alignment of the intersections of the red and blue lines in the bottom figures and the color switch in
the half circles in the top row.

When the radius of r is relatively large, i.e., when r = 0.8, we clearly see the tendency towards big
groups of Qy. The larger group, i.e., the red cluster, is more favorable to assign r to, even if it visually
aligns the cluster vector of the blue cluster. Moreover, the other objective Q .., and Q.- have a lesser
tendency to cluster r to the red cluster, as indicated by the larger blue section in the half circle.

When the radius is small, i.e., » = 0.2, as depicted in the left column of Figure 7.2, the same ten-
dency prevails in o. However, more importantly, .., demonstrates an extreme favor to assign the
object with the red cluster. This is because the objects with small magnitudes affect the orientation
of the cluster vectors disproportionally. On the other hand, Q... is robust against this situation, as
indicated by a similar decision point for large and small magnitudes.
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Figure 7.2: Comparison of spectral modularity objectives. The top row displays the same spectral modularity vectors as in
figure 7.1, zoomed in on the top half circle. The dashed line represents {zy } ¢ {red,biue} @ssociated with Qo, the thick solid

line represents {%} associated with Q4. 4, and the dot represents {Hz—il‘} , associated with

ke{red,blue} ke{red,blue}

Qnorm The bottom rows display the different objectives (Qo, Qavg, Qnorm) for the addition of an object with spectral
modularity vector, r = r(cos 0, sin #), to the respective cluster (red, blue) indicated by the respective colored lines. The colored
half circles in the top row represent the cluster assignment decision (red, blue) based on the specified objective. The switch of
color in these half circles is exactly at 6, where the blue and red lines intersect in the bottom rows for the associated objective.

While this specific example illustrates the different behaviors of the objectives, the actual reason
for the normalization is to be applied in the context of a large number of groups, where the tendency
towards a large group of Qg actually causes fundamental inconsistencies. Unfortunately, the spectral
modularity vectors in dimensions larger than 3, cannot be visualized. Therefore, the relatively marginal
difference in behavior between Q¢ and Q.. in this low-dimensional setting should be taken with a
grain of salt. However, this illustration does demonstrate the fundamental benefit of using @,,4,-, over

Qavg-

Although Q,..» has the potential to be robust against the challenges of spectral modularity break-
down, the objective is less amenable. In particular, for this specific objective function, the modularity
change, i.e., A Qnorm(p), cannot be expressed in the summation of O(n) terms. Therefore, an
alternative maximization approach is required.
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7.2. Separation of Magnitude and Orientation

The trick that allows for an efficient maximization algorithm of Q... is to separate the orientations of
the spectral modularity vectors from the magnitudes. To be precise, consider ¢;; € [0,27) being the
angle between r; and r;. Then, the spectral modularity between i and j can be written as

Bij = cos(6)|[ri]| [|r]]- (7.12)

From this, we see that the pairwise modularities can be decomposed into the cosines, which solely de-
termine the sign of the pairwise modularity, and the magnitudes of r; and r;, which have no influence
on the sign of the pairwise modularity. Therefore, if the magnitude of an object i is large, the absolute
pairwise modularities |B;;| are likely to be large for all j € {1,...,n}. On the other hand, if the magni-
tude is small, the absolute pairwise modularities are likely to be small. Therefore, the objects with large
spectral modularity vectors are more representative of the objects in their cluster. This suggests that
the algorithm should put an emphasis on these large-magnitude objects when clustering them.

Furthermore, if a;; denotes the angle between the kth cluster vector, z;, of a partition and the
spectral modularity vector of object i, then the normalized objective can be written as

r; V/ r; z
Dorn0)= 35 3 e Tl = 22 2 Iy ] = 2o 2 Imlleostenn- 7:13)

CrepieCy Cr€picCy CrepicCy

Then, an important observation is that cos(a;;) depends on the partition p through its dependence
onz, = . c, Ij, but |[r;|| is not dependent on the partition p. Hence, this procedure allows us to
separate the information we obtain about the data through the spectral modularity vector magnitudes
from the information we obtain from the spectral modularity vector orientations.

This is useful, as we cannot base our greedy decisions on the optimal moves of objects among
subsets of the partition. Unlike in Qy and Q..4, we cannot derive an expression for the delta modularity
for a move due to the nonlinearity of the vector norms as depicted in Equation 7.4 and Equation 7.8,
respectively. Despite this limitation, the separation of magnitudes and orientation gives us an alterna-
tive approach to optimizing the modularity objective Q.o -

Instead of consistently updating the objective by moving objects around in the partition until a local
optimum is found, which is not practical due to the complicated expression of AQ,,o,-m, We have to
consider a smaller search space. We do this by enforcing an ordering in which we cluster the objects.
In particular, we order the objects by the magnitudes of the spectral modularity vectors.

Consider for some data set {x;} ,, withx; € X forall i € {1,...,n}, we have the spectral modu-

larity vectors {r;}7_,, with r; € R"~!, where K is the number of spiked eigenvalues and therefore the
considered to be the number of groups. Then, we find an ordering of the indices {1,...,n}, i.e.,

Jis-- 5 dn €{1,...,n}, With ji # jo # ... # jin, (7.14)
such that,

e l13 > > 013 > - > [, 113 (7.15)

By ordering spectral modularity vectors by their magnitudes, which relate to a sense of significance
of their orientation, we ensure that the most meaningful decisions that influence the orientation of the
cluster vector z; are made early on. At the same time, the angular orientation of objects that are
relatively insignificant, through their small magnitude, is made later.
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7.3. Cluster Seeds

Given K detected spiked eigenvalues, we want to find K clusters, assuming that the ground-truth num-
ber of groups K is correctly approximated by the number of spiked eigenvalues K. Therefore, there
should be K vectors in RX—1 that have negative pairwise dot products. This way, they are represen-
tative of distinct cluster vectors. However, the existence of K — 1 vectors with a negative dot product
becomes increasingly rare when K grows, due to similar reasons behind the spectral modularity break-
down as suggested in Chapter 5. Therefore, for large K, it is unlikely that any clustering will have K
representative spectral modularity vectors that actually have pairwise negative dot products. Therefore,
we initialize the clustering with a subset of K spectral modulanty vectors in {r;}_,, which we call the
cluster seeds. This specific initialization ensures that K clusters are constructed whenever there are
K spiked eigenvalues.

Using the intuition from the separation of angles and magnitudes, there is a natural method to select
candidate objects from the data set that are particularly important for representing the group structure.
If we are able to find the objects with the largest magnitude, we will have a convenient starting point
for the clustering procedure. Unfortunately, purely using the objects with the largest magnitude is sus-
ceptible to spectral modularity breakdown. Therefore, for obtaining the seeds, we still require the use
of an e parameter, akin to the regularization parameter defined in the regularized spectral modularity
maximization (SMM1). Fortunately, we do not depend on the calibration scheme for the actual cluster-
ing but rather for the seed finding, which enables a more stable and compact procedure.

First, consider the following recursive set definition for the set of seeds S,,,, where m represents the
number of seeds that are found, and

So = {}. (7.16)

Consider the following set of indices of objects that represent candidate seeds, I,,,. The spectral mod-
ularity vectors of candidates in I,,, should all have negative dot products with the spectral modularity
vectors of the seeds that are currently in the set S,,,. Then, I,, is defined as

I,={ie{l,...,n}\ S, suchthat r;-r; <OforalljeS,}. (7.17)

This makes Iy = {1,...,n}. Now, consider the object s, that represents one of the remaining candi-
dates I,,, with the largest magnitude, i.e.,

Sm = arg max ||z |2 (7.18)

Then, the recursive set definition for S,,, depends on the availability of candidate objects. This means
that if the candidate set I, is empty, S; is not defined for [ > m. We define S,,, as follows:

So ={}, Sm+1 = Sm U {sm} forall m > 0 such that 1,,, # 0. (7.19)

In other words, we want the set of seeds S to be a set of vectors such that the sum of the magnitudes of
the vectors is maximal and the pairwise cosines are negative. Because for RX~!, i.e., the space of the
spectral modularity vectors {r;}?_,, the maximum number of objects with pairwise negative dot product
is K, we know that there must exist an m < K, such that S,, is defined but S,,; is not. Let us de-
note this set with S. Because of the breakdown of spectral modularity, it is not guaranteed that |S| =

The set S above can be set can be equivalently defined as the solution to an optimization problem
over the space of all possible subsets of {1,...,n} with a constraint that requires pairwise negative
dot products. The objective is to maximize the sum of all spectral modularity vector magnitudes of the
seeds, i.e., for some set S, 3. ||r;||3. To be specific,

max > ||r[[3, (7.20)
€S

SC{1,...,n}

str;-r; <0 foralli,j € S that have i # j. (7.21)



7.3. Cluster Seeds 64

We are specifically interested in finding a set of seeds that is of exactly size K, in alignment with the
number of spiked eigenvalues. Therefore, with the same philosophy of the regularization parameter
specified in Chapter 6, we use a correction term ¢ to correct for the breakdown in the seed finding stage.
In essence, we are interested in finding a value for € € (e_, e4) such that the size of the set of seeds
obtained from the following slightly adjusted optimization problem is equal to K. To do this, we use the
optimization problem defined in Equation 7.20 defined above and add a constraint that ensures that the
number of seeds is equal to K. Then, in order to ensure the feasibility of the problem that is otherwise
prevented by the breakdown of spectral modularity, we replace the pairwise negative dot product con-
straint with an adjusted constraint that uses the term ¢. Finally, we add the ¢ term to the variables of the
optimization problem, such that a value can be chosen for which the seed size constraint holds. This
value can be uniquely obtained in two ways. We can find the minimal value for e such that the problem
is feasible, or we can find the maximal value for ¢ such that the problem is feasible. This should not
make a difference, as the magnitudes themselves do not change; the maximum magnitude spectral
modularity vectors will remain the same.

The adjusted optimization problem is then:

e wll 7.22
SC{1,...,n},e€le_,eq] lEZS || H2 ( )
stri-r;<e  forallij€ Sthathavei# j, (7.23)

S (7.24)

Now, from this optimization problem, we can additionally redefine the recursive set definition, which
immediately leads to a practical implementation to solve the above problem:

I ={ic{l,...,n}\S,, suchthat r;-r;<ecforal jecS,}, (7.25)
57(72_1 =S99 U{slc} where s, =arg max |Ir:]3. (7.26)
i€lm,

Then, using the recursive definition, we have

Sk =min{e € [e_,ey]: |S9] = K}. (7.27)

In Figure 7.3, we illustrate the seed-finding procedure. The four images represent the evaluation
of the four spectral modularity vectors with the largest magnitudes as candidates for seeds. The outer
ring is the unit circle. The inner ring is the ring with the magnitude of the current spectral modularity
vector that is being considered. In the leftmost figure, the absolute largest magnitude is assigned to the
cluster. This is always the case, as it is the first vector that is considered. In the second-to-left figure,
the second-largest magnitude vector is considered; this vector does not have a negative dot product
with the existing seed vector and is therefore ignored. The third figure from the left, the third-largest
magnitude vector, is considered. This vector does have a negative dot product with the existing seed
and is therefore assigned to its own cluster. In the last figure, the fourth-largest magnitude vector is
assigned to its own cluster because it has negative dot products with both the red and green cluster
vectors. Unfortunately, the seed-finding procedure can only be visualized for K = 3, such that the
dimensions of the spectral modularity vectors are limited to 2. Therefore, the use of the epsilon term is
not demonstrated.
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DO Q&

Figure 7.3: lllustration of seed finding procedure. The four figures represent the first four steps of the seed-finding
procedure. In the leftmost figure, the vector with the largest magnitude is considered. In the rightmost figure, the vector with the
fourth-largest magnitude is considered. The outer circles are unit circles. The inner circle is a circle with a radius corresponding
to the magnitude of the vector that is being considered in that step. The black dots are the same spectral modularity vectors as
in figure 7.1. The colors represent the different clusters. The colored dots represent the seed of the respective cluster. The
orthogonal lines represent the cones around the vectors that should not intersect for the pairwise negative dot product
condition to be satisfied.

7.4. Maximization Algorithm

Given the separation of orientations and magnitudes of the vectors, we obtain the ordering ji,..., jn
that satisfies the magnitude sorting specified in Equation 7.15. In addition, given an initial set of seeds
S that can produce the initial cluster vectors {z; }1_,, what remains is to determine the remaining steps.
To proceed, foragivenindex j € {1,...,n} obtained from the ordering and such that j ¢ S, we compute
the current optimal assignment based on the largest cosine between r; and the cluster vectors

r;

k' = argmax —’— - z;. (7.28)
kel

Based on this criteria, we assign object j to cluster Cy.. After this, the cluster vectors are recomputed,

and the next index from the ordering is selected for the next cluster assignment.

Conceptually, the outline of the algorithm that can be used to maximize normalized spectral modu-
larity can be divided into three phases:

1. Seed phase: First, we find the K objects in the data set that are each representative of a cluster.

2. Sort phase: Second, the remaining objects are ordered by the magnitudes of the spectral modu-
larity vectors.

3. Assign phase: Finally, we repeatedly pick the first object that is not assigned yet (ordered by step
2) and compute the cosine between the object and the cluster vector. Then assign the object to
the cluster with the largest cosine and update the cluster vector.

The complete algorithm is given in Algorithm 3. In Figure 7.4, an illustration of a selection of steps
of the algorithm is given. The leftmost figure shows the initial state, where only three seed objects are
assigned to their respective clusters. After this, the remaining objects are considered in an ordering
that goes from the highest spectral modularity vector magnitude to the lowest magnitude. Then, the
second object that is added is an object that belongs to the red cluster, as indicated in the middle figure.
After 7 steps, the first object that does not belong to the red cluster is assigned. This is seen in the
rightmost figure, where an object is added to the green cluster.
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Initial State Step 2 Step 7

Figure 7.4: lllustration of maximization algorithm 3. The circle represents the unit circle. The dots represent the data set
represented by their spectral modularity vectors in R2. The colors represent different clusters. The dots on the unit circle
represent the normalized cluster vectors. The leftmost figure gives the initial state, where the seeds are assigned to their own
cluster. The middle figure gives an illustration of the second step, where the object with the next largest magnitude of the
spectral modularity vector is assigned to the best aligning cluster vector. In the rightmost figure, the first object that does not
belong to the red cluster is assigned.

Algorithm 3 Normalized Spectral Modularity Maximization (SMM2)

Input: K — 1 dimensional spectral modularity vectors {r:}0_;.
Output: partition p = {C, ..., Cf(}

1. Seed Phase: Obtain the seeds, S, by solving Equation 7.27. S is the set of K seeds that serve
as initial positions for the latent representative objects.

{zl,zz,...,zk}:{%:iES}. (7.29)
|[r3]15
Initialize the clusters with the seeds, i.e., for S = {sq,..., Sk forall k € {1,..., f(} we have

2. Sort Phase: Sort the indices by the magnitudes of the spectral modularity vectors, i.e., the quan-
tities ||r;||3 for all 4, to obtain an ordering of indices ji, ..., j, that satisfies
e ll3 = - > Iy,

5> >l (7.31)

3. Assignment Phase: For m = ji,...j,, withm ¢ S, do

+ Compute the current optimal assignment based on the largest cosine between r,, and the
latent representative vectors.

k' = arg max Tm . _Zh (7.32)
el Izl
» Update the cluster
Cr + Cp U {m}. (7.33)

+ Update the latent representative vector.

Zy Z r;. (7.34)

JEC,




Soft Spectral Modularity

In this chapter, we introduce a soft clustering method that is based on the spectral modularity vectors.
The method uses the spectral modularity vector representations of objects in a data set to uncover dif-
ferent amounts of membership. In particular, given a hard clustering, the cluster representative spectral
modularity vectors can be computed for each of the clusters. Then, objects can be proportionally as-
signed to the clusters with which they have a positive cosine. This way, the soft clustering procedure
can be applied to partitions obtained from any hard clustering method.

In general, being able to quantify uncertainty or overlapping clusters is a highly desirable feature of
clustering algorithms. Yet, not many of these methods outside of model-based clustering exist. For the
main part of this thesis, cluster analysis is concerned with the finding of a partition that strictly assigns
objects to a single cluster. However, such rigidity is not always a realistic expectation. Fundamentally,
an object may belong partially to multiple clusters. Furthermore, the different levels of uncertainty be-
tween objects that are near the border of two clusters are ignored completely in clustering with these
hard partitions.

Despite this clear benefit of soft clustering over hard clustering, the development of soft clustering is
significantly smaller than its hard counterpart. For example, fuzzy KMeans [86] is a well-known method,
but it requires a lot of parameter choices and is unlikely to perform well in high dimensions. In addition,
clustering methods based on the inference of statistical models naturally provide soft clustering through
probability distributions. However, fundamentally, these methods have computational and conceptual
issues in high dimensional data, as discussed in Section 2.4, especially when a particular statistical
model of the data is difficult to determine.

In Section 8.1, the mathematical definition of a soft partition is given. In Section 8.2, we uncover why
the spectral modularity vectors are particularly interesting for a parameter-free soft clustering method by
demonstrating challenges that exist with naive interpretations. In particular, we describe the problem of
maximizing spectral modularity over all the possible soft partitions. Finally, in Section 8.3, a procedure
based on the spectral modularity vector representations of objects is given that can be used to convert
an arbitrary hard clustering into a soft clustering.

8.1. Soft Partition

A soft partition can be viewed as a mapping from objects to cluster assignments. Let {1,...,n} be a set
representing the indices of the data set. A soft partition of size K can be as a mapping from {1,...,n}
the points inside a regular K-simplex, denoted by Sk, i.e.

K
SK:{WE[O,l]K:Zw’“:I}. (8.1)

k=1

In this interpretation, some object i with w; € Si associated with the object represents the amount of
membership of the object i to the clusters. In particular, for some k € {1,..., K}, the term w¥ repre-
sents the amount of membership to cluster k.

67
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Note that the definition of clusters can no longer be represented by subsets of {1,...,n} and there-
fore are only referred to by their index. Furthermore, this definition of soft partition specifies a particular
symmetry in the order of the dimensions of the vectors in Si. To be precise, permutations of the order
of dimensions associated with the cluster assignments, i.e., permutations of {1, ..., K'}, are associated
with the same soft partition.

In principle, a hard partition p can also be viewed from this perspective, and it conveniently highlights
the symmetry of this mapping-based definition. A single cluster assignment of an object i in a hard
partition can also be defined by a point in Si, namely a point w;, that satisfies

wl = 1forsome h € {1,...,K}and wf =0forall k € {1,..., K} with k # h. (8.2)

Then, consider that there are equivalently defined cluster assignments for all objects consistent with
the partition p, i.e.

1ifi e Cg,

. (8.3)
0 otherwise .

forallic {1,...,n}andkc {1,...,K}:wF = {
In this setting, it becomes clear that a permutation of the dimensions of Sk is equivalent to permuting
the indices of the clusters {C.}X_, of the partition p, which is invariant to these permutations as the
partition is simply a set of sets.

Furthermore, soft clustering can be seen as a relaxation of hard clustering. The size of the space of
soft partitions is, however, uncountable due to the cluster assignments taking values in the continuous
interval [0, 1]. This makes it difficult to approach the soft clustering problem from the same perspective
as hard clustering. Therefore, alternative methods are required.

To concretize this relatively abstract notion of a mapping of objects to cluster assignment, the soft
partitions can be practically represented by a n x K matrix, which we refer to as the partition matrix.
Specifically, for any, soft or hard, partition, there exists a representative matrix P € [0, 1]"*¥ that satis-
fies

P, = w with w; € Sk, (8.4)
foralli e {1,...,n}and k € {1,..., K}. In particular, as a direct result, we have
K
> Piy=1, (8.5)
k=1
forall : € {1,...,n}. For hard partitions, the related partition matrices are additionally constrained
to the space of {0,1}"*X. For a given hard partition, this corresponds to the following notation. We
can represent the partition as an ordered list of labels for each object, with k; € {1,..., K} for all
i €{1,...,n}. Here, the labels {k;}?_, are defined such that the objects that share the same label are

in the same group. Then, this representation entices another representation that is particularly useful in
this study. Consider the row vector p; € 0, 1¥ that is the 'one-hot encoding’ of the label k;. Specifically,

0,..,0,1,0,..,0
pi = , < | . (8.6)

1 ki—1 ki ki+1 K
However, given a soft or hard partition, there is not a unique partition matrix due to the above-mentioned
symmetries. The symmetries in the partition matrices are represented by the invariance to permutations
of the columns of P. In particular, for a given, soft or hard, partition, there are K'! equivalent partition

matrices.
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8.2. Ineffectual Relaxation

Because soft partitions can be seen as a relaxation of hard partitions, it is tempting to maximize modular-
ity over all the possible soft partitions. While this is rather cumbersome to consider from the perspective
of soft partitions being a mapping between objects and K dimensional cluster assignment, the partition
matrices allow for an intuitive relaxation. In particular, we can define the space of all possible partition
matrices, which we from now on refer to as the space of Markov matrices, denoted by M, and formally
define such that the matrices in M have positive elements and their rows sum to one, i.e.

M={P e [0,1]"K : Pl =1,}. (8.7)

Alternative names that are commonly used to describe Markov matrices are 'stochastic matrices’ and
‘probability matrices’, which resemble the practical setting in which these matrices are often used. How-
ever, to prevent ambiguity with 'random matrices’ in general, we use the term Markov matrices to denote
this class of matrices.

The space of hard partition matrices can be written in a similar form by constraining the cluster
assignments to the set {0, 1}, i.e.

OM={P c{0,1}K . P1g =1,}, (8.8)

where we use the notation 9 M as the space of hard partitions can be seen as the boundary of M, on
which we elaborate below. The hard and soft partitions are closely related in their natural descriptions;
however, their traditional definitions are not particularly similar. The differences are that hard partitions
assume mutual exclusivity, while in soft partitions, the partition is endowed with a membership function
for each subset.

The maximization of the modularity objective as defined in Equation 4.1 can be equivalently written
in terms of (hard) partition matrices and the search space of hard partition matrices 9.M, i.e., note that

K n n
max Qo) =max > D ) Bu=guax > ) > PuPuBy = yux TPTBP]  (89)

CrepicCy jEC k=1i=1 j=1

Therefore, if we consider that the maximum on the left-hand side is unique,
* * T
p* = arg rglea% Q(p) and P* = arg Jnax Tr[P ' BP], (8.10)

then the partition matrix P* represents the partition p*, i.e., they satisfy the relation specified in Equa-
tion 8.3. It should be noted that because of the symmetries in the partition matrices, the search space of
the left maximization problem is larger without conceptually changing the space of partitions. Therefore,
a naive maximization of the left objective is arguably more efficient. However, at this stage, we are in-
terested in a relaxation to soft partition, which can be easily done in the partition matrix based objective.

A relaxation of the optimization problem in the right-hand side of Equation 8.10 to M gives us
max Tr[P 'BP], (8.11)
PeM

which makes it tempting to think that the relaxation of the search space of the clustering optimization
problem from M to M may give us an optimal partition in the interior of M such that it associates to
a soft partition, as the search space including the soft partition matrices is much larger than only the
space hard partition matrices.

However, in the case of the modularity objective Q) this is not true. In particular, the naive extension
of modularity maximization to the space of soft partitions is non-trivial, which makes us consider an
alternative approach to employing soft clustering in the next section. The ineffectual relaxation is,
specifically, because the maxima that are attained when relaxing the search space of the optimization
problem to include soft partitions are still hard partitions, due to the convexity of space M and function

Qo
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Convexity of M
First, the space of M is convex, meaning that for some ¢ € [0, 1] and any two partition matrices, P, P’ €
M, we have that

PY =P+ (1-t)P' e M. (8.12)

To see that this is indeed the case, consider that for some i € {1,...,n} and K € {1,..., K}, we have
PE? =tP;,+(1—-t)P’ € [0, 1]. Furthermore, consider that Zle PE,? = tszzl P +(1-t) Zle P, =
1. Therefore, we have that P(Y) ¢ M, demonstrating the convexity of M.

Convexity of Qq

Second, the modularity objective based on the partition matrices specified in Equation 4.12 is a convex
function. This can be seen by the fact that the objective can be written as a sum of K convex functions
of the form x " Bx, where x are the columns of the partition matrix P. These K functions are convex
because of the symmetric positive definiteness of B, implying that the n x n Hessian matrices of these
functions, which is 2B, are therefore also positive definite.

Extremal Boundary

Because the objective is a convex function on a convex set, the maxima are attained at the boundary
of M, which is 9 M. To see this, consider that if M’ is the largest open set within M, i.e., the interior
of M, that is naturally obtained by changing the closed bounds of matrix entries to open bounds, we
have

M =IntM = {P € (0,1)"*5 : P1x = 1,} (8.13)

Then, the boundary of M’, written as 9 M, written as 9M’ and defined by the closure of M’ minus the
interior, is the space of hard partition matrices, i.e., OM' = cL. M’ \ M'.

8.3. Spectral Modularity Based Soft Clustering

To answer this need for an alternative approach, we propose here a procedure that is based on a hard
partition p. To be precise, we use the relationship between the objects and the cluster vectors to deter-
mine soft cluster assignments for each of the objects. To highlight why this soft clustering procedure
is a particular trait of spectral modularity and not of similarity, we first illustrate the philosophy of the
procedure without the use of the spectral modularity vectors and show that it does not lead to a satis-
factory method.

Consider a hard clustering p of {1,...,n} that is of size K and a similarity metric s defined on the
data space X. To obtain a soft clustering from this hard partition, a naive procedure is to inspect the
inferred representative profile i1, € X of the data in the clusters of p. Then, one can constructa n x K
matrix that contains for each object the similarity to all representative data profiles. Then, a natural
assumption is that the amount of membership of an object i to the specific cluster k can be expressed
proportionally by the similarity between the object i and the kth cluster profile. This would give a soft
partition matrix generated by the following computation: foralli € {1,...,n}and k € {1,..., K} we
have

Py = M) (8.14)
Zk:1 (x4, fby,)

However, this approach suffers from a fundamental problem. As the similarity metric is typically greater
than zero, it will not be able to discount a global similarity level among all the objects. Therefore, all
objects will likely have positive membership in all clusters. This is problematic, as it will significantly
blur any actual strong cluster memberships that may be present. Any method that is based on this simi-
larity based principle would then require parameter choices to determine a threshold that distinguishes
significant similarity from insignificant similarity.
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Algorithm 4 Spectral Modularity Based Soft Clustering

Input: hard partition p = {C4,...,Cxk}, spectral modularity vectors {r!",}, with forall i € {1,...,n}
r; € RE-1

Output: soft partition matrix P € M,,«

1. Initialize the partition matrix P € M,k withforalli € {1,...,n} andk € {1,..., K}:

p,, = 0Wi€Ch (8.17)
1 otherwise

2. Initialize the cluster vectors {zk}le, with z, = Y0 | Pur;.

3. Order the indices {1,...,n} according to the magnitudes of the spectral modularity vectors, as
indicated in Equation 7.15 and denoted by ji, ..., jn,.

4. Fori=j1,...,jn,do

« Compute the cosines with all the K cluster vectors, i.e., for k& € {1,..., K}, we compute
cosf;,. Then, forallk € {1,...,K}

(||rs|| cos Oix) +

S (il cos i)+

* Update the cluster vectors with z;, = " | P;r;

ik

(8.18)

On the other hand, spectral modularity subtracts a global and random similarity component from
the similarity matrix, as a way of separating the waves from the tides. Therefore, a large part of cluster
memberships will be ensured to be negative and can be attributed to the actual presence of group
structure as opposed to randomness. This makes the use of spectral modularity particularly suitable
for parameter-free soft clustering.

Utilizing the spectral modularity vectors, described in Section 4.3, we can describe a weight assign-
ment based on the cosines and magnitudes of spectral modularity vectors associated with objects and
cluster vectors, akin to the maximization procedure discussed in Chapter 7.

If we have a hard partition p = {C,...,Cx} and consider the spectral modularity vectors {r;},,
then we can use the same representative spectral modularity vectors as discussed in Chapter 7. To
be specific, we have z;, = M

Il Zieck ;|

of the cluster vectors {Zk}ff:l- Then the cosine of r; and z;, is

forall k € {1,..., K}, which represents the normalized version

r; - Zg
|[z3]]
The beneficial aspect of using spectral modularity vector orientations, as opposed to similarity-based
softening, is the natural distinction between positive and negative cosines. This way, we are able to
clearly distinguish between object memberships that are meaningful and those that are not. In fact,
consider the notation (-), for (x)4+ = max{z, 0}, then

cos O, = (8.15)

(||ri]] cos by )+
> ril| cos Oin) +

This way, only the assignments that have positive cosines are considered proportional. Where the
proportions are determined from the magnitude and the actual cosines. In Algorithm 4, the procedure
is formally described.

Py =

(8.16)
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Synthetic Data Generation

In this chapter, we introduce the data generation processes (DGPs) that are used in our experimental
evaluation of the clustering method. In order to evaluate the performance of clustering methods, it is
beneficial to compare clusterings with a ground-truth partition that is known to be meaningful in its con-
text. One might be inclined to use labeled empirical data sets to obtain such a ground-truth partition.
However, this approach is unlikely to produce an insightful evaluation. A primary reason for this is that
there is no guarantee that the provided labels are actually meaningfully representative of the data. With
synthetically generated data, we can compare the enforced group structure with the clustering obtained
from methods to quantify performance. Furthermore, there are only a small number of high-quality, la-
beled empirical data sets available that are ready to use. Finally, there is no controlled flexibility in
empirical data sets with varying characteristics that can influence the effectiveness of specific cluster-
ing algorithms. With synthetically generated data, there is a clear representation of the ground-truth
partition. Furthermore, the characteristics of synthetic datasets can be flexibly controlled to represent
different regimes of interest in this study and different levels of clustering difficulty. To this end, we use
two specific DGPs.

The first DGP is based on the well-known Gaussian Mixture Model (GMM) that we introduced briefly
in Section 2.3 and have made anecdotal use of in Chapter 5. The GMM-based DGP is used to gen-
erate relatively easy data sets that have groups that are centered around the means. By varying the
separation of the group centers, we can create different levels of difficult-to-cluster data sets. How-
ever, because in the GMM setting, the distances between objects and the associated group center
are uniformly distributed, clustering is generally easy, unless the separation between groups becomes
arbitrarily small.

The second DGP is based on the categorical mixed prototype model (CMPM) and provides a coun-
terpart to the relatively easy setting of GMM. The CMPM-based DGP is used to generate data sets
that have overlapping groups with heterogeneous levels of internal similarity, making the distances
between objects and their group centers internally non-uniform in comparison to data generated with
GMM. The CMPM data for a single object is generated by mixing samples from K distributions through
a procedure called prototype mixing and is controlled by a weight vector. With a mixing parameter, we
can transition from relatively easy problems that are closely related to GMM to more difficult problems
where the boundaries of the clusters are soft. The weights are randomly drawn from two different dis-
tributions: a Dirichlet distribution where relatively few objects are close to the cluster centers, and a
logit x? distribution where relatively many objects are close to the cluster centers.

In Section 9.1, we give an overview of the DGP, its basic parameters, and its structure. In Sec-
tion 9.2, we discuss the GMM-based DGP and how the clustering difficulty can be varied. In Section 9.3,
we introduce the CMPM-based DGP, discuss prototype mixing, and again explain how the clustering
difficulty can be varied in this DGP.
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Symbol | Description |  GMM Def. | CMPM Def. (F°) | CMPM Def. ( F')
«@ group proximity Equation 9.1 Equation 9.3

o prototype diffusion - Equation 9.4

B prototype mixing - Equation 9.7 .

n group size heterogeneity - Equation 9.8 Equation 9.9

Table 9.1: Symbols used in the description of the DGP and their meaning, where the GMM column refers to the definition in the
Gaussian Mixture Model and the CMPM column to the definitions in the Categorical Mixed Prototype Model. FO refers to the
CMPM with the Dirichlet weight distribution, and F'! refers to the CMPM with the logit x2 weight distribution.

9.1. Data Generation Process

At its core, the data generation process is a statistical model that specifies a distribution from which
synthetic data is randomly sampled. The data sets are sampled conditionally on a few model param-
eters that control the shape of the distribution. Each generated dataset can be expressed by a n by p
data matrix X = (x;,...,%,) ", in which the rows represent the objects and the columns represent the
features. Therefore, a single object x € X is a multivariate data point in the data space X'.

In order to inject group structure into synthetic data, we choose K positions, prior to sampling, in
the data space that are going to be highly representative of objects in a specific group. Such a repre-
sentative data profile is denoted by a point u;, € X for some group k € {1,..., K}. Therefore, using
the representative data profiles, the sampled objects are obtained from a group-specific distribution,
which we further specify in the next sections. This way, the K distributions characterize the existence
of groups while still facilitating a significant amount of randomness. A ground-truth partition can be
derived directly from this DGP, as the sampled objects unambiguously belong to the group with the
closest representative profile of the chosen set {p } 5 ;.

The DGP has a selection of parameters that are required to control the generation of synthetic data.
In both DGPs, the most important parameters for this study are the number of groups, denoted by K,
and the group proximity, denoted by «, while less important are the number of objects and the number
of dimensions. In the CMPM-based DGP, we additionally have the amount of prototype mixing, denoted
by 3, and the group size heterogeneity, denoted by 7, which are not defined for the GMM. Table 9.1
provides an overview of the specific symbolic usage in the DGP context, where n, p, and K are defined
in the same way as throughout the rest of the thesis.

o =0.2 o =04
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Figure 9.1: Scatter plot of two-dimensional Gaussian mixture data with group center The group proximity parameter « is
different in each of the figures.
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9.2. Gaussian Mixture Model

The setting of the Gaussian mixture model (GMM), as a special case of finite mixture models that we
discussed in Section 2.3, is relatively well studied in the context of clustering. For example, [87] shows
that a Laplacian-based spectral clustering algorithm is theoretically consistent under a GMM. Addition-
ally, the Gaussian mixture model is often used for low dimensional clustering evaluation benchmarks,
such as in [88, 89].

The GMM-based DGP generates data according to the following statistical model that is defined
on the p dimensional real numbers, R?, as its data space. Specifically, if K be the number of groups.
The objects in a specific group are distributed with a specific Gaussian distribution. In this setting, we
enforce the size of the groups to be roughly identical. The distribution of the objects of a group & is a
p-dimensional Gaussian distribution that is centered at i, € RP and has an identity covariance matrix
I. The group centers {p; }5_, are chosen such that

1
s = pnl[3 = = for k # . (9.1)

This means that for asymptotically large «, the group centers are identical, and for small « the group
centers are far apart. Thus, a controls the distance of objects between groups. Without loss of general-
ity, we use an identity covariance matrix, as the effect of the variance is only relative to the separation
between the group centers. This leads to the following statistical model for x; € RP:

Xi~ Y =N (i, T) foralli e {1,...,n}, (9.2)

where the % term ensures that their probability of drawing a sample from each of the K distributions
is equal, thus enforcing roughly equal group sizes in the ground-truth partition p*. In Figure 9.1, we
see a scatter plot of a two-dimensional Gaussian mixture model for different group proximity values.
While p = 2 is not particularly high dimensional and therefore not strictly representative of the data that
we generate with the GMM-based DGP, the visualization gives an illustration of the effect of the group
proximity parameter «. In this setting, we use a Euclidean metric to compute distances, which is a
natural choice for this kind of data. Furthermore, for two arbitrary points, x,y € R?, we consider the
similarity metric defined in Equation 3.6.

9.3. Categorical Mixed Prototype Model

The CMPM-based DGP is defined in a categorical data space. The goal of mixed prototype-based
DGP is to generate data that shares significant resemblance to multiple representative profiles, the
prototypes, rather than a single one. Objects that are sampled by combining mixtures of prototypes
can exhibit complex group structures with highly overlapping and low internally uniform groups, which
makes them worthwhile to study.

For convenience, we encode the data space with integers, such that X := {1,..., K}?. Further-
more, we choose K possible traits for each feature [ to obtain the freedom of generating K maximally
distinct prototypes, i.e., the possibility of having all pairs of prototypes attain Hamming similarity zero.
Hamming similarity zero between two categorical objects is attained when the two objects have no
features with a shared value. Let xﬁ be the ith feature of object i, i.e., x; = (x}, ...,z¥). Then, x; € X
and 2l € {1,...,K}.

In categorical data, this can be achieved by mixing the entries of samples from multiple distribu-
tions that are each centered on a prototype. The contribution of the K prototypes is indicated by a K
dimensional weight vector w;, which is defined by a second class of probability distributions, the weight
distribution. The weight distributions, denoted by F, are a probability distribution on the K — 1 simplex,
as introduced in Section 5.4 and depicted in Figure 5.6a, parameterized by a mixing parameter 5 and
a heterogeneity parameter 5. This distribution F'is used to sample the weights w;1, w;s, . .., w;x, which
specify each prototype’s contribution to the object :.



9.3. Categorical Mixed Prototype Model 76

Furthermore, the K representative profiles, or specifically the prototypes, u;. € {1,...,K}¢, are
chosen such that they satisfy the following relationship:

s(pw, pn) = a. (9.3)

The relation between the similarity function and the group proximity parameter « is slightly different
from the relation that is specified in the GMM-based DGP. For the categorical data specified in this
section, the Hamming similarity between the prototypes is directly related to the proximity parameter.
This is the case, as there is no ambiguous transformation between the Hamming similarity and the pro-
totype generation procedure. Specifically, we can directly generate the prototypes to be at « similarity
to each other. For the GMM, we encode this as the reciprocal of the Euclidean distance between the
group centers. While the two quantities of a should not be compared across models, their directional
behavior shares the same meaning. In practice, we generate the prototypes according to the algorithm
specified in the appendix of [38], which is a convenient procedure for generating prototypes with a spe-
cific proximity.

The location of the distributions is determined by the K prototype. For the diffusion part of the
distribution, we introduce a secondary parameter v € (0,1) specifying the amount of diffusion from
the prototype, which is located at the center. We ensure that approximately (up to rounding) ~ - d of
the features are randomized, while the remaining features are the same as u;,. Suppose that feature
| for object 4, denoted by z!, is drawn from some distribution associated with prototype k. Then, we
introduce diffusion by adding randomness. To be precise, we assume a 1 — v probability that z! will
be equal to x! and a + probability that it will be a uniformly random value from all the possibilities, i.e.,
{1,..., K}. Then, we obtain the following statistical model for x; € {1, ..., K}:

K
1 1
Jj NZ’LULk Yy ,Uk +(1— )Cat <{1,7K}7K,7K> y (94)
k=1 Iocatlon
diffusion
wil,wig...,w7;KNF(ﬁ7T]). (95)

If the amount of prototype mixing approaches zero, i.e., 3 — 0, we obtain a DGP that is called “prototype
generation”, as is discussed in [38]. This specific procedure resembles the class of finite mixture models
in the sense that there are only objects that are purely generated from a single distribution and not
mixtures. This way, it is possible to see the class of mixed prototype models as a generalization of
finite mixture models.

9.3.1. Weight Distributions

We consider the generation of data sets with the CMPM-based DGP for two different weight distributions.
First, we discuss the Dirichlet weight distribution. In fact, specifically, the categorical distribution in the
CMPM-based DGP shares some resemblances to the statistical model in Latent Dirichlet Allocation,
rendering the results from this thesis more broadly applicable. The second weight distribution is a
newly introduced model that is specifically aimed at providing a counterpart to the concentration shape
of the Dirichlet distribution. The distribution is based on the logistic transformation of squares of normal
random variables.

Dirichlet Weight Distribution (F°)
The Dirichlet weight distribution has a probability density function that is defined by

fre(wi, .. wis B, Br) = LS Br) H A1 (9.6)
TTi= (B o

where I' is the gamma function. Here, the constant term in front of the product is a normalization factor
such that the probabilities integrate to 1.
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Therefore, it can be conceptually supportive to understand the proportional expression of the density,
i.e.,

K
f?((wlw"awl(;ﬂla"',ﬂf()ocwakil- (97)
k=1

Since we want an easy-to-vary parameterization of the distribution, we cannot use the Dirichlet
distribution directly because it has too many parameters. Instead, for k € 1,..., K, we define

Br o< B+ K(1—n/2)F, (9.8)

where we normalize j;, such that >, 5, = 8- K. This gives us a parameterization in terms of global
concentration 5 and size heterogeneity n that satisfies 5, = --- = Sk when n = 1. This means
that when the sizes are completely homogeneous (i.e., n = 1), the concentration of the distribution is
symmetric. Sampling weights from the Dirichlet distribution can be done by directly using the explicit
probability density.

In Figure 9.2, we see a two-dimensional histogram of the Dirichlet weight distribution for K = 3 and
multiple values of n and 8. The figures show the concentration of the weights around the center as 5
grows. In fact, when g is small, most of the mass of the distribution is concentrated at the corners of
the simplex. This means that many objects exist that are close to their respective prototypes. Then, for
8 = 1 the distribution is approximately uniform. Finally, for 3 = 4 most of the mass is concentrated at
the center of the simplex. At this stage, only a few objects resemble the pure prototype, as practically
all objects are heavily mixed. When 7, the group size heterogeneity is not zero, similar behavior in
the weight distributions as a function of 5 occurs; however, the symmetry of the weights is much more
skewed towards the corners.

Dirichlet Distribution (F%)
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Figure 9.2: Two-dimensional hexagonal histogram of Dirichlet weight distribution (F°) The different histograms
represent different values of mixing 5 and group size heterogeneity n and K = 3.
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Logit- x? Distribution (F')
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Figure 9.3: Two-dimensional hexagonal histogram of Logit x> weight distribution (£'!). The different histograms
represent different values of mixing 5 and group size heterogeneity n and K = 3.
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Logit x? Weight Distribution (F)

Another weight distribution on the K — 1 simplex that we consider is the logit-y? distribution, denoted by
F'. This distribution is inspired by the logit-normal distribution [90], which is defined by the distribution
of a logistic transformation of Gaussian-distributed random variables. Although the Dirichlet distribution
and the logit-normal distribution are not identical, they exhibit a similar concentration shape [90]. To
enhance flexibility, especially in the shape of the concentration, we introduce the logit-x? distribution,
which is built upon the logit-normal distribution. The logit-x? distribution is defined by the distribution of
the logistic transformation of the squares of Gaussian random variables. The name “logit-y?” reflects
the fact that we sample the objects by using a logistic transformation of squares of Gaussian distributed
random variables.

The statistical model that is used to sample from the logit x? distribution is

2z~ N *,1), (9.9)
Wy, O exp (z,%/ﬁ) , (9.10)
where the weights w1, ..., wk are again normalized such that >, w;, = 1.

In Figure 9.3, we see a two-dimensional histogram of the logit x? weight distribution for K = 3 and
multiple values of n and 8. The figures also show the concentration of the weights around the center
as (5 grows in a similar way as observed in the Dirichlet distribution. However, as 3 grows, the decay
of the proportion of objects that are relatively close to pure distributions is much slower. This is part
of the reason for the study of this weight type. It simulates different tendencies to polarize into one
pure distribution. Here, while more and more objects become oriented at the center, there still remain
objects that are relatively purely associated with a single prototype. This specific aspect of this weight
distribution is likely to encompass different behaviors in clustering algorithms than those studied in
traditional clustering algorithms.
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9.3.2. Mixing Illustration

In Figure 9.5 and Figure 9.6, we illustrate the mixing in the CMPM-based DGP and the resulting Ham-
ming similarity matrices. Consider a setting with K = 3 prototypes that are maximally distanced, i.e.,
with proximity parameter o = 0. For simplicity, we set the prototypes {u}1_, to have identical entries
for all features, i.e., for every group k € {1,..., K} and feature [ € {1,...,p}, we set u} = k. In the
figure, we display three n x p data matrices for n = 300 on the vertical axis and p = 500 on the horizon-
tal axis. In the leftmost data matrix, we demonstrate a trivial data set where each of the entries is an
exact copy of the prototype. This is associated with a data set with zero proximity «, zero mixing 5 and
zero diffusion ~. In the leftmost similarity matrix in Figure 9.6, which corresponds to the same setting,
we see that the similarity of objects that are within the same group, the diagonal blocks, is 1 and the
similarity of objects that are in different groups, the off diagonal blocks, is 0.

Then, if we increase the amount of diffusion to v = 0.5, we see in the rightmost panel of Figure 9.5
that the data matrix has become noisy, but in a uniform way. That means that the amount of noise
added to the data matrix is roughly equal for every object. In the right most similarity matrix in Fig-
ure 9.6, we see how this addition of v = 0.5 changes the similarity matrix. While the difference in
similarities between objects of the same group and objects of different groups becomes smaller, the
boundaries between groups are still clear.

If we increase § to 0.5 instead of v, we obtain a different picture. In the middle panel of Figure 9.6,
the data matrix is again noisy, but upon sorting the rows of the matrix by the closeness to its original
group center without disrupting the visible group structure itself, we see the heterogeneous similarities
of objects to prototypes. To be clear, the rows of the data matrix in the rightmost figure are sorted
in the same way, yet they do not display the same level of heterogeneity. This difference shows the
differentiating effect of diffusion ~ (and implicitly group proximity «), and mixing 5.

9.3.3. Density of states

Another observation from the middle similarity matrix in Figure 9.6 that describes the behavior of the
CMPM-based DGP lies in the fact that sorting the rows of the data matrix by the closeness to its group
center shows a transition of pairwise similarities from low to high. In the middle panel of Figure 9.6, we
see gradients of pairwise similarities in the diagonal blocks. This demonstrates that as two objects are
closer to the prototypes, their pairwise similarity is higher. On the other hand, as two objects are farther
away from the prototypes, their pairwise similarity is lower. This contributes to the additional difficulty
of disentangling the objects at the boundary. Additionally, this suggests that traditional methods based
directly on distances or densities, e.g., KMedoids, are unlikely to perform well. On the other hand,
this density of states phenomenon underlines the validity of clustering within this mixed prototype data.
Even though boundaries are difficult to disentangle, as objects move away from the boundary, they are
significantly more clustered together.

9.3.4. Statistical Distribution of Group Proximity

To effectively distinguish the difference between the group proximity parameter o« and the mixing pa-
rameter 3, it is useful to look at the histogram of similarities of objects to a group center u;, for some
k € {1,...,K}. We display the histograms in Figure 9.4. In this figure, the K = 3 groups are equally
sized, and we look at the similarities between all objects {x;}!, and one prototype p; that corresponds
to one of the groups.

Initially, with small group proximity a and small mixing amounts /3, as seen in the left-most column
of the figure, the object-to-prototype similarity demonstrates two modes. One mode corresponds to
the objects that are close to the center, i.e., that belong to the group, and one mode corresponds to
the objects that are far away from the center, i.e., that belong to a different group. We see that the
proportion of objects at the high similarity level is around a third of the total, and the objects at the lower
similarity level are around two thirds. This corresponds with the fact that there are three equally sized
groups, and we look at the similarities of the objects to one of the group centers.



9.3. Categorical Mixed Prototype Model 80

a=0.1,8=0.1 a=04,8=0.1 a=06,8=0.1
1000 - 1L 1L ]
0 J 1 o b bl [
a=0.1,=0.5 a=04,8=05 a=06,8=0.5
1000 - 1 ¢ HpyR -
0-.g’.- -. e k | |L—|
a=0.1,8=2 o=04,8=2 a=06,8=2
1000 - 1 ¢ HpyR i,
002 04 06 08 o2 o4 06 o0s o2 o4 06 o0s

Figure 9.4: Histogram of Hamming similarity of objects to prototypes. The figure contains both the similarities between
objects in C'; and prototype w1 and similarities between objects in C> U C's and prototype 1. In the rows, we vary the
prototype mixing 8 and in the columns, we vary the group proximity «.

We see that as the group proximity « grows, i.e., the prototypes become closer, the two modes also
become closer and slightly wider; however, the bimodal shape remains until the histogram merges
into a single relatively narrow symmetric single-mode distribution. In this final stage, which occurs as
a — 1, which is not displayed in the figure, there is hardly any distinction between objects that belong
to the group and objects that belong to a different group. This makes recovery of the partition through
clustering methods theoretically impossible.

On the other hand, if 8 grows and « stays small, we see that the bimodal shape vanishes before
reaching a trivially hard data set. While for low levels of 3, the bimodal structure persists, for a slightly
higher value of 3 the gap between the modes gets filled. At that point, there are no longer strictly sep-
arated modes, as is seen for 5 = 0.5 and even more for 5 = 2. While there is still a large difference
in the object-prototype similarities, objects are no longer uniformly separated from their group centers.
This creates a gradient of proximities from the center of the group to the boundary of the group, where
the boundaries between two groups are no longer abrupt. This indicates that groups are not only over-
lapping more; the distribution of proximities between objects and their closest prototype is also more
heterogeneous, or, in other words, less internally uniform. These two characteristics, low internal uni-
formity and high overlaps, are prominent in the CMPM-based synthetic data.

The combination of clear prototypical objects at the group centers with difficult-to-entangle group
boundaries makes this a particularly difficult clustering task that is not theoretically impossible to cluster.
This is an important reason to investigate the performance of clustering methods for the CMPM-based
DGP.
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Figure 9.5: Categorical mixed prototype data matrices. The colors represent different categorical entries. The rows
represent the objects. The columns represent features.
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Figure 9.6: Hamming similarity matrices of data sets generated by the categorical mixed prototype data generation
process for different parameters. The colors represent the level of similarity, with the brightest color having the highest
similarity (1) and the darkest color having the lowest similarity (0).
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Empirical Performance Analysis

In this chapter, we investigate the behavior of the spectral modularity based clustering methods that
are introduced in this thesis. The experimental evaluation of the clustering methods is done by com-
paring their performance with existing clustering methods. In this evaluation, we use synthetic data to
compare clustering methods with the ground-truth partition. Important properties of the data generation
process (DGP) are controlled by several free parameters, which we vary in order to explore different
regimes that are of interest. Specifically, we consider the synthetic data that is generated by the two
DGPs defined in Chapter 9. We consider data that is generated with a Gaussian Mixture Model (GMM)
based DGP. Furthermore, we consider data that is generated from a categorical mixed prototype model
(CMPM) based DGP.

There are two performance evaluation criteria that we consider in our assessment of the clustering
methods. Both assessments are based on the quantification of the discrepancy between clusterings
and the ground-truth partition that is derived from the DGP. First, the ability of the methods to correctly
recover the ground-truth partition from the data is measured with a partition-space distance metric be-
tween the clustering and the ground-truth. Second, we evaluate the ability to recover the ground-truth
representative data profiles by measuring the discrepancy between the inferred profiles and the profiles
associated with the ground-truth partition.

In our experiments, we examine naive spectral modularity maximization (SMMO) as described in
Chapter 4. Furthermore, we investigate our two contributed enhancements of spectral modularity max-
imization. Specifically, we consider regularized spectral modularity maximization with partition based
calibration (SMM1) as introduced in Chapter 6 and normalized spectral modularity maximization with
the seed based search algorithm (SMM2) as introduced in Chapter 7. We compare our contributed al-
gorithms with methods that are chosen such that we compare them to a rather simple baseline method
but also to a competitive method. As a baseline clustering algorithm, we study the KMeans [41] or KMe-
doids [59] clustering algorithms (KM) depending on the data type (real data or nominal data, respec-
tively). The competitive clustering method we study is a Laplacian-based spectral clustering algorithm
(SC) [62]. These methods are further discussed in Section 2.3. This selection of clustering methods
gives us four spectral methods, of which three are based on spectral modularity. For an overview of
the methods, see Table 10.1. For the evaluation of the clustering methods in terms of group profile
inference, we additionally study the soft-clustering variants of the methods using the procedure from
Chapter 8.

In Section 10.1, we introduce the performance evaluation criteria of the clustering methods. We
discuss the metrics for measuring the partition recovery and the profile inference. In Section 10.2, we
study the partition recovery performance of the clustering methods on synthetic data from the GMM-
based DGP. In Section 10.3, we study the partition recovery performance on synthetic data from the
CMPM-based DGP. Finally, in Section 10.4, we demonstrate the performances in terms of profile in-
ference in the context of CMPM data for each of the investigated methods and their soft-clustering
variants.
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Method Color | GMM | CMPM
KMeans (KM).

KMedoids (KM).

Spectral clustering (SC).

Naive spectral modularity maximization (SMMO).
Regularized spectral modularity maximization (SMM1).
Normalized spectral modularity maximization (SMM2)

DEEEEN

Table 10.1: Methods used in the benchmark. The methods with the term spectral in the name are referred to as the spectral
methods, while the methods with the term modularity are referred to as the spectral modularity methods. The SMM1 and
SMM2 are the contributions of this thesis. The dots indicate whether the method is used for the specific DGP.

10.1. Performance Evaluation Criteria

The criteria with which we evaluate the performance of our clustering methods are based on the avail-
ability of a DGP-derived ground-truth partition, which we denote by p*. We denote a partition that is
obtained through a clustering method by /. In the performance evaluation of this chapter, we use two
criteria based on the recovery of information from p*: one for the recovery of the ground-truth partition
itself, and one for the recovery of ground-truth profiles.

In the experiments, we want to ensure that the synthetically generated data significantly contains
relevant information representing the ground-truth partition; otherwise, evaluating the clustering perfor-
mance can become ambiguous, as outlined in the introduction to Chapter 9. To be specific, we limit
our interest to the performance of data sets where at least a partial recovery of the ground-truth par-
tition is theoretically possible. This means that we limit the difficulty inducing parameters of the DGP
such that the number of groups in the data is approximated correctly and corresponds to the number
of detected spiked eigenvalues of the similarity matrix, as discussed in Section 3.4. By limiting the
clustering difficulty, we ensure that not only the right number of clusters are constructed but also that
all the eigenvalues used in the spectral modularity are informative, as they are not absorbed in the bulk.
At the start of Section 10.2, we elaborate on this through the inspection of the effect of the number of
detected spiked eigenvalues and the clustering performance.

In Figure 10.1, we schematically demonstrate a hypothetical scenario of clustering performances
and the associated regime in which performance differences are meaningful. The colored lines rep-
resent the inverse performance of imaginative clustering methods as a function of clustering difficulty.
The vertical axis represents a metric for inverse performance. This means that a lower value on the ver-
tical axis is associated with better clustering performance. The horizontal axis represents a parameter
that determines clustering difficulty, e.g., the group proximity parameter « or the mixing parameter S.
The vertical dotted line represents the start of a phase transition, where to the right of this line datasets
are theoretically too difficult to cluster. Any performance differences to the right of this vertical line
are therefore not of interest. The horizontal dotted line represents the inverse performance of a trivial
clustering of the data. To be specific, a clustering where all objects are together in a single group. This
makes the use of any method with an inverse performance that is higher than this line worse than using
no clustering algorithm at all. Any performance difference above this horizontal line is therefore also
not of interest.

To further elaborate on the specific hypothetical scenario that is illustrated in Figure 10.1, we are able
to unambiguously rank the methods from best to worst: black, red, and blue. This is despite the fact
that there are regions where the red line is above the blue and black lines and regions where the black
line is above the blue line. We neglect those regions because they occur in areas where the problems
are theoretically too difficult or the clustering is already arbitrarily different from the ground-truth.
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Figure 10.1: lllustrative diagram of an interesting regime. The colored curves represent different ways in which the inverse
performance of clustering methods can depend on difficulty. The vertical axis represents the inverse performance. The
horizontal axis represents a difficulty parameter (e.g., the group proximity parameter « or the mixing parameter 3). The vertical
dashed line represents a phase transition, where the existence of some ground-truth groups are theoretically no longer
detectable. Clustering performance beyond that point is deemed not interesting, as the problem is theoretically too difficult. The
horizontal dashed line represents a baseline level of variation of information obtained through a trivial singleton partition.
Clustering performance above that line are deemed not interesting, as the clusterings are supposedly arbitrarily different from
the ground-truth partition. The complement of these two regimes is represented by the light green area in the bottom left, which
denotes the regime where performance differences are meaningful.

10.1.1. Partition recovery

For studying the clustering performance through the recovery of the ground-truth partition, we use
a variation of information (VI) as discussed in Chapter 2. VI is a distance metric on the space of
partitions and quantifies the discrepancy between two partitions. This gives us a measure of how much
of the ground-truth partition is recovered by the clustering method. Specifically, we use the variation of
information (VI) between partition p* and clustering p, i.e.

VI(p*,p). (10.1)

The VIl is an inverse performance measure because a higher VI represents a larger discrepancy be-
tween the two partitions, and a lower VI represents a smaller discrepancy. A VI of zero is obtained if
and only if the partitions are exactly identical.

As a baseline for partition recovery, we compute the variation of information between the DGP-
derived partition p* and a particular trivial partition:

po={{1,2,3,...,n}}. (10.2)

This partition essentially mimics a clustering where all objects are clustered together, or equivalently,
there is no group structure. If a method’s clustering, p, performs worse than pg, then it is arguably
better not to use the clustering, as we recover more from the original clustering by assuming there is
no group structure. In the context of evaluating the partition recovery, the horizontal line in Figure 10.1
is represented by VI(p*, po).

10.1.2. Profile inference

Another way to quantify the performance of clustering methods is through their ability to recover group-
representative data profiles from the data set. There are two reasons for evaluating the methods ac-
cording to this criterion.
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First, in settings with highly overlapping groups, strictly comparing the partitions directly can be
problematic. Instead of strictly concerning segmentation of sets into well-separated components, like
is done in clustering, the task of profile inference is rather aimed at the detection of the relevant and
reoccurring profile patterns in the data set. Evaluating with profile inference is important in data sets
where a strict segmentation of the data set is relatively ambiguous. In the synthetic data generation
paradigm, the CMPM-based DGP satisfies this setting. Within this DGP, groups are generated such
that their boundaries between groups are soft and objects are relatively close to multiple prototypes.
With soft group boundaries, depending solely on the evaluation through misclusterings can become
harmful as the clusterings become unstable due to the many objects that are close to the boundaries.
Therefore, this evaluation criterion is important when considering CMPM-based DGPs.

Second, measuring the discrepancy between the soft-clustering and a ground-truth soft-partition
directly is impossible because there is no trivial ground-truth. If we wish to evaluate the abilities of the
soft-clustering extension that is introduced in Chapter 8, an evaluation through the use of a distance
metric between two partitions is no longer suitable. Unlike in the evaluation of (hard-)partition recovery,
there is no clear way to extract a ground-truth soft-partition from a DGP directly. However, it is tempting
to believe that soft-clustering is capable of improving the clustering in one way or another. In particular,
the inference of representative data profiles from soft clusterings is likely more accurate, as the inferred
profiles are less influenced by weak cluster candidates that are on the boundary of multiple clusters.
This demonstration of the benefit of soft partition is a secondary reason to evaluate the clustering meth-
ods using profile inference criteria.

In order to quantify the profile inference performance criteria of the clustering methods, we compute
the distance between the representative data profile derived from the DGP ground-truth partition, de-
noted by u, and the representative profile inferred from the clustering method, denoted by /i, using
the categorical mode as indicated in Equation 2.6.

For all K = |p*| ground-truth profiles, we find the closest inferred profile and compute the distances.
The average of these distances is referred to as the profile precision. In addition, we introduce the
profile recall; for all | 5| inferred profiles, which may be different from K, we find the closest ground-truth
profile, compute the distances, and again take the average. Formally, we define profile precision and
recall through the following definition:

A - ) G i

Precision = % ; he{rlr}irll,w} s(pk, frp,) and Recall = B ]; ke{rlr}.l‘rlle} s(pky fon)- (10.3)
The profile precision is indifferent to the situation where || is much larger than K. This undesirably
prevents penalizing detected outliers, i.e., separated clusters with a single object. Solely evaluating
profile precision can therefore be problematic in the case that the clustering hallucinates data profiles
that are not representative of any group. In that case, this undesired behavior is not accounted for
in the profile precision. For that reason, the profile recall is considered as well. While the precision
quantifies how much of the inferred profiles is actually representative of the ground-truth profiles, the
recall quantifies how much of the ground-truth profiles is recovered by the inferred profiles.

Precision and recall can be naturally computed for profiles in the original data space. However, the
evaluation metrics can be applied for a second use case through the evaluation of the inference of
the cluster representative spectral modularity vectors, as discussed in Chapter 7. While the inference
of profiles in the data space evaluates the ability to recover relevant data patterns, the inference of
spectral modularity vectors demonstrates the effective usage of the spectral modularity subspace by
the methods. The focus on inference in the spectral modularity subspace highlights the performance
of the clustering step, excluding the impact of the dimensionality reduction that precedes it. In this way,
we separate these two concerns.
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Let z; € RE-1 denote the group representative spectral modularity vectors from partition p*. Fur-
thermore, let z;, € R ! denote the cluster representative spectral modularity vectors from partition .
Here, both the inferred vectors and the ground-truth vectors are computed by the following summation:

zi = »_ r; forall Cy € p* and z,= Y _r; forall Cy € p, (10.4)
i€Cy, ieCy,

which is identically defined as the group representative spectral modularity vectors that we considered
in Chapter 7. Here, {r;} ; are the spectral modularity vectors. Then, we are interested in the angular
alignment of z; and z;. For this, we can use the cosine similarity as a similarity metric in the profile
precision and recall defined above, i.e.

o ik *Zp
|2/l - |znll

Note that in the case of evaluating the profile inference of the soft-clustering methods, we multiply the

objects in the summations in Equation 10.4 with the weighted memberships P, associated with the

n x K soft-partition matrix P specified in Section 8.1. For the cluster representative spectral modularity
vectors, we can shortly write the inferred profiles as the rows of the matrix PTR..

(10.5)

S(Zk7ih)

10.2. Partition Recovery in Gaussian Mixture Data

In our first experiment, we evaluate the methods for clustering data that is generated from a high
dimensional Gaussian Mixture Model (GMM) based DGP. In order to vary the clustering difficulty of a
particular synthetic data set, we vary three DGP parameters. We consider the effect of group proximity
denoted by a, the number of groups denoted by K, and the number of dimensions denoted by p.

10.2.1. Effect of Group Proximity

First, we investigate the effect of the proximity of groups in the GMM data. Furthermore, to see how
the performance of the clustering methods is reflected in the separation of the spiked eigenvalues and
the bulk eigenvalues as discussed in Chapter 3, we also study the effect on the gap between the bulk
and the spikes for varying group proximity, .. In doing this, we study values for the parameter « that
are typically considered to be in the uninteresting regimes. In particular, relating the parameter « to the
discussion of the illustrative difficulty axis in Figure 10.1, we make an exception to this philosophy to
demonstrate the sufficiency of focusing on the solely interesting regime going forward.

Figure 10.2 illustrates the performance of the clustering methods in terms of partition recovery mea-
sured with VI as a function of group proximity «. The synthetic data sets of n = 200 objects and p = 200
features are generated for multiple values of K and a varying value of «. For 20 values of «, we gen-
erate 30 data sets for each.

In the top row of the figure, we see the mean inverse performance that is computed in terms of
VI. Additionally, we display a horizontal dotted line to indicate the VI between the ground-truth partition
and the ftrivial partition, po. This gives an indication of a baseline level of VI that is obtained through
the trivial clustering of all objects in a single cluster. The vertical dashed line represents the start of
the phase transition, where one of the spiked eigenvalues is absorbed in the bulk. To the right of the
vertical dashed line, all the methods are unable to distinguish some of the spiked eigenvalues from
the bulk eigenvalues. This is expected to quickly worsen the clustering performance of any method.
Specifically, the intersection of the vertical line with the « axis indicates the smallest observed proximity
value, where the eigenvalue bulk absorbs a spiked eigenvalue. When a spiked eigenvalue has been
sufficiently merged with the bulk, it is theoretically impossible to cluster with the significant information
that is contained in that corresponding eigenvector. This threshold aligns with the vertical dotted line
specified in Figure 10.1.

In the middle row, we display the K thatis approximated with shuffling based parallel analysis. The
meaning of the dashed vertical line in the top row is explained well by the alignment on the horizontal
axis with the leftmost point that is lower than K. This is equivalent to the smallest observed value for
« where we encounter an occurrence of & # K in one of the generated synthetic data sets.
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Figure 10.2: Effect of group proximity. In the top row, the inverse performance (VI) of the clustering methods is displayed for
different values of K and varying «. The horizontal axis represents the group proximity parameter o, and the vertical axis
represents the VI between the ground-truth partition and the clusterings obtained from the methods. The horizontal dotted line
represents the VI between the ground-truth partition p* and the trivial partition p. The vertical dashed line represents the start
of the phase transition, where the bulk of the eigenvalues absorb one of the K spiked eigenvalues, indicating the start of the
‘too-difficult-to-cluster’ regime. The synthetic datasets have n = 200, d = 200. For each value of «, 20 datasets are generated
that are used in the performance evaluation. Shaded areas denote one standard deviation around the means, which are
represented by the solid lines. In the middle row, the number of spiked eigenvalues, K, is displayed as a function of «. In the
bottom row, the difference between the computed eigenvalue threshold 7 and the Kth eigenvalue is displayed as a function of
.

The bottom row of the figure shows the distance between the shuffling based parallel analysis
threshold 7 and the smallest eigenvalue that is outside the bulk A ;.. As is expected, the gap |7 — A | is
already relatively small as « approaches the intersection with a vertical dashed line from the left. This
observation aligns with our expectation of a demonstration of the strict detect-ability phase transition
that is discussed in Chapter 3.

Clearly, the performance of clustering worsens rapidly when more and more spiked eigenvalues
are absorbed into the bulk. Essentially, this means that the ground-truth partition of the synthetically
generated data sets is theoretically impossible to recover. The evaluation of the clustering methods in
such settings may therefore not be representative. Therefore, with the philosophy described in Sec-
tion 10.1, the remainder of the figures in this chapter consider the interesting regime. This means that
if we synthetically generate a data set with K groups, the number of detected spiked eigenvalues K of
the similarity matrix satisfies K = K.

Furthermore, regarding the displayed clustering performances, we observe a relatively large per-
formance difference between the spectral methods (SC, SMMO0O, SMM1, SMM2) and KMeans. This
corresponds with our expectation that the KMeans method fails in high dimensional (p = 200) setting.
KMeans appears to be surpassing the remaining methods for high levels of «; however, this is the
regime where the clustering with a trivial clustering would be significantly better than any of the sug-
gested methods. Additionally, when focusing on the interesting regime alone, i.e., left to the dashed
line and below the dotted line, we observe that among the spectral methods, the competitor method
(SC) is slightly outperformed by the spectral modularity methods.
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Figure 10.3: Effect of the number of groups. The vertical axis represents the variation of information between clusterings
and the DGP-derived ground-truth partition. The horizontal axis represents a varying number of groups K. The number of
objects is n = 30 - K each with p = 200 dimensions. For each value of K, 20 synthetic data sets are generated. The solid lines
are the means. The dotted lines represent the standard error of the means. The shaded parts represent error, the standard
deviations.

10.2.2. Effect of Number of Groups

From the values for K that are experimentally evaluated in Figure 10.2, we do not perceive a sig-
nificantly deteriorating performance of SMMO compared to the other spectral (modularity) methods.
However, we know from Chapter 5 that when K is large, SMMO fails to perform well. For example, in
Figure 5.2, we clearly observe spectral modularity breakdown for K = 18 in the exactly identical setting
of GMM data. For this reason, we study the effect of varying K on the clustering performance.

Figure 10.3 illustrates the VI between the ground-truth partition, p*, and the clusterings obtained
from the clustering methods, p, for datasets generated from a GMM for a varying number of groups
K €{3,5,...,17,19}. For each value of K, we generate 20 datasets for which we perform the evalua-
tion. The solid lines are the means of the computed VI's at that specific value for K, the dotted lines are
the standard error of the mean, and the shaded areas display the standard deviations. The horizontal
axis shows the number of groups, and the vertical axis depicts the VI. The value for « = 0.1 is chosen
such that the group centers are not too far apart such that the clustering becomes too easy, and not
too close such that the clustering becomes too difficult. This means all the considered synthetic data
sets belong to the interesting regime. The number of objects is set to be in a fixed ratio with K, i.e.,
n = 30K. This ensures that the diminishing representative power of groups, due to a limited number
of objects within the group, i.e., due to shrinking n/K, is not mistaken for the combinatorial saturation
discussed in Chapter 5. The latter is specifically caused by the absolute increase in the number of
groups, independent of the ratio n/K; therefore, the experimental demonstration should reflect that.

In the figure, we observe the breakdown of spectral modularity through studying the performance dif-
ferences of naive spectral modularity maximization (SMMO) and spectral clustering (SC). Additionally,
we see that the breakdown is resolved in the contributed spectral modularity enhancements (SMM1,
SMM2). Because in all tested cases of Figure 10.3, the clustering difficulty is relatively easy, the di-
minishing performance of SMMO is purely due to the increasing of K and not from any difficulties with
detecting spiked eigenvalues.

Furthermore, the effect of the number of groups appears to be slightly negatively influencing the
performance of SC, while SMM2 and SMM1 are capable of highly accurate clustering for all values of
K. This potentially points towards a structural improvement in the clustering of SMM1 and SMM2 over
SC. The performance difference may be unrelated to the associated spectral modularity breakdown
because the SC method used here always constructs clusterings with the right number of clusters,
according to the number of spiked eigenvalues, in the same way that SMM1 and SMM2 do.
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Figure 10.4: Effect of dimensionality The vertical axis represents the variation of information between clusterings and the
DGP-derived ground-truth partition. The horizontal axis represents varying p. The shaded area is one standard deviation
around the mean (clipped at zero), and the dotted line is one standard error of the mean.

10.2.3. Effect of Dimensionality

The benefit of spectral, including spectral modularity, methods in high dimensional data is due to the
implicit dimension reduction that is employed. On the other hand, the KMeans method is known to be
problematic with high dimensional data. Therefore, we investigate the effect of the dimensionality.

In Figure 10.4, we see the effect of the number of dimensions p on the clustering performances.
The vertical axis shows the variation of information between the clusterings and the DGP ground-truth
partition. The horizontal axis shows the dimensionality p. The values for o are again chosen such
that the Kth eigenvalue is close enough to the threshold, such that it exhibits some level of clustering
difficulty but is not theoretically impossible to cluster.

The performance of KMeans, which is based on distances in the data space, is increasingly worsen-
ing as the number of dimensions grows. At the same time, the spectral methods are much more robust
against growing dimensions. Furthermore, we verify in the right panel of Figure 10.4 that the spectral
modularity breakdown, indicated by the worse performance of SMMO than the other spectral methods,
happens independently of the number of dimensions. In particular, when K is high, e.g., K = 15, for a
large range of values for p, the clusterings obtained with SMMO have a higher VI with the ground-truth
partition. In addition, there even appears to be a range of relatively small values of p, around p = 50,
where KMeans performs slightly better than SMMO0. Although the performance gap in this setting is
relatively small, it aligns with the understanding that SMMO suffers from high values for K due to the
spectral modularity breakdown but is robust to high p, while KMeans suffers from high values for p due
to the curse of dimensionality and is robust to high K.

10.3. Partition Recovery in Categorical Mixed Prototype Data

In the second experiment, we assess the partition recovery performance of the clustering methods
using data generated from the categorical mixed prototype model. In order to gain additional depth
in the performance evaluation, we briefly deviate from the study of average performances through
the study of the entire statistical distribution of partition recovery performances for a selection of DGP
parameterizations. After this, we return to varying the clustering difficulty of synthetic data sets. We
vary three DGP parameters. We consider the amount of mixing denoted by /3, the number of groups
denoted by K, and the group size heterogeneity denoted by 7.
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Figure 10.5: Partition recovery performance. The smoothed density histogram is derived from the variation of information
between clusterings and the DGP derived ground-truth. 200 datasets are used in the histogram. The generated data sets have
n = 200 and p = 200, group proximity o = 0.1, group size heterogeneity = 0, and prototype diffusion v = 0.05. F°
represents the Dirichlet weight distribution, and F'! represents the Logit-x2 weight distribution. The smoothed histogram is
obtained through kernel density estimation with Scott’s rule [91].

10.3.1. Statistical Distribution of Performance

In the depiction of the clustering performances so far, we have only considered performance statis-
tics, such as averages, standard deviations, and standard errors of the mean. However, the wide
bands that are representative of standard deviations of the distribution of clustering performances and
standard errors of the mean do not display the shape of the distribution of the clustering performances.
These statistical abstractions may incorrectly suggest unimodal distributions of clustering performances.
Therefore, before we focus on the effects of the parameter, we inspect the entire statistical distribution
of clustering performance for a selection of parameterization to ensure that our conclusions based on
the average performances are meaningful.
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In Figure 10.5, we see histograms of the variation of information between the clusterings found by
methods and ground-truth. For visibility, the smooth histograms are displayed with a kernel density
estimation, where the bandwidth is determined using Scott’s Rule [91]. The vertical axis represents
the normalized frequency distribution of observed clustering performances with respect to the VI that
is indicated on the horizontal axis. The clusterings are performed on synthetic CMPM data sets with
different values of K and 3. We display a histogram for both the Dirichlet weight distributions (F°) and
the logit-x2 weight distribution (F!), both defined in Chapter 9. The vertical solid line represents the VI
between the ground-truth and the trivial singleton.

In the figure, we see a significant performance overlap between spectral clustering (SC) and spec-
tral modularity methods (SMMO, SMM1, and SMM2). Despite this overlap, SMM2 consistently appears
to be the top performer. This conclusion is based on two observations. First, the peak of the statistical
distribution of SMM2 is notably lower compared to other methods, indicating a better average perfor-
mance. Second, the width of SMM2’s histogram is relatively narrow, indicating a stable performance.

Furthermore, we observe diminishing performance of SMMO in the Dirichlet weight distribution (F°)
as the number of groups is larger, hinting at the breakdown of the naive spectral modularity maximiza-
tion. While SMMQO’s performance overlaps with other methods for K = 5, it significantly underperforms
for K = 7and K = 10. SMM1 and SMM2 consistently reduce the variation of information, making
them competitive with spectral clustering. In some cases, SMM1 and SMM2 slightly outperform SC,
as depicted in the upper right of Figure 10.5. Among the suggested solutions, SMM2 exhibits better
average performance, especially for this specific data generation process. This is likely because the
calibration step in SMM1 is relatively unstable, rendering SMM2 a more favorable choice.

Inthe F'! weight distribution, depicted in the second row of Figure 10.5, SC is significantly surpassed
by the spectral modularity methods. Notably, even the naive method, SMMO, demonstrates superior
performances, especially with high values of 5. This partially suggests that SMMO demonstrates a
lesser susceptibility to spectral modularity breakdown in F'! weights, which we will further discuss upon
studying the variation of K. Furthermore, the concentrated shape of the F'* weight distribution high-
lights a flaw in the SC method. To be specific, the non-convexity of the weights is problematic for the
KMeans clustering step that is employed in the Laplacian embedding.

Finally, now in a setting of categorical data, we again observe the comparatively poor performance
of the baseline based method, i.e., KMedoids, suggesting its unsuitability for clustering data from the
CMPM-based DGP. In addition, we observe that the performance of KMedoids is relatively unstable
with the F'* weight distribution, as indicated by the wide and multi-modal distribution of VI. This instabil-
ity is due to the incidental presence or absence of good representative objects in the generated dataset,
which is crucial for the performance of KMedoids, as discussed in Chapter 2. This highlights a funda-
mental flaw of the KMedoids method. In contrast, our contributed methods, SMM1 and SMM2, not only
typically construct higher quality partitions, but they are also more stable.

10.3.2. Effect of Prototype Mixing
Now that we have seen from the statistical distribution of the clustering performances that most meth-
ods, except for KMedoids, exhibit a unimodal shape, we again limit the study of the clustering perfor-
mances to the performance mean, the standard error of the mean (SEM), and the standard deviation.
In Figure 10.6, we extend our observations from studying the histograms by employing the cluster-
ing performance evaluation for varying beta for a selection of values of K. The group proximity « is 0.1,
and the prototype diffusion v is 0.05. The vertical axis represents the VI. The horizontal axis represents
the prototype mixing parameter 5. We demonstrate the SEM of the VI with the dotted lines and one
standard deviation around the mean with shaded areas.

The insights obtained from studying the histogram roughly extend to a larger range of values for the
mixing parameter 5. The KMedoids method fails to compete with the other methods in almost all cases.
The performance of SMMO is poor when the number of groups is high (K = 10) and the weights are
Dirichlet distributed (F°). However, SMM1 and SMM2 correctly address this issue and even surpass
(in the case of SMM2) the competitive method (SC).
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Figure 10.6: Effect of prototype mixing. The vertical axis represents the VI between the clustering and the ground-truth
partition. The horizontal axis represents varying prototype mixing parameter 3. For each combination of K and weight
distribution, 5 equally separated values for 3 are chosen, with 40 generated datasets for each. The generated data sets have
n = 200 and p = 200, group proximity o = 0.1, group size heterogeneity n = 0, and prototype diffusion v = 0.05.

Furthermore, we again see a drastic performance decrease for the SC in the logit x? distributed
(F') weights. This shows how the fundamental flaw of the SC method becomes more severe as the
mixing amount 3 increases. As (3 is higher, the shape of the weight distribution is more concentrated,
as indicated in Figure 9.3. However, unlike in the F° distributed weights, the concentration shape is not
convex, as indicated in Figure 9.2. Therefore, for high 3 weights that are F'! distributed, data projected
onto the Laplacian subspace itself is not convex and not linearly separable. Combining this with the
fact that the SC method uses a KMeans cluster step in the Laplacian subspace, the bad performance
of SC in that setting can be well explained.

10.3.3. Effect of Number of Groups

Unlike in the setting of GMM-based data, in the CMPM-based data, we already observed spectral
modularity breakdown through the deteriorating performance of SMMO for K = 7, especially consid-
ering the F° weights. This is likely due to the relatively soft cluster boundaries that are present in the
CMPM-based data, making the effect of combinatorial saturation more severe.

In Figure 10.7, we see the effect of varying the number of groups on the clustering performance.
We do this by specifying a relatively simple setting with a prototype mixing amount that is not too high
and not too low, i.e., 8 = 1, and adjusting the number of objects in the data set to be in a fixed ratio
with K, i.e., n = 30K. This again ensures that the demonstration of spectral modularity breakdown is
relatively isolated from other trivial sources of clustering difficulty.
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Figure 10.7: Effect of number of groups. The vertical axis represents the VI between the clusterings and the DGP-derived
ground-truth partition. The horizontal axis represents the varying number of groups K. For both weight distributions, 5 equally
separated values for K are chosen, for which 40 datasets are generated. The generated data sets have n = 30 - K and

p = 200, prototype mixing 8 = 1, group proximity e = 0.1, group size heterogeneity n = 0, and prototype diffusion v = 0.05.

The observed clustering performance is in line with the understanding of the breakdown that hap-
pens in naive spectral modularity maximization (SMMO). With Dirichlet-distributed weights, the perfor-
mance of SMMO degrades more rapidly than that of the competitor method, spectral clustering (SC).
However, SMM1 and SMM2 mitigate the issue and make spectral modularity based clustering perform
competitively with SC.

For the F' weight distribution, the breakdown of SMMO is less noticeable for the range of tested
values. This aligns with our observation in the histogram of Figure 10.5. In the figure, it is difficult to see
the breakdown because we can no longer compare SMMO to SC as the latter method has difficulty with
the F'* distribution. Instead, we do see a slightly increasing improvement of our contributed solutions,
SMM1 and SMM2, over SMMO, which is indicative of the spectral modularity breakdown.

The increased resilience that appears when generating data with F'! distributed weights is due to
the increased presence of objects that resemble a single prototype. Conversely, in F°, as the mixing
amount increases, objects only become more mixed, and contributions become less focused. This
demonstrates that the type of entanglement of group boundaries, which contrasts F'' and F° weights,
affects the spectral modularity breakdown. Although SMMO shows reduced susceptibility to spectral
modularity breakdown in this setting, it is probable that breakdown may occur as K increases further,
akin to occurrences in GMM, where the breakdown only occurs at a much higher value of K.

10.3.4. Effect of Group Size Heterogeneity
Up to this point, we have only studied the clustering performance of the data sets with ground-truth
partitions that have roughly symmetrically sized groups. However, because the proposed spectral
modularity breakdown solutions, SMM1 and SMM2, specifically tackle the breakdown by removing bias
towards clusterings with heterogeneously sized groups, we investigate to what extent these solutions
are suitable when the ground-truth partitions actually contain heterogeneously sized groups.

In Figure 10.8, we demonstrate the effect of group size heterogeneity. The horizontal axis repre-
sents the heterogeneity of the group sizes, where 1 = 0 represents completely homogeneously sized
groups. The vertical axis shows the variation of information.

In general, we see that as n grows, the clustering tends to become more difficult. In contrast to
previous observations, the performance of SMMO appears to be relatively robust for varying this pa-
rameter compared to the other methods. Even to the extent that the naive method starts to perform
better on average than SC and SMMZ2 for very heterogeneous sizes.
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Figure 10.8: Effect of group size heterogeneity 7 in categorical mixed prototype data. The vertical axis represents the VI
between clusterings and the DGP-derived ground-truth partition. The horizontal axis represents the group size heterogeneity 7.
For both weight distributions, 5 equally separated values for n are chosen, for which 40 datasets are generated. The data is
generated with a CMPM based DGP with n = 200 objects each with p = 200 dimensions, K = 7 clusters, prototype mixing

B =1, group proximity o = 0.1, and prototype diffusion v = 0.05.

This indeed illustrates a potential flaw of the two suggested solutions, SMM1 and SMM2. Both
solutions resolve the spectral modularity breakdown by combating the bias towards clusterings with
heterogeneously sized and, typically, inconsistently merged groups. Therefore, if there are actual het-
erogeneously sized groups present in the ground-truth partition, their presence can be inconsistently
penalized in the clustering. However, this behavior is only expected to occur for extremely heteroge-
neous group sizes. The performance difference between the naive methods and the resolved methods
is not significant. Therefore, there is yet no reason to believe that it is better to use the SMMO over
SMM1 or SMM2.

On the other hand, when looking at F'! distributed weights in the right panel of Figure 10.8, there
appears to be an opposite effect. In this setting, SMMO is significantly worse at clustering data with
heterogeneously sized groups, as an effect of a more significant spectral modularity breakdown. Specif-
ically, as the group size heterogeneity is large, the proportion of relatively small groups is large. In small
groups, the existence of representative objects that are represented by the F! distributed weights is
therefore less likely. This way, for heterogeneous group sizes and F'! weights, there are underrepre-
sented groups, making it much more likely that the naive maximization of spectral modularity will lead
to inconsistent merges. Therefore, while the spectral modularity breakdown is generally less severe
for datasets with F'! distributed weights, if group sizes of the ground-truth partition are heterogeneously
sized, the spectral modularity breakdown is considerably more severe.

10.4. Profile Inference in Categorical Mixed Prototype Data

In this third experiment, we evaluate the clustering methods according to their profile inference abilities
in categorical mixed prototype data. We also investigate the added value of using soft clustering in
this context. In particular, we study profile precision and profile recall in both the data space and in
the spectral modularity space, as discussed in Section 10.1, for the methods specified in Table 10.1
and the associated soft variants by employing the procedure of Chapter 8. This gives us a total of four
quantification for the profile inference performance, which we evaluate on ten (soft) clustering methods.

For this reason, apart from a general comparison of performance methods among themselves, there
are three additional comparisons that are worthwhile to consider. First, the performance of a method
in terms of profile precision can be compared with the profile recall. Second, the performance of the
soft-clustering variants can be compared to the original, non-soft, clustering methods. Third, the perfor-
mances of profile inference in data space can be compared with the performances of profile inference
in terms of the spectral modularity vectors. To this end, we first study the statistical distribution of these
quantities, after which we study the effect of the prototype mixing 5 on profile inference.
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10.4.1. Statistical Distribution of Profile Inference Performance

In the same philosophy as Figure 10.5, we first study the statistical distributions of the profile inference
performance. The shapes of the distributions indicate whether we can again further limit the study to
averages of the performance metrics.

In Figure 10.9a, we display the statistical distribution of the data space profile inference perfor-
mance, and in Figure 10.9b, we display the statistical distribution of the profile inference with spectral
modularity vectors. The clusterings are performed on synthetic data generated with the CMPM-based
DGP with the group proximity « set to 0.1 and prototype diffusion ~ set to 0.05, a setting that is iden-
tical to the one studied in Figure 10.5. For brevity, we omit the study of data sets with F'! distributed
weights. However, these results are included in studying the effect of prototype mixing. The vertical
axis represents the frequency of the observed profile precision and recall, which are indicated by the
horizontal axis in the upper and lower rows, respectively.

Comparing the shapes of statistical distributions of the profile precision and the profile recall in both
Figure 10.9a and Figure 10.9b, we find that most of the peaks of the distributions are located at the
same places and the widths of the distributions are roughly the same. An exception to this, however,
is the SMMO method. The SMMO method performs significantly worse in terms of profile recall than in
terms of profile precision. This is in agreement with the theory of spectral modularity breakdown be-
cause the method generally finds less than the ground-truth K representative profiles due to merging
clusters inconsistently leading to clusterings with fewer than K clusters. This causes the few profiles it
finds to not be representative of the ground-truth profiles. The severity of the breakdown is particularly
observed when K = 10. Here, we see that the KMedoids method, which is considered to be unsuitable
for the CMPM data setting, even performs better than SMMO in terms of profile recall.

Furthermore, from both figures, we find that the soft variants, depicted by the dashed lines, of all
methods generally have a higher or equal peak of the profile precision and recall histograms. The
most notable improvement is found in the KMedoids method. The softening procedure applied to
KMedoids clusterings improves the profile inference significantly; however, it is still the worst-performing
method in most cases. Although in all displays of statistical distributions the effect can be seen, it is
most prominently seen in the data space profile inference depicted in the two leftmost columns of
Figure 10.9a. The large improvement found in soft-clustering of KMedoids is expected, as the hard
clustering obtained with KMedoids is restrained by the existence of representative objects within a
dataset. However, the soft clustering removes the discreteness of this restriction by allowing the inferred
profiles to be a combination of objects. Nevertheless, the performance of softened KMedoids is still
among the worst performing methods.

On the other hand, an exception to soft-clustering being a strict improvement over the original clus-
tering method, can be found in the data space profile inference of SMM2. Especially when K is high,
the peak of the soft variant of SMM2 is positioned at a slightly lower level of precision and recall. How-
ever, the soft-clustering variant of SMM2 stabilizes the profile inference performance, resulting in a
slightly narrower distribution.

Considering the comparison of data space profile inference and spectral modularity profile infer-
ence, we find that, a similar ordering of the performances of the methods is obtained. However, a
slight difference is that the soft clustering of SMM2 can be considered a strict improvement in the spec-
tral modularity profile inference depicted in Figure 10.9b for all combinations of K and 3. This is unlike
in the data space profile inference, where there is a trade-off for K = 10 between the stability of the
performance of SMM2 and the location of the peak, as seen in Figure 10.9a.

Overall, examining the ordering of the performance of the clustering methods in terms of the different
profile inference performance quantities yields quite some overlap. Therefore, it is relatively clear that
the best performing methods are SMM2 and its soft variant, as indicated by the location and width of
the peaks of the histogram. Furthermore, specifically, SMM1 demonstrates unstable profile inference
performance in both the data space and the spectral modularity space. This is indicated by the wide and
multi-modal shapes of the distributions associated with the performance. In many cases, the SMM1
performs significantly worse than the competitor method SC when K =50or K = 7.
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(b) Profile precision and recall with spectral modularity vectors.

Figure 10.9: Profile precision and recall The smoothed density histogram is obtained through kernel density estimation with
Scott’s rule [91]. 200 datasets are used in the histogram. The generated CMPM data sets have n = 200 and p = 200, group
proximity a = 0.1, group size heterogeneity n = 0, prototype diffusion v = 0.05, and have F© distributed weights.

10.4.2. Effect of Prototype Mixing

Now that we have an intuition of the statistical distributions of the profile inference performance, we
study the effect of prototype mixing on the profile inference. To do this, we consider the same setting as
in Figure 10.6, where we evaluate the effect of prototype mixing on the partition recovery performance.
Furthermore, we do include F! distributed weights, which have been omitted during the demonstration
of the statistical distributions of profile inference performance.
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In Figure 10.10a we see the profile precision and recall for a varying prototype mixing amount g and
Dirichlet distributed weights, F°, and in Figure 10.11a we see the same type of results for data sets
generated with the logit x? weights, F'*. Furthermore, in Figure 10.10b we see the profile precision and
recall in terms of the spectral modularity vectors for a varying prototype mixing amount 3, and in Fig-
ure 10.11b we see the same type of results for F'* weights. In all of the above figures, the vertical axes
represent precision and recall, for the top row and bottom row, respectively, and the horizontal axis
represents the prototype mixing 8. The standard error of the mean for the soft clustering based profile
inference performance is displayed by the width of the dashed lines. For visibility, the hard clustering
based profile inference performance is made slightly opaque, and the standard error of the mean of the
hard clustering is removed. From the study of the statistical distribution of the performances, we find
that the soft variants typically perform better anyway. For reference, the statistical distributions that are
discussed above in Figure 10.9a represent the same identical experimental setting but are limited to a
small selection of values for 5.

The most general observation is that as the prototype mixing increases, the profile precision and
recall decrease, indicating that profile inference becomes more complicated. This is in agreement with
the fact that partition recovery becomes more difficult as prototype mixing increases. The resemblance
of the performance in terms of profile inference and partition recovery can be seen in a specific example
that is easily recognizable in the settings with F'* distributed weights. To be precise, consider the rela-
tively abnormal shape of the performance of the KMedoids method in Figure 10.11a and Figure 10.11a.
A similar shape can be recognized in the partition recovery performance of KMedoids on the identical
data sets in Figure 10.6, where the performance curve is flipped vertically, because VI is an inverse
performance metric.

On the other hand, the difference between measuring performance through profile inference and
partition recovery can also be demonstrated with an example in the setting of F'! weights. In particular,
whereas the partition recovery performance of SC is significantly worse for F'! weights, as depicted
in Figure 10.6, the discrepancy between SC and the other spectral methods is less noticeable for the
profile inference performance depicted in Figure 10.11a and Figure 10.11b, especially considering the
spectral modularity profile inference. However, despite the smaller performance gap, SMM1 and espe-
cially SMM2 still clearly exhibit superior performance in terms of profile inference for F'! weights over
SC.

Comparing the profile precision and profile recall of the methods, we again find that these quantities
are significantly different for SMMO. In particular, in Figure 10.10a and in Figure 10.10b, we see that in
the middle column, representing K = 7, the ordering of the performance of the soft SMMO method and
the soft KMedoids methods is different for profile recall and profile precision. This is in agreement with
the comparison of the quantities done in the discussion of Figure 10.5. A second demonstration of the
breakdown that is hard to observe in the statistical distribution is the clear outperformance of SMMO
by the soft variant of KMedoids in terms of both data space profile recall and precision, as depicted in
Figure 10.10a.

However, for F'! distributed weights, the deteriorating profile recall in SMMO is not observed, as
depicted in Figure 10.11a for data space profile inference and in Figure 10.11b. This underlines the
intuition that we previously used to explain the deteriorating profile recall in studying the statistical dis-
tributions. In fact, the profile recall specifically suffers from spectral modularity breakdown, as we know
from studying the effect of the number of groups K in Figure 10.7 that the breakdown is considerably
less severe when data has F'! distributed weights as opposed to F° distributed weights. For the re-
maining methods, we verify that the overall ordering of profile precision and recall is roughly equivalent,
which is in agreement with what we learn from studying the statistical distributions.
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(b) Effect of prototype mixing on spectral modularity profile inference.

Figure 10.10: Effect of prototype mixing on profile inference with 0 weights. The vertical axis represents profile
precision and recall for the top and bottom rows, respectively. The horizontal axis represents the amount of prototype mixing 5.
The width of the dashed line represents the standard error of the mean. For each K, 5 equally separated values for 3 are
chosen, for which 40 datasets are generated. The generated data sets have n = 200 and p = 200, group proximity « = 0.1,
group size heterogeneity n = 0, and prototype diffusion v = 0.05.
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(b) Effect of prototype mixing on inferring representative spectral modularity vectors with F'* weights.

Figure 10.11: Effect of prototype mixing on profile inference with F'! weights. The vertical axis represents profile
precision and recall for the top and bottom rows, respectively. The horizontal axis represents the amount of prototype mixing 3.
The width of the dashed line represents the standard error of the mean. For each K, 5 equally separated values for 3 are
chosen, for which 40 datasets are generated. The generated data sets have n = 200 and p = 200, group proximity o = 0.1,
group size heterogeneity n = 0, and prototype diffusion v = 0.05.
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Beyond Synthetic Data

In this chapter, we investigate the use of spectral modularity in settings beyond synthetic data. In par-
ticular, we perform the clustering on a selection of real, empirically labeled data sets. Our evaluation
of the clustering methods is then partially based on the partition that is induced by the provided labels
in the data set. While the data labels can be used to derive a particular ground-truth group structure, it
is not always the case that this ground-truth is represented by the data. Therefore, the performance of
clustering methods that are observed in real data should be considered with care. This is generally true
for any clustering evaluation based on real empirical data. Nevertheless, the application of the methods
to real empirical data encourages the extension of the study from specific synthetic data settings to a
more generally applicable field.

In settings outside of synthetic data, it is important to have a correct intuition of the metric space and
a sensible null model for the random data matrix. In synthetic data settings, these choices are almost
trivial, can be expressed theoretically, or can be confidently obtained through shuffling based parallel
analysis. However, in empirical data, this can be especially difficult where features can be redundant
or correlated.

Therefore, the goal of this chapter is to simultaneously demonstrate the potency and challenges of
spectral modularity maximization outside of synthetic data, display the difficulty of evaluating clustering
methods with labeled empirical data, and illustrate the importance of selecting a reasonable null model.
To achieve this, we investigate the clustering performance of a relatively small categorical data set and
of the well-known MNIST handwritten digit image data set.

In Section 11.1, we investigate a categorical data set containing attributes of soybeans. Here, we
find that although the fine-grained structure of the ground-truth partition is not found, spectral modu-
larity maximization is capable of capturing most of the underlying group structure. In Section 11.2, we
rediscover the spectral modularity breakdown in the handwritten digits by reconstructing the data set
to contain a varying number of groups K. Furthermore, we evaluate the behavior of shuffling based
parallel analysis to determine the null model matrix of this data set.

11.1. Soybean

The soybean data set [45] is a set of descriptive attributes of soybeans obtained from the UCI data
bank. The attributes are mostly categorical. The few ordinal exceptions, date, leafspot-size, and
germination, and the objects with missing values are removed from the dataset to maintain an easy-to-
manage 266 by 32 data matrix X. The data matrix is visualized in the middle panel of Figure 11.1. The
Hamming similarity matrix, as defined in Equation 3.4, of the data set is displayed in the right panel of
the figure. Finally, the partition that was obtained from the provided class labels in the data set is given
in the left most panel of the figure. Each color represents a different class, and the objects are ordered
such that objects in the same class are next to each other. There are K = 15 classes that are specified.

100
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Figure 11.1: Data matrix, Hamming similarity matrix and partition of soybean data set. The leftmost panel represents the
ground-truth partition that is obtained from the provided class labels. The middle matrix is an n = 266 by d = 32 data matrix X,
where the color values represent different categorical values. In the right panel, the n x n Hamming similarity matrix is
displayed. The brightness of the color represents similarity between objects.

0.20 [ T T T T T T T ]

[ —_— T ]

0.15 | ]

0.10 | .

0.05 | ]
000 : L L 1 N N .I N 1 N N N N 1 N N N N 1 N N N N 1 N I. N 1 N
0.0 25 5.0 75 10.0 12.5 15.0 17.5 20.0

Figure 11.2: Eigenvalues of Hamming similarity matrix of soybean data set. The largest eigenvalue is omitted from the
histogram. For visibility, the figure is cropped in a vertical direction.

In Figure 11.2, we see the eigenvalue distribution of the Hamming similarity matrix of the data set,
in black, and the eigenvalue distributions of the Hamming similarity matrices after employing the data
shuffling procedure from Algorithm 1, in green. From this, we also obtain an eigenvalue threshold, de-
picted by the red vertical bar and denoted by 7, that approximates the distinction between informative
and uninformative eigenvalue-eigenvector pairs. The threshold is the average of the second-largest
eigenvalue obtained from 50 shuffling procedures. The dashed line represents one standard deviation,
and the dotted line represents two standard deviations. While the labels of the data set give us an
indication of the number of groups being K = 15, the number of clusters approximated using shuffling
based parallel analysis is K =4, depending on the confidence interval assumed in the threshold pro-
cedure.
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Figure 11.3: Clustering on the soybean data set. Colors represent the different clusters. The color coding is only relative to
the rest of the partition and shares no additional meaning in relation to the other clusterings.

This discrepancy between K =4and K = 15 does not necessarily indicate that the shuffling based
parallel analysis is malfunctioning. In fact, it underlines the malpractice of naively using generic labeled
data to evaluate clustering methods. For example, while the provided classes in the dataset for objects
range 0 to 200, as found in Figure 11.1, are encoded as 10 different groups in supervised partition, their
pairwise similarity levels are relatively high for both internal pairs and external pairs. This is seen in the
structure of the sub-matrix obtained from indices [0, 200] x [0, 200] in the similarity matrix of Figure 11.1.
For this reason, it is difficult to evaluate the clustering performances on the soybean data set by com-
paring them to the ground-truth partition.

In Figure 11.3, we see the resulting clustering of the data set by the methods KM, SC, SMMO0, SMM1,
SMM2, and SC, compared with the ground-truth partition derived from the class labels. In this setting,
we observe little effect of the spectral modularity breakdown because the clusterings obtained with
SMMO0 and SMM1 are almost identical. This is expected, as the number of detected spiked eigenval-
ues, K = 4, is relatively small. We see that the KM method constructs a clustering that shares little
resemblance with the supervised partition. The spectral clustering (SC) method and SMM2 are almost
identical, except that SC disentangles objects in the range 200 to 250 and SMM2 disentangles some
objects in the range 50 to 70 and in the range 160 to 200.

11.2. Handwritten Digits (MNIST)

The MNIST dataset, which contains images of handwritten digits, is a popular tool for evaluating machine
learning algorithms. While traditionally a computer vision task, flattening the 8 x 8 images to high
dimensional feature vectors gives a reasonable evaluation framework for clustering methods in high
dimensional data. In doing so, we obtain additional insight into the behavior of the clustering methods
outside the synthetic data setting in a slightly more quantitative way than can be done for the bean data
set. Therefore, it is important to note that for the precise purpose of recognizing or clustering images,
it is advised to use the appropriate tools for image recognition. The demonstration with digits here is
mainly to illustrate the behavior of the clustering methods and their accompanying random matrix based
spectral tools in a setting that is not as ideal as the synthetically generated data sets from Chapter 9.

The MNIST data set can be reconstructed with K € {3,...,10} such that we can investigate the be-
havior of the clustering methods for varying K in a setting outside synthetic data. We use the Manhattan
distance d(z,y) = |z —y| as a metric for the data space of the flattened digitimages, i.e., [0, 255]54. Then
the accompanied similarity metric is as defined in Equation 3.3. In Figure 11.4, we see an example
visualization of three digits. The three left most images are 8 x 8 images obtained from the MNIST_64
data set.
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Figure 11.4: MNIST digits data set. The three left most images are examples of the handwritten digits. The first matrix
represents a flattened 150 by 64 data matrix that is obtained from 150 images of dimension 8 by 8. The rightmost matrix is the
Manhattan similarity matrix of this data set.
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Figure 11.5: Eigenvalue histograms of MNIST data. The left most figure contains a histogram of the eigenvalues (without A1)
for a dataset containing three equally sized groups of size 50. The middle figure contains a histogram of the eigenvalues
(without A1) for a data set of 10 equally sized groups of size 50. The red vertical line is the threshold determined by shuffling
based parallel analysis 7. The rightmost figure contains the number of spiked eigenvalues K obtained through the shuffling
based parallel analysis as a function of the number of digits present in the data set K. The size of the data set containing K
different digits is 50 - K and the statistical mean is the result of 30 iterations. The shaded area is the standard deviation.

In Figure 11.5, we see an example of eigenvalue histograms for the similarity matrix with a selec-
tion of K = 3 digits (0, 5, 8) in the left part, and in the middle we see the similarity matrix for the case
where we use all the digits, i.e., K = 10. In the rightmost figure, we see a figure containing the number
of spiked eigenvalues K as a function of the number of digits, K included in the data set. This line
indicates that for small K, the number of spikes is over-approximated, while for large, K the number
of spikes is under-approximated by the shuffling based parallel analysis.

11.2.1. Partition Recovery

In the left panel of Figure 11.6, we see the inverse performance (VI) of the clustering methods. Most
importantly, we find that two observations from the synthetic empirical analysis can be recognized.
First, the KM method performs relatively poorly compared to all the other methods. Second, the per-
formance of the naive spectral modularity maximization (SMMO) worsens as the number of groups K
grows. Finally, the spectral methods perform roughly equally, except for small K where SMMO and
SMM1 outperform SC and SMM2, and for high K where SC is slightly better.
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Figure 11.6: Performance of clustering methods on MNIST data. The clustering performance is computed with the variation
of information between the clustering and the ground-truth partition. In the left, the performance of the clustering methods
(SMMO, SMM1, SMM2, SC, and KM) is evaluated as a function of the number of included digits K. Here, K is determined by
the standard shuffling based parallel analysis. In the right figure, the same evaluation is done, but K is replaced with the oracle
value K.

Because we know from studying the eigenvalue histogram that the shuffling based parallel analysis
may not be effectively determining the number of groups in the data set, we verify the intuition by
performing the experiment with an oracle estimator K, as seen in the right panel of Figure 11.6. Instead
of using an approximation K to determine the informative eigenvalues, we directly use the known
number of groups K. The performance of the clustering methods using the oracle estimator for K,
does indeed improve slightly, indicating that the shuffling based parallel analysis may not be optimal.
However, the ordering of the methods based on their clustering performance stays roughly the same.
The most important observation, however, is that the spectral modularity breakdown is still exhibited,
as indicated by the deteriorating performance of SMMO as K grows. This further demonstrates the
universality of the challenge of naive spectral modularity maximization.

11.2.2. Digit Recognition

In order to illustrate the behavior of under-approximating the number of spiked eigenvalues and hence
the number of groups, we look at the inferred profiles from a single clustering. In Figure 11.7, we find
the result of profile inference on the clustering of normalized spectral modularity maximization (SMM2).
The data set that is considered contains all the K = 10 digit classes, where each group has 100 objects,
totaling to n = 1000 objects. In the left panel, we see the clustering with the shuffling based approximate
for the number of clusters and informative eigenvalues K = 7. The inferred profiles, with mode based
inference introduced in Equation 2.6, clearly resemble existing digits. The digits that are recognized are
4,5,6,1,9,0,7, where the cluster representative profile of 9 is very similar to 3. This ambiguity between
digit 9 and 3 is confirmed by the fact that the cluster associated with profile 9 contains many values
for 9, 3, 8, and the cluster that belongs to the cluster representative profile 1, appears to contain many
instances of 1 and 2.
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Figure 11.7: Cluster profiles of MNIST digits data set. The left uses the K eigenvalues obtained from threshold with shuffling
based PA. The right uses an oracle value of K = 10 to determine the threshold of the eigenvalue spectrum. For each row, the
left image is the inferred profile, and the right images contain example objects that are in the clusters represented by the profile.
The number of objects in this visualization of the clusters is capped at 90.

It is tempting to think that replacing the approximate K for the oracle value K will disentangle the
clusters that contain multiple digits. However, this is not entirely true, as is seen in the right panel of
Figure 11.7. While in this oracle-based method, the digit 2 is recognizable in the representative profiles,
the remainder of the undiscovered digits remain unrecognizable. To be specific, there is no profile that
resembles the digits 8 or a 3. Instead, the clusters that are associated with the digits 1 and 7 are both
split, resulting in two clusters with a profile resembling 1 and two clusters with a representative profile
resembling 7.
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Related Work

In this chapter, we examine relevant literature to highlight the contributions of this study within the re-
search field. In particular, certain fundamental aspects of the studied methods, i.e., naive (SMM1),
regularized (SMM1), and normalized (SMM2) spectral modularity maximization, bear resemblance to
existing work within the fields of spectral clustering and Girvan-Newman modularity maximization.

First, given its reliance on spectral decomposition, the methodological equivalence of spectral mod-
ularity methods with the existing spectral clustering paradigm is evident. However, the conceptual
usage of the spectral decomposition of similarity matrices as a modularity measure, as introduced in
[8], is relatively unique. Specifically, most of the existing spectral clustering work [92, 93, 62, 15] is
based on the eigenvectors of the Laplacian matrix instead of the eigenvectors of the similarity matrix,
which is done in spectral modularity.

Second, the use of modularity based objectives, akin to [12], for clustering multivariate data is not
new. Although existing methods [94, 95] typically rely on the Girvan-Newman modularity discussed in
Chapter 4, there are shared aspects with the introduced spectral modularity methods. Along these lines,
the Girvan-Newman modularity suffers from a similar fundamental limitation, known as the resolution
limit [96], which may appear to have some conceptual overlap to spectral modularity breakdown. Fur-
thermore, existing normalizations and vector interpretations of the Girvan-Newman modularity demon-
strate equivalence to the enabling concepts of the SMM2 method.

In Section 12.1, we elaborate on the relation of spectral modularity to the spectral clustering paradigm.
Specifically, we discuss the use of Laplacian matrices in contrast to similarity matrices, which is high-
lighted by the resemblance of SMM2 to a specific existing similarity-based spectral clustering method
[97]. In Section 12.2, we discuss existing approaches to multivariate data clustering using Girvan-
Newman modularity and how the developments in that direction resemble aspects of the methods in
this thesis.

12.1. Spectral Clustering

Spectral clustering, as discussed in Chapter 2, is a clustering paradigm that makes use of the most
important eigenvectors of matrices associated with a dataset or graph. There are many variations of
spectral clustering, typically relating to a slightly different graph partitioning objective. The simplest ob-
jective is to minimize the cut of a graph, which essentially boils down to finding a partition that minimizes
the similarity between the clusters. While this is one of the simplest algorithms, the obtained clusters
are generally inconsistently split into uneven sizes.

To mitigate this, [92] optimize a ratio cut objective, [93] study a min-max cut objective, and [62, 14]
study a normalized ratio cut, which is generally suggested [13] to be the most applicable in typical set-
tings and is the spectral clustering algorithm we considered throughout the thesis. For an elaborate
overview of the recent advances in spectral clustering, the reader is referred to [15].
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12.1.1. Similarity and Laplacian

In contrast to many of the above specified Laplacian based spectral clustering methods, spectral mod-
ularity maximization is based directly on the eigenvectors of the similarity matrix. While early in the
development of spectral clustering methods the eigenvectors of the adjacency matrix were used [98],
much of the proceeded developments were done on the eigenvectors of the Laplacian matrix, which is
originally introduced in [61].

There is no consensus on the suitability of clustering data using the eigenvectors of similarity matri-
ces. In [13] the author argues for the use of eigenvectors of the Laplacian as opposed to those of the
similarity matrices because the smallest eigenvalue eigenvector pairs of the Laplacian are more mean-
ingful. Specifically, because the zero eigenvalues of the Laplacian matrix represent the connected
components of a clustered graph in an ideal setting.

On the other hand, [12] argues that the analogy of Laplacian based spectral clustering with graph
cut sizes is fundamentally problematic in reflecting the concept of network communities. The argu-
mentation suggests that a good division of a network into communities is not merely one in which the
number of links between groups is small, but rather one in which the number of links between groups
is smaller than average. Hence, this argues for the use of modularity based community detection as
opposed to Laplacian based community detection. Whether the same argument is reasonable in the
context of multivariate data is an open question.

In the context of graphs, an adjacency matrix is not guaranteed to be positive definite, which makes
the Laplacian matrix particularly convenient. The Laplacian matrix is a convenient mathematical object
as it satisfies symmetric positive (semi-)definiteness, and its eigenvectors approximate a Euclidean
embedding of the data. The former is important to ensure that the trace maximization problems that
are encountered through graph clustering definition, like normalized cuts, can be solved with the eigen-
vectors of the Laplacian matrix.

However, for many choices of similarity measures, the induced similarity matrices are naturally al-
ready symmetric positive definite, which makes it common for spectral clustering based methods to be
based on a symmetric positive definite similarity matrix instead. This makes a Laplacian transforma-
tion arguably redundant, especially if one is not strictly interested in the Euclideanity of the Laplacian
embedding. Along these lines, in [18, 99] the authors study the kernel matrices of multivariate data that
exhibit a ground-truth group structure. The exact benefit of this matrix, as opposed to the Laplacian,
is that under a Gaussian assumption of the matrix elements, the matrix conveniently aligns with the
theoretical structure of random matrix theory. This way, the behavior of spectral clustering on similarity
matrices can be improved by studying the theoretical properties of the eigenvalues.

12.1.2. Related Similarity-Based Method

A neat property of Laplacian based spectral clustering, is the ability to use KMeans clustering in the
Laplacian embedding, which is motivated by its Euclideanity. However, because clustering based on
the eigenvectors of a similarity matrix does not satisfy Euclideanity, alternative methods need to be
derived. For example, [97] introduces a method that uses the eigenvectors of a similarity matrix. In
particular, the first K eigenvectors are used, where K is determined by Kaiser’s Criterion. Then, if
two objects projected on the subspace that is spanned by the K eigenvectors have a cosine similarity
greater than a specified threshold, the objects are clustered together. The threshold is calibrated such
that K clusters are found. Although it is not identical, the approach does share commonalities with
both SMM1 and SMM2, due to the use of angular orientations and a threshold calibration procedure.
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12.2. Girvan-Newman Modularity Maximization

Although [8] introduced the redefinition of modularity using eigenvectors and random matrix theory, i.e.,
spectral modularity, it is not the only attempt at using the modularity definition from [12] in the context
of clustering multivariate data. For example, in [94] the authors propose an extension to the modularity
objective that relates to Relational Analysis. Furthermore, [95] uses a different normalization of the
modularity matrix, one that borrows the specific normalization from the well established normalized
Laplacian matrix defined in [62].

Apart from these modularity based methods, there is additional related work that resembles as-
pects of the developments within this thesis. First, the resolution limit is known to be a fundamental
problem, which at first glance may appear to be related to the spectral modularity breakdown. Second,
normalizations of modularity are studied to obtain alternative modularity maximization algorithms [82].
Third, modularity based vector representations of objects have been studied in the context of graph
clustering algorithms; however, this is only done for the Girvan-Newman modularity definition. Finally,
the extension of modularity maximization to obtain soft partitions

12.2.1. Resolution Limit and Spectral Modularity breakdown

In a simple graph setting, the Girvan-Newman modularity based community detection methods suffer
from a failure mode that is called the resolution limit [96]. Modularity maximization may fail to identify
smaller clusters. This phenomenon appears among many network classes and is an important limitation
of naive modularity maximization. The resemblance between the spectral modularity breakdown and
the resolution limit lies in the inability to uncover fine-grained structures that alternative existing methods
are able to detect. Therefore, aspects of both phenomena are likely to be relatable.

On the other hand, because spectral modularity operates on multivariate data, little is known about
the presence of such a resolution limit in spectral modularity. In particular, the resolution limit is often
studied for imbalanced community configurations, which demonstrate the failure of detecting smaller-
sized communities. However, even in completely homogeneous size and symmetric group separation,
we observe a significant breakdown in Chapter 10, which is particularly severe for data with internally
non-uniform groups, i.e., the CMPM data that we introduced in Chapter 9.

12.2.2. Modularity Normalization

There are other normalizations of modularity that are related to the spectral modularity normalizations
in Chapter 7. Most are introduced in the context of graph clustering. In [100] two specific penalizations
of the modularity objective are given.

First, the authors introduce a balanced variant of the modularity objective that resembles the Q.4
objective we described in Chapter 7 and of which we know may pose problematic decisions in the
context of clustering multivariate data with spectral modularity.

Second, the authors introduce another normalization that is based on the same procedure as [95],
which relates the modularity matrix to a Laplacian. This way, clustering can be done with KMeans on
the eigenvectors, akin to Laplacian based spectral clustering, which suggests that the normalizations
from [95] may uncover a more intricate relationship between the modularity matrices and Laplacian
matrices.

12.2.3. Modularity Vector Representations

In the context of graph clustering, [101] also uses a similar notion of a lower dimensional representation
of the objects based on the Girvan-Newman modularity matrix. However, this representation is obtained
from the eigenvectors of the Girvan-Newman modularity matrix and not the spectral modularity matrix.
In addition, the authors use KMeans to cluster the data in the lower dimensional representation. How-
ever, as discussed in Section 12.1, the KMeans objective is not meaningful because the eigenvectors
of the Girvan-Newman modularity matrix do not provide a Euclidean embedding.

To address this conceptual issue, [102] consider a method that is based on the inner products
as opposed to the distances in KMeans. These inner products are meaningful as they represent the
pairwise Girvan-Newman modularity, similar to the inner products of spectral modularity vectors, as
discussed in Chapter 7, which makes the philosophy of the method resemble that of SMM2.
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Discussion

In this chapter we discuss the developed methods, their challenges, and their performance. The aim of
this study is to investigate the viability of spectral modularity, and specifically the ability to cluster high
dimensional multivariate data.

Although we learn that the naive spectral modularity maximization is an inconsistent method, the
theoretical results obtained from studying the spectral modularity breakdown incite the development
of two solutions that are aimed at resolving the breakdown. These enhancements show direct im-
provement over the naive spectral modularity maximization and existing clustering methods through a
thorough empirical performance analysis. However, the performance analysis has limitations related
to the scope of the experimentation being limited to a small selection of evaluation criteria, synthetically
generated data and few competitive clustering methods. Furthermore, there are some aspects of the
spectral modularity methods, related to the computational efficiency and the parallel analysis proce-
dure, that may hinder practical application.

In Section 13.1, we summarize and discuss the theoretical and methodological developments of
this thesis. Specifically, we highlight our findings related to the spectral modularity breakdown, and the
properties of the enhancements. In Section 13.2, we elaborate on the performance of our contributed
methods in terms of partition recovery and profile inference. In Section 13.3, we describe the limitations
of our employed performance analysis. Finally, in Section 13.4, we discuss the limitations of spectral
modularity as a whole.

13.1. Theoretical and Methodological Developments

The framework of spectral modularity relies on two steps. First, we filter out informative eigenvalue
eigenvector pairs of any symmetric positive definite similarity matrix from non-informative ones, as
described in Chapter 3. Second, we perform modularity maximization on a constructed spectral mod-
ularity matrix, composed of only informative eigenvalues and eigenvectors, as described in Chapter 4.
From studying this framework, there are three main takeaways.

First, we find that naive spectral modularity maximization suffers from a fundamental challenge:
spectral modularity breakdown. This phenomenon is examined throughout this thesis through an an-
alytical study of an ideal setting and the effect of perturbations in this ideal setting. However, there
remain open questions related to the tractability of the perturbation results. Second, we are able to
mitigate the breakdown with two related solutions, SMM1 and SMM2. Both solutions have advantages,
disadvantages, and open questions that may lead to significant improvements or enlightening alter-
natives. Third, we can use spectral modularity to derive a soft clustering method that is capable of
transforming arbitrary hard partitions into soft partitions without choosing parameters.
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13.1.1. Spectral Modularity Breakdown

The behavior of a naive maximization of the spectral modularity objective is studied in Chapter 5, and
answers to Research Question 1. Here, we study naive spectral modularity maximization through a
theoretical analysis of the spectral modularity objective from Section 4.3. However, the method breaks
down as the number of groups that are present in the data is high. This makes the application of naive
spectral modularity maximization problematic.

A natural follow-up question concerns the cause of this spectral modularity breakdown, as is posed
in Research Question 2. To understand the breakdown, we provide an intuition of the breakdown in
Section 5.1 through a combinatorial reasoning that shows the shrinking ratio of the O(K) internal pairs
to the O(K?) external pairs. Because of the relatively natural link to this combinatorial phenomenon, it
is tempting to believe that the breakdown has some universal behavior. To be precise, the breakdown
may extend to different tasks within high dimensional statistical domains, where the size of the under-
lying hidden representation is large.

The formal analysis of the spectral modularity breakdown comprises a necessary consistency con-
dition that is based on the spectral modularity objective, the spectral modularity matrix, and a non-
ambiguous ground-truth partition. In particular, we design two mathematical models that are related to
the construction of spectral modularity matrices, to show that the non-ambiguous ground-truth partition
associated with these models will likely break this necessary consistency condition from Section 5.2.
In this way, the spectral modularity objective becomes inconsistent with these two rather fundamental
models. In the first model, Toy Model A (TM-A), we demonstrate that for a completely symmetric and
homogeneous setting, the spectral modularity matrix becomes arbitrarily close to violating the consis-
tency condition, as discussed in Section 5.3. Then, increasing K makes the spectral modularity objec-
tive more susceptible to ground-truth violating perturbations, breaking the consistency of the spectral
modularity matrix. In the second model, Toy Model B (TM-B), we demonstrate using a model for the
spectral modularity vectors that with only small deviations from the idealized setting, the consistency
condition is broken, as discussed in Section 5.4 In particular, we demonstrate an upper bound on the
probability of a ground-truth partition satisfying the necessary condition, and show that as K grows,
the upper bound will converge to zero, meaning the probability of satisfying the necessary consistency
condition will converge to zero.

Intractable Perturbations

Ideally, one would perturb these spectral modularity vectors and express a probability bound in terms of
the analytical distribution of these vectors. However, this is difficult to do because of the dependence
among the perturbations. Therefore, we resort to the analysis of the sum of the inner products of
spectral modularity vectors, denoted by zx. Here, we learn that as long as zx has some sufficient
amount of variance in relation to K, the breakdown is guaranteed.

However, a counterexample to guaranteed breakdown exists, specifically if the amount of variance
of zx vanishes too fast as K grows. If this is the case, the upper bound may never go to zero, which
makes the guaranteed breakdown argument fail. However, this setting would require adversarially cho-
sen perturbation distributions that are only associated with tiny perturbation amounts. Therefore, these
situations are unlikely to occur in realistic settings, where randomness is generally a fundamental com-
ponent of the system.

Because an explicit distribution of zx determined from the distribution of the perturbations {z;}? ;
is difficult for non-trivial distributions, an interesting question is whether a specific central limit theorem,
that allows certain dependence structures, may apply in this setting. As is illustrated in the numerical
analysis of spectral modularity breakdown in Section 5.4, a normal distributed zx, as a potential result
of such a conjectured central limit theorem, would suffice to show the existence of the spectral modu-
larity breakdown.
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13.1.2. Spectral Modularity Enhancements

In order to mitigate the spectral modularity breakdown, we study enhancements to the spectral modular-
ity objective. In fact, we provide two solutions, thereby answering Research Question 3. Both solutions
(Contribution 1 and Contribution 2) reduce the bias towards clusters with few big, by combining the fol-
lowing two aspects. First, both solutions ensure that the clusterings contain the right number of groups,
that is, under a reasonable setting, well approximated by the number of spiked eigenvalues, as dis-
cussed in Chapter 3. Second, the solutions reduce the bias towards heterogeneous groups, such that
we prevent inconsistent merges that are caused by the spectral modularity breakdown, as discussed
in Chapter 5.

Regularization
In Chapter 6, we provide a solution (SMM1) that employs an explicit regularization of the spectral
modularity objective by penalizing heterogeneously sized groups. A benefit of this method, is that its
adaptation of the objective is rather minimal. In fact, its adaptation solely consists of the subtraction of
a small constant from the modularity matrix. Given that the change only adapts the modularity matrix,
ensures that the remainder of the existing modularity maximization framework can still be used effec-
tively. In practice, this means that we are able to use the existing modularity maximization algorithms,
such as Louvain [39], which poses as a benefit of this particular solution.

However, a fundamental disadvantage of SMM1 is the necessity of calibrating the regularization pa-
rameter e. This requires the use of rather cumbersome approximation heuristics, for which we propose
a potential improvement in Section 14.2.

Normalization

In Chapter 7, we provided a secondary solution (SMM2) that employs a more fundamental change of
the spectral modularity objective through a specific normalization. Instead of maximizing the summation
of all internal sums of pairwise modularities, as is done in the naive spectral modularity maximization
(SMMO), we maximize a normalized sum. Because the objective has changed significantly, we cannot
use existing modularity maximization methods. Instead, we use the orientations and magnitudes of
the spectral modularity vectors, which enables a simple maximization procedure. While this method
does not require additional parameter calibration like in SMM1, due to the relative novelty of this proce-
dure, itis likely thatimprovements, such as we discuss in Section 14.3 and in Section 14.4 can be made.

13.1.3. Soft Clustering Method

A relatively natural interpretation of the orientations of spectral modularity vectors, inspires a way to
determine an expression for the uncertainties of cluster memberships. Therefore, in Chapter 8, we
introduce a soft clustering algorithm (Contribution 3), where the orientations of spectral modularity
vectors are used to determine the membership distribution of objects to the different clusters. This soft
clustering can be performed on a hard partition that is obtained from an arbitrary clustering algorithm.
On the one hand, this makes it possible to gain detailed insights into the group structure of a data set
while not solely depending on the spectral modularity framework. On the other hand, as the softening is
relatively separated from the (arbitrary) clustering procedure, it is tempting to think that a procedure that
incorporates the two phases, such as we propose in Section 14.5, will give more meaningful results.

13.2. Experimental Setup and Analysis

In Chapter 10, we study the performance of the clustering methods in terms of partition recovery and
profile inference, as discussed in Section 10.1, of SMMO, SMM1, and SMM2 in comparison to existing
methods, such as KMeans, KMedoids, and a specific spectral clustering method (SC), answering to
Research Question 4. Our theoretical analysis of naive spectral modularity maximization (SMMO) in
Chapter 5 suggests that a breakdown of the method occurs as the number of groups grows, and the
severity of the breakdown is observed in a multitude of ways.
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From the combination of all results in Section 10.2 and in Section 10.3, we find that SMM2 and its
soft variant have the best performance in most of the tested scenarios. In particular, the conclusions
we can draw from the experiments are threefold. First, the performance is significantly deteriorated
due to spectral modularity breakdown, which is successfully resolved by SMM1 and SMM2, although
SMM1 sometimes demonstrates inferior performance. Second, in the setting of internally non-uniform
groups, modeled by CMPM, the enhanced spectral modularity methods, especially SMM2, demonstrate
a significant superior performance over SC. Third, in terms of profile inference, the soft clustering
variants typically improve the profile inference performance.

13.2.1. Spectral Modularity Breakdown

In Chapter 10, we verify these observations through empirical analysis of the performance of the naive
spectral modularity method. Although SMMO generally performs better than the baseline methods
(KMeans and KMedoids), which suffer from the curse of dimensionality and general instability, SMMO
performs significantly worse than a well-established competitive clustering method (SC). The trend with
which the clustering performance worsens is indicatively observed when the performance is measured
as a function of the number of groups. In fact, for a small number of groups, SMMO has relatively
similar performance to its competitors and improvements; however, as the number of groups grows,
the performance gap increases a lot.

For high dimensional Gaussian mixture based data described in Section 9.2, we find in Section 10.2
that SMMO performs generally better than KMeans. An exception to this is when the number of groups
is large or when the number of dimensions is low, where KMeans performs equally well. This can be
explained in two ways. First, the performance of SMMO deteriorates to the level of KMeans because
of the spectral modularity breakdown. Second, the performance of KMeans is still relatively good, due
to the low dimensionality. When the number of groups is large, the competitive method, spectral clus-
tering, and the contributed solutions perform better than SMMO.

For categorical mixed prototype data described in Section 9.3, we again find in Section 10.3 that
SMMO performs better in the baseline method (KMedoids), but worse than the competitor (SC). In ad-
dition, the performance of SMMO is severely and significantly worsened when the number of groups
grows. To be precise, the spectral modularity breakdown appears to be much more sensitive in this
mixed prototype setting. This is due to the softness of the group boundaries in the categorical mixed
prototype data. Because the boundaries of groups in the CMPM based data are relatively soft, meaning
that the internal similarities are not homogeneous, increasing K is much more likely to cause inconsis-
tent clusterings. This suggests that there are different levels of severity of the effect of breakdown.

Furthermore, in the context of real empirical data, we also observe the effect of breakdown. In the
handwritten digits data set that we study in Chapter 11, the spectral modularity breakdown is also ob-
served when we include a high number of digits (e.g. K = 10). However, the amount of real empirical
data studied is too limited to draw strong conclusions.

In terms of partition recovery, we find that the breakdown disappears in SMM1 and SMM2. In partic-
ular, as the number of groups grows, the partition recovery performance does not degrade compared
to the competitive spectral clustering method. This is observed in both the GMM-based data and the
CMPM-based data, where the breakdown appears to be more severe.

On the other hand, a potential limitation of both SMM1 and SMM2 is observed when varying cluster
size heterogeneity. Because both the solutions to mitigate the spectral modularity breakdown that
are used in SMM1 and SMM2 are based on tackling the bias towards a few big groups, they may
overcompensate in the actual presence of actual heterogeneous group structure. The observed effect
of this is, however, relatively small.
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13.2.2. Internally Non-Uniform Groups

Both the enhanced spectral modularity methods, SMM1 and SMM2, demonstrate significant superior
performance over SC, which is unsuitable for data with internally non-uniform groups. In this setting,
the groups of objects in the Laplacian embedding are not convex or linearly separable. These two con-
ditions are desired for KMeans clustering to perform reasonably. If the conditions are not met, KMeans
will typically converge to an ill-defined optimum. Because the weights of the prototype contributions
of objects in mixed prototype data may be distributed in a non-convex way, this specific clustering al-
gorithm is likely to fail. This phenomenon is repeatedly observed in the study of clustering with data
generated with Logit Chi squared (F') weights, as introduced in Section 9.2.

13.2.3. Soft Clustering Improves Profile Inference

In terms of profile inference, as discussed in Section 10.4, a similar performance ordering of soft vari-
ants of the methods is found. In particular, the soft variant of SMM2 is generally considered as the
top performer, which is explained by the maximization algorithm of SMM2, which makes use of the
orientations of cluster representative vectors. The superior performance of SMM2 is highlighted even
more when considering the profile inference in terms of the space of the spectral modularity vectors.
This latter performance quantification is almost identical to the maximization objective of SMM2.

In fact, the soft clustering variants of any method generally improve profile inference. This is ex-
pected, as the softness of the clustering assignments makes objects that are on the boundaries of two
clusters, and consequently not representative of a data profile that strongly represents any of the two
clusters, less important for the profile inference. However, an exception to this is SMM2. In particular,
because SMM2 already approximately maximizes the profile inference as an objective, the extension
to soft-clustering does not improve the objective further. Possibly this behavior can be explained by
the same arguments that are used to express the inability of spectral modularity maximization on the
space of soft partitions in Section 8.2. Here, because of the convexity of the search space and the
convexity of the function, a maximization is attained at the boundary. It is possible that the objective in
SMM2 has the same behavior.

13.3. Limitations of Performance Analysis

The limitations of the performance analysis can be divided into three aspects. First, the approach to
evaluating the ability to recover partitions or to infer profiles may have some flaws. Second, despite
the diversity of the generated data, there are still important characteristics in realistic data that are not
covered by synthetically generated data. Third, the number of methods with which the performance
of spectral modularity maximization is compared is rather small. Finally, the results extending beyond
synthetic data leave some open questions regarding the eigenvalue detection threshold.

13.3.1. Limitations of Evaluation Metrics

A limitation of the current evaluation in terms of partition recovery is that it does not ensure that the
chosen ground-truth partitions are in fact of higher quality in terms of the spectral modularity objective.
One can imagine that if the ground-truth partition is ill-defined, i.e., it does not represent the data rea-
sonably, the comparison to the ground-truth partition is problematic. Even though we ensure that the
ground-truth partitions from the synthetic data sets are not completely ill posed, by making the difficulty
parameters of the DGPs not too high such that the spiked eigenvalues remain detected, this does not
entirely solve the issue nor guarantee optimality of the ground-truth partition. Despite the measures
taken, it may still be the case that a clustering p has a higher spectral modularity than the ground-truth

partition p*, i.e., Qo(p) > Qo(p*).

This is a problem that is present for any evaluation of any clustering algorithm. This limitation of the
empirical analysis may be partially solved by evaluating the ground-truth partition and clustering with
Qo, such that we obtain an idea of the respective qualities. Additionally, one can investigate the use of
different additional cluster quality functions that are completely separate from the spectral modularity
definition and see how the performance analysis can be cross validated with those metrics.
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13.3.2. Limitations of Data

For practical reasons, the scope of the thorough empirical analysis is limited to synthetically generated
data. Although, we extend some experimentation to a small set of real empirical data in Chapter 11,
the conclusions that can be drawn are far less significant than those from the synthetic data bench-
marking. Within the DGPs that are responsible for the synthetic data, multiple restrictive choices have
been made. Therefore, the scope of the benchmark is somewhat limited, in the amount, and variety
of data sets. Especially, settings that are more related to practical problems, as most of the under-
standing obtained throughout this study is obtained through synthetic data. For example, we have not
studied heterogeneous diffusion amounts of the group specific probability distributions, meaning differ-
ent groups have different variances or internal uniformities. Density based methods, which we did not
study here but are also able to deal with non-convex and non-linear separable groups, are known to
fail in this regime [54]. Therefore, it is worthwhile to consider how spectral modularity based methods
are affected by heterogeneous diffusion.

13.3.3. Limitations of Compared Methods

At the same time, the number of methods that are used to compare them is limited. For the sake
of space and time, we limited the formal validation of the benchmark to a relatively standard spectral
clustering method, that is expected to behave reasonably well in high dimensional data. As clustering
spans a large field, many high dimensional data clustering methods exist. It is, therefore, worthwhile
to investigate the performance of this method with respect to more methods that are suitable for high
dimensional clustering than just spectral clustering.

For example, one could investigate how methods from this thesis can be applied to Laplacian based
spectral clustering adapted for the domain where it fails (F'!), as is likely to be the case for the method
introduced in [97]. In addition, although KMedoids is a commonly used clustering method for discrete
data, more baseline methods can be investigated. For example, KModes, as introduced in [103] are
likely capable of performing better at the mixed prototype data than KMedoids. Furthermore, hierarchi-
cal clustering methods are relatively standard, and their behavior is not known in the context of CMPM
based data. Also, in the scope of modularity maximization, alternative methods are known to improve
the performance of Louvain. For example, the Leiden algorithm, introduced in [39], which is known to
resolve some limitations of Louvain, may be used in both SMMO and SMM1.

Furthermore, we have not thoroughly studied methods that are specifically aimed at soft clustering
due to lack of known soft-clustering methods that work well on categorical data, which is required for
the unambiguous mode based profile inference procedure. However, for real data where Euclidean of
the metric space is satisfied, Archetypal Analysis [104] can be used as a comparison method or fuzzy
KMeans. Furthermore, [105] have studied fuzzy KMedoids and [106] have studied Archetypal Anal-
ysis for categorical data. In addition, in the context of graphs, soft modularity maximization methods
exist that may be used as a replacement for the Louvain method. For example, in [107], the authors
introduce an algorithm that maximizes modularity with iterative propagation of modularity guided mem-
bership degrees, and in [108] use an alternative modularity objective that approaches modularity from
a probabilistic partition.

13.4. Limitations of Spectral Modularity

Despite the fact that spectral modularity has previously been shown to be a promising method [8], and
the fact that we have successfully circumvented the spectral modularity breakdown with our contributed
algorithmic enhancements, there are still some fundamental limitations to the spectral modularity meth-
ods as a whole. First, at this stage, it appears that the computational bottleneck of the spectral modu-
larity methods lies in the computation of the eigenvalues and eigenvectors. This makes the application
to settings where the number of objects is larger impractical because of the size of the similarity matrix.
Second, the current approach to estimating the number of groups may not always be appropriate.
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13.4.1. Computational Efficiency

A fundamental limitation of all the contributed methods, that is natural to any of the spectral methods, lies
in the time complexity, which is severely dominated by the computation of eigenvectors and eigenval-
ues. While modularity maximization algorithms, such as Louvain, are designed to maximize the modu-
larity of large graphs, the extension to large similarity matrices in the spectral modularity paradigm is not
trivial. In particular, the spectral modularity approach requires a spectral decomposition, and therefore
the eigenvectors and eigenvalues of the matrix need to be computed, which generally takes O(n?) time.

The time complexities of variety modularity maximization algorithms are not considered in great
detail. However, it is unlikely that the time complexities of these heuristics will be more problematic
than the spectral computations. Indeed, for a simplistic perspective, consider that the empirical time
complexity of Louvain is O(nlogn) and the calibration scheme utilized in SMM1 takes, in the worst
case O(logn) time. Therefore, this is clearly dominated by O(n?) which is required for the computation
of the spectral modularity. Furthermore, the sort phase in SMM2 takes O(n?) time in the worst case,
the seed phase takes at most O(n) time, and the assignment phase takes O(n - K) time. Therefore,
SMM2 is also dominated by the O(n?) required for the spectral decomposition.

Therefore, most of the computational efficiency can be gained by improving the efficiency of the
spectral decomposition. A fundamental component is the computation of the top-K eigenvectors and
eigenvalues that are required to construct the spectral modularity matrix. Fortunately, in the context of
spectral clustering, this problem is addressed by an approximation of the Laplacian embedding [109],
potentially affecting the quality of the clustering performance. Furthermore, for the determination K, we
currently use shuffling based parallel analysis as described in Algorithm 1, and therefore the second-
largest eigenvalue needs to be computed many times. Alternative methods for approximating K may
influence the time complexity.

13.4.2. Problematic Approximation of K

As demonstrated in Chapter 11, it is not trivial that shuffling based parallel analysis approximates a
sensible number of spiked eigenvalues, let alone the right number of groups. From the experimenta-
tion on the MNIST digits dataset, it is not entirely clear, whether the spiked eigenvalues are theoretically
too close or that the method to obtain the threshold is invalid. The shuffling based parallel analysis to
determine the number of clusters in the handwritten digits, has both an under- and over-approximating
behavior. This indicates that the shuffling based parallel analysis may not be ideal for this setting.

First, consider that the number of ground-truth groups K is lower than the number of spiked eigen-
values K is higher. It is probable that some spiked eigenvalues are associated with patterns that are
not related to a group structure, but rather through trivial correlations of the features. In the example
setting of the MNIST digits, such an over-approximation can be partially explained by trivial correlations
of the feature space obtained from encoding the 8 by 8 images in 64 dimensions, which is not invariant
through horizontal or vertical translations of the digits. While this demonstrates a problematic applica-
tion of this specific encoding, it also exposes the puzzle of disentangling features, space redundancies,
and group structure from the spectral information of similarity matrices, which is known to be especially
difficult in the context of internally non-uniform groups [37].

Second, consider that the number of ground-truth groups K is higher than the number of spiked
eigenvalues K is lower. An intuition of how this may happen can be obtained by studying Figure 3.6.
Here, the shuffling procedure slightly widens the bulk of the eigenvalues. While in the example, the
spiked eigenvalues are not influenced by this wider bulk, if the spiked eigenvalues appear close to
the bulk edge, as may happen in realistic data, the widened bulk may complicate the detection of the
spiked eigenvalues.

However, while studying the MNIST digits, if we choose to consider more eigenvalues as ’spikes’, the
clustering performance does improve only slightly. Specifically, using an oracle value for the number
of groups in the clustering methods improves the resulting clusterings slightly, in two ways. First, the
clusterings using the oracle value K have only a slightly lower variation of information between the
clusterings and the ground-truth. Second, the oracle based profile inference only detects one new
profile, while it also constructs copies of profiles that were already inferred by the non-oracle method.
This makes it difficult to be conclusive about shuffling based parallel analysis.
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Existing Approaches

There are many existing methods to infer a threshold 7 that are either more or less suitable than the shuf-
fling based parallel analysis. The use of a specific procedure heavily depends on the context in which it
is used. For example, shuffling is believed to be relatively well-behaved in the context of discrete data
[37, 36], making it suitable for most of the settings we studied here. As seen in the experiments with
multivariate Gaussian data in Chapter 10, the shuffling appeared to give an accurate approximation
for the number of groups. This relation between parallel analysis and random matrix theory is studied
in [110]. In [37] the author proposes the use of restricted randomness, i.e., a resampling procedure of
categorical data instead of shuffling, which may pose as a more robust method of parallel analysis.

In the context of principal component analysis, much work has been done in the direction of detect-
ing informative signals from uninformative signals. Along these lines, [111] promise to give arguably
more accurate estimates of the number of spiked eigenvalues by using random matrix theory derived
matching analysis. [112] proposes a parallel analysis method that, instead of shuffling features, flips
the sign. This approach promises to be more robust in the case of heterogeneous noise within different
clusters. However, this approach is only meaningful for ordinal data.

Theoretical Thresholds

When data is assumed to be Gaussian, the use of the Marchenko-Pastur law to determine the threshold
may be appropriate, as is done in the original introduction of spectral modularity in [8]. It is therefore
recommended to extend the theoretical threshold framework to a broader class of multivariate data. For
example, for the setting of categorical data, a definition for a null model to obtain an exact threshold is
not known yet. An important research direction is the study of the random Hamming similarity matrix.
The reason for this is twofold.

First, the current shuffling based parallel analysis is a relatively well-suited method for categorical
data because of the finiteness of the data space. This can give valuable insights into the alignment
of the parallel analysis and the theoretical distribution. In positive results, it is tempting to think that
parallel analysis is indeed a reasonable method to approximate K.

Second, arelatively simple extension of the Marchenko-Pastur law with block dependencies can be
used, rendering the theoretical derivation simple. In particular, the complete disjunctive table of a cate-
gorical data matrix in itself does not have independent columns, however, [bryson_marchenko-pastur_2021]
has shown that the MP law can be used under block dependencies.

Results related to theoretically deduced thresholds are inclined to coincide with algorithmic effi-
ciency. In particular, as most of the computational burden appears to be in the computation of eigen-
values, eliminating the need to compute eigenvalues of shuffled matrices many times, greatly reduces
the total computation time.
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Recommended Developments

In this chapter, we discuss recommended developments that are beyond the scope of this thesis, but
may improve current methods, resolve certain limitations, or provide additional insights into the open
questions. Along these lines, there are at least three promising perspectives, that are yet to be studied
relating to, the severity of spectral modularity breakdown, possible enhancements to regularized spec-
tral modularity maximization (SMM1), and alternatives to normalized spectral modularity maximization
(SMM2).

First, the severity of spectral modularity breakdown by studying the hierarchical structure of the
inconsistent merges, discussed in Chapter 5. In particular, if the clusters in naive spectral modularity
maximization were to merge hierarchically, which is unlikely, the breakdown is easily solved by exist-
ing methods. In [8] a multi-level approach to spectral modularity is introduced, that recursively splits
clusters, which may appear to resolve the problem of inconsistent merges through positive off-diagonal
elements in the group affinity matrix G, as discussed in Section 5.2. However, while the group affin-
ity matrix is demonstrative of the breaking of QQy-consistency, in practice, the breakdown of spectral
modularity may not occur by conveniently merging the clusters in a hierarchical pattern. This makes it
unlikely that a multilevel approach resolves the spectral modularity breakdown, however, this is still an
open question.

Second, the calibration of the regularization parameter in SMM1, which is described in Chapter 6,
may be improved by making use of the seed interpretation from Chapter 7. Of the two contributed
solutions to the spectral modularity breakdown, SMM1 is considerably less stable, and its clustering
performance is therefore often surpassed by SMM2. A large part of this performance mismatch is likely
to be explained by the instability of the calibration procedure. Using this procedure based on seeds
promises to make the calibration, and therefore the performance of SMM1, more stable.

Third, there are a number of alternative interpretations of the normalized spectral modularity objec-
tive discussed in Chapter 7. In particular, the maximization procedure may be improved by adapting the
assignment phase of the algorithm to resemble that of Lloyd’s algorithm [56], which may give higher
optima. Furthermore, the normalized spectral modularity objective Q,,.» can be maximized with a
gradient projection algorithm, which may provide a more flexible theoretical framework. Finally, an
adaptation to SMM2 may give access to an intrinsic soft clustering method, which may provide more
meaningful soft clusterings of the data compared to the method described in Chapter 8.

In Section 14.1, we describe the multi-level approach to spectral modularity [8] and highlight how it
is unlikely to resolve the spectral modularity breakdown. In Section 14.2, we describe the seed-based
alternative to Algorithm 2 and how it may result in more stable performance. In the remaining sections,
we discuss the enhancements and alternatives to SMM2. In Section 14.3, we discuss the improved
assignment phase of Algorithm 3. In Section 14.4, we discuss how @Q,.» can be maximized with a
gradient projection algorithm. In Section 14.5, we discuss how the intrinsic soft clustering method can
be obtained within the scope of SMM2.
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Figure 14.1: lllustration of ideal application of multi-level spectral modularity. The ground-truth partition

p* ={R, G, B,Y} is indicated with the colors. Specifically, R is encoded with red, G is encoded with green, B is encoded with
blue, and Y is encoded with yellow. On the left, we see the initial clustering p = {C1, C2, Cs}. In the right, we see the
clustering of performing the second level of spectral modularity maximization, i.e., p’ = {C1, C2,C{, C%}. This clustering is
exactly identical to the partition p.

14.1. Multi-level Spectral Modularity Breakdown

Upon the introduction of the spectral modularity as a way to cluster time series in [8], an important
aspect of its potential was the recursive employment of the spectral modularity to deal with hierarchical
group structures. The multi-level approach recursively applies the spectral modularity maximization to
the subsets of the data that are found by the clustering. This way from a partition p = {C},...,Ck}. The
spectral modularity procedure is applied to the data sub-matrices that belong to C1, ..., Ck to obtain
K partitions to create a refinement of p. Theoretically, the multi-level method will stop clustering when
the similarity matrix of a specific cluster C; has only one spiked eigenvalue, as this would correspond
to no further significant group structure.

To illustrate the procedure, consider as an example a data set of four groups, i.e., p* = {R,G, B, Y },
in which the maximization algorithm only finds three of the four clusters p = {C1, Cs, C5}. Specifically,
C1 =R, Cy =Y and C3 = GU B. Then the multi level spectral modularity procedure would cluster the
data again within each of the clusters. The goal of this procedure is to separate C3 into two clusters,
such that we retrieve a clustering that is equivalent to p*. In Figure 14.1, the partitions in this example
are illustrated.

At first glance, it may appear that the inconsistent merging caused by spectral modularity break-
down is to be corrected by the recursive employment of spectral modularity maximization. In particular,
because the theoretical setting in which we suggest the breaking of the consistency of the modularity
is based on depicting an inconsistency with the objective that favors inconsistent merges. Therefore,
a multi-level spectral modularity approach may then, in turn, separate the two merged clusters.

However, in practice, modularity maximization algorithms rarely reach the ground-truth partition be-
fore (inconsistently) merging two clusters. Specifically, the breakdown of spectral modularity is likely to
happen before entire clusters are merged. This way, the clusters are likely to be merged and broken
in a non-hierarchical manner. The objects of some broken clusters will be distributed among other
clusters.

To illustrate this, we consider again a ground-truth partition with p* = {R,G, B,Y}. In particular,
assume that there is a small positive spectral modularity between R and G and between groups R and
B, but a relatively strong negative modularity between B and G. Then, it is unlikely that objects from
B and G will be merged together. However, because of the small positive spectral modularity in the
other two pairs, there will likely be some partial merges. Specifically, objects from R can be distributed
among the two separate clusters that contain elements of G and B. This way, we obtain a clustering
with 3 clusters, i.e., p = {C1,C5,Cs}. Here let R = R; U R, for disjoint sets R; and R». Then, consider
C1 = R1UG, Cy =Y, and C3 = R, U B. Then a multi-level approach may split the two merged groups,
resulting in a partition with 5 clusters. But it will never reconstruct the original group R, and therefore
will not recover the ground-truth partition. In Figure 14.2, the partitions of this example are illustrated.

This suggests that spectral modularity breakdown is unlikely to be resolved by this multi-level spec-
tral modularity approach. However, further investigation in this direction is required to make this claim
with certainty.
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Figure 14.2: lllustration of non-ideal application of multi-level spectral modularity The ground-truth partition

p* ={R, G, B,Y} is indicated with the colors. Specifically, R is encoded with red, G is encoded with green, B is encoded with
blue, and Y is encoded with yellow. On the left, we see the initial clustering p = {C1, C2, C3}. In the right, we see the
clustering of performing the second level of spectral modularity maximization, i.e., p’ = {C2, C{, C4, C{/, C4}. This clustering
is not identical to the partition p.

On the other hand, the recursive application of spectral modularity maximization may still be of use
in the context of explicit hierarchical groups, which we do not study in this thesis. Furthermore, an
open question is whether the multi-level approach is effective in a setting where too few eigenvalues
are spiked. Then, within each cluster, new spiked eigenvalues may appear, upon recursively applying
spectral modularity. With this, the hierarchical structures may be detected effectively. The methods that
we introduced, SMM1 and SMM2, can be equivalently used in the multi-level application of spectral
modularity.

14.2. Improved Calibration Condition

The calibration procedure for the regularization parameter in chapter 6 has some limitations. First, the
calibration procedure requires explicitly running the maximization algorithm for each evaluation of e.
Although theoretically the time complexity is dominated by the computation of the spectral decomposi-
tion, in practice the efficiency of the maximization algorithm implementation may be problematic.

Second, because of the relatively unexpected behavior that a greedy modularity maximization algo-
rithm may have, the satisfaction of the calibration condition, from Section 6.3, can be rather unstable.
For example, whenever a cluster is constructed that contains two elements, the cluster is counted as
significant in the procedure. However, this grouping of two objects is, of course, not a particularly signif-
icant group. Therefore, to mitigate this, measures to gain robustness, such as increasing the number
of elements before a group is counted as non-trivial, can be taken. This does, however, require param-
eter choices.

Fortunately, the seed finding procedure, discussed in Section 7.3, promises to give an alternative
approach to determining the regularization parameter ¢ for SMM2. In fact, the procedure is likely to be
more suitable as its calibration is less time-consuming and more stable. In particular, in the seed finding
procedure, a similar threshold value is calibrated to ensure that there are K spectral modularity vectors
of which the pairwise inner products are smaller than the threshold. This way, we would calibrate ¢
with a different condition that is based on the number of seeds, rather than the number of clusters.
Because this condition is computationally much simpler, this procedure will be less time-consuming.
Furthermore, the number of seeds behaves more predictably, which will lead to more stable approxi-
mations of the regularization parameter.

It is not entirely clear what specific value for € is optimal. To be precise, the seed based calibration
gives a larger region for values of ¢, as it is not entirely clear that we want to use the smallest value
for e. This is in contrast to using the partition size calibration, where it is only reasonable to use the
smallest value for e that satisfies the constraint. A convenient solution may be to use a mid-point value
between the smallest and largest value for ¢ that can be obtained through seed based calibration.
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14.3. Alternating Assignment Algorithm

The SMM2 algorithm introduced in this thesis makes use of the ordering of the objects based on the
magnitudes of the spectral modularity vectors. To be precise, the assignments of objects to clusters
are considered only once, so objects with large magnitudes are considered earlier. Furthermore, the
algorithm depends on the choice of seed objects, that are influential for the remainder of the clustering
of the data. Although SMM2 often appears as the top-performing method in our performance analysis,
it quite likely that the dependencies on the magnitude orderings and seeds may lead to problematic
counterexamples. Therefore, it is recommended to consider alternative, tractable procedures that are
free of these two dependencies.

One algorithm that potentially satisfies this may take inspiration from Lloyd’s algorithm [56] that is
used to solve the KMeans problem [89] and described in Section 2.3. In particular, the maximization
goal of SMM2 can be alternatively approximated by alternating between two steps: an assignment step
and an update step. Consider an initial position for cluster vectors {z;}X_,, which may be obtained
from the seed procedure or randomly chosen. In the assignment step, each object, in an arbitrary order,
is assigned to the cluster with the best aligned cluster vector, like in the assignment step of SMM2. In
the update step, which is done when all objects are assigned, the cluster vectors are recomputed, like
in the update step of SMM2. These two steps can be alternated until no improvement in the objective
is obtained.

The essential difference between this Lloyd inspired method and SMM2 is that the objects are con-
sidered multiple times and the cluster vectors are adjusted multiple times. Therefore, the method does
not depend on the ordering of magnitudes or the chosen seeds. Clearly, this method will require sig-
nificantly more computational time than SMM2, which may pose potential problems. Also, it is unclear
whether this method performs significantly better than SMM2. Therefore, further investigation of this
method and its components in relation to SMM2 is recommended.

14.4. Gradient Projection

Using the matrix notation of the spectral modularity cluster profiles {z;}/_ , ¢ R*~! and the soft parti-
tion matrix, an alternative scheme to maximize the objective of SMM2. Specifically, we can use gradient
based methods using the gradient of the objective w.r.t. the variable matrices. In particular, the gradient
of Tr [PRZT| w.rt. to P is RZ" and the gradient w.r.t. Z is PR.

max rip;Z = max Tr [RPZ]. (14.1)

PGM,{Zk}leCM; PeM,{z}r=1cu [ ]
Therefore, we can use a gradient projection procedure [113]. This method is a well-known heuristic for
solving nonlinear, constrained optimization problems. The approach is based on gradient descent, or
ascent, in our case, followed by a projection of the variable onto the constraint space. In particular, for
some small value of @ > 0 and a fixed number of iterations N, we perform the following steps N times:

P+ P +aRZ, (14.2)
project P onto M, (14.3)
Z « Z + oRP, (14.4)
project z;, onto Uy forall k € {1,..., K}. (14.5)

The projection of a matrix P € R"K onto M can be done efficiently by following the algorithm

described in [chen_projection_nodate]. The projection of the vectors {z; }/_ | onto ¢/ can be done by
simply normalizing the vectors.
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At this point, little can be said about the theoretical convergence of the projected gradient method.
Furthermore, this approach requires the choice of a parameter o and the specification of the number
of iterations N. Finally, this specific gradient based method does not efficiently utilize symmetries
in the partition matrix representation of partitions, which makes the method not ideal. However, the
iterative improvement of the objective through the gradient projection may give additional insight into
the behavior of the objective function.

14.5. Intrinsic Soft Clustering

The soft clustering method that is introduced in this thesis is based on spectral modularity vectors and is
used to construct a related soft clustering given a hard clustering. Therefore, it is universally applicable
given an arbitrary hard partition. On the one hand, this is a fundamental benefit of the method, but on
the other hand, it may not make optimal use of the available information in the data. However, the soft
clustering procedure can be incorporated with the maximization procedure of SMM2 as described in
Algorithm 3 to possibly obtain an even more meaningful soft clustering of the data.

In particular, in the assignment phase of SMM2, it can be extended to encompass soft cluster as-
signments. We can replace the strict assignment of objects to clusters with a proportionally distributed
membership of objects over the clusters. In the original form, the strict assignment is due to assignment
to a maximum of the cosines in Chapter 8. However, for a single object, there may be more than one
positive cosine associated with a cluster. Therefore, we can proportionally assign the object’'s member-
ship to the clusters based on the size of the cosine relative to all the other positive cosines.

The necessary changes are based on the notation of a soft partition matrix P, that is updated in
each step of the assignment phase of Algorithm 3 with

(Jfrill cos i) +

P, = = ) (14.6)
> on=1(lIrill cos Oin) +
Furthermore, we can update the K cluster vectors in Algorithm 3, with
zi =Y Pur;. (14.7)
=1

Investigating whether this intrinsic soft clustering performs better in terms of profile inference is an open
question. Furthermore, for the development of further enhancements in the direction of soft-clustering,
it is advised to investigate other soft clustering evaluation methods rather than solely relying on profile
inference.
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Conclusion

The aim of this research is to demonstrate the challenges, required enhancements, and potency of
spectral modularity maximization. To do this, we addressed research questions related to the per-
formance of naive spectral modularity maximization, the challenges that arise with it, and how these
challenges can be circumvented. The main theoretical contribution is the demonstration of a fundamen-
tal challenge of naive spectral modularity maximization, that appears when encountering clusterings
with a relatively large number of groups. The main methodological contributions lie in the two proposed
solutions that mitigate these problems and in the thorough investigation of their performance.

Cluster analysis gives insights into structures that are present in data, which can lead to further
research directions. These insights are especially important when the datasets consist of objects with
many dimensions. Specifically, because high dimensional data sets are typically difficult to interpret di-
rectly, However, many clustering algorithms fail in the context of high dimensional data, because of an
abundance of non-representative information. Fortunately, spectral modularity cleverly filters informa-
tive structures from uninformative ones. This way, spectral modularity is suitable for high dimensional
cluster analysis.

Using spectral modularity in the context of multivariate data is shown to be a relatively trustworthy

method to uncover hidden group structure in the data. Especially when the group structure is relatively
course, a naive maximization of spectral modularity, which we call SMMO, is capable of clustering the
high dimensional data. However, when the group structure is fine-grained, i.e., there are many groups,
the naive method faces a fundamental challenge. In particular, the naive method has a bias towards
clusterings with a smaller number of groups, as a consequence of inconsistent merges. Fortunately,
there are two solutions that can mitigate the challenges. First, we can use an explicit penalization of the
bias, which we call SMM1. Second, we can remove the bias all together with a particular normalization,
which we call SMM2. Both methods, have methodological advantages and disadvantages. However,
empirically, SMM2 shows superior performance in most of our experiments.
Although the study of spectral modularity, and its enhancements, has shown significant potency as a
clustering method for high dimensional data, there are still limitations to the method. A fundamental
problem is the computational burden of the exact spectral decomposition. Although spectral modular-
ity methods are designed for data in high dimensions, computationally, the requirement of eigenvalues
and eigenvectors for data with many objects may present practical difficulties. Furthermore, the cur-
rently used procedure to approximate the number of clusters is only suitable in a relatively ideal setting.
This may make the application of this procedure to real data suboptimal.

Finally, in addition to the improvements to the algorithmic efficiency and practical applicability of
spectral modularity in general, there are recommended developments that are likely to improve the
performance and understanding of the spectral modularity methods. First, the study of a multi-level
spectral modularity approach will likely demonstrate the severity of the spectral modularity breakdown.
Second, an improvement to the calibration of the regularization parameterin SMM1 will likely improve its
clustering performance significantly. Third, enhancements to the maximization algorithm in SMM2 may
lead to methods that attain higher performance, more flexibility, and intrinsic uncertainty quantification.
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Prospective Papers

The scientific contribution of this thesis can be divided into three potential papers. First, we introduce
the concept of spectral modularity breakdown in a setting that closely resembles the setting of the origi-
nal introduction. Second, we extend the spectral modularity framework and evaluation from correlation
matrices to more general similarity matrices, focusing on the mixed prototype data. Third, we extend
the study towards methods for the detection of the number of clusters, inspired by the findings of Chap-
ter 11.

The ordering of the articles, employed here, mostly aligns with the development timeline of the con-
cepts. However, it may appear that the third paper related to the detection of the number of clusters is
fundamental and should be worked on prior to the second paper, where we focus on spectral modular-
ity methods in relatively complicated data. Therefore, the current ordering below does not necessarily
reflect the most optimal order of work distribution.

A.l. Breakdown in Spectral Modularity of Correlation Matrices

The purpose of this paper is to stick relatively close to the setting in which the spectral modularity
method is first introduced [8]. This means that instead of focusing on clustering with similarity matrices,
we stick to the context of correlation matrices of time-series data. Therefore, we make use of the
eigenvalue distributions of empirical correlation matrices of multivariate Gaussian distributions.

First, we demonstrate the theoretical understanding of spectral modularity breakdown, as is mainly
discussed in Chapter 4. In order to do this, we follow the same argumentation with the help of a model
of correlation matrices, that is similar to Toy Model A, and a model of spectral modularity vectors, similar
to Toy Model B. The empirical analysis that is briefly done in Chapter 4 may be further extended with
the purpose of further demonstrating the breakdown for different perturbations.

An important aspect of this demonstration in relation to the introduction of spectral modularity in
[8] is the unsuitability of the recursive multi-level approach we discussed in Section 14.1. Also, the
comparison of the spectral modularity breakdown and the resolution limit is considered with more care.

Second, we introduce the two solutions to overcome the spectral modularity breakdown that are in-
troduced in this thesis. To this end, we discuss the regularized spectral modularity method (SMM1) as
defined in Chapter 6 and the normalized spectral modularity method (SMM2) as defined in Chapter 7.
For brevity, we leave out the soft clustering method discussed in Chapter 8 as this method is of higher
importance in the mixed prototype data that is studied in Article A.2.
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The performance of the methods is evaluated in the context of correlation matrices of time series.
In particular, for synthetic data generation, we make use of multivariate Gaussian distributions with
properly chosen covariance structures and/or perturbations of dynamical profiles. To be specific, we
consider the perspective of a single Gaussian n-dimensional multivariate distribution covariance matrix
that contains the correlation structure indicating the correlation of n individual time series. Then, p
copies of this random variable provide us with a n x p data matrix, from which the sample correlation
matrix approaches the correlation structure associated with the covariance matrix of the distribution if
p — oo. Alternatively, we can consider the K prototypical time series {y}5_, C R? to obtain a mixture
of multivariate Gaussian distributions where the kth distribution is centered at 1, and the n samples
are standard perturbations around the respective prototypical time series.

Potentially, we may extend the mixture of multivariate Gaussian distributions with cluster-unique
covariance matrices associated with the perturbations. However, this latter model may be problematic
when inspecting the eigenvalues to determine K as it may lead to additional eigenvalues similar to
what we observe in the clustering of the MNIST digits in Chapter 11. This aspect relates to the paper
on the eigenvalue threshold discussed in Article A.3.

Additionally, we examine the clusterings obtained from our refined methods in the context of real
empirical financial time-series data, as is done [8].

A1l Abstract

Spectral modularity based clustering methods emerge from the theory of random matrices and graph
modularity. By filtering the spectral decomposition of empirical correlation matrices, mesoscopic group
structures of more strongly correlated objects can be detected. However, in this paper, we uncover a
fundamental challenge of the spectral modularity that occurs as the number of groups is significantly
large. To be precise, as the number of groups increases, the information in the correlation matrices is
dominated by the inter-cluster correlations. Therefore, the spectral modularity becomes less and less
effective in distinguishing the inter- and intra-cluster correlations. In order to resolve this breakdown of
spectral modularity, we propose two solutions: one solution based on regularization and one solution
based on normalization. We perform an empirical analysis of the clustering performance of the two
solutions and find that, not only do our methods resolve the breakdown of spectral modularity, they
also outperform existing clustering methods in a variety of settings.

A.2. Clustering Mixed Prototype Data with Spectral Modularity

The purpose of this paper is to extend the spectral modularity methods to more general similarity ma-
trices. This is in correspondence with the main purpose of this thesis. However, because the spectral
modularity breakdown and the enhancements to resolve the breakdown have already been discussed
in Article A.1, the main part of this paper relies on the investigation of the spectral modularity method
in the context of mixed prototype model data from Chapter 9.

Specifically, studying the setting of mixed prototype data is especially important for three reasons.
First, the mixed prototype model has a rather deep contextual meaning in settings such as sociological
and psychological data. This is because the mixed prototype model resembles a larger class of data
that contains prototypical data profiles but not necessarily strict cluster assignments. Therefore, the
study of this setting extends to a much broader class of cluster-like data. Second, a preliminary study
shows that many existing clustering methods, such as hierarchical clustering, KMeans, KMedoids, and
spectral clustering, have difficulty dealing with data that resembles mixed prototype models. Third,
because the mixed prototype data exhibits strong overlaps, internal non-uniformities, and soft cluster
boundaries, the spectral modularity breakdown is much more severe. This is mainly because the fluctu-
ations of external spectral modularities are much larger than in settings where the clusters are typically
well-separated, like in Gaussian mixture data.
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Fortunately, the spectral modularity methods and especially the enhanced methods (SMM1 from
Chapter 6, SMM2 from Chapter 7, and the soft clustering variant from Chapter 8) that overcome the
spectral modularity breakdown are conceptually more aligned with the context of mixed prototype data.
This proposition is verified in the results of this thesis in Chapter 10, and therefore will be compactly
presented in the paper. In particular, certain limitations associated with the performance analysis as
discussed in Chapter 13, such as the limited number of methods, will be taken into account in the paper.
Several forms of empirical data with known ground-truths, like the handwritten digits and the soybeans
data set from Chapter 11 are taken into account. Furthermore, human genome data, as studied in
[6] may also be demonstrative of the practical applications of spectral modularity. Finally, we may
examine empirical cultural data in the setting of [37, 38] because of the well understood resemblance
to the synthetically generated mixed prototype data. This ground truth is not known, and therefore the
evaluation can only be done qualitatively without going into too much detail on the sociological context.

A.2.1. Abstract

Cluster analysis typically assumes that objects in a data set can be strictly divided into distinct clusters.
However, in practice, objects may be represented by multiple latent data profiles, which makes strict
cluster assignments an ill-defined problem. In this setting, i.e., the mixed prototype setting, existing
(soft) clustering methods have difficulty clustering the data reasonably, especially when the distribu-
tion of the objects in the latent prototype space is relatively concentrated at the center. Fortunately,
(enhanced) spectral modularity based methods, which are based on the filtering of the spectral de-
composition of correlation matrices, promise to be well suited in this setting. Here, we investigate the
extension of existing spectral modularity to more general similarity matrices, in particular those rep-
resenting mixed prototype data. To evaluate the spectral modularity methods, we employ systemic
benchmarking of synthetically generated mixed prototype data and a selection of real empirical data.

We find that problems associated with naive spectral modularity methods are amplified in the mixed
prototype setting, underlining the significance of the use of the recent enhancements to spectral mod-
ularity. In particular, the conceptual overlap between the spectral modularity and the mixed prototype
enables the enhanced spectral modularity methods to extract valuable information from the data set
even when the mixing of prototypes is strong, which is a regime where existing methods tend to fail.

A.3. Eigenvalue Thresholds for Spectral Modularity

The purpose of this paper is to demonstrate the issue with established methods to detect the number
of clusters. In particular, the shuffling based approach may not identify the right number of spiked
eigenvalues. When considering the synthetically generated data, as is done for the main part of this
thesis, the number of spiked eigenvalues is representative of the number of groups. However, when we
consider realistic data sets, as in Chapter 11, we find that this equivalence becomes more ambiguous.

Determining the right number of clusters is an important part of cluster analysis. Methods based
on detecting the number of spiked eigenvalues demonstrate robust and trustworthy behavior. While
theoretical thresholding procedures exist, the methods that are more widely applicable are based on
shuffling based parallel analysis. However, most of these methods are oriented to the setting of K
independent data profiles that are representative of the associated cluster. In practice, the objects
may have structurally correlated features that disappear through shuffling, providing additional spiked
eigenvalues that represent these redundant features. Furthermore, cluster profiles may have struc-
turally correlated features that do not disappear through shuffling, which absorbs the spiked eigenvalue
into the bulk.

Taking the exposition of the challenge and preliminary intuition into consideration, this line of work
requires more development in comparison to the Article A.1 and Article A.2.
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