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Extension of the GMMV-based Linear Method
to Quantitative Inverse scattering
Shilong Sun, Bert Jan Kooij, and Alexander G. Yarovoy, Fellow, IEEE

Abstract—The linear shape reconstruction method based on
the generalized multiple measurement vectors model is a newly
proposed approach which is able to effectively retrieve the
morphological information of dielectric/metallic scatterers with
competitive imaging resolution. In this letter, we have extended
this approach to quantitative inversion, with which a coarse
estimation of the dielectric parameters can be obtained in an
efficient way. The inversion of the transverse magnetic (TM)
polarized Fresnel data-sets from the year 2005 demonstrates
applicability of the proposed method to real life applications.

Index Terms—Generalized multiple measurement vectors
(GMMV), linear shape reconstruction method, quantitative in-
verse scattering, transverse magnetic (TM).

I. INTRODUCTION

INVERSE electromagnetic scattering is a procedure of
recovering the morphological information or the dielectric

parameters of unknown objects using the probed scattered
fields. Such an inverse problem is ill-posed and nonlinear due
to the compactness and nonlinearity of the scattering operator
[1], and therefore seeking the solution is full of challenges.

To deal with the non-linearity, Born approximation has
been considered in methods, such as the (Distorted) Born
iterative methods (BIM and DBIM) [2], [3] and the contrast
source extended Born method [4]. Another group of methods
are the nonlinear iterative methods, among which are the
modified gradient method [5], the contrast source inversion
(CSI) method [6], the cross-correlated CSI method [7], and
the subspace optimization method [8]. All these methods are
local iterative optimization methods and are therefore prone to
the occurrence of false solutions [9]. Hybrid inversion methods
[10], [11] have been proposed to first determine the support
of the scatterers by qualitative inversion methods, and then
exploit such a priori information for quantitative inversion.
Multi-scaling methods [12], [13] propose to use different
resolution accuracies depending on the homogeneity of the
media for reducing the occurrence of the local minima. In
cases where the dimension of the solution space is not so
huge, global optimization techniques [14], [15], [16] are good
candidates to search for the global optimal solution.

Apart from the approaches of linearizing the inverse scat-
tering problem based on the approximate scattering models,
the linear sampling method (LSM) [17], [18] enables the
retrieval of the morphological features of the scatterers by
solving a linear system of equations. A quantitative inversion
of LSM based on “virtual experiments” was further proposed
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in [19], [20], [21]. Recently, a linear shape reconstruction
method based on the multiple measurement vectors (MMV)
model was first proposed in [22] for solving the PEC inverse
scattering problem, and was later extended to the inversion of
3-D dielectric/metallic scatterers in [23]. A multi-frequency
version of this method was proposed in [24] based on the
generalized MMV (GMMV) model, which turns out to be of
higher resolving ability than LSM [24]. As a major difference
of the GMMV method compared to compressive sensing meth-
ods [25], [26], an estimated solution of the contrast sources
regularized by the sum-of-norm constraint is demonstrated to
be sufficient for recovering the spatial profile of the non-sparse
targets.

In this letter, we propose an extended version of the GMMV-
based linear method for solving the quantitative inverse scat-
tering problem. The contrast sources are firstly reconstructed
by the GMMV-based linear method, then the contrast can
be finally estimated as the least-square solution to the multi-
frequency state equations. Although the estimation accuracy
is not high, this approach turns out to be efficient and robust
in the inversion of experimental data. The proposed method is
introduced in Section II and applied to process the transverse
magnetic (TM) polarized Fresnel data-sets [27] in Section III.

II. QUANTITATIVE INVERSION BY GMMV-BASED LINER
METHOD

A. Formulation of the Inverse Scattering Problem

For the sake of simplicity, we consider the 2-D TM-
polarized EM scattering problem, for which the electric field
is a scalar. Assume the background is known to a reason-
able accuracy, and the permeability of the background and
unknown objects is a constant µ0. The objects are illuminated
by sources from different angles denoted by the subscript
p ∈ {1, 2, 3, ..., P}, and the scattered fields are measured
with receivers at different positions denoted by the subscript
q ∈ {1, 2, 3, ..., Q}, which yields the data equations [24]

yp,i = Φp,ij
ic
p,i, p = 1, 2, . . . , P, i = 1, 2, . . . , I, (1)

where, Φp,i = MSpA−1i ωi ∈ CQ×N is the sensing matrix
for the measurement yp,i, jicp,i = ωijp,i is the normalized
contrast source which is proportional to the physical induced
current iωiµ0jp,i. Here, ωi is the i-th angular frequency; i
represents the unit of the imaginary part of complex numbers;
jp,i = χie

tot
p,i is the contrast source; χi = ∆ε− i∆σ/ωi is the

contrast with ∆ε and ∆σ representing the contrast permittivity
and contrast conductivity, respectively; etot

p,i represents the total
field; Ai ∈ CN×N is the stiffness matrix in finite difference
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frequency domain (FDFD) scheme at the i-th frequency, which
is highly sparse; MSp is a measurement matrix selecting the
values of the p-th scattered field at the positions of the Q
receivers. The time factor considered in this letter is exp(iωit).

B. GMMV-based linear method

In the GMMV-based linear method [24], the contrast
sources are estimated by iteratively solving a sum-of-norm
optimization problem.

min ‖J‖1,2 s. t. ‖Φ · J − Y ‖F ≤ σ̃, (2)

where, ‖J‖1,2 :=
∑N
n=1

∥∥J [n, :]T
∥∥
2
, in which J [n, :] de-

notes the n-th row of J and (·)T is the transpose op-
erator; Y = [y1,1 y2,1 . . . yP,1 y1,2 . . . yP,I ] ∈
CQ×PI is the multi-frequency measurement data matrix;
J = [jic1,1 jic2,1 . . . jicP,1 jic1,2 . . . jicP,I ] ∈ CN×PI
is the normalized contrast sources matrix, of which the
columns are the multiple vectors to be solved; Φ · J :=
[Φ1,1j

ic
1,1 Φ2,1j

ic
2,1 . . . ΦP,Ij

ic
P,I ]; ‖·‖F is the Frobenius norm;

σ̃ represents the noise residual. As an equivalent problem of
(2), the GMMVTM LSτ problem is reformulated as

(GMMVTM LSτ ) min ‖Φ · J − Y ‖F s.t. ‖J‖1,2 ≤ τ, (3)

and the Pareto curve for the GMMV model is defined as

φGMMVTM(τ) = ‖Φ · Jτ − Y ‖F , (4)

where, Jτ is the optimal solution to the LSτ problem (3). Ac-
cording to [28, Theorem 2.2] and [29, Chapter 5], φGMMVTM(τ)
is continuously differentiable and

φ′GMMVTM
(τh) = −

∥∥ΦH · (Φ · Jτh − Y )
∥∥
∞,2

‖Φ · Jτh − Y ‖F
, (5)

where, ‖ · ‖∞,2 is the dual norm of ‖ · ‖1,2 [28, Corollary 6.2].
Similarly, the root of the nonlinear equation φMMVTM(τ) = σ̃
can also be reached by Newton iterations

τh+1 = τh +
σ̃ − φGMMVTM (τh)

φ′GMMVTM
(τh)

. (6)

The GMMVTM LSτ problem can be solved using a spectral
projected gradient (SPG) method that is proposed based on
convex optimization theory [30], [31], [32], which is similar
with [33, Algorithm 1], except that the projection operator is
replaced by an orthogonal projection onto ‖ · ‖1,2 balls

Pτ [J ] :=

{
arg min

X
‖J −X‖F s.t. ‖X‖1,2 ≤ τ

}
. (7)

We refer to [28, Theorem 6.3] for the implementation of the
projection operator. To circumvent the estimation of the noise
level, cross correlation (CV) technique is exploited to termi-
nate the iteration. Since the regularized solution corresponds to
the least sum-of-norm, the non-measurable equivalent contrast
sources tend to be ignored.

C. Estimating the Contrast

Once the contrast sources are obtained, we calculate the
scattered fields by esct

p,i = A−1i ω2
i jp,i and the total fields

by etot
p,i = einc

p,i + esct
p,i. It is worth noting that, since we

are only interested in the fields of the inversion domain, the
stiffness matrix Ai can be reconstructed such that it only
covers the inversion domain and the dimension of problem
can be reduced. This is of great importance especially for
the large-scale inverse scattering problems. Assume the di-
electric parameters of the scatterer are frequency-independent,
the contrast corresponding the first frequency—χ1—can be
obtained by the least-square solution of the multi-frequency
state equations jp,i = χi � etot

p,i, which is given by

χ1 = <

{
I∑
i=1

P∑
p=1

jp,i � etot
p,i

}
�

(
I∑
i=1

P∑
p=1

etot
p,i � etot

p,i

)
+

i=

{
I∑
i=1

ω1

ωi

P∑
p=1

jp,i � etot
p,i

}
�

(
I∑
i=1

ω2
1

ω2
i

P∑
p=1

etot
p,i � etot

p,i

)
,

(8)

where, � and � represent the element-wise multiplication
and the element-wise division, respectively; (·) represents the
complex conjugate of a number or a vector; <{·} and ={·}
represent the real part and imaginary part of a number or a
vector, respectively. Considering the relation χ = ε−εb, where
ε and εb are the complex permittivity of the test domain and
the background, and noting the fact that <{ε} � 1, ={ε} � 0,
we can simply obtain

<{χ} � 1−<{εb}, ={χ} � −={εb}, (9)

where, � and � represent the component-wise inequality of
two vectors. Therefore, the real part and the imaginary part
of the elements which do not satisfy Ineq. (9) are forced to
1−<{εb,k} and −={εb,k}, respectively.

III. INVERSION WITH EXPERIMENTAL DATA

A. Configuration

To validate the proposed GMMV-based linear inversion
method, we applied it to the TM-polarized experimental data-
sets: FoamDielIntTM and FoamMetExtTM, provided by the
Remote Sensing and Microwave Experiments Team at the
Institut Fresnel, France, 2005 [27]. The measurement configu-
ration is shown in Fig. 1 (a), in which the diamond represents
the transmitter, the 4× 9 red ones are the CV measurements,
and the black dots are the reconstruction measurements. To
guarantee the accuracy of the FDFD scheme, the inversion
domain is discretized with a grid size ∆2 satisfying ∆ ≤
min{λi}/15. We restrict the inversion domain to 150 × 150
mm2 centered at the centroids of the scatterers, respectively,
and the inversion domain is discretized with the same grid size
of 1.0 × 1.0 mm2.

B. Inverted Results

1) FoamDielIntTM: The program is implemented with
MATLAB codes. We ran the codes on a desktop with one
Intel(R) Core(TM) i5-3470 CPU @ 3.20 GHz, and parallel
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Fig. 1. The measurement configuration of the experimental data (a), and cross
section of the true objects: (b) FoamDielIntTM; (c) FoamMetExtTM.
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Fig. 2. Reconstruction residual curve and CV residual curve in the experi-
mental examples. (a) FoamDielIntTM; (b) FoamMetExtTM.

computing was not used. Let us first consider the data-set
FoamDielIntTM, whose configuration is shown in Fig. 1(b).
Multi-frequency data at 2 GHz, 3 GHz, and 4 GHz is processed
by the proposed method. Fig. 2(a) gives the residual curves,
and the optimal solution corresponds to the 22-nd iteration.
In solving one (LSτ ) problem [24], the decreasing rate of
the residual curve is fast for the first few iterations and gets
slower and slower as the algorithm converges. Since more than
one (LSτ ) problem is solved, the residual curve presents a
stair-like shape. Fig. 3(a) and (b) show the permittivity and
conductivity of the estimated contrast, respectively. Artifacts
of maximum value 0.15 mS/m (corresponding to |={χ1}| =
| − 0.0014| � |<{χ1}| and therefore can be neglected)
occurs in Fig. 3(b). The total running time is 4.8 s, which
only allows 4 iterations for the multi-frequency version of
the multiplicative regularized CSI method (MR-CSI) [34] (see
Fig. 3(c) and (d) for the corresponding inverted results). Define
the reconstruction error by err = ‖χ− χ̂‖/‖χ‖ , we have
errGMMV = 0.70 < errMR-CSI = 0.76.

2) FoamMetExtTM: In contrast to the previous experiment,
the FoamMetExtTM data-set is obtained using 18 transmitters,
while other settings are kept the same. Fig. 1(c) shows the
configuration. We process this data-set at 9 frequencies of 2-
10 GHz. Fig. 2(b) gives the residual curves and the optimal
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Fig. 3. Inverted results by processing FoamDielIntTM at 2 GHz, 3 GHz, and
4 GHz. Relative permittivity (a) and conductivity (b) of contrast obtained by
the proposed method; relative permittivity (c) and conductivity (d) of contrast
obtained by MR-CSI with 4 iterations. Unit of conductivity is mS/m.
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Fig. 4. Inverted result by processing FoamMetExtTM at 2 GHz, 3 GHz,
· · · , and 10 GHz. Relative permittivity (a) and conductivity (b) of contrast
obtained by the proposed method; relative permittivity (c) and conductivity
(d) of contrast obtained by MR-CSI with 4 iterations. Unit of conductivity is
mS/m.

solution corresponds to the 24-th iteration. Fig. 4(a) and (b)
show the relative permittivity and conductivity of the estimated
contrast, respectively. The total running time is 30 s, which
only allows 4 iterations for the multi-frequency version of
MR-CSI (see Fig. 4(c) and (d) for the corresponding inverted
results). Artifacts of maximum value 3 mS/m (corresponding
to |={χ1}| = | − 0.027| � |<{χ1}| and therefore can be
neglected) occurs in Fig. 4(b). The reconstruction error does
not make any sense and is not given in this example because
a metallic tube is considered whose conductivity is infinity.

Considering both the inversion accuracy and the computa-
tional complexity (O(n2) for the GMMV method and O(nk)
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with k > 2 for MR-CSI), the proposed method is a good
candidate for an efficient estimation of the contrast, especially
in 3-D domain. It is also worth comparing the computational
complexity of the proposed method with the linear method
based on LSM and “virtual experiments”. As LSM solves G
from ΦG = Y and MMV solves J from Y J = Φ, the
two models are equivalent to some extend. Higher resolving
ability of MMV comes from the exploitation of sum-of-norm
regularized constraint. The “virtual experiments” framework
needs to solve SVD of a matrix L ∈ C(P×M×I)×N . In 3-D
problems, L could be a huge matrix and solving the SVD of
huge matrix is time-consuming.

IV. CONCLUSION

In this letter, we have extended the linear shape reconstruc-
tion method based on the generalized multiple measurement
vectors (GMMV) model to solve quantitative inverse scattering
problems. The inverted results by processing the experimental
Fresnel data-sets demonstrate the validity. In many applica-
tions, it is of interest if computational efficiency has higher
priority, while the requirement of the estimation accuracy is
not strict. In addition, it also provides a good initial estimate
for the iterative inversion methods.
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