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Abstract. Individual hydrological and crop growth models
often oversimplify underlying processes, reducing the ac-
curacy of both simulated hydrology and crop growth dy-
namics. While crop models tend to generalize soil moisture
processes, most hydrological models commonly use con-
stant vegetation parameters and prescribed phenologies, ne-
glecting the dynamic nature of crop growth. Despite some
studies that have coupled hydrological and crop models,
a limited understanding exists regarding the feedbacks be-
tween hydrology and crop growth. Our objective is to quan-
tify the feedback between crop systems and hydrology on
a fine-grained spatiotemporal level. To this end, the PCR-
GLOBWB 2 hydrological model was coupled with the
WOFOST crop growth model to quantify both the one-
way and two-way interactions between hydrology and crop
growth on a daily time step and at 5 arcmin (∼ 10 km) resolu-
tion. Our study spans the contiguous United States (CONUS)
region and covers the period from 1979 to 2019, allowing
a comprehensive evaluation of the feedback between hy-
drology and crop growth dynamics. We compare individ-
ual (stand-alone) as well as one-way and two-way coupled
WOFOST and PCR-GLOBWB 2 model runs and evaluate
the average crop yield and its interannual variability for rain-
fed and irrigated crops as well as simulated irrigation water
withdrawal for maize, wheat, and soybean. Our results reveal
distinct patterns in the temporal and spatial variation of crop
yield depending on the included interactions between hydrol-
ogy and crop systems. Evaluating the model results against

reported yield and water use data demonstrates the efficacy
of the coupled framework in replicating observed irrigated
and rainfed crop yields. Our results show that two-way cou-
pling, with its dynamic feedback mechanisms, outperforms
one-way coupling for rainfed crops. This improved perfor-
mance stems from the feedback of WOFOST crop phenology
to the crop parameters in the hydrological model. Our results
suggest that when crop models are combined with hydrolog-
ical models, a two-way coupling is needed to capture the im-
pact of interannual climate variability on food production.

1 Introduction

Global trends in population and economic growth are ex-
pected to increase the demand for water, food, and energy,
threatening the sustainable and equitable use of natural re-
sources (Sophocleous, 2004; Tompkins and Adger, 2004).
Water as a resource plays a crucial role in crop growth, cool-
ing of thermoelectric plants, hydropower generation, and the
covering of domestic and industrial demand. Water, there-
fore, is an essential resource at the core of the Water-Energy-
Food-Ecosystem (WEFE) nexus. Currently, 70 % of total
global freshwater withdrawals are accounted for by agri-
culture, making it the largest water user among all sec-
tors (Dubois, 2011). The Food and Agriculture Organiza-
tion (FAO) of the United Nations estimated that the demand
for water and food resources will likely increase by 50 % by
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2050 compared to 2015 (IRENA, 2015; Corona-López et al.,
2021). The increasing demand for water and food will likely
have negative impacts on the environment and will inhibit
socio-economic development if a gap opens between grow-
ing water demand and water availability.

The critical interplay between hydrology and crop
growth becomes evident during hydroclimatic extremes (e.g.,
droughts, heatwaves), as rising demands coincide with po-
tential declines in both water resources and food production
(crop yield) (Jackson et al., 2021). In addressing the com-
plexities associated with these challenges, studies by Jäger-
meyr et al. (2017), utilizing a dynamic vegetation model
(LPJmL), evaluated achievable irrigated crop production un-
der sustainable water management. Their findings revealed
that 41 % of global water use currently compromises envi-
ronmental flow requirements crucial for river ecosystems,
potentially leading to losses in irrigated croplands. Concur-
rently, research by Vörösmarty et al. (2000) and Leclère et
al. (2014) projects the impacts of climate change on global
agricultural systems, foreseeing an increase in irrigated ar-
eas in the future, underscoring the necessity for significant
investments in irrigation, energy, and water resource man-
agement. These findings emphasize the urgent need for im-
proved modeling approaches to assess the complex inter-
action between water availability, climate change, and crop
yields.

To address these challenges, biophysical process-based
models have been widely used to study the interactions be-
tween hydrology and crop growth (Siad et al., 2019; Zhang et
al., 2021). These models provide valuable insights into how
meteorological events influence water availability for crops,
as well as how changes in crop growth and senescence affect
hydrological fluxes such as evapotranspiration and root wa-
ter uptake. However, existing stand-alone crop models and
hydrological models often simplify these processes. For in-
stance, crop models usually incorporate a simplified soil-
water balance (Zhang et al., 2021) that overlooks local hy-
drological processes and often do not account for water use
for irrigation and non-agricultural sectors. Conversely, most
hydrological models simplify or neglect the effects of land
cover, phenology, and vegetation changes on hydrological
fluxes and the state of available water resources (Tsarouchi et
al., 2014). These simplifications arise due to computational
expediency, disparities in process scales between hydrology
at the river basin level and crop yield at the field level, or
incomplete understanding of the other domain by model de-
velopers or because of epistemological uncertainty (Siad et
al., 2019; McMillan et al., 2018; Shafiei et al., 2014). Rec-
ognizing the strengths of both crop models and hydrologi-
cal models, a coupling allows for the exploration of dynamic
crop growth’s influence on hydrology and water use. Addi-
tionally, a model coupling allows the incorporation of spa-
tiotemporal variations in hydrological fluxes, including water
use, in estimates of crop yield. This understanding becomes
crucial when assessed at the regional to global scale, where

local deficits can have cascading consequences for both wa-
ter and food security at the basin scale.

The rationale for coupling hydrological and crop growth
models is twofold. First, coupling these models allows for
the possibility to assess the impact of limited irrigation water
availability on crop yield. Second, it enables a detailed anal-
ysis of how changes in crop type and growth stages influ-
ence groundwater and surface water availability, particularly
through processes such as evapotranspiration and root wa-
ter uptake. By combining a hydrological model with a crop
growth model, this study aims to enhance our understand-
ing of hydrological and crop growth interactions and their
implications for agricultural productivity and water resource
management on the continental scale.

Previous studies have attempted to couple hydrologi-
cal and crop models. Noteworthy efforts by Droppers et
al. (2021) have successfully coupled hydrological and crop
models, primarily focusing on achieving attainable crop pro-
duction. However, these efforts were conducted at half-
degree (∼ 50 km) spatial resolution and focused on long-term
average crop yield. They therefore fall short in exploring
the aspects of fine-scale spatiotemporal variability in par-
ticular as a result of interannual climate variability. Other
recent efforts to couple crop growth models and global hy-
drological models (Jägermeyr et al., 2017) predominantly
focus on assessing yield under different scenarios or adap-
tation measures. However, limited work focused on delving
into how two-way interactions and feedback mechanisms be-
tween crop growth and hydrological systems operate.

In addition, integrated assessment models have been in-
strumental in studying the combined effects of climate
change and socio-economic developments on crop yield and
water resources at a large scale. Typically, these models op-
erate on a macro-regional level (Easterling, 1997) and use
annual (or 5- to 10-yearly) time steps, neglecting the im-
pacts of inter- and intra-annual variability and particularly
short-term hydroclimatic extremes. Furthermore, integrated
assessment models often adopt an optimization modeling ap-
proach, making them less suitable for studying the effects of
hydroclimatic extremes (Ewert et al., 2015).

Another class of efforts to link water to crop production
is water–food nexus studies, that, however, tend to concen-
trate on local linkages or provide qualitative descriptions of
existing connections (Momblanch et al., 2019). For instance,
a recent review of water–food nexus studies focusing on the
contiguous United States (CONUS), shows that such stud-
ies focus mainly on water security indicators (Veettil et al.,
2022) or climate variability impacts on crop yields (Huang
et al., 2021). However, knowledge gaps persist, as water
and food resources are often evaluated separately (Corona-
López et al., 2021), exploring allocations through an opti-
mization model (Mortada et al., 2018) that lacks spatiotem-
poral variability considerations. Notably, there is a lack of
effort to understand the interactions between hydrology and
crop growth. Further research is needed to bridge these gaps
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and enhance our understanding of the dynamic and inter-
linked processes shaping the water–food nexus.

To address this knowledge gap, this study aims to quantify
the two-way interactions between crop growth and hydrol-
ogy, hypothesizing that coupling a crop growth model with
a hydrological model will improve both crop yield and hy-
drological predictions by incorporating dynamic feedbacks
between water availability and crop processes. Specifically,
we hypothesize (1) that a more realistic representation of soil
moisture dynamics and water availability will lead to better
estimates of water stress and yield and (2) that directly in-
tegrating crop growth information into hydrological models
will enhance the accuracy of predictions regarding irrigation
needs and water resource allocation. To test these hypothe-
ses, we compare three modeling approaches: a stand-alone
crop model, a one-way coupled model (where hydrological
conditions influence crop growth but not vice versa), and a
two-way coupled model (where interactions between hydrol-
ogy and crop growth are fully represented). By evaluating
these different approaches, we aim to determine whether dy-
namic hydrological–crop growth feedbacks improve the per-
formance of crop yield and irrigation water use simulations.

Although this study has a global scale in scope, we limit
this analysis to the contiguous United States (CONUS) re-
gion to keep the analysis tractable and because CONUS
has detailed information on yearly crop production and wa-
ter use. CONUS is a major producer and contributor to the
global production of three primary crops: maize, soybean,
and wheat. These crops were selected due to their substan-
tial impact on the agricultural landscape and their pivotal
role in shaping global food production trends. The CONUS
serves as an ideal study area owing to its extensive avail-
ability of relevant data, particularly on agricultural statistics
and irrigation water withdrawals, which can provide a basis
for analysis and model evaluation. Additionally, the CONUS
region exhibits diverse climatic and geographic conditions,
contributing to a better understanding of crop and water sys-
tem dynamics and their responses to various environmental
factors.

To test the hypotheses coined above, the PCR-GLOBWB 2
hydrological model (Sutanudjaja et al., 2018) is coupled to
the WOFOST crop model (de Wit et al., 2019) at a daily
time step and at a 5 arcmin (∼ 10 km) spatial resolution ap-
plied to CONUS (Sect. 2.1). In examining the interaction be-
tween hydrology and crop growth, we consider both one-way
and two-way interactions. First, a one-way coupling is es-
tablished to evaluate the effect of the simulated water avail-
ability of PCR-GLOBWB 2 for rainfed and irrigated crop
growth in WOFOST (Sect. 2.1 and 2.3.1). In addition, a two-
way coupling is established in which, additional to passing
water availability from PCR-GLOBWB 2 to WOFOST, the
crop phenology of WOFOST in terms of actual evapotran-
spiration, leaf area index, and rooting depth is fed back into
PCR-GLOBWB 2 (Sect. 2.1 and 2.3.2). The justification for

this coupling approach, along with technical implementation
details, is elaborated upon in Sect. 2.2.

Our framework was tested by comparing individual
WOFOST and coupled one-way and two-way model runs to
evaluate the impact of feedbacks on crop yield and irrigation
water use (Sect. 2.4). The results of these simulations are
compared with and evaluated against reported yield statis-
tics and reported annual irrigation withdrawals to assess their
validity (Sects. 2.5 and 3). In the end, we elaborate on the
uncertainties, strengths, and usability of our coupled model
framework for studying the water–food nexus under global
change (Sect. 4).

2 Methods

A newly coupled hydrological–crop growth model frame-
work (Fig. 1) is developed to include the feedback between
crop growth and hydrology. Here, we chose WOFOST as the
crop growth model because of its detailed crop phenology
and development and PCR-GLOBWB 2 as the hydrological
model because of its detailed hydrological process simula-
tion and large-scale applicability. This framework includes
both a one-way and two-way coupling between the PCR-
GLOBWB 2 global hydrological and water resources model
(Sutanudjaja et al., 2018) and the WOFOST crop growth
model (de Wit et al., 2019). The coupled framework was then
used to quantify the impacts of included feedbacks between
hydrology and crop growth on a daily time step and 5 arcmin
resolution for CONUS.

The following (sub)sections provide a description of the
PCR-GLOBWB 2 and WOFOST models and modules used
(Sect. 2.1), justification of coupling (Sect. 2.2), the model
coupling setup (Sect. 2.3), model coupling simulation exper-
iments and parametrization (Sect. 2.3), and validation of crop
yield and of irrigation water use (Sect. 2.4).

2.1 Model descriptions

2.1.1 PCR-GLOBWB 2

The PCRaster Global Water Balance (PCR-GLOBWB 2)
model (Sutanudjaja et al., 2018), developed at Utrecht Uni-
versity, is a global hydrological and water resource model
that operates on a latitude–longitude grid. This model sim-
ulates the terrestrial hydrological cycle with daily resolu-
tion, incorporating anthropogenic impacts like human-made
reservoirs, sectoral water demands, withdrawals, consump-
tive use, and return flows. PCR-GLOBWB 2 is applied and
tested across local to global scales.

PCR-GLOBWB 2 utilizes time-explicit schemes for all
dynamic processes, running on daily time steps for hydrol-
ogy and water use and sub-daily steps for hydrodynamic
river routing. It simulates moisture storage in two upper soil
layers and manages water exchange among the soil, atmo-
sphere, and groundwater. Atmospheric interactions include
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Figure 1. The coupled model framework of the PCR-GLOBWB 2 hydrological and water resource model and the WOFOST crop growth
model along with their model structures. The blue arrow represents the one-way coupling from PCR-GLOBWB 2 to WOFOST and the
variables that are exchanged; the green arrow is added in case the full two-way coupling is considered. At the start of the day, WOFOST
computes evapotranspiration, leaf area index, and rooting depth that is used by PCR-GLOBWB 2 to compute soil moisture status. At the end
of the day, soil moisture storage in the upper and lower layers from PCR-GLOBWB 2 is fed to WOFOST to compute crop growth for the
next day.
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precipitation, evaporation, transpiration, and snow processes.
The model considers sub-grid variability in land use, soils,
and topography, influencing run-off, interflow, groundwater
recharge, and capillary rise. Run-off is routed through river
networks using methods ranging from simple accumulation
to kinematic wave routing, supporting floodplain inundation
and surface water temperature simulation.

The model includes a reservoir operation scheme for over
6000 human-made reservoirs from the GRanD database, in-
tegrated according to their construction year. Human water
use is comprehensively modeled, estimating sectoral water
demands and converting them into withdrawals from ground-
water, surface water, and desalination sources, while ac-
counting for resource availability and groundwater pumping
capacity. Consumptive use and return flows are calculated for
each sector.

PCR-GLOBWB 2’s flexible structure encompasses five
main hydrological modules: meteorological forcing, land
surface, groundwater, surface water, irrigation, and water
use. The meteorological module uses gridded temperature
and precipitation data. Reference potential evaporation is cal-
culated using Hamon’s method and employed in the land sur-
face module to determine crop-specific potential evaporation.
The groundwater and surface water modules handle fluxes
and stores for groundwater and surface water, respectively.
The irrigation and water use module simulates water demand,
withdrawals, consumption, and return flows, sourcing wa-
ter from surface water (rivers and reservoirs), groundwater
(both renewable and non-renewable), and desalinated water,
depending on availability. Detailed descriptions of each mod-
ule are provided by Sutanudjaja et al. (2018).

2.1.2 WOFOST

WOFOST (WOrld FOod STudies) is a crop simulation model
developed at Wageningen “School of De Wit”, in the Nether-
lands, designed to quantitatively analyze the crop growth and
potential production of annual field crops at the field scale
(Supit et al., 1994). WOFOST employs a fixed time step
of 1 d to simulate crop growth based on eco-physiological
processes such as phenological development and growth (de
Wit et al., 2019). WOFOST has found extensive application
in assessing the impacts of climate change and management
strategies on crop growth and yield at local to global scales
(Droppers et al., 2021).

The WOFOST crop model comprises four modules: me-
teorological, crop, astronomical, and soil (Fig. 1). The
WOFOST modules simulate a range of processes, includ-
ing phenological development, CO2 assimilation, leaf de-
velopment, light interception, transpiration, respiration, root
growth, assimilated partitioning to the various organs, and
the formation of dry matter. The model’s output includes sim-
ulated crop biomass total, crop yield, and variables such as
leaf area and crop water use.

Temperature effects on crop development within
WOFOST are modeled using temperature sums, which
accumulate daily temperatures above a specified threshold.
These sums influence germination and phenological stages,
thereby affecting CO2 assimilation. Additionally, the model
accounts for the direct and indirect effects of suboptimal
daytime temperatures on crop growth and development,
which are critical to overall plant performance. Daily
photosynthesis in the crop growth model is simulated by
considering absorbed radiation and water stress. After ac-
counting for the assimilates used in maintenance respiration,
the remaining resources are allocated among the plant’s
leaves, stems, roots, and storage organs. A key internal
driver of this process is the leaf area index (LAI), which
results from leaf area dynamics governed by photosynthesis,
biomass allocation, leaf age, and developmental stage. LAI,
in turn, influences the daily rates of photosynthesis.

WOFOST has been finely tuned to account for diverse cli-
mate and soil conditions, particularly for commonly studied
crops such as maize, soybean, and wheat, thereby reducing
the need for further recalibration. This pre-tuning ensures
that simulations reliably capture the growth and yield re-
sponses of these crops under varying environmental condi-
tions. For more detailed information on the fine tuning of
crop variables, see de Wit and Boogaard (2021).

WOFOST employs a classic water balance approach de-
signed for freely draining soils where groundwater is too
deep to affect soil moisture content in the rooting zone. This
approach divides the soil profile into two compartments: the
rooted zone and the lower zone extending from the actual
rooting depth to the maximum rooting depth. The subsoil be-
low this maximum rooting depth is not considered. As roots
extend deeper towards the maximum rooting depth, the lower
zone gradually merges with the rooted zone. This approach
is suitable for regional applications with limited soil prop-
erty information. Soil moisture in the root zone serves as a
primary link between the WOFOST model and the underly-
ing soil module. For a detailed description of the WOFOST
crop growth model, we refer to de Wit and Boogaard (2021)
and Supit et al. (1994).

2.2 Justification of model coupling

The integration of the hydrological model PCR-GLOBWB 2
(Sutanudjaja et al., 2018) with the crop growth model
WOFOST (Supit et al., 1994) is crucial for accurately sim-
ulating the complex interactions between water availabil-
ity and crop development. The hydrological model PCR-
GLOBWB 2 is designed to simulate hydrological processes
such as river discharge, groundwater flow, and water storage
dynamics. It provides detailed representation and insights
into the state and dynamics of water resources over large
spatial scales and long temporal scales. On the other hand,
the crop growth model WOFOST is focused on simulating
crop phenology, including the stages of crop development,
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growth, and yield formation under varying environmental
conditions.

Despite the strengths of each model, they individually
have limitations that can affect the accuracy of simulations.
PCR-GLOBWB 2 relies on static vegetation parameters,
such as fixed leaf area index (LAI) and root depth, which can
limit its ability to reflect the dynamic nature of crop growth.
On the other hand, WOFOST offers a detailed and dynamic
representation of crop phenology and development, adjusting
parameters like LAI and root depth based on actual growth
stages. However, WOFOST employs a simplified water bal-
ance model, which may not adequately capture complex hy-
drological interactions.

To address these limitations, it is important to combine the
strengths of both models to enhance hydrological and crop
modeling performance. By integrating WOFOST’s detailed
crop growth simulation capabilities with the robust hydro-
logical process simulations of PCR-GLOBWB 2, we can bet-
ter understand and represent the soil–plant–atmosphere inter-
actions. Therefore, this study integrates PCR-GLOBWB 2
and WOFOST by passing soil moisture data from PCR-
GLOBWB 2 to WOFOST and feeding vegetative fluxes from
WOFOST back into PCR-GLOBWB 2 on a daily basis. Ad-
ditionally, to understand the intricate dynamics between hy-
drology and crop model, PCR-GLOBWB 2 is coupled to
WOFOST in one-way and two-way interactions.

In evaluating various coupling methods for integrating
hydrological and crop models, we identified several ap-
proaches, including one where the hydrological model di-
rectly provides detailed irrigation schedules and percolation
rates to the crop model. While this method offers highly de-
tailed hydrological inputs, it often leads to inconsistencies
due to the separate handling of soil moisture dynamics be-
tween the models, resulting in errors in soil moisture man-
agement and water balance. Commonly used coupling pro-
cedures, such as those described by Li et al. (2014) and
Tsarouchi et al. (2014), calculate potential evapotranspira-
tion and vegetation water uptake within the hydrological
model, which is then passed to the crop model to simulate
crop growth. The crop model then calculates state variables
like leaf area index, root depth, and canopy height, which
are subsequently fed back into the hydrological model. How-
ever, these methods can introduce system errors, particularly
in the transpiration module, if there is a discrepancy between
evapotranspiration calculated by the crop and hydrological
model, as highlighted by Wang et al. (2012). Our chosen
coupling method, where soil moisture is calculated by PCR-
GLOBWB 2 and passed to WOFOST and vegetative dynam-
ics and evapotranspiration fluxes are then fed back into PCR-
GLOBWB 2, offers a balanced approach that ensures con-
sistency and the necessary complexity and efficiency in the
simulations.

The selected coupling approach also addresses specific
challenges associated with the models. PCR-GLOBWB 2 al-
lows for flexible land cover classification and parametriza-

tion, which is essential for accurately representing diverse
crop types and their interactions with water resources. For
this study, we defined 12 land cover types (tall natural, short
natural, pasture, irrigated maize, irrigated soybean, irrigated
wheat, non-paddy irrigated crops (irrigated other crops),
paddy irrigated crop, rainfed maize, rainfed soybean, rainfed
wheat, and rainfed others). WOFOST’s role in this coupling
is to pass the fluxes of irrigated and rainfed maize, soybean,
and wheat to PCR-GLOBWB 2, ensuring a detailed simula-
tion of crop water use.

One of the key considerations in this coupling is accurately
calculating the soil-water balance. Given its more advanced
soil moisture accounting scheme, PCR-GLOBWB 2 handles
this aspect, as WOFOST’s simpler single-layer leaky bucket
approach could introduce complexities if soil moisture data
were passed from WOFOST to the multi-layered soil model
of PCR-GLOBWB 2. Therefore, the coupling approach we
selected minimizes potential discrepancies while maximiz-
ing the strengths of each model.

It is important to acknowledge that individual models
come with inherent uncertainties, related to model structure,
parameters, and data. When coupling these models, the level
of uncertainty compounds further (Kanda et al., 2018). Ad-
ditionally, the nature of coupling itself can introduce another
layer of uncertainty. According to Antle et al. (2001), cou-
pling models leads to further conceptualization and compu-
tational problems, elevating uncertainty levels. Therefore, an
efficient coupling is essential to minimize these risks. There
are three primary methods for coupling models (Vereecken et
al., 2016): light/loose coupling, external/framework coupling
using a central coupler, and full coupling.

In light or loose coupling, the output of one model serves
as the input for the other, which can lead to a straightforward
but limited interaction. Framework coupling uses a central
coupler for communication between models without requir-
ing code modification, offering a balance between integration
and flexibility. Full coupling involves both models sharing
the same boundary conditions, drivers, and variables, which
requires significant code modification.

2.2.1 Implementation of the (BMI) framework
coupling

Given the complexity of integrating the PCR-GLOBWB 2
and WOFOST models and the need for efficient simulations,
we opted for framework coupling. This approach was cho-
sen because WOFOST and PCR-GLOBWB 2 are written in
different programming languages (C and PCRaster-Python,
respectively). Framework coupling allows for seamless in-
teraction between the models at each time step, facilitating
dynamic exchanges while limiting I/O-related computation
times. We employed the Basic Model Interface (BMI) for
this purpose (Hutton et al., 2020; Peckham et al., 2013). The
decision to use BMI over alternative techniques was driven
by its non-interfering nature, ensuring no code entanglement
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and facilitating seamless connection between the two mod-
els. BMI functions act as a bridge, enabling direct variable
exchange between WOFOST and PCR-GLOBWB 2 with-
out modifying their source code. This non-invasive approach
ensures a flexible and robust coupling framework, allowing
continuous model development without interruptions. Inte-
grating BMI functions into both models provides a set of
functions for retrieving or altering model variables, thereby
enhancing adaptability and efficiency.

An additional wrapper was required to translate the model-
specific BMI functions into Python-compatible information
to establish a Python-based coupling framework. The Ba-
belizer wrapper (CSDMS, 2024) was utilized for this pur-
pose with the WOFOST BMI. Conversely, no supplemen-
tary wrapper is needed in the PCR-GLOBWB 2 BMI, as the
model is inherently Python-compatible due to its program-
ming language.

The Babelizer wrapper facilitates the integration of the
WOFOST model by utilizing an input file that provides es-
sential details, including the model library, entry point, pack-
ages, and author information. This input file guides the con-
struction of the necessary dependencies to generate Python
bindings. Once these Python bindings are created, Babelizer
ensures the successful integration of the WOFOST BMI into
Python by verifying that the bindings are correctly built and
loaded.

2.2.2 Workflow of PCR-GLOBWB 2–WOFOST model
framework

In the PCR-GLOBWB 2–WOFOST coupling framework, the
workflow after implementing BMI functions remains consis-
tent for both one-way and two-way coupling, up until the
initialization of the hydrological and crop models (Fig. 2).

Before initiating the Python session, it is crucial to ac-
tivate the BMI wrap environment, which includes all nec-
essary libraries for both hydrological and crop models. Af-
ter this setup, the PCR-GLOBWB 2 and WOFOST models,
along with their configuration files that define the coupling
settings, are loaded into the Python session. BMIwrap reads
the configuration file, initializing the model-specific config-
uration settings before establishing both models as a coupled
entity.

Once the coupled models are initialized, a loop is initiated,
commencing at the start time and concluding at the end time.
During each iteration of this loop, variables are exchanged
between the models based on the one-way or two-way cou-
pling configuration. This iterative process ensures a contin-
uous and seamless flow of information between the PCR-
GLOBWB 2 hydrological model and the WOFOST crop
model throughout the simulation period.

2.3 Model coupling setup

The developed PCR-GLOBWB 2–WOFOST coupled model
framework integrates hydrological and crop models through
both one-way and two-way couplings, as illustrated in Figs. 1
and 3. This model coupling aims to assess the intricate inter-
actions between hydrology and crop growth under different
agricultural conditions, specifically irrigated and rainfed set-
tings. The one-way coupling examines the impact of water
availability on crop growth, while the two-way coupling in-
corporates the exchange of soil moisture status and hydro-
logical parameters and fluxes based on crop status.

2.3.1 One-way coupling

In the one-way coupling, information on soil moisture sta-
tus is passed from PCR-GLOBWB 2 to WOFOST (Fig. 3b).
Here, PCR-GLOBWB 2 simulates soil moisture content for
every day, and the soil water storage is simulated separately
for each land cover type. Consequently, WOFOST receives
the soil moisture content from PCR-GLOBWB 2 as input,
with generally higher values of soil moisture for irrigated
crops than of nearby rainfed crops. WOFOST then simu-
lates the crop yield based on the simulated soil moisture con-
tent and the same meteorological inputs as PCR-GLOBWB 2
uses.

The combined model framework captures the impact of
hydroclimatic conditions by assessing water stress and heat
stress. Water stress, influenced by soil moisture levels de-
rived from PCR-GLOBWB 2, affects various processes in
WOFOST such as a reduction in the leaf area, a decrease in
the assimilation of biomass (growth), changes in the parti-
tioning of biomass, and an increase in various plant organs
of senescence (aging processes). Elevated temperatures have
varying effects across different stages of crop development.
They can accelerate crop growth by promoting faster accu-
mulation of growing degree days, which are essential for
determining crop maturity. However, prolonged exposure to
high temperatures can also induce heat stress, adversely im-
pacting crop health and potentially shortening the overall du-
ration of the crop’s growth cycle. Insufficient water availabil-
ity that limits the evapotranspiration also reduces the amount
of assimilation and the corresponding yield.

2.3.2 Two-way coupling

– In addition to one-way coupling, the two-way cou-
pling approach involves iterating data exchange be-
tween WOFOST and PCR-GLOBWB 2 twice per day.
WOFOST calculates the vegetation states (such as
leaf area index (LAI), biomass, and root depth) and
fluxes (e.g., evapotranspiration) for irrigated and rainfed
maize, soybean, and wheat crops, while other vegeta-
tion and non-vegetation fluxes for other crops are simu-
lated within PCR-GLOBWB 2. To be more specific, for
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Figure 2. Schematization of the workflow of the coupled PCR-GLOBWB 2–WOFOST model framework.

the fraction of land cover that is different from maize,
wheat, and soybean, the vegetation states and fluxes are
calculated within the PCR-GLOBWB 2. For these land
cover types, vegetation phenology in the form of crop
factors is approximated by a yearly climatology. In the
two-way coupling, data are exchanged between PCR-
GLOBWB 2 and WOFOST as follows (Fig. 3c): at the
start of the day, PCR-GLOBWB 2 passes the previous
day’s soil moisture to the WOFOST, assuming no root
development has occurred overnight. WOFOST then
computes the potential evapotranspiration based on the
meteorological variables at the current time step and the
pertinent vegetation states from the previous time step
(leaf area index (LAI), rooting depth, and crop height).
It also calculates the actual bare soil evaporation, ac-
tual transpiration (actual evapotranspiration), potential
evaporation, and open water evaporation.

– The calculated fluxes are passed to PCR-GLOBWB 2,
together with the root depth. The root depth is used to
partition the actual transpiration from the single root
zone of WOFOST over the two soil layers of PCR-
GLOBWB 2, dependent on the root content. For both
irrigated and rainfed crops, the actual evapotranspira-
tion from WOFOST is forced to PCR-GLOBWB 2 and
used to update the soil moisture content of the two soil
layers in PCR-GLOBWB 2 for the current daily time
step.

– In the case of irrigated crops, the stages of vegetated de-
velopment are used to compute the amount of irrigation
in PCR-GLOBWB 2. Potential evaporation is used to
calculate the irrigation water demand for paddy crops
(not considered here), whereas the irrigation water re-
quirement for non-paddy crops is computed based on
the soil moisture status according to the FAO guidelines
(Allen et al., 1998). The irrigation water requirement is
withdrawn from the available water resources in PCR-
GLOBWB 2, and the available irrigation water supply
is applied to the crops in addition to any natural precip-
itation.

– At the end of the day, the resulting soil moisture from
the two soil layers from PCR-GLOBWB 2 is aggregated
to provide a total for the root zone of each crop, which
is then passed back to WOFOST.

– Using the updated soil moisture from PCR-
GLOBWB 2, WOFOST computes the actual tran-
spiration and updates crop growth and the crop status.
The new fluxes and crop parameters are then passed to
PCR-GLOBWB 2 again on the next day (Figs. 1 and
3c).

In this two-way coupling, the crop phenology from
WOFOST determines evapotranspiration and thus the soil
hydrology of PCR-GLOBWB 2, particularly during dry
spells. Compared to the predefined phenology of PCR-
GLOBWB 2, the LAI, rooting depth, and evapotranspira-

Hydrol. Earth Syst. Sci., 29, 4219–4239, 2025 https://doi.org/10.5194/hess-29-4219-2025



S. Chevuru et al.: Feedbacks between water availability and crop systems using a coupled model 4227

Figure 3. Schematic view of the coupled model framework: panel (a) shows the calculated phenology from WOFOST and PCR-GLOBWB 2
over time along with the associated fluxes. Panel (b) displays a detailed representation of the one-way coupling approach, where soil moisture
is transferred from PCR-GLOBWB 2 to WOFOST, and panel (c) illustrates the two-way coupling approach, where variables are exchanged
in both directions between PCR-GLOBWB 2 and WOFOST.

tion as simulated by WOFOST will lag during dry spells and
less water may be lost from PCR-GLOBWB 2. However, the
thinner rooting depth will also lead to an earlier drying out of
the soil and reduced capillary rise. This subsequently leads to
reduced soil moisture (compared to PCR-GLOBWB 2 stand-
alone), which in turn feeds back to a reduced simulated yield
in WOFOST, in particular for rainfed crops. For irrigated
crops, the extra water supplied will largely offset these feed-
backs and result in near-optimum growth.

2.4 Model coupling simulation experiments and
parametrization

Hydrological simulations were conducted with a daily time
step at a 5 arcmin grid resolution, where for each grid cell
WOFOST was used to simulate crop growth for irrigated
and rainfed maize, soybean, and wheat. To assess the im-
pact of hydrology on crop growth and understand the inter-
actions between hydrology and crop growth, three sets of
simulations were carried out for both irrigated and rainfed
crops: (a) stand-alone simulations using the WOFOST crop

model solely, (b) one-way coupled, and (c) two-way cou-
pled PCR-GLOBWB 2–WOFOST simulations. Note that for
the stand-alone simulations with WOFOST under irrigation
the potential crop yield is simulated, which is potential yield
without water (and nutrient) stress except for temperature ef-
fects. When coupled to PCR-GLOBWB 2, water stress can
occur even for irrigated crops in case there is not enough wa-
ter available (in PCR-GLOBWB 2) to fully satisfy the crop
water demand. For rainfed crops, growth is influenced by
available soil moisture for all simulations and is thus sen-
sitive to water stress and temperature. Green water from nat-
ural rainfall is the primary water supply in rainfed analysis,
while irrigated crops get water from both green and blue wa-
ter (from surface water and renewable groundwater) and non-
renewable groundwater, leading to groundwater depletion.

Daily time step simulations covered the period from 1979
and 2019, using weather variables (minimum and maximum
air temperature, shortwave radiation, precipitation, vapor
pressure, wind speed, and humidity) from the W5E5 forc-
ing data (Lange et al., 2021) as input to PCR-GLOBWB 2
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(Sutanudjaja et al., 2018) and WOFOST. Cropland areas
and growing seasons were determined from the MIRCA2000
(Portmann et al., 2010) global monthly irrigated and rainfed
crop area dataset. The focus of the coupled framework was
to comprehend the impacts and feedback between hydrology
and crop growth. Crop parameters, atmospheric CO2 con-
centrations, and fertilizer application were obtained from the
WOFOST crop parameter dataset for each crop (WOFOST
Crop Parameters, 2024). Cultivars in the WOFOST crop pa-
rameter datasets were calibrated for each crop against re-
ported agricultural yields from the United States Department
of Agriculture (USDA) National Agricultural Statistics Ser-
vice (USDA, 2024), with the closest matching cultivar se-
lected for final simulations. Detailed information on the culti-
var calibration for each crop (i.e., irrigated and rainfed maize,
soybean, and wheat) is provided in Sect. S2 in the Supple-
ment.

Additionally, to ensure a consistent comparison, we har-
monized the soil parameters in both WOFOST and PCR-
GLOBWB 2 by incorporating data from the FAO soil map
(FAO, 2007). WOFOST uses constant soil parameters across
all spatial locations, which may not accurately represent lo-
cal soil variability. By integrating FAO soil data, we ensured
consistency in soil properties such as water-holding capacity
and infiltration rates across the different models, improving
the robustness of the comparison.

Comparisons were made between simulations from stand-
alone WOFOST and the one-way and two-way coupled
PCR-GLOBWB 2–WOFOST runs. This comparative analy-
sis involved evaluating the results from different model runs
for crop growth against reported crop yields. Furthermore,
irrigation water withdrawals of coupled model runs are com-
pared against the USGS Water Use Database (USGS, 2023)
(Sect. 2.4).

2.5 Model evaluation

We evaluated the three different model configurations by
comparing simulated results against reported USDA crop
yields of maize, soybean, and wheat. Furthermore, we cross-
referenced our simulations with irrigation water withdrawal
data spanning 5 years from the USGS Water Use Database.
Specifically, we compared data for the years 2005, 2010, and
2015, as the USGS census data are collected at 5-yearly in-
tervals.

2.5.1 Crop yields model evaluation

To assess the model’s performance, we employ three key
metrics: correlation coefficients (r), normalized root mean
square error (NRMSE), and normalized bias (NBIAS). These
metrics were selected for their ability to capture the strength,
accuracy, and systematic errors in the relationship between
simulated and observed values.
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where Pi and Oi are the individual predicted and observed
values, respectively, and P and O are the means of the pre-
dicted and observed values.

The evaluation was done both temporally for average
CONUS yields per year and for multi-year averages state by
state to evaluate the model’s ability to capture spatial vari-
ations in crop yield. This was done for both irrigated and
rainfed maize, soybean, and wheat.

To further characterize the dataset and evaluate the impact
of the degree of coupling on simulated yields, additional sta-
tistical analyses were conducted on the 41 years of simulated
data at the 5 arcmin grid scale. To this end, the mean and co-
efficient of variation (CV) were computed for both one-way
and two-way datasets for the three crops under irrigated and
rainfed conditions. The purpose of this analysis was to exam-
ine the central tendency and year-to-year variability of yield
simulations and how these are related to the way hydrology
and crop growth are coupled.

2.5.2 Irrigation water use model evaluation

The USGS-reported irrigation water use data provide a com-
prehensive representation of the total irrigation water uti-
lized by all crops for a number of states (USGS, 2023). The
irrigated crop area used in this dataset is however not the
same as that used in PCR-GLOBWB 2, which is based on
MIRCA2000 (Portmann et al., 2010). Thus, directly compar-
ing USGS data with our simulated water withdrawals would
result in bias. To ensure a fair comparison between the sim-
ulated and reported data for all crops, we adjusted the USGS
irrigation water use data by multiplying these by the ratio
of the irrigated area from MIRCA2000 to the reported total
USGS irrigated area. Additionally, our simulated irrigation
water withdrawal volumes did not yet account for irrigation
efficiency. We intend to implement this in future develop-
ment. Hence, we introduced an additional correction by di-
viding the simulated withdrawal data by the irrigation effi-
ciency as is commonly used in PCR-GLOBWB 2 when it is
not coupled to a crop model.

After these corrections, the coupled model-simulated irri-
gation water withdrawals for all crops were evaluated against
actual irrigation data obtained from the USGS database
through spatial (multi-year averages per state) and temporal
(multi-state totals per year) analysis, providing insights into
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the model’s ability to replicate observed irrigation water use
patterns.

This comparison was limited to the years with available re-
ported area data for the simulation period (2005, 2010, 2015)
and to the states with reported irrigation water withdrawal
volumes for these years (37 states).

3 Results

In this section, we present the key findings obtained
from the implementation of the coupled hydrological–crop
growth model framework based on WOFOST and PCR-
GLOBWB 2. We present our findings sequentially, first delv-
ing into observed hydrological impacts on crop growth (one-
way coupling) and then exploring how feedback mechanisms
between crop growth and hydrology impact the crop growth
system (two-way coupling).

3.1 Comparative temporal and spatial analysis of
stand-alone, one-way, and two-way coupling for
irrigated and rainfed crops

Temporal analysis (Fig. 2) compares the simulated yields
with reported yields for irrigated and rainfed maize, soybean,
and wheat crops spanning 1979 to 2019 in the CONUS re-
gion. Notably, the reported yields exhibit discernible trends
for the CONUS region across the three crops and in both
irrigated and rainfed analysis. This temporal evolution is pri-
marily attributed to technological advancements, encompass-
ing improved agricultural practices and the introduction of
enhanced crop varieties over the study period (Arata et al.,
2020). In contrast, simulated yields of our coupled PCR-
GLOBWB 2–WOFOST model framework do not capture
such trends, as the modeling approach intentionally omitted
to incorporate trends in technology and management prac-
tices. This intentional omission was to focus on the intrinsic
biophysical processes and climatic conditions affecting crop
yields, providing a baseline understanding unaffected by ex-
ternal advancements.

The trends in reported yields differ significantly across all
crops and between irrigated and rainfed systems. For maize,
both irrigated and rainfed yields show an increasing trend,
particularly post-2000, which is not reflected in the simu-
lated yields. Soybean yields exhibit a gradual upward trend
in irrigated systems, while rainfed soybean yields show lit-
tle to no discernible trend until 2007, followed by a slight
increase. Wheat yields, both irrigated and rainfed, demon-
strate fluctuations with a slight upward trend towards the end
of the period. These discrepancies can be attributed to vari-
ous factors, including technological advancements, improved
agricultural practices, and the introduction of enhanced crop
varieties, which were not incorporated into the modeling ap-
proach. To ensure a consistent and meaningful analysis, we
selected the years 2006–2019 for further analysis (spatial

analysis (Fig. 5) and evaluation metrics (Table 1)). This pe-
riod was selected because reported yields during these years
appear more stable and are better aligned with the simulated
yields, allowing for a fair evaluation of the model’s accu-
racy and reliability. For the selected periods, we think that
the results are convincing, and, except for rainfed soybean,
they are certainly up to par with the results from other crop
growth modeling studies at continental scales.

Figures 4 and 5 show the outcomes of comparing sim-
ulated irrigated and rainfed analyses yields for maize, soy-
bean, and wheat with reported yields. For the irrigated crops,
the obtained yields by stand-alone WOFOST represent the
potential productivity for the three crops. Notably, one-way
and two-way model runs for irrigated crops yielded nearly
identical results to the stand-alone runs, indicating that there
is generally enough irrigation water to completely satisfy
crop water demands. This similarity arises because in irri-
gated conditions, water supply is managed to meet crop wa-
ter demands fully, thereby minimizing the influence of soil
moisture variability on yield outcomes. In other words, since
the primary constraint, water availability, is alleviated by ir-
rigation, the simulations naturally converge, regardless of the
model coupling approach. Although not shown here, we note
that this is at the expense of non-renewable groundwater use
in states overlying the Southern Great Plains aquifer system.

Conversely, for rainfed crops that rely solely on rainfall,
we generally expect similar yields from stand-alone and two-
way coupled simulations since the primary water input is
rainfall. However, differences were observed between these
models, more pronounced in maize crops and less significant
in soybean and wheat, with yields in the two-way coupled
model being larger than stand-alone WOFOST. These differ-
ences can be attributed to various factors. The coupled model
incorporates detailed soil moisture dynamics, including pro-
cesses like percolation, capillary rise, and surface runoff,
which directly influence water availability for crops. For ex-
ample, higher capillary rise from groundwater can increase
soil moisture, thereby increasing water available to crops,
whereas surface runoff limits infiltration, and deep percola-
tion rates lead to water loss beyond the root zone, reducing
available moisture. In contrast, stand-alone WOFOST cannot
accurately capture such variability, leading to differences in
simulated yields.

Another key distinction lies in how the plants access soil
moisture in the root zone in the different models. In the
stand-alone WOFOST model, all soil moisture is extracted
from a single soil layer using a simple one-layer tipping
bucket approach. Conversely, PCR-GLOBWB 2 subdivides
the soil profile into two layers (see Sect. 2.1), with evap-
otranspiration distributed between them. In this setup, bare
soil evaporation is entirely sourced from the upper layer,
while transpiration is drawn from both layers. In the coupled
approach, soil moisture can be disproportionately supplied
from the wetter second layer, including the part of the second
soil layer that is below the root zone. This provides slightly
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Table 1. Model performance metrics (i.e., correlation, normalized RMSE, and normalized bias) for simulated irrigated and rainfed maize,
soybean, and wheat.

No. Metrics Maize Soybean Wheat

Irrigated crops Stand- One- Two- Stand- One- Two- Stand- One- Two-
alone way way alone way way alone way way

1 Correlation 0.57 0.56 0.59 0.25 0.36 0.36 0.45 0.46 0.24
2 Normalized RMSE 0.08 0.08 0.08 0.12 0.10 0.10 0.15 0.15 0.11
3 Normalized bias −0.58 −0.58 −0.65 0.34 0.27 0.27 0.50 0.50 −0.02

Rainfed crops

1 Correlation 0.80 0.81 0.84 0.86 0.80 0.84 0.37 0.46 0.47
2 Normalized RMSE 0.19 0.50 0.20 0.68 1.01 0.91 0.56 0.97 0.55
3 Normalized bias −0.10 2.00 0.91 1.39 2.24 2.03 1.13 2.26 0.98

Figure 4. Temporal analysis of irrigated and rainfed crops of (a, b) maize, (c, d) soybean, and (e, f) wheat for the years 1979 to 2019 for the
CONUS region.
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Figure 5. Spatial (i.e., state-level) analysis of irrigated and rainfed crops of (a, b) maize, (c, d) soybean, and (e, f) wheat for the years 2006
to 2019 for the CONUS region.

higher average root zone soil moisture to WOFOST under
stressed conditions, making the simulated yields of the two-
way-coupled PCR-GLOBWB 2–WOFOST a bit higher than
those of stand-alone WOFOST (see Sect. S3; Figs. S6–S9
in the Supplement for a detailed analysis of the differences
between stand-alone WOFOST and one-way and two-way
coupled PCR-GLOBWB 2–WOFOST models).

The one-way coupling approach generally overestimates
yields relative to stand-alone and two-way simulations, par-
ticularly for wheat and, to a lesser degree, for maize. This
discrepancy arises from the fact that in one-way coupling,
the phenology (leaf area index and root development) is pre-
scribed and independent of actual crop development as sim-
ulated by WOFOST. In a dry and warm year, crop develop-
ment in WOFOST is faster than average and thus also faster
than the fixed development in PCR-GLOBWB 2; this is due
to higher radiation and temperature at the beginning of the
growing season. This leads to early-season higher evapotran-
spiration in the stand-alone WOFOST model and less avail-

able soil moisture at the end of the season when the stor-
age organs are formed (see Sect. S3 in the Supplement). In
a one-way coupled setup, plant development from WOFOST
is not fed back to PCR-GLOBWB 2, so that soil moisture
in PCR-GLOBWB 2 remains higher throughout the season.
This higher soil moisture is passed to WOFOST, leading to
higher yields in the one-way coupled PCR-GLOBWB 2–
WOFOST model than the stand-alone WOFOST model and
the two-way coupled PCR-GLOBWB 2–WOFOST model,
where crop development is fed back to PCR-GLOBWB 2.
We further refer to Sect. S3, Figs. S4–S9, in the Supplement,
for a detailed analysis of the differences between stand-
alone WOFOST and one-way and two-way coupled PCR-
GLOBWB 2–WOFOST models.

The temporal analysis (Fig. 4) of simulated and reported
yields reveals distinct trends and year-to-year fluctuations for
each crop. For maize, both irrigated and rainfed conditions
show considerable variability in yields over the years. Rain-
fed maize, in particular, exhibits a discernible pattern, with
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certain years marked by notable peaks in yields, highlight-
ing its sensitivity to varying environmental conditions. These
variations are also observed in reported maize yields. This in-
dicates that maize yields, especially under rainfed conditions,
are highly influenced by annual climatic variability.

For wheat, the simulated yields under both irrigated and
rainfed conditions show similar year-to-year patterns, which
are not as evident in the reported yields. This suggests that
the discrepancies might be due to the model’s sensitivity to
water and temperature variability, which may not fully cap-
ture the complexities of actual wheat production. Specifi-
cally, factors such as the use of different wheat varieties,
the differentiation between winter and spring wheat, and
their respective growth parameters could influence the ob-
served yields. These varietal and seasonal distinctions intro-
duce variability that the model might not fully incorporate,
leading to differences between simulated and reported yields.

Soybean yields present a different scenario. Both irrigated
and rainfed simulated yields consistently surpass the re-
ported values, with the discrepancy being more pronounced
in rainfed conditions. This overestimation could be due to the
model’s assumptions or parameters that do not fully capture
the limitations faced by soybean crops in real-world rainfed
environments, such as variations in soil fertility, pest pres-
sures, crop varieties, and other management practices not ac-
counted for in the model.

In the spatial analysis (Fig. 5), simulated irrigated maize
yields from stand-alone (WOFOST), one-way, and two-way
coupling align almost identical with reported irrigated maize
yields. Conversely, in rainfed maize analysis, both stand-
alone and two-way simulations closely matched reported
yields in states such as Delaware, Colorado, Kansas, Ne-
braska, South Dakota, and Wyoming, while one-way cou-
pling exhibits an overestimation of yields compared to stand-
alone (WOFOST) and two-way coupling.

For soybeans, the spatial analysis reveals identical yields
among stand-alone (WOFOST), one-way, and two-way sim-
ulations for both irrigated and rainfed crops. For irrigated
crops, simulated yields were overestimated in Arkansas state
but closely matched in states like Delaware, Kansas, and Ne-
braska compared to reported values. Under rainfed condi-
tions, all three models overestimated the simulated yield rel-
ative to reported yields. For irrigated wheat, simulated yields
of the two-way coupling outperform stand-alone WOFOST
and one-way coupling, particularly in states like Oregon,
Washington, and Wyoming. In contrast, for rainfed wheat,
stand-alone and two-way coupling simulations closely align
except in states such as California and Montana. The one-
way coupling, lacking feedback from the crop growth model
to the hydrological model, leads to an overestimation of
rainfed yields across all states compared to stand-alone
WOFOST and two-way coupling. This underscores the im-
portance of incorporating two-way interactions and feedback
mechanisms for more accurate yield simulation results.

3.2 Evaluation statistics

Table 1 presents model performance metrics (correlation,
normalized RMSE and normalized bias) from the temporal
analysis, evaluating simulations for the three model setups
(i.e., stand-alone WOFOST, one-way, two-way coupling) for
irrigated and rainfed maize, soybean, and wheat for the pe-
riod 2006–2019 (see Sect. 3.1). Model performance metrics
for the spatial analysis are presented in Table S3 (see Supple-
ment).

For irrigated crops, simulations of all model approaches
exhibit positive correlations with reported yields, though cor-
relation coefficients vary across models and crops. Two-way
coupling shows a slightly higher correlation (0.59) with re-
ported yields for maize but a lower correlation (0.24) for
wheat compared to stand-alone and one-way coupling. The
root mean square errors (RMSEs) normalized to the mean re-
main consistently low, with values ranging from 0.08 to 0.15
across three crops, indicating a reasonable fit of the simulated
values to the observed data. Moreover, normalized biases are
also low, ranging from−0.65 to 0.50. The two-way coupling
demonstrates overall slightly lower biases and minimal error
compared to stand-alone and one-way simulations, particu-
larly for wheat.

For rainfed crops, the correlation coefficients vary, with
two-way coupling displaying the highest correlations. Higher
correlation coefficients are obtained for maize (0.808–0.84)
and soybean (0.84–0.86) compared to wheat (0.37–0.47).
Normalized RMSE values are generally higher in rainfed
conditions compared to irrigated, ranging from 0.19 to 1.01.
Normalized biases show variations across simulation ap-
proaches and crops, ranging from−0.10 to 2.26. Specifically,
one-way coupling exhibits higher biases in rainfed maize,
soybean, and wheat compared to stand-alone and two-way
simulations. Two-way coupling shows lower error in wheat
crops compared to the stand-alone model, while the stand-
alone model performs better for maize and soybeans than
both two-way and one-way coupling.

Overall, the validation results affirm the overall effective-
ness of the simulation approaches in accurately representing
observed irrigated and rainfed crop yields, with stand-alone
and two-way coupling slightly outperforming one-way sim-
ulations.

3.3 Relevant feedbacks revealed by two-way coupling
between hydrology and crop growth

We further investigated the impact of the developed model
coupling by looking at its impact on simulated crop yield
in terms of the CONUS-wide 5 arcmin spatial variation and
multi-year variability. To evaluate the impact of coupling
dynamics, we assessed key indicators, including mean crop
yields, the coefficient of variation (CV) of crop yields ex-
pressing interannual variability, and the relative difference in
mean and CV between two-way and one-way couplings.
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Spatial patterns of the 1979–2019 mean simulated crop
yields of maize, soybean, and wheat are shown under ir-
rigated (Fig. 6) and rainfed (Fig. 7) conditions across the
CONUS region. The stand-alone simulations show the yield
distribution without coupling between the hydrological and
crop models, relying on the internal soil moisture calcula-
tion using a simple one-layer tipping bucket approach. In
contrast, one-way and two-way coupled simulations involve
dynamic interaction between the hydrological model (PCR-
GLOBWB 2) and crop growth model (WOFOST), where soil
moisture from PCR-GLOBWB 2 is passed to the WOFOST,
with two-way coupling also incorporating feedback from
WOFOST to the PCR-GLOBWB 2 (see Fig. 3).

For irrigated crops (Fig. 6), the regions show similar yields
for stand-alone, one-way and two-way coupled simulations.
This is expected since soil moisture is kept at optimal levels
in irrigated conditions, ensuring that water availability does
not become a limiting factor. Consequently, in one-way cou-
pling, the feedback from PCR-GLOBWB 2 to WOFOST is
inconsequential, as the continuous supply of water minimizes
the need for dynamic interaction between the models.

For rainfed conditions (Fig. 7), where water availability
relies on green water only, crop yields are comparatively
lower than under irrigated conditions. Differences between
the various stand-alone, one-way, and two-way coupling ap-
proaches become apparent, particularly in the western part
of the CONUS. Notable differences in yields between stand-
alone and two-way coupling simulations are observed in
maize and wheat crops, both under irrigated and rainfed con-
ditions. However, these differences are more pronounced for
rainfed crops (see Fig. S12; Supplement), where water avail-
ability is a crucial factor influencing crop yields. In the case
of rainfed soybeans, differences were less evident in all the
models.

One-way coupling generally simulates higher yields for
maize and wheat compared to two-way coupling (see Fig. 7).
As described in Sects. 3.1 and S3, this discrepancy arises
from the transmission of soil moisture from the hydrologi-
cal model to the crop growth model in one-way coupling,
without receiving feedback from crop development to the
hydrological model. This leads to an overestimation of late-
season soil moisture availability under drier conditions, sub-
sequently leading to a likely overestimation of simulated
crop yield by the one-way coupling. Clearly, this feedback
is more important in the western part of CONUS, which is
likely related to larger interannual climate variability (with
more dry conditions) compared to the eastern part (see the
section hereafter). The larger differences in mean yields for
rainfed crops, particularly in the western CONUS, that oc-
cur between one-way and two-way coupled simulations are
further illustrated by looking at the relative differences be-
tween the two coupling methods (see Sect. S5; Fig. S10 in
the Supplement).

Spatial patterns of the coefficient of variation (CV) (in %
of the mean) across CONUS for maize, soybean, and wheat

are shown under irrigated (Fig. 8) and rainfed conditions
(Fig. 9) comparing the simulations of the stand-alone, one-
way, and two-way coupling. High CV values entail a larger
inter-annual variability in crop yield.

In the eastern part of CONUS, the CV values in both irri-
gated and rainfed conditions are notably lower, suggesting a
more stable and consistent pattern of crop growth in these re-
gions. Conversely, in the mid-western and western CONUS,
inter-annual variability is higher, owing to larger inter-annual
climate variability in these parts. For irrigated crops, a larger
CV is mostly apparent for maize and wheat. For a small num-
ber of instances, this could be caused by insufficient irri-
gation water availability during very dry and hot years, but
most likely this is a temperature signal. Also, we note that in
these parts of CONUS, some pixels have very low to minimal
cropping areas, resulting in more pronounced fluctuations in
yields. As can also be seen from Sect. S5 (Fig. S11) in the
Supplement, the differences between one-way and two-way
coupled runs are generally small, except for some northwest-
ern states.

Rainfed crops show larger values of CV, especially in the
western part of CONUS, reflecting the larger sensitivity of
rainfed agriculture to inter-annual climate variability (Fig. 9).
It is also clear that the simulated inter-annual variability of
simulated crop yield is larger for two-way than for one-way
coupling, reflecting the importance of including crop phenol-
ogy, in particular variation in rooting depth, when simulating
available soil moisture. We also refer to Sect. S5 (see Sup-
plement; Fig. S11) for relative differences between the two
model coupling approaches. This larger inter-annual vari-
ability also partly explains the lower mean yields for rainfed
crops and two-way coupling as was shown in Fig. 7.

3.4 Irrigation water use

The scatter plot (Fig. 10) shows the relationship between
reported USGS (after correction for area and irrigation ef-
ficiency – see Sect. 2.5.2) and simulated irrigation water
withdrawals under one-way and two-way coupling. The plot
shows that the simulated irrigation water withdrawals are
correct in order of magnitude when compared to reported
data across different states. The temporal variations (Fig. 11)
illustrate that year-to-year changes in total irrigation water
withdrawal over time are small for both one-way and two-
way coupling and the reported totals.

Figures 10 and 11 show that irrigation water withdrawal is
underestimated in total and for most states. The underestima-
tion of irrigation water use by PCR-GLOBWB 2 was previ-
ously noted by Ruess et al. (2023). This underestimation was
partly accounted for when using more detailed crop cover
data, irrigation efficacies, and meteorological forcing than
currently used in the global version of PCR-GLOBWB 2.
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Figure 6. Mean irrigated crop yields for maize, soybean, and wheat within CONUS as obtained from stand-alone, one-way and two-way
coupled simulations and differences between one-way and two-way coupled simulations for 1979–2019. Legend in percentage of values
shown on the y axes.

Figure 7. Mean rainfed crop yields for maize, soybean, and wheat within CONUS as obtained from stand-alone, one-way and two-way
coupled simulations and differences between one-way and two-way coupled simulation for 1979–2019. Legend in percentage of values
shown on the y axes.
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Figure 8. Coefficient of variation (CV) over 1979–2019 of irrigated crop yields for maize, soybean, and wheat within CONUS as obtained
under stand-alone, one-way, and two-way coupling and the difference between one-way and two-way coupling.

Figure 9. Coefficient of variation (CV) over 1979–2019 of rainfed crop yields for maize, soybean, and wheat within CONUS as obtained
under stand-alone, one-way, and two-way coupling and the difference between one-way and two-way coupling.

4 Discussion and conclusion

In this study, we developed a coupled hydrological–crop
growth model framework to investigate the intricate feed-
backs between water availability and crop growth within
the CONUS region focusing on maize, soybean, and wheat.

This discussion delves into the implications of the findings,
emphasizing their significance and addressing both method-
ological considerations and inherent uncertainties.

We hypothesized that a more realistic representation of
soil moisture dynamics and water availability will lead to
better estimates of water stress and yield outcomes. Valida-
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Figure 10. Spatial variation of one-way and two-way irrigation
water withdrawal compared with USGS-reported water withdrawal
data per state for all crops across the CONUS region with a loga-
rithmic scale.

Figure 11. Temporal variation of one-way and two-way irrigation
water withdrawal compared with USGS water withdrawal data of
5-year intervals across the CONUS region with a logarithmic scale.

tion against reported yields however did not show a notable
improvement compared to the stand-alone WOFOST, both
for rainfed and for irrigated agriculture. Thus, if the focus
is on yield only, coupling with a hydrological model such
as PCR-GLOBWB 2 seems not needed. However, although
not picked up by the validation exercise, the coupling still al-
lows the inclusion of the impact of limited irrigation water
availability as well as the impact of crop development on the
hydrological system. Our study also shows that if the focus is
on these impacts, it is necessary to use a two-way coupling to
make sure that crop developments feed back on evaporation
and soil moisture.

Another hypothesis we tested is whether integrating real-
time crop growth information into hydrological models
will enhance the accuracy of predictions regarding irriga-
tion needs and water resource allocation. Although it can
be expected that feeding back crop information to PCR-
GLOBWB 2 in the two-way coupling would improve esti-
mates of irrigation water withdrawal, this could not be sub-
stantiated by comparison with reported water withdrawal
statistics. One possible explanation is the use of constant crop
area data across all years, which introduces uncertainties and
limits the model’s responsiveness to actual land-use dynam-
ics.

The spatiotemporal analysis of hydrological impacts on
crop growth confirms the results shown from the compari-
son with reported values. Notably, for rainfed crops, the es-
timated yield is mostly higher for one-way coupled simu-
lations compared to two-way and stand-alone simulations.
Also, the inter-annual variation of yield, that is, the sensi-
tivity to drier and wetter years, is notably higher for the two-
way coupled and stand-alone simulations than the one-way
coupled simulations. This suggests that for a correct sensitiv-
ity to drought, a two-way coupling that includes the feedback
of crop status to the hydrological system is needed.

Our studies adds to previous work by Droppers et
al. (2021), which investigated worldwide water constraints
and sustainable irrigation by coupling the Variable Infiltra-
tion Capacity (VIC) hydrological model with WOFOST, and
Zhang et al. (2021), who focused on refining the coupled
VIC hydrological model with a crop growth model EPIC
by incorporating the evapotranspiration module at a regional
scale. In comparison, our research extends the analysis to a
finer spatial scale and places a stronger emphasis on the com-
prehensive integration of feedback loops between hydrology
and crop growth. Particularly, we demonstrate the impor-
tance of two-way coupling in capturing realistic yield out-
comes, which is particularly evident for rainfed crops. This
is mainly because the two-way coupled system addresses
the influence of crop status on evapotranspiration and root-
ing depth, thereby impacting soil moisture content, which in
turn feed backs on crop growth. The two-way coupling ap-
proach provides a more realistic depiction of water availabil-
ity for crops, which results in larger inter-annual variability
and lower mean crop yields when inter-annual climate vari-
ability is significant. Including this two-way interaction is
particularly important under drier conditions (see Sect. 3.2)
or if the coupled framework is used to assess reduced sur-
face water availability under climate change or the impact of
environmental constraints on groundwater and surface water
use.

While the results of this study offer valuable insights into
the coupled hydrological–crop growth model framework, it
is essential to recognize and address the uncertainties as-
sociated with the structure and parametrization, as well as
inherent limitations in the research. A significant limitation
is that the study does not account for potential advance-
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ments in agricultural technology and evolving farming prac-
tices, which could impact crop yields. This becomes evident
when comparing yield estimates with observations over time
(Sect. 3.1; Fig. 4).

Furthermore, uncertainties linked to input datasets (Por-
wollik et al., 2017; Roux et al., 2014) such as crop calen-
dars, cultivars, and land-use changes introduce potential lim-
itations and implications for the study results. Accurate rep-
resentations of crop growth dynamics hinge on accurate crop
calendar definitions (Wang et al., 2022), encompassing plant-
ing, maturation, and harvesting periods. Variations in these
timelines due to climate change or evolving agricultural prac-
tices potentially introduce uncertainties in yield predictions.
Additionally, the assumption of static cultivars neglects po-
tential shifts in agricultural practices or the introduction of
new varieties, influencing crop growth responses to environ-
mental stressors over time. Land-use changes further con-
tribute to uncertainties (Prestele et al., 2016; Eckhardt et al.,
2003; Dendoncker et al., 2008) as dynamic shifts in agricul-
tural practices alter water demand, evapotranspiration pat-
terns, and overall hydrological dynamics. Ignoring these po-
tential shifts limits the model’s ability to capture the complex
interactions between water and crop systems, and this should
be considered in future development steps.

Hence, future work should also consider representing the
dynamic nature of crop areas, including both irrigated and
rainfed crop harvest areas, as well as the total crop area.
The assumption of constant areas, as made in prior stud-
ies (Müller et al., 2017; Ai and Hanasaki, 2023; Jägermeyr
et al., 2021), was based on data availability constraints but
acknowledging the potential variability in these factors over
time. Addressing this aspect is crucial for enhancing the ac-
curacy of yield calculations and, consequently, advancing
the overall understanding of hydrological–crop growth in-
teractions. The integration of such variability into modeling
frameworks is essential not only for improving the accuracy
of assessments but also for contributing to an enhanced un-
derstanding of the broader water–food nexus.

In conclusion, the development and application of the two-
way coupled hydrological–crop growth model framework
presented in this study represent a significant advancement
in our ability to understand the cascading mechanisms and
feedbacks between water and crop systems. Although it does
not show an improvement of yield estimates per se, the cou-
pling framework enhances our understanding of the interplay
between hydrology and crop growth. Also, through the sec-
toral water use modules of PCR-GLOBWB 2, it contains the
necessary components to evaluate large-scale water use man-
agement strategies and simulate the large-scale impacts of
informed decision-making under change, particularly when
dealing with hydroclimatic extremes.

Code and data availability. The developed coupled PCR-
GLOBWB 2-WOFOST model framework is available at
https://doi.org/10.5281/zenodo.10681452 (Chevuru, 2024).
The datasets used in the coupled model framework are available
at https://opendap.4tu.nl/thredds/catalog/data2/pcrglobwb/version_
2019_11_beta/pcrglobwb2_input/catalog.html (last access: 30
August 2025).
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