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Stability Analysis of Gradient-Based Distributed Formation Control With
Heterogeneous Sensing Mechanism: The Three Robot Case

Nelson P. K. Chan , Bayu Jayawardhana , and Hector Garcia de Marina

Abstract—This article focuses on the stability analysis of a for-
mation shape displayed by a team of mobile robots that uses a
heterogeneous sensing mechanism. For the setups consisting of
three robots, we show that the use of heterogeneous gradient-
based control laws can give rise to undesired invariant sets where
a distorted formation shape is possibly moving at a constant ve-
locity. We guarantee local asymptotic stability for the correct and
desired formation shape. For the setup with one distance and two
bearing robots, we identify the conditions such that an incorrect
moving formation is locally attractive.

Index Terms—Formation control, gradient-based control design,
heterogeneous sensing.

I. INTRODUCTION

Over the years, a rich body of work has been developed on realizing
a formation shape by a team of mobile robots. The use and active
maintenance of a common type of constraint (distance, bearing, angle,
and relative position) between two neighboring robots have been the
basis for achieving robust formation shape [1]–[5]. However, neigh-
boring robots controlling constraints using nonreliable sensors lead
to unstable formations [6], [7]. If a sensor failure occurs, then one
solution might be to withdraw the nonreliable information and consider
a heterogeneous sensing setting for a pair of neighboring robots. For
instance, in the case of a partial failure of a LIDAR sensor, which can
normally provide relative position information, we may still measure
bearing information with nonaccurate distance information. In this case,
it is possible to define heterogeneous constraints on the same edge that
still define the same shape (e.g., one robot controls relative position
while the other one controls bearing). However, it remains an open
problem whether the application of the local gradient-based control
law based on the (heterogeneous) information available to each robot
can still maintain the formation. Note that communication between
robots to recover full information might not be possible by design.
Indeed, the aforementioned works on formation with homogeneous
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information require only local sensing without information exchange
between robots. The answer to this problem can open the way to the
design of more robust strategies since distance-based/bearing-based
controllers are more robust to nonaccurate bearing/distance measure-
ments [8], [9]. For example, instead of just controlling relative positions,
the bearing measurement becomes less sensitive when the robots move
in a large formation shape, or the robots carrying multiple distance and
bearing sensors can control the most relevant constraint depending on
the accuracy or reliability of the equipped sensor for a given situation
(e.g., far versus near, wide-angle versus small-angle, etc.). Intuitively,
the gradient-based control law will steer each robot to the direction
that minimizes the local potential function and reaches the desired
constraints. However, as different types of potential function may be
defined for the same edge due to the heterogeneous sensing mechanisms
between the robots, the direction that is taken by each robot may not
coincide anymore with the minimization of the combined potential
functions.

In this article, we consider the formation stabilization problem in
which the desired formation shape is specified by a mixed set of
distance and bearing constraints. In [9], the authors divide the edges of
formation graph into two sets where one set is associated to the distance
constraints while the other one corresponds to the bearing constraints.
Consequently, there are nodes that are involved in both types of edges,
in which case the robots will be equipped with both types of sensor
systems. In contrast to [9], we consider instead two disjoint sets of
nodes where one set uses distance information while the other one
employs bearing information. Analogous to the previous case, there
are edges that are defined by both distance and bearing constraints.
The presence of multiple constraints in these edges may lead to some
robustness issues when each pair of nodes employs different control
laws associated to these different constraints. In this article, we study
the robustness of formation keeping in a heterogeneous network where
minimal number of sensor systems for formation keeping are deployed
per node. Particularly, each robot within the team has the task of
maintaining a subset of either the distance or bearing constraints. For
this particular work, we focus on teams consisting of three robots. Using
standard gradient-based control laws specific to the constraints each
robot has to maintain, we analyze the stability property, particularly, the
local asymptotic stability of the desired and incorrect formation shapes.
It is of interest to study the applicability of these control laws without
modifying their local potential functions to incorporate the different
constraints on the edges since it allows us to design distributed control
laws that are completely dependent on the available local information
to the robot and are independent of the eventual deployment of the robot
in the formation.

The rest of this article is organized as follows. In Section II, prelim-
inary material and problem formulation are presented. In Sections III
and IV, we show that the deployment of heterogeneous gradient-based
control laws can result in incorrect formation shapes, possibly moving
at a constant velocity. Numerical results are given in Sections V. Finally,
Section VI concludes this article.

0018-9286 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 1. Examples of complete bipartite digraphs for n = 2 and 3 ver-
tices and a bipartite digraph for n = 4 vertices. Without loss of generality,

represents an element of V1 while represents V2. Correspondingly,
the blue arrows represent V1 × V2 while the red arrows represent ele-
ments of V2 × V1.

II. PRELIMINARIES

A. Graph Theory

A directed graph (in short, digraph) G is a pair (V, E), where
V = {1, 2, . . . , n} is the vertex set and E ⊆ V × V is the edge set. For
i, j ∈ V , the ordered pair (i, j) represents an edge pointing from i to j.
We assume that G does not have self-loops, i.e., (i, i) �∈ E for all i ∈ V
and card(E) = m. The set of neighbors of vertex i is denoted byNi =
{j ∈ V | (i, j) ∈ E}. The digraphG is bipartite if the vertex setV can be
partitioned into two subsets V1 and V2 with V1 ∩ V2 = ∅ and the edge
set is E ⊆ (V1 × V2) ∪ (V2 × V1). We assume card(V1) = n1 and
hence card(V2) = n2 = n− n1. For a complete bipartite digraph,
E = (V1 × V2) ∪ (V2 × V1) and card(E) = 2n1n2. Fig. 1 depicts
complete bipartite digraphs for n = 2 and 3 vertices and a bipartite
digraph for n = 4 vertices.

B. Formations and Gradient-Based Control Laws

We consider a team consisting of n robots in which Ri is the label
assigned to robot i. The robots are moving in the plane according to the
single integrator dynamics, i.e.,

ṗi = ui, i ∈ {1, . . . , n} (1)

where pi ∈ R2 (a point in the plane) and ui ∈ R2 represent the position
of and the control input for Ri, respectively. For convenience, all
spatial variables are given relative to a global coordinate frame Σg.
The group dynamics is obtained as ṗ = u with the stacked vectors
p = [p�

1 · · · p�
n]

� ∈ R2n representing the team configuration and
u = [u�

1 · · · u�
n]

� ∈ R2n being the collective input. The interac-
tions among the robots are described by a fixed graph G(V, E) with
V representing the team of robots and E containing the neighboring
relationships. We embed G into the plane by assigning to each robot
i ∈ V , a point pi ∈ R2. The pair Fp = (G, p) denotes a framework
(or equivalently a formation). We assume pi �= pj if i �= j, i.e., two
robots cannot be at the same position. We introduce the following
notation prior to providing details on the distance-based and bearing-
only formation control approaches. For points pi and pj , we define,
relative to Σg, the relative position as zij = pj − pi ∈ R2, the distance
as dij = ‖zij‖ ∈ R>0, and the relative bearing as gij =

zij
dij

∈ R2. It

follows zji = −zij , dji = dij and gji = −gij .
1) Distance-Based Formation Control: In distance-based formation

control, a desired formation is characterized by a set of inter-robot
distance constraints. Assume that the desired distance between a robot
pair (i, j) of the formation is d�ij and let dij(t) be the current distance
at time t. Let us define the distance error signal as eijd(t) = d2ij(t)−
(d�ij)

2. A distance-based potential function for (i, j) takes the form
Vijd(eijd) =

1
4
e2ijd. It has a minimum at the desired distance d�ij , i.e.,

Vijd(eijd) ≥ 0 and Vijd(eijd) = 0 ⇐⇒ dij = d�ij . In this case, the
corresponding gradient-based control law for maintaining distance d�ij

for the robot pair (i, j) is uijd = eijdzij , where zij is the measurement
that Ri obtains from its neighbor j ∈ Ni. Thus, the distanced-based
formation control law for robot Ri in (1) is given by

uid =
∑
j∈Ni

eijdzij . (2)

It is well studied in literature (e.g., [10]) that the abovementioned control
law guarantees the local exponential stability of the desired formation
shape when the desired shape is infinitesimally rigid.

2) Bearing-Only Formation Control: In bearing-only formation
control, the desired formation is characterized by a set of inter-robot
bearing constraints. Consider the ith robot (with label R i) in this
setup. RobotRi is able to obtain the bearing measurement gij(t) from its
neighbors j ∈ Ni and its goal is to achieve desired bearings g�ij s with all
neighbors j ∈ Ni. In this case, the bearing error signal for a robot pair
(i, j) can be defined by eijb(t) = gij(t)− g�ij . The corresponding po-
tential function is Vijb(eijb) =

1
2
dij‖eijb‖2. Note that Vijb(eijb) ≥ 0

and it is only zero when dij = 0 or eijb = 02 ⇐⇒ gij = g�ij . (In
forthcoming analysis, we will show that dij = 0, where robots Ri and
Rj are at the same position, is not a viable option.) It can be verified that
uijb = eijb is the gradient-based control law derived from Vijb(eijb)
for the robot pair (i, j). The bearing-only formation control law for Ri

in (1) is then given by

uib =
∑
j∈Ni

eijb. (3)

In [4], it has been shown that the above control law ensures the global
asymptotic stability of the desired formation shape provided that the
formation shape is infinitesimally bearing rigid.

C. Cubic Equations

Lemma 1: Consider the reduced cubic equation y3 + cy + d = 0
with coefficients c < 0 and d > 0. The discriminant is Δ := −4c3 −
27 d2 ≥ 0. Then, two positive real roots exist with these values

yp1 = 2 3
√
rv cos

(
1

3
ϕv

)
∈
[
1,

√
3
)

3
√
rv

yp2 = 2 3
√
rv cos

(
1

3
ϕv − 120◦

)
∈ (0, 1] 3

√
rv (4)

where rv =
√

−( c
3
)3 and ϕv = tan−1(−2

d

√
−R) ∈ (90◦, 180◦].

When Δ = 0, the two positive real roots are equal and have value

yp1 = yp2 = 3
√
rv = 3

√
d
2

.
The proof of Lemma 1 can be found in [11].

D. Problem Formulation

As discussed in Section I, we study the setup in which the robots
possess heterogeneous sensing, and each robot, depending on its own
local information, maintains the prescribed distance or bearing with
its neighbors using the aforementioned distance-based or bearing-only
formation control law. Thus, in the current setup, each robot fulfills
either a distance task or a bearing task. As before, consider a pair of
robots with labels Ri and Rj . In case Ri is assigned a distance task,
its goal is to maintain a desired distance d�ij with Rj . To attain this
goal, it makes use of the distance-based control law uijd = eijdzij ,
with zij being the obtained relative position measurement relative to
a local coordinate frame Σi. Note that Σi is not necessarily aligned
with Σj or Σg. On the other hand, when Rj is assigned a bearing task,
its goal is to maintain a desired bearing g�ji with Ri. It reaches this
goal by employing the bearing-only control law uijb = eijb based on
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Fig. 2. Setups for the three robot case; represents a distance
robot and represents a bearing robot. Correspondingly, blue arrows
represent sensing carried out by the distance robots while red arrows
represent the edges from the bearing robots. From left to right, we have
the (1D2B) and (1B2D) setup.

the obtained relative bearing measurement gij relative to Σj, which is
aligned withΣg. For the interconnection topology, we assume that each
robot has only neighbors of the opposing category, i.e., a distance robot
can only have edges with bearing robot(s) and vice versa. As a result,
the team of n robots can be partitioned into two sets, namely, the set of
distance robots D and the set of bearing robots B, with D �= ∅ and B �=
∅. The edge set is given by E ⊆ (D × B) ∪ (B × D); the underlying
graph structure is that of a bipartite digraph.

In the current article, we focus on the case in which the team of
n = 3 robots has a complete bipartite digraph topology, i.e., the edge set
is E = (D × B) ∪ (B ×D). We distinguish two feasible robot setups,
namely, the one distance and two bearing (1D2B) or the one bearing
and two distance (1B2D) setup; see Fig. 2 for an illustration of these
setups. For these setups, we are interested in studying the stability of
the formation system employing the distance-based formation control
law in (2) for the distance robot(s) and the bearing-only formation
control law in (3) for the bearing robot(s). In this case, we do not
modify the standard gradient-based control law for the different tasks.
Consequently, we analyze whether
1) the equilibrium set contains undesired shape and/or group motion;
2) the desired shape is (exponentially) stable;
3) the undesired shape and/or group motion (if any) is attractive.

The first and last questions are motivated by the robustness issues of
the distance- and displacement-based controllers as studied in [6], [7],
[12], and [13] where a disagreement between neighboring robots about
desired values or measurements can lead to an undesired group motion
and deformation of the formation shape. Since we are considering
heterogeneous sensing mechanisms with corresponding heterogeneous
potential functions, it is of interest whether such undesired behavior can
coexist. Such knowledge on the effect of heterogeneity in the control
law can potentially be useful to design simultaneous formation and
motion controller, as pursued recently in [14].

III. (1D2B) ROBOT SETUP

In this section, we consider the case of three robots with the partition
D = {1} andB = {2, 3}; the (1D2B) setup is shown in Fig. 2. Utilizing
gradient-based control laws for each distance or bearing task, we obtain
the following closed-loop dynamics:⎡⎢⎣ṗ1ṗ2

ṗ3

⎤⎥⎦ =

⎡⎢⎣Kde12dz12 +Kde13dz13

Kbe21b

Kbe31b

⎤⎥⎦ (5)

where we assume that the distance robotR1 has the control gainKd > 0
and the bearing robots R2 and R3 the common control gain Kb > 0. It
is of interest to note that when physical dimension is taken into account
with [L] as the unit of length and [T] the unit of time, the control gain
Kd has dimension [L]−2[T]−1 while Kb is expressed in [L][T]−1. We
define the relative position or link vector z = [z�

12 z�
13]

� ∈ R4. The

link dynamics ż evaluates to[
ż12

ż13

]
= −

[
Kbe12b +Kde12dz12 +Kde13dz13

Kbe13b +Kde12dz12 +Kde13dz13

]
. (6)

For a triangle, z12 + z23 − z13 = 02 holds. Hence, the dynamics re-
lated to link z23 evaluates to ż23 = −Kb(e13b − e12b).

In the following sections, we rigorously analyze the closed-loop
formation system (5) and link dynamics (6).

A. Equilibrium Configurations

Proposition 1 ((1D2B) Equilibrium Configurations): The equilib-
rium configurations corresponding to the closed-loop formation system
(5) belong to the set

Sp =
{
p ∈ R6 | e = 06

}
(7)

where e = [e12d e13d e�12b e�13b]
� ∈ R6.

Proof: Setting the left-hand side (LHS) of each equation in (5) to
the zero vector, we immediately obtain that the bearing constraints for
robots R2 and R3 are satisfied since e21b = −e12b = 02 and e31b =
−e13b = 02. This implies that d21 = d12 �= 0 and d31 = d13 �= 0. It
remains to solve for ṗ1 = 02. With the gathered insights, we obtain
e12dd12g

�
12 = −e13dd13g

�
13. Since g�12 �= ±g�13 (the robots are colinear

when g12 = ±g13), the expression is satisfied when e12dd12 = 0 and
e13dd13 = 0. Because d12 �= 0 and also d13 �= 0, we require e12d = 0
and e13d = 0 to hold.

B. Moving Configurations

During the analysis of the (1D1B) setup (see [11] for details), we
observed that robots may move with a common velocity w while the
predefined constraints are not met. For the (1D2B) setup, we explore
whether conditions exist such that the formation may move with a
common velocity w.

Proposition 2 ((1D2B) Moving Configurations): The closed-loop
formation system (5) moves with a constant velocity w = Kbb

�
sum with

bsum = g12 + g13 when the error vector e satisfies

e = −
[

1
d12

Rbd
1

d13
Rbd b��

sum b��
sum

]�
. (8)

Proof: First, we solve for ż = 04. Since ż12 = 02 = ż13, it follows
ż23 = 02. This expression evaluates to g12 − g13 = g�12 − g�13. Define
bdiff = g12 − g13 and let ∠g12 = α be the angle enclosed by vector g12
and the positive x-axis of Σg. Similarly, let ∠g13 = β. We can rewrite
bdiff as

bdiff = 2 cos

(
1

2
(α− βπ)

)[
cos

(
1
2
(α+ βπ)

)
sin

(
1
2
(α+ βπ)

)] (9)

where βπ = β + π (mod 2π). The expression ż23 = 02 can be trans-
formed to the following set of angle constraints, namely:

{
α+ βπ = α� + β�

π

α− βπ = α� − β�
π

⇐⇒
{
α = α�

β = β� (10)

and {
α+ βπ = α� + β�

π

− (α− βπ)= α� − β�
π

⇐⇒
{
α= β� + π
β= α� − π.

(11)

From (10), we obtain (g12, g13) = (g�12, g
�
13) corresponding to the

equilibrium configurations in Sp while the solution in (11) corresponds
to (g12, g13) = (−g�13, −g�12). Subsequently, we obtain e12b = e13b =
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−(g�12 + g�13) =: b�sum; it is sufficient to consider one of the equa-
tions in (6). This leads to (−Kde13dd13)g

�
12 + (−Kde12dd12)g

�
13 =

Kbg
�
12 +Kbg

�
13. For it to hold, we require −Kde13dd13 = Kb ⇐⇒

e13d = − 1
d13

Rbd and−Kde12dd12 = Kb ⇐⇒ e12d = − 1
d12

Rbd with

the gain ratioRbd =
Kb
Kd

. Collecting the error constraints, we obtain (8).
By an immediate substitution, we obtain for the dynamics of the bearing
robot R2, ṗ2 = Kbb

�
sum =: w.

Remark 1: The signed area for a triangle can be obtained using the

expressionSA = z�12[
0 1
−1 0]z13 [15], [16]. The signed area of the desired

formation shape evaluates to S�
A = d�12d

�
13g

��
12 [

0 1
−1 0]g

�
13. The signed

area of the moving formation shape is SAM = d12d13g
��
13 [

0 1
−1 0]g

�
12 =

−d12d13g
��
12 [

0 1
−1 0]g

�
13 = − d12d13

d�
12

d�
13
S�

A. Since the distance error signals

in (8) are negative, it follows dij < d�ij . Hence, |SAM | < |SA| and the
cyclic ordering of the robots is opposite to that of the desired formation
shape.

Following Proposition 2, a characterization of the moving set Tp in
terms of the error vector e is

Tp =
{
p ∈ R6 | e satisfies (8)

}
. (12)

An equivalent characterization of Tp can be provided in terms of the
inter-robot relative position vectors z12M and z13M where subscript M

refers to “moving”. In fact, the inter-robot bearing vectors g12M between
R1 andR2 and g13M between robotsR1 andR3 are known from the proof
of Proposition 2. It remains to obtain feasible values for the inter-robot
distances d12M and d13M . To this end, we find the roots satisfying the
expressions for the distance error signals e12d and e13d in (8). Expanding
the expressions leads to the following cubic equation:

d3ij −
(
d�ij

)2
dij +Rbd = 0, ij ∈ {12, 13} . (13)

Compared with Lemma 1, we have c = −(d�ij)
2 < 0 and d = Rbd > 0.

We obtain that the discriminant corresponding to (13) isΔ = 4(d�ij)
6 −

27R2
bd and the threshold value for the desired distance d�ij such that

positive roots exist is d̂ =
√
3 3

√
Rbd
2

≈ 1.3747 3
√
Rbd. We infer that if

one of (or both) the desired distances d�12 or (and) d�13 has (have) a
value less than d̂, then no feasible value for d12 or (and) d13 satisfies
e12dd12 = −Rbd or (and) e13dd13 = −Rbd, implying the infeasibility
of moving formations. We conclude the set Sp containing equilibrium
configurations with one of (or both) d�12 < d̂ or (and) d�13 < d̂ is
globally asymptotically stable.

When the desired distances d�ijs satisfy d�ij ≥ d̂, we obtain that
feasible distances dij to (13) are given by Lemma 1 with the values

rv =

√
(d�

ij
)6

27
and ϕv = tan−1(−2R−1

bd

√
−R). Since we have two

desired distances d�12 and d�13 and we have either one or two feasible
value(s) dij to the cubic equation (13), it follows that different feasible
combinations (d12M , d13M) exist. We have the following cases:
1) (d�12, d

�
13) = (d̂, d̂); 1 combination for (d12M , d13M);

2) (d�12, d
�
13) = (d̂, > d̂); 2 combinations for (d12M , d13M);

3) (d�12, d
�
13) = (> d̂, d̂); 2 combinations for (d12M , d13M);

4) (d�12, d
�
13) > (d̂, d̂); 4 combinations for (d12M , d13M).

We conclude the set Tp is a nonempty set when the additional
constraints d�12 ≥ d̂ and d�13 ≥ d̂ are satisfied.

Recall the common velocity w = Kbbsum for the robots in Propo-
sition 2. We want to write bsum in the form bsum = dsum gsum with dsum

being the magnitude and gsum the orientation of bsum relative to Σg. By

the sum-to-product identities for cosine and sine, we obtain

bsum = 2 cos

(
1

2
(α− β)

)[
cos

(
1
2
(α+ β)

)
sin

(
1
2
(α+ β)

)] . (14)

Depending on the value of the angle difference |α− β|, we have
different expressions for dsum and gsum. When |α− β| < π, we set
dsum = 2 cos( 1

2
|α− β|) and ∠gsum = 1

2
(α+ β) while for |α− β| >

π, we set dsum = 2 cos(π − 1
2
|α− β|) and ∠gsum = 1

2
(α+ β) +

π (mod 2π). Note that dsum ∈ (0, 2) for |α− β| ≷ π. If |α− β| = 0◦,
then g12 = g13 and bsum = 2g12, and finally, |α− β| = π implies
g12 = −g13 and bsum = 02. Since g�12 �= ±g�13, the last two mentioned
cases do not occur; therefore, the magnitude of w is 0 < ‖w‖ < 2Kb.

C. Local Stability Analysis of the Equilibrium and Moving
Formations

Assume that the desired distances satisfy d�12 ≥ d̂ and d�13 ≥ d̂.
In this case, both the equilibrium configurations in (7) and moving
configurations in (12) satisfy ż = 04 and are feasible. We are interested
in determining the local stability around these formations. To this end,
we consider the linearization of the z-dynamics (6); this results in the
Jacobian matrix A ∈ R4×4 as

A = −
[
KbA12b +KdA12d KdA13d

KdA12d KbA13b +KdA13d

]
(15)

whereAijd = eijdI2 + 2zijz
�
ij andAijb =

1
dij

Pgij , withPgij = I2 −
gijg

�
ij and ij ∈ {12, 13}.

We first consider the stability analysis around the equilibrium con-
figurations.

Theorem 1: Consider a team of three robots arranged in the (1D2B)
setup with closed-loop dynamics given by (5). Assume that the desired

distances satisfy d�12 ≥ d̂ and d�13 ≥ d̂ with d̂ =
√
3 3

√
Rbd
2

and the

bearing vectors satisfy g�12 �= ±g�13. Given an initial configuration p(0)
that is close to the desired formation shape, then the robot trajectories
asymptotically converge to a point p̂ ∈ Sp.

Proof: Evaluating the Jacobian matrix (15) at the equilibrium con-
figurations results in

AE = −
[
x� 0
0 p�

]
⊗ I2 −

[
m� g�12g

��
12 q� g�13g

��
13

y� g�12g
��
12 n� g�13g

��
13

]
(16)

where we define the variables

x = Kbd
−1
12 , y = 2Kdd

2
12, m = y − x

p = Kbd
−1
13 , q = 2Kdd

2
13, n = q − p (17)

and the matrices

g�12g
��
12 =

[
a2 ab
ab b2

]
, g�13g

��
13 =

[
c2 cd
cd d2

]
. (18)

The starred version for x, p, y, q, m, and n is used here since we
have d12 = d�12 and d13 = d�13. The characteristic polynomial χE(λ)
corresponding to matrix AE is obtained as

χE (λ) = (λ + x�) (λ + p�) . . .(
λ2 + (y� + q�) λ + y�q� sin2 θ�

)
(19)

where sin θ = g�12[
0 1
−1 0]g13. The roots of (19) are

λ1 = −x�, λ2 = −p�

λ3,4 = −1

2
(y� + q�)± 1

2

√
(y� + q�)2 − 4y�q� sin2 θ�. (20)
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It can be verified that 0 < 4y�q� sin2 θ� ≤ (y� + q�)2; all roots are
real. Moreover,−(y� + q�) +

√
(y� + q�)2 − 4y�q� sin2 θ� < 0 and

we conclude all λs are negative; matrix AE is Hurwitz. This implies
that the link trajectories asymptotically converge to the desired relative
positions z� as t → ∞. It also means that the robots accomplish their
individual tasks since z�ij = d�ijg

�
ij , so p(t) → Sp when p(0) is close

to the desired formation shape.
We continue with determining the stability of the moving formations

in the setTp. Based on the characterization in (8), we obtain the Jacobian
matrix

AM = −
[
0 p
x 0

]
⊗ I2 −

[
mg�13g

��
13 q g�12g

��
12

y g�13g
��
13 n g�12g

��
12

]
(21)

where the variables are defined as in (17) and (18). The corresponding
characteristic polynomial χM(λ) is the quartic polynomial

χM (λ) = λ4 + c1λ
3 + c2λ

2 + c3λ + c4 (22)

with the coefficients

c1 = m+ n, c2 = qy sin2 θ� − px, c4 = pxmn sin2 θ�

c3 = xm
(
q sin2 θ� − p

)
+ pn

(
y sin2 θ� − x

)
. (23)

Recall that depending on the value of d�12 and d�13, we can obtain
more than one feasible combination (d12M , d13M) for the moving
configurations. Under certain conditions, we have the following result
on the eigenvalues of the matrix AM.

Lemma 2: Assume that the desired distances satisfy d�12 > d̂

and d�13 > d̂ and the desired bearing vectors are not perpen-
dicular, i.e., g�12 �⊥ g�13. Consider the combination (d12M , d13M) =
(yp1(d

�
12), yp1(d

�
13))with yp1 given in Lemma 1. Then, all eigenvalues

of the matrix AM have a negative real part if the following inequality
holds:

cos2 θ� <
mn

(
(mq − ny)2 +mn (m+ n) (x+ p)

)
(m2q + n2y) (mqx+ nyp)

. (24)

Proof: Assuming that the bearing vectors are not perpendicular, we
obtain that 0 < sin2 θ� < 1. Also, since d12M = yp1(d

�
12) and d13M =

yp1(d
�
13), and d�12 > d̂ and d�13 > d̂, we verify that m > 0 and n > 0.

We employ the Routh–Hurwitz stability criterion. The first column of
the Routh–Hurwitz table, which is the column of interest, contains the
following values:[

1 c1
c1c2 − c3

c1

(c1c2 − c3) c3 − c21c4
(c1c2 − c3)

c4

]
. (25)

For all roots λ to have negative real parts, all values in (25) need to be
positive. Withm > 0 andn > 0, the coefficients c1 and c4 are positive.
It remains to show that the third and fourth entries in (25) are positive.
In fact, it is sufficient to show that the numerators are both positive.
They evaluate to

c1c2 − c3 = sin2 θ�
(
m2q + n2y

)
> 0

(c1c2 − c3) c3 − c21c4 =

sin2 θ�
((

(mq − ny)2 +mn (m+ n) (x+ p)
)
mn

−
(
m2q + n2y

)
(mxq + npy) cos2 θ�

)
. (26)

Provided (24) holds, it follows (c1c2 − c3)c3 − c21c4 > 0. Since the
entries in (25) are all positive, we conclude all eigenvalues of the matrix
AM have negative real parts.

Remark 2: The implication of Lemma 2 is that under certain con-
ditions on the distance and bearing constraints, a subset of the moving

Fig. 3. Robot ordering for the moving configurations in the (1B2D)
setup; the black arrow is the bearing vector g�sum. From left to right, we
have ordering I to IV. Despite the different colors, both R2 and R3 are
distance robots.

Fig. 4. Robot trajectories for the (1D2B) setup; ( , , ) = (R1, R2,
R3), ◦ represents the initial and × is the final position. On the left panel,
we have an initial configuration (dashed lines) where robots converge to
the correct formation shape (solid lines) while the right panel illustrates
an instance of convergence to the moving configuration with velocity
w = Kbb

�
sum.

set Tp is locally asymptotically stable. Hence, initializing the robots
close to the conditions for the moving formation is not desirable. An
illustration of this behavior is shown in Fig. 4(b).

Lemma 2 also holds when the desired bearing vectors are perpen-
dicular, i.e., g�12 ⊥ g�13 ⇐⇒ sin2 θ� = 1. In this case, the coefficients
in (23) and also all entries in (25) are positive; therefore, the matrix AM

will only have eigenvalues with negative real parts.
A full characterization of the remaining cases can be found in [11].

In almost all cases, the matrix AM is not Hurwitz.

IV. (1B2D) ROBOT SETUP

In this section, the formation setup with one bearing and two distance
robots (1B2D) is considered. Without loss of generality, we assume
that robot R1 is the bearing robot while robots R2 and R3 are distance
robots. The right graph in Fig. 2 depicts the interconnection structure
from which the closed-loop dynamics is obtained as⎡⎢⎣ṗ1ṗ2

ṗ3

⎤⎥⎦ =

⎡⎢⎣Kbe12b +Kbe13b

Kde21dz21

Kde31dz31

⎤⎥⎦ . (27)

The corresponding link dynamics evaluates to[
ż12

ż13

]
= −

[
Kde12dz12 +Kbe12b +Kbe13b

Kde13dz13 +Kbe12b +Kbe13b

]
. (28)

Furthermore, the dynamics of the link z23 is found to be ż23 =
−Kd(e13dz13 − e12dz12). In the following, we follow similar steps to
those described in Section III for analyzing (27) and (28), focusing
on equilibrium configurations, possible moving formations, and their
(local) stability analysis.

A. Equilibrium Configurations

Proposition 3 ((1B2D) Equilibrium Configurations): The equilib-
rium configurations corresponding to the closed-loop formation system
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(27) belong to SC
p ∪ SF

p, where

SC
p =

{
p ∈ R6 | e = 06

}
and

SF
p =

{
p ∈ R6 | e =

[
0 0 −b��

diff b��
diff

]�}
(29)

with e = [e12d e13d e�12b e�13b]
� ∈ R6 and b�diff = g�12 − g�13.

Proof: Setting the LHS of each equation of (27) to the zero vector,
we obtain for robotR2 that−Kde12dz12 = 02 ⇐⇒ e12d = 0 ∨ z12 =
02 and similarly, we have −Kde13dz13 = 02 ⇐⇒ e13d = 0 ∨ z13 =
02 for R3. The expression for R1 evaluates to g12 + g13 = g�12 + g�13.
Defining∠g12 = α,∠g13 = β as before, and recalling the RHS of (14),
we can write the following set of angle constraints, namely:

{
α+ β= α� + β�

α− β= α� − β� ⇐⇒
{
α= α�

β= β� (30)

and {
α+ β = α� + β�

− (α− β)= α� − β� ⇐⇒
{
α= β�

β= α�.
(31)

Equation (30) translates to (g12, g13) = (g�12, g
�
13), implying robot

R1 satisfies its bearing tasks while (31) translates to the flipped forma-
tion shape with bearings satisfying (g12, g13) = (g�13, g

�
12). It follows

the bearing error signals are e12b = −e13b = −b�diff. With both g12
and g13 defined, we obtain d12 �= 0 and d13 �= 0; hence, z12 = 02

and z13 = 02 are both infeasible. Robots R2 and R3 will stop moving
when e12d = 0 and e13d = 0 holds, i.e., when they accomplished their
individual distance task irrespective of R1.

It can be verified that the signed area of the flipped formation satisfies
SAF = −S�

A.

B. Moving Configurations

Proposition 4 ((1B2D) Moving Configurations): The moving con-
figurations occur when the robots are colinear, i.e., g12 = ±g13 and
oriented in the direction of b�sum = g�12 + g�13.

Proof: Expanding (28) yields

(Kde12dd12 +Kb) g12 +Kbg13 = Kbb
�
sum

Kbg12 + (Kde13dd13 +Kb) g13 = Kbb
�
sum. (32)

Solving for ż23 = 02, we obtain e12dd12g12 = e13dd13g13. Two vec-
tors are equal when they have the same magnitude and direction or
opposite signs in both the magnitude and direction. Hence, we dis-
tinguish the cases g12 = g13 ∧ e12dd12 = e13dd13 and g12 = −g13 ∧
e12dd12 = −e13dd13. Since g12 = ±g13, we conclude the robots are
colinear. Substituting this in (32), we obtain expressions of the form
h g12 = Kbd

�
sumg

�
sum where h = Kde12dd12 + 2Kb when g12 = g13

and h = Kde12dd12 when g12 = −g13. From this, we infer g12 =
±g�sum, implying the orientation of the formation is in the direction
of b�sum.

In light of Proposition 4, we can obtain four different ordering of the
robots, as depicted in Fig. 3. To provide a full characterization of the
moving configurations, it remains to obtain the inter-robot distances for
the different ordering. We first derive expressions for the distance error
corresponding to the different ordering from the general expression
h g12 = Kbd

�
sumg

�
sum. Define e12d =

s
d12

Rbd and e13d =
t

d13
Rbd. For

the different robot orderings in Fig. 3, we have the following for s and t:
1) g12 = g13 = g�sum; s = t = −2 + d�sum;
2) g12 = g13 = −g�sum; s = t = −2− d�sum;
3) g12 = −g13 = g�sum; s = −t = d�sum;
4) g12 = −g13 = −g�sum; s = −t = −d�sum.

When expanded, we obtain the cubic expression in Lemma 1 with
coefficients c = −d�12 and d = −sRbd when solving for feasible dis-
tance d12 while c = −d�13 and d = −tRbd when we are considering
distance d13. Since d�sum ∈ {0, 2}, it follows that the value for s and
t can be positive or negative and, hence, also the coefficient d of the
cubic equation. In turn, this may impose a condition on the desired
distances d�12 and d�13 for obtaining positive values for d12 and d13, as
discussed in Section II-C. In particular, we can verify that coefficient
d has range d ∈ (−2, 4)Rbd. Taking d = 4Rbd, we obtain that all four
robot orderings in Fig. 3 can occur when the desired distances satisfy
d�ij ≥

√
3 3
√
2Rbd.

In Section IV-C, we will show that the colinear moving formations
are unstable.

C. Local Stability Analysis of the Equilibrium and Moving
Formations

We have characterized the equilibrium configurations and the mov-
ing configurations. It is of interest to study the local stability property
of these different sets. Similar to the stability analysis for the (1D2B)
setup, we will use Lyapunov’s indirect method. The Jacobian matrix
corresponding to the z-dynamics (28) results in

A = −
[
KbA12b +KdA12d KbA13b

KbA12b KbA13b +KdA13d

]
(33)

with Aijd and Aijb as defined earlier.
We first consider equilibrium configurations (29).
Lemma 3: The Jacobian matrixAE at the equilibrium configurations

in SC
p ∪ SF

p is Hurwitz.
Proof: For the correct and desired equilibrium configurations in SC

p ,
the Jacobian matrix (33) evaluates to

AC
E = −

[
x� 0
0 p�

]
⊗ I2 −

[
m� g�12g

��
12 p� Jg�13 (Jg

�
13)

�

x� Jg�12 (Jg
�
12)

� n� g�13g
��
13

]
(34)

wherex, y, p, q, m, n, and the bearing matrices are previously defined
in (17) and (18). Also, for the flipped equilibrium configurations in SF

p,
we obtain

AF
E = −

[
x� 0
0 p�

]
⊗ I2 −

[
m� g�13g

��
13 p� Jg�12 (Jg

�
12)

�

x� Jg�13 (Jg
�
13)

� n� g�12g
��
12

]
.

(35)
The characteristic polynomial χE(λ) corresponding to the Jacobian
matrices AC

E and AF
E is the same, namely

χE (λ) = (λ + q�) (λ + y�) . . .(
λ2 + (p� + x�) λ + p�x� sin2 θ�

)
. (36)

The roots of (36) are

λ1 = −q�, λ2 = −y�

λ3,4 = −1

2
(p� + x�)± 1

2

√
(p� + x�)2 − 4p�x� sin2 θ�. (37)

We can verify that 0 < 4p�x� sin2 θ� ≤ (p� + x�)2. This implies that
all λs are real. Also, −(p� + x�) +

√
(p� + x�)2 − 4p�x� sin2 θ�

< 0, and hence, we conclude that all roots are negative real.
This leads to the following main result.
Theorem 2: Consider a team of three robots arranged in the (1B2D)

setup with closed-loop dynamics given by (27). Given an initial con-
figuration p(0) that is close to the desired formation shape, the robot
trajectories asymptotically converge to a point p̂ ∈ SC

p .
Proof: Following Lemma 3, we obtain that link trajectories locally

asymptotically converge to the desired relative positions z� when they
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are initialized in the neighborhood of it. With z�ij = d�ij g
�
ij , it follows

that the robots also converge to a point p̂ ∈ SC
p .

Employing Lyapunov’s indirect method to the moving colinear for-
mations yields the following statement.

Theorem 3: Let p ∈ R6 be a configuration yielding a colinear for-
mation as depicted in Fig. 3. Then, p is unstable.

Proof: We first obtain the matrix AM and the corresponding charac-
teristic polynomial χM(λ). With e12d =

s
d12

Rbd, e13d =
t

d13
Rbd, and

bearing vectors g12 M and g13 M oriented to g�sum, AM takes the following
form:

AM=−

[
(s+ 1)x 0

0 (t+ 1) p

]
⊗I2−

[
mg�sumg

��
sum p Jg�sum (Jg�sum)

�

xJg�sum (Jg�sum)
� n g�sumg

��
sum

]

(38)
where the variables x, y, p, q, m, and n are defined in (17). The
characteristic polynomial χM(λ) is

χM (λ) = (λ + pt+ q) (λ + xs+ y)
(
λ2 + Bλ + C

)
(39)

where the coefficients are B = (p(t+ 1) + x(s+ 1)) and C =
px((t+ 1)(s+ 1)− 1). We explore the nature of the roots, hereby
focusing on the coefficients of the quadratic polynomial.

For the different orderings, we obtain the following:
i) B = (p+ x)(−1 + d�sum) and C = px((−1 + d�sum)

2 − 1) < 0;
ii) B = (p+ x)(−1− d�sum) < 0 and C = px((−1− d�sum)

2 − 1);
iii) B = (p+ x) + (x− p)d�sum and C = −(d�sum)

2px < 0;
iv) B = (p+ x)− (x− p)d�sum and C = −(d�sum)

2px < 0.
We infer that the quadratic polynomial in (39) contains at least a

root with positive real part since for each ordering, either B or C is
negative. This implies that matrix AM is not Hurwitz; therefore, the
colinear formations are unstable.

Remark 3: The bearing-only control law proposed in [17] can be
obtained from the current control law by Pgij eijb = −Pgijg

�
ij . After

following the steps as we have carried out for the gradient-based bearing
control law, we infer that the closed-loop dynamics for the (1D2B) and
(1B2D) robot setups contain only equilibrium configurations and no
moving configurations. The incorrect equilibrium configurations, in
which either one or both of the bearing vectors are incorrect, are found
to be unstable after linearization; the desired equilibrium is almost
globally stable.

V. NUMERICAL EXAMPLE

We consider two triangular formation shapes with the same distances
d�12 and d�13 but different value for the internal angle θ� (Note: θ� =
cos−1(g��

12 g�13)). In particular, shape T1 has bearing vectors such that
the internal angle is θ�T1

= 15◦ while for shapeT2, we take θ�T2
= 45◦.

We set the gain ratio Rbd to a value 4. Taking the different setups
into consideration, the threshold distance such that moving formations
(stable or unstable) exist is d̂ = 2

√
3 ≈ 3.4641. We set the desired

distances to d�12 = d�13 = 4 and assume ∠g�12 = 0◦. Thus, shape T1

and T2 has the following desired constraints:

T1 : d�12 = d�13 = 4; ∠g�12 = 0◦, ∠g�13 = 15◦;

T2 : d�12 = d�13 = 4; ∠g�12 = 0◦, ∠g�13 = 45◦. (40)

For shape T1, the moving formation for the (1D2B) setup is unstable,
since cos2(15◦) = 0.9330 > 0.9321. Hence, the constraint in (24) is
violated. For shape T2, we obtain cos2(15◦) = 0.5 < 0.9321 satisfy-
ing constraint (24).

In the current example, we first intentionally set the gain ratioRbd and
then obtain desired distances d�ijs, in order to show the existence and
local asymptotic stability of moving formations in the (1D2B) setup.

Fig. 5. Robot trajectories for the (1B2D) setup. On the left panel, we
have an initial configuration where robots move and converge to the
flipped formation shape while the right panel illustrates the evolution of
the robots when the initial configuration satisfy conditions for ordering III
in Fig. 3.

A. (1D2B) Simulation Results

For the three robots in the (1D2B) setup, we focus on the formation
shape T2. The Jacobian matrix AM for the moving formation with
distances d12 = d13 ≈ 3.8686 is checked to be Hurwitz. Therefore,
employing the closed-loop dynamics (5) can, depending on the initial
configuration p(0), lead to robot trajectories moving with a constant
velocity. In Fig. 4(b), we show such an outcome for a specific p(0).
Fig. 4(a) depicts an initial p(0) leading to convergence to the correct
shape.

B. (1B2D) Simulation Results

For the three robots in the (1B2D) setup, we focus on the formation
shape T1. There are two equilibrium formations, namely, the correct
and desired formation and the flipped formation satisfying only the
distance constraints but not the bearing constraints. Fig. 5(a) depicts an
initial configuration p(0), which converges to this flipped formation.
Notice that the signed area corresponding to p(0) is positive (counter-
clockwise cyclic ordering of the robots) while the flipped formation
has a negative signed area (clockwise cyclic ordering of the robots).
Fig. 5(b) depicts an initial colinear configuration p(0) leading to the
robots to move with a constant velocity when employing the closed-loop
dynamics (27). When perturbed, it will converge either to the correct
or the flipped formation shape.

VI. CONCLUSION

In the current article, we have considered the formation shape
problem for teams of three robots partitioned into two categories,
namely: 1) distance and 2) bearing robots. Our aim was to employ
gradient-based control laws in a heterogeneous setting and provide
a systematic study on the stability of the possible formation shapes
that arise as a result. We have shown that under certain conditions on
the distance and bearing error signals, we obtain distorted formation
shapes moving with a constant velocity w. For the (1B2D) robot setup,
these undesired formation shapes are unstable while for the (1D2B)
robot setup, we derive conditions such that one of the distorted moving
formation shape is locally asymptotically stable. When the gains Kd

and Kb are chosen such that the required desired distances d�ijs are

smaller than a threshold distance d̂(Kb, Kd), then moving formation
shapes do not exist. Depending on the setup considered, this may lead
to global asymptotic stability of the desired formation shape.

We note that the moving configurations in the (1D2B) setup and
the flipped equilibrium configuration in the (1B2D) setup both have
a signed area that has an opposite sign compared to the signed area
of the desired formation shape. Hence, the use of signed constraints
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as introduced in [15] and [18] is a possible future direction. For the
(1D2B) setup, the inclusion of the signed area constraint in [15] does
not increase the sensing load of the distance robot while it can have the
potential of mitigating the existence of distorted formation shapes.
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