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SUMMARY

Understanding how biological neural networks process information is one of the biggest open scientific 

questions of our time. Advances in machine learning and artificial neural networks have enabled the modeling 

of neuronal behavior, but classical models often require a large number of parameters and highly task-spe

cific architectures, which can complicate model design and scalability. Quantum computing offers an alter

native approach through quantum machine learning, which can achieve efficient training with fewer param

eters. In this work, we introduce a quantum generative model framework for generating synthetic data that 

captures the spatial and temporal correlations of biological neuronal activity. Our model demonstrates the 

ability to achieve reliable outcomes with fewer trainable parameters compared to classical methods. These 

findings highlight the potential of quantum generative models to provide new tools for modeling and under

standing neuronal behavior, offering a promising avenue for future research in neuroscience.

INTRODUCTION

Exploring information processing within biological neuronal net

works remains a core challenge in contemporary science, with 

direct implications across disciplines like neuroscience, medi

cine, and deep learning.1–4 One way to approach this problem 

is to use computational models that can reproduce the neuronal 

activity data produced in real systems. Accurate synthetic data 

can be extremely useful for studying properties such as network 

connectivity and the response to stimuli under controlled 

conditions.5,6

Several models for neuronal activity have been developed, 

and many achieve outstanding results in replicating neuronal 

network correlations. One class of methods that use statistical 

mechanics tools to model neuronal activity is maximum entropy 

models, which reliably capture some network correlations by 

only fitting pairwise interactions.7,8 Even though numerous ad

aptations of this technique have been implemented to achieve 

higher accuracy or to include temporal correlations,9–14 this 

approach shows several limitations when addressing larger net

works, especially due to the assumption that pairwise correla

tions are sufficient to encapsulate most of the statistical features 

of these complex systems.15,16

Another effective approach for modeling neuronal activity is to 

use machine learning (ML) models to produce data that fit the 

biological network statistics and further investigate the proper

ties of the real system. The ML models do not rely on prior infor

mation about the biological system but instead learn to repro

duce correlations solely from data. A supervised strategy using 

convolutional neural networks first showed that a deep learning 

approach can be successful at generating neural responses 

from stimuli.17 However, the model’s benefits are hampered by 

limited accuracy and its dependency on labeled data. With the 

increasing popularization of generative models, models with su

perior predictive performance and generalization power were 

implemented. Models like variational auto-encoders,18 recurrent 

neural networks,19 generative adversarial networks (GANs),20

and transformers21 have been used to produce spike trains (bi

nary sequences representing neuronal activity) with high accu

racy and good correspondence of spatial and temporal correla

tions when compared to real data. While each iteration of these 

models improves in quality, all share the same disadvantage 

regarding their interpretability. In order to fit the statistics of 

larger systems, these models need to use a number of trainable 

parameters that scale unfavorably with the number of simulated 

neurons. Apart from demanding more computational power, an 

excessive number of parameters makes the models difficult to 

analyze or be used as a tool to investigate concrete properties 

of biological networks.

As the field of quantum computing rapidly advances, quantum 

ML (QML) models are rising as an alternative to classical 

methods, with the possibility of achieving similar results while 

keeping the parametrized model more compact in terms of train

able parameters.22–25 Specifically, the field of quantum genera

tive learning has received much attention recently: quantum 

models have shown better generalization and expressivity for 

specific tasks when compared to their classical counter

parts.26–28 Since the conception of QML, one class of quantum 

generative models has been extensively studied: quantum 

GANs (QGANs).29 The adversarial approach has proven suc

cessful and is being continually improved, producing higher- 

dimensional data with more stable training routines.30–34
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This work is inspired by the observation that quantum genera

tive models have shown promise in the replication of discrete 

distributions.33,35 Additionally, the salamander retina dataset 

has been used as a benchmark for distribution learning using 

quantum Boltzmann machines.36,37 These observations suggest 

the possibility for a full reconstruction of both spatial and tempo

ral correlations with the quantum generative model that we pre

sent here. We build on our preliminary work38 and design 

SpiQGAN, an efficient quantum framework that enables the pro

duction of synthetic neuronal data for biological neuronal net

works. SpiQGAN generates spike trains of neuronal activity: 

data that consist of binary activation states of the neurons 

obtained from recording the response of ganglion cells of the sal

amander retina to a visual stimulus as a function of time.39 This 

dataset represents one of the standard benchmarks in neuronal 

activation modeling.

To achieve the generation of data that maximally resemble 

the real biological sample, we apply a hybrid QGAN with a 

quantum generator that produces synthetic activity data and 

a classical critic that aims to distinguish real data from the da

taset39 from those produced by the quantum generator. The 

model is trained adversarially, and the outcome is a generator 

that can reproduce neuronal activity that is, to a high degree, 

similar to the salamander retina dataset (Figure 1). Compared 

to classical neural network alternatives, the quantum generator 

has the advantage of achieving reliable outcomes with a 

significantly reduced number of trainable parameters, which 

scale more favorably for increasing systems’ sizes: the number 

of parameters is linear in the number of neurons. In other 

words, SpiQGAN is able to reproduce the behavior of this com

plex neuronal dataset in both space and time with significantly 

fewer trainable parameters than classical ML models, thus 

forming a stepping stone toward using quantum approaches 

for more compact and more interpretable models for neuronal 

behavior.

RESULTS

Distributional similarity between generated and real 

data

We trained SpiQGAN for t = {1;5; 10; 20; 30} timesteps and 

n = {2; 4;6; 8; 10} neurons in order to evaluate the quality of 

the generated data as a function of system size and time trace 

length.

Figure 1. Illustration of the model architecture 

(A) Architecture of the model, with generator G producing generated samples and dataset D producing biological samples, which are both used as input for 

critic C. 

(B) Architecture of generator. In the top left corner, the generator composed of several sub-generators is shown. The bottom part shows that each sub-generator 

is a quantum circuit following a re-uploading scheme. Here, a noise-encoding layer and a parametrized layer are repeated for l layer, with the parametrized layer 

ansatz of each parametrized layer shown in the top right. 

(C and D) After training, the generator can be used to produce samples (D) similar to samples obtained from the biological dataset (C).
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Comparing the distribution of possible states of the simulated 

data to that of the salamander retina data is a straightforward 

way to evaluate the quality of our generative model. Reconstruc

tion of these distributions also allows us to calculate distribution 

distances such as the Jensen-Shannon (JS) divergence. Howev

er, direct distribution comparison is particularly challenging: for n 

neurons and t timesteps, the number of possible (spiking) states 

is 2nt. We are thus able to directly visually compare distributions 

only for a small number of neurons.

For two neurons, n = 2, and one timestep, t = 1, the possible 

states are {00;01;10;11}. For two neurons and two timesteps, 

t = 2, the possible states are {0000; 0001;…; 1110; 1111}. In 

this representation, the first two bits represent neurons 1 and 2 

at timestep 1 and the last two the states of these neurons at time

step 2. This means that the distribution of states quickly be

comes intractable for an increasing number of neurons or 

timesteps. Nonetheless, it is very informative to compare distri

butions directly for low numbers of neurons.

For all cases, regardless of system size, we calculated a series 

of statistical values useful for evaluating the behavior of the 

generated and the real data from the salamander retina dataset. 

Specifically, we calculate the pairwise covariance between the 

activation state of a pair of neurons; the mean firing rate, which 

corresponds to how many times a neuron spikes per second; 

the k-probability, equal to the probability of k neurons being 

active at the same time; and the autocorrelogram to estimate 

the correlation between a trace of spikes and itself for delayed 

timesteps.

First, we consider the case with a unique timestep (one sub- 

generator quantum circuit) and neurons varying from 2 to 8. In 

these cases, the distribution is easily numerically tractable. We 

show the final distribution of generated spiking states compared 

to the distribution of the real data in Figure 2, with a zoom on the 

most prominent terms of the distribution in the bottom inset. The 

probabilities of the spiking states are calculated using the last 

iteration of the trained circuit. This is coincident with the last 

value of the JS divergence, which steadily decreases during 

training, visible in the bottom insets of Figure 2. These results 

show that for a sufficient number of training steps, the distribu

tion of generated states converges to the distribution of the sal

amander retina dataset. This distribution convergence is the first 

indication that the training is working as intended, and the sam

ples produced by the generator match some of the statistics of 

the real data. Throughout, we compared both standard loss 

and biologically inspired K-loss, which are defined in the 

methods section. We found that, on average, K-loss performed 

Figure 2. Comparison between distribution of states and JS divergence calculated using generated and real data 

Each image show the distribution of spiking states for generated data obtained after training with the K-loss (in red) and the standard loss (in blue) and the real 

distribution of the spiking states (black) for (A) 2, (B) 4, (C) 6, and (D) 8 neurons, all for the case of 1 timestep. The bottom inset shows a zoom of the first four 

activation states. The top inset shows the JS divergence for all training steps for K (red) and standard (blue) loss.
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slightly better (see Note S1 and Figure S1 for a detailed 

comparison).

Statistical analysis of generated activity

In Figure 3, we show further statistics used to assess the quality 

of the generated data for 2 and 10 neurons and varying the num

ber of timesteps, focusing only on the biologically informed K- 

loss from now on. Complete results for all neuron numbers and 

timesteps, accompanied by a focused comparison between 

the statistics obtained with two different loss functions, are 

shown in Note S1 and the figures of the supplemental 

information (see Figures S1 and S4–S8 for statistical metrics 

and S9–S13 for activity traces). In Figure 3, we see that the 

k-probability (Figures 3B and 3F) and the mean firing rate 

(Figures 3C and 3G) are well fitted by SpiQGAN, while the pair

wise covariance (Figures 3A and 3E) and the autocorrelogram 

(Figures 3D and 3H) show more discrepancy. In Figure 3H, we 

see that the number of generated spikes as a function of simu

lated timesteps gets closer to the real distribution as the number 

of timesteps increases.

Spike train comparison with biological data

A visual comparison of spike trains generated by SpiQGAN and 

those from the biological dataset is shown in Figure 3 for 2 

(Figures 3I–3L) and 10 (Figures 3M–3P) neurons. A visual com

parison between the generated spikes and the salamander retina 

Figure 3. Statistics and generated data for 2 and 10 neurons 

(A–H) Statistics for the case of 2 and 10 neurons, with 1, 5, 10, and 30 timesteps represented with different colors in each image. Specifically, (A and E) pairwise 

covariance, (B and F) k-probability, (C and G) firing rate, and (D and H) autocorrelogram are shown. 

(I–P) Spike traces for 2 and 10 neurons for the case of generated data with 1 (I and M), 10 (J and N), and 30 (K and O) timesteps and for real data (L and P).

Please cite this article in press as: Hernandes and Greplova, Exploring biological neuronal correlations with quantum generative models, Cell Reports 

Physical Science (2025), https://doi.org/10.1016/j.xcrp.2025.102682

4 Cell Reports Physical Science 6, 102682, August 20, 2025 

Article

ll
OPEN ACCESS



samples shows that for an increasing number of timesteps, the 

QGAN-generated samples start forming bursting clusters, an 

important feature of the biological dataset.

DISCUSSION

Overall, all SpiQGAN iterations that we implemented achieved a 

reasonable fit of the key statistical features of the data, especially 

given the model’s simplicity and general purpose design, while 

maintaining a low number of parameters, which scale favorably 

(linearly) in the number of neurons. Specifically, for our model 

with 4 parameterized layers, the total number of trainable param

eters is equal to 8 times the number of neurons per timestep. This 

scaling has the following implication: data generation for a 

neuronal network with dozens of neurons in our implementation 

uses hundreds of trainable parameters, compared to thousands 

or tens of thousands in the case of the traditional ML ap

proaches.20,21 A detailed comparison benchmarking our quan

tum generator against classical fully connected generators, 

which consistently underperformed even with more parameters, 

can be found in Note S2 and Figures S2 and S3. Moreover, it is 

clear that models that simulate more neurons presented 

improved performance, which insinuates that using larger cir

cuits could return even better results. While some metrics, like 

the mean firing rate and pairwise covariance, show discrep

ancies, others, such as the k-probability and the similarity be

tween generate and real spike train patterns, including burst- 

like patterns, indicate that the model captures essential features 

of the neuronal data.

We have shown that QGANs are able to generate synthetic 

neuronal activity data that faithfully reproduce both spatial and 

temporal correlations of the biological dataset. We designed 

and implemented a resource-efficient SpiQGAN that re-uses 

the same building block across the model. Additionally, we 

included a biologically informed loss function to take into ac

count the statistical properties of the generated samples.

This work lays the foundation for the utilization of quantum 

learning models beyond quantum science, here in neuroscience 

modeling. In particular, SpiQGAN opens the possibility of 

running resource-efficient algorithms on quantum computers 

to beneficially model neuronal activity. With the compact quan

tum models, the dynamics and interpretation of neuronal activity 

can be efficiently explored in future work.

METHODS

GANs

GANs, which were introduced by Goodfellow et al.,40 are a power

ful class of generative models that learn to synthesize data sam

ples by framing the learning process as an adversarial game be

tween two neural networks: a generator and a discriminator. 

The generator network, G, aims to produce data samples that 

mimic those drawn from the true data distribution Px. It takes a 

noise vector z, sampled from a predefined distribution Pz (e.g., a 

Gaussian or uniform distribution), and transforms it into a synthetic 

data sample, G(z). Meanwhile, the discriminator network, D, acts 

as a binary classifier, distinguishing between real samples from 

the true data distribution and fake samples generated by G.

The training objective is formulated as a minimax game where 

the generator tries to minimize the probability of the discriminator 

correctly identifying generated samples while the discriminator 

simultaneously maximizes its ability to correctly classify the 

samples:

min
G

max
D

Ex∼Px
[log D(x)]+ Ez∼Pz

[log(1 − D(G(z)))]:

(Equation 1) 

Although GANs have achieved remarkable success in various 

applications (e.g., image synthesis and text generation), they are 

often plagued by training instabilities, such as vanishing gradi

ents and mode collapse.41 These issues arise primarily because 

the loss function may not provide meaningful gradients when the 

discriminator is too strong or too weak, leading to poor 

convergence.

The Wasserstein GAN (WGAN)41 addresses many of the 

training challenges associated with standard GANs by 

leveraging the Wasserstein distance (also known as the Earth- 

mover distance) to measure the divergence between the true 

data distribution and the generated data distribution. Unlike 

the original GAN, the discriminator in WGAN, referred to as a 

critic, outputs a scalar value instead of a binary classification, 

quantifying how well the generated samples approximate the 

real data distribution. The WGAN objective is formulated as

min
G

max
D∈D

Ex∼Px
[D(x)] − Ez∼Pz

[D(G(z))]; (Equation 2) 

where D is the set of all 1-Lipschitz functions, enforced through 

weight clipping or gradient penalties.42 By stabilizing the gradi

ents, WGAN significantly improves convergence behavior, al

lowing the generator to learn a more accurate representation 

of the target distribution.

Parametrized quantum circuits and QGANs

As quantum computing has advanced, QML has emerged as a 

promising frontier. One key concept is parametrized quantum 

circuits (PQCs). PQCs consist of a sequence of quantum gates 

with parameters that are classically optimized. PQCs can 

encode complex quantum states and can be used to approxi

mate complex distributions.

Building on this foundation, QGANs extend the GAN frame

work into the quantum domain by incorporating quantum com

ponents such as quantum generators, quantum discriminators, 

or both. In QGANs, the generator may be implemented as a 

PQC, which is trained to generate samples that match the 

desired distribution.

Implementation of the quantum generator and the 

classical critic

SpiQGAN uses a quantum generator to model the spike activity 

patterns of retinal ganglion cells. Specifically, we employ a patch 

WQGAN approach, where the quantum generator is divided into 

several sub-generators, each corresponding to a different time

step. Each sub-generator shares the same PQC architecture but 

has independent trainable parameters, allowing for flexibility in 

capturing the temporal dynamics of neuronal activity.
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The generator begins with a random initial quantum state |z〉, 
which is mapped to the final state |g〉 using a data re-uploading 

scheme.43 The quantum circuit consists of five layers, where 

each layer applies a sequence of parametrized unitaries U(θi)

and noise-encoding unitaries U(z). The parametrized unitary 

U(θi) is implemented using rotation gates around the y and z 

axes (RY and RZ ) and entangling operations (CNOT gates) be

tween adjacent qubits, while the encoding block applies RX rota

tions to each qubit to encode a sampled noise vector. The gener

ator outputs a sequence of activity states for multiple neurons 

over several timesteps by concatenating the outputs from all 

sub-generators. All quantum circuit results in this work are ob

tained from classical numerical simulations of ideal quantum 

hardware. This allows us to benchmark the behavior of the model 

without the influence of noise. This comes with the cost of longer 

training times, given the inefficiency of calculating the quantum 

gradient. The training times range from approximately 2 h for 

the smallest system to 5 days for the larger systems. We also 

tested generators with a higher number of variational layers per 

sub-generator to evaluate whether deeper circuits would 

improve performance. However, the improvements were not sig

nificant, and training became significantly more expensive due to 

the cost of quantum gradient estimation. For this reason, we 

fixed the number of layers to five in all reported experiments, 

balancing expressivity and trainability.

The critic in our QGAN framework is a fully connected classical 

neural network. The network consists of the following:

(1) An input layer matching the size of the generated sam

ples.

(2) A hidden layer with 64 neurons using ReLU activation.

(3) An output layer without an activation function, which 

directly provides a scalar value representing the diver

gence between the real and generated distributions.

Training procedure

SpiQGAN is trained by optimizing two separate loss functions for 

the generator and the critic. The critic’s loss function aims to 

maximize the difference between its outputs for real samples x 

and generated samples G(z):

LC =
1

2B

∑

j

(
C
(
G
(
zj

))
− C

(
xj

))
; (Equation 3) 

whereas the generator’s objective is to minimize the critic’s eval

uation of the generated samples:

LG = −
1

B

∑

j

C
(
G
(
zj

))
− K

(
∑

i

G
(
zj

)i
− xi

j

)

;

(Equation 4) 

with B being the batch size and the term K

(
∑

i

G(zj)
i
− xi

j

)

added 

to the standard Wasserstein’s generator loss function, inspired 

by maximum entropy models,11 corresponding to the difference 

between the number of spikes in a fake sample and those in a 

real sample. This loss was named K-loss, and by setting K = 

0, the standard loss is retrieved. Training alternates between 

two updates of the critic and one update of the generator, 

ensuring stable convergence. The Adam optimizer is employed 

with learning rates of 0.05 for the generator and 0.002 for the 

critic.

Dataset and evaluation metrics

The dataset comprises neuronal spike activity recorded from 

retinal ganglion cells in a salamander retina.39 It contains 297 

repetitions of a 19 s natural movie, recorded as binary spike 

events, where 1 indicates a spike and 0 indicates no spike. 

The goal is to generate synthetic data that replicate these binary 

spike patterns while maintaining important statistical properties. 

To evaluate the performance of the QGAN, we used the following 

statistical metrics.

(1) Pairwise covariance: measures the extent to which two 

neurons fire together. High covariance suggests that the 

neurons are more likely to spike simultaneously.

(2) Mean firing rate: the average rate at which a neuron fires 

spikes over time. This metric helps ensure that the gener

ated data match the overall activity level of the real data.

(3) k-probability: the probability distribution over the number 

of spikes (k) in a given time window. Matching this distri

bution ensures that the generated data capture the vari

ability in spike counts.

(4) Autocorrelogram: a measure of the temporal structure of 

the spike train, representing the correlation of a neuron’s 

spike times with itself over different time lags. This metric 

is crucial for capturing the temporal dynamics of neuronal 

activity.

To comprehensively assess the model’s performance, we 

conducted experiments varying the number of neurons n = {2, 

4, 6, 8, 10} and timesteps t = {1, 2, 5, 10, 20, 30}. For small-scale 

systems, alongside the metrics listed above, we computed the 

exact probabilities of all possible spiking states, which were 

used to compare the generated and real data distributions using 

distance measures such as JS divergence, which, for the two 

probability distributions P and Q, is defined as

JS(P‖Q) =
1

2
KL(P‖M)+

1

2
KL(Q‖M); (Equation 5) 

where M = 1
2
(P + Q), and KL denotes the Kullback-Leibler 

divergence:

KL(P‖Q) =
∑

i

P(i)log
P(i)

Q(i)
: (Equation 6) 
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