
 
 

Delft University of Technology

A GPU-based integrated simulation framework for modelling of complex subsurface
applications

Khait, Mark; Voskov, Denis

DOI
10.2118/204000-MS
Publication date
2021
Document Version
Final published version
Published in
Society of Petroleum Engineers - SPE Reservoir Simulation Conference 2021, RSC 2021

Citation (APA)
Khait, M., & Voskov, D. (2021). A GPU-based integrated simulation framework for modelling of complex
subsurface applications. In Society of Petroleum Engineers - SPE Reservoir Simulation Conference 2021,
RSC 2021 Article SPE-204000-MS Society of Petroleum Engineers. https://doi.org/10.2118/204000-MS

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.2118/204000-MS
https://doi.org/10.2118/204000-MS


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



SPE-204000-MS

A GPU-Based Integrated Simulation Framework for Modelling of Complex
Subsurface Applications

Mark Khait, Delft University of Technology; Denis Voskov, Delft University of Technology, Stanford University

Copyright 2021, Society of Petroleum Engineers

This paper was prepared for presentation at the SPE Reservoir Simulation Conference, available on-demand, 26 October 2021 – 25 January 2022. The official
proceedings were published online 19 October 2021.

This paper was selected for presentation by an SPE program committee following review of information contained in an abstract submitted by the author(s). Contents
of the paper have not been reviewed by the Society of Petroleum Engineers and are subject to correction by the author(s). The material does not necessarily reflect
any position of the Society of Petroleum Engineers, its officers, or members. Electronic reproduction, distribution, or storage of any part of this paper without the written
consent of the Society of Petroleum Engineers is prohibited. Permission to reproduce in print is restricted to an abstract of not more than 300 words; illustrations may
not be copied. The abstract must contain conspicuous acknowledgment of SPE copyright.

Abstract
Alternative to CPU computing architectures, such as GPU, continue to evolve increasing the gap in peak
memory bandwidth achievable on a conventional workstation or laptop. Such architectures are attractive
for reservoir simulation, which performance is generally bounded by system memory bandwidth. However,
to harvest the benefit of a new architecture, the source code has to be inevitably rewritten, sometimes
almost completely. One of the biggest challenges here is to refactor the Jacobian assembly which typically
involves large volumes of code and complex data processing. We demonstrate an effective and general
way to simplify the linearization stage extracting complex physics-related computations from the main
simulation loop and leaving only an algebraic multi-linear interpolation kernel instead. In this work, we
provide the detailed description of simulation performance benefits from execution of the entire nonlinear
loop on the GPU platform. We evaluate the computational performance of Delft Advanced Research
Terra Simulator (DARTS) for various subsurface applications of practical interest on both CPU and GPU
platforms, comparing particular workflow phases including Jacobian assembly and linear system solution
with both stages of the Constraint Pressure Residual preconditioner.

Introduction
Numerical simulations are essential for the modern development of subsurface reservoirs (Aziz and Settari,
1979; Dake, 1983; Peaceman, 2000). They are widely used for the evaluation of oil recovery efficiency,
performance analysis, and various optimization problems. Due to the complexity of the underlying physical
processes and considerable uncertainties in the geological representation of reservoirs, there is a persistent
demand for more accurate models.

Fully implicit methods (FIM) are conventionally used in reservoir simulation because of their
unconditional stability (Aziz and Settari, 1979). On the other hand, after discretization is applied to
governing Partial Differential Equations (PDE) of a problem, the resulting nonlinear system represents
different tightly coupled physical processes, which is difficult to solve. Usually, a Newton-based iterative
method is applied, which demands an assembly of the Jacobian and the residual for the combined system
of equations (i.e., linearization) at every iteration forming a linear system of an equal size (often ill-
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2 SPE-204000-MS

conditioned). Precisely the solution of such systems takes most of the simulation time in most practical
applications.

Several conventional linearization approaches exist, though neither of them is robust, flexible, and
computationally efficient all at once. Numerical derivatives provide flexibility in the nonlinear formulation
(see Xu et al., 2011, for example), but a simulation based on numerical derivatives may lack robustness
and performance (Vanden and Orkwis, 1996). Straightforward hand-differentiation is the state-of-the-
art strategy in modern commercial simulators (Cao et al., 2009; Schlumberger, 2011). However, this
approach requires an introduction of a complicated framework for storing and evaluating derivatives for
each physical property, which in turn reduces the flexibility of a simulator to incorporate new physical
models and increases the probability for potential errors. The development of the Automatic Differentiation
(AD) technique allows preserving both flexibility and robustness in derivative computations. In reservoir
simulation, the Automatically Differentiable Expression Templates Library (ADETL) was introduced by
Younis (2011). Being attractive from the perspective of flexibility, the AD technique by design inherits
computational overhead, which affects the performance of reservoir simulation (Khait and Voskov, 2017a).

Another linearization approach called Operator-Based Linearization (OBL) was proposed by Voskov
(2017). It could be seen as an extension of the idea to abstract the representation of properties from the
governing equations, suggested in Zaydullin et al. (2013) and Haugen and Beckner (2015). In the OBL
approach, the parameterization is performed based on the conventional molar variables. All properties
involved in the governing equations are lumped in a few operators, which are parameterized in the physical
space of the simulation problem either in advance or adaptively during the simulation process. The control
on the size of parameterization hyper-rectangle helps to preserve the balance between the accuracy of the
approximation and the performance of nonlinear solver (Khait and Voskov, 2017b). Note, that the OBL
approach does not require the reduction in the number of unknowns, and only employs the fact that physical
description (i.e., fluid properties) is approximated using piecewise linear interpolation.

Delft Advanced Research Terra Simulator (DARTS) was introduced and described in Khait (2019). It
exploits the OBL approach to decouple the computations of physical properties from the main simulator
core. Jacobian assembly in DARTS is therefore simplified and generalized increasing its portability to
alternative computational architectures, such as GPU. In this work, we demonstrate the viability of GPU-
based compositional simulation in DARTS with up to 10 components. We evaluate the computational
performance of DARTS for various subsurface applications relevant to energy transition on both CPU and
GPU platforms. We provide a detailed performance comparison of particular workflow pieces composing
Jacobian assembly and linear system solution, including both stages of CPR preconditioner.

Method
Here, we briefly describe various ingredients of the Delft Advanced Reservoir Terra Simulation (DARTS,
2019) framework.

Governing equations
First, we describe the conventional nonlinear formulation for a general purpose thermal compositional
model. Mass and energy transport for a system with np phases and nc components is considered. For this
model, the nc component mass and energy conservation equations can be written as

(1)

Here, ξ are space-dependent parameters, ω are state-dependent parameters and u are control variables and

(2)
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SPE-204000-MS 3

and

(3)

where t is time, ϕ is effective rock porosity, xcj is component c concentration in phase j, ρj denotes phase j
molar density, sj is saturation of phase j and uj is phase internal energy. Similarly,

(4)

and

(5)

where hj is the phase enthalpy, κj is phase thermal conduction,  is Darcy velocity and Jcj is Fick's diffusion
flux. Here, K is the effective permeability tensor, krj is relative permeability, μj is phase viscosity, pj is phase
pressure, γj is hydrostatic gradient, and D is depth.

Operator form of governing equations
According to the Operator Based Linearization (OBL) method proposed in Voskov (2017), all terms in
the Equation 1 are written as functions of a physical state ω and a spatial coordinate ξ. The physical state
represents a unification of all state variables (i.e., nonlinear unknowns: pressure, temperature/enthalpy,
saturations/compo- sitions, etc.) of a single control volume. In the overall molar formulation, the nonlinear
unknowns are pressure p, fluid enthalpy h and overall composition zc, therefore the physical state ω is
completely defined by these variables. The spatial coordinate ξ defines the location of a given control volume
which reflects the distribution of heterogeneous rock properties (e.g., porosity, thermal conduction) and
elements of space discretization (e.g., transmissibility). Besides, well control variables u are introduced to
represent various well management strategies.

Equation 1 is discretized in space using finite-volume two-point flux approximation and in time using
backward Euler approximation. The applied Fully Implicit Method (FIM) yield that the convective flux
term depends on the values of nonlinear unknowns at the current time step. Next, we rewrite Equation 1
neglecting for simplicity buoyancy and capillary forces (see more general treatment in Khait and Voskov,
2018a; Lyu et al., 2021a), and represent each term as a product space-dependent properties and of state-
dependent operators (Khait and Voskov, 2018b). The resulting conservation equations read

(6)

and

(7)

where V is the volume of mesh grid block, ϕ0 is rock porosity at the reference pressure, Γl,  and  is
the space-dependent part of convective, diffusive and conductive transmissibility respectively, Φj is phase
potential. A state-dependent operator is defined as a function of the physical state only. Therefore, it is
independent of spatial position and represents physical properties of fluids and rock
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4 SPE-204000-MS

(8)

(9)

(10)

(11)

(12)

(13)

(14)

In the equations above, ϕ0 - rock porosity at the reference pressure, cr is rock compressibility, p0 - reference
pressure, while ω and ωn represent the nonlinear state (unknowns of a single reservoir block) at the current
and previous time step respectively.

The physical meaning of mass accumulation operator αc is the molar mass of component c per unit pore
volume of uncompressed rock under physical state ω. The physical meaning of the mass flux operator for
component c is the total mobile molar mass of that component in all phases of the mixture under physical
state ω per unit time, pressure gradient, and constant geometrical part of transmissibility. This representation
allows us to identify and distinguish the physical state-dependent operators in the governing conservation
equations 6 and 7.

DARTS Structure
From the perspective of the simulation nonlinear loop, the operator interpolation replaces properties
calculations in equations 8–13 during the Jacobian assembly step following the idea of operator-based
linearization (Voskov, 2017). Besides, it also ‘shadows’ physical phenomena behind the operators, leaving
out only the values of supporting points, which are rarely computed but utilized all the time during
interpolation for Jacobian evaluation. This allows to detach fluid and rock properties calculations (now only
performed during operator evaluation at supporting points) from the main nonlinear loop, as well as to relax
the performance requirements for such calculations.

The Jacobian assembly depends on the choice of the nonlinear variables and the governing physical
mechanisms which are taken into account. The former determine the dimensionality of parameter space,
while the latter define the operators required for the assembly. Once the choice is made, the Jacobian
assembly becomes simply a combination of interpolated operator values and their partial derivatives with
spatial properties, encapsulated in a simulation engine. It is connected with an interpolator which is
responsible for computing interpolated operator values and derivatives. This connection represents the major
data workflow occurring during a simulation. Finally, the interpolator is connected to a specific set of
properties (i.e., operator set) which are used for the simulation. Operator sets must be chosen in agreement
with the selected engine. They are only invoked when a new supporting point is needed to perform the
interpolation.
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SPE-204000-MS 5

The structure of DARTS is summarized in Figure 1. On the left, four simulation multiphase multi-
component engines are shown:

• engine _pz – mass flow and transport, ω = {p,z1, …, znc−1};

• engine _pz_gc – mass flow and transport with gravity and capillarity, ω = {p,z1, …,znc−1};

• engine_pz_gcd – mass flow and transport with gravity, capillarity and diffusion, ω = {p,z1,...,
znc−1};

• engine phz g – mass and energy flow and transport with gravity, ω = {p, h, z1,..., znc−1}.

Figure 1—Delft Advanced Research Terra Simulator (DARTS) modular structure

All engines are written in a general manner for nc components (and np phases for engine _pz_gc and
engine_pz_gcd). Notion < NC > here indicates that the variable represents integer template parameter
of the corresponding class, known at compile time. This approach allows to maximize various compiler
optimizations (e.g., loop unrolling, vectorization).

Next, two interpolators are available (Figure 1, middle):

• static_itor – pre-computes all supporting points in advance, and can be useful for coarse physical
representation and low-dimensional parameter space;

• adaptive_itor – adaptively computes supporting points along with the simulation (see Khait and
Voskov, 2018a, for details).

Both interpolators are written in a general way for nd degrees of freedom and n0 operators. All operator
values are stored together to benefit from faster search and interpolation. Moreover, operator values
computed during simulation can be stored into a file and loaded before subsequent simulation, which can
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6 SPE-204000-MS

be extremely beneficial in case of running multiple models with the same physical properties common for
inverse modelling or optimization.

Finally, several operator sets are present (see Figure 1, right):

• Dead-oil – water and oil components, water and oil phases, ω = {p, zw};

• Black-oil – water, oil, and gas components, water, oil, and gas phases, ω = {p, zg,zo};

• Compositional – nc components, liquid and vapor phases, ω = {p,z1, …,znc−1};

• Thermal-compositional – nc components, liquid and vapor phases, ω = {p, T,z1, …,znc−1};

• Geothermal – water component, liquid and vapor phases, ω = {p, h}.

GPU implementation has been developed for all the engines and interpolators described above. Naturally,
all of the GPU engines utilize GPU-based linear solver, which still occupies the overwhelming majority
of total simulation time. Therefore, dead-oil, black-oil, geothermal and even compositional models can be
modeled in DARTS entirely on GPU.

Compared to our previous work on this topic described in (Khait and Voskov, 2017a), several major
improvements have been made:

• GPU implementation has been embedded into the DARTS framework;

• GPU implementation has been added to several engines;

• Jacobian assembly together with adaptive and static interpolation GPU kernels have been
generalized for nc components, nd degrees of freedom and no operators;

• Linear solver on GPU has been written using a two-stage CPR preconditioning technique.

Jacobian Assembly on GPU
DARTS has the same initialization scheme for both GPU and CPU versions, which are developed as
interchangeable parts. The GPU version first loads the required initial data to GPU memory and then
performs all major computations on the device. To initialize the GPU version of the static interpolator, all
supporting points are first computed on CPU and then copied to device memory. Alternatively, they can be
loaded from a file if one was created during a previous simulation and the fluid properties and physical space
parameterization settings have not been changed since then. In particular, for Jacobian assembly, this data
includes a connection list, pore volume and initial reservoir state arrays. The Jacobian structure is assumed
to be fixed during simulation, so it is also initialized once and copied to the device memory before the run.

Interpolation of operator values and derivatives is performed as a preparatory step before Jacobian
assembly. The interpolation kernel is implemented on a thread-per-cell basis, such that every GPU thread
is responsible for computation of all operators and their derivatives for a given state ω. The data layout
is analogous to the one used for CPU interpolator version, where values corresponding to a given cell are
grouped, so coalesced memory access does not take place. However, global memory accesses are minimized
as the interpolation uses a workspace array placed in register memory (unless register spill occurs, which
is possible for high-dimensional parameter space and a large number of operators).

The GPU version of DARTS includes both static and adaptive interpolators. The static interpolator is
much easier for parallel execution: all operator values are generated in advance, during the initialization
stage, and then transferred to the device before simulation starts. Therefore, interpolation becomes an
embarrassingly parallel procedure in this case. On the other hand, for an adaptive interpolator, there is
a necessity to synchronize threads when new operator values are requested for the interpolation. The
implementation of adaptive interpolator for the GPU version is therefore more complicated, as the data
exchange between GPU and CPU, required for the generation of new operator values, needs to be overlapped
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SPE-204000-MS 7

with interpolation computations. Within the scope of this work, we used the static interpolator for both CPU
and GPU versions of DARTS.

The Jacobian assembly, as well as all components of GPU-based linear solver in DARTS (except AMG),
is based on classical Block CSR matrix format. It was chosen to preserve compatibility both with DARTS
CPU code base and available linear solver implementations on GPU. Previous investigations showed that
this format is not the best in terms of performance (Bell and Garland, 2009; Abdelfattah et al., 2015).
However, our tests performed using more recent hardware/software identified that the situation might have
changed.

The well control part of Jacobian is first formed on a host system and then sent to a device after the
assembly for the reservoir part is complete. Usually, the size of the well control part is negligible compared
to that of the full system, therefore the overhead is small even with synchronous memory operations. It
is, however, possible to eliminate the overhead using asynchronous memory routines and CUDA streams
or even recently introduced CUDA graphs. Those instruments allow overlapping of kernel execution and
memory transfer. In that scenario, while the reservoir part is assembling on GPU during corresponding
kernel invocation, the well part is computed on CPU and transferred to device memory. While the size of
the well control part is small, its computations and transfer can be entirely hidden behind the assembly of
the reservoir part.

The basic kernel for Jacobian assembly is also implemented on a thread-per-cell basis, and therefore
global memory accesses are not coalesced here similarly to the interpolation kernel. To minimize those,
the diagonal entry of Jacobian, as well as corresponding right-hand side block, are accumulated in register
memory. Once the matrix row is completely processed, final values are written to corresponding global
memory arrays. As opposed to diagonal entries of Jacobian, off-diagonal ones depend only on a single
connection and their values are written directly to global memory.

The Jacobian assembly kernel was then improved. Each block matrix row is now processed with a group
of nd*nd threads (nd = nc for isothermal formulations and nd = nc + 1 for thermal ones), so that each GPU
thread is pinned to a specific location of a matrix block for a specific matrix block row. The amount of
required registers for such kernel does not depend on the matrix block size, while significant amount of
memory accesses becomes coalesced, especially for larger block sizes. However, threads within a warp
can process different matrix rows and therefore access memory in a non-contiguous fashion, especially for
smaller block sizes. Similar to the basic kernel, the workload balance between different thread groups will
only be close to ideal if the number of non-zeros per row is relatively stable (i.e. the majority of grid blocks
have the same number of neighbouring blocks).

Linear Solver on GPU
Khait and Voskov (2017a) used a simple configuration of GPU linear solver based on a Krylov subspace
iteration method with ILU(0) preconditioner. It has limited applicability to highly heterogeneous reservoir
simulation problems requiring many iterations for convergence. Significantly more robust and efficient
preconditioning scheme is based on the CPR technique. Wallis (1983); Wallis et al. (1985) designed it
for efficient treatment of linear systems with mixed elliptic-hyperbolic unknowns. Such systems arise,
in particular, from FIM discretization scheme for reservoir simulation problem. They are comprised of a
near-elliptic pressure equation, a near-hyperbolic composition (saturation) equation, while the temperature
equation can be either type depending on whether the process is diffusion-dominated (thermal conduction
in energy equation) or convection-dominated. The CPR strategy has proved to be very robust and efficient
even for highly heterogeneous reservoirs with strong coupling between elliptic and hyperbolic parts of the
linear system. This results in stable convergence within a limited number of linear solver iterations even
when simulation time steps are very large.

The linear system in DARTS is solved entirely on GPU using the Flexible Generalized Minimum Residual
(FGMRES) iterative method (Saad, 1993) with CPR-based preconditioner. Figure 2 illustrates the normal
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8 SPE-204000-MS

workflow of linear solution strategy. All matrix operations are performed in native row-major BCSR format.
During each nonlinear iteration, the Jacobian assembly is performed first. Then, Jacobian is passed over
to the linear solver, where during setup phase additional matrices are computed. Finally, iterative linear
solution takes place, where both Jacobian and additional matrices are used.

Figure 2—Linear solver workflow in DARTS

The setup phase is performed independently for the two stages of CPR-based preconditioner. At the
first stage, the pressure system is decoupled from the full system using a True-IMPES reduction approach
directly from the BCSR storage. It is then passed over to AMG solver, where an hierarchy of operators
at different coarsening level is algebraically built. At the second stage, the values of Jacobian matrix are
copied to a separate storage where block ILU(0) factorization is performed in-place.

The solve phase consists of several iterations which are repeated until the desired convergence is
reached. Each iteration of FGMRES involves an invocation of CPR preconditioning operator, where two-
stage solution strategy is used. First, a single V-cycle of the AMG solver is performed to obtain an
approximation of the pressure solution using the hierarchy of operators obtained during the setup phase.
The approximation is then substituted into the full system to perform forward and backward substitution
using ILU factorization. Both CPR and iterative solver require Sparse Matrix dense Vector multiplication
(SpMV) operation performed on the Jacobian matrix.

Implementation details and memory consumption.   GPU implementation of FGMRES method is
straightforward. All vectors with the linear system size, as well as the matrix itself, reside on GPU, while
the plane rotation procedure is kept on CPU. Vector and matrix routines are taken from the cuBLAS (dot,
scale, axpy) and the cuSPARSE (bsrmv) libraries.

CPR preconditioner is implemented in DARTS analogously to the true-IMPES reduction in AD-GPRS
simulation framework described by Zhou (2012). Decoupling is performed by a single kernel which fills
out the values of the pressure matrix. Its structure is equivalent to the Jacobian matrix with the only
difference that the former is pointwise. Each GPU thread is again assigned to a single matrix row. For the
solution phase, we developed three simple kernels (for right-hand side reduction, solution prolongation, and
stage solutions summation) and employed the matrix linear combination routine from cuSPARSE (bsrmv).
To ensure efficient multiprocessor occupancy, launch grid dimensions for all kernels are computed via
cudaOccupancyMaxPotentialBlockSize routine.

The first stage of CPR preconditioner is based on the open-source library AMGX (Naumov et al., 2015)
(specifically, the commit ID 0e32e35 was used). The second stage of preconditioning relies on the bsrilu02
routine of the cuSPARSE library.

Along with the basic engine pz, the capabilities of GPU linear solver were extended to support up to 10
degrees of freedom per control volume (i.e., the maximum block size of matrix block is 10). The comparison
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SPE-204000-MS 9

of memory consumption profile on GPU for different number of components is demonstrated on Figure 3.
It is evident that for 2 component model AMGX is responsible for the biggest chunk of allocated memory
on GPU. At the same time, ILU(0) and Jacobian data storages come to the foreground for 10 component
case, since the size of pressure matrix stays the same.

Figure 3—GPU memory consumption profile for SPE 10 model with different physical kernels

Results
We used two computer systems to perform simulations: a workstation with a top-tier GPU and dual-
processor cluster node. The workstation is based on Intel Core i7-8086K CPU clocked at 4.2 GHz with
32 GB DDR4 memory clocked at 2.4 GHz with a peak memory bandwidth of 41.6 GB/s and NVidia
GeForce RTX2080 Ti graphics card with 11GB GDDR6 memory onboard with a peak memory bandwidth
of 616 GB/s. For such generally memory-bound problems as FIM reservoir simulation, in case of parallel
execution, peak memory bandwidth is a key performance indicator, not the clock speed. Therefore, the
gaming card is expected to perform on the level of NVidia Tesla P100 GPU accelerator having only 15%
smaller peak memory bandwidth and newer microarchitecture. At the same time, the gap between peak
memory bandwidth for CPU and GPU hints the difference in the performance capacity of these platforms
for reservoir simulation. The software configuration of the workstation included Ubuntu 18.04.3 operating
system, GCC 7.5.0 compiler and CUDA Toolkit 10.2. The cluster node included two Intel Xeon E5-2640
v4 CPU processors clocked at 2.4 GHz with 256 Gb memory with a peak memory bandwidth of 136.6
GB/s for the two-socket system. The software configuration of the cluster node included CentOS Linux
7 operating system and GCC 4.8.5 compiler. As opposed to the workstation, the cluster node is a system
with non-uniform memory access (NUMA). For such systems, it is important to prevent OpenMP threads
from moving between processors to achieve higher memory bandwidth (provided that the implementation
is also NUMA-aware). We performed our tests with OMP PLACES=cores and OMP PROC BIND=spread
environment variables achieving noticeable improvement in multithread performance in case of the cluster
node.

GPU kernels benchmark
We investigate the performance of basic and improved Jacobian assembly GPU kernels written for BCSR
matrix format for engine pz and different block sizes. The SPE10 model (see detailed description in section)
with the first 40 layers was taken to fit the GPU size (11 Gb) even for 10 component case. We used an
artificial compositional physical model with simple operators in the following form:

(15)
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10 SPE-204000-MS

The operator derivatives in this case are trivial so the interpolator can be excluded from the workflow.
Otherwise, the current interpolation kernel based on the multilinear approach would require too much
time for simulations with large number of components. This problem can be easily overpass by utilizing
the barycentric interpolation similar to Zaydullin et al. (2013). In any case, that does not affect Jacobian
assembly kernel in any respect, since pre-computed operator values and derivatives serve as an input. Figure
4(a) shows significant improvement of Jacobian assembly kernel especially for small block sizes. It is
also clear that the basic kernel performance is unstable for various block sizes, while the improved kernel
demonstrates gradual increase of time required for assembly. The speedup over single-thread CPU assembly
for improved kernel is also stable fluctuating between 30 and 37 for various block sizes.

Figure 4—Jacobian assembly kernel benchmark for SPE10 model, 40 layers

Figure 5—SPMV benchmark for SPE10 model, 20 layers

SPE10
The SPE10 test case (Christie and Blunt, 2001), initially created to compare upscaling techniques, is
probably the most commonly used model to benchmark the performance of reservoir simulators. Due to its
highly heterogeneous permeability distribution, achieving 10 orders of magnitude, and considerable size of
1.1 million cells, this model is quite challenging for both linear and nonlinear solvers. An extensive overview
of the performance achievements by different simulators on this model is given by Esler et al. (2014).

Figure 6 demonstrates the heterogeneous behaviour of waterflooding process of this artificial model
scaled vertically by a factor of 3. Water displaces oil from the center, where the injection well is located, to
corners with producers, following various flow paths. Water injection is performed ata high rate of Qinj =
794.93 m3d−1 causing very fast breakthrough to all four producers, as can be seen from Figure 6. Performance
results can be found in Table 1 and Table 2.
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SPE-204000-MS 11

Figure 6—Water composition distribution in SPE10 model at different timesteps.

Table 1—Overall simulation performance of SPE10 on different platforms: CPU1 - Intel Core i7-8086K; CPU2 - 2 × Intel Xeon E5-2640
v4; GPU - NVidia GeForce RTX2080 Ti. Sequential run is denoted by ‘s’ in brackets, multithread run - with the amount of threads.

Platform TS NI LI Init, s Jacobian, s Setup, s Solve, s Total, s

CPU1 (s) 68 383 1767 7.36 124.70 363.31 534.46 1039.32

CPU2 (20) 68 376 1751 14.82 22.00 128.16 215.74 394.88

GPU 68 417 1925 7.47 10.47 43.80 39.11 120.80

Table 2—Detailed simulation performance of SPE10 on different platforms: CPU1 - Intel Core i7-8086K; CPU2 - 2 × Intel Xeon E5-2640
v4; GPU - NVidia GeForce RTX2080 Ti. Sequential run is denoted by ‘s’ in brackets, multithread run - with the amount of threads.

Platform CPR setup,
s AMG ILU(0) GMRES SPMV solve,

s CPR AMG ILU(0)

CPU1 (s) 23.39 313.29 26.62 102.75 103.35 66.86 279.87 84.98

CPU2 (20) 35.76 54.54 37.85 27.86 21.83 13.61 60.50 113.76

GPU 2.13 28.67 12.99 6.57 4.39 2.62 5.55 24.37

Carbon dioxide storage
Geological storage of CO2 is critically important for the reduction of greenhouse gas emissions. Due to
the buoyant characteristic of injected gas and the complex geology of subsurface reservoirs, most injected
CO2 rapidly migrates to the top of the reservoir. The detailed behavior of gravity-induced instabilities can
be modeled using two-phase flow with gravity currents and convective dissolution in the presence of the
capillary transition zone (CTZ), see detailes in Lyu et al. (2021b).

Figure 7 demonstrates the CO2 concentration for the simulation with single-phase brine after 100 and
400 years of CO2 injection. The model is based on an unstructured triangular extruded mesh with 100 layers
and 1.1 million grid blocks in total. The top layer was initialized with constant CO2 composition of 0.0125
(dissolution limit), while pure brine filled the rest of the reservoir. The model was simulated for 3000 years
with a maximum timestep of 365 days. Simulation timings can be found in Table 3 and Table 4.
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Figure 7—CO2 concentration in brine during a long-term sequestration

Table 3—Overall simulation performance of carbon dioxide storage model on different platforms:
CPU1 - Intel Core i7-8086K; CPU2 - 2 × Intel Xeon E5-2640 v4; GPU - NVidia GeForce RTX2080
Ti. Sequential run is denoted by ‘s’ in brackets, multithread run - with the amount of threads.

Platform TS NI LI Init, s Jacobian, s Setup, s Solve, s Total, s

CPU1 (s) 3015 6696 57726 25.4 3523.0 24193.9 20110.4 48400.1

CPU2 (20) 3015 6790 61438 35.6 623.7 3761.3 8363.8 13682.3

GPU 3015 6725 57487 37.5 204.1 1114.1 1183.1 3333.9

Table 4—Detailed simulation performance of carbon dioxide storage model on different platforms:
CPU1 - Intel Core i7-8086K; CPU2 - 2 × Intel Xeon E5-2640 v4; GPU - NVidia GeForce RTX2080
Ti. Sequential run is denoted by ‘s’ in brackets, multithread run - with the amount of threads

Platform CPR setup,
s AMG ILU(0) GMRES SPMV solve,

s CPR AMG ILU(0)

CPU1 (s) 415.81 23319.64 458.39 3334.55 1580.94 1985.67 12205.89 2584.30

CPU1 (20) 451.97 2594.61 714.56 680.02 370.41 535.49 2998.15 4150.05

GPU 24.91 890.56 198.64 119.93 109.92 71.87 254.68 736.57

Realistic geothermal model
The reservoir under investigation is located in the West Netherlands Basin (WNB), which is an inverted rift
basin in the Netherlands. The reservoir properties of Delft Sandstone have been extensively studied before
by Willems et al. (2016, 2017). Figure 8(a) shows the porosity distribution at the geological resolution of
the target reservoir scaled vertically by a factor of 3. The model includes intersections of sandstone and
shale facies. The facies distribution corresponds to circa 0.8 million grid blocks for the sandstone and 2.4
million blocks for shale facies.
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Figure 8—Geological model of aqueous reservoir with two geothermal doublets.

Even though the water mainly flows through the sandstone formation, for thermal simulation it is crucially
important to take shale facies into account too, as was shown in the recent benchmark study by Wang et al.
(2020). The presence of the shale layers in the simulation allows the use of higher discharge rates that result
in higher energy production for an equivalent system lifetime. The predicted lifetime of both doublets is
significantly extended when the shale layers are included in the model. As the injected cold water transports
through the sandstone layers, it is re-heated, extracting energy from the sandstone layers. As time evolves,
a temperature gradient is built up between the sandstone bodies and the neighbouring shale layers with the
shales providing thermal recharge by heat conduction. The spatial intercalation of the sandstone and shale
facies increases the contact area between them and amplifies the effect of the thermal recharge.

Using the full model with 3.2 million cells, we computed the forecast for 100 years of two geothermal
doublets production with the maximum time step of 365 days. The simulation results (cold water plums
distribution) can be seen in Figure 8(b). Simulation performance of this model is shown in Table 5 and
Table 6.

Table 5—Overall simulation performance of geothermal model on different platforms: CPU1
- Intel Core i7-8086K; CPU2 - 2 × Intel Xeon E5-2640 v4; GPU - NVidia GeForce RTX2080 Ti.
Sequential run is denoted by ‘s’ in brackets, multithread run - with the amount of threads.

Platform TS NI LI Init, s Jacobian, s Setup, s Solve, s Total, s

CPU1 (s) 107 287 4819 78.88 219.99 819.40 3885.12 5019.17

CPU2 (20) 107 291 4916 103.04 35.21 305.41 1506.01 1976.64

GPU 107 288 5161 78.72 18.03 78.51 276.98 486.60

Table 6—Detailed simulation performance of geothermal model on different platforms: CPU1
- Intel Core i7-8086K; CPU2 - 2 × Intel Xeon E5-2640 v4; GPU - NVidia GeForce RTX2080 Ti.
Sequential run is denoted by ‘s’ in brackets, multithread run - with the amount of threads

Platform CPR setup,
s AMG ILU(0) GMRES SPMV solve,

s CPR AMG ILU(0)

CPU1 (s) 47.30 716.40 55.70 984.31 639.01 448.76 1885.87 566.18

CPU2 (20) 80.23 141.41 83.77 221.20 120.91 97.44 395.57 791.80

GPU 4.04 49.53 24.93 43.95 25.94 16.66 31.93 184.45
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Conclusions
Delft Advanced Research Terra Simulator (DARTS) framework is built on top of the Operator-Based
Linearization approach. It substantially simplifies Jacobian construction and reduces the time required
for porting simulation code to different architectures, such as GPU. Proving this claim, we demonstrated
three different examples of fully-offloaded GPU simulations relevant to energy transition: the classical
hydrocarbon production SPE10 case, carbon dioxide long-term storage and a realistic model of geothermal
energy production. To the best of our knowledge, these are the first simulations of a carbon storage model
and a geothermal field fully offloaded to a GPU device.

Compared to sequential execution on a high-frequency modern desktop CPU, the multithread version
reduces simulation time by 2.5-3.5 folds on a server node with two sockets, depending on a particular
application. At the same time, the GPU version demonstrated overall improvement in the range of 8x-14x
(10x-14x without sequential initialization stage). The SPE10 problem takes DARTS only around 100
seconds which is comparable to industrial-grade simulators. DARTS provides a forecast for 100 years with
a 3.2 million grid blocks geological model in only 7 minutes, while the forecast for 3000 years for carbon
dioxide sequestration scenario on a 1.1 million unstructured mesh takes less than an hour. All results were
achieved on a regular workstation equipped with a gaming GPU graphics card.

The developed GPU linear solver uses available open-source codes as much as possible and is based on
the standard BCSR matrix format. This minimized the development time and maximized the applicability
of the linear solver. It can be immediately used for the whole variety of other problems which can be solved
in DARTS: modelling of chemical reactions with dissolution and precipitation at reservoirs and lab scales,
simulation of flow fully coupled with geomechanics, etc. The improvement of Jacobian assembly and the
speedup of professionally-tuned individual parts of the linear solver indicate that overall performance can
be improved even more. Revision of underlying storage structures and access patterns is required to increase
the simulation efficiency further and will be the focus of our future research.
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