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gas quantum critical point in two dimensions

Jan Krieg,1,* Dominik Strassel,2 Simon Streib,1,3 Sebastian Eggert,2 and Peter Kopietz1

1Institut für Theoretische Physik, Universität Frankfurt, Max-von-Laue Strasse 1, 60438 Frankfurt, Germany
2Department of Physics and Research Center Optimas, University of Kaiserslautern, 67663 Kaiserslautern, Germany

3Kavli Institute of NanoScience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
(Received 13 July 2016; revised manuscript received 30 September 2016; published 13 January 2017)

We use the functional renormalization group (FRG) to derive analytical expressions for thermodynamic ob-
servables (density, pressure, entropy, and compressibility) as well as for single-particle properties (wave-function
renormalization and effective mass) of interacting bosons in two dimensions as a function of temperature T and
chemical potential μ. We focus on the quantum disordered and the quantum critical regime close to the dilute Bose
gas quantum critical point. Our approach is based on a truncated vertex expansion of the hierarchy of FRG flow
equations and the decoupling of the two-body contact interaction in the particle-particle channel using a suitable
Hubbard-Stratonovich transformation. Our analytic FRG results extend previous analytical renormalization-group
calculations for thermodynamic observables at μ = 0 to finite values of μ. To confirm the validity of our FRG
approach, we have also performed quantum Monte Carlo simulations to obtain the magnetization, susceptibility,
and correlation length of the two-dimensional spin-1/2 quantum XY model with coupling J in a regime where its
quantum critical behavior is controlled by the dilute Bose gas quantum critical point. We find that our analytical
results describe the Monte Carlo data for μ � 0 rather accurately up to relatively high temperatures T � 0.1J .

DOI: 10.1103/PhysRevB.95.024414

I. INTRODUCTION

It is well known [1] that interacting bosons exhibit a
quantum critical point (QCP) at vanishing chemical potential μ
and temperature T that separates a quantum disordered phase
at μ < 0 from a superfluid phase at μ > 0, as sketched in
Fig. 1. Of particular interest is the behavior of the system
in two dimensions, where the formation of a Bose-Einstein
condensate for positive μ is prevented by strong thermal
fluctuations [3]. However, as has been shown by Popov [2],
the system nevertheless exhibits a phase transition of the
Berezinsky-Kosterlitz-Thouless (BKT) type [4–7] into a su-
perfluid phase with quasi-long-range order and algebraically
decaying correlations. This is closely related to the fact that
the upper critical dimension at the QCP is Dc = 2, so that
the contact interaction is marginal in the renormalization-
group sense [8]: while directly at the QCP the interaction
is renormalized to vanishing strength, the renormalization-
group flow approaches zero only logarithmically. As a result,
at any realistic temperature the collective dynamics of the
system is strongly coupled, even though the effective pairwise
interaction may be weak [9]. Hence perturbation theory is not
applicable at finite T and one has to resort to nonperturbative
methods to analyze the superfluid as well as the quantum
critical regime. The renewed theoretical interest in this model
is motivated by a multitude of cold-atom experiments [10–19],
which have explored the phase diagram as well as the BKT
transition in two-dimensional Bose gases.

In early theoretical works [2,20,21], the properties of the
superfluid phase and the position of the BKT transition were
investigated in the extremely dilute limit where the effective
dimensionless interaction g is renormalized to very small
values [see Eq. (3.11) below]. However, for quantitative

*Corresponding author: jkrieg@itp.uni-frankfurt.de

calculations this limit may not be realistically reached, as
was demonstrated by Prokof’ev et al. [22,23], since, e.g., the
critical density nc at the BKT transition exhibits a logarithmic
dependence of the form

nc = mT

2π
ln

C

g
, (1.1)

while the effective interaction g in turn only depends
logarithmically on the density (due to D = Dc). Here m is the
mass of the bosons, and we use units where � = kB = 1. The
constant C appearing in the logarithm in Eq. (1.1) has been
computed numerically using the classical |φ|4 model as C ≈
121 [22], hence the necessary limit ln(1/g) � ln C, where C

can be neglected, is not accessible with available experimental
techniques. Nonetheless, it is possible to reach relatively
small g of the order of 0.01 experimentally, e.g., by tuning the
bare interaction of harmonically trapped atoms to small values
through a magnetic Feshbach resonance [14,17,19]. Further
theoretical works also increasingly employed numerical
methods to complement the asymptotic analysis [9,24–28].

Here we are mainly interested in the universal scaling inside
the quantum critical regime where T � |μ|. For the special
case μ = 0, this has already been investigated analytically
by Sachdev et al. [21]. Recently, Rançon and Dupuis [26]
expanded on this by using a functional renormalization-group
(FRG) approach based on a truncated gradient expansion. By
solving the truncated FRG flow equations numerically, they
calculated the scaling of state functions close to the QCP for a
vanishing and finite chemical potential; they also reconsidered
the analytical behavior for μ = 0 and corrected the result for
the density in Ref. [21]. In this work, we shall reexamine
the universal scaling within the FRG, using an alternative
truncation strategy of the formally exact hierarchy of FRG flow
equations based on the vertex expansion [29]. This enables us
to extend previous analytical results for the universal scaling in
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FIG. 1. Schematic phase diagram for a two-dimensional Bose gas
with repulsive contact interaction in the T -μ plane close to the QCP at
μ = T = 0. In the quantum disordered regime, μ < −T , interaction
effects are weak and the particle density is exponentially small, while
for sufficiently large positive μ the system is in the superfluid phase
with finite density even at zero temperature. This phase is separated
from the normal phase by a BKT transition at the temperature TBKT

as given in the figure, where �̃ is a nonuniversal energy scale [2].
In the quantum critical regime (red), a quasiparticle description with
free bosons is still valid, but physical quantities exhibit logarithmic
corrections.

the quantum critical regime. We also compare our FRG results
to quantum Monte Carlo (QMC) simulations.

The rest of this work is organized as follows: In Sec. II we
introduce a Hubbard-Stratonovich transformation to decouple
the contact interaction in the particle-particle channel, and we
derive FRG flow equations for the self-energy and the particle-
particle susceptibility. We then solve these flow equations
approximately in Sec. III and obtain analytical expressions
for the pressure, the density, the entropy, the compressibility,
and the correlation length, which are valid close to the
QCP; we also compare these results to experimental as well
as to numerical data. In Sec. IV, we discuss the spin-1/2
quantum XY model in two dimensions, which can be mapped
to the Bose-Hubbard model with infinite onsite interaction,
hence showing the same universal scaling toward the QCP
as the dilute Bose gas. We present results from QMC
simulations of this spin system and compare them to our
analytical FRG results. Finally, in Sec. V we use the FRG
formalism to study the scaling of the effective mass and the
wave-function renormalization; we also compare the FRG
result for the wave-function renormalization with the result
from the self-consistent T -matrix approximation, which is
applicable for μ < 0 and at high temperatures also for μ = 0.
Further technical details can be found in two Appendixes: in
Appendix A we present formally exact FRG flow equations for
the irreducible vertex functions of interacting bosons, while
in Appendix B we give some mathematical details on the
analytical solution of our truncated FRG flow equations.

II. FRG FLOW EQUATIONS FOR DILUTE BOSONS

We consider a system of interacting bosons with contact
two-body interaction, which is described by the second-
quantized Hamiltonian

H =
∑

k

εkâ
†
kâk + f0

4V

∑
pkk′

â
†
p−kâ

†
kâk′ â p−k′ , (2.1)

where âk annihilates a boson with momentum k, energy εk =
k2/(2m), and mass m. The volume of the system is denoted by
V and the normalization of the contact two-body interaction
with strength f0 has been chosen to simplify the combinatorial
factors in the FRG flow equations given in Appendix A. We
have shifted the momentum labels in Eq. (2.1) such that p can
be identified with the conserved total momentum of a pair of
incoming or outgoing bosons. This labeling is natural in the
dilute limit where the particle-particle channel is the dominant
scattering process.

A. Hubbard-Stratonovich transformation
in the particle-particle channel

At finite chemical potential μ and temperature T = 1/β,
the Euclidean action associated with the Hamiltonian (2.1) can
be written as

S[ā,a] = −
∫

K

G−1
0 (K)āKaK + f0

4

∫
P

ĀP AP , (2.2)

where the free boson propagator is

G0(K) = 1

iω − εk + μ
, (2.3)

and we have introduced the composite boson fields

AP =
∫

K

aKaP−K, ĀP =
∫

K

āP−KāK. (2.4)

Here K = (k,iω) and P = ( p,iω̄) are collective labels for
momenta and bosonic Matsubara frequencies, the integration
symbols are defined by

∫
K

= 1
βV

∑
k,ω, and aK is a complex

field associated with the eigenvalues of âk. Introducing another
complex boson field ψP to decouple the interaction by means
of a Hubbard-Stratonovich (HS) transformation in the particle-
particle channel, we obtain

S[ā,a,ψ̄,ψ] = −
∫

K

G−1
0 (K)āKaK +

∫
P

f −1
0 ψ̄P ψP

+ i

2!

∫
P

[ĀP ψP + ψ̄P AP ]. (2.5)

We have normalized the ψ-field to simplify the combinatorial
factors in the exact FRG flow equations given in Appendix A.
Below, we shall refer to the original boson fields a and ā as
elementary bosons and to the boson fields ψ and ψ̄ as HS
bosons.

B. Truncated FRG flow equations

To set up the FRG, we introduce a sharp cutoff in momen-
tum space for the elementary boson so that the regularized
noninteracting propagator is given by

G0,�(K) = 	(|k| − �)

iω − ξk
(2.6)

and the corresponding single-scale propagator is

Ġ�(K) = − δ(|k| − �)

iω − ξk − ��(K)
, (2.7)

where ��(K) is the cutoff-dependent self-energy, and we
have defined ξk = εk − μ. For our purpose, it is sufficient
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to use the following ansatz for the generating functional of the
irreducible vertices:

�[ā,a,ψ̄,ψ] =
∫

K

��(K)āKaK +
∫

P

��(P )ψ̄P ψP

+ 1

2!

∫
K

∫
P

[


āāψ

� (P−K,K; P )āP−KāKψP

+
aaψ̄

� (P − K,K; P )aP−KaKψ̄P

]
, (2.8)

where the energy-momentum labels of the three-legged ver-
tices 

āāψ

� (P − K,K; P ) and 
aaψ̄

� (P − K,K; P ) correspond
to the field types appearing in the superscripts. This ansatz
is justified since all four-point and higher-order vertices
are irrelevant in the RG sense, except for āāaa

� , which is
marginal. This vertex, however, initially vanishes due to the
HS transformation and is only dynamically generated during
the flow by either particle-hole processes or by vertices
that are irrelevant in the RG sense (see Fig. 13). As our
calculations are concerned with the dilute limit, particle-hole
processes are suppressed and the relevant physics is captured
by particle-particle processes via the three-point vertices 

āāψ

�

and 
aaψ̄

� . The exact FRG flow equations for the self-energy
��(K) and the particle-particle susceptibility ��(P ) as well
as for all three- and four-legged vertices of our model are given
in Appendix A. From the flow equations (A10) and (A11) for
the three-legged vertices, we see that within our ansatz (2.8)
for the generating functional these vertices do not flow, so that
we can replace them by their initial value


āāψ

� (P − K,K; P ) = 
aaψ̄

� (P − K,K; P ) = i. (2.9)

The exact flow equation for the self-energy given in Eq. (A8)
then simplifies to

∂���(K) = −
∫

P

F�(P )Ġ�(P − K), (2.10)

while the flow equation for the particle-particle susceptibility
given in Eq. (A9) becomes

∂���(P ) =
∫

K

Ġ�(K)G�(P − K). (2.11)

Here we have introduced the flowing propagator

F�(P ) = f0

1 + f0��(P )
(2.12)

of the HS boson. We expect these equations to be accurate in
the vicinity of the dilute Bose gas QCP where particle-hole
scattering processes can be neglected.

Note that if we replace the single-scale propagators in
Eqs. (2.10) and (2.11) by total derivatives with respect to
� and ignore the � dependence of the particle-particle
susceptibility ��, we can integrate both sides of these
equations over � to obtain

�(K) = −
∫

P

f0

1 + f0�(P )
G(P − K), (2.13)

�(P ) = 1

2

∫
K

G(K)G(P − K). (2.14)

These coupled integral equations are usually called the self-
consistent T -matrix approximation. For an early application
of this method to the dilute Bose gas in two dimensions, see
Ref. [30]. Some of us [31] have recently used this approxima-
tion to study an effective hard-core boson model describing
the magnetic properties of the antiferromagnetic material
Cs2CuCl4 (see also Ref. [32] for recently discovered subtleties
in this method when applied to hard-core bosons). In Sec. V A,
we shall compare our FRG results for the wave-function
renormalization at μ = 0 to the results obtained from the
numerical solution of the integral equations (2.13) and (2.14).

III. THERMODYNAMICS CLOSE TO THE QCP

A. RG flow at the quantum critical point

To begin with, let us briefly recall the RG flow of the system
directly at the QCP in D dimensions. Since in this case the
equilibrium state of the system corresponds to the vacuum,
the elementary propagator G�(K) is identical to the free prop-
agator G0,�(K), i.e., ��(K) = 0. According to Eqs. (2.10)
and (2.11), the flow of the particle-particle susceptibility for
vanishing momentum and frequency then simplifies to

∂���(0) = −KD

2
m�D−3, (3.1)

where KD is the surface area of the D-dimensional unit
sphere divided by (2π )D . Defining the dimensionless rescaled
interaction

u� = KD

2
m�D−2F�(0) (3.2)

and switching to the logarithmic scale parameter
l = ln(�0/�), where �0 is the ultraviolet cutoff of our
theory, we arrive at the well-known exact flow equation [1,20]

∂lul = (2 − D)ul − u2
l , (3.3)

which identifies Dc = 2 as the upper critical dimension above
which mean-field theory is applicable. In the following,
we will always work at D = Dc, resulting in logarithmic
corrections to the scaling of various observables.

B. Explicit solution of the FRG equations close to the quantum
critical point in two dimensions

The above system of FRG flow equations (2.10) and (2.11)
for the self-energy and the particle-particle susceptibility can
be solved approximately by neglecting their momentum and
frequency dependence, which is justified close to the QCP.
In the following, we will again use the scaling parameter
l = ln(�0/�) and the dimensionless interaction

ul = m

4π
Fl(0), (3.4)

which is a special case of Eq. (3.2) for D = 2. We also define
the effective inverse temperature

βl = �2

2mT
= �2

0

2mT
e−2l , (3.5)

the dimensionless particle-particle susceptibility

�̃l = 4π

m
�l(0), (3.6)
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and the effective negative chemical potential over temperature,

rl = − [μ − �l(0)]

T
= α + �l(0)

T
, (3.7)

where we have introduced the abbreviation

α = −μ

T
(3.8)

to simplify the forthcoming equations. With this notation, the
flow equations (2.10) and (2.11) can be written as

∂lrl = u0

1 + u0�̃l

4βl

eβl+rl − 1
, (3.9)

∂l�̃l = βl

βl + rl

[
1 + 2

eβl+rl − 1

]
. (3.10)

It turns out that we can analytically solve this system of dif-
ferential equations approximately for r = liml→∞ rl provided
that we consider the regime close to the QCP and that the
following dimensionless coupling is sufficiently small:

g = 2
1
u0

+ 1
2 ln

[ �2
0

2m(T −μ)

] , (3.11)

where the logarithmic term results from the flow of �̃l [cf.
Eq. (B5)]. Technical details on the analytical solution of
Eqs. (3.9) and (3.10) are given in Appendix B 1. There we show
that an approximate analytical solution is possible if either
g � α or W (1/g) � 1, where W (x) denotes the Lambert W

function [33], which for large arguments can be expanded as

W (x) = ln x − ln ln x + o(1). (3.12)

The condition W (1/g) � 1 is thus fulfilled either extremely
close to the QCP or for small bare interaction u0. The regime
u0 � 1 is of significant practical importance as it allows us
to probe the asymptotic scaling behavior experimentally by
tuning the interaction to small values, since reaching double
exponentially low temperatures is not feasible. Actually, for
small u0 the weak logarithmic dependence on T results in an
approximate temperature independence of g.

As shown in Appendix B 1, for μ � 0 the limit r =
liml→∞ rl can be written as

r = gW

[
1

g
exp

(
eα − 1

g
+ α

)]
− eα + 1 + α, (3.13)

which in the special case μ = 0 simplifies to

r = gW (1/g). (3.14)

On the other hand, for finite α > 0 and g � 1 we can expand
Eq. (3.13) as

r = α + g ln

(
1

1 − e−α

)
− g2

eα − 1
ln

(
1

1 − e−α

)
+ O(g3),

(3.15)

which in the quantum disordered regime where α�1 results in

r = α + ge−α − (ge−α)2 + O(g3), (3.16)

so that the self-energy is exponentially suppressed.

In Appendix B 1, we also derive a more general expression,

r = 2g

2 − 3g
W

[
2 − 3g

2g
exp

(
2 − 3g

2g

[
1 − e−α

(
1 − g

2

)])]

− 1 + e−α

(
1 − g

2

)
+ α, (3.17)

which is valid for arbitrary α = −μ/T as long as we stay in
the normal phase close to the QCP and do not come too close to
the BKT phase transition. The reason for the latter constraint
is that vortices become increasingly important close to the
superfluid transition, which eventually leads to a breakdown
of the quasiparticle approximation �(K) ≈ �(0) (cf. Fig. 9
at μ > 0). Nevertheless, extrapolating (3.17) into the classical
critical regime, we can give an estimate for the critical chemical
potential μc at the BKT transition by demanding that r = 0,
which in the asymptotic limit yields

μc

T
= g ln

2

g
. (3.18)

Given that our theory is not justified in the classical critical
regime, this agrees well with the weak-coupling result [20,34]

μc

T
= g ln

Cμ

g
, (3.19)

where Cμ has been obtained numerically as Cμ ≈ 4.2 in
Ref. [22] and as Cμ ≈ 3.0 in Ref. [26].

C. Thermodynamic state functions

Within our approximation scheme, the density at scale � is
given by

n� =
∫

d2k

(2π )2

	(|k| − �)

e[εk+��(0)−μ]/T − 1
, (3.20)

which corresponds to the particle density of all particles with
momentum k > �. The integration can be carried out exactly,
and we obtain for the physical density

n = lim
�→0

n� = −mT

2π
ln[1 − e−r ]. (3.21)

Analogously, the off-diagonal elements of the density matrix
in our approximation are

G�(x,x′) =
∫

d2k

(2π )2

eik·(x−x′)	(|k| − �)

e[εk+��(0)−μ]/T − 1
. (3.22)

In the limit of large distances |x − x′| → ∞ and for � → 0
we can evaluate the momentum integration analytically [29],

G(x,x′) = lim
�→0

G�(x,x′) ∼ e−|x−x′|/ξ
√|x − x′|/ξ , (3.23)

where we have introduced the correlation length

ξ = 1/
√

2mT r. (3.24)

We now define the reduced pressure p̃, the phase-space density
ñ, the entropy per particle s̃, the dimensionless compressibility
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κ̃ , and the dimensionless correlation length ξ̃ ,

p̃ = λ2
th

T
p = −λ2

th

T

�

V
, (3.25a)

ñ = λ2
thn, (3.25b)

s̃ = 1

n

S

V
, (3.25c)

κ̃ = 2π

m
κ = −

(
∂ñ

∂α

)
T

, (3.25d)

ξ̃ =
√

2mT ξ, (3.25e)

where p is the pressure, � is the grand-canonical potential, S

is the entropy, κ = (∂n/∂μ)T is the compressibility, and the
thermal de Broglie wavelength is given by

λth =
√

2π

mT
. (3.26)

Since we have approximated the self-energy by its zero
momentum and frequency limit, we can try to incorporate the
interaction solely as a shift in the chemical potential, neglecting
the renormalized interaction u. Thus we compute the state
functions for a noninteracting Bose gas and fix the chemical
potential such that the particle density nfree coincides with
Eq. (3.21), i.e., μfree = μ − �(0). Accordingly, we find

p̃ = Li2(e−r ) ∼
μ=0

π2

6
− gW 2(1/g), (3.27a)

ñ = ln

[
1

1 − e−r

]
∼

μ=0
W (1/g), (3.27b)

s̃ = 2p̃

ñ
+ r ∼

μ=0

π2

3W (1/g)
, (3.27c)

ξ̃ = 1/
√

r ∼
μ=0

1/
√

gW (1/g), (3.27d)

where Li2(x) is the dilogarithm. Calculating the dimensionless
compressibility from Eq. (3.27b) yields

κ̃ =
(

∂r
∂α

)
T

er − 1
∼

μ=0

1

gW (1/g)
. (3.28)

We note that these observables do not have a well-defined limit
at μ = T = 0 due to the nonanalyticity of the grand-canonical
potential at the QCP, which separates the zero density ground
state at μ < 0 from the finite density superfluid ground state at
μ > 0. For the special case of a vanishing chemical potential,
the above relations have already been obtained by Rançon
and Dupuis [26], whose results agree with our expressions
for μ = 0.

Note that Eq. (3.27b) corrects the result for the density at
μ = 0 given by Sachdev et al. [21],

n = mT

2π
ln−4

(
�2

0

2mT

)
(Ref. [7]), (3.29)

while we find from Eqs. (3.27b) and (3.11)

n = mT

2π
W

[
1

2u0
+ 1

4
ln

(
�2

0

2mT

)]

∼
T →0

mT

2π
ln

[
1

4
ln

(
�2

0

2mT

)]
. (3.30)

We can improve on the calculation of p̃ and s̃ by directly
calculating the grand-canonical potential within the FRG
formalism, solving the flow equation

∂���

V
= −

∫
K

Ġ0,�(K)��(K)

1 − G0,�(K)��(K)
. (3.31)

Allowing for first-order corrections in the self-energy,

��(K) ≈ ��(0) − (
1 − Y−1

�

)
εk + (

1 − Z−1
�

)
iω, (3.32)

the flow equation for the reduced pressure p̃ = − λ2
th
T

�
V

reads
within our cutoff scheme (see Appendix B 2)

∂lp̃l = −2βl

[
ln

(
eZl (Y

−1
l βl+rl ) − 1

eβl+α − 1

)

−Zl

(
Y−1

l βl + rl

) + βl + α

]
. (3.33)

Approximating Zl =Yl = 1 and rl = r results in p̃ = Li2(e−r ),
which agrees with the reduced pressure in Eq. (3.27a). In
contrast, if we solve the flow equation (3.33) for p̃l at μ = 0
with the flowing rl , we find (see Appendix B 3)

p̃ ∼ π2

6
− g

2
W 2(1/g). (3.34)

Here the leading correction is only half as large as our earlier
result in Eq. (3.27a). This implies that it is necessary to solve
the flow equation for the grand-canonical potential to obtain
the correct leading-order scaling behavior for the reduced
pressure. The entropy per particle, which at μ = 0 can be
derived from the reduced pressure as

s̃ = 1

ñ

(
2p̃ + g2

4

∂p̃

∂g

)
, (3.35)

is only affected to subleading order. While the phase-space
density can in principle also be calculated from p̃ as ñ =
∂p̃/∂(μ/T )T , it is preferable to use Eq. (3.21) as it avoids the
additional approximations in the computation of the reduced
pressure.

In Fig. 2 we compare our results for the thermodynamic
state functions at μ = 0 (solid black and dashed blue lines)
with empirical data from three ultracold-atom experiments
(green symbols), which we call Chicago I [14], ENS [15],
and Chicago II [16], following the naming introduced in
Ref. [26]. The first two experiments investigated 133Cs
and 87Rb atoms, respectively, inside a harmonic potential
with strong confinement along the z axis, resulting in a
quasi-two-dimensional system; connection to homogeneous
systems was made through the local-density approximation.
While the 3D scattering length in Ref. [15] was fixed at
a = 5.3 nm (g = 0.035), the Chicago I experiment used
a magnetic Feshbach resonance to vary a between 2 and
10 nm (g = 0.016–0.083). These values of g correspond to
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FIG. 2. Comparison of our results for the renormalized state
functions at μ = 0 with the numerical results of Rançon and
Dupuis [26] (dash-dotted red line) as well as with data from three
different experiments (green symbols, taken from Fig. 4 in [26]).
The remaining lines correspond to the full analytical expressions in
Eqs. (3.27a) and (3.27c) on the one hand (dashed blue), and to the
improved equations (B33), (3.27b), and (3.35) on the other hand
(solid black), where r is always taken from Eq. (3.13). From top to
bottom, we show the reduced pressure p̃, the phase-space density ñ,
and the entropy per particle s̃ as a function of the effective coupling
constant g as defined in Eq. (3.11).

W (1/g) = 1.9–3.0, which is not much larger than unity, in
contrast to the assumption in our calculations; nevertheless, we
find that the agreement between the analytical results and the
aforementioned experiments is quite good. On the other hand,
the measurements from the Chicago II experiment, based on
133Cs atoms in a two-dimensional optical lattice, differ visibly

from our predictions for p̃ and s̃, which is not surprising given
that g = 0.68 is relatively large, while the agreement for ñ is
still remarkably good.

As a further benchmark, we use the results of Rançon
and Dupuis [26] (dash-dotted red lines), who numerically
computed the state functions within the FRG using a truncated
gradient expansion. We find that the plots for the phase-space
density ñ essentially agree, while the reduced pressure p̃ and
the entropy per particle s̃ differ for g � 0.1. This indicates the
upper boundary of the regime where our asymptotic analysis
is valid for these state functions.

IV. QUANTUM MONTE CARLO SIMULATIONS
OF THE XY MODEL

In this section, we compare our analytic RG results for
the density and the compressibility in the vicinity of the
dilute Bose gas quantum critical point derived in Sec. III with
numerical results for the two-dimensional quantum XY model
in a magnetic field, which we have investigated using QMC
simulations with finite-size scaling on lattice sizes from 20×20
up to 100×100 spins. We have implemented the stochastic
series expansion algorithm [35] with directed loop updates
and using the so-called Mersenne Twister random number
generator [36]. The Hamiltonian is given in terms of the
components Ŝα

i of spin-1/2 operators localized at the sites
i of a square lattice,

H = J
∑
〈ij〉

(
Ŝx

i Ŝx
j + Ŝ

y

i Ŝ
y

j

) − B

N∑
i=1

Ŝz
i , (4.1)

where the first sum is over distinct pairs of nearest neighbors
on the square lattice with N = L × L lattice sites and periodic
boundary conditions in both directions. Here J is the nearest-
neighbor exchange coupling, and the magnetic field B is
measured in units of energy. The model (4.1) maps exactly
to the two-dimensional Bose-Hubbard model with infinite
onsite interaction [1], i.e., hard-core bosons. To compare both
models, we should therefore take the limit of infinite contact
interaction (f0 → ∞) in our boson Hamiltonian (2.1) so that
only the logarithmic term in Eq. (3.11) survives,

g(u0 → ∞) = 4

ln
[ �2

0
2m(T −μ)

] . (4.2)

This limit makes it more challenging to reach the regime
g � 1 where our theoretical results apply, as this requires
exponentially low temperatures, in contrast to cold-atom
experiments where the bare interaction u0 can be tuned
to small values (cf. the discussion of Fig. 2). Therefore,
numerical simulations on hard-core bosons are suitable to test
the limitation of our approximations, as we will see below.
The quantum critical points of the XY model at B = ±2J

belong to the same universality class as the dilute Bose gas in
Eq. (2.1). Moreover, at the critical fields B = ±2J , the bare
parameters of the above XY Hamiltonian (4.1) can be related to
the bare mass and the chemical potential of the dilute Bose gas
via m = 1/(Ja2) and μ = 2J ∓ B. The magnetization per site
M/N in the simulations is directly related to the boson density
n = M/N ∓ 1/2, and the longitudinal spin-susceptibility χ

of the XY model corresponds to the compressibility κ of the

024414-6



THERMODYNAMICS AND RENORMALIZED . . . PHYSICAL REVIEW B 95, 024414 (2017)

FIG. 3. Density over temperature as a function of T for the XY

model at μ = 0 from QMC simulations (black dots). The blue line
represents our analytical prediction in Eqs. (3.21) and (3.17) with
mJ = 1 and �0 = 23.5. The dashed line (red) is a fit of the QMC
data to our leading-order result (3.30) for the density using a larger
cutoff �0 = 205 and a modified mass mJ = 0.8. On the top axis, we
show the corresponding g values for mJ = 1 and �0 = 23.5.

dilute Bose gas. In what follows, we set the lattice spacing a

to unity.

A. Results for μ = 0

The magnetization data from the simulations follow a
characteristic finite-size scaling of the form M(L)/N =
M(∞)/N + b exp(−L/ξ ′), where b and ξ ′ are temperature-
dependent, as will be discussed in more detail in Sec. IV C.
Basically, the finite-size correlation length ξ ′ decreases with
increasing temperature up to some temperature Tend, above
which the data become largely independent of L for the system
sizes used. In Fig. 3, we show the QMC results with error bars
(black) for the density over temperature as a function of T in
the thermodynamic limit at the lower critical field B = −2J ,
corresponding to a vanishing chemical potential μ = 0. The
solid line (blue) is a fit using Eq. (3.21) together with Eq. (3.17)
in the limit 1/u0 → 0 for hard-core bosons. Keeping both m

and �0 as fitting parameters, we obtain the expected result
mJ = 1 within a few percent. Setting mJ = 1 for simplicity
and using only the ultraviolet cutoff �0 as a fitting parameter,
we obtain �0 = 23.5 ± 1.5, where we have required that the
deviation between our analytical result and the QMC data
vanishes in the limit T → 0 (see the inset of Fig. 3).

For comparison, we also tested the leading-order expression
for the density given in Eq. (3.30) using the same cutoff �0 =
23.5, which predicts n/T to be more than 40% below the QMC
data for the temperatures used here. It is possible to use a rather
different cutoff �0 ≈ 205 and a modified mass mJ ≈ 0.8 to
fit the leading-order expression in Eq. (3.30) to the QMC data,
as shown by the dashed line (red) in Fig. 3. It seems that
such a fit compensates for higher-order corrections by using
a modified effective mass and a large value of the cutoff. In
turn, this means that for most experimental and numerical data
the coupling constant g is sufficiently small to guarantee that
the approximate solution in Eq. (3.21) is accurate, but g is not
exponentially small to justify dropping all higher-order terms

FIG. 4. Compressibility as a function of temperature for the
XY model at μ = 0 from QMC simulations (black dots). For
comparison we show as a blue line our analytical prediction from
Eqs. (3.21), (3.17), and Eq. (3.25d) with mJ = 1 and �0 = 31. The
top axis shows the corresponding g values for these parameters.

(see the g axes in Figs. 3 and 4). Therefore, a fit to the simple
logarithmic behavior in Eq. (3.30) may yield an incorrect cutoff
and mass to compensate for different higher-order corrections.
In the temperature region around the minimum in Fig. 3, the
scaling of the density may even appear perfectly linear with
temperature, which is consistent with recent results on two-
dimensional coupled spin-dimer systems [28].

The corresponding data for the compressibility are shown
in Fig. 4. The same form of the finite-size scaling was used, but
it should be noted that convergence to the thermodynamic limit
requires larger system sizes for this response function. Using
Eq. (3.25d) and the analytic expression in Eq. (3.28), we find
good agreement using again mJ = 1, but a larger cutoff �0 =
31 ± 2. Note that the effective coupling g in Eq. (3.11) depends
only logarithmically on �0, so that the difference in the cutoffs
only results in a rather small correction. Nevertheless, we find
that we cannot choose a single cutoff to fit our analytical
results for both the density and the compressibility to the QMC
data. We have checked the size-scaling for the particle density
as well as for the compressibility very carefully, so that we
can be sure that the deviation in the cutoff is not related to
any remaining finite-size effects. Instead, the different values
of �0 might be due to the fact that the condition g � 1,
requiring exponentially low temperatures due to the hard-core
interaction, is not strictly fulfilled in the accessible temperature
regime (see Figs. 3 and 4). Hence we would expect that our
analytical result (3.17) is only qualitatively correct, and we
need different values of the cutoff for quantitative agreement
with the QMC simulations.

B. Results for μ �= 0

Next, let us consider the regime of constant, nonzero
α = −μ/T > 0, corresponding to approaching the QCP
diagonally from the left in the μ-T -diagram shown in Fig. 1.
We investigate a wide range of values for α, starting from 0.1
up to 2.0.

The QMC data (solid and open symbols) for the density
and the compressibility at α = 0.1 are shown in Fig. 5 as
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FIG. 5. QMC results for the XY model at α = 0.1 and 0.4
of the density over temperature (green solid symbols) and the
compressibility (red open symbols). The green solid lines correspond
to our analytical prediction for n/T from Eqs. (3.21) and (3.17) with
mJ = 1, �0 = 23 ± 2 (upper green line), and �0 = 21 ± 2 (lower
green line), while the red solid lines correspond to κ from Eq. (3.25d)
with mJ = 1, �0 = 27.5 ± 2 (upper red line), and �0 = 20 ± 2
(lower red line).

a function of temperature, where we compare them to our
analytical results in Eqs. (3.21) and (3.25d) (solid lines). The
fit for the density shows good agreement for mJ = 1 and
�0 = 23 ± 2 (upper green line), which is consistent with the
estimate for μ = 0 from above. For the compressibility, we
find good agreement using mJ = 1 and �0 = 27.5 ± 2 (upper
red line). It should be noted that it is again possible to fit the
data to a leading-order expansion of our analytical results, but
this leads to values for the cutoff that are even larger than in
the case of α = 0.

Increasing α to 0.4 as shown in Fig. 5 (lower graphs), we
see that the magnitude of the density and the compressibility
is lowered, but the overall shape is similar. Compared to the
case α = 0, the value of the respective cutoffs decreases, �0 =
21 ± 2 for the density and �0 = 20 ± 2 for the compressibility
at α = 0.4, while at the same time the difference between the
two cutoffs becomes negligible within errors.

Monte Carlo results for α = 1 and 2 are presented in Fig. 6;
with increasing α, the temperature region for which we can
apply the fit functions is pushed to lower and lower values
of T , while at the same time the characteristic minimum in
n/T at Tmin is shifted to lower temperatures as well. Note that
κ also shows a minimum at slightly larger temperatures that
does not shift as much with α, so that both minima approach
each other for α = 2. Remarkably, both κ and n/T take on the
same value at a certain crossing temperature of T = 0.0228 ±
0.0018 (QMC) or T = 0.018 ± 0.003 (fits), which is largely
independent of α.

From the fits of the density, the cutoff can be consistently
estimated to be in the range �0 ≈ 22 ± 2 for all values of
α. The data for the compressibility at small α give slightly
larger estimates for �0, indicating that in this case our
analytical results for κ require smaller values of g than for
the density. This is consistent with Fig. 2, where we find good
agreement with Ref. [26] for n/T in a surprisingly large regime

FIG. 6. QMC results for the XY model at α = 1.0 and 2.0 of
the density over temperature (orange solid symbols) and the com-
pressibility (blue open symbols). The orange solid lines correspond
to our analytical prediction for n/T from Eqs. (3.21) and (3.17) with
mJ = 1 and �0 = 21 ± 2, while the blue solid lines correspond to κ

from Eq. (3.25d) with mJ = 1 and �0 = 20 ± 2.

of g, while our results for the other observables only agree up
to g � 0.1.

C. Correlation length and validity range

As already mentioned before, the size scaling of the
magnetization and of the susceptibility has the form

X(L) = X(∞) + b exp(−L/ξ ′) (4.3)

up to a characteristic temperature Tend, above which the data are
mainly independent of L so that a simple linear extrapolation
suffices. With these fits, we can extract a finite-size correlation
length ξ ′ from the size scaling of the magnetization, which is
shown in Fig. 7 for different α as a function of temperature
using the rescaling ξ = 1.15ξ ′. Within error bars, the behavior
of ξ ′ is consistent with the divergence ξ ∝ 1/

√
T in Eq. (3.24)

for all α. For comparison, we show the analytic result from

FIG. 7. Comparison of the numerical results for the rescaled
finite-size correlation length

√
T ξ = 1.15

√
T ξ ′ (symbols) at dif-

ferent values of α = −μ/T to our analytical prediction
√

T ξ =
1/

√
2mr from Eqs. (3.24) and (3.17) (solid lines) with mJ = 1 and

using a cutoff of �0 = 22.
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FIG. 8. Region of validity (red area) where the extrapolation in
Eq. (4.3) works and our analytical predictions from the FRG yield
accurate results. For comparison, we also show the temperature Tmin

where n/T exhibits a minimum for a given α. The dashed red line is
given by g = 0.5 for mJ = 1 and �0 = 22.

Eq. (3.17) for
√

T ξ = 1/
√

2mr as solid lines for different
values of α. The correlation length ξ ′ from the finite-size
scaling of the Monte Carlo data discussed above shows a
similar scaling behavior, although finite-size scaling does not
measure the correlation length directly. Choosing the cutoff as
�0 = 22, consistent with the fits for the density, we observe
that the correlation length ξ ′ from QMC finite-size scaling
agrees reasonably well with the analytic prediction for ξ up to
the rescaling ξ = 1.15ξ ′.

The breakdown of the exponential extrapolation in Eq. (4.3)
defines a temperature Tend, which can be used to identify a
region of validity for the continuum description of the XY

lattice model. Above this temperature, the correlation length
ξ is of order unity so that lattice effects dominate. As can be
seen in Fig. 8, this region where the continuum description
holds roughly coincides with the parameter range g < 0.5 for
�0 = 22 (red shaded region), which is where our analytic
prediction for n in (3.21) can be fitted to the QMC data.
The values of the temperatures Tmin where the minimum in
n/T for a given α occurs are also shown and are generally
at significantly larger values. Note that these minima in n/T

correspond to linear behavior of the density with temperature,
which always occurs well above the region of validity. It is
remarkable that it is possible to use Eq. (3.21) to describe the
behavior close to the QCP also for finite μ rather accurately, but
as expected smaller temperatures are required for α > 0 since
we then approach the QCP diagonally in the μ-T diagram.

V. QUASIPARTICLE PROPERTIES CLOSE
TO THE QUANTUM CRITICAL POINT

Within our FRG approach, it is straightforward to calculate
the leading-order momentum and frequency dependence of
the self-energy in the vicinity of the dilute Bose gas quantum
critical point, which we parametrize in terms of the two
dimensionless renormalization factors Z� and Y� defined via
the expansion (3.32). Z� can be identified with the usual
wave-function renormalization factor (quasiparticle residue),
while Y� determines the effective mass of the bosons.

FIG. 9. Double logarithmic plot of our analytical result for 1 − Z

as given in Eq. (5.3) vs the dimensionless coupling g for different
values of μ/T . For μ/T = ±10−5 we can see that the scaling is very
close to the scaling at vanishing chemical potential for larger g and
only begins to differ when gW (1/g) is of the order of |μ/T |; the
deviation around g ≈ 1 is due to the fact that for positive chemical
potential we have to use (3.17) for r instead of (3.13). In the case
of positive μ, the wave-function renormalization then shrinks until it
vanishes at the phase transition where r = 0 [see Eq. (3.18)].

A. Wave-function renormalization

From the low-energy expansion (3.32) of the self-energy,
we see that the RG flow of Z� is determined by

∂�Z−1
� = −∂�∂ω��(0,ω + i0+)

∣∣
ω=0. (5.1)

Although the flow of Z� modifies also the flow equations (3.9)
and (3.10) for ��(0) and ��(0), we shall ignore this
modification since it is not expected to change the leading
asymptotics close to the quantum critical point. Neglecting
the Bose distribution in the flow of the particle-particle
susceptibility, we end up with the approximate flow equation
(see Appendix B 4)

∂lZ
−1
l = 2gβle

βl+r

(eβl+r − 1)2
. (5.2)

Integrating this equation, we find that Z = liml→∞ Zl is
given by

Z−1 − 1 ≈ g

er − 1
. (5.3)

Although this result is only strictly valid for a nonpositive
chemical potential, we find numerically that it is also
qualitatively good for μ > 0. For a vanishing chemical
potential, Z scales as

Z−1 − 1 = 1

W (1/g)
, (5.4)

while in the quantum disordered regime α � 1 the correction
is exponentially small,

Z−1 − 1 = ge−α. (5.5)

We have verified the validity of these approximate expressions
by solving the relevant flow equations numerically, taking the
Bose distribution in the flow of �� into account, which yields
very good overall agreement. Some representative results
for 1 − Z at various values of μ/T are presented in Fig. 9.
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FIG. 10. Comparison of our analytical result for the wave-
function renormalization Z of hard-core bosons in Eq. (5.3) (black
solid line) with numerical computations using the self-consistent
T -matrix approximation, which is expected to be good at high
temperatures (blue dots). Note that for T → 0 our analytic result for
Z becomes exact. The intermediate regime (sketched by the gray
dashed line as a simple interpolation between the results) where
g = ( 1

4 ln β0)−1 is below, but not much smaller than, unity is not
covered by either method.

We find that for μ/T � 0 the wave-function renormalization
approaches unity in the limit g → 0, in agreement with the
well-known result that �(K) = 0 at the QCP (cf. Sec. III A),
while for a positive chemical potential we have Z = 0 at a
finite g where the BKT transition takes place.

Finally, we can also explore the regime of validity of the
self-consistent T -matrix approximation as given in Eqs. (2.13)
and (2.14), which in this context is expected to be good at
high temperatures. On the other hand, our FRG approach
should be accurate at low temperatures, and it is a priori
not clear whether there exists an intermediate temperature
regime where both methods are valid. For simplicity, we
consider only the case μ = 0, and we take the limit of
infinite bare interaction, corresponding to hard-core bosons. A
detailed discussion of the self-consistent T -matrix approach
to hard-core bosons can be found in Ref. [31], where the spin
Hamiltonian for the magnetic insulator Cs2CuCl4 was mapped
onto a two-dimensional hard-core boson model, which was
then studied using the self-consistent T -matrix approximation.

For a comparison of this method with our FRG approach, we
use parameters specific to Cs2CuCl4; in particular, we choose
the effective inverse temperature as β0 = �2

0/(2mT ) ≈ 1K/T ,
where we have fixed the momentum cutoff �0 to an average
value of the inverse lattice parameters of Cs2CuCl4. In Fig. 10
we compare the results of both complementary methods;
obviously, an intermediate temperature regime where both
methods are accurate does not exist, showing the need for an
alternative approach in this region. We expect that a numerical
solution of the FRG flow equations (2.10) and (2.11), retaining
the full momentum and frequency dependence of ��(K)
and ��(P ), should be accurate at low as well as at high
temperatures. Another possibility to describe the intermediate
temperature regime is to use a lattice FRG scheme along the
lines of Ref. [37].

FIG. 11. Double logarithmic plot of our analytical result for
1 − Y as given in Eqs. (5.7) and (5.9) vs the dimensionless coupling
g for different values of μ/T . We can see that for μ/T = −10−5 the
scaling coincides with the μ = 0 curve until gW (1/g) is of the order
of |μ/T |, where it starts to fall off more rapidly.

B. Effective mass

Using Eqs. (3.32) and (2.10), we find that the flow equation
for the effective-mass factor Y� is within our truncation given
by

∂�Y−1
� = m∂�∂2

k ��(k,0)
∣∣
k=0

= −m

∫
P

Ġ�(P )
{
2F 3

�(P )[∂k��(P + K)]2

−F 2
�(P )∂2

k ��(P + K)
}∣∣

K=0. (5.6)

As before, we neglect the momentum dependence in the
particle-particle susceptibility as well as the Bose distributions
that appear in its flow equation. This allows us to compute Y

analytically to leading order as long as μ � 0. For r � 1, we
find

Y−1 − 1 = g2

32r2
[g ln(1/r) + α], (5.7)

which for μ = 0 and small g simplifies to

Y−1 − 1 = g

32W (1/g)
. (5.8)

In the opposite regime r � 1, we obtain

Y−1 − 1 = γ (α)g2, (5.9)

where the coefficient γ is given by

γ (α) = α

16

∫ ∞

0

db

(eb+α − 1)(b + α)2
. (5.10)

Thus at α � 1 the correction is again exponentially sup-
pressed,

Y−1 − 1 = g2 e−α

16α
. (5.11)

Representative results of Y at different values of μ/T are
shown in Fig. 11, which should be compared with the
analogous Fig. 9 for the wave-function renormalization factor.
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VI. SUMMARY AND CONCLUSIONS

In this paper, we have used an FRG approach as well as
quantum Monte Carlo simulations to study the dilute Bose
gas with contact interaction in two dimensions. From the
approximate analytical solution of the FRG flow equations,
we have been able to obtain explicit analytic results for
thermodynamic state functions as well as for quasiparticle
properties in the vicinity of the QCP. Our results for the
thermodynamics and the wave-function renormalization are
expected to be valid for general μ/T in the normal phase save
for the classical critical region around the BKT transition, thus
extending previous analytic results [21,26] for the thermody-
namic observables that considered only the special case μ = 0.
A comparison with experimental data [14–16] as well as with
an alternative FRG approach based on the numerical solution
of flow equations obtained within the gradient expansion [26]
shows good agreement with our expressions for the state
functions when the dimensionless effective interaction is
sufficiently small (g � 0.1), while the density even agrees up
to g ≈ 1.

To investigate the validity and the limitations of our FRG ap-
proach, we have also studied the spin-1/2 quantum XY model
close to the dilute Bose gas QCP using QMC simulations.
It turns out that with our FRG approach, we can predict the
behavior of both density and compressibility even at relatively
high temperatures, using only the effective ultraviolet cutoff
�0 of the continuum model as a free parameter. In particular,
we were able to describe the numerical data for a negative
chemical potential analytically, which has not been done
before. For both cases of μ = 0 and μ < 0, we could also fit
our analytical leading-order results to the QMC data; however,
this requires a rather large value of the ultraviolet cutoff �0 and
a modified bare mass. From the finite-size scaling of the density
we have determined the correlation length, which is consistent
with the analytic predictions within error bars. Moreover, the
finite-size scaling also defines a region of validity for the
continuum description of the lattice model. Outside this region,
the exponential behavior in Eq. (4.3) breaks down and the
correlation length is of order unity. Interestingly, in that regime
the numerical data always show a minimum in the density
over temperature and in the compressibility as a function of
T for a given α, which is not captured by the continuum
description.

Finally, we have computed the wave-function renormaliza-
tion factor Z for hard-core bosons numerically using the self-
consistent T -matrix approximation, which for μ = 0 should
be accurate at high temperatures. Comparing the data to our
analytic FRG result for Z, which is only valid at very small T ,
we find that an intermediate temperature range where both the
truncated FRG and the self-consistent T -matrix approximation
are accurate unfortunately does not exist.
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APPENDIX A: EXACT FRG FLOW EQUATIONS

In this appendix, we write down exact FRG flow equations
for the one-line irreducible vertices of the decoupled bosonic
action in (2.5). Therefore, we modify the Gaussian propagators
of the elementary boson and the Hubbard-Stratonovich boson
by inducing a cutoff �, which suppresses fluctuations with
wave vectors smaller than �,

G0(K) → G0,�(K), (A1)

F0(P ) → F0,�(P ). (A2)

At some large initial value �0 of the cutoff, the regularized
bare action can be written in the following symmetrized form:

S�0 [ā,a,ψ̄,ψ] (A3)

= −
∫

K

G−1
0,�0

(K)āKaK +
∫

P

F−1
0,�0

(P )ψ̄P ψP

+ 1

2!

∫
K1

∫
K2

∫
P

δK1+K2,P

[


āāψ

�0
(K1,K2; P )āK1 āK2ψP

+
aaψ̄

�0
(K1,K2; P )aK1aK2ψ̄P

]
. (A4)

Here the bare values of the symmetrized vertices are


āāψ

�0
(K1,K2; P ) = 

aaψ̄

�0
(K1,K2; P ) = i. (A5)

The exact FRG equations, describing the flow of one-line
irreducible vertices of the above theory as we reduce the cutoff,
follow from the vertex expansion of the FRG flow equation of
the corresponding generating functional [29,38]. The flowing
inverse propagators are of the form

G−1
� (K) = G−1

0,�(K) − ��(K), (A6)

F−1
� (P ) = F−1

0,�(P ) + ��(P ), (A7)

where the self-energy ��(K) of the elementary boson satisfies
the following exact flow equation:

∂���(K) =
∫

P

[Ḟ�(P )G�(P − K) + F�(P )Ġ�(P − K)]

×
āāψ

� (P − K,K; P )aaψ̄

� (P − K,K; P )

−
∫

K ′
Ġ�(K ′)āāaa

� (K,K ′; K ′,K)

+
∫

P

Ḟ�(P )āaψ̄ψ

� (K; K; P ; P ), (A8)

which is shown graphically in the first line of Fig. 12.
Here āāaa

� (K,K ′; K ′,K) and 
āaψ̄ψ

� (K; K; P ; P ) are one-
line irreducible vertices with four external legs of the type
indicated by the superscripts, while Ġ�(K) and Ḟ�(P ) are
the single-scale propagators [29] for the given cutoff scheme;
for example, for a sharp momentum cutoff, the single-scale
propagator Ġ�(K) is given in Eq. (2.7).

The exact FRG flow equation for the self-energy ��(P )
of the HS boson (which can be identified with the irreducible

024414-11
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FIG. 12. Graphical representation of the FRG flow equa-
tions (A8)–(A11) for the two- and three-point vertices, where the solid
and wavy arrows denote the exact elementary and HS propagators,
respectively. The interchange of labels applies to all diagrams inside
the brackets, while a diagram containing a cross stands for all different
diagrams of this type with one of the internal propagators replaced
by the corresponding single-scale propagator.

particle-particle susceptibility) is

∂���(P ) = −
∫

K

Ġ�(K)G�(P − K)āāψ

� (P − K,K; P )

×
aaψ̄

� (P − K,K; P )

−
∫

K

Ġ�(K)āaψ̄ψ

� (K; K; P ; P )

+
∫

P ′
Ḟ�(P ′)ψ̄ψ̄ψψ

� (P,P ′; P ′,P ). (A9)

This equation is shown graphically in the second line of Fig. 12.
The three-legged vertices satisfy the exact flow equations

∂�
āāψ

� (K1,K2; P )

= −
∫

K

Ġ�(K)G�(P − K)āāaa
� (K1,K2; K,P − K)

×
āāψ

� (P − K,K; P )

+
[∫

K

Ġ�(K)F�(K1 + K) + G�(K)Ḟ�(K1 + K)

]

×
āaψ̄ψ

� (K2; K; K1 + K; P )āāψ

� (K1,K; K1 + K)

+
[∫

K

Ġ�(K)F�(K2 + K) + G�(K)Ḟ�(K2 + K)

]

×
āaψ̄ψ

� (K1; K; K2 + K; P )āāψ

� (K2,K; K2 + K)

−
∫

K

Ġ�(K)āāāaψ

� (K1,K2,K; K; P )

+
∫

P ′
Ḟ�(P ′)āāψ̄ψψ

� (K1,K2; P ′; P ′,P ) (A10)

and

∂�
aaψ̄

� (K1,K2; P )

= −
∫

K

Ġ�(K)G�(P − K)āāaa
� (K,P − K; K1,K2)

×
aaψ̄

� (P − K,K; P )

+
[∫

K

Ġ�(K)F�(K1 + K) + G�(K)Ḟ�(K1 + K)

]

×
āaψ̄ψ

� (K; K2; P ; K1 + K)aaψ̄

� (K1,K; K1 + K)

+
[∫

K

Ġ�(K)F�(K2 + K) + G�(K)Ḟ�(K2 + K)

]

×
āaψ̄ψ

� (K; K1; P ; K2 + K)aaψ̄

� (K2,K; K2 + K)

−
∫

K

Ġ�(K)aaaāψ̄

� (K1,K2,K; K; P )

+
∫

P ′
Ḟ�(P ′)aaψψ̄ψ̄

� (K1,K2; P ′; P ′,P ). (A11)

A graphical representation of these flow equations is shown in
the lower half of Fig. 12. Because our action depends on two
different types of fields corresponding to the elementary boson
and the HS boson, we have to keep track of three different types
of four-point vertices. Although in this work we do not need
the exact flow equations of these vertices, for later reference
and for completeness we write down these flow equations in
diagrammatic form in Fig. 13.

Finally, let us also write down the exact FRG flow equation
for the grand-canonical potential ��,

∂���

V
= −

∫
K

Ġ0,�(K)��(K)

1 − G0,�(K)��(K)

+
∫

P

Ḟ0,�(P )��(P )

1 + F0,�(P )��(P )
. (A12)

Note that with our normalization of the interaction, all
combinatorial factors in the flow equations for the two- and
three-point vertices are unity. Moreover, if we lump one minus
sign into the HS propagators such that the combinations
−F�(P ) and −Ḟ�(P ) appear everywhere, only a single overall
minus sign multiplies all flow equations.

In the main text of this paper, we introduce a sharp
momentum cutoff scheme only in the propagator of the
elementary boson. In this scheme,

G0,�(K) = 	(|k| − �)

iω − εk + μ
, (A13)

F0,�(P ) = f0, (A14)

so that the single-scale propagator for the HS boson vanishes
identically in the exact flow equations given above,

Ḟ�(P ) = 0. (A15)
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FIG. 13. Graphical representation of the FRG flow equations for
the four-point vertices āāaa

� , 
āaψ̄ψ

� , and 
ψ̄ψ̄ψψ

� , where the solid
and wavy arrows denote the exact elementary and HS propagators,
respectively. The interchange of labels applies to all diagrams inside
the brackets, while a diagram containing a cross represents all
different diagrams of this type with one of the internal propagators
replaced by the corresponding single-scale propagator.

APPENDIX B: ANALYTIC SOLUTION
OF THE FLOW EQUATIONS

1. Self-energies

In Sec. III B we have obtained the following coupled
RG flow equations for the bosonic self-energies at vanishing
external energies and momenta:

∂lrl = 1
1
u0

+ �̃l

4βl

eβl+rl − 1
, (B1)

∂l�̃l = βl

βl + rl

[
1 + 2

eβl+rl − 1

]
, (B2)

where the boundary conditions have to be chosen such that the
bosonic self-energies at the initial scale �0 vanish, implying

r0 = α, �̃0 = 0. (B3)

It is clear from the flow equation of rl that it only starts to grow
significantly when βl is of order unity, therefore the behavior
of �̃l before this point is not important. It turns out that

∂l�̃l = 2βle
βl+r

(eβl+r − 1)2
(B4)

with the boundary condition

�̃0 = 1

2
ln

[
�2

0

2m(T − μ)

]
(B5)

is a good replacement for the correct flow equation, leading
to approximately the same flow for rl ; we will justify this
approximation in the following.

First we note that the replacement rl → r is good for any
r0: while for r0 � 1 the self-energy is negligible compared to
μ/T , we see from Eqs. (B1) and (B2) that for r0 � 1 the
contribution of rl only becomes relevant when it is of the same
order of magnitude as βl , which is just when the flow of rl

effectively stops. Secondly, for large βl we can approximate
the flow of �̃l in Eq. (B2) as

∂l�̃l = βl

βl + r
, (B6)

which is easily solved by

�̃l = 1

2
ln

(
β0 + r

βl + r

)
. (B7)

Close to the QCP where β0 is large, we may extrapolate this
result up to βl = 1 as the corrections of order unity are assumed
to be small compared to ln β0, yielding

�̃l

∣∣
βl=1 ≈ 1

2
ln

(
β0

1 + α

)
(B8)

for β0 � r and �(0)/T � 1, which agrees with the right-hand
side of Eq. (B5). Using Eq. (B4) for �̃l , we find that it is almost
constant for βl � 1 (with irrelevant corrections at βl � 1),
hence our replacement reproduces �̃l at βl = 1 quite well.
Lastly, we have to make sure that we also get the correct
flow of rl for βl < 1. According to Eq. (B1) for r0 � 1 only
the region βl ≈ 1 is relevant for the flow of rl , thus we are
left with the case r0 � 1. Assuming βl � 1, we may expand
the exponentials in both versions of the flow equation for �̃l ,
which then coincide,

∂l�̃l = 2βl

(βl + r)2
. (B9)

While there are deviations from the region βl � 1, these are
again small compared to ln β0. Therefore, our approximate
flow equation for �̃l is justified for all relevant r0 close to
the QCP.
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The advantage of Eq. (B4) is that we can integrate this flow
equation exactly,

�̃l = 1

eβl+r − 1
− 1

eβ0+r − 1
+ �̃0 ≈ 1

eβl+r − 1
+ �̃0,

(B10)
so that the flow equation for rl reads

∂lrl = 2gβl

eβl+r − 1 + g

2

, (B11)

where we have used g from Eq. (3.11). For r � 1, we can
readily drop the last term in the denominator of (B11),
assuming that g � 1. If, on the other hand, r � 1 and βl � 1
(which is then the relevant regime for the flow), we can expand
the exponential in the denominator,

eβl+r − 1 + g

2
≈ βl + r + g

2
. (B12)

For μ � 0, we will find that r � gW (1/g) for small g, hence
we can again drop the last term in the denominator,

∂lrl = 2gβl

eβl+r − 1
. (B13)

Integrating this and using β0 � 1, we arrive at the transcen-
dental equation

�(0)

T
+ g ln

(
1 − e− �(0)

T
−α

)
= 0. (B14)

After expanding e
�(0)
T ≈ 1 + �(0)

T
, we can solve for the self-

energy and finally get

r = gW

[
1

g
exp

(
eα − 1

g
+ α

)]
− eα + 1 + α (B15)

as given in Eq. (3.13) in the main text.
We can also extend our calculation to positive μ by directly

integrating Eq. (B11), yielding

�(0)

T
+ 2g

2 − 3g
ln

[
e

�(0)
T −

(
1 − g

2

)
e−α

]
= 0, (B16)

which we can again solve by expanding e
�(0)
T to first order. The

resulting expression,

r = 2g

2 − 3g
W

[
2 − 3g

2g
exp

(
2 − 3g

2g

[
1 − e−α

(
1 − g

2

)])]

− 1 + e−α

(
1 − g

2

)
+ α, (B17)

is valid for all μ/T close to the QCP as long as we stay in the
normal phase.

2. Grand-canonical potential

To calculate the grand-canonical potential � of the system
within the FRG formalism, we need to solve the flow equation

∂���

V
= −

∫
K

Ġ0,�(K)��(K)

1 − G0,�(K)��(K)
. (B18)

Within our sharp momentum cutoff scheme, this reduces to

∂���

V
= −

∫
K

δ(k − �) ln[1 − G0(K)��(K)]. (B19)

In the quasiparticle approximation, we expand

��(K) ≈ ��(0) − (
1 − Y−1

�

)
εk + (

1 − Z−1
�

)
iω. (B20)

We can then perform the momentum integration explicitly,
which only leaves us with the Matsubara sum. Rewriting it as
a contour integral in the complex plane, we find

∂���

V
= T �

2π

(
− 1

2πi

) ∫
C

dz

ez − 1

× ln

[
1 −

��(0)
T

− (
1 − Y−1

�

)
βl + (

1 − Z−1
�

)
z

z − βl − α

]
,

(B21)

where we integrate in the clockwise direction along two closed
great half-circles in the left and right complex half-plane,
respectively, which together encompass the whole complex
plane without the imaginary axis. Here we have to require
α > 0, as will become clear in a moment. Then the integration
over the left half-plane vanishes as the function is holomorphic
in this domain while the right contour encloses a branch cut.
This may be seen by defining

z1 = βl + α, z2 = Z�

(
Y−1

� βl + rl

)
, (B22)

and rewriting the argument of the above logarithm,

∂���

V
= T �

2π

(
− 1

2πi

) ∫
C

dz

ez − 1
ln

[
Z−1

�

z − z2

z − z1

]
. (B23)

Using the principal branch of the logarithm, we find that it has
a branch cut along the real axis, connecting the two points z1

and z2 where the logarithm diverges; due to the requirement
α > 0, we have z1,z2 > 0. We can perform the integral by
integrating alongside the branch cut,∫ z1

z2

dz

ez − 1
ln

[
Z−1

�

z + iε − z2

z + iε − z1

]

+
∫ z2

z1

dz

ez − 1
ln

[
Z−1

�

z − iε − z2

z − iε − z1

]
= −2πi

∫ z1

z2

dz

ez − 1
,

(B24)

where we have assumed that z1 > z2. However, if we repeat
the calculation for the opposite case, we obtain the same result.
Switching to the logarithmic flow parameter l and expressing
the flow equation for � in terms of the reduced pressure

p̃ = − λ2
th
T

�
V

, we arrive at

∂lp̃l = −2βl

[
ln

(
ez2 − 1

ez1 − 1

)
− z2 + z1

]
. (B25)

At this point, is it convenient to introduce the flow parameter
b = βl and set Y� = Z� = 1 for simplicity. Then we obtain

∂bp̃b = ln(eb+rb − 1) − b − rb

− [ln(eb+α − 1) − b − α]. (B26)

If we integrate the second line of this equation and neglect
terms of the order of e−β0 , we obtain the initial condition of
the reduced pressure,

−
∫ ∞

0
db[ln(eb+α − 1) − b − α] = Li2(e−α) = p̃β0 . (B27)
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Hence in the physical limit l → ∞ the reduced pressure is
given by

p̃ = −
∫ ∞

0
db[ln(eb+rb − 1) − b − rb]. (B28)

In the derivation of this equation we have assumed α > 0,
which ensures that the initial condition of the flow, the re-
duced pressure of the noninteracting system, exists. However,
since (B28) is well defined for any α as long as we stay in
the normal phase above the BKT transition, we can extend our
result for p̃ to this region. In the simplest approximation where
we replace rb by its final value r , we get

p̃ = Li2(e−r ), (B29)

which coincides with (3.27a) in the main text.

3. Reduced pressure at μ = 0 for Y� = Z� = 1

We can refine the result in (B29) by keeping track of the
flow of rb. As only the region b < 1 is relevant, we may expand
the exponentials both in the flow equation (B25) of p̃b and in
the flow equation (B13) of rb,

∂bp̃b = ln

[
b + rb

b

]
− rb, (B30)

∂brb = − g

b + r
. (B31)

For b > rb we may further expand the logarithm,

∂bp̃b = rb

b
− rb, (B32)

while for b < rb the replacement rb → r is valid. Integrating
both regions, we find

p̃ = π2

6
− r ln 4 + r2 − g

{
π2

12
− 1 + r − r ln 4

+ ln

(
1 + 1

r

)
(2r − ln r) + Li2

(
−1

r

)}
. (B33)

Expanding this result in terms of g, where r is taken from
Eq. (3.14), we arrive at

p̃ ∼ π2

6
− g

2
W 2(1/g). (B34)

Note that we can also obtain this result in a different way as
follows: a perturbative expansion of the reduced pressure in
the bare interaction u0 yields to first order

p̃ − p̃0 ≈ −u0ñ
2
0, (B35)

where ñ0 is the phase-space density of the noninteracting Bose
gas. Evaluating the same two-loop diagram using dressed

propagators and neglecting the momentum and frequency
dependence of �(K) and �(P ), we obtain

p̃ − p̃0 ≈ −uñ2. (B36)

Inserting our FRG results for μ = 0, where to leading order

u ≡ lim
l→∞

1
1
u0

+ �̃l

∼ g

2
(B37)

and

ñ ∼ W (1/g), (B38)

we again arrive at Eq. (B34).

4. Wave-function renormalization

As the flow of Z� is given by

∂�Z−1
� = −∂�∂ω��(0,ω + i0+)

∣∣
ω=0, (B39)

we need the frequency dependence of the self-energy and thus
in turn �̃�(0,iω̄). If we neglect the Bose function in its flow
equation, which is allowed for nonpositive μ, and replace
rl → r , we get

�̃�(0,iω̄) = 1

2
ln

[
2β0 + 2r − βiω̄

2βl + 2r − βiω̄

]
. (B40)

Evaluating the Matsubara sum in ∂���, we find that the
additional pole due to (B40) is exponentially suppressed, so
that we obtain

∂lZ
−1
l = 4Zlβl

eβl+Zlrl − 1

×
{

1

u−1
0 + 1

2 ln
( 2β0−βl+r

βl+r

) eβl+Zlrl

eβl+Zlrl − 1

+
[

1

u−1
0 + 1

2 ln
( 2β0−βl+r

βl+r

)]2
β0−βl

(2β0−βl+r)(βl+r)

}
.

(B41)

We can simplify this by replacing rl → r , setting Zl = 1 on
the right-hand side, and realizing that the second term in the
curly brackets is suppressed by a factor of g, which results in

∂lZ
−1
l = 4βle

βl+r

(eβl+r − 1)2

1

u−1
0 + 1

2 ln
( 2β0−βl+r

βl+r

) . (B42)

Furthermore, we may replace the second fraction in this
expression by g/2 so that we arrive at

∂lZ
−1
l = 2gβle

βl+r

(eβl+r − 1)2
, (B43)

which should be good for μ � 0 in the limit of small g.
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