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A B S T R A C T

Scymol is a Python-based software package specifically designed to facilitate the setup and execution of mo-
lecular simulations in LAMMPS. It comes equipped with a user-friendly interface, which simplifies the process of 
initializing molecular systems and defining simulation parameters. Moreover, the software generates and exe-
cutes LAMMPS simulation sequences, enabling researchers to establish comprehensive simulation schemes, such 
as heating or deformation cycles, in a single run. Through its successful application in diverse research projects 
and its modular design, Scymol demonstrates considerable promise as an indispensable tool for researchers 
aiming to carry out molecular dynamics simulations without sacrificing complexity or high-throughput capa-
bilities in their methodologies.
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1. Motivation and significance

The application of Statistical Mechanics (SM) and Molecular Dy-
namics (MD) was confined to the domains of physics, chemistry, and 

scientific computing [1,2]. However, these methodologies have now 
gained traction in disciplines outside core areas because of their accu-
rate representation of novel materials without the need for extensive 
experimental validation [3]. Over the years, molecular simulation en-
gines such as LAMMPS [4] (Large-scale Atomic/Molecular Massively 
Parallel Simulator) and GROMACS [5] (Groningen Machine for Chem-
ical Simulations) have emerged as field standards. Despite their 
comprehensive capabilities in facilitating diverse simulation configu-
rations, using these software packages appropriately presents its own set 
of challenges [6].

Users should have a solid understanding of the chemistry of the 
systems they are simulating, including the nature of the phenomena to 
be captured and the necessary conditions. Physically, it is essential to 
understand how classical mechanics and statistical methods interplay to 
model atomic interactions [7]. On the computational side, these 
methods require careful use of state-of-the-art algorithms and compu-
tational resources, making expertise in numerical and 
High-Performance Computing (HPC) crucial [8,9]. Moreover, users 
should be well-versed in LAMMPS-specific scripting including knowl-
edge in its source code [10]. Additionally, users should be prepared to 
navigate Unix-based operating systems on which many LAMMPS simu-
lations run.

Commercially available software tools like Materials Studio [11], 
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MedeA [12], Scienomics, and QuantumEspresso [13] have been devel-
oped to simplify the process of setting up and running MD. However, 
these tools have limitations in terms of cost, flexibility, and compati-
bility with open-source alternatives. They often rely on graphical user 
interfaces that, while user-friendly and comprehensive, hinder the 
automation of high-throughput studies. Open-source solutions such as 
Avogadro [14], OpenBabel [15], Visual Molecular Dynamics (VMD) 
[16], and Ovito [17] offer some functionalities for MD preparation and 
analysis but are not built to be a comprehensive solution around 
LAMMPS. These tools still necessitate manual efforts to bridge gaps in 
simulation workflows, particularly in areas that involve the initializa-
tion of LAMMPS simulations.

Additionally, renowned Python-based packages such as Chemistry at 
HARvard Macromolecular Mechanics [18] (CHARMM) and its 
web-based tool CHARMM-GUI, as well as the Molecular Simulation 
Design Framework [19] (MosDef), offer direct solutions for preparing, 
executing, and analyzing Molecular Dynamics simulations but present 
certain limitations. For instance, CHARMM is not open-source, and ac-
cess to its underlying code is governed by restrictive licensing condi-
tions. CHARMM-GUI serves as an online tool for generating simulation 
inputs, but the actual simulations are performed locally on compatible 
MD engines, resulting in an interrupted workflow. In contrast, while 
MosDef is open source, it does not include a UI and instead relies 
extensively on Python scripting for setting up and running simulations. 
Similarly, other open-source packages, such as PySoftK [20] and Poly-
matic [21], provide robust solutions for setting up and running MD 
simulations. However, they also rely heavily on Python scripting skills 
for their execution, which makes them less accessible to researchers with 
limited scripting proficiency or those not specifically focused on the 
fields for which the software is supported and designed.

In the current landscape, many researchers find themselves 
combining functionalities from different software packages to establish 
and execute LAMMPS-based simulations [22–28]. This situation is less 
than ideal for scientists whose expertise should be focused on answering 
important questions in their lines of study rather than figuring out how 
to conduct complex simulations effectively and efficiently. For this 
reason, the development of a software package like Scymol proves 
valuable, as it aims to provide a simple and straightforward platform for 
initiating and running MD simulations, from start to end, with the intent 
of lowering the barriers related to technical proficiency to run LAMMPS 
simulations. Moreover, Scymol aims to establish a foundation for a 
growing library of LAMMPS simulation routines, designed to evolve 
over time and address the need for predicting material properties 
through a standardized set of sequences of LAMMPS operations. This is 
particularly beneficial for researchers engaged in technical scientific 
projects, such as Civil and Pavement Engineers, who seek a straight-
forward introduction to the use of Molecular Dynamics simulations and 
anticipate a program that is continuously developed to meet their spe-
cific objectives.

The development of a software package for automating the initiali-
zation of molecular systems and preparing LAMMPS simulations has 
been accelerated by the capabilities offered by Python libraries such as 
Openbabel, Openmm [29], RDKit [30], and Pysimm [31]. These li-
braries, although not explicitly designed to interface with LAMMPS, 
facilitate various tasks within the MD simulation workflow, thereby 
simplifying the development of more comprehensive software packages 
such as Scymol.

2. Software description

Scymol is a Python-based software package featuring a graphical 
User Interface (UI) developed in PyQt5. The software is designed to 
simplify the process of setting up and executing molecular simulations 
using LAMMPS. It eliminates much of the complexity associated with 
traditional simulation setups by offering intuitive features such as drag- 
and-drop interfaces for configuring various LAMMPS stages. Users can 

set up complex simulations of hydrocarbon mixtures involving defor-
mation and heating cycles by simply providing the SMILES notation or 
other universally recognized molecular formats. Scymol is implemented 
in Python 3.12 and is organized into three main components: the fron-
tend, the fron2back, and the backend.

The frontend is designed primarily as a UI developed using PyQt5 
and QtDesigner [32]. It offers a simple yet comprehensive interface 
where users can add or delete molecules, modify a number of configu-
ration parameters, and set up sequences of LAMMPS simulation stages. 
The frontend employs the RDKit module to parse the inputs provided via 
the UI, preparing the chemical system for subsequent processing by the 
backend.

The fron2back functions as the link between the frontend and the 
backend. It collects all the data in the elements of the frontend and 
processes them to produce the inputs readable by the backend. It also 
spawns, monitors, and controls the state of the jobs executed from the 
UI.

The backend functions as an automated engine for executing 
LAMMPS simulations based on user-defined inputs. It performs tasks 
such as initializing molecular positions, generating necessary LAMMPS 
inputs, and managing the execution of individual LAMMPS processes 
through a Message Passing Interface (MPI) [33]. It also handles the input 
and output files produced between LAMMPS stages and aggregates the 
results. The backend uses the RDKit, Pysimm, and Numba [7] Python 
packages to execute these functionalities. Importantly, the backend is 
designed to operate independently from the frontend. It reads all the 
required information from an inputs.py file, which the fron2back gen-
erates, to perform its operations. This file is both readable and modifi-
able, allowing users to adapt it to custom Python algorithms and run it in 
environments that may not support UIs.

2.1. Software architecture

An illustration of the principal elements and their intercommunica-
tion is provided in Fig. 1, while Fig. 2 offers a snapshot of the main UI. 
The entire package resides in a single directory, denoted as /. Within this 
directory, there are several subdirectories—/backend, /frontend, 
/front2back, and /output—as well as individual files such as /main.py, 
/static_functions.py, and /prechecks.py. These components are organized 
functionally and are detailed as follows.

2.1.1. main.py
The main.py file is pivotal for initializing the UI elements and 

instancing the MainWindow class. This class serves as the main appli-
cation window and holds methods for initializing various attributes, 
including data tables and molecule objects. It also configures window 
properties and maps interface signals to corresponding actions. To 
initialize an instance of Scymol, main.py must be executed from / (e.g., 
using the command python /main.py).

2.1.2. frontend/
The frontend directory functions as a custom module responsible for 

building the UI. This directory contains various Python modules and 
subdirectories that serve different functionalities:

2.1.2.1. main_window.py. Contains the Python class essential for con-
structing the UI of Scymol’s MainWindow instance. It encompasses el-
ements from all the tabs (Tab1 through Tab5) as well as the menu bar 
located at the top of the MainWindow.

2.1.2.2. lammps_flowchart_window.py. Contains Python modules dedi-
cated to initializing instances of the LammpsFlowchartWindow class. 
This window is crucial for enabling users to set up sequential LAMMPS 
simulation substages through an intuitive drag-and-drop interface. An 
associated subdirectory, frontend/dialog_windows/, contains subclasses 
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Fig. 1. Schematic of a standard job execution in the program, detailing directories, files, and class relationships. Bolded rectangles denote independent processes; 
blue rectangles specify the core directories in Scymol’s root. Solid arrows indicate direct code interactions, and dashed arrows indicate signal-based communication.

Fig. 2. Depiction of Tab 1 and the LAMMPS Flowchart Interface in Scymol. The user interface in Scymol is partitioned into tabs, facilitating the sequential prep-
aration of simulation inputs. These tabs also serve as a structured guide through the various functionalities offered by the program.
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for displaying windows where users can adjust parameters specific to the 
LAMMPS substages initialized by the user.

2.1.2.3. molecule.py. Allows for the creation of molecule instances 
when a user imports molecules into the system. Utilizing RDKit’s utili-
ties, this class holds pertinent information about the molecule while 
checking if it possesses a stable structure, well-defined bonds, angles, 
dihedrals, and so forth, ensuring its compatibility with LAMMPS.

2.1.2.4. static_functions.py. A standalone Python module comprising 
utility functions that are independent of class states or methods. These 
functions execute common tasks like computing chemical information 
and file input/output operations.

2.1.2.5. /dialog_windows. This directory contains modules essential for 
initializing dialog windows that are directly triggered from the Main-
Window instance. For example, a dialog window for entering the 
SMILES notation of a molecule is initialized from this directory.

2.1.2.6. /custom_widgets. While Scymol predominantly employs stan-
dard Qt widgets, this directory focuses on the creation and custom-
ization of widgets that introduce custom functionalities or that override 
the behavior of standard widgets.

2.1.2.7. /context_menus. Given the potential complexity of context 
menus, which may offer a multitude of options and necessitate the 
initialization of various submodules, this directory organizes the Python 
files required for initializing instances of context menus.

2.1.3. /front2Back
The front2back/ directory facilitates a link between the frontend’s 

state and the backend’s input requirements for constructing and 
executing molecular systems. This directory comprises several Python 
modules, each serving distinct functionalities:

2.1.3.1. BackendConnector.py. Manages the translation of UI in-
teractions into an inputs.py file and handles the lifecycle of backend 
simulation processes. Jobs are stored in output/<job_id>.

2.1.3.2. RunningProcessDialog.py. Creates a dialog window instance to 
display simulation output from a backend-generated log file and allows 
for simulation termination.

2.1.3.3. BackendThread.py. Spawns a subprocess instance to run newly 
submitted jobs, capturing stdout and stderr messages in a log file for real- 
time feedback.

2.1.3.4. DataExtractor.py. Extracts data from UI widgets into a dictio-
nary, facilitating the generation of the inputs.py file by Back-
endConnector.py for submitting simulations.

2.1.4. /backend
The /backend directory serves as a specialized module in Scymol, 

responsible for the core functionalities required for executing simula-
tions. This module is designed to function independently, relying solely 
on the inputs.py file prepared by the /frontend for running a job. The 
directory is organized into various Python files and modules, each 
tailored for specific tasks:

2.1.4.1. lammps_commands.py. This file houses the LammpsCommands 
class, which offers methods for defining and appending a range of 
LAMMPS commands to a simulation script. It encompasses a large 
number of basic LAMMPS scripting protocols, such as LAMMPS fixes and 
computes [34], commonly used to build LAMMPS scripts. Structured 
comments, the addition of custom code, and variable management are 

also integral to this class.

2.1.4.2. lammps_stages.py. This file introduces the LammpsStage class, 
central to generating full LAMMPS scripts by calling commands from the 
LammpsCommands instance.

2.1.4.3. molecule.py. This file contains the Molecule class, which creates 
instances for each molecule based on the SMILES string from the inputs. 
py file. The class uses Rdkit’s functionalities to initialize, minimize, and 
equilibrate molecules into valid conformers, just like in the Molecule 
class of the frontend/.

2.1.4.4. mixture.py. This file contains the Mixture class which stores a 
collection of molecule instances initialized using the Molecule class. It 
provides methods involving mixture-wide computations, including 
molecule sorting, force field assignment, and potential energy calcula-
tions, among others.

2.1.4.5. pysimm_system.py. This class interfaces with the PySIMM li-
brary to translate RdKit objects into LAMMPS-compatible inputs, 
thereby facilitating the molecular system’s initialization for simulations 
using LAMMPS.

2.1.4.6. inputs.py. This is a fundamental file containing comprehensive 
input parameters and configuration settings, serving as the cornerstone 
for the backend’s operations. All the information required by the 
/backend to run a job through the backend is contained here.

2.1.4.7. log_functions.py. This module is responsible for logging job 
executions in the backend. It enables the creation of log files with 
varying levels of details (minimal, normal, or verbose), aiding in debug-
ging and tracking the progress of submitted jobs. The log file is stored in 
output/<job_id>/log.

2.1.4.8. static_functions.py. Similar to its counterparts in the frontend 
and front2back modules, it offers functions for common tasks, distinct 
from other modules to maintain the backend’s independence.

2.1.4.9. main.py. This Python script is pivotal for running a complete 
job. It operates independently of the frontend and front2back modules, 
relying solely on the inputs.py file. It can be called by using the python 
main.py –job_id 〈job_id〉 command.

2.1.4.10. /lammps_presets_library.py. This module contains predefined 
LAMMPS substages, offering a flexible and expandable set of options for 
simulations. The included presets involve Initialize, Minimize, Velocities, 
NPT, NVT, NVE, and Uniaxial Deformation, all widely used LAMMPS 
routines [34] in the scientific community [1,8].

2.2. Software functionalities

Scymol has a user interface that guides users through the necessary 
steps for simulation setup, ensuring complete utilization of the soft-
ware’s features. While the interface is important for gathering and 
organizing user inputs, the computational capabilities are primarily 
contained within the backend architecture. These core functionalities, 
along with their respective user interface elements, are presented as 
follows.

2.2.1. Frontend

2.2.1.1. Molecule Selection (Tab 1). This tab enables users to create a 
molecular set for use in their simulation. Molecules can be added either 
through their SMILES notation or from a list of predefined molecule 
structure files such as .mol and .pdb. As molecules are loaded, they are 
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added to a "List of Molecules" section (1.1), their key chemical infor-
mation is displayed in a "Description" section (1.2), and an interactive 
2D representation appears in a "Drawing" section (1.3). The order of the 
molecules in the list, which users can adjust via drag-and-drop, is re-
flected in the generated LAMMPS input files.

2.2.1.2. Mixture Setup (Tab 2). This tab provides tools for configuring a 
molecular mixture. A "Setup" table (2.1) lists the molecules loaded in 
Tab 1 and allows users to specify the number of each molecule and their 
initial orientation. The "Settings" section (2.2) offers parameters crucial 
for the initial placement of molecules in the simulation box without 
overlap. An "Information" section (2.3) provides an overview of the 
mixture, including the total number of molecules, average molecular 
mass, and molecular formula.

2.2.1.3. LAMMPS Setup (Tab 3). This tab consists of two sections: 
"Force Field" (3.1) and "Stages" (3.2). The Force Field section offers a 
selection of commonly used force fields, namely GAFF and GAFF2 [35], 
PCFF [36], CHARMM [37], and TIP3P [38]. The program loads the 
atomic types and charges and checks if the selected force field is 
applicable to cover all the interactions in the system. The Stages list lets 
users design a sequenced list of LAMMPS stages. Each stage added is 
expandable, revealing a LAMMPS Flowchart menu, where users can set 
up a sequence of LAMMPS substages. A library is included to further aid 
users in setting up commonly used LAMMPS sequences (e.g., a heat 
cycle). Furthermore, each substage can be explored into, presenting 
configuration options for each substage (e.g., to set the temperature in 
an NVT substage).

2.2.1.4. Run (Tab 4). This tab allows users to specify the location of 
LAMMPS (setting 4.1) and the parallelization library (e.g., MPI) (setting 
4.2). By default, the program includes precompiled versions of LAMMPS 
and OpenMPI, but users can choose their own versions. Setting 4.3 

permits users to select the number of cores to be allocated for the job.

2.2.1.5. Postprocessing (Tab 5). Although not a primary focus of the 
program, this tab enables users to view log files from previous jobs and 
to display computed properties, thereby offering a preliminary view of 
both computational and physical aspects of the simulations.

2.2.2. Backend
The backend follows a specific workflow as outlined in Fig. 3. The 

backend of Scymol supports two operational modes. The first mode fo-
cuses on initializing new atomistic systems from scratch and performing 
LAMMPS simulations, while the second continues simulations using pre- 
existing atomistic systems, such as those generated by prior LAMMPS 
runs. These modes are selected based on the configuration of the inputs. 
py file, which provides all the necessary parameters to define and 
execute a simulation workflow. This design allows Scymol’s backend to 
function independently of the frontend or front2back components, 
ensuring flexibility and usability in diverse simulation scenarios. The 
following describes the detailed functionalities involved in initializing, 
setting up, and running simulations under the first mode of operation.

2.2.2.1. Molecule Initialization. Individual molecules are parsed from 
standard atomistic modeling formats into fully stable 3D conformers 
using RDKit. This involves three key steps: (a) initializing atomic posi-
tions in three-dimensional space, (b) determining bonding connectivity 
and bond order, and (c) generating multiple conformers and selecting 
the one with the lowest intramolecular energy. This ensures the stability 
of each molecule before its inclusion in the simulation box.

2.2.2.2. Mixture Initialization. The initialized molecules are placed 
within a low-density simulation box using a low-discrepancy distribu-
tion method. The intermolecular potential energy of the system is 
evaluated to ensure there is no atomic overlap. If the energy exceeds a 

Fig. 3. Diagram showing how the software functionalities combine to aid users in generating LAMMPS input files and running the simulations as needed.
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predefined threshold, the placement process is repeated. This iterative 
approach guarantees a physically plausible starting configuration for 
subsequent simulations.

2.2.2.3. Assignment of Force Field Types and Charges. Atom types and 
charges are assigned to the molecules using the PySimm package, which 
provides a library of predefined force fields. Each unique molecule type 
is processed using PySimm’s apply_forcefield() function, and the 
resulting parameters are then reused for identical molecules in the sys-
tem to optimize computational efficiency.

2.2.2.4. LAMMPS Scripting. Scymol generates a series of LAMMPS 
commands organized into structured simulation routines, which are 
compiled into scripts based on user specifications. These routines 
include fundamental LAMMPS scripting commands such as units, 
boundary, atom_style, pair_style, bond_style, and various fixes (e.g., NVT, 
NPT, NVE). Each routine is designed to be self-contained, enabling 
seamless sequencing and uninterrupted execution of LAMMPS 
simulations.

2.2.2.5. Generation of Data and Input files. Two essential files are 
created for each simulation: the structure.dat file, which contains atomic 
coordinates, types, bonds, angles, dihedrals, and box dimensions, and 
the input.dat file, which specifies the LAMMPS commands to be 
executed. These files are generated using a combination of RDKit and 
PySimm to ensure consistency and compatibility with LAMMPS.

2.2.2.6. Execution of LAMMPS/MPI Jobs. All required simulation files 
are structured within the execution environment to enable standalone 
operation by MPI/LAMMPS. Although the backend initiates the process 
and remains connected to retrieve results, it is designed to allow MPI/ 
LAMMPS to function independently. Additional routines can be 
executed sequentially as dictated by the simulation workflow. Addi-
tional routines, including those not exclusive to LAMMPS, can be 
executed sequentially as dictated by the simulation workflow.

3. Illustrative examples

3.1. Example 1

The objective of this example is to create an equilibrated model of a 
bitumen sample representative of AA1 70/100 bitumen from Supplier 
“A.” The goal is to validate its equilibrium density against both experi-
mental measurements and models obtained using conventional Molec-
ular Dynamics (MD) methodologies. The molecular structures and mass 
compositions are based on the work of Greenfield et al. [39,40], con-
sisting of 12 different molecule types, totaling 608 molecules. Detailed 
information about the molecular structures, along with their SMILES 

notations, is provided in Table 1.
To initialize and equilibrate the system, the molecules are first placed 

in a simulation box with a low initial density—approximately one-tenth 
of the expected final bitumen density—to minimize atomic overlaps. 
The system is then imported into LAMMPS, where the GAFF2 force field 
is applied. The initialization process involves a sequence of compression 
and equilibration stages, beginning with uniaxial compression at pro-
gressively decreasing rates to simulate true strain. This is followed by 
equilibration under NPT and NVT ensembles to achieve a stable system 
at 298 K and 1 atm. Finally, an NVE stage is performed to evaluate 
system stability and ensure energy conservation, allowing for results 
collection. This multistep approach is widely accepted for modeling 
condensed amorphous molecular systems.

Using the Scymol framework, the process begins by entering the 
names and SMILES notations of the 12 molecule types into the Molecule 
Selection tab (Tab 1). Scymol automatically generates the molecular 
objects and 2D representations. The desired quantities of each molecule 
type are specified in the Mixture Setup tab (Tab 2), as shown in Table 1. 
Molecules are placed in the simulation box using the Sobol Distribution 
Method, ensuring even spatial distribution while avoiding overlaps. All 
other parameters for this step are left at their default values. In the 
LAMMPS Setup tab (Tab 3), the GAFF2 force field is selected, and a 
LAMMPS stage is added to the simulation workflow.

The specific stages of the LAMMPS workflow are defined in the 
LAMMPS Flowchart Window. Users can either select the predefined 
"Uniaxial Compression" stage from the library or manually assemble the 
required sequence of substages: Initialize, Minimize, Assign Velocities, 
NVT, Uniaxial Deformation, NPT, NVT, and NVE. Each stage is config-
ured with its respective parameters to match the experimental 
conditions.

The simulation is initiated by clicking the "Run" button (4.4), which 
triggers the associated subprocesses. A Running Process Dialog is dis-
played, allowing users to monitor progress in real time. Upon comple-
tion, the output directory contains all relevant data, including the initial 
system configuration, LAMMPS input and output files, trajectory files, 
and energy logs. These outputs can be used for further analysis, such as 
comparing the simulated density with experimental values or examining 
energy and pressure profiles during equilibration.

3.2. Example 2

In the second example, the density of bitumen is measured at 
elevated temperatures of 60, 135, and 160◦C. Rather than being 
confined to the initialization techniques native to the software, the 
program can seamlessly continue from existing LAMMPS simulations. 
To accomplish this, the equilibrated molecular model generated in 
Example 1 serves as the starting point for this simulation. The system 
undergoes a sequence of heating and equilibration substages designed to 
elevate the temperature while allowing sufficient time for pressure 

Table 1 
The molecules selected to represent bitumen in the examples of this study and their corresponding SMILES notation.

Name Number SMILES

Squalane 16 CC(CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C)CCCC(C)C
Hopane 8 CC12CCC3C(C)(CCCC3(C)C)C1CCC1C2(C)CCC2C(CCC12C)C(C)CCCCCC
Dioctylcyclohexane naphthalene 168 CCCCCCCCC1Cc2cc3ccccc3cc2CC1CCCCCCCC
Perhydrophenanthrene 

naphthalene
160 Cc1cc2cc3C4CCC5CCC(CC5C4CCc3cc2cc1CC)Cc1cccc(CCC)c1

Quinolinohopane 24 CC12CCC3C(C)(CCCC3(C)C)C1CCC1C2(C)CCC2c3c(nc4ccc(cc4c3C)CCCCC)CC12C
Thioisorenieratane 24 Cc1c(CCC(C)CCCC(C)CCc2sc(CCC(C)CCc3c(C)c(C)ccc3C)c(C)c2)c(C)ccc1C
Benzobisbenzothiophene 104 O=S1c2cc3c(cc2c2ccccc12)sc1ccccc13
Pyridinohopane 24 CC12CCC3C(C)(CCCC3(C)C)C1CCC1C2(C)CCC2c3c(nc(cc3C)CCCCC)CC12C
Trimethylbenzeneoxane 32 CC1(Oc2c(CC1)c(C)cc(C)c2C)CCCC(C)CCCC(C)CCCC(C)C
Phenolic asphaltene 16 CC(C)Cc1cc2c3c(cc4c(CC(CC4CC)CCCC)c3c1)c1cc(O)cc3c1c2cc(CCC)c3CCC(C)C
Pyrrolic asphaltene 16 CC(CCc1cc2c(cc1CCC)c1c3c4c5c6c(c7cc[NH]c7cc61)c(cc5c(c1CC(CC)c5cc(CCC(C)C)c6CCc2c3c6c5c41)C(C)CCC)CCCCCC(C) 

CC)CC
Thiophenic asphaltene 16 Cc1cc(CCC(C)CCC)c2CC(CCC)c3cc4sc5c6c4c4c3c2c1cc4c1cc2c(CC(CC2CC)CCCC)c(cc5CC(C)C)c61
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equilibration to reach reliable density values.
To integrate the data from Example 1 into Scymol, the ’File, Load, 

from previous lammps’ option in the top menu bar is utilized. This ac-
tion imports both the structural data file and the final trajectory data 
from the first example. All default settings are retained, and the simu-
lation is initiated in the usual manner.

3.3. Example 3

In the third example, the objective is to demonstrate the capacity of 
Scymol’s backend module to function autonomously from its frontend, 
particularly in a high-performance computing (HPC) environment that 
supports standard installations of Python, MPI, and LAMMPS. This is 
especially relevant for computational workloads requiring enhanced 
performance, as in the case of the multiple heating-equilibration cycles 
in Example 2. The simulation is executed on an HPC system (DelftBlue, 
operated under a SLURM [41] job scheduler and RedHat operating 
system) using 32 CPU cores.

To start, a new directory (e.g., /root) is created, and the backend/ 
folder from Example 2 is copied into it. Key parameters in the backend/ 
inputs.py file are adjusted to align with the HPC’s configurations. Spe-
cifically, the number of processes is set to 32, the MPI location is set to 
either ’srun’ or ’mpiexec’ (with ’srun’ being recommended for SLURM- 
managed systems [42]), and the LAMMPS location is set to ’lmp’. This 
level of customization offers experienced users the ability to manually 
adjust simulation parameters directly in the inputs.py file, without the 
need for the frontend interface.

A job script tailored for HPC execution is manually created. The 
script must import Python, MPI, and LAMMPS, and initiate the simu-
lation with a command akin to ‘srun python main.py –job_id <int: 
job_id>’. The job proceeds to execute from start to finish in a manner 
analogous to using Scymol’s frontend. This example not only establishes 
the backend’s capability to run independently on an HPC, but also il-
lustrates the ease with which experienced users can modify input pa-
rameters to generate different molecular systems efficiently.

4. Impact

Scymol is an open-source Python package designed to facilitate the 
setup and execution of molecular dynamics simulations using LAMMPS. 
By addressing the complexities of simulation workflows, including 
molecule initialization, force field assignment, and script preparation, it 
has proven instrumental in both research and industrial applications. 
For instance, it supported the KPE-CEAB project in conducting sensi-
tivity analyses on bituminous materials and has been utilized by com-
panies investigating the impact of additives in hydrocarbon mixtures 
[43,44].

The development of Scymol is rooted in the need to provide a 
structured and accessible approach to molecular dynamics simulations. 
Its architecture integrates the collective expertise of our research group, 
consolidating computational methods, data, and findings into a unified 
and shareable framework. This approach not only facilitates reproduc-
ibility and transferability of simulations but also ensures that workflows 
are cumulative, enabling the systematic development of new method-
ologies and applications.

Its dual-interface design—offering a graphical user interface for ease 
of use and a backend for more advanced/automated job config-
urations—ensures usability across a wide range of expertise levels. This 
makes Scymol a practical solution for researchers aiming to incorporate 
molecular dynamics simulations into their work with minimal barriers, 
especially for those involved in Civil and Pavement Engineering fields.

5. Future Direction

As of now, Scymol is self-sufficient and performs the tasks needed; 
however, it serves as the foundation for the development of a more 

advanced software package. The future development of Scymol is ex-
pected to follow two primary paths: (1) our group will extend this 
version of Scymol to address specific needs in Civil and Pavement En-
gineering, and (2) a broader community of developers may further 
enhance Scymol to tackle general molecular simulation challenges. The 
following outlines potential areas for future work: 

• Advanced LAMMPS Routines

The integration of more advanced LAMMPS routines that extend 
beyond basic subroutines, such as NPT or NVT dynamics, is envi-
sioned. These routines would incorporate simpler LAMMPS com-
mands into encapsulated workflows, enabling the setup of 
simulation schemes for determining complex, but critical material 
properties, including cohesive energy density, shear viscosity, ther-
mal conductivity, among others. These features would be accessible 
through the LAMMPS Flowgraph Window.

• Non-LAMMPS Routines

Currently, the functionality in Tab 3 – Stage 3.2 is limited to invoking 
only LAMMPS-related runs. Future versions could incorporate 
additional tasks not related to LAMMPS to enhance task automation 
at runtime. For example, this could encompass stages for preparing 
molecular systems, as currently implemented in Tabs 1 and 2 of 
Scymol, enabling a more integrated approach to system initialization 
and manipulation with LAMMPS executions.

• Enhanced Molecular File Input/Output System

To overcome limitations in file compatibility, Scymol could adopt an 
intermediary package like OpenBabel. This would enable support for 
a wide range of molecular file formats and facilitate a more robust 
access to a number of molecular input files.

• Improved Force Field Handling

Developing a native system for force field atomic typing and charge 
assignment would enhance Scymol’s applicability. Currently reliant 
on Pysimm, this improvement would allow the integration of new 
force fields, including all-atom, united-atom, and coarse-grained 
models, expanding the software’s versatility.

• 3D Visualization Tools

The implementation of a 3D visualization tab, potentially utilizing 
OpenGL, would allow users to visualize and manipulate atomistic 
systems interactively. Such a feature would greatly enhance user 
experience and provide intuitive insights into the progress of mo-
lecular simulations.

• Robust Job Submission System

Scymol could benefit from a networked job submission framework, 
enabling the execution of tasks on remote servers. Such functionality 
would streamline job management in high-performance computing 
environments and foster collaborative workflows.

• Implementation of other Python-based atomistic design 
packages

As discussed earlier in this manuscript, numerous software solutions 
effectively address specific niche areas within computational chem-
istry. Similar to how Scymol utilizes OpenBabel for file format 
standardization and normalization, components of other packages 
could be integrated to enhance and expand Scymol’s functionality.
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