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1. Introduction 

1.1 The Main Objectives 

This thesis is about the construction of certain ordered binary codes called snake-in-the-

box codes, or briefly snakes. In general, a snake in a graph is an induced cycle that is a simple 

cycle with no chords. A chord of a cycle S  is an edge which connects two non-consecutive 

vertices of S. In this thesis, we consider snakes in the hypercube Qn. The vertices of Qn are all 

the 2n binary n-tuples (also called binary words of length n), and two vertices (i.e. two binary 

n-tuples) are connected with an edge if and only if they differ in just one position. A snake in 

Qn is called a snake-in-the-box code.  

More precisely, suppose  
S = w0, w1, …,  wL−1 

is a list of L words in Qn. The distance d(wi, wj) between two words wi and wj in Qn is defined 

to be the Hamming distance of the two words. The list distance l(wi, wj) between the two  

words is the minimum number of  words in L when going from wi until wj, or more precisely 

( , )i jl w w ≔min{ , }.i j L i j− − −  

Then S is a snake-in-the-box code if for every i, j satisfying 0 ≤ i, j < L,  

d(wi, wi+1) = 1                                                            (*) 
and 

l(wi, wj) = 1      ⇒      d(wi, wj) = 1,                                          (**) 

where wL is identified with w0. So, a snake-in-the-box code is a cyclic (closed) list of words of 

Qn which satisfies the nearness condition (*) and the separability condition (**). 

Any cycle in Qn can be specified by a sequence of integers indicating the bit which 

changes when going from one word to the next. The bits in a binary word of length n are 

numbered by 0, 1, …, n - 1 from left to right. This sequence is called transition sequence. Let 

T = t1, t2, …,  tL 

be the transition sequence for the snake S of length (or range) L above. Then the words wi-1 

and wi only differ in coordinate ti, 0 < i ≤ L. Since S is cyclic, we have wL = w0.  

We emphasize that the adjective ‘cyclic’ for a snake here roughly means that there is 

essentially no ‘first’ or ‘last’ word in the snake, i.e. the successor of the ‘last’ word is the 

‘first’ word. Otherwise, the resulting snake is called an open snake. However, some authors 

(e.g. Casella and Potter [5], Kochut [17]) use the term ‘snake(-in-the-box code)’ for an open, 

i.e. non-cyclic snake. In terms of its transition sequence (cf. expressions (2.5), (2.8) and 

(2.17)), a snake is cyclic if and only if every integer in the transition sequence occurs an even 

number of times.     

The snake S is called symmetric if its transition sequence T is of the form 

T = t1, t2, …,  tK, t1, t2, …,  tK,  
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which implies that S is cyclic and L = 2K. Kautz in [15] calls such a snake a natural code. In 

this case, the second half of the word list of the snake can be obtained from the first half by 

translating all words in the first half over the vector wK, if w0 = 0. 

Many authors have studied the problem of determining upper and lower bounds for the 

maximal length s(n) of a snake in Qn [e.g. [1, 4, 5, 8, 17, 26, 30, 31 42], and also how to obtain 

long snakes (e.g. [24,32])..  

A generalization of the notion of snake is a set of (vertex-)disjoint snakes. A natural 

question is to ask for the minimal number a(n) of disjoint snakes of equal length which cover 

all 2n vertices of Qn. Such a set is called a minimal cover (by snakes) of Qn. More generally, 

we call a set of p disjoint snakes of equal length covering Qn, a p-cover of Qn.  

A problem posed by Erdös, is to decide whether Qn can be covered with at most l 

disjoint snakes for some fixed value l, i.e. if there is an integer l such that a(n) ≤ l,  for all n ≥ 

2. Wojciechowski in [32] proved that for l = 16, the answer is affirmative, Lukito and van 

Zanten in [40] showed that such a cover can always be established with symmetric snakes for l 

≤ 32.   

Constructions of snakes in Qn are mostly based on techniques of ‘extending’ snakes 

existing in Qm for some m < n. The existence of these ‘basic snakes’ may have been 

established by any means, e.g. by computer search, or just by accident (cf. e.g. [1]). In this 

way, the best lower bounds for the length of a snake in Qn have been derived. Similar 

techniques are applied in [4], [5] and [16] for the construction of snakes, and more generally, 

for the construction of circuit codes. Also Wojciechowski’s approach for proving the existence 

of covers of Qn by snakes is not based on a straightforward construction of concrete snakes. 

A different approach for the construction of snakes is presented by Paterson and Tuliani 

in [24]. This approach exploits the symmetry properties of necklaces. A necklace is an ordered 

list of the words of a constant-weight binary cyclic code. Here also a computer search is used 

to get some basis objects. In Chapter 3, we shall generalize the notion of a necklace and also 

slightly generalize the method of [24]. Moreover, we shall prove that the two constructions in 

[24] that are used to produce snakes are equivalent. 

Our major goal in this thesis is to construct snakes in a more straightforward way, i.e. 

by a non-recursive method. Moreover, we require our method to be extendable for the 

construction of covers of Qn by vertex-disjoint snakes, possibly improving the result of 

Wojciechowski in [32].  

Our construction starts from a minimum-weight-d basis of some linear algebraic code C. 

The weight-d basis vectors are arranged according to a standard Gray code, resulting in an 
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ordered cyclic list of the codewords of C, such that each codeword is at Hamming distance d 

from the previous one.  This framework constitutes the skeleton of the snake to be constructed.  

In order to obtain the whole snake, we have to change the d bits, going from one code-

word of C to the next one, in such an order that the separation property or separability 

condition (no chords) (**) of a snake is satisfied. Various variations and generalizations of this 

method seem to be possible.  

In this thesis, we apply the method above for d = 4. Apart from being symmetric due to 

the applied standard Gray code, our snakes have some additional structure, because of the 

linearity of the underlying code C. To obtain disjoint snakes and to construct covers of Qn with 

symmetric snakes, this structure can be exploited occasionally. Such covers will be called 

symmetric covers. 

1.2 Outline of the Next Sections  

The contents of this thesis is distributed among the various sections in the following 

way. Since our construction methods heavily rely on Gray codes, we discuss in Section 2.1 the 

well known standard or binary–reflected Gray code G(n), which is a major tool throughout 

the thesis. 

In Section 2.2 the so-called ‘index problem’ of G(n) is discussed, i.e. the relationship 

between a codeword of G(n) and its index in the (cyclic) list of codewords. This relationship is 

also well-known. In Section 2.3 we derive and prove a number of simple properties of G(n) 

which to the best of our knowledge  are not referred to in the literature, while in Section  

2.4 various special cases of Gray codes are introduced and briefly discussed. One of 

these codes is the snake-in-the-box code as defined in Section 1.1.  

The method of Paterson and Tuliani mentioned in Section 1.1, is extensively discussed 

in Section 3.1, and generalized in Sections 3.2 and 3.3.  

In Section 4.1, the details of our method are discussed to construct snakes based on a 

linear [n, k, d]-code, while in Section 4.2 a number of conditions are developed that are 

necessary and/or sufficient to apply this method in the case d = 4. The index problem for the 

resulting snake-in-the-box codes is solved in Section 4.3, where we used the solution of the 

index problem for G(n) as presented in Section 2.2.  

Concrete examples of snakes in the hypercubes Qn, 3 < n ≤ 16, are produced in Chapter 

5. It turned out that the Reed-Muller codes R(m – 2, m), with 2m = n, are appropriate linear 

codes to start with when applying our construction. Therefore we briefly discuss Reed-Muller 

codes in Sections 5.1 and 5.2, as well as the existence of what we call parallel systems in 

Euclidean Geometries in Section 5.3. These parallel systems are relevant for choosing a 

special basis of R(m – 2, m) satisfiying the so-called fixed-position property. In Section 5.4, 

snakes are constructed for the hypercubes Q5, Q6, Q7 and Q8, and in Section 5.5 we do the 
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same for the hypercubes, Q9, Q10, Q11, …, Q16. 

In order to construct covers for Qn consisting of disjoint snakes, we develop in Sections 

6.1, 6.2 and 6.3 a number of criteria to decide when a snake and a translated snake (which has 

the same transition sequence) are disjoint. In Section 7 we apply these criteria for the 

construction of 4-covers for Qn, 5 ≤ n ≤ 8, and of 8-covers for 9 ≤ n ≤ 15. in 7.1. In the case of 

Q16, we first construct in Section 7.2 a number of near-covers consisting of 8 snakes not all of 

which are mutually disjoint. By taking a slightly different basis for the underlying [16, 11. 4]-

code, we succeeded in constructing a real 8-cover for Q16. This symmetric 8-cover is presented 

in Section 7.3. 

Finally, in Section 8, we use the knowledge built-up in Sections 4 - 7 to describe a 

straightforward general construction of snakes in Qn and of covers of Qn by snakes for n > 3. 

In Section 8.1 we discuss the role of the Griesmer bound in our approach. In Section 8.2 we 

show that a snake-in-the-box code and its translates which cover a hypercube Qn can be 

connected to each other in such a way that the result is a complete cyclic Gray code in Qn. 

From this point of view, a cover of Qn by snakes originates in quite a natural way from a 

special Gray code. This idea is exploited in Section 8.3 to come to a general theorem about 

covers of Qn and the accompanying invariance group.  

It turns out that for 4 < n ≤ 8 and for 8 < n ≤ 16, the results are better than in [32], i.e. 

the number of snakes in the cover of Qn is equal to 4 and to 8, respectively, whereas in [32], it 

is only stated that this number is upperbounded by 16. Even in the range 16 ≤ n ≤ 32, one 

could say that Corollary 8.8 gives slightly better results, since the 16 covering snakes are 

symmetric, and so we have a symmetric 16-cover. Moreover in the range, 4 ≤ n ≤ 16, 

Corollary 8.8 gives a supplement to a result in [2] which states that for any even integer r ≥ 4, 

n ≥ 2, the graph Kr
n, i.e. the nth power of the complete graph Kr, can be covered with r3 (not 

necessary pairwise vertex-disjoint) snakes. The results obtained in Chapters 7 and 8 have been 

collected in [38] (cf. also [37]). 

Although this thesis is not about constructing “long snakes”, or improving the known 

upper and lower bounds for the maximal snake length s(n) in Qn for certain values of n, we 

collected the main results concerning s(n) in Appendix A (cf. also [4], [5], [8], [19], [30], [31] 

and [42]). The reason for this is that occasionally knowledge about s(n) can help deciding 

whether a certain cover of Qn is optimal, i.e. whether the number of snakes in that cover is 

minimal. 

As for our notation, we shall stick to the widely used convention to label the bits of a 

codeword of the standard Gray code G(n) by 1 until n, from right to left, since this is very 

convenient for all properties which are proven by induction or recursion. On the other hand, if 

we are dealing with snake-in-the-box codes in Sections 4 until 8, we shall label the bits of the 
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codewords by 0 until n − 1 from left to right, since these codewords originate from a vector 

space GF(2)n where the labeling of vector components is similar. Since the standard Gray code 

G(k) is only used as an auxiliary tool to label blocks of snake words, the two different 

conventions do not interfere.  

A somewhat unlucky exception is the labeling of bits in snake words in Chapter 3. Here, 

the work of Paterson and Tuliani is discussed and generalized, and therefore we stick to their 

conventions which implies that the labeling of the bits runs from 1 until n, occasionally from 

left to right. 



 

 

2. Gray Codes and Circuit Codes 
 

In this chapter, we discuss briefly the definition and a number of well-known 

properties of the standard or binary reflected Gray code in Sections 2.1 and 2.2. In 

Section 2.3, we prove some properties of G(n) which we did not find in the literature 

Section 2.4 gives a review of special Gray codes satisfying additional requirements. 

2.1 The Standard Gray Code G(n) 

Let Qn be the n-dimensional cube (hypercube), or shortly n-cube. This is the graph with 

all 2n binary words of length n, or n-tuples, as vertices and all pairs of vertices which differ 

exactly in one coordinate as edges. These n-bit numbers are called (binary) codewords. An 

ordered binary code of range L is a sequence or list of L codewords 

w0, w1, …, wL−1. 

A Gray code can be defined as a Hamilton cycle in Qn, i.e. circuit in Qn containing the 2n 

vertices precisely once. Equivalently, a Gray code G(n) is a sequence of n-bit words such that 

two successive words differ in precisely one position. 

The best known example of such a code is the binary reflected, or the standard Gray 

code. If we define 

0
(1)

1
G

⎛ ⎞
⎜ ⎟
⎝ ⎠

= ,                                                      (2.1) 

then the code G(n) , n > 1, can be recursively defined as the list of ordered rows of an 2n × n 

matrix 

0 ( 1)
( )

1 ( 1)R
G n

G n
G n

⎛ ⎞
⎜ ⎟
⎝ ⎠

−
=

−
,                                             (2.2) 

where GR(n − 1) stands for the reversed list of G(n − 1), e.g. the i-th word of GR(n − 1) is the 

(2n-1 − 1 − i)-th word of G(n − 1), 0 ≤ i ≤ 2n−1 − 1. 

Given n ≥ 1 and a fixed n-bit word g0, all 2n codewords of G(n) can also be generated by 

the symmetric (or non-cyclic) transition sequence Sn as follows. This non-cyclic transition 

sequence of G(n) can be defined recursively by firstly defining 

1S ≔ 1                                                               (2.3) 

and for every positive integer n > 1, 

nS  ≔ 1 1, ,n nS n S− − ,                                                       (2.4) 
If we write 

nS ≔ 1 2 2 1, ,..., nt t t − ,                                                       (2.5) 

then given g0 = 0 = 00…0, the words in the standard Gray code 
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0 1 2 1( ) , ,..., nG n −=g g g                                                    (2.6) 

are consecutively constructed such that for every x = 1, 2, …, 2n − 1, the nonzero word gx is 

determined by the integer tx in (2.5) after changing the tx-th bit of gx−1. 

A very useful form of Sn is obtained by splitting it into 2n−i subsequences Si−1 in the 

following way 

, 1, , 2, ..., , , ,..., 1, .n i i i i ii i n iS S S S S S+ + +=                           (2.7) 

This form can be derived by consecutively applying (2.4) to the subsequences Sn−1, Sn−2, …, Si 

in the RHS of the expression (2.7). 

The standard Gray code G(n) has the property that its last word differs from the first 

word in precisely one bit, i.e. the n-th bit (we label the bits or the positions in a codeword of 

Gray codes from 1 until n, from right to left). So, we can interpret G(n) as a cyclic Gray code, 

with complete transition sequence 

nS ≔ , .nS n                                                     (2.8) 

2.2 Index Problem of G(n) 

The 2n codewords of G(n) are labeled by an index which runs from 0 until 2n−1, as 

indicated in (2.6). A natural problem is to determine the codeword gx ∈ G(n) when the index 

value x is given. We call this problem together with the reverse problem of determining the 

index x of a given word gx in the list G(n), the index problem of G(n). 

The solution of the problem is well-known and can be found in some textbooks, e.g. in 

[18, 27]. We state and prove this result in the following way, where we shall write, for reasons 

of convenience, gi instead of (gx)i, 1 ≤ i ≤ n, for the components of gx. 

Theorem 2.1 

Let x be some integer with 0 ≤ x < 2n, n ≥ 1, and let 

gx = gn gn−1 … g1 

be the corresponding codeword in the standard Gray code G(n). If 

x = xn xn−1 … x1 

is the binary representation of the integer x, then 

gi = xi + xi+1 (mod 2),                                                   (2.9) 

for all i with 1 ≤ i ≤ n, where xn+1 ≔ 0. 

We first remark that the rule to compute gx as stated in Theorem 2.1, can also 

symbolically be formulated as gx = x ⊕ ⎣x/2⎦, where x stands for the binary representation of x 

and ⎣x/2⎦ stands for the binary representation of x/2, while ‘⊕’ denotes the bitwise addition 

modulo 2 (exclusive-or operator) of two vectors. Also observe that gn = xn. 
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Proof. We shall prove the rule in this theorem by induction. Now assume that the Theorem is 

true for G(n), n > 1. If 

G(n + 1) = v0, v1, …, 12 1n+ −
v  

is expressed as a matrix of the form (2.2), then from the definition of 

GR(n) = h0, h1, …, 2 1n −h , 

the ‘mirror image’ of G(n), we can choose a pair of words vx’ = 0gx and vy’ = 1hy of G(n + 1) 

such that 

gx = hy = gn gn−1 … g1, 

where 0 ≤ x, y ≤ 2n − 1, 0 ≤ x’ ≤ 2n − 1 < y’ ≤ 2n+1 − 1. Here, x and y are related via the equality 

y = 2n − 1 − x 

whereas x’ and y’ are related via the equality x’ = x and 

y’ = 2n − 1 + y = 2n+1 − 1 − x. 

From the fact that 2n − 1 is represented by the binary n-tuple 11…1, it follows that if 
x = xn xn−1 … x1 

and 
y = yn yn−1 … y1 

are the binary representations of x and its corresponding integer y, respectively, then 

y = (1 − xn) (1 − xn−1) … (1 − xn−1).                                     (2.10) 

Since 0 ≤ x’ ≤ 2n − 1 < y’ ≤ 2n+1 − 1, it follows that if 

x’ = x’n+1 x’n … x’1 = x’n+1 xn … x1 
and 

y’ = y’n+1 y’n … y’1 = (1 − x’n+1)(1 − xn) … (1 − x1) 

are the binary representations of x’ and y’, respectively, we have x’n+1 = 0 and y’n+1 = 1. This 

means that y’n+1 = 1 = 1 − x’n+1. On the other hand, expression (2.10) states that for every i 

with 0 ≤ i ≤ n, we have xi = (1 − yi). We conclude that for every i with 0 ≤ i ≤ n + 1, 

xi = x’i = (1 − y’i) = (1 − yi). 

By the induction assumption, the equality of the form (2.9) relating vx’ = 0gn gn−1 

… g1 with the n-tuple x’, and also relating vy’ = 1gn gn−1 … g1 with the n-tuple y’, is 

true for all components vi = gi with 0 ≤ i ≤ n, e.g. the n-th bit gn of vy’ = 1gn gn−1 … g1 

is the sum of the n-th and the (n + 1)-bits of y’, 

gn = (1 − x’n+1) + (1 − xn) = xn + x’n+1 = xn. 

It remains to show that (2.9) is also true for the (n + 1)-th bits of vx’ and vy’. But given 

x’n+2 = 0, since x’n+1 = 0, the (n+1)-bit 0 of vx’ satisfies the equality 

0 = x’n+1 + x’n+2. 

So, the expression (2.9) is true for the first half of G(n + 1). Also given y’n+2 = 0, since y’n+1 = 

1, the (n+1)-bit 1 of vy’ satisfies the equality 
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1 = y’n+1 + y’n+2 

i.e. the expression (2.9) is true for the second half of G(n + 1). Since (2.9) is trivially true for n 

= 1, we are done.                                                                                                                          □ 

We remark that the index-word conversion (2.9) in Theorem 2.1 can also be represented 

by the equality 

=xM g  

where g and x are considered as (row) vectors of GF(2)n and where 

M = 

1 1 0 0
0 1 1 0
0 0 1 0

0 0 0 1
0 0 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

, 

is an n × n matrix over GF(2). Since it is clear that the inverse of M is equal to 

M−1 = 

1 1 1 1
0 1 1 1
0 0 1 1

0 0 0 1
0 0 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

, 

the solution for the index-word conversion immediately follows. 

Theorem 2.2 

Let gx be some codeword of the standard Gray code G(n), n ≥ 1. Then the binary 

representation of its index x is determined by 

xi = gi + gi+1 + … + gn (mod 2), 

for all i, 1 ≤ i ≤ n. 

Example 2.1 

In order to determine g183 ∈ G(8), we first need the binary representation 

x = x8 x7 x6 x5 x4 x3 x2 x1 

of x = 183. Since 183 = 27+ 25+ 24+ 22 + 21 + 20, we conclude that 

x = 10110111 

from which we have x1 = 1, x2 = 1, x3 = 1, x4 = 0, x5 = 1, x6 = 1, x7 = 0, x8 = 1.  Theorem 2.1 

yields that 

g183  = x ⊕ ⎣x/2⎦  = 10110111 +  01011011 = 11101100. 

Conversely, suppose 

gy = 11011101. 
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If gy = g1 g2… g8, then 

g1 = 1, g2 = 0, g3 = 1, g4 = 1, g5 = 1, g6 = 0, g7 = 1, g8 = 1. 

If y = y8 y7 y6 y5 y4 y3 y2 y1 is the binary representation of y, then using the formula in 

Theorem 2.2, we find 

y8 = g8 = 1 mod 2 = 1, 

y7 = (g7 + g8) mod 2 = (1 + 1) mod 2 = 0, 

…, 

y1 =  (g1 + g2 + g3 + g4 + g5 + g6 + g7 + g8) mod 2 = 0. 

Therefore, 
y = 10010110, 

is the binary representation of y = 27 + 24 + 22 + 21 = 149. 

2.3 Properties of the Standard Gray Code G(n) 

Let 
C = w0, w1, …, wL−1                                                                               (2.11) 

be some, not necessarily complete, cyclic Gray code, i.e. all these words are different and each 

word differs from its successor in precisely one bit, and moreover, we identify wL and w0, i.e. 

w0 is considered to be the successor of wL−1 (cf. also the end of Section 2.1). This last 

statement implies that L is even. 

We define the list distance l(wi,wj) between two words wi and wj as 

( , )i il w w ≔min{ , }.i j L i j− − −                                       (2.12) 

In addition, we also define the well-known Hamming distance 

d(wi,wj) 

between wi and wj, being the number of bits where the two words differ. For example, we have 

d(00111, 01011) = 2 because the second and third bits of 00111 and 01011 are different. 

Since the Gray code G(n) is considered as a cyclic list, its 2n words can also be obtained 

using the cyclic (or complete) transition sequence (2.8) which can be written as 

nS ≔ 1 1, , , .n nS n S n− −                                                    (2.13) 

We notice that we can take any word of length n as initial word g0. The resulting Gray code is 

equivalent to the standard Gray code G(n) as defined by (2.3) and (2.4), in the sense that it can 

be obtained by adding g0 to all words of the list of G(n). 

Definition 2.1 

For any sequence T of integers from the following finite set, which is the discrete interval 

[1, n] =  {1, 2, …, n}, 

the contents c(T) of T is the set of those integers occurring an odd number of times in T. A 

similar definition of the contents c(T) applies to T ⊆ [0, n − 1] = {0, 1, …, n − 1}. 



 

 11

For example, if gx ∈ G(n) is generated by a subsequence T of nS  and X = sup gx, then X 

= c(T). Here, sup gx is the support of gx, i.e. the set of positions where gx has components equal 

to 1. We also adopt the convention that if T = tx, tx+1, …, ty, then its reversed sequence is 

TR = ty, …, tx+1, tx. 

Moreover, if T ≠ nS  is a non-empty sequence, we define the complement of T as the 

subsequence 

Tc = ty+1, …, tx−2, tx−1. 

The notion of complement is valid only for a cyclic transition sequence. 

In the next, we shall always consider nS  as a cyclic sequence, likewise we also consider 

the list of codewords G(n) as a cyclic list. 

Theorem 2.3 

Let nS  be the transition sequence of the standard Gray code G(n). For every integer n ≥ 3, 

the transition sequence nS  can be obtained from 1nS −  in the following ways: 

(i).   by replacing the two integers n − 1 in 1nS −  by the subsequence 

n − 1, Sn−2, n 

or alternatively by the subsequence 

n, Sn−2, n − 1; 

(ii).  by replacing all integers 1 in 1nS −  by S2 and augmenting all other integers in 1nS −   

by 1;. 

(iii). by replacing one of the two integers n − 1 in 1nS −  by 

n, Sn−1, n. 

Theorem 2.4 

Suppose nS  is the transition sequence of the standard Gray code G(n). Then the transition 

sequence nS  satisfies the following properties: 

(i) for any subsequence T of nS  that has length 2n−1, we have nS  = T , T; 

(ii) nS  is invariant for interchanging n − 1 and n; 

(iii) Sn  = Sn
R. 

The proofs follow immediately from (2.8) and (2.13). 

Remark 

The equality nS  = T , T of Theorem 2.4(i) implies that we do not distinguish between 

nS  and any of its cyclic translations. We also remark that Theorem 2.3(ii) can equivalently be 
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formulated by saying that we augment all integers of 1nS −  by 1, and next insert a 1 between 

any two integers and also put a  1 at the front and at the back. 

Theorem 2.5 

Let T ≔ i, T’, j be a subsequence of the transition sequence nS  of the standard Gray code 

G(n), n > 1. 

(i) if 1 < i < j or 1 < j < i, then |c(T)| is odd and min c(T) = i − 1 or min c(T) = j − 1, 

respectively; 

(ii) if i = j, then |c(T)| is odd and min c(T) ≥ i for i < n, whereas c(T) = {i − 1} for i = n; 

(iii) if i = j, then c(T) ≠ {i}; 

(iv) if i = 1,  j > 1 or i > 1,  j = 1, then |c(T)| is even; 

(v) if TR = T, then either i = j < n and c(T) = {m} for some m > i, or i = j = n and  

c(T) = {n – 1}. 

Proof. For n = 2, all statements are either void (e.g. (i)) or they appear true by inspection. For 

n ≥ 3, we proceed by induction. Assume that all statements are true for a certain value n − 1 

with n > 3. First we prove that (i) also holds for n. If T does not contain the integer n, this 

follows immediately from the induction assumption. If T contains the integer n twice, it 

follows also from the induction assumption applied to the complement Tc of T, omitting the 

integer 1 at the front and at the back of Tc, and using c(Tc) = c(T). If T contains n once, we can 

write T = i, …, n, …, i, 1, …, j (or T = i, …, 1, j, …, n, …, j) such that c(i, …, n, …, i) = {n} 

(or c(j, …, n, …, j) = {n}).  From the induction assumption, we have that |c(1, …, j)|  and 

|c(i, …, 1)| are even, and hence |c(T)| is odd. 

In a similar way, the relations (ii) − (v) can be proved to hold for n. Since one can easily 

verify that relations (i) – (v) hold for n = 3. We have proved the Theorem by the principle of 

mathematical induction.                                                                                                               □ 

For the next theorem, we partition the list G(n) into 2n-i sublists of size 2i, starting from 

the zeroword, i.e. 

G(n) = 0 ( )iG n , 1( )iG n , …, 2 1( )
n i

iG n
− − ,                                      (2.14) 

for some i,  1 ≤ i ≤ n − 1. The non-cyclic lists ( )j
iG n  all have the same non-complete transi-

tion sequence Si of (2.7), and so such a sublist can be obtained from any other one by adding a 

fixed binary vector from GF(2)n to all words of the latter list. For reasons of convenience, we 

introduce the vectors ek,l in GF(2)n which have, by definition, ones at positions k and l from the 

right and zeros elsewhere, where k, l ∈ [1, n], with k ≠ l. 
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Theorem 2.6  

The sublists ( )j
iG n  of the standard Gray code G(n), n ≥ 2, are related to each other by the  

recurrence relation: 
( )j

iG n  = 1( )j
iG n−  + , ji i t+e ,              0 < j  ≤ 2n−i,           (2.15) 

where the integers tj are the elements of the transition sequence n iS −  of G(n − i), and  

where 2 ( )
n i

iG n
−

 is identified with 0 ( )iG n . 

Proof.  For n = 2,  the Theorem is trivially true.  Assume that the recurrence relation 

holds for some n ≥ 2, and consider the partitioned list  

G(n+1) = 0 ( 1)iG n + , 1( 1)iG n + , …,
12 1( 1)

n i

iG n
+ − − + .                          (2.16) 

For i = n we have 1n iS + −  = 1S  = 1, 1, and 
1,i i t+e = 

2,i i t+e = en, n+1. Indeed, the relation  

1 ( 1)nG n +  = 0 ( 1)nG n + + en, n+1 

is true, as follows immediately from the definition of G(n + 1). Next, we take i = 1. In this case 

we have G(n+1) = 0
1 ( 1)G n + , 1

1 ( 1)G n + , …, 2 1
1 ( 1)

n

G n− + , where each sublist 1 ( 1)jG n +  con-

tains two words differring at position 1. From Theorem 2.3(iii), it follows that 1nS + = 1, t1 + 1, 

1, t2 + 1, …, 1, 
2

1nt + , 1, t1 + 1, 1, t2 + 1, …, 1, 
2

1nt + , where t1, t2, …, 
2nt  are the integers of 

nS  as defined by (2.5) and (2.8). This proves the recurrence relation for i = 1.   

Finally, for 1 < i < n, the relation follows easily for the sublists ( 1)j
iG n + , 0 < j ≤ 2n−i− 1, in 

the first half of G(n + 1) by putting a zero in front of vectors , ji i t+e  ∈ GF(2)n. The same 

holds for the sublists ( 1)j

iG n + , 2n−i < j ≤ 2n+1−i− 1 in the second half of G(n + 1). If j = 2n−i, 
we put a one in front of the vector 

, ji i t+e ∈ GF(2)n and remove the one from position i + tj.  

In this way, we get the translation vector ei,n+1 ∈ GF(2)n+1. Therefore the Theorem also 

holds for n + 1.                                                                                                                          □ 

We shall derive next some results which are in a way the reverses of the statements in 

Theorem 2.5. Notice that from Theorem 2.5, it follows from X = c(i, T’, j), |X| > 1 and odd, 

both integers i and j must be distinct and greater than 1. 

Theorem 2.7 

Let nS  be the transition sequence of the standard Gray code G(n) and let X be an arbitrary 

fixed subset of [1, n], n ≥ 3, with |X| odd, and i0 ≔ min X. If one defines i ≔ i0 + 1, then 

(i) if 1 < i < n, then for any j with i < j ≤ n, there exists a subsequence T = i, T’, j of nS  

such that c(T) = X; 
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(ii) if 1 < i ≤ n, then for any j with i < j ≤ n, there exists a subsequence T = j, T’, i of nS  

such that c(T) = X; 

(iii) if 1 < i ≤ n, then for any j with 1 ≤ j ≤ i − 1, there exists a subsequence T = j, T’, j of 

nS  such that c(T) = X; 

Proof. 

(i)     We shall apply induction to n ≥ 3. For n = 3, the statement is true as one can easily verify 

by inspection. Assume the statement is true for all values less than some n > 3. In order 

to prove the statement for n, we distinguish between the cases i > 2 and i = 2. Suppose n 

> 3 and for every positive integer m < n, we assume the Theorem is true in mS . 

If i > 2, we omit from nS  all integers 1. Furthermore, we replace all remaining integers t 

in nS  by t − 1, yielding 1nS −  (cf. Th.2.3(ii)). We do the same for all integers in X, 

yielding a set Y with min Y = i – 2. By the above assumption, there is a subsequence S = i 

− 1, S’, j − 1 of 1nS −
 such that c(S) = Y. Now, we apply the reverse of Th. 2.3(i) to S, 

yielding a subsequence T of nS  which satisfies all requirements. (Notice that the number 

of integers 1 inserted in S is always even). So, in the case i > 2 statement (i) has been 

proved for n. 

For i = 2, we distinguish four subcases. 

1.  j < n,  n ∉ X;       2. j < n,  n ∈ X;       3.  j = n, n ∉ X;       4.  j = n, n ∈ X. 

1.   The case j < n,  n ∉ X. 

We can apply th induction assumption to one of the two subsequences Sn−1 of nS . 

2.  j < n,  n ∈ X. 

2. 1. j = n − 1, n ∈ X. 

Define Y = {n – 1} ∪ X \ {n} in case n – 1 ∉ X , and Y = X \ {n – 1, n} in case 

n – 1 ∈ X. In both cases, we have |Y| is odd, and hence we can apply the 

induction assumption. It follows that in the first case, there is a subsequence S = 

2, S’, n − 1 of 1nS −  such that c(S) = Y. Since n – 1 ∈ Y, we have that S’ does 

not contain n – 1. So, the sequence 

T = 2, S', n − 1, Sn−2, n, Sn−2, n − 1 

is a subsequence of nS . It will be clear that c(T) = {n} ∪ Y \ {n – 1} = X, and 

hence T satisfies all requirements. 

In the second case, there also exists, by the inductive assumption, a 

subsequence 

S = 2, S’, n − 1 
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of 1nS −  such that  c(S) = Y. Since now n – 1 ∉ Y, we have that n – 1 ∈ S’, and 

so the sequence 

T = 2, S’, n 

is a subsequence of nS  with c(T) = Y ∪ {n – 1, n} = X. Here, we applied 

Theorem 2.3(iii). Hence, the subsequence satisfies all requirements. 

2. 2.  j < n – 1, n ∈ X. 

Like in Case 2.1, we define Y = {n – 1} ∪ X \ {n} in case n – 1 ∉ X and Y = X \ 

{n – 1, n} in case n – 1 ∈ X. In both cases, we have again that we can apply 

induction, since |Y| is odd. In the first case, there exists by induction a 

subsequence S = 2, S’, j, which is a subsequence of 1nS − , such that c(S) = Y. 

Since j < n – 1, this implies that n – 1 ∈ S’.  Replacing this integer n – 1 (and 

also the second integer n − 1) by n results in a subsequence T of Sn, by Theorem 

2.4(ii) and eq. (2.13). This subsequence T has the property c(T) = {n} ∪ Y \ 

{n – 1} = X, and hence T satisfies all requirements. 

In the second case, we argue as follows. By induction, there exists a sequence 

S = 2, S’, j, 

which is a subsequence of Sn−2 such that  c(S) = Y. We write 2nS −  = U, S, V and 

we define a sequence 

T = S, V, n − 1, U, S, V,  n, U, S, 

which is a subsequence of nS  according to eqs. (2.8) and (2.13). It is obvious 

that c(T) = c(S)  ∪ {n, n – 1} = Y ∪ {n, n – 1} = X. Since the first integer of T is 

2 and the last integer is j, the sequence T satisfies all requirements. 

3.   j = n, n ∉ X. 

Since Sn generates all binary words of length n, there exists in Sn a subsequence 

S = 1, 2, 1, …, l , 1 

for some l > 2, starting with the first integer 1 of nS , such that c(S) = X. The 

complement T of S w.r.t. nS  has the form 

T = 2, 1, …, l, …, 1, n, 1, 2, 1, …, 1, 2, 1, n 

also satisfies c(T) = X, and so this sequence satisfies all requirements. 

4.   j = n, n ∈ X. 

Like in Case 2.1 and Case 2.2, we define Y = {n – 1} ∪ X \ {n} in case n – 1 ∉ X 

and Y = X \ {n – 1, n} in case n – 1 ∈ X. In the first case, there exists, by induction, 

a subsequence S = 2, S’, n – 1 of 1nS −  such that c(S) = Y. It is obvious that n – 1 

does not occur in S’. Replacing n – 1 by n in S yields a subsequence T of nS , by 
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Theorem 2.4(ii), such that c(S) = X. In the second case, there exists a subsequence 

of Sn–2 of the form 

S = 1, 2, 1, …, l , 1, 

for some l > 2, starting from the first integer 1 of Sn–2, because of a similar reason as 

in Case 3, with the property that c(S) = X. We write Sn–2 = S, S” and we define a 

sequence 

T = S”, n – 1, S, S”, n 

which is a subsequence of nS , according to Theorem 2.3(ii). It is obvious that 

c(T) = c(S) ∪ {n – 1, n} = Y ∪ {n – 1, n} = X. 

Since the first integer of S” is 2, the sequence T satisfies all requirements. Since 

statement (i) of the Theorem, holds for n = 3, as we already remarked, it holds for 

all cases n ≥ 3, according to the principle of mathematical induction. 

(ii) This statement follows immediately from (i) since Sn
R = Sn, which together with eq. (2.13) 

implies that nS , considered as a cyclic sequence, is invariant for the direction of 

traversing (cf. Th. 2.4(iii)). 

(iii) For i < n, we can take some k > i. Now part (i) of this theorem states that there is a 

subsequence of nS  of the form T = i,T’, k such that c(T) = X. From the definition of the 

transition sequence nS , we can immediately conclude that T is part of a longer 

subsequence Si–1,  i,T’, k, Si–1, and hence also of a sub- sequence Sj, i, T’, k, Sj, for j ≤ i −1. 

This subsequence is shorter for j < i − 1. The statement now follows from the relation Sj
R 

= Sj.  For i = n, we have X = {n − 1}, and the statement follows from Sn−1 = Sn−1
R.            □  

Theorem 2.8 

Let nS  be the transition sequence of the standard Gray code G(n). Let X be some non-

empty subset of [1, n], n ≥ 3, with |X| even and i0 ≔ min X. If i ≔ i0 + 1, then 

(i) there exists a subsequence T = i, T’, 1 of nS  such that c(T) = X; 

(ii) there exists a subsequence T = 1, T’, i of nS  such that c(T) = X. 

Proof. 

(i) We distinguish between the cases 1 ∉ X and 1 ∈ X. If 1 ∉ X, it follows that i0 > 1, and 

hence 2 < i ≤ n. We define Y ≔ X ∪ {1}. So, |Y| is odd and min Y = 1. From Theorem 

2.7(ii), it follows that there exists a subsequence S = i, T’, 2 such that c(S) = Y. Hence, 

the subsequence T =  S, 1 = i, T’, 2, 1 satisfies the requirement. 

If 1 ∈ X, it follows that i0 = 1, i = 2. We define Y ≔ X \ {1}. So |Y| is odd. If 2 ∉ Y, then 

min Y≥ 3, and therefore there exists a subsequence S = 2, S’, 2 with c(S) = Y, according 
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to Theorem 2.7(iii). Hence, T ≔ 2, S’, 2, 1 satisfies the requirements. If 2 ∈ X, there 

exists a subsequence S = 1, S’, 1 with c(S) = Y. If the first integer of S’ is 2, we omit the 

first 1 of S giving a subsequence T = 2, T’, 1 which satisfies all the requirements. If the 

first integer of S’ is unequal to 2, then its last integer must be equal to 2, by Theorem 

2.7(iii). We now omit the last 1 of  T’. By applying Sn
R = Sn, we obtain a subsequence 

which satisfies (i) in this case. 

(ii) This statement follows again by applying Sn
R = Sn.                                                           □ 

Theorem 2.9 

Let nS  be the transition sequence of the standard Gray code G(n) and let X be some non-

empty subset of [1, n], n ≥ 3. Let furthermore i0 ≔ min X and i ≔ i0 + 1. 

(i) if |X| is even, the number of subsequences T = 1, T’, j in nS  with c(T) = X is equal to 

2n−j for 1 < j < n, and equal to 2 for j = n. 

(ii) if |X| is odd, the number of subsequences T = i, T’, j in nS  with c(T) = X is equal to 2n−j 

for 1 < j < n, and equal to 2 for j = n. 

Proof. First we remark that 2n−j is equal to the number of occurrences of the integer j in nS  for 

1 ≤ j < n (transition count of j), and that similarly the transition count of n is equal to 2 in nS . 

Furthermore, it is evident that there are no two different subsequences T (1) = i, T(1)′, j  and T (2) 

= i, T(2)′, j with j on the same position in nS  and the two integers i on different positions, with 

c(T (1)) = c(T(2)) = X, for some fixed X. Since this would imply c(T (1) \ T (2)) (or c(T(2) \ T (1))) = 

∅, which violates the fact that nS  generates 2n different codewords (cf. [33 - 36]). So, the 

proof comes down to showing that in either case, for each j > i, there corresponds a sequence 

1, T′, j (case (i)) or i, T′, j (case(ii)), respectively, the contents (cf. Definition 2.1) of which is 

equal to X. 

(i)  Choose some integer j (> 1) in nS . Consider the set of subsequences k, …, j (with that 

particular integer j at the end) where k can be any integer to the left of j in cyclic sense. 

Starting from the zero codeword, any of these sequences defines a binary codeword of length 

n. Since nS  is the transition sequence of a complete Gray code, all these words are different. 

Hence, there is a k such that c(k, …, j) = X. Since |X| is even, k = 1 according to Theorem 

2.5(iv).  
(ii)  Let X = {i0, i1, …, il−1}, l odd. W.l.o.g, we may assume i0 < i1 < … < il−1. First we suppose 

i0 > 1, and hence i > 2 and we define Y = {i0 − 1, i1 − 1, …, il−1 − 1}. From Theorem 2.3(ii) it 

follows that there is a one-one correspondence between subsequences T = i, T′, j, in nS  with 
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c(T) = X and subsequences S = i − 1, S′, j − 1 in 1nS −  with c(S) = Y. Proceeding in this way, 

we conclude that there is one-one correspondence between subsequences T = i, T′, j in nS  and 

subsequences S″ = i − i0, S‴, j − i0  = 1, S‴, j − i0 in 0n iS −  with c(S″) = {i1 − i0, …, il−1 − i0}. 

From part (i) of this proof it follows that the total number of such sequences is equal to 

0 0( ) ( )2 n i j i− − −  = 2n−j 
if j < n, and equal to 2 if j = n.                                                                                                    □ 

Example  2.2 

The transition sequence of 5S  is equal to 

1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5. 

We define X = {1, 2, 5} and so i0 = 1 and i = 2. There are two subsequences T = 2, T’, 5 with 

c(T) = X, i.e the two sequences 2, 1, 5; there are also two sequences T = 2, T’, 4 with c(T) = X, 

i.e. the  sequences 

2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4 (twice). 

Next, we consider X = {1}, hence i0 = 1, i = 2, and we take j = 3. The following 

subsequences T = 2, T’, 3 have contents c(T) = {1}: 

2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, (twice) 

2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, (twice) 

Finally, we consider X = {2, 3}, so i0 = 2 and i = 3, and we take j = 3. The following 

subsequences T = 1, T’, 3 have contents c(T) = {2, 3}: 

1, 2, 1, 3 (four times). 

The previous example might suggest that all subsequences T = i, T’, j for fixed values 

of i and j which satisfy c(T) = X for some fixed set X, have the same length. This is not true in 

general. The next example will illustrate this. 

Example 2.3 
According to Theorem 2.9, there are 25−3 = 4 subsequences T = 2, T’, 3 of 5S  which 

satisfy c(T) = {1, 3, 5}. These subsequences are 

2,  1, 5, 1, 2, 1, 3, (twice) 

of length 7, and 

2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, (twice) 

of length 23. 
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2.4  DP-Codes, <m, n>- Codes and Snakes 

In [25], Preparata and Nievergelt discussed the notion of difference-preserving code 

(shortly, DP-code), being an ordered list of integers, coded as binary words of length n, 

satisfying the following two properties: 

(i)  (nearness condition) the list distance between two words is equal to their Hamming 

distance, as long as the list distance does not exceed a certain threshold or spread m; 

(ii) (separability condition) if the list distance exceeds m, so does the Hamming distance. 

The range L of the code is the number of words in the list. If one considers the list as a 

cyclic list and if the list distance between two words is taken cyclicly, i.e, identifying the first 

word and the L-th word (cf.  (2.11)), then one can speak of cyclic DP-codes. 

Some authors (cf. [10]) slightly modify the condition (ii) by 

(ii’)  if the list  distance is at least m, so is the Hamming distance. 

A more general type of ordered code was introduced by Evdokimov. In [10], he studied 

codes satisfying condition (i), not bothering about condition (ii),  We shall call such a code a 

distance-preserving <m, n>-code, or simply an <m, n>-code.  This class includes the well-

known snake-in-the-box codes which will be discussed in the next section. It will be clear that 

1 ≤ m ≤ n. It will also be clear that a cyclic Gray code G(n) is by definition a cyclic <1, n>-

code. Since the same bit will not be changed immediately again, it is even a cyclic <2, n>-

code. 

More precisely, an <m, n>-code is an ordered code 

F(n) = w0, w1, …, wL−1. 

of words in Qn that satisfies the condition 

|i − j| ≤ m ⇒ d(wi, wj) = |i − j|,               0 ≤ i, j ≤ L − 1.              

This code is called complete if L = 2n and it is cyclic if 

l(wi, wj) ≤ m ⇒ d(wi, wj) = l(wi, wj),         0 ≤ i, j ≤ L − 1,               

where the cyclic list distance l(wi, wj) is defined in (2.12). One could say that F(n) preserves 

the distance between pairs of integers from [0, L − 1], for distances up to m. Moreover, F(n) is 

called symmetric if it has a transition sequence of the form 

t1, t2, …, tK, t1, t2, …, tK.                                               (2.17) 

where L = 2K. 
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Example 2.4 

In [39], one can find an example of a complete cyclic <4, 5>-code. 

0.   00000        8.    00011        16.  00110        24.  00101 

1.   00100        9.    00001        17.  00010        25.  00111 

2.   10100        10.  10001        18.  10010        26.  10111 

3.   10110        11.  10101        19.  10000        27.  10011 

4.   11110        12.  11101        20.  11000        28.  11011 

5.   11111        13.  11100        21.  11001        29.  11010 

6.   01111        14.  01100        22.  01001        30.  01010 

 7.   01011        15.  01110        23.  01101        31.  01000. 

In this thesis, the notation <m, n>-code will always stand for a complete cyclic <m, n>-code.  

Next we define the related notion of a spread-δ circuit (or shortly, circuit). 

Definition 2.2 

A list of binary words of length n is called a spread-δ circuit if and only if the following 

two conditions are satisfied for all words x and y of this list 

(a) l(x,y) = 1 implies d(x,y) = 1;  

(b) d(x,y) < δ implies d(x,y) = l(x,y). 

This definition was given by Paterson and Tuliani (cf. [24]). Preparata and Nievergelt 

in [25] give the following definition of spread-δ circuits that at first glance slightly differs 

from the definition above. We shall prove that both definitions are equivalent. 

Definition 2.3 

A list of binary words of length n is called a spread-δ circuit, if only if the following two 

conditions are satisfied for all words x and y of this list: 

(a’) l(x,y) ≤ δ implies d(x,y) = l(x,y); 

(b’) l(x,y) > δ implies d(x,y) ≥ δ. 

Theorem 2.10 

The two Definitions 2.2 and 2.3 for spread-δ circuits are equivalent. 

Proof.  Assume that the conditions of Definition 2.2 hold for some list C. 

(a’)  Let l(x,y) < δ. By applying (a) l(x, y) times, it follows that d(x, y) ≤ l(x, y) < δ. But 

then, because of (b), we have d(x,y) = l(x,y). Let l(x,y) = δ. Then d(x,y) ≤ δ, again by 

(a). If d(x,y) < δ, we would have δ > d(x,y) = l(x,y) = δ from (b), which is false. So, 

d(x,y) = δ = l(x,y). We conclude that l(x,y) ≤ δ implies d(x,y) = l(x,y). 

(b’) Let l(x,y) > δ. If d(x,y) < δ, then because of (b), δ < l(x,y) = d(x,y) < δ, which is false. 
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So, d(x,y) ≥ δ. 

We conclude that the conditions of Definition 2.3 also hold for C. 

Assume next that the conditions of Definition 2.3 hold for some list C. 

(a ) It follows immediately that l(x,y) = 1 implies d(x,y) = 1, i.e. condition (a) of Definition 

2.2 is satisfied. 

(b)  Now let d(x,y) < δ. The inequality l(x,y) > δ implies, by (b’), that d(x,y) ≥ δ, which is 

false.  So l(x,y) ≤ δ and it follows from condition (b’) that l(x,y) = d(x,y). 

Therefore, the conditions of the Definition 2.2 are also satisfied.                                               □ 

A spread-2 circuit is called a snake-in-the-box code, or simply a snake. DP-codes, 

<m, n>-codes and snakes are all special Gray codes (cf. e.g. [39]). The <4, 5>-code in 

Example 2.4  is clearly not a snake, nor a DP-code because many pairs of non-consecutive 

words in the code, e.g. the 6-th and the 15-th words, are at distance 1 < 2. 

More generally, a snake in a graph is an induced cycle in that graph, that is a simple 

cycle with no chords. A chord of a cycle S is an edge which connects two non-consecutive 

vertices of S. Only if the graph is the hypercube graph Qn, one speaks of a snake-in-the-box 

code. More precisely, suppose 

0 1 1, , ..., L−=w w wS                                         (2.18) 

is a list of L words in Qn. Then S is a snake-in-the-box code, or simply a snake, if for every 

integer i, j ∈ [0, L − 1], we have 

1[ , ] 1i id + =w w                                                   (2.19) 

and 

[ , ] 1 [ , ] 1,i j i jd l= ⇒ =w w w w                                        (2.20) 

where wL is identified with w0. 

We call a snake in Qn symmetric if it has a transition sequence of the form (2.17). Kautz 

[15] calls such a snake a natural code. The first half of the snake can be derived from the 

second half by executing the same coordinate changes. 

 



 

 

3. A Construction of Snake-in-the-box Codes 
 

In this chapter, we start by discussing a method for the construction of snake-in-the-box 

codes - briefly called snakes - due to Paterson and Tuliani. Their method makes use of so-

called necklaces which are a certain kind of cyclic constant-weight codes. Actually, Paterson 

and Tuliani present in [24] two different constructions for snakes based on such necklaces, the 

second one of which is not proved to be correct. In Section 3.1, we discuss the two 

constructions of snakes by Paterson and Tuliani.  

In Section 3.2, we generalize the notion of necklaces and in Section 3.3, we introduce a 

third construction which generalizes the two constructions in  [24], and we prove its 

correctness. In particular, we construct the currently known longest snake for n = 8 that was 

also provided by Paterson and Tuliani in [24]. 

3.1. Snakes Based on Necklaces 

A necklace is defined by Patterson and Tuliani in [24] as a class of a special equivalence 

relation in Qn. The equivalence relation is defined in the following way. Two vectors v and w 

of Qn are in the same necklace if and only if w can be obtained from v by shifting the 

components of v over one or more positions in cyclic sense. 
We can represent a necklace by a matrix the rows of which are all vectors in the 

equivalence class it stands for. If a vector coincides with itself when shifted (cyclically) over k 

(> 1) positions, we say that the corresponding necklace is of period k, if k is minimal with 

respect to this property. If the period of a necklace, is equal to n, we shall speak of a full-

period necklace . In the sequel, we always mean a full-period necklace when we write 

'necklace’, unless stated otherwise. 

The 6 × 6 matrix in Figure 1 represents a necklace generated by its first row vector 

(1,1,1,0,1,0). We can also represent the necklace by merely this row: [111010]. We shall call 

such a matrix a necklace matrix. Since all rows of a necklace have the same weight, we define 

the weight of a necklace N, wt(N), as the weight of its rows. 

 

 

 

 

 

 

 

 

1 1 1 0 1 0
0 1 1 1 0 1
1 0 1 1 1 0
0 1 0 1 1 1
1 0 1 0 1 1
1 1 0 1 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

                  

Fig. 3.1 A Necklace Matrix 



 

 23

Since each row of the matrix in our example has four 1’s, we can assign a block (r, s, 

t, u) to each of them such that r, s, t and u indicate the positions of these 1’s. Thus, to the first 

row we assign the block B1 = (1, 2, 3, 5), the second row corresponds to the block B2 = (2, 3, 4, 

6), etc. 

Furthermore, we introduce a distance distribution matrix of a necklace, the i,j-entry of 

which is the Hamming distance between row i and row j. As one can easily verify, the matrix 

in Fig.3.2 is the distance distribution matrix of the necklace represented by the matrix of 

Fig. 3.1. 

Since the whole necklace matrix is determined by its first row, the overall distance 

distribution is already determined by the first row of the distance distribution matrix. 

Therefore, we may represent the distribution matrix of Figure 3.2 by its first row [0 4 2 4 2 4]. 

 

 

 

 

 

 

 

 

Let w = (w0, w1, …, wn−1) be a binary word of length n. We introduce the notation σ 

for the operator which accomplishes a cyclic shift over one position to the left. Hence, 

σ w = (w1, w2, …, wn−1, w0) 

and more generally, 

σ l w = (wl, wl+1, …, wn−1,w0, …, wl−1 ) 

for any nonnegative integer l. 

Now, let N1 and N2 be two necklaces of length n and let w1 and w2 be fixed vectors of 

N1 and N2, respectively. The distance between N1 and N2 is defined as 

d(N1, N2) = 
0
min

l n≤ <
 d(w1, σ l w2). 

It will be obvious that the distance between N1 and N2 is independent of the choice of the 

vectors w1 and w2. 

We remark that if the distance between N1 and N2 is equal to d, there might be more 

than one value l such that 

d(w1, σ lw2) = d.                                                       (3.1) 

In case that there is a unique value l defining the distance between two necklaces, one can 

specify the notion of distance as follows. The necklaces N1 and N2 are uniquely at distance d 

                      

0 4 2 4 2 4
4 0 4 2 4 2
2 4 0 4 2 4
4 2 4 0 4 2
2 4 2 4 0 4
4 2 4 2 4 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

Fig. 3.2 A Distance Distribution Matrix of a Necklace 



3. A Construction of Snake-in-the-box Codes 

 24

with respect to k, if l in (3.1) is uniquely determined and if for every l’ ≠ l, 0 ≤ l’ < n, one has 

d(w1, σ l’w2) ≥ k. 

From the uniqueness of l, it follows immediately that k > d. 

Example 3.1. 

For n = 7, we define the following necklaces 

N0 = [1100000], N1 = [1110000], N2 = [1111000], N3 = [1111100]. 

These necklaces are all full-period of length 7. Written completely as 7 × 7 matrices, they have 

the form 

N0 = 

1 1 0 0 0 0 0
1 0 0 0 0 0 1
0 0 0 0 0 1 1
0 0 0 0 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

,           N1 = 

1 1 1 0 0 0 0
1 1 0 0 0 0 1
1 0 0 0 0 1 1
0 0 0 0 1 1 1
0 0 0 1 1 1 0
0 0 1 1 1 0 0
0 1 1 1 0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

, 

N2 = 

1 1 1 1 0 0 0
1 1 1 0 0 0 1
1 1 0 0 0 1 1
1 0 0 0 1 1 1
0 0 0 1 1 1 1
0 0 1 1 1 1 0
0 1 1 1 1 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

,           N3 = 

1 1 1 1 1 0 0
1 1 1 1 0 0 1
1 1 1 0 0 1 1
1 1 0 0 1 1 1
1 0 0 1 1 1 1
0 0 1 1 1 1 0
0 1 1 1 1 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

If we define w0 = (1,1,0,0,0,0,0) ∈ N0, w1 = (1,1,1,0,0,0,0) ∈ N1, w2 = (1,1,1,1,0,0,0) 

∈ N2 and w3 = (1,1,1,1,1,0,0) ∈ N3, we can easily verify that 

d(wi, σ wi+r) ≥ r 

for 0 ≤ i < i + r ≤ 4. It can also be verified easily that 

d(Ni, Ni+r) = r 

for the same values of i and r. However, Ni and Ni+r are not uniquely at distant r from each 

other. E.g. d(w0, σ 1w1) = d(w0, σ w1) = 1 and d(w0, σ 0w1) = d(w0, w1) = 1, so the value of l in 

(3.1) is not unique. 

Example 3.2. 

Consider the necklaces 

N0 = [1100000], N1 = [1101000], N2 = [1101100], N3 = [1111100]. 

or written as complete matrices 
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N0 = 

1 1 0 0 0 0 0
1 0 0 0 0 0 1
0 0 0 0 0 1 1
0 0 0 0 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

,           N1 = 

1 1 0 1 0 0 0
1 0 1 0 0 0 1
0 1 0 0 0 1 1
1 0 0 0 1 1 0
0 0 0 1 1 0 1
0 0 1 1 0 1 0
0 1 1 0 1 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

, 

N2 = 

1 1 0 1 1 0 0
1 0 1 1 0 0 1
0 1 1 0 0 1 1
1 1 0 0 1 1 0
1 0 0 1 1 0 1
0 0 1 1 0 1 1
0 1 1 0 1 1 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

,           N3 = 

1 1 1 1 1 0 0
1 1 1 1 0 0 1
1 1 1 0 0 1 1
1 1 0 0 1 1 1
1 0 0 1 1 1 1
0 0 1 1 1 1 1
0 1 1 1 1 1 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

Here, all pairs Ni and Ni+1 are uniquely at distance 1 with respect to 2. Moreover, d(Ni, Ni+r) = r 

for 0 ≤ i < i + r ≤ 4. But not all these distances are uniquely determined. E.g. d(w0, σ 0w2) = 

d(w0, σ 3w2) = 2. 

In [24], Paterson and Tuliani present the following construction, (called Construction 

1) for spread-δ circuits based on the existence of a set of necklaces which satisfy certain 

conditions. 

Theorem 3.1 (Paterson and Tuliani; Construction 1) 

Let t ≥ δ and suppose that N0, N1, …, Nt−1 are distinct, full-period necklaces of length n, 

such that for every i with 0 ≤ i < t, and all indices taken modulo t, the following conditions 

hold: 

(i) Ni and Ni+r are uniquely at distance r with respect to δ, for 0 ≤ r < δ; 

(ii) Ni and Ni+r are at distance ≥ δ for δ ≤ r ≤ t − δ. 

Then there exist words wi ∈ Ni with d(wi,wi+1) = 1, 0 ≤ i < t, and an integer l, 0 ≤ l < n, with 

d(wt−1, σ lw0) = 1. Furthermore, there is an integer m such that the list C obtained by 

concatenation of the rows 

w0,                  w1,                   w2,           …,    wt−1 

σ l w0,               σ lw1,               σ lw2,        …,    σ lwt−1 

…,                           …,                               …,                    …,                 

σ(m−1)lw0,          σ(m−1)lw1,          σ(m−1)lw2,         …,  σ(m−1)lwt−1 

is a spread-δ circuit with mt words of length n, where m is defined as 

m ≔ 
gcd( , )

n
l n

. 
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Example 3.3. 

We take again the first three necklaces N0 = [1100000], N1 = [1101000], N2 = 

[1101100] from the previous example, but we choose N3 = [1011000] that gives rise to the 

following matrix: 

N3 = 

1 0 1 1 0 0 0
0 1 1 0 0 0 1
1 1 0 0 0 1 0
1 0 0 0 1 0 1
0 0 0 1 0 1 1
0 0 1 0 1 1 0
0 1 0 1 1 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

Now, we have that Ni and Ni+1 are uniquely at distance 1 with respect to 2, for all i mod 4. 

Furthermore, Ni and Ni+2 are at distance 2 for all i mod 4, although not uniquely. 

According to the algorithm of Paterson and Tuliani, we are able now to construct a 

spread-2 circuit (snake-in-the-box) of length 28. Since Ni and Ni+1 are uniquely at distance 1 

for all i mod 4, this snake is uniquely determined. Written as a concatenation of rows, it is 

given by 

1100000          1101000          1101100          0101100 

0001100          0001101          1001101          1000101 

1000001          1010001          1011001          1011000 

0011000          0011010          0011011          0001011 

0000011          0100011          0110011          0110001 

0110000          0110100          0110110          0010110 

0000110          1000110          1100110          1100010 

The transition sequence of this snake is obtained by concatenation of the rows 

4        3        7        6 
1        7        4        3 
5        4        1        7 
2        1        5        4 
6        5        2        1 
3        2        6        5 
7        6        3        2 

We remark that the above transition sequence is determined already by the first row. 

Every time a next row can be obtained by adding 4 mod 7 to each entry of the previous row. 

The entries of the first row are determined by the words w0, w1, w2 and w3. 
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Corollary 3.2 

Let S be the snake with word length n obtained by Construction 1 that uses t necklaces, and 

let Tmt be its transition sequence with elements e1, e2, …, et, et+1, …, e2t, e2t+1, …, emt. If l is 

the only nonzero integer satisfying d(wt−1, σ lw0) = 1, then the following relation holds 

ert+s = es + rl mod n 

for r = 0, 1, …, m − 1 and s = 1, 2, …, t. 

Proof.  Any pair of words  (w(r+1)t+s,w(r+1)t+s+1)  in the r−th row originates from the pair 

(wrt+s,wrt+s+1) in the (r − 1)-th row by a left shift over l positions. Therefore, the equality holds 

for all s < t. For s = t, the relation is true for a similar reason.                                                    □ 

Example 3.4 

The following six necklaces with word length n = 6 

[110001], [110101], [110111], [100111], [100110], [000110] 

do not satisfy the conditions in Theorem 3.1. In fact, there is a pair of necklaces, the first and 

the last one, that are not uniquely at distance 1. Moreover, the first and the fourth necklace are 

uniquely at distance 1, although their list distance is 3. Therefore, the scheme outlined in 

Theorem 3.1 (with two possible values l = 2 or l = 3) produces a Gray code, that is not a snake, 

of range 

N = mt = 6
gcd( ,6)l

6 = 36/l. 

By putting a bit 0 to the right of the last position of every word representing the 

necklaces, we get the following six necklaces with word length 7 that satisfy all conditions of 

Theorem 3.1. 

[1100010], [1101010], [1101110], [1001110], [1001100], [0001100]. 

Applying Construction 1 yields the following snake of length 42. 

1100010, 1101010, 1101110, 1001110, 1001100, 0001100, 

0101100, 0101101, 1101101, 1101001, 1001001, 1000001, 

1000101, 1010101, 1011101, 0011101, 0011001, 0011000, 

1011000, 1011010, 1011011, 1010011, 0010011, 0000011, 

0001011, 0101011, 0111011, 0111010, 0110010, 0110000, 

0110001, 0110101, 0110111, 0100111, 0100110, 0000110, 

0010110, 1010110, 1110110, 1110100, 1100100, 1100000. 

Among all snakes with word length 7 that can be obtained by Construction 1, this snake is 

maximal. Any longer snake obtained by Construction 1 should be generated by at least 

seven necklaces. This implies that the length of the snake would be at least 49, exceeding 

the maximal length of a snake with word length 7, which is known to be 48 (see [17]). 
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Clearly, every vector in a necklace N has the same weight. We denote this weight by 

wt(N). The next construction is also due to Patterson and Tuliani, and can be found in [24]. 

Theorem 3.3 (Paterson and Tuliani; Construction 2) 

Let t ≥ 2, and assume that N0 = [w0], N1 = [w1], …, Nt−1 = [wt−1] are distinct, full-period t 

necklaces of length n, such that 

(i) wt(N 0) = 2 and wt(Nt−1) = n − 2; 

(ii) 3 ≤ wt(Ni) ≤ n − 3, for 1 ≤ i < t – 1; 

(iii) Ni and Ni+1 are uniquely at distance 1 with respect to 2, for 0 ≤ i < t −1; 

(iv) d(Ni,Ni+r) ≥ 2, for 0 ≤ i < t and 2 ≤ r ≤ t – 2, where indices are taken mod t. 

(v) each word wi+1, , 0 ≤ i < t − 1, is at distance 1 from its predecessor, wi,  and moreover 

the two 1-bits of w0 ∈ N0 are at two positions labeled with different parities, so are the 

two 0-bits of wt−1.∈ Nt−1. 

Then there exist two odd integers  l, l’ ∈ [1, n/2 − 1]  satisfying  d(wt−1, σ lwt−1) = 2  and 

d(σ l w0,σ l+l’w0) = 2, two words v0 and v1 satisfying wt(v0) = n − 1, d(σ lwt−1, v0) = 

d(wt−1,v0) = 1, wt(v1) = 1, d(σ lw0, v1) = d(σ l+l’w0, v1) = 1. From these words the following 

scheme (cf. [24]) is produced 

    w0,                    w1,                  w2,             …,         wt−1   
 v0,                          

    σ lw0,                σ lw1,               σ lw2,           …,       σ lwt−1, 
                         v1, 

    σ l+l’w0,             σ l+l’w1,            σ l+l’w2,          …,     σ l+l’wt−1, 
v2,                         

    σ 2l+l’w0,            σ 2l+l’w1,           σ 2l+l’w2,         …,     σ 2l+l’wt−1, 
                        v3   

    σ 2l+2l’w0,           σ 2l+2l’w1,         σ 2l+2l’w2,         …,     σ 2l+2l’wt−1,   
                v4,                         

     …                  …                    …                …,             …  

                       σ ml+(m−1)l’w0,      σ ml+(m−1)l’w1,   σ ml+(m−1)l’w2 ,      …,  σ ml+(m−1)l’wt−1, 

     v2t+1, 

In the above theorem v2 = σ l+l’v0 is a word with distance 1 w.r.t. σ lw0  and σ l+l’w0, v3 = σl+l’v1 

is a word with distance 1 w.r.t. σ l+l’wt−1  and σ 2l+l’wt−1. 

In the original Construction 2, Paterson and Tuliani in [24] did not state about the odd 

parity of the integers l and l’, neither did they present sufficient or necessary conditions for the 

correctness of the procedure. Neither the existence of two words v0 and v1 nor the conditions 

imposed on the two 1-bits and the two 0-bits of w0 and of wt−1, respectively, was explicitly 

stated by them. They even did not prove that the above procedure always produces a snake, 
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In Section 3.3, we shall show that the above Construction 2 is a special case of an 

adapted Construction 1 (Theorem 3.1) that will be stated in Theorem 3.7. This implies that the 

Construction 2 of Theorem 3.3 is valid, and does produce a snake once one can show that the 

Construction 3 is indeed valid and therefore, as one of its special cases, the scheme given in 

Theorem 3.3 (Construction 2) does produce a snake. 

Anyway, it will be clear that a necessary condition for the production of a spread-2 

circuit, is that n is even. In the two examples presented in [24], the values of n are 8 and 10, 

respectively. Our next example shows that for odd values of n, the resulting sequence is a 

spread-2 circuit, sometimes called open snake, but not a spread-2 circuit. 

Example 3.5 

We consider the set of necklaces of Example 3.2. These necklaces satisfy the 

conditions (i) – (iv). Applying the algorithm yields the following sequence of words, which 

clearly is an open snake. 

1100000          1101000          1101100         1111100           

                                                                       1111101  

1000001          1010001          1011001          1111001          

                             0000001 

0000011          0100011          0110011          1110011  

                                                                        1110111  

0000110          1000110          1100110          1100111           

                             0000100 

0001100          0001101          1001101          1001111           

                                                                        1011111  

0011000          0011010          0011011          0011111           

                            0010000 

0110000          0110100          0110110          0111110 

Corollary 3.4 

Let S be the snake with word length n obtained by Construction 2 that uses t necklaces, and 

let T be its transition sequence with elements e1, e2, …, et, et+1, …, e2t, e2t+1, … emt. Suppose 

k and l are two nonzero integers satisfying 

d(w0,σ lw0) = 2       and       d(wt−1, σ kwt−1) = 2, 

which exist because of the conditions of Construction 2. If n is the word length, then the 

following two relations hold (mod n) 

(i) et+1+s = et−s + k ,                      for s = 1, 2, …, t − 1; 

(ii) e(r+2)(t+1)+s = er(t+1)+s +  k + l,      for r = 0, 1, 2, …, and s = 1, 2, 3, …, t  + 1. 
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Proof. We arrange the elements of T in groups of t+1 consecutives integers, according to the 

scheme below. 

                                                           e1               e2              …,   e(t+1)−2        e(t+1)−1         et+1  

e2(t+1)       e2(t+1)−1       e2(t+1)−2          e2(t+1)−3        …,   e(t+1)+1                       

                   e2(t+1)+1       e2(t+1)+2        …,   e3(t+1)−2      e3(t+1)−1         e3(t+1)  

                          e4(t+1)       e4(t+1)−1      e4(t+1)−2           e4(t+1)−3        …,   e3(t+1)+1  

                                              …            …             …             …             … 

(i) We first prove equation (i) that relates the first two rows. In the first and second group 

(i.e. the first and second row) of t + 1 integers above, we temporarily exclude the last two 

consecutive integers e(t+1)−1, e(t+1) and e2(t+1)−1, e2(t+1) respectively. Notice that these integers 

are determined by two words that are neighbors of the special words wt and w2t+1, 

respectively. We see that both the first and the second row (excluding et, et+1, e2(t+1) − 1 and 

e2(t+1)) play exactly the same role as the corresponding rows in Construction 1, except that 

the indices of the second row in this construction are in opposite order to those in 

Construction 1. By appropriately renaming the indices in the equation of Theorem 3.2, we 

get the first equation. 

(ii) The second equation relates the r-th row to the (r+2)-th row in the scheme. It is sufficient 

to prove this equation in the case r is odd. In fact, both odd and even case consider a pair 

of rows that behave exactly the same, except that their indices are increasing in opposite 

order, while the shifts from one row to the other have different values. 

When r is odd, we can use a similar argument as in part (i), to derive an equivalent 

equation that relates the first t−1 integers in the r-th row and the corresponding t − 1 

integers in the (r+1)-st row. Going from the (r+1)-st row to the (r+2)-nd row, we do the 

same thing, but now by shifting over l positions. Thus we get  e(r+2)(t+1)+s = er(t+1)+s + k + l for 

s = 1, 2, …, t−1. 

The special cases s = t and s = t+1 are treated by considering the special words wr(t+1)−1, 

where r is odd, which are from the same necklace by Construction 2. In this case, the pair 

of consecutive integers (er(t+1)−1,er(t+1)), which originates from the triple of words 

wr(t+1)−2,wr(t+1)−1 and wr(t+1), corresponds to the pair of integers (e(r+2)(t+1)−1,e(r+2)(t+1)), which 

originates from the triple w(r+2)(t+1)−2,w(r+2)(t+1)−1 and w(r+2)(t+1). This latter triple is a result of 

translating the former triple first over k positions followed by a translation over l positions. 

Thus, the pair (e(r+2)(t+1)−1,e(r+2)(t+1)) is also a translation over k + l positions of the pair 

(er(t+1)−1,er(t+1)). Therefore, the second equation has been completely proved now.              □ 
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3.2. Generalized Necklaces 

We can generalize the method of Paterson and Tuliani in the following way. A 

necklace of word length n can be seen as an orbit in V ≔ GF(2)n of the cyclic permutation σ of 

the symmetric group Sn acting on the vectors of V. Instead of σ, we can choose some other 

permutation π of Sn. The orbits of π will be denoted by O1, O2, … . For these orbits, one can 

define the notions of distance and uniquely at distance δ in the same way as we did for 

necklaces. 

Let O1, O2, …, Ot−1 be a set of orbits of π, all of which have the same length. If 

furthermore, these orbits satisfy the conditions of Construction 1, one can construct a spread-δ 

circuit again. 

Example 3.6 

We take the words w0 = 110000001, w1 = 110100001, w2 = 110110001, w3 = 

010110001. Actually, these are the words w0, w1, w2,w3 from Example 3.3, extended with 01. 

We now apply the permutation 

π = (1,2)(3,4,5,6,7,8,9) 

(remember that coordinates are numbered from right to left, e.g. π(110000001) = 100000110), 

yielding the following generalized necklaces which consist of 14 words. 

01. 110000001,         110100001,          110110001,         010110001, 

02. 100000110,         101000110,          101100110,         101100010, 

03. 000001101,         010001101,          011001101,         011000101, 

04. 000011010,         100011010,          110011010,         110001010, 

05. 000110001,         000110101,          100110101,         100010101, 

06. 001100010,         001101010,          001101110,         000101110, 

07. 011000001,         011010001.          011011001,         001011001. 

08. 110000010,         110100010,          110110010,         010110010, 

09. 100000101,         101000101,          101100101,         101100001, 

10. 000001110,         010001110,          011001110,         011000110, 

11. 000011001,         100011001,          110011001,         110001001, 

12. 000110010,         000110110,          100110110,         100010110, 

13. 001100001,         001101001,          001101101,         000101101, 

14. 011000010,         011010010.          011011010,         001011010. 

                                 O1                        O2                         O3                                     O4 

One can easily verify or prove, as in Example 3.3, that these generalized necklaces satisfy the 

conditions of Construction 1 with δ = 2, and hence give rise to a snake of length 56. 
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In the next, we restrict ourselves to the case δ = 2 (snake-in-the-box codes). Under this 

restriction, we will extensively discuss a class of generalized necklaces that is obtained by 

taking π = σ 2 and applying π to words of even length. If we call the old notion of necklace 1-

necklace, then this generalized necklace can be called 2-necklace. Two different words are 

said to be in the same 2-necklace, if one of them can be obtained from the other by applying π 

a finite number of times. Similarly, we may define the notion of full 2-necklaces as 2-

necklaces with length 2n that have period n. Of course, one can equally well define 2-

necklaces for words of odd length, but in that case the 2-necklace contains the same words as 

the corresponding 1-necklace. In case the word length is even, there are many full 2-necklaces 

that are not full 1-necklaces. We will show in Corollary 3.9 that the number of full 2-necklaces 

is twice the number of full 1-necklaces. 

So, instead of using the permutation σ, by which any word of length 2n 

w = (w0, w1, …, w2n−2, w2n−1) 
is converted to 

σ w = (w1, w2, …, w2n−1, w0), 

we use the permutationπ, by which the same word will be converted to 

π w = σ 2w = (w2, w3, …,w0, w1). 

3.3. A More General Construction 

The method of generating snakes by Construction 2 reduces to the one by 

Construction 1, if we apply the new notion of 2-necklace in the conditions of Construction 1. 

E.g. in [24, Section IV, Appendix II], the (11 + 1) different 1-necklaces of the snake with word 

length 8 constitute 24 different 2-necklaces. Similarly do the (33 +1) different 1-necklaces of 

the snake with word length 10, which give rise to 68 different 2-necklaces. In addition, the 

adapted Construction 1, which uses the 2-necklace notion, does work in the following 

construction. 

Example 3.7. 

The following eight words with length 6 represent eight different full 2-necklaces such 

that two consecutive 2-necklaces are uniquely at distance 1 with respect to 2, 

000011, 000001, 001001, 101001, 101101, 111101, 111100, 011100. 

Notice that with respect to 1-necklaces, these necklaces represent only six full 1-necklaces and 

the remaining two 1-necklaces are not full-periode. In the next Theorem 3.7 we shall see that 

by applying an adapted version of Construction 1 (we shall call it Construction 3) to these 2-

necklaces, we get an almost optimal snake of length 24 in Q6. 

000011   000001   001001   101001   101101   111101   111100   011100 

001100   000100   100100   100110   110110   110111   110011   110001 

110000   010000   010010   011010   011011   011111   001111   000111 
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We remark that this snake (or an equivalent one, containing the same words in different 

order) can not be obtained by Construction 1 or 2 as formulated in [24]. This example 

illustrates furthermore that our approach is simpler than the constructions in [24], since there is 

no restriction put on the weights of the 2-necklaces. 

We suggested already that one can even further generalize the notion of 2-necklace to 

q-necklace, where q is any positive integer. Indeed, we define a q-necklace N = [w]q as the 

equivalence class in Qn that contains w and is generated by the permutation π = σ q, q ≥ 1. In 

some cases, where no confusion occurs, e.g. when q = 1, we shall drop the subscript ‘q’ by 

simply writing N = [w]. 

The following theorem and its corollary suggest that q-necklaces with word length n 

are important only when gcd(n,q) > 1. For q = 2 and n is even, we show that Construction 2 

satisfies certain conditions. It is obvious that the word length n must be even. In fact, in the 

two examples presented in [24], the values of n are 8 and 10, respectively. 

The following theorem leads to a conclusion (Corollary 3.6) that for every positive 

integer n and for every divisor q of n, any 1-necklace splits into gcd(n, q) distinct q-necklaces. 

First we provide the necessary and sufficient conditions for two words w and σ lw belonging 

(or, not belonging) to the same q-necklace. 

Theorem 3.5 

Suppose w = (a0, a1, …, an−1) is a word of length n that represents a full 1-necklace. Let q 

and l be two positive integers with 0 < l < q <n, and let ρ ≔ gcd(n,q). If M ≔ [w]q  and N ≔ 

[σ lw]q  are two q-necklaces, then the following three statements are equivalent. 

a. for every integer k, σ kq(σ lw) ≠ w; 

b. for every integer k, there is an index i with ai−kq−l ≠ ai; 

c. for every integer k, kq  + l ≠ 0 mod n. 

If the above equivalent statements are true, then so is the following statement 

d.  ρ > 1 and l can not be multiples of ρ. 

Furthermore, M and N are two distinct q-necklaces, and if q = ρ, then all four statements 

are equivalent. In particular, if q = ρ = 2, then n must be even and l must be odd. 

Proof. Let σ lw = (b0, b1, …, bn−1) and σ kq(σ lw) = (c0, c1, …, cn−1). In terms of the components 

of σ kq(σ lw) and w, the statement (a) means that for every integer k, there exists an index i 

with 0 ≤ i ≤ n − 1 such that ci ≠ ai, i.e. 

ci = bi−kq = ai−kq−l ≠ ai, 

which is the statement (b). We have proven that (a) holds if and only if (b) holds. Recall that 

the period of a word in a full 1-necklace equals its length. Thus, w is of period n, and 

consequently, (a) is true if and only if for every integer k, kq + l is not multiple of n, i.e. (a) 
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holds if and only if (c) holds. 

Now notice that ρ is the generator of the cyclic additive subgroup of integers 

ρZ = {…, −2ρ, −ρ, 0, ρ, 2ρ, …} = {sn + tq | s, t ∈ Z}           (3.2) 

of Z. The RHS of the second equality in (3.2) states that equivalently, ρZ is the group 

generated by the two integers n and q. Thus, for any integral multiple of ρ, say rρ, there exist 

integers s and t such that rρ = sn + tq. If we write t = −k', then we may write this equality as 

k’q + rρ = sn.                                                          (3.3) 

If we apply the group homomorphism φ from Z onto Zq = φ(Z) based on congruence 

modulo q over the integers, the above subgroup is mapped onto the finite subgroup 

φ(ρ Z) = {0, ρ, 2ρ, …, (q/ρ − 1)ρ} 

of Zq, and the element at the LHS of (3.3) is mapped onto the element rρ ∈ φ(ρZ) ⊆ Zq with 

0 ≤ r ≤ q/ρ − 1. We conclude that any integral multiple of n, say sn, is mapped onto a multiple 

of ρ, say rρ, which is an element of φ(ρZ). 

Now, suppose l is a multiple of ρ, say l = rρ ∈ φ(ρZ) with 0 ≤ r ≤ q/ρ − 1. Then, there 

exist integers s and k’ such that k’q + rρ = k’q + l = sn. Consequently, (c) is false. It follows 

that if (c) is true, l can not be a multiple of ρ. This proves the second part of (d). Clearly, either 

ρ > 1 or ρ = 1. If l is not a multiple of ρ, then l ∉ ρZ and we have ρZ ≠ Z. Obviously, this is 

true if and only if ρ > 1. 

Remember that M is a full q-necklace containing words of the form σ kq(w), whereas N 

is a full q-necklace containing words of the form σ kq(σ lw). Therefore, if (a) is true, i.e. if for 

any integer k, σ kq(σ lw) ≠ w, then the two full q-necklaces must be distinct. Conversely, if l is 

not a multiple of ρ, then for every integer k, kρ + l is not a multiple of ρ. Furthermore, if q = ρ 

> 1, which is a proper divisor of n, we must have that for every integer k, kq + l is not a 

multiple of q. This implies for every integer k, that the integer kq + l is not a multiple of n. We 

have just shown that if q = ρ and (d) holds, then (c) holds, and hence in the case that q = ρ > 1, 

all four statements are equivalent. 

Finally, suppose ρ = q = 2. Obviously, n is a multiple of gcd(n,q) = ρ = 2. Thus n is 

even. Since we assumed that the four statements are true, l is not a multiple of ρ = q = 2.  We 

conclude that l must be odd.                                                                                                       □ 

The above theorem shows that for every positive n > 2, a full 1-necklace splits into ρ 

= gcd(n, q) distinct full q-necklaces. Briefly, one can say that the orbit of w under the action of 

σ splits into ρ smaller orbits under the actions of π = σ q.   

The second part of the theorem also suggests that if ρ = gcd(n,q) > 1, then for any 

multiple of q, say kq, we have σ kq(w) and σkρ(w) are in the same q-necklace. So, it would be 
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computationally simpler to apply ρ-necklaces, rather than to apply q-necklaces with q > ρ = 

gcd(q, n).  

Obviously, we can choose more than q possible values for l in Theorem 3.5. But, in 

case ρ > 1, the Theorem states that for every positive integer l ∈ Z, we can find another 

positive integer l’ = φ(l) < q such that σ kq(σlw) and σ kq(σl’w) are in the same q-necklace. For 

if q ≤ l, there would exist an integer l’ such that l = kq + l’ with 0 ≤ l’ < q. Consequently, the 

words σ lw and σ l’w would represent the same q-necklace. Thus, we can assume w.lo.g. that 0 

≤ l < q. The following corollary replaces this inequality by the stronger inequality l < ρ, i.e. the 

number of different q-necklaces is ρ.  

Corollary 3.6 

Let w be a word of length n, let 1 ≤ q < n and let M = [w] be a full 1-necklace of binary 

words. If ρ = gcd(n,q) and if the statements in Theorem 3.5 are true, then there are exactly 

ρ distinct full q-necklaces (or in particular, distinct ρ-necklaces)  

N0 = [w]q,     N1 = [σ w]q,     …,     Nρ−1 = [σ ρ−1w]q 

such that N0 ∪ N1 ∪ … ∪ Nρ−1 = M. In addition, these q-necklaces are of period p = n/ρ 

and they are at distance at least 2 from each other. 

This corollary states that there are exactly ρ distinct values l = 0, 1, …, ρ – 1. Therefore 

by relabelling or permuting bit-poisitions if neccessary, any q-necklace with q > ρ  can be 

replaced by a ρ-necklace. So in the sequel, we always assume that ρ = gcd(n, q) = q. 

Proof. We first claim that there will be at most ρ full q-necklaces. Let Nl = [σ lw]q be any 

q−necklace with ρ ≤ l. Thus, there are integers l” and r such that l = rρ + l”  and 0 ≤ l” < ρ. 

Now, by (3.3), there are also integers k’ and s such that k’q + rρ = sn. We have 

σ k’q (σ lw) = σ k’q (σ rρ + l”w) = σ l” (σ k’q+rρ w) = σ  l”(σ sn w) = σ  l”(w), 

since w is of length n. This proves that the full q-necklaces Nl and Nl” with 0 ≤ l” < ρ are 

identical. Therefore, all full q-necklaces can be represented by at most ρ  full q-necklaces Nl = 

[σ lw]q with 0 ≤ l < ρ. 

In order to show that there will be no less than ρ full q-necklaces, it is sufficient to 

prove that for every integer l with 0 < l < ρ, the two ρ-necklaces N0 = [w]q and Nl = [σ lw]q are 

distinct and at distance at least 2. 

By hypothesis, statement (a) of Theorem 3.5 is true. This implies, obviously, that w is neither 

the zeroword nor the all-one word. Therefore with respect to σ q, the words w and σ lw 

represent different q-necklaces. The last part of the corollary is deduced from the fact that a 

full word and its shifts can only be at distance at least 2, or otherwise at distance 0.                □ 
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Now for the case ρ > 1, we are ready to adapt Construction 1. Recall that Theorem 3.5 

and its corollary allow us to assume throughout the next pages and sections that q = ρ. 

Theorem 3.7 (Construction 3) 

Theorem 3.1 is still valid for q-necklaces, q ≥ 1, i.e. it is still true if the word ‘necklace’ is 

replaced by ‘q-necklace’. In other words, suppose t ≥ δ, and let N0, N1, …, Nt−1 be distinct, 

full-period q-necklaces of binary words of length pq such that for every i with 0 ≤ i < t, all 

indices taken modulo t, the following conditions hold: 

(i) Ni and Ni+r are uniquely at distance r with respect to δ, for 0 ≤ r < δ; 

(ii) Ni and Ni+r are at distance ≥ δ, for δ ≤ r ≤ t − δ. 

It follows that there exist words wi, wi+1 ∈ Ni with d(wi,wi+1) = 1, 0 ≤ i < t, and an integer l, 

0 ≤ l < n, with d(wt−1, σ lw0) = 1. Furthermore, there is an integer m such that the list C 

obtained by concatenation of the rows 

w0,                  w1,                   w2,              …, wt−1 

σ lqw0,               σ lw1,               σ lw2,           …, σ lwt−1 

#                            #                             #                            #           

σ(m−1)lw0,          σ(m−1)lw1,          σ(m−1)lw2,          …, σ(m−1)lwt−1 
is a spread-δ circuit with mt words of length n = pq. Here, the integer m is defined as 

m ≔ 
gcd( , )

n
l n

 .                                                   (3.4) 

Proof. The proof is similar to the proof given in [24, Theorem 1] for n = pq.                            □ 

Now we show that method in Construction 2 does generate a snake. Recall that this 

method starts from t distinct, full-period 1-necklaces. More precisely, we show that applying 

Construction 2 with initially 2(t + 1) words in t + 2 distinct, full-period 1-necklaces (including 

[v0] and [v1]) is equivalent with applying Construction 3. In particular, each of the t 1-

necklaces different from [v0] and from [v1] has to be split into two distinct, full-period 2-

necklaces of equal size, and such that the roles of the three integers l, t and m (expressed by 

(3.4)) in the Construction 3 above, are played by the integers l + l’, 2(t + 1) and m’ (expressed 

by (3.7) below), respectively. 

Theorem 3.8  

Let t ≥ 2, and assume that 
M0 = [w0], M1 = [w1], …, Mt−1 = [wt−1]                                 (3.5) 

are distinct, full-period 1-necklaces with word length n = 2p that satisfy all the conditions 

in Construction 2. Then the weight-(n − 1) and the weight-1 words v0 and v1, respectively, 
describe in Construction 2 do exist. Moreover, both integers l and l’ are odd and the list of 

2(t + 1) full 2-necklaces  
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N0 = [u0]2, N1 = [u1]2, …, Nt−1 =  [ut−1]2, Nt = [ut]2,                           (3.6) 

Nt+1 = [ut+1]2, Nt+3 = [ut+2]2, …, N2t =  [u2t]2, N2t+1 = [u2t+1]2 

satisfy the conditions for Construction 3 such that the integers l, t and m, as described in 

Construction 3, are replaced by the integers l + l’, 2(t + 1) and 

m’ ≔ 

2
gcd( , )l l'

p

p+
,                                               (3.7) 

respectively. 

We remark that for every t satisfying 0 ≤ i ≤ t − 1, the same binary word wi = ui represents two 

different kinds of necklaces, a 1-necklace Mi = [wi]  and a 2-necklace Ni = [wi]2. 

Proof. In the seheme of Theorem 3.3 (Construction 2), the first t full 1-necklaces M0 = [w0], 

M1 = [w1], …, Mt−1 =  [wt−1] determine a list of t distinct, full-period 2-necklaces N0 = [w0]2, N1 

= [w1]2, …, Nt−1 =  [wt−1]2. If ut+1 ≔ σ l wt−1, ut+2 ≔ σ l wt−2, …, u2t ≔ σ l w0, then the following t 

1-necklaces Mt+1 = [ut+1], Mt+2 = [ut+2], …, M2t =  [u2t] also determine a list of t distinct, full-

period 2-necklaces Nt+1 = [ut+1]2, Nt+2 = [ut+2]2, …, N2t = [u2t]2.  

From the last part of Theorem 3.5, k is odd if and only if the two 2-necklaces [σ k wi]2  

and [wi]2 are distinct. Therefore, for an arbitrary odd integer k < n/2 (= p, the period of a full-

period 2-necklace), each of the t 2-necklaces Ni = [wi]2, 0 ≤ i ≤ t − 1, cannot be the same with 

any of the t 2-necklaces N2t−i+1 = [σ k wi]2, 0 ≤ i ≤ t − 1.  

Since ut−1 is a weight-(n − 2) word, there is a weight-(n − 1) 2-necklace Nt and a word v0 

∈ Nt such that d(Nt, Nt+1) = d(ut−1, v0) = 1. Since v0 is a weight-(n − 1) word, ut−1 is not the only 

weight-(n − 2) word in 1-necklace Mt−1 = [ut−1] that is at distance 1 with v0, i.e. with respect to 

1-necklaces, d(Mt−1, [v0]) = 1 not uniquely. Therefore, there exists nonzero integer l < n/2 such 

that d(σ lut−1, v0) = 1.  

However, with respect to 2-necklaces, d(Nt−1, Nt) = 1 uniquely (with respect to 2). This 

fact together with the resulting equality d(ut−1, v0) = d(σ 0 ut−1, v0) = 1 = d(σ lut−1, v0) imply that 

the two words ut−1 = σ 0 ut−1 and σ lut−1 belong to different 2-necklaces. We conclude that l is 

odd. Similarly, since u0 is a weight-2 word, there exists an odd integer l’ < n/2, a weight-1 2-

necklace N2t+1 and a word v1 ∈ N2t+1 such that d(N0, N2t+1) = d(v1, σl u0) = 1 = d(σ l+l’u0, v1). So, 

if u2t+1 ∈ N2t+1 such that v1 = σ l u2t+1, we can apply Construction 3 to generate a snake of 

length-n words started by the 2(t + 1) words  

u0, u1, …, ut−2, ut−1, ut,                                                      (3.8) 

ut+1 = σ l ut−1,  ut+2 = σ l ut−2,  …,  u2t−1 = σ l u1,   u2t = σ l u0,  σ l u2t+1, 

representing the 2(t + 1) full-period 2-necklaces of (3.6) obtained from the t 1-necklaces Mi. 

Next, by using these 2(t + 1) words, we show that these 2(t + 1) words play the role of the first 
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row of t words in the scheme stated in Theorem 3.7 (Construction 3).   

Observe that this row of 2(t + 1) consists of two different groups of t + 1 consecutive 

words. The first group consists of t + 1 words belonging to the 2-necklaces in the first row of 

(3.6) and this group is followed by the second group consisting of t + 1 consecutive words 

belonging to the 2-necklaces in the second row of (3.6). By applying shifting operator σ l+l’, we 

obtain the following second row of the scheme  

σ l+l’u0, σ l+l’u1, …, σ l+l’ut−1, σ l+l’ut,  

σ2l+l’ut−1, σ2l+l’ut−2,  …,  σ2l+l’u0,  σ2l+l’u2t+1. 

If we apply the same shifting operator σ l+l’ to all these words, we obtain another set of 

2(t + 1) words. If we continue this procedure and choose positive odd integers l and l’, then we 

finally obtain a set of 2(t + 1) words 

σ (m’−1)(l+l’) u0, σ (m’−1)(l+l’)u1, …, σ (m’−1)(l+l’)ut−1, σ (m’ −1)(l+l’)ut,  

σ(m’−1)(l+l’)+lut−1, σ(m’−1)(l+l’)+l ut−2,  …,  σ(m’−1)(l+l’)+l u0,  σ(m’−1)(l+l’)+l u2t+1. 

where (cf. Construction 3) 0 ≤ l, l’ < n/2 and 

m’ ≔ 
gcd( , )

n
l l' n+

. 

From the fact that n = 2p and l + l’ is even, (3.7) follows. 

Since l and l’ are odd, l + l’ is even and the positions of 2(t + 1) consecutive 2-necklaces 

in (3.6) are not affected by the shifting operator σ 
l+l’(which only permutes the n/2 words in 

each of those 2(t + 1) 2-necklaces). In particular, the last word obtained by applying the 

shifting operator σ 
l+l’m’ − 1 times is the weight-1 word σ(m’−1)(l+l’)+l u2t+1. Since we assume 

Theorem 3.7 (Construction 3) is true, the next word of the weight-1 σ(m’−1)(l+l’)+l u2t+1 must be 

the same as the weight-2 word belonging to the first group of t + 1 words (3.8), i.e. σ m’ (l+l’) u0 

= u0. 

  We have just proved that from the given list of t distinct, full-period 1-necklaces stated 

in Construction 2, we obtain the list (3.6) of 2(t + 1) distinct, full-period 2-necklaces that 

satisfy the conditions of Construction 3.                                                                                     □ 

Notice that in the case q = 2, as is the case in Theorem 3.8 above, we actually have m’ = 

n/2, which is the period of full-period 2-necklaces Ni, 0 ≤ i ≤ 2t + 1, discussed in the proof of 

the theorem. Next, we state a more specific result under the assumption q = 2 = ρ. 

Corollary 3.9 

If in Construction 2 the word length n is even, then the integers l and l’ are odd and the 

construction produces a snake of length 2m(t + 1) 
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Example 3.8 

The snake obtained by Paterson and Tuliani in [24] is currently known as the longest, 

and is very likely the maximal, snake in Q8. The first eleven (t = 11) words in the left column 

correspond to eleven full 1-necklaces. The code is generated by applying Construction 2. 

Since the integers l = ±1 and l' = ±3 are odd, Corollary 3.9 guarantees that there are 2(t +1) = 

24 distinct 2-necklaces. Because any word of a 1-necklace is a word of a 2-necklace, the 

previous eleven 1-necklaces provide us with almost half of the total number of the possible 2-

necklaces. It can be shown that the weight of the 12-th necklace, containing v0, must be greater 

than the weight of each these eleven 2-necklaces. So, there is only one choice left for the word 

v0. 

The remaining 2-necklaces, which are represented by the words in the second column 

below, are also 1-necklaces satisfying the conditions of Construction 2, but in reversed order. 

Moreover, the weight of the 24-th 2-necklace containing v1 must be less than the weight of 

each of these last eleven 2-necklaces. Applying Construction 3, we obtain the same snake as in 

[24]. 

  1. 0 0 0 0 0 0 1 1;              13. 0 1 1 1 1 0 1 1; 
  2. 0 0 0 0 1 0 1 1;              14. 0 1 1 1 1 0 0 1; 
  3. 0 0 0 1 1 0 1 1;              15. 0 0 1 1 1 0 0 1; 
  4. 0 0 0 1 1 1 1 1;              16. 0 0 1 0 1 0 0 1; 
  5. 0 0 0 1 1 1 0 1;              17. 1 0 1 0 1 0 0 1; 
  6. 0 0 0 1 0 1 0 1;              18. 1 0 1 0 1 0 0 0; 
  7. 0 0 1 1 0 1 0 1;              19. 1 1 1 0 1 0 0 0; 
  8. 0 0 1 0 0 1 0 1;              20. 1 1 1 1 1 0 0 0; 
  9. 0 0 1 0 0 1 1 1;              21. 1 1 0 1 1 0 0 0; 
10. 0 0 1 0 1 1 1 1;              22. 0 1 0 1 1 0 0 0; 
11. 0 1 1 0 1 1 1 1;              23. 0 0 0 1 1 0 0 0; 
12. 0 1 1 1 1 1 1 1;              24. 0 0 0 0 1 0 0 0. 

With respect to Construction 2, the two left shifts are those over l = 3 and over l’ = 7 

positions whereas with respect to the Construction 3, the left shift is the one over l + l’ mod n 

= 10 mod 8 = 2 positions. The resulting code is a snake of length 96. The code can also be 

generated using the following transition sequence 

4, 3, 5, 6, 4, 2, 3, 6, 4, 1, 3, 5, 6, 1, 3, 0, 7, 1, 3, 2, 0, 1, 3, 5, 

2, 1, 3, 4, 2, 0, 1, 4, 2, 7, 1, 3, 4, 7, 1, 6, 5, 7, 1 ,0, 6, 7, 1, 3, 

0, 7, 1, 2, 0, 6, 7, 2, 0, 5, 7, 1, 2, 5, 7, 4, 3, 5, 7, 6, 4, 5, 7, 1, 

6, 5, 7, 0, 6, 4, 5, 0, 6, 3, 5, 7, 0, 3, 5, 2, 1, 3, 5, 4, 2, 3, 5, 7. 

When applying the Gray map  

00 ↦ 0,    10  ↦ 1,    11  ↦ 2,    01 ↦ 3 

to the above binary code, it is obvious that the resulting quarternary code is a 'single-track 2-

circuit', i.e. the four columns (or ‘tracks’) can be obtained from each other by shifting (cf. 

[12,13]). 
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  1. 0 0 0 2;       25. 0 0 2 0;       49. 0 2 0 0;       73. 2 0 0 0; 
  2. 0 0 1 2;       26. 0 1 2 0;       50. 1 2 0 0;       74. 2 0 0 1; 
  3. 0 3 1 2;       27. 3 1 2 0;       51. 1 2 0 3;       75. 2 0 3 1; 
  4. 0 3 2 2;       28. 3 2 2 0;       52. 2 2 0 3;       76. 2 0 3 2; 
  5. 0 3 2 3;       29. 3 2 3 0;       53. 2 3 0 3;       77. 3 0 3 2; 
  6. 0 3 3 3;       30. 3 3 3 0;       54. 3 3 0 3;       78. 3 0 3 3; 
  7. 0 2 3 3;       31. 2 3 3 0;       55. 3 3 0 2;       79. 3 0 2 3; 
  8. 0 1 3 3;       32. 1 3 3 0;       56. 3 3 0 1;       80. 3 0 1 3; 
  9. 0 1 3 2;       33. 1 3 2 0;       57. 3 2 0 1;       81. 2 0 1 3; 
10. 0 1 2 2;       34. 1 2 2 0;       58. 2 2 0 1;       82. 2 0 1 2; 
11. 3 1 2 2;       35. 1 2 2 3;       59. 2 2 3 1;       83. 2 3 1 2; 
12. 3 2 2 2;       36. 2 2 2 3;       60. 2 2 3 2;       84. 2 3 2 2; 
13. 3 2 1 2;       37. 2 1 2 3;       61. 1 2 3 2;       85. 2 3 2 1; 
14. 3 2 1 3;       38. 2 1 3 3;       62. 1 3 3 2;       86. 3 3 2 1; 
15. 0 2 1 3;       39. 2 1 3 0;       63. 1 3 0 2;       87. 3 0 2 1; 
16. 0 1 1 3;       40. 1 1 3 0;       64. 1 3 0 1;       88. 3 0 1 1; 
17. 1 1 1 3;       41. 1 1 3 1;       65. 1 3 1 1;       89. 3 1 1 1; 
18. 1 1 1 0;       42. 1 1 0 1;       66. 1 0 1 1;       90. 0 1 1 1; 
19. 2 1 1 0;       43. 1 1 0 2;       67. 1 0 2 1;       91. 0 2 1 1; 
20. 2 2 1 0;       44. 2 1 0 2;       68. 1 0 2 2;       92. 0 2 2 1; 
21. 2 3 1 0;       45. 3 1 0 2;       69. 1 0 2 3;       93. 0 2 3 1; 
22. 3 3 1 0;       46. 3 1 0 3;       70. 1 0 3 3;       94. 0 3 3 1; 
23. 0 3 1 0;       47. 3 1 0 0;       71. 1 0 0 3;       95. 0 0 3 1; 

                       24. 0 0 1 0;       48. 0 1 0 0;       72. 1 0 0 0;       96. 0 0 0 1. 
 
Example 3.9 

Similarly, as in Example 3.8, the first thirty three words in the following sequence of 

length-10 words represent thirty-three full 1-necklaces given as an example in [24]. The thirty-

three 1-necklaces satisfy the conditions of Construction 2. The 34-th and the 68-th words are 

the ‘heaviest’ weight-9 word v0 and the ‘lightest’ weight-1 word v1, respectively, mentioned in 

the proof of Theorem 3.8. 

  1. 0 0 0 0 0 0 0 0 1 1;                     35. 1 1 1 1 0 0 1 1 1 1;  
  2. 0 0 0 0 0 0 1 0 1 1;                     36. 1 1 1 1 0 0 1 0 1 1;  
  3. 0 0 0 0 0 0 1 1 1 1;                     37. 1 1 1 1 0 0 1 0 0 1;  
  4. 0 0 0 0 1 0 1 1 1 1;                     38. 0 1 1 1 0 0 1 0 0 1;  
  5. 0 0 0 0 1 0 0 1 1 1;                     39. 0 1 1 1 0 0 1 0 0 0;  
  6. 0 0 0 0 1 0 0 1 0 1;                     40. 0 1 0 1 0 0 1 0 0 0;  
  7. 0 0 0 0 1 1 0 1 0 1;                     41. 1 1 0 1 0 0 1 0 0 0;  
  8. 0 0 1 0 1 1 0 1 0 1;                     42. 1 1 0 1 0 0 1 0 1 0;  
  9. 0 0 1 1 1 1 0 1 0 1;                     43. 1 1 0 1 0 0 1 1 1 0;  
10. 0 1 1 1 1 1 0 1 0 1;                     44. 1 1 0 1 0 1 1 1 1 0;  
11. 0 1 1 1 1 1 0 1 0 0;                     45. 1 1 0 0 0 1 1 1 1 0;  
12. 0 1 0 1 1 1 0 1 0 0;                     46. 1 1 0 0 0 1 0 1 1 0;  
13. 0 1 0 0 1 1 0 1 0 0;                     47. 1 1 0 0 1 1 0 1 1 0;  
14. 0 1 0 0 0 1 0 1 0 0;                     48. 1 1 0 0 1 1 0 0 1 0;  
15. 0 1 0 0 0 1 1 1 0 0;                     49. 1 1 0 0 1 1 1 0 1 0;  
16. 0 1 0 1 0 1 1 1 0 0;                     50. 1 1 1 0 1 1 1 0 1 0;  
17. 0 1 1 1 0 1 1 1 0 0;                     51. 1 1 1 0 1 1 1 0 0 0;  
18. 0 1 1 1 0 1 1 1 0 1;                     52. 1 0 1 0 1 1 1 0 0 0;  
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19. 0 1 1 0 0 1 1 1 0 1;                     53. 1 0 0 0 1 1 1 0 0 0;  
20. 0 1 1 0 0 1 1 0 0 1;                     54. 1 0 0 0 1 0 1 0 0 0;  
21. 0 1 1 0 0 1 1 0 1 1;                     55. 1 0 0 1 1 0 1 0 0 0;  
22. 0 1 1 0 0 0 1 0 1 1;                     56. 1 0 1 1 1 0 1 0 0 0;  
23. 0 1 1 0 0 0 1 1 1 1;                     57. 1 1 1 1 1 0 1 0 0 0;  
24. 0 1 1 0 1 0 1 1 1 1;                     58. 1 1 1 1 1 0 1 0 1 0;  
25. 0 1 1 0 1 0 0 1 1 1;                     59. 0 1 1 1 1 0 1 0 1 0;  
26. 0 1 1 0 1 0 0 1 0 1;                     60. 0 1 0 1 1 0 1 0 1 0;  
27. 0 1 1 0 1 0 0 1 0 0;                     61. 0 0 0 1 1 0 1 0 1 0;  
28. 0 0 1 0 1 0 0 1 0 0;                     62. 0 0 0 1 0 0 1 0 1 0;  
29. 0 0 1 1 1 0 0 1 0 0;                     63. 0 0 0 1 0 0 1 1 1 0;  
30. 1 0 1 1 1 0 0 1 0 0;                     64. 0 0 0 1 0 1 1 1 1 0;  
31. 1 1 1 1 1 0 0 1 0 0;                     65. 0 0 0 0 0 1 1 1 1 0;  
32. 1 1 1 1 1 0 0 1 0 1;                     66. 0 0 0 0 0 1 0 1 1 0;  
33. 1 1 1 1 1 0 0 1 1 1;                     67. 0 0 0 0 0 0 0 1 1 0;  
34. 1 1 1 1 1 0 1 1 1 1;                     68. 0 0 0 0 0 0 0 1 0 0. 

With respect to Construction 2, both the two left shifts are those over l = 1 = l’ position. So, 

with respect to the Construction 3, the left shift is the one over l + l’ mod 10 = 2  positions.  

3.4. The Structures of 2-Necklaces in Q2p, p > 2 prime. 

If p is a prime number, then the notion of q-necklace in Qp is meaningless, e.g. if an a-

necklace and a b-necklace contain the same word, then the two necklaces coincide. So, we simply 

speak of ‘a necklace’ for any q-necklace in Qp with 1 < q < p. Moreover, every necklace is full, 

i.e. its period is p. 

For every integer i satisfying 1 ≤ i ≤ p − 1, the number of distinct weight-i words is  

p
i

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = ( 1)...( 1)

( 1)...(2)(1)

p p p i

i i

− − +

−
. 

Since every necklace in Qp is of full period p,  

Np = 
1

1

p

i

p
i

−

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ /p = (2p − 2)/p                                                   (3.9)  

is the number of different necklaces in Qp. 

Example 3.10 

For p = 5, we have N5 = (5 + 10 + 10 + 5)/5 = 6 distinct 2-necklaces. As representatives for 

these 2-necklaces, we take  

p = 00001,     q = 10001,     r = 10101,     s = 10100,     t = 11100,     u = 11110. 

Let L = 2p. The following notation assigns every (period-p) necklace U in Qp to a particular 

(indexed) word  

u0 = u0u1u2…up−1 ∈ U.  

We introduce the following additional notation imposed on all words σ i(u0), 1 ≤ i ≤ p − 1, of U  

ui = ui ui+1 … up−1 u0 u1 … ui−1 = σ i(u0) ∈ U. 

Moreover, if we write 0n and 1n for the all-0 and all-1 n-tuples in Qn and if 

v0 = v0v1v2 … vp−1 
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is a fixed word in Qp, then we define length-2p words uivj in Q2p as follows 

uivj = ui vj ui+1 vj+1 … ui−1 vj−1,                                              (3.10)  

where ui ≠ 0p, 1p or vj ≠ 0p, 1p. Obviously, with respect to the notion of 2-necklace, the words 

uivj are always of full period-p.  

By using all pairs of two words ui
 and vj with ui ≠ 0p, 1p or vj ≠ 0p, 1p to obtain distinct, 

period-p length-2p words ui vj, we are practically able to list all distinct 2-necklaces in Q2p. In 

fact, for every pair of nonzero words u0 and v0 in Qp, and for every (period-p) 2-necklace N in 

Q2p, we observe that   

uivj ∈ N, 
if and only if  

u0vj−i mod p  ∈ N, 
or if and only if  

ui−j mod pv0 ∈ N. 

Therefore, by fixing either the index i of ui, e.g. by fixing i = 0, or the index j of vj, shifting the 

other index will generate additional words of distinct, period-p 2-necklaces. 

Example 3.11 

In case L = 10 = 2p, there are six distinct necklaces in Q5 (cf. Example 3.10). Two of the 

necklaces are represented by p0 = 00001 and q0 = 10001. The following is a list of some 

words from distinct, period-5 2-necklaces in Q10 that are obtained by shifting the indices of the 

two words p0 and q0. 

p0p0 = 0000000011;                    p0p1 = 0000000110; 
p2q1 = 0000100101;                    p1q0 = 0100001001; 
p0q2 = 0000010110;                    q1p0 = 0000001011; 
p0q1 = 0000000111;                    p1q2 = 0000011100. 

This list shows that p0q1 ≠ p1q2, but [p0q1]2 = [p1q2]2 and p2q1 ≠ p1q0 but [p2q1]2 = [p1q0]2. It 

also shows that although p0q2 and q1p0 are in the same 1-necklace of Q10, both words are from 

different 2-necklaces. The same situation also happens between the two length-2p words p0p0 

and p0p1.  

In general, unless ui = vj for some i and j, for every pair of nonzero words ui and vj in Qp 

with 1 ≤ i, j < p, the 2-necklace [uivj]2 in Q2p cannot contain the word vjui, i.e. the 2-necklace 

[ui vj]2 is different from the 2-necklace [vj ui]2, despite the fact that the two length-2p words 

ui vj and vj ui may belong to the same 1-necklace. 

Since every 1-necklace in Qp as well as every 2-necklace in Q2p is of period p, and since 

there are Np distinct 1-necklaces in Qp, we conclude that a pair of two nonzero words u0, v0 

taken from distinct necklaces in Qp determine pNp(Np − 1)/2 distinct period-p 2-necklaces in 

Q2p and these necklaces contain length-2p words of the form uivj, 1 ≤ i, j < p. Similarly, the 
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same pair of words determine pNp(Np − 1)/2 distinct period-p 2-necklaces containing length-2p 

words of the form vj ui, 1 ≤ i, j < p.  

Now if p > 2, then p is odd and this implies that the number of terms in the sum for Np 

in (3.9) is even. In fact, half of the number of terms are expressing the number of 2-necklaces 

containing all words of the form uivj whereas the other half of the terms are expressing the 

number of 2-necklaces containing all words of the form uc
i vc

j, where ui and vj are two words 

from two distinct necklaces in Qp and uc
 = 1p + u. We conclude that there are pNp(Np − 1) 

distinct, period-p 2-necklaces in Q2p that contain words of the form uivj, where ui and vj are 

from two distinct necklaces in Qp. 

Next, from all words of the form u0uj (or uiu0), 1 ≤ i < p, we obtain pNp more distinct 

period-p 2-necklaces. Finally, all Np necklaces containing u0 ≠ 0p, 1p, can be used to produce 

4Np more distinct, period-p 2-necklaces containing the words of the form 0pui, 1pui, ui0p or 

ui1p. Totally, there are 

pNp(Np − 1) + pNp  + 4Np = Np(p(Np − 1) 
 + p + 4). 

distinct 2-necklaces of period-p.  

On the other hand, among the 22p words in Q2p, there are exactly 4 words not contained 

in the period-p 2-necklaces already obtained above. These are the two 02p, 12p and the two 

period-2, weight-p words 0101…01 and 1010…10. Therefore, the number of distinct 2-

necklaces equals (22p − 4)/p.  

We combine the above two results in the following theorem. 

Theorem 3.10 

If p > 2 is prime, then there are 

Np(p(Np − 1) 
 + p + 4) = (22p − 4)/p                            (3.11) 

distinct, period-p 2-necklaces in Q2p, where Np is expressed by (3.9). 

Example 3.12 

Let L = 6 = 2p. Here, u0 = 001 and v0 = 011 represent all the N3 = 2 distinct 1-necklaces 

in Q3.  

These two distinct words u0 and v0 in Q3 \ {03, 13} determine  

3N3(N3 − 1) = 6 

period-3 2-necklaces in Q6 that contain the following words 

u0v0 = 000111,    u0v1 = 010110,    u0v2 = 010011, 

v0u0 = 001011,    v1u0 = 101001,    v2u0 = 100011.  

We get 3N3 = 6 more distinct 2-necklaces represented by 

u0u0 = 000011, u0u1 = 000110, u0u2 = 010010 
and 

v0v0 = 001111, v0v1 = 011110, v0v2 = 011011. 
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Finally, we get 4N3 = 8 more distinct 2-necklaces from  

03u0 = 000001,           13u0 = 101011, 

03v0 = 000101,           13v0 = 101111, 

u003 = 000010,           u013 = 010111, 

v003 = 001010,           v013 = 011111. 

Totally, there are 3⋅20 = 60 words in the 20 2-necklaces above. The left 26 − 60 = 4 words are 

not contained by any of these 2-necklaces. These four words are 06, 16, 010101 and 101010.  

The even number of terms in (3.9), as mentioned before in the proof of Theorem 3.10, 

gives a clue why in [24], the number of (full) initial 2-necklaces used when constructing long 

snakes by applying the necklace approach, is always even. In fact, these initial 2-necklaces 

always split into two groups of necklaces of the same size. These two groups contain 

necklaces from two disjoint families N1 and N2, respectively, that contain (22p−1 − 2)/p 

period-p 2-necklaces such that any 2-necklace N1 ∈ N1 containing weight-w words is the 

complement of a 2-necklace N2 ∈ N2 containing weight-(2p − w) words, 0 < w < 2p. 



 

 

4. Snakes Based on a Linear Code 
 

In this chapter, we shall discuss a general method to construct circuit codes which was 

used already by van Zanten and Lukito to construct <m,n>-codes (cf. [39]) and snake-in-the-

box codes (cf. [19, 41]). Before coming to the details of our construction in Section 4.2, we 

first present a global description and the basic ideas underlying the method in Section 4.1. 

Section 4.3 describes the solution of the index problem for snakes constructed by our method. 

4.1 Outlines of the Construction 

Our construction starts from a minimum-weight-d basis of some linear [n,k,d]-code C, 

where n is the codeword length, k the dimension and d the minimum weight of C. Many linear 

codes have minimum-weight basis. It has been proved in [31] that for any given triple [n,k,d] 

for which it is known that there exists a linear code with these parameters, there is always a 

(possible non-equivalent) linear code with the same parameters which has a basis of vectors of 

weight d. 

Let 
B = (b1, b2, …, bk)                                                      (4.1) 

be a minimum-weight-d basis of C. For every basis vector bi ∈ B, we define its support 

sup bi = {i1, i2, …, id}                                                   (4.2) 

where the integers i1, i2, …, id  are all from the set [0, n – 1], and indicate the positions of the 

1-bits of bj. The code C is a subspace of the vector space V = GF(2)n and we shall label the 

coordinates of the vectors of V, in particular those of C, by 0, 1, 2, …, n − 1, from left to right. 

Now let 

kS  = 1, 2, 1, 3, 1, 2, 1,…, 1, 2, 1, k, 1, 2, 1, 3, 1, 2, 1,…, 1, 2, 1, k.               (4.3) 

be the transition sequence of the standard Gray code G(k) of word length k. In order to 

manipulate this sequence easier, we also write occasionally 

kS  = t1, t2, t3, … . 2kt .                                                (4.4) 

By applying the transition sequence kS  to the coordinate vectors of C with respect to basis B 

of (4.1) and starting with the zerovector, we obtain the following sequence of vectors 

0, b1, b1 + b2, …, bk−1, bk−1 + bk, bk−1 + bk + b1, bk−1 + bk + b1 + b2, …, bk.          (4.5) 

Because G(k) is a complete Gray code, all 2k vectors of C occur in (4.5) and because all 

bi have weight d, each vector in (4.5) differs from its predecessor in precisely d bits, or stated 

equivalently, each codeword in the list is at Hamming distance d from the previous one. This 

property holds in cyclic sense, since G(k) is cyclic. Here, the vector bk is the predecessor of 0 

(cf. also [39]). The list (4.5) constitutes the skeleton of the snake, or more generally of the 

circuit code, to be constructed. 
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To obtain the whole snake (circuit code), we have to change d bits any time when going 

from one word in the list (4.5) to the next one, in such a way that the separation property of a 

snake, i.e. no chords, is satisfied. To this end, we have to prescribe in which order the d bits in 

the RHS of (4.2) have to be changed in case that two successive codewords differ by bi, 1 ≤ i ≤ 

k. One way to do this is to define for each basis vector bi with support (4.2), an ordered set 

Bi = (i1, i2, …, id),                  1 ≤ i ≤ k                       (4.6) 

indicating that first bit i1 is to be changed, next bit i2, etc. 

In [10] linear [n, k, 2]-codes were considered with a minimum-weight-2 basis satisfying 

some additional properties which give rise to special distance preserving (<m, n>-) codes. In 

this thesis, we apply the method for d = 4. For this case, we shall describe our method in more 

detail. 

Let C be some [n, k, 4]-code with basis B = (b1, b2, …, bk) as in (4.1), such that ║bi║ = 

4, for 1 ≤ i ≤ k. We assume that these basis vectors are ordered with respect to some, still 

unspecified, criterion giving rise to the ordered basis (4.1). Using the notation (4.4) for the 

transition sequence kS , we can define an ordered list for the codewords of C in the following 

way. 

Starting from the zeroword c0 = 0, we define the codewords of C recursively (cf. (4.5)) 

c0 ≔ 0, ci+1 = ci + 
it

b ,               0 ≤ i < 2k − 1.              (4.7) 

Because of the properties of the Gray code and because of the constant weight 4 of all vectors 

bi, the lists (4.5) and (4.7) are complete lists of the 2k words of C, such that each codeword is at 

Hamming distance 4 from the previous one. Moreover, this last property holds cyclically. In 

order to arrive at a list of 4.2k binary words satisfying the condition that each word differs 

from the previous one in precisely one bit, we transform ci into ci+1 in (4.7) by changing the 

four bits of 
it

b = ci+ ci+1, one after another. This gives rise to intermediate words 1
iw , 2

iw  and 

3
iw , 0 ≤ i < 2k − 1. We call Bi in (4.6) an ordered block. The list of blocks 

B1, B2, …, Bk 

corresponding to the sequence b1, b2, …, bk will be denoted by B. The order of the blocks is 

called the external order of the blocks. The sequence 

kS (B) = B1 B2 B1 B3 … B1 B2 B1 Bk B1 B2 B1 B3 … B1 B2 B1 Bk                              (4.8) 

where the blocks are arranged according to (4.3), can now be interpreted as a transition 

sequence of length 4⋅2n, for binary words of length n, when the symbols Bi are replaced by the 

ordered sets (i1, i2, i3, i4), 1 ≤ i ≤ k. 

The order in the set of four integers is called the internal order of the block Bi. 1 ≤ i ≤ k. 

In this thesis, this internal order of the blocks will be determined by a property which we call 

the fixed-position property and which will be defined in the next section. Applying (4.8), 
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starting from the zeroword 0, provides us with the following list of words of length n 

c0 ≔ 0, 1
0w , 2

0w , 3
0w , c1, 1

1w , 2
1w , 3

1w , …, 2 1k −c , 1
2 1k −

w , 2
2 1k −

w , 3
2 1k −

w .              (4.9) 

 

4.2 Necessary and Sufficient Conditions 

In this section we shall prove that under certain conditions concerning the basis B, the 

outer order and the internal order of the blocks Bi ≔ {i1, i2, i3, i4},  1 ≤ i ≤ k, the 2k+2 words of 

(4.9) constitute a snake. Not only the words in (4.9) must be different, but they also have to be 

at distance at least 2 (in cyclic sense) from each other when they are not neighbors.  

Definition 4.1 (cf. [34, 35]) 

A block list B = (B1, B2, …, Bk) is said satisfying the fixed-position property if the internal 

order of the blocks of B is such that any integer of the set {0, 1, …, n − 1} has a fixed 

position in each block of B in which it occurs. In this case, the integers 0, 1, …, n − 1 can 

be partitioned into four sets I1, I2, I3 and I4 such that an integer i ∈ Ia only occurs in 

position a in the blocks B1, B2, …, Bk, for each a ∈ {1, 2, 3, 4}. 

Starting from Chapter 4 of this thesis, we label the positions in the binary words of length n 

from left to right by 0, 1, 2, …, n − 1, (cf. also the remarks about labeling positions in binary 

words at the end of Section 1.2). 

Lemma 4.1 

Let C be an [n, k, 4]-code with an ordered minimum-weight basis B = (b1, b2, …, bk) such 

that the corresponding list of blocks B = (B1, B2, …, Bk) satisfies the fixed-position 

property. Let c ∈ C be some codeword with W = sup c. Then the parity of |Ia ∩ W| is the 

same for all a ∈ {1, 2, 3, 4}. 

Proof. The proof follows immediately from the expression of c w.r.t. the basis B, i.e. c = 

1

k
l l

l
c

=
∑ b , cl ∈ {0, 1}, and from the fixed-position property.                                                        □ 

In [11, 35] we discussed a number of examples of [n, k, 4]-codes which have bases 

satisfying this fixed-position property. In particular, the Reed-Muller codes R(1, 3) and R(2, 4) 

are such codes (cf. Section 5.4 and 5.5 of this thesis). Whether the sequence (4.8), which 

satisfies the fixed-position property, really defines a snake will actually depend on the specific 

choice of the basis vectors and of the external order of the blocks in B. We shall derive some 

conditions which are necessary and/or sufficient for the external order of the blocks to 

generate a snake. 

In the remaining part of this Chapter we shall consider subsequences of (4.8) of type 
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T = Bi, T’, Bj,                    1 ≤ i, j ≤ k                   (4.10) 

More in particular, we shall consider the contents c(T) of such subsequences (cf. Def. 2.1). 

Since subsequence (4.10) consists of complete blocks, its content is the support of some 

codeword c ∈ C. We therefore define 

W ≔ sup c = c(T). 

If i = 1, j > 1 or i > 1, j = 1, c is the sum of an even number of basis vectors bl ∈ B, whereas in 

all other cases, c is the sum of an odd number of basis vectors (cf. Theorem 2.5, (ii), (iii)). On 

the other hand, if c is some codeword of C, it can be written as the sum of a number of basis 

vectors of basis B, i.e. 

c = l
l X∈
∑ b ,                                                          (4.11) 

where the index set X is some subset of {1, 2, …, k}. We define for our convenience, just as in 

Chapter 2, 

i0 ≔ min X.                                                         (4.12) 

Using Theorem 2.5, we can write for (4.11) in the case 1 < i < j that 

  c = 
0i

b  + 
0 1

l
l i +≥
∑ b ,                                                    (4.13) 

with i0 = i − 1 and where the summation index l now runs through the index set 

X \ {i0}. 

We shall write ej, 0 ≤ j < n, for the unit vectors in GF(2)n with (ej)i = δij, where i runs from 0 

until n − 1 from left to right, e.g. Bi = (i1, i2, i3,  i4) corresponds to the basis vector 

bi = 
1i
+e  

2i
+e  

3i
+e  

4
.ie  

For our convenience, we shall sometimes assume, when studying sequence (4.10), that i ≤ j. In 

order to cover all possibilities, we then also have to take into account sequences Bj, T’, Bi.  We 

now prove a necessary and sufficient criterion for a block list B to generate a snake. 

Theorem 4.2 

Let  B = (B1, B2, …, Bk)  be  a block  list corresponding to  an ordered minimum-weight 

basis of an [n,k,4]-code C satisfying the fixed-position property. Then the sequence kS (B) 

of (4.8) is the transition sequence of a snake of word length n and of range 2k+2 if and only 

if there is no codeword c ∈ C, as expressed by (4.13), such that its support W is one of the 

following sets:  

(i) W = {i1, i2, p3, j4}; 

(ii) W = {i1, q2, j3, j4}; 

(iii) W = {j1, j2, p3, i4}; 

(iv) W = {j1, q2, i3, i4}, 
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for 1 < i < j ≤ k, and for any p and q with 1 ≤ p, q ≤ k, and where p2 and q3 are elements of 

blocks Bp and Bq, respectively. 

Proof. Let S be the list of words generated by kS (B) as a transition sequence, starting from 

the zeroword 0. Let x and y be two words of S. We can write, w.l.o.g., x = c’ + z’ and y = c” + 

z”, where c’, c” ∈ C and where z’ is one of the vectors 0, 
1
,ie

1ie + 
2
,ie

1ie + 
2ie + 

3ie , and z” is 
one of the vectors 0, 

4
,je  

3je + 
4
,je

2je + 
3je + 

4
,je  for some i, j ∈ {1, 2, …, k}. 

 

We now partition the sequence kS (B), for fixed values i and j, according to 

kS (B) = T″, Bi, T′, Bj, T‴ 

(this partition is not unique, in general), and assume that c = c’ + c” is the codeword of C that 

corresponds to T ≔ Bi, T′, Bj, i.e. W = sup c = c(T). If T′ is empty then either j > 1, i = 1 or 

i > 1, j = 1 and it is obvious that l(x, y) > 1 is equivalent to d(x, y) > 1. 

In the remaining part of this proof, we assume that T′ is not empty. For similar reasons, 

we assume that the sublist T‴, T″ is not empty (remember that S is a circular list). 

We shall first prove that if the conditions of the Theorem hold, the list S is a snake. 

A. Assume d(x, y) = 0. 

It follows that c = c’ + c” = z’ + z”. The assumption T‴, T″ ≠ ∅ implies that c ≠ 0. 

Since c ∈ C, it follows that ║c║ equals 4 or 6. More in particular, due to the possibilities for z’ 

and z”, we have the following possible expressions for c. 

(a)   c = 
1ie + 

2je  + 
3je + 

4je ; 

(b)   c = 
1ie + 

2ie + 
3je + 

4je ; 

(c)   c = 
1ie + 

2ie  + 
3ie + 

4je ; 

(d)   c = 
1ie + 

2ie + 
3ie  + 

2je + 
3je + 

4je . 

In cases (a), we would have sup c + bj = {i1, j1}, and hence j+c b = 2, violating the mi- 

nimum distance 4 of C, Similarly in cases (e) and (d), we would have i+c b = 2 and 

i j+ +c b b = 2, respectively, which gives rise to the same contradiction.  With respect to Case 

Fig. 4.1
x + y

c 

bi 
c + bi + bj  

bj 

x y c' c" 

z" z' 

c1 c2 
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 (b), we remark that c is the sum of an odd number of basis vectors as a consequence of the 

fixed-position property, and therefore i = j or i > 1, j > 1 or both (cf. Theorem 2.5). Now i = j 

in (b) yields c = bi which contradicts Theorem 2.5 (iii). For i ≠ j, a word of type (b) can not 

occur because of the conditions of the Theorem (take p = j in (i) or q = i in (ii)). 

B. Assume d(x, y) = 1. 

Now, x + y = et for some t ∈ {1, 2, …, n} and it follows that c = z’ + z” + et. Since c ∈ 

C, we have again that ║c║ is equal to 4 or 6. The only possibilities for c with ║c║ = 4 are (cf. 

(4.10)) 

(e) c = et + 
2je  + 

3je +  
4je ,  t ∈ I1 \ {i1, j1}; 

(f)  c = 
1ie + et + 

3je +  
4je ,  t ∈ I2 \ {i2, j2}; 

(g)  c = 
1ie + 

2ie  + et +  
4je ,  t ∈ I3 \ {i3, j3}; 

(h)  c = 
1ie + 

2ie + 
3ie + et,  t ∈ I4 \ {i4, j4}. 

Cases (e) and (h) do not occur, since then we would have j+c b  = 2 and  i+c b  = 2, 

respectively, which violates the minimum distance 4 of C. Cases (f) and (g) do not occur 

because of the conditions of the Theorem. 

The possibilities for c with ║c║ = 6 are 

(i)  c = 
1ie + 

2ie + et + 
2je  + 

3je +  
4je ,  t ∈ I3 \ {i3}; 

(j) c = 
1ie + 

2ie + 
3ie  + te + 

3je +  
4je ,  t ∈ I2 \ {j2}. 

It will be clear that any choice for t will contradict Lemma 4.1. So, we have proved now the if 

part of the Theorem. 

Now we shall prove the only-if part. Let S be a snake. Assume that the conditions of the 

Theorem do not hold. Then there exists a c ∈ C (cf. eq. (4.13)) 

c = l
l X∈
∑ b  = bi−1 + l

l i≥
∑b , 

for some X ⊆ {1, 2, …, k}, min X = i − 1, such that its contents W is equal to one of the sets (i) 

− (iv) mentioned in the Theorem. 

E.g., let W = {i1, i2, p3, j4} with 1 < i < j. From Theorem 2.7(i), we know that the 

transition sequence kS  of the standard Gray code G(k) contains a subsequence T = i, T’, j with 

c(T) = X (remember that the codewords of C are ordered with respect to the standard Gray 

code G(k) of length k, which is the dimension of C, whereas n stands for the length of 

codewords in C, contrary to the role of n in Chapter 2). 

It follows that kS (B) contains a subsequence T = Bi, T’, Bj with 

c(T) = W = {i1, i2, p3, j4},                     1 < i < j.                   
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If p3 = i3, we take z’ = 
1ie + 

2ie + 
3ie  and z” = 

4je  (cf. the beginning of this proof), and we 

obtain words x = c’ +  z’,  y =  c” + z” with mutual distance 

d(x, y) = +x y  = ' "+ +c z z  = 0. 

This contradicts our assumption that S is a snake. Similarly, p3 = j3 gives d(x, y) = 0. If p3 ≠ i3, 

j3, we take z’ = 
1ie + 

2ie  and z” = 
4je giving rise to 

d(x, y) = 
3pe  = 1, 

which also contradicts the assumption that S is a snake. 

A similar argument can be given in case (ii). In cases (iii) and (iv) we consider the 

codeword c’ = c + bi + bj which can also be expressed in the form of equation (4.13) since i > 

i − 1 and j > i − 1. Similarly as in cases (i) and (ii), we now can derive contradictions. 

Therefore, the conditions of the Theorems are necessary as well.                                             □ 

The four cases in Theorem 4.2 can be replaced just by (i) and (ii) under the wider condition 

that 1 < i, j ≤ k. 

We shall show that an immediate consequence of Theorem 4.2 is, that if the blocks in B 

are well-ordered, the sequence kS (B) of (1) generates a snake. The notion of a well-ordered 

basis which satisfies the fixed-position property reads as follows. 

Let 
B = (B1, B2, …, Bk) 

be a list of blocks such that the internal order of the blocks satisfies the fixed-position property 

(cf. also [34]) 

Definition 4.2 

B is called well-ordered if 

(i) there is only one integer in I1 – say m1 − which occurs in more than one block, and the 

blocks are ordered such that 11, 21, …, m1 are all distinct and 

m1 = (m + 1)1 = … = k1, 

where i1 is the first integer of block Bi, 1 ≤ i ≤ k; 

(ii)  for all i with m ≤ i < k at least one of the integers i2 and i4 does not occur in any of the 

blocks Bl, l > i. 

More generally, we shall call a block list well-ordered, if it can be transformed into a list 

satisfying (i) and (ii) above by a permutation of the integers 0, 1, 2, …, n − 1. 

Remark. 

In practice, we shall apply the last rule in Definition 4.2 such that the order of integers 

in I1 is  

11 > 21 > … > m1 = (m + 1)1 = … = k1 = 0.                                (4.14) 
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In this case, we say that the blocks are ordered lexicographically with respect to the integers 

in I1. Occasionally, we shall say that the blocks of some block list are ordered 

lexicographically if the condition (i) of Definition 4.2 is satisfied. It will turn out in Chapter 5 

that a block containing the integer 0 can be interpreted as a linear subspace of GF(2)n.  

Corollary 4.3 

Let B = (B1, B2, …, Bk) be a block list of an [n, k, 4]-code which satisfies the fixed-position  

property. If B is well-ordered, then kS (B) is the transition sequence of a snake. 

Proof. Suppose that S is not a snake. Then we have from Theorem 4.2 that there exists a 

codeword 

c = bi−1 + l
l i≥
∑b  

(cf. (4.13)) such that W = sup c is equal to one of the sets (i) – (iv). Suppose for example that 

W = {i1, i2, p3, j4}, 1 < i < j (Case (i)). 

For 1 < i ≤ m, it follows from the well-ordering of the blocks of B that (i – 1)1 does not 

occur anymore in any of the blocks Bl, l ≥ i. Hence, (i – 1)1 ≠ i1 ∈ W. On the other hand, 

because of (4.13), we have that (i – 1)1 = i1 ∈ W which contradicts (i – 1)1  ≠ i1.  

For i > m, (i – 1)1 = i1 = … = k1 and (cf. Definition 4.2) at least one of the integers (i – 

1)2 or (i − 1)4 does not occur anymore in a block Bl, l ≥ i. If (i − 1)2 does not occur anymore, 

then (i − 1)2 ≠ l2, l ≥ i. In particular, (i – 1)2 ≠ i2. On the other hand from (4.13), we have 

(i − 1)2 ∈ W. But this implies, by the fixed-position property and the fact that W = {i1, i2, p3, 

j4}, that (i – 1)2 = i2, a contradiction. 

Similarly, if (i − 1)4 does not occur anymore, then (i – 1)4 ≠ j4, because j > i. On the 

other hand, from (4.13) we have (i − 1)4 ∈ W. But this implies, by the fixed-position property 

and the fact that W = {i1, i2, p3, j4}, (i – 1)4 = j4, a contradiction with the previous inequality. 

We conclude that W ≠  {i1, i2, p3, j4}. 

Now suppose W = {i1, q2, j3, j4}. For 1 < i ≤ m, we can eliminate this possibility in 

precisely the same way as Case (i). Suppose i > m. By the same argument as before, we can 

show that if (i − 1)4 does not occur, we must have (i − 1)4 = j4, which is a contradiction since j 

> i. So, (i − 1)2 does not occur anymore. It follows that q2 = (i − 1)2. Furthermore, since j > i, 

we also have i1 = j1 = m1 and therefore W = {j1, q2, j3, j4}, with q2 = (i − 1)2 ≠ j2. However, this 

implies j+c b  = 2, which contradicts the minimum weight of C being 4. So, Case (ii) is not 

possible. 

The proofs for Cases (iii) and (iv) are similar to the proofs for Cases (i) and (ii), 

respectively.                                                                                                                                 □ 
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In case a block list B is only ordered lexicographically according to condition (i) of 

Definition 4.2 and the supplementing remark, and not necessarily satisfies condition (ii), we 

can formulate Theorem 4.2 in a simpler way. 

Theorem 4.4 

Let  B = (B1, B2, …, Bk) be a block list corresponding to an ordered minimum-weight basis 

of an [n,k,4]-code C satisfying the fixed-position property. Let furthermore B be ordered 

lexicographically with respect to the integers in I1 according to Definition 4.2, then the 

sequence kS (B) of (4.8) is the transition sequence of a snake if and only if there is no 

codeword c ∈ C, as expressed by (4.13), such that its support W is one of the following sets 

(i) W = {m1, i2, p3, j4}; 

(ii) W = {m1, j2, q3, i4}, 

for m < i < j ≤ k, and for any p and q with m − 1 ≤ p, q ≤ k. 

Proof. The necessity of the condition follows immediately from Theorem 4.2. Suppose that the 

list of codewords generated by kS (B) is not a snake. Then we have from Theorem 4.2 that 

there exists a codeword (cf. eqs. (4.12) and (4.13)) 

c = bi−1 + l
l i≥
∑b , 

for some i, 1 < i ≤ k, such that W = sup c is equal to one of the sets (i) – (iv) of Theorem 4.2. 

For 1 ≤ i ≤ m, it follows from the lexicographic order of the blocks in B that (i − 1)1 

does not occur anymore in blocks Bl, l ≥ i. Hence, because of (4.13), we have that (i − 1)1 ∈ W 

which contradicts (i − 1)1 ≠ m1.  

Now, let i > m. If W is of type (ii) in Theorem 4.2, we have (because j > i > m) 

W = {m1, q2, j3, j4} = {j1, q2, j3, j4}. 

Since the minimum distance in C is 4, it follows that q2 = j2 and so c = bj. However, this 

contradicts  expression (4.13), because j > i − 1. Similarly, if W is of type (iv) in Theorem 4.2, 

we obtain that c = bi, which also contradicts expression (4.13). So, we are left with types (i) 

and (iii) of Theorem 4.2, which proves the sufficiency of this Theorem, because i1 = j1 = m1.  □ 

Example 4.1. 

We first give the simple example of a snake of range 64 in Q8, generated by four vectors 

that are represented by the list of four blocks B = (B1, B2, B3, B4) with 

B1 = (0,2,4,5),     B2 = (1,2,4,6),     B3 = (1,3,7,6),     B4 = (1,3,4,5). 

These blocks correspond to four independent vectors of weight 4 in GF(2)8, which are 

the basis vectors of an [8,4,4]-code. One can easily verify that B satisfies the fixed-position 

property. Moreover, the list is ordered lexicographically. According to Corollary 4.3 or to 
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Theorem 4.4, the sequence 4S (B) generated by the list B, is the transition sequence of a 

snake of length 26 in Q8. 

The following list provides all words of the snake, together with the integers of its 

transition sequence that determine the next word. We also add the indices of the words starting 

from 0 until 63. 

 0. 00000000; (0);       1. 10000000; (2);       2. 10100000; (4);       3. 10101000; (5); 

 4. 10101100; (1);       5. 11101100; (2);       6. 11001100; (4);       7. 11000100; (6); 

 8. 11000110; (0);       9. 01000110; (2);     10. 01100110; (4);     11. 01101110; (5); 

12. 01101010; (1);     13. 00101010; (3);     14. 00111010; (7);     15. 00111011; (6); 

16. 00111001; (0);     17. 10111001; (2);     18. 10011001; (4);     19. 10010001; (5); 

20. 10010101; (1);     21. 11010101; (2);     22. 11110101; (4);     23. 11111101; (6); 

24. 11111111; (0);     25. 01111111; (2);     26. 01011111; (4);     27. 01010111; (5); 

28. 01010011; (1);     29. 00010011; (3);     30. 00000011; (4);     31. 00001011; (5); 

32. 00001111; (0);     33. 10001111; (2);     34. 10101111; (4);     35. 10100111; (5); 

36. 10100011; (1);     37. 11100011; (2);     38. 11000011; (4);     39. 11001011; (6); 

40. 11001001; (0);     41. 01001001; (2);     42. 01101001; (4);     43. 01100001; (5); 

44. 01100101; (1);     45. 00100101; (3);     46. 00110101; (7);     47. 00110100; (6); 

48. 00110110; (0);     49. 10110110; (2);     50. 10010110; (4);     51. 10011110; (5); 

52. 10011010; (1);     53. 11011010; (2);     54. 11111010; (4);     55. 11110010; (6); 

56. 11110000; (0);     57. 01110000; (2);     58. 01010000; (4);     59. 01011000; (5); 

60. 01011100; (1);     61. 00011100; (3);     62. 00001100; (4);     63. 00000100. (5). 

Fig. 4.2 

Notice that the sixteen words in the first column constitute the linear [8,4,4]-code being the 

‘back-bone’ of the snake. These are the snake words that have an index divisible by 4. We also 

observe that only two of the eight different integers of the transition sequence occur in that 

column. This fact is due to the fixed position property. A similar observation can be made with 

respect to the other three columns. 

As long as we do not change the order of the blocks that generate a snake in Qn, we can 

omit any block from the list of blocks in order to get a smaller snake in Qn’ with n’ ≤ n. This is 

because the omission of one block does not harm the well-ordering of the list. 

E.g. by omitting B1, one obtains a list which generates a snake S of length 25 in Q7 (cf. 

[34, Section 3]), since the integer 0 does not occur in any of the remaining blocks. More 

precisely, we can speak of the snake S of range 25 in a subgraph of Q8, which is equivalent to 

Q7 as we can observe from the following list of words of S. 
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 0. 00000000; (1);       1. 01000000; (2);        2. 01100000; (4);        3. 01101000; (6); 

 4. 01101010; (1);       5. 00101010; (3);        6. 00111010; (7);        7. 00111011; (6); 

 8. 00111001; (1);       9. 01111001; (2);      10. 01011001; (4);      11. 01010001; (6); 

12. 01010011; (1);     13. 00010011; (3);      14. 00000011; (4);      15. 00001011; (5); 

16. 00001111; (1);     17. 01001111; (2);      18. 01101111; (4);      19. 01100111; (6); 

20. 01100101; (1);     21. 00100101; (3);      22. 00110101; (7);      23. 00110100; (6); 

24. 00110110; (1);     25. 01110110; (2);      26. 01010110; (4);      27. 01011110; (6); 

28. 01011100; (1);     29. 00011100; (3);      30. 00001100; (4);      31. 00000100; (5); 

Fig. 4.3 

Clearly, we can ignore or puncture the first position to get a snake of the same range in 

Q7. Since 7 occurs only once in B3, omitting B3 and puncturing the last position will also 

produce another snake in Q7, as shown in the following list. 

  0. 0000000  (0)        1. 0000001  (2)        2. 0000101  (4)        3. 0010101  (5) 

  4. 0110101  (1)        5. 0110111  (2)        6. 0110011  (4)        7. 0100011  (6) 

  8. 1100011  (0)        9. 1100010  (2)      10. 1100110  (4)      11. 1110110  (5) 

12. 1010110  (1)      13. 1010100  (3)      14. 1011100  (4)      15. 1001100  (5) 

16. 1101100  (0)      17. 1101101  (2)      18. 1101001  (4)      19. 1111001  (5) 

20. 1011001  (1)      21. 1011011  (2)      22. 1011111  (4)      23. 1001111  (6) 

24. 0001111  (0)      25. 0001110  (2)      26. 0001010  (4)      27. 0011010  (5) 

28. 0111010  (1)      29. 0111000  (3)      30. 0110000  (4)      31. 0100000. (5) 

Fig. 4.4 

We observe that omitting block B4 from B will not give a snake in Q7 because all integers of 

the last block also occur in other blocks. 

Now consider the following block list B’: 

B1 = ( 1, 2, 3, 4), 
B2 = ( 5, 6, 3, 4), 
B3 = ( 1, 6, 7, 8). 

The list satisfies the fixed-position condition and corresponds to a basis of an [8, 3, 4]-code C. 

The sequence 3S (B’) is not the transition sequence of a snake S’, since it contains a 

subsequence T = B2, B1, B3 which corresponds to the codeword c = b2 + b1 + b3 ∈ C with 

support W = {5, 2, 7, 8}. Omitting from T the first integer 21 (= 5) and the last two integers 33 

(= 7) and 34(= 8) shows that there are two words x and y in the list S which are no neighbors of 

each other, and which have Hamming distance 1. More in particular, we can write x = c’+ 
12e , 

y = c” + 
33e + 

43e , c = c’ + c”. Indeed, the necessary condition (ii) of Theorem 4.2 is not 

satisfied for i = 2, j = 3. 
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This example demonstrates that if we generalize the well-ordering condition in the sense 

that for all i, 1 ≤ i < k, at least one of the integers i1, i2 or i4 does not occur in any of the blocks 

Bl, l ≥ i, the condition is no longer sufficient for S being a snake. 

4.3 The Index Problem of a Snake in Qn 

We number the words of a snake S in Qn of length 2l by an index i which ranges from 0 

until 2l − 1. Now, given some value i for this index, the problem arises to determine the 

corresponding word wi in the snake. We call this problem, together with the inverse problem 

of determining the index of a given word wi in S, the index problem of S. We assume that S is 

constructed by the method discussed in Section 4.2. So, l = k + 2 where k is the dimension of 

the underlying linear code C. 

Before studying the index problem for our snakes, we first remind the reader of the 

previous conventions adopted by us in this thesis (and in  [34, 35]) with respect to the labeling 

of the words in cyclic lists and of the bits within a word. 

The index x of the word gx of the cyclic standard Gray code G(k) of word length k runs 

from 0 until 2k − 1. The coordinate or bits gxj of gx (shortly denoted by gj if the index x is 

irrelevant) are labeled from 1 until k, from right to left, k ≥ i ≥ 1, just like in Chapter 2 where 

we studied G(n) and where i runs from 1 to k. Inherent to the index notation for G(k) is that its 

transition sequence contains integers from {1, 2, …, k}. It follows that the basis vectors of the 

linear [n, k, 4]-code, which are the building stones of the snake(s) to be constructed, are 

labeled as b1, b2, …, bk, and so are the corresponding blocks B1, B2, …, Bk. 

The integers in a block Bi = (i1, i2, i3, i4), 1 ≤ i ≤ k, are taken from the set {0, 1, …, 2m – 

1} with 2m = n. This choice is due to the definitions given in [35] concerning the Euclidean 

geometry EG(m, 2). Here, the bits of the words of a snake in Qn, based on our construction, are 

labeled from 0 until n – 1 (= 2m – 1). The order of labeling may be chosen at will, from right to 

left as was introduced in [35, Section 3.1], or from left to right as will be applied in this thesis. 

Finally with L = 2k+2 (cf. (2.18)), the index of the snake words runs from 0 (corresponding to 

the zero word) to 2l – 1 with l = k + 2, as was already used in expression (4.9). 

Recall that given an index x represented by a binary k-tuple x = xk, xk−1, …, x1, the rule to 

compute gx as stated in Theorem 2.1, 

gi = xi + xi+1 (mod 2),                                                      (4.15) 

can symbolically be written as gx = x ⊕ ⎣x/2⎦, with xk+1 = 0, where ⊕ stands for bitwise 

addition modulo 2 (exclusive-or operator). 

An alternative expression for gx is 

gx = 1
1
( )

k

j j j
j

x x f+
=

+∑ =
x

j
j J

f
∈
∑ ,                                                (4.16) 
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where Jx ≔ sup gx and the fj, 1 ≤ j ≤ k, are the unit vectors (words) in GF(2)k, such that the i-th 

bit of  fj is (fj)i = δij, 1 ≤ i ≤ k. Because of our conventions w.r.t. the labeling of the bit positions 

in gx, the only 1-bit of fj is at the j-th position from the right. 

We now return to the index problem of a snake S of length 2k+2 constructed by our 

method, based on an ordered weight-4 basis B =  (b1, b2, …, bk) of a linear [n, k, 4]-code C.  

Let i be some integer with 0 ≤ i < 2k+2. If i is a multiple of 4, say i = 4x, then wi is equal to the 

codeword cx of C, where x is the index of this word when listed according to the standard Gray 

code G(k) which has as consequence that any two successive words of C in the list have 

Hamming distance 4 (cf. eq. (4.9)). It follows that wi = cx can be determined from x by first 

computing gx ∈ G(k) and next writing 

wi = 
x

j
j J

b
∈
∑ , 

where Jx is defined by eq. (4.16). 

In the general case, we write for the index i 

i = 4x + z,                 z ∈ {0, 1, 2, 3}.                   (4.17) 

The snakeword wi can now be written as wi = cx + z, where z is equal to one of 0, 
1t
,e  

1t
+e

2t
e  

and 
1t

+e
2t

+e
3t
.e  The integers tj, j = 1, 2, 3, are from block Bt = {t1, t2, t3, t4}, which 

corresponds to bt = cx+1 − cx. 

Hence, we formulate the following algorithm to compute the i-th word in the snake S 

defined by the transition sequence 

kS (B) = B1 B2 B1 … B1 Bk B1 B2 … Bk. 

Algorithm 

1. Write i = 4x + z.                          z ∈ {0, 1, 2, 3}. 

2. Compute gx = x + ⎣x/2⎦ and let Jx = sup gx. 

3. Compute gx+1 = y + ⎣y/2⎦, where y = x + 1 and let Jy = sup gy. 

4. Determine t = Jx ⊕ Jx+1 (t is the symmetric difference of Jx and Jx+1). 

5. wi = 
x

j
j J

b
∈
∑ + 

1 j

z

t
j

e
=
∑  with 

0

1 jt
j

e
=
∑ ≔ 0. 

In this algorithm, the binary vector x is identical with the binary representation of the 

integer x, while ⎣x/2⎦ stands for the binary representation of the integer ⎣x/2⎦. The sign ‘+’ 

represents the usual addition between two vectors of GF(2)k (We can drop the notation ‘⊕’ 

since in GF(2)k, the meaning of ‘+’ and of ‘⊕’ are the same). 
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Example 4.2. 

The following list B = (B1, B2, B3, B4) of blocks corresponds to a minimum-weight basis 

of a [8, 4, 4]-code 

B1 = ( 0, 2, 4, 5), 
B2 = ( 1, 2, 4, 6), 
B3 = ( 1, 3, 7, 6), 
B4 = ( 1, 3, 4, 5). 

We shall compute the snake words w52 and w54, by applying our algorithm.  We write i = 52 = 

4⋅13. In the binary number system we have that 13 is represented by 1101. Hence, 

g13 = 1101 + 0110 = 1011 
and so 

w52 = b1 + b2 + b4 = 10011010. 

Similarly, we have g14 = 1001 and w56 = b1 + b4 = 11110000. Therefore 

t = 2 
and since B2 = {1, 2, 4, 6} corresponding to b2 = e1 + e2 + e4 + e6, it follows that 

w54 = w52 + e1 + e2 = 10011010 + e1 + e2  = 11111010 
or 

w54 = w56 + e4 + e6 =11110000 + e4 + e6  = 11111010. 

These results agree with the list S8 (cf. [19] , Appendix C). 

There is an alternative rule for the computation of the index value t which indicates the 

bit position which changes when going from gx to gx+1 in G(k). Actually, t is the bit position 

where the carry stops when adding 1 to the binary representation of x. The rule can be inferred 

from the rule embodied by Steps 3 and 4 of the Algorithm. So, we can reformulate our 

algorithm in a more compact form. 

Algorithm 

1. Write i = 4x + z,                 z ∈ {0, 1, 2, 3}. 

2. Compute gx = x + ⎣x/2⎦ and let Jx = sup gx. 

3. Determine t by adding 1 to x and see where the carry stops. 

4. wi =
x

j
j J

b
∈
∑ + 

1 j

z

t
j

e
=
∑ with 

0

1 jt
j

e
=
∑ ≔ 0. 

Example 4.3. 

In Example 4.2, we have that x = 13. If we add 1 to 13 in the binary system, the carry 

stops at position 2. 
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In this chapter, we shall discuss the construction of symmetric snakes in all hypercubes 

Qn, 3 ≤ n ≤ 16. As was pointed out in Chapter 4, an essential element of our method is a basis 

of a linear [n, k, 4]-code that satisfies the fixed-position property. Therefore, we show in 

Sections 5.1, 5.2 and 5.3 that the Reed-Muller code R(r, m) with r = m – 2 is an appropriate 

code which satisfies all the required properties. Sections 5.4 and 5.5 contain examples of our 

construction for m = 3 and m = 4. Section 5.6 presents a sufficient condition for an ordered 

basis of an arbitrary [n, k, 4]-code to generate a snake. 

5.1 Euclidean Geometries 

As for the definitions and notation with respect to Euclidean geometries and their 

relation with Reed-Muller codes, we shall keep as close as possible to ([23, Ch.13]). Let V = 

GF(q)m+1 be the vector space of dimension m + 1 over the field GF(q), where q is some prime 

power. Let x, y be two vectors of  V* = V \ {0}. The statement x = λy, for some λ ∈ GF(q), λ 

≠ 0, defines an equivalence relation on V*, the classes of which are, by definition, the points of 

the projective geometry PG(m, q) (cf. [3]). We shall denote the equivalence classes by <x>, 

where x ∈ V* is some element in this class. Hence, <x> stands for all non-zero multiples of x. 

A subspace <U> of PG(m, q) is the image of a subspace U of V under the map x → <x>. 

For geometrical reasons one says that if U has dimension r, then <U> has dimension 

r − 1 (cf. [23, 35]). In particular, the dimension of PG(m, q) is m, and we write dim PG(m, q) = 

m. A hyperplane H of a projective geometry PG(m, q) is a subspace with dim H = m – 1. 

The Euclidean or affine geometry EG(m, q) (or AG(m, q)), with m ≥ 1 and q is a prime 

power, is obtained from the projective geometry PG(m, q) by deleting the points of an 

arbitrary hyperplane H. If one chooses H to be the plane consisting of all points <(0, a1, a2, …, 

am)> ∈ PG(m, q), the remaining points of PG(m, q) can be labeled by <(1, a1, a2, …, am)>. By 

deleting the common 1, the qm
 points of EG(m, q) can be labeled by the m-tuples (a1, a2, …, 

am), ai ∈ GF(q), and hence, these points can be considered as the vectors of the linear space 

GF(q)m. 

For practical reasons (cf. [35], Section 3.2]) we shall relabel the components of these 

vectors and write (a0, a1, …, am–1). Addition and scalar multiplication in EG(m,q) is induced 

by the corresponding operations in GF(q)m, m ≥ 1. For this reason, m is said to be the 

dimension of EG(m, q). 

From the definition of EG(m, q), we have that its points are the points of PG(m, q) 
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which are not in H. We also define the lines of EG(m, q) as those lines of PG(m, q) which are 

not contained in H. In general, the r-dimensional subspaces of EG(m, q) are those r-

dimensional subspaces of PG(m, q) which are not in H. Incidence relations in EG(m, q) are 

induced by the incidence relations in PG(m, q) (cf. [23], App. B). 

A subspace S of EG(m, q) is called a flat. One can easily show that a flat S is a linear 

subspace if and only if 0 = (0, 0, 0, …, 0) is contained in S. Furthermore, a flat of dimension r 

is either a linear subspace of dimension r or a coset of such a linear subspace. Since it can 

easily be proved that a linear subspace of EG(m, q) of dimension r is algebraically isomorphic 

to EG(r, q), an r-dimensional flat is sometimes referred to as an EG(r, q), or also as an r-flat. 

We emphasize that the subset {0 ≔ (0, 0, …, 0)} is a 0-dimensional subspace of EG(m, q), just 

like all other subsets containing only one point. 

In the next section, we shall occasionally need the number of times that a certain 

Euclidean geometry is contained in a larger Euclidean geometry, or vice versa. These numbers 

are given by the following theorems, the proof of which can be found in [23]. 

Theorem 5.1 ([23], App. B, Theorem 5,6]) 

(i) The number of EG(r, q) in EG(m, q) is equal to 

qm–r
q

m
r

⎡ ⎤
⎢ ⎥
⎣ ⎦ . 

(ii) If in EG(m, q) one has the inclusion 

R = EG(r, q) ⊆ S = EG(s, q), 

where r ≥ 1, then the number of t-dimensional flats T with R ⊆ T ⊆ S is equal to 
⎡ ⎤
⎢ ⎥
⎣ ⎦

−
−

q

s r
t r . 

The symbol 
q

m
r

⎡ ⎤
⎢ ⎥
⎣ ⎦  stands for the Gaussian binomial coefficient defined by 

q

m
r

⎡ ⎤
⎢ ⎥
⎣ ⎦  = 

1

1

( 1)( )...( )
( 1)( )...( )

m m m r

r r r r

q q q q q
q q q q q

−

−

− − −
− − −

. 

Let S be some linear r-dimensional subspace of EG(m, q). Then S and its cosets are all 

pairwise disjoint. Consider a complete family of cosets of S, i.e. 

P ≔ {S + p0, S + p1, S + p2, …, S + pl–1}                                 (5.1) 

with p0 = 0, p1, …, pl-1 ∈ V, such that 

( )i
i

S + p∪  = V. 

Disjoint cosets (i.e. r-flats in EG(m, q)) will be called parallel subspaces or parallel flats in 

EG(m, q). Since the union of cosets in (5.1) contains all points of EG(m, q), we call P a 
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parallel system of flats. We also say that the parallel system P covers EG(m, q). If we 

consider the linear spaces V and S as additive groups, we can say that P is the quotient group 

P = V/S.                                                             (5.2) 

Obviously, the number l of parallel r-flats in EG(m, 2) is equal to 

|P| = 2m–r. 

For more properties of EG(m, q), especially their relationship with other mathematical 

structures, we refer to [23, App. B]. 

Example 5.1. 

Fig. 5.1 on the next page represents the well-known projective geometry PG(2, 2) (Fano 

plane). 

 

 

 

 

 

 

 

 

 

 

 

The seven points  <a0, a1, a2> correspond to the seven nonzero vectors (a0, a1, a2) of 

GF(2)3. The seven lines (i.e. one dimensional sub-spaces) [b0, b1, b2] also correspond to the 

nonzero vectors (b0, b1, b2) of GF(2)3. In fact, the points of incidence with the line [b0, b1, b2] 

are the three solutions of the equation 

b0 x0 + b1 x1 + b2 x2 = 0. 

Since dim PG(2,2) = 2, all these lines are hyperplanes. If we leave out the hyperplane H 

represented by [1, 0, 0] together with the points it contains, we obtain the structure depicted in 

Fig. 5.2. 

 

 

 

 

 

 

 

<1,1,1>

<1,0,1>

<1,0,0>

<1,1,0> 

Fig. 5.2 Fig. 5.3

<0,1> 

<1,1> 

<1,0>

<0,0> 

<1,0,0> 

<1,1,0> 

<0,1,0> 

<1,0,1>

<0,0,1><0,1,1> 

[1,0,0]

<1,1,1> 

[0,1,0]
[0,0,1] 

Fig. 5.1

[1,1,0]

[1,0,1]

[0,1,1]

[1,1,1] 
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This structure is isomorphic to the Euclidean geometry EG(2,2). More specifically, if we drop 

the coordinates a0 = 1 in the triples which represent the points, we obtain precisely EG(2,2) 

itself, since the points of EG(2,2) are by definition the vectors of GF(2)2 (cf. Fig. 5.3). 

The Euclidean geometry EG(2,2) contains six one-dimensional subspaces or 1-flats. 

These are all called EG(1, 2) geometries or briefly EG(1, 2)’s (cf. [23]). There are three 

parallel systems of 1-flats (three pairs of parallel lines), defined by the linear subspaces 

S1 = {(0,0), (0, 1)}, 

S2 = {(0,0), (1, 0)}, 

S3 = {(0,0), (1, 1)}. 

The parallel systems themselves are 

P1 = {S1, S1 + (1, 0)}, 

P2 = {S2, S2 + (0, 1)}, 

P3 = {S3, S3 + (0, 1)}. 

5.2 Reed-Muller Codes 

One way to define Reed-Muller codes (briefly, RM codes), is in terms of Euclidean 

geometries. Since we only consider binary codes, we take q = 2 from now on, and consider the 

geometry EG(m, 2). A subset S of points of EG(m, 2) can be represented by its characteristic 

vector χ(S) of length 2m, containing a 1 in those components which correspond to points of S 

and 0’s elsewhere. 

We shall denote the points of EG(m, 2) either by p0, p1, p2, …, pn–1 ∈ GF(2)m, n = 2m, 

according to the definition of points, or by P0, P1, P2, …, Pn–1. These conventions imply that 

we do not distinguish sharply between the vector space GF(2)m and the geometry EG(m, 2). 

Instead of writing P0, P1, P2, …, Pn–1, we shall occasionally indicate these points by their 

indices 0, 1, …, n – 1. We shall apply this notation especially when dealing with the support 

of a set S ⊆ EG(m, 2). Let S be the set 

S = {pi, pj, …, pl}, 

then we define its support as 

sup S = {i, j, …, l}. 

So sup S contains the labels of the positions where χ(S) has a value 1. 

In the remaining part of this thesis, we shall adopt the convention that the vector pi ∈ 

GF(2)m corresponding to Pi ∈ EG(m, 2) is represented by the reversed binary representation of 

the integer i, 0 ≤ i ≤ n – 1, n = 2m. This implies that for any linear subspace S of EG(m, 2), the 

coset  

S  + pa ≔ {pi + pa, pj + pa, …, pl + pa}                                 (5.3) 

can be represented by 
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S ⊕ a ≔ { i ⊕ a, j ⊕ a, …, l ⊕ a},                                     (5.4) 

where a stands for the m−bit binary representation of the index of p, written in reversed order 

and where the symbol ‘⊕’ stands for the bitwise addition modulo 2 for the length-m vectors pi, 

0 ≤ i ≤ 2m − 1, of GF(2)m, also known as Nim addition. The reason why we use the reversed 

order instead of the normal order (which also implies (5.4)) will be explained in the next few 

paragraphs. Because of (5.3) and (5.4), we shall denote the coset S + pa also by Sa, where we 

should keep in mind that in general, this index a is not uniquely determined. 

A binary code of length n = 2m can be considered as a set of characteristic vectors s, 

each of which corresponds to some set S ⊆ EG(m, 2), i.e. s = χ(S). One could also say that 

such a code is a family of subsets of EG(m, 2). We conclude that any binary vector v = (v0, v1, 

…, 
2 1mv

−
), or equivalently, any binary word of length 2m, describes a subset of EG(m, 2) 

consisting of those points i (or Pi) for which vi = 1. 

It will be obvious that an r-dimensional subspace of EG(m, 2) is represented by a 

characteristic vector, or codeword, which contains 2r ones, since there are 2r points in such a 

subspace. If the subspace is linear, one of these points is P0, represented by the m-tuple (0, 0, 

…, 0), or by the zeroword 00…0 of length m. In particular, a codeword which corresponds to a 

hyperplane, contains 2m–1 ones. If the hyperplane is linear, the point P0 is one of these. A non-

linear hyperplane in EG(m, 2) is the only disjoint coset of a linear hyperplane. 

Let H be an arbitrary hyperplane in EG(m, 2). Its characteristic vector h = χ(H) contains 

2m–1 ones and 2m–1 zeros. The points x = (x0, x1, …, xm–1) ∈ EG(m, 2), which are in H, are 

determined by some linear equation 

a⋅x = a0x0 + a1x1 + … + am–1xm–1 = δ, 

where a0, a1, …, am–1 and δ are all elements of GF(2). If δ = 0, the hyperplane H is linear, and 

if δ = 1 it is nonlinear. 

Special linear hyperplanes are obtained by taking a = ej (and δ = 0), where ej is the j-th 

(unit) basis vector of the standard basis in GF(2)m, i.e. the vector ej, 1 ≤ j ≤ m, with a one on its 

(j – 1)-th position from the left and zeros elsewhere. (Remember that we label the components 

pi of a vector p ∈ GF(2)m from 0 until m – 1 and from left to right). We shall denote the 

hyperplane corresponding to em−j+1 by Hj, and its characteristic vector by vj = χ(Hj), 1 ≤ j ≤ m. 

Since we represent Pi as the reversed binary representation of i ∈ {0, 1, …, 2m − 1}, it 

follows that Hm contains the points P0, P1, …, 12 1mP − − , i.e. those points of EG(m, 2) which have 

an index value less than 2m–1. In general, the linear hyperplane Hj contains those points Pi, the 

index of which has a binary representation with a zero on the (m – j)th position from the left. 
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Example 5.2. 

In EG(3,2), the linear hyperplane H3 is defined by the equation a⋅x = 0 with a = e3 = 

(0,0,1). So, H3 contains the points (0,0,0), (1, 0, 0), (0,1,0) and (1, 1, 0). According to the 

above rule, these points are labeled by the binary numbers 000, 001, 010 and 011, 

respectively. Here, H3 contains the points P0, P1, P2 and P3.  Similarly, the linear hyperplane 

H2 contains the points P0, P1, P4 and P5 with labels 000, 001, 100 and 101, while the linear 

hyperplane H1 contains the points P0, P2, P4 and P6 with labels 000, 010, 100 and 110. 

When writing H3 = {p0, p1, p2, p3}, its only coset can be written as 

H3 + p4 = {p0 + p4, p1 + p4, p2 + p4, p3 + p4}, 

                                           = {p4, p5, p6, p7}, 

(cf. (5.3)). Equivalently, we can write (cf. (5.4)) 

H3 = {000, 001, 010, 011}, 

H3 ⊕ 100 = {100, 101, 110, 111}, 

When applying structures like these in the next for the construction of snakes, we simply write 

H3 = {0, 1, 2, 3}, 

H3 ⊕ 4 = {4, 5, 6, 7}. 
The parallel system 

P3 = {{0, 1, 2, 3}, {4, 5, 6, 7}} 

is a cover of EG(3, 2) by hyperplanes. In a similar way, the hyperplanes H2 and H1 give rise to 

covers of EG(3, 2) by hyperplanes, i.e. the parallel systems 

P2 = {{0, 1, 4, 5}, {2, 3, 6, 7}} 
and 

P1 = {{0, 2, 4, 6}, {1, 3, 5, 7}} 

are both covers of EG(3, 2). 

Let S and T be any pair of subspaces of EG(m, 2) with characteristic vectors s and t. The 

point product of s and t is defined as the vector 

s⋅t = (s0t0, s1t1, …, 1 12 1 2 1m ms t− −− − ), 

and is the characteristic vector of the intersection S ∩ T. 

In particular, one can consider the point product of two characteristic vectors vi and vj 

which represent the linear hyperplanes Hi and Hj, 1 ≤ i, j ≤ m, as defined above. More 

generally, one can take the point product of r such vectors 

v ≔ 
1i
⋅v

2i
⋅v …⋅ ,

riv                      0 ≤ r ≤ m                    
which represents the linear subspace 

V ≔ 
1i

H ∩ 
2i

H ∩ …∩
riH . 

This point product is called a product of degree r. Special cases are r = 0 with v = 1, 

representing the whole space EG(m, 2), and r = m yielding v = 100…0 which corresponds to 
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the zero space {0} of EG(m, 2). A linear combination of such products with coefficients from 

GF(2) is called a  polynomial in v1, v2, …, vm
 of degree r, if r is the highest degree which 

occurs. Here, v1, v2, …, vm are independent vectors corresponding to ‘independent’ 

hyperplanes. 

Definition 5.2 

The binary r-th order Reed-Muller code R(r, m) of length n, is the linear code consisting of 

all polynomials in v1, v2, …, vm of degree at most r, where n = 2m. 

One could also say that the vectors v1, v2, …, vm, representing the special hyperplanes 

H1, H2, …, Hm of EG(m, 2), generate the code R(r, m), be it that they do not constitute a basis 

in general. 

Example 5.3. 

In Example 5.2, we introduced EG(3,2) by using the ‘binary’ labeling of the points, the 

binary hyperplanes H3 = {0, 1, 2, 3}, H2 = {0, 1, 4, 5} and H1 = {0, 2, 4, 6}. The characteristic 

vectors of these hyperplanes are, respectively, 

v3 = 11110000, 

v2 = 11001100, 

v1 = 10101010. 

The code R(1, 3) of length 23 = 8 is the linear code generated by 1 and the vectors v1, v2 

and v3 (cf. Fig. 5.4 in the next section). Since the four generating vectors are independent, the 

dimension of R(1, 3) is equal to 4, which will be confirmed by Theorem 5.3. 

For the code R(2, 3) we also need, in addition to the vectors 1, v1, v2, v3, the products of 

degree 2 

v3 ⋅v1 = 10100000, 

v3 ⋅v2 = 11000000, 

v2 ⋅v1 = 10001000. 

The seven vectors are independent and generate a linear [8, 7, 2]-code consisting of all 

even-weight binary words of length 8. 

We conclude this section by presenting some well-known properties of RM-codes (cf. 

[23, Chapter 13]) which play a major role in the next. 

Theorem 5.3 

For any m and r, 0 ≤ r ≤ m, the code R(r,m) is an [n, k, d]-code with parameter values 

n = 2m,      k = 
0

r

i

m
i=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ,      d = 2m–r.                               (5.5) 

Let m > 0, n = 2m and let the notation G(r, m) stand for a matrix the rows of which are 

independent basis vectors that generate R(r, m), for 0 ≤ r ≤ m. Notice that R(m, m) is the whole 
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space GF(2)n. In order to define a general formula for the matrix G(r, m), we define the two 

special matrices G(0, m) = (1) being the matrix consisting of the all-1 row vector of length n = 

2m and G(m, m), which is the identity matrix In. 

Using the same integer k of (5.5), the following recursive formula provides us with a 

basis of R(r + 1, m + 1) (cf. [23] Theorem 13.2 and [14] Sect. 1.10). 

Theorem 5.4 

For every r with 0 ≤ r < m, where n = 2m, we have 

G(r + 1, m + 1) = 
( 1, ) ( 1, )

0 ( , )
G r m G r m

G r m
+ +⎛ ⎞

⎜ ⎟
⎝ ⎠

,                         (5.6) 

where 0 is the k × n zero matrix. 

Example 5.4. 

According to Theorem 5.4, we construct the following bases 

G(1,2) = 
(1,1) (1,1)
00 (0,1)

G G
G

⎛ ⎞
⎜ ⎟
⎝ ⎠

= 
1 0 1 0
0 1 0 1
0 0 1 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

, 

and 

G(1,3) = 
(1,2) (1,2)

0000 (0,2)
G G

G
⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 

10101010
01010101
00110011
00001111

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

. 

One can immediately verify that the above basis of R(1, 3) is equivalent to the one constructed 

in Example 5.3. 

Theorem 5.5 

The codewords of minimum weight in R(r,m) are precisely the (m – r)-flats in EG(m, 2) 

Theorem 5.6 

The code R(r,m) is spanned by its minimum-weight codewords. 

For the proofs, we again refer to [23]. 

5.3. Parallel Systems in EG(3,2) and EG(4,2) 

Our first example is the Reed-Muller code R(1,3) in terms of the geometry EG(3,2). We 

first repeat some facts which were discussed already in Examples 5.2 and 5.3. The points of 

this geometry are the 23 triples x = (x1, x2, x3) ∈ GF(2)3. According to the conventions in 

Section 5.2, Example 5.2, we denote these points by P0, P1, …, P7, or by 0, 1, …, 7, which 

stand for the binary words 000, 001, …, 111. The following list consists of the 16 codewords 

of R(1,3) (cf.Table 13.1 in [23]). 
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                   0       1     2        3      4       5  6        7 
 0        0      0        0       0        0        0         0        0 
 1          1      1    1      1        1       1         1      1 
       v3   1     1       1         1         0       0        0       0 
     v2        1   1    0   0    1   1  0 0 
          v1                 1      0      1      0       1        0       1       0 
        v2 + v3 0      0      1      1    1    1  0 0 
   v1    + v3 0    1    0     1    1    0  1 0 
          v1 + v2            0         1         1        0        0       1      1        0 
   v1 + v2 + v3       1         0         0         1        0         1        1        0 
 1     + v3    0       0     0     0       1     1      1    1 
 1   + v2            0     0        1        1        0        0        1       1 
    1 + v1                     0        1         0        1        0         1        0         1 
 1    + v2 + v3   1        1       0        0         0         0         1        1 
 1 + v1    + v3  1        0         1        0         0         1        0        1 
 1 + v1 + v2            1         0      0      1       1       0       0       1 
 1 + v1 + v2 + v3      0       1        1        0         1       0        0       1 

Fig. 5.4 

The 16 words of R(1,3) correspond to the 16 polynomials of degree ≤ 1 in v3, v2 and v1 defined 

by the equation ei⋅x = 0, for i = 3, 2 and 1, respectively. These vectors represent the following 

linear hyperplanes in EG(3,2) 

H3 = {0, 1, 2, 3} = {000, 001, 010, 011}, 

H2 = {0, 1, 4, 5} = {000, 001, 100, 101}, 

H1 = {0, 2, 4, 6} = {000, 010, 100, 110}. 

One can immediately verify that these sets are closed w.r.t. the ⊕-operation (cf. (5.4)), as they 

should be since they are linear spaces. 

From Theorem 5.3, we know that the dimension of R(1, 3) is 4, and hence we can take 

as basis the four independent words 1, v1, v2, v3. Therefore, the general codeword of this code 

can be written as 

a01 + a1v1 + a2v2 + a3v3, 

with ai ∈ GF(2). We can also choose a minimum-weight basis according to Theorem 5.6, e.g. 

{v1, v2, v3, 1 + v1}. 

The linear hyperplane H3 has one coset which can be written (cf. (5.4)) e.g. as H3 ⊕ 4. 

Together, H3 and H3 ⊕ 4 cover EG(3, 2), and hence P3 = {H3, H3 ⊕ 4} is a parallel system of 

2-flats of this geometry (cf. Section 5.1). Similarly, P1 = {H1, H1 ⊕ 1} and P2 = { H2, H2 ⊕ 

2} are parallel systems of EG(3,2). 

Similarly, we can construct parallel systems of 1-flats of EG(3,2). Since a 1-flat is a line, 

it is determined by two points of EG(3,2). E.g. the pair of points {0, 1} constitutes a line 

which passes through the origin, so L1 = {0,1} is a linear 1-dimensional subspace of EG(3,2). 

Its cosets L2 = {2, 3}, L3 = {4, 5} and L4 = {6,7} are non-linear 1-dimensional subspaces. 

Altogether, the family P = {{0,1}, {2,3}, {4,5}, {6,7}} is a parallel system of 1-flats, 
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partitioning the points of EG(3,2) in 4 classes of 2 points. 

Our second example is the Reed-Muller code R(2, 4), based on EG(4, 2). The points of 

EG(4,2) are the 24 quadruples x = (x1, x2, x3, x4) ∈ GF(2)4. The code is generated by the 

characteristic vectors of the hyperplanes 

H4 = {0, 1, 2, 3, 4, 5, 6, 7}, 

H3 = {0, 1, 2, 3, 8, 9, 10, 11}, 

H2 = {0, 1, 4, 5, 8, 9, 12, 13}, 

H1 = {0, 2, 4, 6, 8, 10, 12, 14}. 

To obtain all codewords, one has to take all polynomials of these characteristic vectors of 

degree 2 or less. From Theorem 5.3, it follows that the dimension of R(2, 4) is equal to 11. 

Fig. 5.5 shows the 11 spanning vectors of R(2, 4) which correspond to point products of 

v1, v2, v3 and v4 of degree 0, 1 and 2. Each codeword of R(2,4) is a linear combination of these 

vectors, and hence it corresponds to a polynomial in v1, v2, v3 and v4 of degree at most 2. 

                           0    1    2     3     4     5     6     7    8    9   10  11 12  13  14  15     
 1               1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 
         v4         1    1    1     1    1    1     1    1     0    0     0     0     0    0     0    0 
       v3                   1   1   1   1   0  0   0   0   1  1  1   1  0  0 0 0 
     v2                    1    1    0     0     1     1     0     0    1    1     0    0    1     1    0    0 
   v1                      1    0    1     0    1    0    1     0    1     0     1     0    1     0     1     0 
       v3 ⋅ v4         1    1   1   1   0   0   0   0   0   0   0   0   0  0 0 0   
     v2   ⋅ v4          1   1   0    0   1    1   0    0   0   0   0   0  0  0 0 0      
   v1     ⋅ v4          1    0    1    0    1   0    1   0    0   0   0   0  0  0 0 0 
     v2 ⋅ v3            1    1   0   0    0   0   0    0   1   1   0  0  0  0 0 0 
      v1   ⋅ v3           1    0    1     0    0    0     0     0    1     0    1     0     0    0     0     0 
   v1 ⋅ v2              1    0    0     0    1     0    0    0     1     0    0     0    1     0     0     0 

Fig. 5.5 

From Theorem 5.3 and 5.4, it follows that R(2, 4) is a [16, 11, 4]-code which can also be 

spanned by a minimum-weight basis, as we shall see in the next section. 

5.4. Snakes Embedded in EG(3,2) 

In this section, we discuss a relationship between the theory of Euclidean geometries as 

touched upon in Section 5.3, and the method to construct snake-in-the-box codes which was 

introduced in Section 4.1 of this thesis. 

Our starting point is the parallel system of lines (cf. (5.4)) 

P1 = {L1, L2, L3, L4} = {{0, 1}, {2, 3},{4, 5},{6, 7}},                   (5.7) 

which partitions the set of points of EG(3,2) in four equivalence classes of size 2. Next, we 

consider a set B of 2-flats which intersect each of the four lines in precisely one point. As 

usual, we identify these 2-flats with their supports, as we did with the 1-flats in (5.7) above. 

Because of the role they are going to play in the next, we call such 2-flats blocks, and instead 

of the parentheses usually used to denote an unordered set, we shall write round brackets to 
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indicate that the integers of the set are ordered from left to right. So, the block 

Bi = (i1, i2, i3, i4) 

represents a 2-flat of EG(3, 2) containing the points 
1
,iP

2
,iP

3i
P and

4
.iP  We also speak of an 

ordered block (cf. [34-39]) 

The integers in Bi are arranged such that ij is the point of intersection with the line Lj, 1 ≤ 

j ≤ 4. Hence, we can say that each integer of the set {0, 1, …, 7} has a fixed position in any of 

the blocks of B, in which it occurs. In Chapter 4, we called such a family B a block list which 

satisfies the fixed-position property, and we said that the blocks of B have a fixed internal 

order. In general, we are interested in block lists the blocks of which correspond to the vectors 

of a minimum-weight-d basis spanning a linear [n, k, d]-code. Here, we take d = 4. 

It will appear in the next that a Reed-Muller code of type R(m – 2, m) is an appropriate 

code to yield such a block list. From Theorem 5.3, we know that R(m – 2, m) has minimum 

weight 4, and according to Theorem 5.5, we can always find a minimum-weight basis. The 

only thing yet to find out is whether we can select a minimum-weight basis the corresponding 

blocks of which satisfy the fixed-position property. 

The following list shows all blocks of EG(3,2) which intersect each of the lines of P in 

precisely one point. 

                             L1    L2    L3   L4 

   v1                               (0,     2,     4,     6) 
 1  + v1   + v3            (0,     2,     5,     7) 
 1   +  v1 +  v2            (0,     3,     4,     7) 
   v1 +  v2 +  v3      (0,     3      5,     6) 
 1  +  v1               (1,     3,     5,     7) 
         v1   +  v3             (1,     3,     4,     6) 
         v1 + v2      (1,     2      5,     6) 
 1  +  v1 + v2 + v3           (1,     2,     4,     7) 

Fig. 5.6 

We remark that the total number of 2-flats in EG(3,2) equals 23–2 
3

2

⎡ ⎤
⎢ ⎥⎣ ⎦  = 14, according to 

Theorem 5.1. Hence, there are 6 blocks which do not satisfy the fixed-position property. It will 

be obvious that if a block satisfies the fixed-position property, then its only coset does, and 

vice versa. Fig. 5.7 below shows the set of all blocks partitioned in pairs of blocks which are 

cosets of each other. The first four pairs satisfy the fixed-position property with respect to the 

parallel system (5.7). 

B1 = (0, 2, 4, 6),           B1 ⊕ 1 = (1, 3, 5, 7) 
B2 = (0, 2, 5, 7),           B2 ⊕ 1 = (1, 3, 4, 6) 
B3 = (0, 3, 4, 7),           B3 ⊕ 1 = (1, 2, 5, 6) 
B4 = (0, 3, 5, 6),           B4 ⊕ 1 = (1, 2, 4, 7) 
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B5 = (0, 1, 2, 3),           B5 ⊕ 6 = (4, 5, 6, 7) 
B6 = (0, 1, 4, 5),           B6 ⊕ 2 = (2, 3, 6, 7) 
B7 = (0, 1, 6, 7),           B7 ⊕ 4 = (2, 3, 4, 5) 

Fig. 5.7 

It appears that we can select a set of four different blocks satisfying the fixed-position 

property, such that the corresponding vectors are independent, and which therefore constitute a 

minimum-weight basis of R(1, 3). We shall speak of a set of independent blocks. Two such 

sets of independent blocks satisfying the fixed-position property are: 

B1 = (0, 3, 4, 7),            B’1 = (1, 3, 5, 7), 
B2 = (1, 2, 5, 6),            B’2 = (0, 2, 4, 6), 
B3 = (1, 3, 4, 6),            B’3 = (0, 3, 5, 6), 
B4 = (1, 3, 5, 7).            B’4 = (0, 3, 4, 7), 

Fig. 5.8 

where we relabeled or renamed the blocks chosen from Fig. 5.7. This labeling is such that the 

(external) order of the blocks meets the conditions of “well-ordered” (cf. Definition 4.3 in 

Section 4.2). 

From Corollary 4.3, it now follows that the first list 

B = (B1, B2, B3, B4)                                               (5.8) 

generates a symmetric snake-in-the-box code (snake) by applying transition sequence (4.8) 

with k = 4. The complete sequence is 

4S (B) =   B1 B2 B1 B3 B1 B2 B1 B4 B1 B2 B1 B3 B1 B2 B1 B4 

=  0, 3, 4, 7, 1, 2, 5, 6, 0, 3, 4, 7, 1, 3, 4, 6, 0, 3, 4, 7, 1, 2, 5, 6, 0, 3, 4, 7, 1, 3, 5, 7, 
    0, 3, 4, 7, 1, 2, 5, 6, 0, 3, 4, 7, 1, 3, 4, 6, 0, 3, 4, 7, 1, 2, 5, 6, 0, 3, 4, 7, 1, 3, 5, 7. 

In the table below, the list of codewords of R(1,3) is presented. 

1.  00000000,            9.  11110000, 
2.  10011001,          10.  01101001, 
3.  11111111,          11.  00001111, 
4.  01100110,          12.  10010110, 
5.  00111100,          13.  11001100, 
6.  10100101,          14.  01010101, 
7.  11000011,          15.  00110011, 
8.  01011010,          16.  10101010, 

Fig. 5.9 

For the complete list of the words that constitute the snake itself, we refer to Appendix B. The 

table in Fig. 5.9 shows clearly that the list of the codewords of R(1, 3), and hence also of the 

snake, is symmetric, since the second half is obtained from the first half by translating this half 

over the vector 11110000. 

Notice that the two lists in Fig.5.8 produce distinct but equivalent snakes which can be 

transferred into each other by relabeling or renaming the integers. Other choices of four 

independent blocks from the set of blocks in Fig. 5.7 will give rise to different snakes. 
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However, all such snakes are based on the parallel system P defined in (5.7). 

Let us consider in more detail the snake generated by the block list 

B’ = (B’1, B’2, B’3, B’4)                                                  (5.9) 

from Fig.5.8. Just like (5.8), this block list generates a snake in Q8 of length 26 = 4⋅24. The 

binary code generated by the basis vectors b’1, b’2, b’3 and b’4 which correspond to the blocks 

in (5.9) is an [8, 4, 4]-code (the Reed-Muller code R(1, 3)), which is identical to the extended 

Hamming code 3
extH . 

By removing block B’1 from the block system (5.9),  we are left with a smaller system 

which of course is still well-ordered. By Corollary 4.3 this system generates a snake of length 

25, while the underlying code is an [8, 3, 4]-code. However, the effective length has decreased 

by 1 due to the fact that B’1 is the only block in (5.9) containing the integer 1. Therefore, 

although the snake is in Q8, it actually is in a subgraph of Q8 which is isomorphic to Q7. 

If we omit the bit position 1 from the codewords (puncturing the code), we obtain a 

snake-in-the-box of length 25 in Q7, and the underlying linear code has parameters [7, 3, 4]. 

We can continue by omitting block B’4 which is the only block containing the integer 7. After 

puncturing with respect to bit position 7, we obtain a snake in Q6 generated by B’2
 = (0, 2, 4, 6) 

and B’3 = (0, 3, 5, 6), which is of length 24, while the underlying code is a [6, 2, 4]-code. 

Finally, we can omit one of the two remaining blocks, say B’3. Our method introduced 

in Chapter 4 now provides us with a snake in Q6 with transition sequence 

1S (B’2) = 0, 2, 4, 6, 0, 2, 4, 6. 

Since the removed block B’3 contains two integers 3 and 5, which do not occur in the 

remaining block system (B’2), we now can puncture with respect to these two positions. So, 

the resulting snake of length 23 not only is situated in a subgraph of Q6 isomorphic to Q5, but it 

also can be considered as a snake of length 23 in Q4 (by puncturing twice). The underlying 

codes of the snakes in Q5 and in Q4 are a [5, 1, 4]-code and a [4, 1, 4]-code, respectively. The 

latter code is the Reed-Muller code R(0, 2), which is identical to the extended Hamming code 

2
extH . 

5.5 Snakes Embedded in EG(4, 2) 

Next, we shall construct snakes embedded in EG(4,2). In EG(4, 2), we introduce a 

parallel system of 2-dimensional subspaces (2-flats). Since such a subspace is isomorphic to 

the geometry EG(2,2) we call them planes. Similar to the parallel system of lines in EG(3, 2), 

we define 

P = {V1, V2, V3, V4} 

    = {{0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}, {12, 13, 14, 15}}.                                        (5.10) 

We remind the reader that V1 is the only linear subspace of EG(4,2) in P, whereas V2, V3 and 
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V4 are cosets of V1. 

One can easily verify that there are 16 linear 2-flats which intersect each of the 

subspaces V1, V2, V3 and V4 in precisely one point. These 2-flats - written as ordered blocks -  

are presented by the following list. 

V1     V2     V3     V4 
B1  =   (0,      4,      8,     12) 
B2  =   (0,      4,    10,     14) 
B3  =   (0,      4,    11,     15) 
B4  =   (0,      4,      9,     13) 
B5  =   (0,      5,      8,     13) 
B6  =   (0,      5,      9,     12) 
B7  =   (0,      5,    10,     15) 
B8  =   (0,      5,    11,     14) 
B9  =   (0,      6,      8,     14) 
B10  =   (0,      6,      9,     15) 
B11 =   (0,      6,    10,     12) 
B12  =   (0,      6,    11,     13) 
B13  =   (0,      7,      8,     15) 
B14  =   (0,      7,      9,     14) 
B15 =   (0,      7,    10,     13) 
B16  =   (0,      7,    11,     12) 

Fig. 5.10 

Each of the subspaces Bi has three disjoint cosets Bi ⊕ 1, Bi ⊕ 2, Bi ⊕ 3 which also 

intersect each of the Vj, j ∈ {1, 2, 3, 4}, in precisely one point. So, altogether we have 64 

blocks which satisfy the fixed-position property. In order to construct a snake based on an 

appropriate basis of R(2, 4), we have to select 11 of these 64 blocks, which are independent 

and which can be well-ordered in the sense of the previous section. 

The following procedure to find 11 independent blocks seems ‘obvious’. First we select 

8 independent blocks from the list in Fig. 5.10, and next we take 3 cosets of one of these 

blocks. Along these lines, we obtain e.g. the list of independent blocks in Fig. 5.11. 

B1  =   (0, 4,   8, 12) 
B5  =   (0, 5,   8, 13) 
B9  =   (0, 6,   8, 14) 
B11 =   (0, 6, 10, 12) 
B13 =   (0, 7,   8, 15) 
B14 =   (0, 7,   9, 14) 
B15  =   (0, 7, 10, 13) 
B16   =   (0, 7, 11, 12) 

B1  ⊕ 1  =   (1, 5,   9, 13) 
B1  ⊕ 2  =   (2, 6, 10, 14) 
B3  ⊕ 3  =   (3, 7, 11, 15). 

Fig. 5.11 

By rearranging these blocks and by relabeling their indices, we obtain the list B presented in 
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Fig. 5.12. 

 B1 = ( 3, 7, 11, 15), 
 B2 = ( 2, 6, 10, 14), 
 B3 = ( 1, 5,   9, 13), 
 B4 = ( 0, 4,   8, 12), 
 B5 = ( 0, 5,   8, 13), 
 B6 = ( 0, 6,   8, 14). 
 B7 = ( 0, 7,   8, 15), 
 B8 = ( 0, 7,   9, 14), 
 B9 = ( 0, 7, 10, 13), 
B10 =  ( 0, 7, 11, 12), 
B11 =  ( 0, 6, 10, 12), 

Fig. 5.12 

The sublist B1, B2, …, B10 satisfies the condition for being well-ordered (after having 

permuted the integers 0, 1, …, 15 in an appropriate way). However, when adding B11, the list 

is not well-ordered anymore. The integer 62 (= 6), which is on the second position in block B6, 

now also occurs in B11. Since 64 (= 14) occurs in B8, both integers 62 and 64 occur in blocks Bl, 

l > 6, and hence condition (iii) of the definition of a well-ordered block system is not satisfied.  

A computer check shows that the ordered code generated by transition sequence (4.8), 

based on the block system of Fig. 5.12, is not a snake. In fact, the 3327-th word 

0000001101011000 and the 4094-th word 0000001100011000 differ at the 10-th position. 

Another pair of words at distance 1 is the (4096 + 3327) = 7423-th word b10 + b11 + w3347 = 

0000000001101000 and the (4096 + 4094) = 8190-th word b10 + b11 + w8090 = 

0000000000101000. This of course, is due to the symmetry of the transition sequence. 

Because of the above considerations, it will be clear that by omitting block B11, we 

obtain a list which is well-ordered, and hence, by Corollary 4.3, generates a snake of length 

4⋅210 = 212 in Q16. However, we prefer to have a snake of length 213 in Q16. 

We did not succeed, by permuting the blocks B1, B2, …, B11, in finding a block system 

which does satisfy the “well-ordering” condition. However, certain permutations of the blocks, 

although not well-ordered, give rise to block lists which do generate a snake, as was verified 

by a computer program. We found this to be the case e.g. for the following block list. 

B1 =   ( 3, 7, 11, 15), 
B2 =   ( 2, 6, 10, 14), 
B3 =   ( 1, 5,   9, 13), 
B4 =   ( 0, 4,   8, 12), 
B5 =   ( 0, 6, 10, 12), 
B6 =   ( 0, 7,   8, 15), 
B7 =   ( 0, 5,   8, 13), 
B8 =   ( 0, 7, 10, 13), 
B9 =   ( 0, 7, 11, 12), 
B10=   ( 0, 7,   9, 14), 
B11=   ( 0, 6,   8, 14). 

Fig. 5.13 
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It turned out, by applying a computer program, that if one substitutes k = 11 and block Bi 

from Fig. 5.13 for each integer i, 1 ≤ i ≤ 11, in sequence (4.8), the result is a transition 

sequence for a snake of length 4.211 = 213. This example shows that the condition of being 

well-ordered for a block list is sufficient to construct a snake, but not necessary. That the list 

of Fig. 5.13 indeed generates a snake can also be proved by verifying that the conditions of 

Theorem 4.2 hold. These conditions are not only sufficient, but necessary as well. 

Theorem 5.7 

The block list of Fig.5.13 generates a snake in Q16 of length 213. 

Proof. If one leaves out block B5 from the list in Fig. 5.13, the remaining list is well-ordered. 

So, we only have to verify conditions (i) − (iv) of Theorem 4.2 for i = 6. The only codewords c 

of weight 4 which can be written as (4.13) with |X| odd, are the codewords with support  

{0, 6, 10, 12} 
and  

{0, 6, 11, 13}, 

which are not of one of the types (i) − (iv).                                                                                 □ 

An alternative proof can be given by applying Theorem 4.4, since the list of Fig.5.13 is 

lexicographically ordered. 

Next, we want to construct a snake of length 212 in Q15. In order to obtain such a snake, 

we could remove a block from the block list in Fig.5.13 containing precisely one integer which 

does not occur in the other blocks. Blocks B1, B2, B3 and B4 all satisfy this condition. However, 

when removing one of these blocks, the remaining list of 10 blocks is not well-ordered, and so 

we can not apply Corollary 4.3. Therefore, we change the list of Fig.5.12 in the following way. 

Block B1 of Fig. 5.12 is replaced by B1 ∆ B7 ∆ B10 giving the list in Fig. 5.14, where we 

also relabeled the blocks. The notation A ∆ B ≔ {x | x ∈ A or x ∈ B, x ∉ A ∩ B}, stands for the 

symmetric difference of the sets A and B. 

B1  =   ( 3, 7,   8, 12), 
B2  =   ( 2, 6, 10, 14), 
B3  =   ( 1, 5,   9, 13), 
B4  =   ( 0, 4,   8, 12), 
B5  =   ( 0, 5,   8, 13), 
B6 =   ( 0, 6,   8, 14). 
B7  =   ( 0, 7,   8, 15), 
B8 =   ( 0, 7,   9, 14), 
B9  =   ( 0, 7, 10, 13), 
B10 =   ( 0, 7, 11, 12), 
B11 =   ( 0, 6, 10, 12), 

Fig. 5.14 
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Since now B7 is the only block that contains 15, we obtain a block list that corresponds to a 

linear [15, 10, 4]-code when omitting this block. However, the remaining blocks are not well-

ordered, since the integers 62 (= 6) and 64 (= 14) both occur in blocks Bl, l > 6. 

We now change the internal order in the blocks by interchanging the integers i3 and i4 

for all i. Moreover, we interchange blocks B9 and B10. Omitting now block B7 provides us with 

the list of Fig. 5.15. 

B1 =   ( 3, 7, 12,   8), 
B2 =   ( 2, 6, 14, 10), 
B3 =   ( 1, 5, 13,   9), 
B4 =   ( 0, 4, 12,   8), 
B5 =   ( 0, 5, 13,   8), 
B6 =   ( 0, 6, 14,   8). 
B7 =   ( 0, 7, 14,   9), 
B8  =   ( 0, 7, 12, 11), 
B9 =   ( 0, 7, 13, 10), 
B10 =   ( 0, 6, 12, 10), 

Fig. 5.15 

This list is well-ordered and hence it generates a snake of length 212 in Q15. 

In a similar way as in Section 5.4, we now can reduce the list in Fig. 5.15 to get snakes 

in smaller hypercubes. Successively, we remove blocks B1, B2, B3, B4, B5 and B6. The 

remaining lists give rise to snakes in Qi of length 2i−3, for i = 14, 13, …, 9, respectively, after 

puncturing with respect to the integers 3, 2, 1, 4, 5, 8. The underlying codes of the snakes are 

[14, 9, 4]-, [13, 8, 4]-, …, [8, 4, 4]-codes, respectively. We are left now with the list (B7, B8, 

B9, B10). 

If we remove block B9 and puncture with respect to the integer 13, our construction 

gives a snake of length 25 in Q8. However, we can do better by removing B7 instead of B9, 

since B7 contains two integers, 14 and 9, which are not present in the other three blocks. 

Proceeding like this gives a snake of length 25 in Q7 which has the Hamming [7, 3, 4]-code as 

its underlying linear code. Such a snake was also constructed in Section 5.4 when we started 

from the Reed-Muller code R(1, 3). 

An alternative way to obtain a snake in Q15 of length 212 is to remove B1 from the list of 

Fig. 5.13, as suggested already on the previous page, and to apply Theorem 4.4. Similarly, we 

obtain snakes in Qi, i = 14, 13, …, 9, by removing B2, B3, B4, B6, B7, B9, respectively, every 

time applying Theorem 4.4. 

As we noticed already, the snake of length 213 in Q16 generated by the list of Fig. 5.13, 

was first found by computer search. Only then it was verified being a snake by applying 

Theorem 2.2. However, we can also use this theorem for a straightforward construction of 

snakes, especially when a well-ordered sublist is at hand. We shall illustrate this by the 

following examples. 
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Example 5.5 

We rearrange the blocks of the list in Fig. 5.13. 

B1 = ( 3, 7, 11, 15), 
B2 = ( 2, 6, 10, 14), 
B3 = ( 1, 5,   9, 13), 
B4 = ( 0, 4,   8, 12), 
B5 = ( 0, 6, 10, 12). 
B6 = ( 0, 7,   8, 15), 
B7 = ( 0, 7,   9, 14), 
B8 = ( 0, 5,   8, 13), 
B9 = ( 0, 7, 10, 13), 
B10 = ( 0, 7, 11, 12). 
B11 = ( 0, 6,   8, 14). 

Fig. 5.16 

The above list is still lexicographically ordered with respect to the integers of I1. So we can 

apply Theorem 4.4. One can immediately verify that c = bi−1 does not meet the conditions (i) 

and (ii) of that Theorem, since if (i − 1)2 = i2 then (i − 1)4 ≠ j4 for j > i and if (i − 1)4 = i4 then 

(i − 1)2 ≠ j2 for j > i. Hence, a codeword (cf. (4.13)) 

c = bi−1 + l i lb≥∑  
as mentioned in the Theorem, has to consist of at least three basis vectors if it is of type (i) or 

(ii). From the structure of the list in Fig. 5.16, it is clear that for such a vector c we must have i 

= 6 and that W = sup c has to be of the form {0, 7, …, …}, {0, 6, …, …} or {0, 5, …, …}. 

However, if W = {0, 7, …, …}, it would follow that c = bl for l ∈ {6, 7, 9, 10}, which 

contradicts our earlier conclusion w.r.t. c. If W = {0, 6, …, …}, the only possibilities are W = 

B6 ∆ B7 ∆ B11 = {0, 6, 9, 15} and W = B5 ∆ B9 ∆ B10 = {0, 6, 11, 13}. In the first case, we would 

have i = 7, but 72 ≠ 6 and 74 ≠ 15, while in the second case i = 6, but 62 ≠ 6 and 64 ≠ 13. 

If W = {0, 5, …, …}, the only possibilities are W = {0, 5, 10, 15}, W = {0, 5, 9, 12}, and 

W = {0, 5, 11, 14}. We can write B6 ∆ B8 ∆ B9 = {0, 5, 10, 15}, yielding i = 7, but 72 ≠ 5, 74 ≠ 

15. Similarly, B5 ∆ B7 ∆ B8 ∆ B9 ∆ B11 = {0, 5, 9, 12} yielding i = 6, but 62 ≠ 5, 64 ≠ 12. Finally, 

B5 ∆ B8 ∆ B9 ∆ B10 ∆ B11 = {0, 5, 11, 14} yields i = 6, but 62 ≠ 5, 64 ≠ 14. 

So in all cases we proved that C does not contain words of type (i) or (ii) of Theorem 4.4, and 

we may conclude that the list in Fig.5.16 generates a snake S. 

Example 5.6  

Starting from the list of Fig. 5.16, we shall now try to obtain permutations of this list 

which also generate a snake when we apply our construction. We restrict ourselves to 

permutations of the blocks B4 until B11. According to Theorem 4.4, in order to get a snake, 

these blocks must not generate a support W corresponding to a codeword c = bi−1 + l i lb≥∑  

such that 
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( i) W = {0, i2, p3, j4}, or 

(ii) W = {0, j2, p3, i4}. 

In addition to the basis blocks themselves, we have the following supports which are of 

the above type: 

a.  {0, 6, 11, 13} = {0, 6, 10, 12} ∆ {0, 7, 11, 12} ∆ {0, 7, 10, 13}; 

b.  {0, 6,   9, 15} = {0, 6,   8, 14} ∆ {0, 7,   9, 14} ∆ {0, 7,   8, 15}; 

c.  {0, 5, 10, 15} = {0, 5,   8, 13} ∆ {0, 7, 10, 13} ∆ {0, 7,   8, 15}; 

d.  {0, 5, 11, 14} = {0, 5,   8, 13} ∆ {0, 6, 10, 12} ∆ {0, 6,   8, 14} ∆ {0, 7, 10, 13} 

∆ {0, 7, 11, 12}; 

e.  {0, 5,   9, 12} = {0, 5,   8, 13} ∆ {0, 6, 10, 12} ∆ {0, 6,   8, 14} ∆ {0, 7,   9, 14} 

∆ {0, 7, 10, 13}, 

f.  {0, 4,   9, 13} = {0, 4,   8, 12} ∆ {0, 6,  8, 14} ∆ {0, 6,  10, 12} ∆ {0, 7,   9, 14}  

∆ {0, 7, 10, 13}, 

g.  {0, 4, 10, 14} = {0, 4,   8, 12} ∆ {0, 6,  8, 14} ∆ {0, 6,  10, 12} 

h.  {0, 4, 11, 15} = {0, 4,   8, 12} ∆ {0, 7,   8, 15} ∆ {0, 7, 11, 12}. 

We build up a block list in the following heuristic way. 

Let us start e.g. by defining B4 = {0, 6, 10, 12}. Next we choose B5 = {0, 7, 8, 15}. This 

choice guarantees that there is no support W of type (i) or (ii) which contains B4 in its block 

decomposition, i.e. supports a, d, e, f and g as well as B4 itself will not give rise to a violation 

of the conditions of Theorem 4.4. The reason is that B5 does neither contain the second nor the 

fourth integer of any of these supports. Our next choice is B6 = {0, 6, 8, 14}, which eliminates 

the supports B5, b and c. Though the second integer of support b, i.e. 6, occurs in B6, it still 

satisfies the condition of Theorem 4.4 since 15 − its fourth integer − does not occur in the 

remaining blocks. 

Proceeding in this way, we find the block list 

B1 = ( 3, 7, 11, 15), 
B2 = ( 2, 6, 10, 14), 
B3 = ( 1, 5,   9, 13), 
B4 = ( 0, 6, 10, 12), 
B5 = ( 0, 7,   8, 15), 
B6 = ( 0, 6,   8, 14), 
B7 = ( 0, 7,   9, 14), 
B8 = ( 0, 5,   8, 13), 
B9 = ( 0, 7, 10, 13), 
B10 = ( 0, 4,   8, 12), 
B11 = ( 0, 7, 11, 12). 

Fig. 5.17 
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Since this list satisfies the condition of Theorem 4.4, it generates a snake. Actually, the applied 

rules constitute a generalization of the well-ordering criterion as formulated in Corollary 4.3. 

We also remark that after having chosen B6, the words with supports a until h do not play a 

role anymore. So, we only have to take care that when choosing Bi, the implications i2 = 

(i − 1)2 ⇒ i4 ≠ l4 and i4 = (i − 1)4 ⇒ i2 ≠ l2, l > i, are satisfied. 

Finally, we present two more examples of block lists which generate a snake in Q16 of 

length 213. In the next chapter we shall apply these examples for the construction of a cover of 

Q16 with eight snakes. 

Example 5.7 

Consider the following list B of eleven independent blocks satisfying the fixed-position 

property and forming a basis for the Reed-Muller code R(2, 4). 

B1 = ( 3, 5, 11, 13), 
B2 = ( 2, 5, 11, 12), 
B3 = ( 1, 5, 11, 15) 
B4 = ( 0, 5, 11, 14), 
B5 = ( 0, 6,   8, 14), 
B6 = ( 0, 6, 10, 12), 
B7 = ( 0, 7, 10, 13), 
B8 = ( 0, 4, 11, 15). 
B9 = ( 0, 7,   8, 15), 
B10 = ( 0, 6,   9, 15), 
B11 = ( 0, 6, 11, 13). 

Fig. 5.18 

Again, the sublist (B1, B2, …, B10) is well-ordered. Adding B11 destroys that property. 

The only reason for this is that the integer 74 ≔ 13 now occurs in a block Bl with l = 11 > 7. 

Nevertheless, the list B defines a transition sequence 11S (B) which generates a snake of 

length 213 in Q16. To see this, one only has to verify that there are no codewords 

c = 1i−b  + l
l i≥
∑b  

of type (i) or (ii) (cf. Theorem 4.4 and Example 5.5) for i = 8. However, the only codewords of 

type (i) or (ii) which are generated by the basis vectors b7, b8, b9, b10 and b11 are these basis 

vectors themselves, as one can verify immediately. Since b7 is not of type (i) or (ii) (72 ≠ 82 

and 74 ≠ 84), we are done. That the above list really generates a snake in Q16 was confirmed by 

a computer program. 

By similar arguments, we can show that the following list also generates a snake of 

length 213 in Q16. 

B1 = ( 3, 7, 11, 15), 
B2 = ( 2, 6, 10, 14), 
B3 = ( 1, 5,   9, 13), 
B4 = ( 0, 4,   8, 12), 
B5 = ( 0, 5,   8, 13), 
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B6 = ( 0, 6,   8, 14), 
B7 = ( 0, 7, 10, 13), 
B8 = ( 0, 7,   8, 15), 
B9 = ( 0, 7,   9, 14), 
B10 = ( 0, 7, 11, 12). 
B11 = ( 0, 6, 10, 12). 

Fig. 5.19 

5.6 A Sufficient Condition for a Block List to Generate a Snake 

Inspired by Examples 5.5, 5.6 and 5.7, we are able to formulate a sufficient condition 

for a block list corresponding to an ordered basis of an [n, k, 4]-code C, to construct a snake 

based on that block list. This condition is formulated only in terms of the blocks themselves, 

contrary to the conditions of Theorem 4.2 and Theorem 4.4. 

Theorem 5.8 

Let B = (B1, B2, …, Bk) be a block list corresponding to an ordered minimum-weight basis 

of an [n, k, 4]-code C, satisfying the fixed-position property. Let furthermore B be ordered 

lexicographically with respect to the integers of I1, and let m be the integer as determined 

by Definition 4.2, 1 ≤ m ≤ k. Then B can be transformed to a list B’ corresponding to an 

equivalent basis of C such that B’ generates a snake of length 2k+2, if each block Bj of B 

with m < j < k, satisfies at least one of the following conditions : 

(i)  the integer j2 does not occur in any of the blocks Bl, l > j; 

(ii)  the integer j4 does not occur in any of the blocks Bl, l > j; 

(iii) the integer j3 does not occur in any of the blocks Bl, l > j and |Bj ∩ Bj+1| = 1. 

Proof. We shall prove that the conditions of Theorem 4.4 can always be met by transforming 

B into an appropriate equivalent block list B’. 

From Definition 4.2(i) we know that the m − 1 integers 11, 21, …, (m − 1) 1 are all 

distinct and that  m1  = (m + 1) 1 = … = k 1. If all blocks Bj, m < j < k, satisfy at least one of the 

conditions (i) and (ii), the list is well-ordered and does not need to be changed (cf. Corollary 

4.3).  

Suppose, there is a block Bi, m < i, which only satisfies condition (iii) and let there be a 

codeword (cf. (4.13)) 

c = bi−1 + l i lb≥∑  

with sup c = {m1, i2, p3, j4}, m < i < j < k (a support of type (i) in Theorem 4.4). This cannot 

happen if (i – 1)2 or (i – 1)4 does not occur in blocks Bl, l ≥ i (cf. the proof of Corollary 4.3). 

So, (i − 1)3 does not occur in blocks Bl, l ≥ i, while (i – 1)2 and (i – 1)4 do. It follows that p3 = 

(i − 1)3 and p = i − 1.  
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Now c ≠ bi−1, since c = bi−1 would imply (i – 1)2 = i2 contradicting |Bj ∩ Bj+1| = 1. We 

define b’i−1 ≔ c and replace Bi−1 in the block list B by B’i−1, thus providing us with a new list 

B’. This list B’ also satisfies the condition that each block contains at least one integer that 

does not occur in blocks with higher index because (i − 1)3 ∈ B’i−1  and (i − 1)3 ∉ B’l, l ≥ i.  

The relation c = bi−1 + l i lb≥∑  must now be written as c’ ≔ bi−1 = b’i−1 + l i lb≥∑  with 

sup c’ = {m1, (i − 1)2, (i − 1)3, (i − 1)4}. Since i2 ≠ (i − 1)2 and i4 ≠ (i − 1)4, this support is not of 

type (i) or (ii) with respect to the new list B’.  

We would have obtained a similar result if we had made the assumption  

sup c’ = {m1, j2, i3, i4}, m < i < j < k. 

Hence, by carrying out this process for i = m + 1, m + 2, …, k, and if necessary replacing Bi−1 

by an equivalent block B’i−1, we can transform B into a block list B’ which satisfies the 

condition of Theorem 4.4.                                                                                                           □ 

As is clear from the statement as well as from the proof , Theorem 5.8 is sufficient but 

not necessary for a block list to generate a snake. The list of Fig. 5.13 provides us wih a 

counter example. 

Remark 

The condition of Theorem 5.8 implies that the code C has a minimum-weight basis in 

echelon form with the additional property that if j3 ∈ I3 is the only pivot of bj, one has 

║bj + bj+1║ = 6. 

For examples, we refer to Section 8.4.
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In this Chapter, we shall discuss a number of theorems dealing with so-called 

translations of snakes, where first a snake is constructed by the method of Chapter 5, and next 

this snake is translated over some fixed vector in GF(2)n. More precisely, we shall derive 

criteria when such translated snakes are disjoint with each other. In the proofs, we shall exploit 

the (partial) linear character of the snakes produced by our method. 

6.1 Conditions for Disjoint Translated Snakes 

It is obvious that if we apply a transition sequence of a snake S starting with a word t 

different from the zeroword 0, we again obtain a snake. Since this snake can be obtained by 

addition of t to all words of S, we denote it by S + t, and we call this snake a translation of S 

over the vector t. More precisely, if we start with a snake 

S = (w0, w1, …, wL),                                                       (6.1) 
then 

S + t = (w0 + t, w1 + t, …, wL + t).                                            (6.2) 

An obvious question is whether S and S + t are disjoint (i.e. whether they have no 

common words). In this section, we shall study this question with respect to the snakes which 

are produced by the method of Chapter 5, and which are based on a linear [n, k, 4]-code. In the 

next, the vector ei stands for the unit vector with a ‘one’ on position i and zeros elsewhere, for 

0 ≤ i ≤ n − 1, just like in Chapter 4 and 5, and we label the positions in a snakeword of length 

n from 0 until n − 1, from left to right.  

Throughout this  Chapter,  and also in Chapters 7 and 8,  we shall use in the formulation 

of our theorems and in the text, labels pi, qj, …, etc, for labeling unit vectors like ,
ipe  ,

jqe  …, 

etc. The meaning of this notation is that pi ∈ Ii,  1 ≤ i ≤ 4,  is the i-th element in block  Bp = (p1, 

p2, p3, p4) and qj ∈ Ij, 1 ≤ j ≤ 4, is the j-th element in block Bq = (q1, q2, q3, q4), for p, q ∈ {1, 2, 

…, k}. 

Theorem 6.1 

Let  B = (B1, B2, …, Bk) be a block list corresponding to an ordered minimum-weight basis 

of an [n,k,4]-code C satisfying the fixed-position property. Let S be the snake defined by the 

transition sequence kS (B). Then the snakes 

S + 
1pe +

3qe  

and 

S + 
2pe +

4qe  

are disjoint with S for all p, q ∈ {1, 2, …, k}. 
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Proof. In order to prove that S + 
1pe +

3qe  ∩ S = ∅, we shall prove the equivalent statement 

that there are no two vectors x and y in S such that x + y = 
1pe +

3qe .  

Assume that there exist such vectors x and y. Writing x = c’ + z’, with z’ ∈ {0, 
1
,ie  

1i
+e  

2i
e ,

1 2 3i i i+ +e e e } and y = c” + z”, with z” ∈ {0, 
4
,je

3 4j j+e e , 
2 3 4j j j+ +e e e }, and c’, c” ∈ C,  

like in the proof  of  Theorem 4.2,  and  making  use of the minimum weight 4 of C,  we obtain  
the following possibilities for W ≔ sup c with c  = c’ + c”:                       

1.  W = {i1, p1, q3, j4}; 

2.  W = {i1, i2, p1, q3}; 

3.  W = {p1, q3, j3, j4}; 

4.  W = {i1, p1, q3, j2, j3, j4}; 

5.  W = {i1, i2, i3, p1, q3, j4}; 

6.  W = {i1, i2, p1, q3, j3, j4}; 

7.  W = { i1, i2, i3,  p1, q3, j2, j3, j4}, 

where i,j ∈ {1, 2, …, k}. However, since kS (B) is constructed from a basis B, (of C) which 

satisfies the fixed position property, all these possibilities are eliminated by Lemma 3.1. So we 

may conclude that S and S + 
1pe +

3qe are disjoint snakes for all p, q ∈ {1, 2, …, k}. In the same 

way we can prove that S and S + 
2pe +

4qe are disjoint for all p, q ∈ {1, 2, …, k}.                    □ 

We remark that for p = q, we obtain Theorem 5 of [34]. 

Instead of translations over vectors 
1pe +

3qe  or 
2pe +

4qe , we can study, more generally, 

translations over a vector 
bpe +

cqe  with  b, c ∈ {1, 2, 3, 4},  p, q ∈ {1, 2, …, k}.    First we re- 

mark that for q > 1, the transition sequence kS (B) contains subsequences B1Bq and BqB1 due 

to the definition of the standard  Gray code. Hence, kS (B) contains consecutive pairs of 

integers 14, q1 and  q4, i1 and therefore S contains words (cf. the proof of Theorem 6.1)  x = c + 

41 ,e  y = c + 
1qe  and x = c + 

4
,qe  y = c + 

11e  (so w = c + c = 0).  This implies that   S ∩ S + 
41e + 

1qe ≠ ∅ and also S ∩ S + 
11e + 

4qe  ≠ ∅. 

Theorem 6.2 

Let S be the snake defined by kS (B) as defined in Theorem 6.1. Then the snakes S 

and S + 
bpe +

cqe , pb ≠ qc,  are disjoint if the code C (generated by B) does not 

contain any word c with support W = sup c which is of one of the following types: 
(i).  {i1, pb, qc, j4}; 
(ii). {i1, i2, pb, qc}; 
(iii).  {i1, pb, qc, j1}; 
(iv).  {i4, pb, qc, j4}; 
(v).  {i1, i2, pb, qc, j3, j4}, 

for 1 ≤ i, j ≤ k. 
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Proof. We first remark that the five sets in the Theorem should be interpreted as multisets 

which  may contain  some elements more than once  (cf.  also Remark 6.1).   It will be obvious 

that the relation S ∩ S + 
bpe +

cqe  = ∅ is equivalent to the statement  that there are no two vec- 

tors x and y in S such that x + y = 
bpe +

cqe . Assume that the snakes are not disjoint. 

Writing x = c’ + z’ and y = c” + z” and using the notations and arguments applied in the 

proof of Theorem 6.1, we obtain that W ≔ sup c = sup c’ + c” is one of the seven possibilities 

1 until 7 in that proof with p1 and q3 replaced by pb and qc. 

The possibilities 1, 2 and 6 are equivalent to (i), (ii) and (v), respectively. If W = {pb, qc, 

j3, j4}, then sup c + bj =  {j1, j2, pb, qc}, which is already covered by (ii) since both i and j are 

arbitrary integers of {1, 2, …, k}. If W = {i1, p1, q3, j2, j3, j4} (Case 4), then sup c + bj = {i1, pb, 

qc, j1}, which is equivalent to (iii). Similarly, Case 5 is equivalent to Case (iv). Finally, if sup c 

= {i1, i2, i3,  pb, qc, j2, j3, j4}, then sup c + bi + bj = {j1, pb, qc, j4}, and hence, Case 7 is 

equivalent to (i).                                                                                                                           □ 

Remark 6.1 

Again, we can conclude that the pairs {11, q4} and {14, q1} will never give rise to 

disjoint snakes, since Theorem 2.8 (ii) guarantees the occurrence of a support W = {11, 11, q4, 

q4} and W = {q1, q1, 14, 14} which both correspond to c = 0 ∈ C. 

In the following example, we take special values for the indices b and c in Theorem 6.2. 

Example 6.1 

Take b = 1 and c = 1. A sufficient condition that S ∩ S + 
1pe +

1qe = ∅ is that C does not 

contain words of the following three types (among the five types stated in Theorem 6.2): 

(iii) {i1, p1, q1, j1}; 

(iv) {i4, p1, q1, j4}; 

(v) {i1, i2, p1, q1, j3, j4}. 

Types (i) and (ii) stated in Theorem 6.2 can be omitted in this case, because of Lemma 4.1. 

Consider the snake S in Q16 defined by 11S (B), with B from Fig. 5.19. By computer 

search we found that w30 of S and w6462 of S + e0 + e1 are the same. By using the conversion rule 

which transforms i to wi, developed in Section 4.3, we shall compute these two words. 

Since 30 = 4⋅7 + 2, we first compute 

g7 = 0111 + 0011 = 0100 
and so 

w28 = b3 , 
or 

sup w28 = {1, 5, 9, 13}. 
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Similarly, we have 

g8 = 1000 + 0100 = 1100, 
and hence 

w32 = b3  + b4 
or 

sup w32 = {0, 1, 4, 5, 8,  9, 12, 13}. 
It also follows that 

w30 = w28  + 
14e + 

24e  

or 
sup w30 = {0, 1, 4, 5, 9, 13}. 

Next, we compute w6462. Since 6462 = 4⋅1615 + 2, we find` 

g1615 = 11001001111 + 01100100111 = 10101101000 
and so 

w6460 = b4 + b6 + b7 + b9 + b11, 
or 

sup w6460 = {0, 4, 9, 13}. 

When adding 1 to the binary representation of 1615, the carry stops at position 5. 

Therefore, 

w6462 = w6460 + 51
e + 52

e = w6460 + e0 + e1, 
and hence 

sup w6462 = {4, 5,  9, 13}. 
So, we find indeed that 

w30 = e0 + e1 +  w6462. 

In this example, we have to write 

x = w28  + 
14e + 

24e , 
and 

y = w6464 + 
35e + 

45e , 

c = w28 + w6464 = 
14e + 

24e + e0 + e1 + 
35e + 

45e  

= e0 + e4 + e0 + e1 + e8 + e13. 

This shows that C contains a word of type (v), and hence the condition of Theorem 6.2 is not 

satisfied. Therefore we are not entitled to apply this theorem. 

Remark 6.2 

We can not say at this moment that the occurrence of this word c with a support of type 

(v) proves that S ∩ S + e0 + e1 ≠ ∅, only by applying Theorem 6.2, since we did not prove that 

the sufficient condition of Theorem 6.2 is necessary as well. Probably, it is not. For a 

sufficient and necessary condition, we refer to Theorem 6.3, Theorem 6.6 and Example 6.2. 

Remark 6.3 

Considering Example 6.1, we have to take into account that in a support of type (v), it 

may happen that i1 = p1 and that the corresponding word is of weight 4, instead of weight 6. 
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As we already emphasized in Remark 6.2, the condition of Theorem 6.2 is a sufficient 

condition for the snakes S and S + 
bpe +

cqe being disjoint. Actually, we can formulate a 

stronger condition which is necessary as well. 

From the proof of Theorem 6.2, it will be obvious that not only C must not contain 

words c with W ≔ sup c of one of the types (i) − (v), but also that W = c(Bi, T’, Bj), where Bi, 

T’, Bj is a subsequence of kS (B) such that the indices i and j are the same integers as those 

occurring in W. This extra requirement is really restrictive, since it can happen that C contains 

a word c with sup c = {i1, pb, qc,  j4} (type (i)) but that there is no subsequence T = Bi, T’, Bj 

with c(T) = {i1, pb, qc,  j4}, due to the special properties of the external order of the blocks Bl, 1 

≤ l ≤ k, imposed by the Gray code (in our case, the standard Gray code). 

We emphasize that a similar remark cannot be made concerning the condition in 

Theorem 4.2. That condition is sufficient and necessary as well, due to the requirement that c 

is of the form (6.3), which shows a dependency on i ( < j). 

Theorem 6.3 

Let S be the snake defined by kS (B) like in Theorem 6.1. Then the snakes S and S + 

bpe +
cqe , pb ≠ qc, are disjoint if and only if kS (B) contains no subsequence  T = Bi, T’, Bj 

with c(T) is of one of the following types 

(i)  {i1, pb, qc, j4}; 

(ii) {i1, i2, pb, qc}; 

(iii)  {i1, pb, qc, j2, j3, j4}; 

(iv)  {i1, i2, i3, pb, qc, j4}; 

(v)  {i1, i2, pb, qc, j3, j4}, 

for 1 ≤ i, j ≤ k. 

Proof.  The proof of the  if-part is similar to the proof of Theorem 6.2.  Assume that the condi- 

tion of the Theorem holds. Suppose that S ∩ S + 
bpe +

cqe ≠ ∅.  Then  there exists  a subsequ- 

ence T = Bi, T’, Bj of kS (B) such that W ≔ c(T) is equal to one of the possibilities 1 until 7 

mentioned in the proof of Theorem 6.1 with p1 and q3 replaced by pb and qc, respectively. 

However, possibilities 1, 2, 4, 5 and 6 correspond to (i), (ii), (iii), (iv)  and (v), which do not 

occur by the conditions of the Theorem. 

Suppose that  W = {pb, qc, j3, j4} (possibility 3). If we consider T =  Bi, T’ (the sequence 

T without its last block), then W = c( T ) = {j1, j2, pb,  qc}. Now the complement of T in 

kS (B) is a subsequence 
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cT = Bj, T”,Bl 

with c( cT ) = W = sup (c + bj). However, such a subsequence cT of kS (B) does not exist, 

by assumption, since it is of type (ii). In a similar way we can eliminate possibility 7. Let c ∈ 

C have a support W = {i1, i2, i3, pb, qc, j2, j3, j4} = c(T) = c(Bi, T’, Bj). Then sup c + bi + bj = 

W =  {j1, pb, qc, i4} = c(Bj, T c, Bi). This is already covered by (i), since both i and j can take on 

any value from {1, 2, …, k}. 

As for the only-if part, we have to show that if the two snakes have an empty 

intersection, there does not exist a subsequence T = Bi, T’, Bj with c(T) of type (i), (ii), …, 

(v). Suppose there does exist a T with c(T) of type (i). Due to the structure of T, it  has a 

subsequence T =  i2, i3, i4, T’, j1, j2, j3 with c( T ) = {i1, pb, qc,  j4}\{i1, j4} = {pb, qc}. So, there 

exist words x and y in S such that x + y = 
bpe +

cq ,e  and hence the snakes are not disjoint, 

which contradicts our assumption. If T is of one of the other types (ii) − (v), we can argue 

similarly. We conclude that the condition of the Theorem is also necessary.                            □ 

Like in Theorem 6.2, we can have that in cases (iii), (iv) and (v), one of the indices i- 

or j-indices is equal to pb or qc. If this happens then the corresponding codeword c has weight 

4 instead of 6. One can interpret Theorem 6.2 as a corollary of Theorem 6.3. 

The condition of Theorem 6.3 is formulated in terms of subsequences of kS (B). A 

formulation in terms of codewords of C, like in Theorem 4.2, seems unattractive in the general 

case, because of the various possibilities for i, j, pb and qc. Instead, we shall focus on special 

choices for the pair {pb, qc}. 

In the next, S will always be a snake defined by the transition sequence kS (B) of 

Theorem 4.2, while p and q are integers from {1, 2, …, k}. Furthermore, T ≔ i, T’, j will be 

the subsequence of the transition sequence of the standard Gray code G(k), the elements of 

which represent the indices of the blocks Bi, …, Bj in T = Bi, T’, Bj, and A ≔ c(T).  

Special cases are the following two corollaries. 

Corollary 6.4 

S ∩ S + 
1pe +

3qe = ∅            and            S ∩ S + 
2pe +

4qe = ∅. 

Proof.  For b = 1 and c = 3, none of the types (i) – (v) in Theorem 6.3 satisfies Lemma 4.1. 

The same is true for b = 2 and c = 4.                                                                                         □ 

Corollary 6.5 

If B = (B1, B2, …, Bk) is well-ordered and if p3 ≠ q3, then S ∩ S + 
3pe +

3qe  = ∅. 
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Proof. Suppose that the above intersection is not empty. For b = 3 and c = 3, only types (iii), 

(iv) and (v) of Theorem 6.3 can occur, because of Lemma 4.1. Assume that c ∈ C has support 

W of type (iv). It will be obvious, due to the fixed-position property of the basis vectors of C, 

that in this case c is the sum of an odd number of basis vectors. So, |A| (cf. eq. (10)) is odd and 

it follows that i ≠ j, 1 < i, 1 < j (Theorem 2.5(iv)). Just as in Chapter 4, we assume that i < j. 

Then we have according to the same Theorem that i – 1 = min A, and we can write (cf. (4.13)) 

c = bi–1 + l
l i≥
∑b ,                                                (6.3) 

where l runs through the set A \ {i – 1}. Since the blocks in B are well-ordered, at least one of 

the integers (i – 1)1, (i – 1)2 and (i – 1)4 does not occur in blocks Bl, l ≥ i. 

If (i – 1)1 does not occur anymore, then we have from (6.3) that (i – 1)1 ∈ sup c, and so 

(i – 1)1 = i1, which is a contradiction with the assumption that (i – 1)1 does not occur anymore. 

A similar contradiction follows if (i – 1)2 or (i – 1)4 does not occur anymore. In the case 1 < j < 

i, we can derive similar contradictions by considering c + bi + bj, the support {j1, j2, j3, p3, q3, 

i4} of which corresponds to the subsequence Bj, T c,Bi of kS (B). We conclude that type (iv) 

does not occur. Similarly, we can prove that types (iii) and (v) can not occur. Here, we 

emphasize that a word c ∈ C with support of type (iii) or (v) is again the sum of an odd number 

of basis vectors.                                                                                                                          □ 

6.2 Special Cases 

In this subsection, we study the intersection 

S ∩ S + 
bpe +

cqe  

for some special choices of pb and qc. 

Theorem 6.6 

Let S be the snake defined by kS (B) as in Theorem 6.1. Then the snakes S and S + 

1pe +
1qe , p1 ≠ q1, are disjoint if and only if there is no codeword c ∈ C as expressed by 

(6.3), such that its support W is one of the sets 

(i).   {i1, p1, q1, j1}; 

(ii)   {i4, p1, q1, j4}; 

(iii)  {i1, i2, p1, q1, j3, j4}, 

for some j, with 1 < i < j ≤ k. 

 

Proof. Assume that the condition of the Theorem holds. If S ∩ S + 
1pe +

1qe ≠ ∅,  then there is  

a subsequence T = Bi, T’, Bj of kS (B) such that c(T) is of one of the types (i) − (v) in 

Theorem 6.3. Now, types (i) and (ii) cannot occur, because of Lemma 4.1. Suppose that c(T) 
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= {i1, i2, p1, q1, j3, j4} (type (v)). Since T consists of complete blocks, c(T) = W = sup c, for 

some c ∈ C. It follows that i ≠ j, because otherwise the weight of c + bi is 2 and C does not 

contain words of weight 2. It is also obvious that c is the sum of an odd number of basis 

vectors, due to the fixed-position property satisfied by B. So, 1 < i and 1 < j (cf. Theorem 2.5). 

We write 
c = l

l A∈
∑b , 

with |A| is odd. For i < j we have that i − 1 = min A (Theorem 2.5 (i)), and therefore we can 

write 

c = bi−1 + l
l i≥
∑b , 

where l runs through the set A  = A \ {i − 1}, which is of even size. This expression is identical 

to (6.3), and so we have a contradiction. For j < i, we consider the subsequence Bj, T c, Bi, 

where T c is the complement of T in kS (B) which has the same contents as T itself. 

We now consider c’ = c + bi + bj which has support sup c’ = c(Bj, T c, Bi) = {j1, j2, p1, q1, 

i3, i4}. By interchanging i and j, we obtain a case which is identical to the previous one. So, 

again we have a contradiction with the condition of the Theorem. 

If c(T) = {i1, p1, q1, j2, j3, j4} (type (iii) of Theorem 6.3), it follows again that i ≠ j, 1 < i, 

1 < j. If 1 < i < j, then there exists a c ∈ C of the form (6.3), with sup c = c(T) and 

c = l
l A∈
∑b = bi−1 + l

l A∈
∑b , 

where A  = sup c = c(T), A  = A \ {i − 1}, with |A| is odd. If we define c’ = c + bj, we have 

equivalently that sup c’ =  {i1, p1, q1, j1}, 

c’ = bi−1 + l
l A'∈
∑b , 

where A'  =  A ∪ {j} \  {i − 1}, for j ∉ A, and A'  = A \ {i − 1, j}, for j ∈ A. So, we find again a 

contradiction with the condition of the Theorem. In the case 1 < j < i, we can argue similarly, 

by interchanging i and j. If c(T) is of type (iv) of Theorem 6.3, we can obtain a contradiction 

in completely the same way. So, the if part is proved. 

To prove the only-if part,  we can apply Theorem 2.7 (i) and (ii), to show that if there 

exists a codeword c ∈ C as described by the Theorem, it follows that there exists a 

subsequence T = Bi, T’, Bj such that sup c = c(T) (cf. the proof of Theorem 4.2). By reversing 

the arguments used in the if part of the proof and applying Theorem 6.3, it then follows that 

the two snakes are not disjoint.                                                                                                   □ 

Example 6.2. 

In Example 6.1, we found that if S is defined by the ordered block list of Fig. 5.19, we 

have that S ∩ S + e0 + e1 ≠ ∅, or equivalently S ∩ S +
13e +

14e ≠ ∅. This result now follows 
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from Theorem 6.6. If we define c = b3 + b4 + b5 + b6 + b7 + b9 + b11 then 

sup c = {1, 4, 8, 13}. 

If we interpret this set as the multiset {0, 4, 1, 0, 8, 13} = {41, 42, 31, 41, 53, 54}, we see 

that sup c is of type {i1, i 2, p1, q1, j3, j4}, and so the condition of the Theorem is not satisfied. 

Notice that i − 1 = min A = min {3, 4, 5, 6, 7, 9, 11} = 3, and hence i = 4 < 5 = j. 

There is also a codeword c’ ∈ C such that sup c’ is of type {i1, p1, q1, j1}. If we define c’ 

= b1 + b2 + b3 + b5 + b8 + b9 + b10 + b11, then sup c’ = {2, 1, 0, 3} = {21, 31, 41, 11}, and i − 1 = 

min A =  1, i = 2. However, j = 1 and so i > j which implies that we are not allowed to apply 

Theorem 6.6.. 

Example 6.3. 

Let S be the snake defined by the ordered block list of Fig. 5.19. Now, we take p1 = 11, 

q1 = 21 and we consider the snakes S and S +
11e +

12e .  If we write the support of c’ from the 

previous Example, as sup c’ = {1, 3, 2, 0} = {31, 11, 21, 41} and interpret this set as {i1, p1, q1, 

j1}, it will be obvious that the word c’ cannot be written in the form (6.3), since i = 3, and 

hence i − 1 = 2 ≠ min A = 1. 

The last inequality holds because the block list in Fig. 5.19, though not well ordered, 

has the property p1 = 11 (≡ 3) only occurs in B1. So, 1 is an element of A, where c’ = l
l A∈
∑b . It 

follows that there is no word in C of the first type mentioned in Theorem 6.6. However, there 

do exist words of type (iii) in Theorem 6.6. If we define c = b1 + b7 + b8 + b10 + b11, we find 

that sup c = {3, 6, 8, 13} = {11, 22, 53, 54} = {21, 22, 11, 21, 53, 54}, and hence i = 2 and j = 5. 

Therefore, 

S ∩ S +
11e +

12e ≠ ∅. 

Computer results show that the 511-rd word of S and the 4615-th word of S +
11e +

12e are both 

equal to 0000000010100100. 

Likewise, we can prove 

S ∩ S +
11e +

13e ≠ ∅, 

S ∩ S +
11e +

14e ≠ ∅ 

S ∩ S +
12e +

13e ≠ ∅ 
and 

S ∩ S +
12e +

14e ≠ ∅. 
The last inequality follows from the existence of the codeword c = b2 + b3 + b6 + b7 + b9 

which has a support {1, 5, 2, 0, 8, 14} = {31, 32, 21, 24, 63, 64} of type (iii) in Theorem 6.6. 

Indeed a computer calculation show that the word w110 and w1662 (of S) differ by e2 + e0. 
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Theorem 6.7 

Let S be the snake defined by kS (B) as in Theorem 6.1. Then the snakes S and S + 

1pe +
4qe  are disjoint if and only if there is no codeword c ∈ C as expressed by (6.3), such 

that its support W is one of the sets 

(i).  {11, p1, q4, j4},      j > 1; 

(ii)  {i1, p1, q4, 14},      i > 1.  

Proof. We take pb = p1, qc = q4.  Applying  Lemma 4.1 to Theorem 6.3, the only possibility for 
S and S +

1pe +
4qe  having  a non-empty intersection is that there is  a subsequence  T = Bi, T’,  

Bj such that c(T) = {i1, p1, q4, i4}. Let c be the codeword of C with sup c = c(T). It is obvious 

that c is the sum of an even number of basiswords of B. So, either i = 1 or j = 1 (Theorem 2.7), 

and so either sup c = {11, p1, q4, j4}, j > 1, or sup c = {i1, p1, q4, 14}, i > 1.                                □ 

6.3 Disjoint Snakes Based on Lexicographically Ordered Lists 

To obtain disjoint snakes S and S +
3pe +

3qe  and to construct covers of Qn, we cannot 

always apply Corollary 6.5, since not all block lists are well-ordered. If instead of being well-

ordered, we only require a block list to be lexicographically ordered, we obtain a statement 

similar to Theorem 3.6. 

Theorem 6.8 

Let  B = (B1, B2, …, Bk) be a block list corresponding to an ordered minimum-weight basis 
of an [n,k,4]-code C satisfying the fixed-position property. Let furthermore B be ordered 
lexicographically according to condition (i) of Definition 4.2 If kS (B) generates a snake S 
and if p3 ≠ q3, then 

S ∩ S +
3pe +

3qe = ∅, 
if and only if there is no codeword c ∈ C as expressed by (6.3) with sup c equal to one of 

the following sets 

(i) W = {p3, q3, i4, j4}; 

(ii) W = {i2, j2, p3, q3}, 

for m < i < j ≤ k.  

Proof. First we prove the necessity of the conditions. Suppose there is a c ∈ C, written as 

c = bi−1 + l
l i

b
≥
∑  

with sup c = W = {p3, q3, i4, j4}, and m < i < j. Then c’ = c + bi has support W’ = {i1, i2, i3, p3, 

q3, j4} and we can write 

c’ = bi−1 + '
l

l i
b

≥
∑  
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and since |W ∩ Ij| is odd for j ∈ {1, 2, 3, 4}, c’ is the sum of an odd number of blocks. Let A 

be the subset of the index set of the basis vectors which participate in the above expression for 

c’, then min A = i − 1. 

According to Theorem 2.7, there is a subsequence T = i, T’, j of kS  (the transition 

sequence of the standard Gray code of length k) such that A = c(T). Hence, kS (B) contains a 

corresponding subsequence T such that c(T) = sup c’ = W’. From Theorem 6.3 (iv), it now 

follows that S ∩ S + 
3pe +

3qe ≠ ∅. A similar proof can be given if there is 

c = bi−1 + l i lb≥∑  
with sup c = W = {i2, j2, p3, q3} and m < i < j. 

In order to prove the if-part, we assume that S ∩ S +
3pe +

3qe ≠ ∅. According to 

Theorem 6.3, there exists a subsequence T = Bi, T’, Bj of kS (B) such that W ≔ c(T) is equal 

to one of the sets (i) – (v). For pb = p3, qc = q3 it is immediately clear, by Lemma 4.1, that 

cases (i) and (ii) of Theorem 6.3 are impossible. Assume that W is of the form (iii). This 

implies that there is a codeword c ∈ C with sup c = W = {i1, p3, q3, j2, j3, j4}. Equivalently, 

there exists a codeword c’ = c + bj with W’ = sup c’ = {i1, j1, p3, q3}. 

For i < j we can write c’ = bi−1 + l
l i

b
≥
∑ , where the summation is over an odd number of l-

values. If i ≤ m it follows that (i − 1)1 ∈ W’, which contradicts (i − 1)1 ≠ i1 and (i − 1)1 ≠ j1. If m 

< i, we would have i1 = j1 yielding W’ = {p3, q3}, which contradicts the minimum-weight of C. 

For j < i we can derive a similar contradiction. 

Assume that W is of the form (iv). This implies that there is a codeword c ∈ C with sup c 

= W = {i1, i2, i3 p3, q3, j4} wich implies i ≠ j and c is the sum of an odd number of basis vectors. 

Equivalently, there exists a codeword c’ = c + bi with W’ = {p3, q3, i4, j4}. Just as in the 

previous case, we can show that m ≤ i and also m ≤ j. Because of condition (i) of the theorem, 

such a codeword c’ does not exist for i < j, since we can write 

c' = bi−1 + l
l i

b
≥
∑ + bi = bi−1 + '

l
l i

b
≥
∑  

in that case. If j < i, we can interchange the role of i and j. 

Finally, we assume that W is of the form (v) of Theorem 6.3, i.e. W = {i1, i2, p3, q3, j3, 

j4}, i ≠ j, or equivalently, there exists a codeword c’ = c + bj with W’ = {i1, i2, j1, j2, p3, q3,}. 

Similarly, as in the previous case, we derive that that m < i and also m < j. But then we would 

have i1 = j1, and hence W’ = {i2, j2, p3, q3}. From condition (ii) of the theorem it follows that 

this is false, for i < j as well as for j < i, just as in the previous case.                                         □ 

In a completely similar way, we can prove the following theorem. 
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Theorem 6.9 

Let  B = (B1, B2, …, Bk) be a block list satisfying the conditions of Theorem 6.8. If kS (B) 
generates a snake S and if p2 ≠ q2, then 

S ∩ S + 
2pe +

2qe  = ∅ 
if and only if there is no codeword c ∈ C as expressed by (6.3) with W = sup c equal to one 

of the following sets 

( i) W = {p2, q2, i4, j4} 

(ii) W = {i2, j2, p2, q2} 

for m < i < j ≤ k, and for any p and q with m − 1 ≤ p, q ≤ k.  

Example 6.4 

Consider the block list of Fig. 5.19 and take 

{p2, q2} = {5, 7}. 

The only possible sets W of type (i) in Theorem 6.9 are {5, 7, 12, 14} and {5, 7, 13, 15} (Here, 

we applied the rule that the Nim sum of the integers in W must be equal to 0, because c ∈ C, 

cf. Section 5.4). In the first case, we have c = b5 + b6 + b7 + b11 which implies i = 6, i4 = 64 = 

14, and hence j4 = 12 and j = 10 or 11. So, there really exists a codeword as described in 

Theorem 6.9 and therefore, 

S ∩ S + e5 + e7 ≠ ∅. 

If {p2, q2} = {6, 7}, then the only possible sets W of type (i) in Theorem 6.9 are {6, 

7, 12, 13} and {6, 7, 14, 15}. In the first case, we have c = b7 + b11, so i = 8, i4 = 84 = 15 ∉ W, 

while in the second case c = b6 + b8, i = 7, i4 = 74 = 13 ∉ W. The only possible set W of type 

(ii) is {6, 7, 4, 5} implying i = 5, i2 = 52 = 5, j2 = 4 and so j = 4, which contradicts the condition 

j > i. So there is no c as described in Theorem 6.9, and it follows that 

S ∩ S + e6 + e7 = ∅. 
In a similar way, we found 

S ∩ S + e4 + e5 ≠ ∅, 

S ∩ S + e4 + e6 ≠ ∅, 

S ∩ S + e4 + e7 ≠ ∅, 

S ∩ S + e5 + e6 ≠ ∅. 

Instead of translating a snake over a vector of weight 2, one can also consider 

translations over vectors with a different weight value. After a moment’s reflection, it is clear 

that a snake S + t with wt t = 1 will never be disjoint with S, since for t = ep, p ∈ {0, 1, …, 15}, 

there is always a codeword c ∈ C such that c + ep ∈ S. The same holds for any t of odd weight. 

As for vectors t of weight 4, we know for sure that S ∩ S + t ≠ ∅ if t ∈ C. This is because if t 

∈ C, then c + t ∈ C for c ∈ C and both c and c + t are words of S. Therefore we investigate 

translations over t with wt t = 4 and t ∉ C. 
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The following theorem concerns vectors t with sup t = {p1, q2, r3, s4}, p1 ∈ I1, q2 ∈ I2, r3 

∈ I3, s4 ∈ I4 and p1 ⊕ q2 ⊕ r3 ⊕ s4 ≠ 0. This last condition guarantees that t ∉ C. 

Theorem 6.10 

Let S be the snake defined by kS (B) as defined in Theorem 4.2. Then the snakes S and S + 

+
1pe +

2qe +
3r

e +
4se , p1 ⊕ q2 ⊕ r3 ⊕ s4 ≠ 0, are disjoint if and only if kS (B) contains no 

subsequence T = Bi, T’, Bj where c(T) is of one of the following types. 

( i ) {i1, p1, q2, r3, s4, j2, j3, j4}; 

( ii) {i1, i2, p1, q2, r3, s4, j1, j2}; 

(iii) {i1, i2, i3, p1, q2, r3, s4, j4}, 

for 1 ≤ i, j ≤ k.  

The proof is similar to the proof of Theorem 6.3. 

Example 6.5 

With respect to the list of Fig. 5.19, there does exist a codeword c = b1 + b6 + b8 + b10 

with sup c = {0, 3, 6, 7, 12, 14} = {3, 0, 7, 10, 12, 6, 10, 14} which is of type (iii) with i = 1 

and j = 2. So, we may conclude that 

S ∩ S + e0 + e7 + e10 + e12 ≠ ∅. 

Indeed, taking c’ = w0 ∈ C and c” = w3320 = b1 + b6 + b8 + b10, x = c’ + 
11e = c’ + e3, y = c” + 

22e + 
32e + 

42e =  c” + e6 + e10 + e14 yields x + y with sup x + y = {0, 7, 10, 12}. Further 

calculations show that for each vector t with support {p1, q2, r3, s4}, p1 ⊕ q2 ⊕ r3 ⊕ s4 ≠ 0, 

there is always a codeword c ∈ C which has a support of type (i), (ii) or (iii). Therefore, we 

have for the snake S defined by B in Fig. 5.19, 

S ∩ S + t ≠ ∅, 
for all t with sup t = {p1, q2, r3, s4}. 



 

 

7. Covers and Near-Covers of Qn, for 2 ≤ n ≤ 16 

As we remarked already in the Introduction, one major goal in this thesis is to construct 

families of mutual disjoint snakes of equal length, which together contain all binary words of 

length n. Since these binary words are the vertices of the hypercube Qn and since a snake can 

be interpreted as a simple circuit in Qn which satisfies the separability condition (cf. Definition 

2.2 and 2.3) we speak of a cover of Qn by a family of disjoint snakes. If p is the number of 

snakes of a family covering Qn, we speak of a p-cover of Qn, and if the snakes are symmetric, 

i.e. if their transition sequences are symmetric, we call it a symmetric p-cover. 

In Section 7.1 we shall construct symmetric 4-covers for small hypercubes Qn, 4 ≤ n ≤ 8 

and symmetric 8-covers Qn, 8 ≤ n ≤ 15. The constructions are based on block lists which are 

well-ordered, and so we can apply Corollary 6.5. 

In Section 7.2, we try a similar construction to obtain an 8-cover for Q16 starting from 

the block list in Fig. 5.19. This list is no longer well-ordered, but since it is still 

lexicographically ordered, we can apply the results of Section 6.3. It turns out that we cannot 

obtain a complete 8-cover of Q16, when starting from the list in Fig. 5.19. We call the resulting 

structures near-covers, since only very few vertices of Q16 are not incident with the union of 

the snakes in the family. 

In Section 7.3, it is shown that there does exist a symmetric 8-cover for Q16 by taking 

the block list of Fig. 5.18, instead of Fig. 5.19 which corresponds to a different basis of R(2, 

4). By their very construction, all these families of snakes covering or nearly covering Qn are 

invariant under the action of a certain group of translations. For this reason we also speak of a 

set of parallel snakes (nearly) covering Qn, which has this group as invariance or symmetry 

group. 

7.1 Symmetric Covers of Qn, for 2 ≤ n ≤ 15 

It will be obvious that the square Q2 has a 1-cover since the graph Q2 itself is a snake. It 

is also obvious that the cube Q3 cannot be covered by only one snake, since the maximal snake 

in Q3 is of length s(3) = 6. However, Q3 can be covered by two snakes lying in two (vertex)-

disjoint Q2-subgraphs of Q3. We say that such a cover is obtained by doubling the 1-cover of 

Q2. 

A 2-cover of Q4 can be obtained from the snake S(4) generated by the transition sequence 

0, 1, 2, 3, 0, 1, 2, 3. This snake can be obtained from the snake with transition sequence 

1 2( )S B '  at the end of Section 5.4, by relabeling the bit positions. We translate this snake over 

the vector e0 + e2. According to Corollary 6.4, the snakes S(4) and S(4) + e0 + e2 are disjoint. 
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It will turn out that we can construct symmetric 4-covers for the hypercubes Q5, Q6, Q7 

and Q8. One way to this is to start with the block list B’ of (5.9) and (5.8). For the reader’s 

convenience, we represent the list once again.  

B’1 = (1, 3, 5, 7),      
B’2 = (0, 2, 4, 6),     
B’3 = (0, 3, 5, 6),      
B’4 = (0, 3, 4, 7). 

Fig. 7.1 

In Section 5.4 we mentioned that B’ generates a symmetric snake S(8) of length 26 in Q8. 

Since the list B’ is well-ordered, we can apply Corollary 6.5. Together with Corollary 6.4, this 

results in four disjoint snakes: 

S(8),     S(8) + e0 + e4,     S(8) + e0 + e5,     S(8) + e4 + e5. 

Since these four snakes are all of length 26, they constitute a symmetric 4-cover of Q8 (cf. also 

[19], where a similar result was obtained).  

Next, we shall introduce the notion of invariance group of a cover of Qn by snakes. Let  

C(n) ≔ { ( )
1 ,nS  ( )

2 ,nS  …, ( )n
NS }                                             (7.1) 

be a family of mutually disjoint snakes covering the whole vertex set VQn of the hypercube Qn. 

We consider permutations of the elements of VQn, i.e. elements of the symmetric group 

2nS acting on the set of the 2n vertices of Qn. If π is such a permutation which has the property 

that {v, w} ∈ EQn if and only if {π (v), π (w)} ∈ EQn, for all v, w ∈ VQn, then π is called an 

automorphism of Qn. All these automorphisms form a group called the automorphism group 

Aut(Qn) (cf. [3]). 

It follows easily from the nearness condition (*) and the separability condition (**) (see 

Chapter 1), that a snake S is transformed into a snake π(S), for any π ∈ Aut(Qn). Now we ask 

the question if there are π ∈ Aut(Qn) which transform S into S itself, or more generally, which 

π ∈ Aut(Qn) transform each snake ( )n
iS  of the cover C(n) into some snake ( )n

jS (the same snake 

or a different one) of C(n). Of course, such elements π constitute a subgroup of Aut(Qn), which 

we shall call Aut(C(n)). So, we have the following definition. 

Definition 7.1 

The invariance group Aut(C(n)) of a cover C(n) of Qn is the group of those permutations of 

Aut(Qn) which induce a permutation of the snakes in C(n). 

Any subgroup of Aut(Cn)) will be called an invariance group of C(n). It is well-known (and can 

be verified immediately) that the translations over vectors of GF(2)n define a subgroup of 

Aut(Qn) of order 2n. 
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Now it will be clear that if we define in GF(2)8  the translation group 

K(8) = {0, e0 + e4, e0 + e5, e4 + e5},                                          (7.2) 

each element of this group brings about a permutation of the vertices of Q8 such that the cover 

C(8) = { S(8), S(8) + e0 + e4, S(8) + e0 + e5, S(8) + e4 + e5}, 

is invariant for that permutation. More precisely, K(8)  is isomorphic to an invariance group 

(permutation group) of C(8). Therefore, we shall say that K(8) itself is an invariance translation 

group of C(8).  

In Section 5.4, we demonstrated that by removing B1’, and by puncturing with respect 

to coordinate 1, we obtain a snake S(7) of length 25 in Q7. If we also puncture the vectors of K(8) 

with respect to 1, i.e. leaving out the components with label 1, we obtain a translation group 

K(7) acting on VQ7. Of course, as algebraic groups, K(8) and K(7) are isomorphic, since all 

omitted components were equal to 0.  

By applying Corollaries 6.4 and 6.5, it follows that the family of snakes 

C(7) = { S(7), S(7) + e0 + e4, S(7) + e0 + e5, S(7) + e4 + e5}                           (7.3) 

is a symmetric 4-cover of Q7 with an invariance translation group  

K(7) = {0, e0 + e4, e0 + e5, e4 + e}. 

Actually, the vectors e0, e4 and e5 in C(7) and K(7) differ from those in C(8) and K(8), since the first 

ones are in GF(2)7 and the latter ones in GF(2)8. However, to avoid unnecessary complex 

notations, we assume that this difference has been taken care of by the labels of C and K. 

Continuing in this way, i.e. first leaving out block B’4 and puncturing with respect to 7, 

provides us with a snake S(6) of length 24 and a symmetric 4-cover of Q6. Finally, we leave out 

one of the remaining two blocks, say B’3 and puncture with respect to 3, which provides us 

with a snake S(5) of length 23, and consequently with a symmetric 4-cover of Q5. So, all 

together, we constructed a series of four snakes 

S(8),     S(7),     S(6) ,     S(5),                                                 (7.4) 

a series of isomorphic invariance translation groups 

K(8),     K(7),     K(6),     K(5)                                               (7.5) 

and a series of covers 

C(i) ≔ {S(i) + K(i)} = {S(i) + t | t ∈ K(i)}                                       (7.6) 

for 5 ≤ i ≤ 8. The reason that we can apply Corollaries 6.4 and 6.5 every time (and that all 

these translation groups are isomorphic) is that the components of the translation vectors (7.2) 

are equal to 0 at the positions we puncture to, i.e. we do not puncture to coordinate 0, 4 and 5.   

We formulate the above construction in terms of a theorem. 
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Theorem 7.1 

Let S(8) be the snake generated by the block list of B‘ of (5.9), and let S(i) , 5 ≤ i ≤ 8, be the 

snakes of (7.4). Let furthermore K(i), 5 ≤ i ≤ 8, be the series of isomorphic translation 

groups defined in (7.5). Then the four snakes of the family C(i) defined in (7.6) constitute a 

symmetric 4-cover of Qi with K(i) as invariance translation group, for every i, 5 ≤ i ≤ 8. 

Example 7.1 

Removing blocks B’1 and block B’2 from the block list (5.9) leaves us with the list 

B’2 = (0, 2, 4, 6), 

B’3 = (0, 3, 5, 6). 

The transition sequence corresponding to this list is equal to 

B’2, B’3, B’2, B’3 =  0, 2, 4, 6, 0, 3, 5, 6, 0, 2, 4, 6, 0, 3, 5, 6. 

This sequence generates a snake S(6) in Q6 where the vertices are labeled 0, 2, 3, 4, 5 and 6. 

Translation of this snake over the vectors e0 + e4, e0 + e5 and e4 + e5 gives a family of four 

snakes which are mutually disjoint, and which form a 4-cover for Q6. If we also leave out 

block B’3, we are left with a single block B’2 which defines the transition sequence 

B’2, B’2 = 0, 2, 4, 6, 0, 2, 4, 6.                                             (7.7) 

This sequence generates a snake S(5) in Q5 where the vertices are labeled 0, 2, 4, 5 and 6. 

Again translating S(5) over the vectors e0 + e4, e0 + e5 and e4 + e5 provides us with a 4-cover of 

Q5. For the explicit form of the above covers for Q5 and Q6 (also for Q7 and Q8), we refer to 

Appendix B. 

We can also interpret (7.7) as the transition sequence of a snake S(4) in Q4, the vertices of 

which are labeled by 0, 2, 4 and 6. In this case, e0 + e4 is the only nonzero translation vector 

that transforms S(4) into a disjoint snake. Stated equivalently, we now have a 2-cover for Q4. 

Appendix B shows the explicit list of this 2-cover. 

An easy way to obtain an 8-cover of Q15 is to start with the well-ordered list of Fig. 5.15 

which generates a snake S(15) of length 212 in Q15. Since it is well-ordered, we may conclude 

from Corollaries 6.4 and 6.5 that the following eight snakes are mutually disjoint: 

{ S(15),     S(15) + e0+ e12,     S(15) + e0+ e13,     S(15) + e0+ e14,     S(15) + e12+ e13,  

S(15) + e12+ e14,     S(15) + e13+ e14,     S(15) + e0+ e12+ e13+ e14}                      (7.8) 

More precisely, the set or family of snakes (7.8) constitutes a symmetric 8-cover of Q15, 

since S(15) and all its translations are symmetric (cf. (2.17)), and since these snakes together are 

incident with 23·212 = 215 vertices of Q15. We can phrase this slightly differently, by 

introducing the group of translations 

H(15) = {0, e0 + e12, , e0 + e13, e0 + e14, e12 + e13, e12 + e14, e13 + e14, e0 + e12 + e13 + e14}, (7.9) 

and we can write the family (7.8) symbolically as 
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S(15) + H(15).                                                                (7.10) 

So, the set (7.8) or (7.10) of eight snakes, which is a symmetric 8-cover of Q15, has the 

translation group H(15) of (7.9) as an invariance translation group. 

As we discussed in Section 5.5, when removing block B1 from the list of Fig. 5.15, we 

obtain a well-ordered list which generates a snake S(14) of length 211 in Q14, after puncturing 

with respect to the coordinate with index 3. We also puncture the vectors of H(15) with respect 

to this coordinate, providing us with a translation group H(14). Actually, H(14), as an 

(algebraic) group, is isomorphic with H(15) and acts on the vertex set of a hypercube Q14, 

which is isomorphic to a subgraph of Q15 (cf. Section 5.5 and the discussion w.r.t. K(8) and K(7) 

in the beginning of this Section).. 

Like in Section 5.5 and with respect to the coordinate indices 2, 1, 4, 5, 8, we can 

continue this process of puncturing, thus obtaining a series of seven snakes 

S(15),      S(14),      S(13),      S(12),      S(11),      S(10),      S(9)                       (7.11) 

and a series of isomorphic translation groups 

H(15),     H(14),     …,     H(9)                                            (7.12) 

We also introduce the symbolic notation 

C(i) ≔ {S(i) + H(i)} = {S(i) + t | t ∈ (H(i), VQi)}                               (7.13) 

for 9 ≤ i < 16, as a generalization of (7.10). 

It will be clear, using Corollaries 6.4 and 6.5, that the family of snakes C(i) ≔ S(i) + H(i) is 

a symmetric 8-cover of Qi, for 9 ≤ i < 16. For any of these i−values, we are entitled to apply 

Corollary 6.5, since the corresponding block list is well-ordered. We collect the above results 

in the following theorem. 

Theorem 7.2 

Let S(15) be the snake generated by the block list of Fig. 5.15, and let S(i) , 9 ≤ i < 16, be the 

series of snakes of (7.11). Let furthermore H(i), 9 ≤ i < 16, be the series of isomorphic 

translation groups defined in (7.12). Then the eight snakes of the family C(i) defined in 

(7.13) constitute a symmetric 8-cover of Qi with H(i) as invariance group for every i with 

9 ≤ i < 16. 

7.2 Near-Covers of Q16 

We apply Theorem 6.8 to the block list B in Fig. 5.19. First we take the pair (p3, q3) 

equal to (9, 10). It can rather easily be verified that there are no codewords c of the form (6.3) 

with sup c either of type {9, 10, i4, j4} or of type {i2, j2, 9, 10} (see next page). Together with 

the results of Corollary 6.4 for the pairs {0, 9} and {0, 10} and Theorem 6.8, we now have the 

following set of mutual disjoint snakes (parallel snakes). 
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{ S, S + e0 + e9, S + e0 + e10, S + e9 + e10},                          (7.14) 

while the four translations 
{0, e0 + e9, e0 + e10, e9 + e10} 

constitute a group with respect to binary addition. The union of the four snakes in (7.14) 

covers 215 vertices of Q16. In order to obtain a complete cover of Q16 we need more translations 

providing us with four more snakes which are mutual disjoint and also disjoint with those of 

the set (7.14). 

We shall now explicitly verify that 

S ∩ S + e9 + e10 = ∅.                                             (7.15) 

If (7.15) is not true, then according to Theorem 6.8, C contains a word c = bi−1 + l i lb≥∑ with 

support of the form W = {9, 10, i4, j4} or W = {i2, j2, 9, 10}, with 4 < i < j. The only possible 

cases for W are: {9, 10, 12, 15}, {9, 10, 13, 14},{4, 7, 9, 10} and {5, 6, 9, 10}. Here we used 

the fact that the Nim sum of the integers in a set W has to be equal to 0. If W = {4, 7, 9, 10}, it 

follows that i = 5, but i2 = 5 ∉ W. If W = {5, 6, 9, 10}, we have i = 6, i2 = 6, j2 = 5, and hence j 

= 5, which contradicts i < j. 

If W = {9, 10, 13, 14}, we have c = b7 + b9, and so i = 8, but i4 = 15 ∉ W. Finally, if W = 

{9, 10, 12, 15}, we have c = b6 + b8 + b9+b11, i = 7, but i4 = 13 ∉ W. So in all cases we find a 

contradiction, and therefore (7.15) must hold. 

In a completely similar way, we can prove 

S ∩ S + e8 + e10 = ∅,                                                 (7.16) 

S ∩ S + e10 + e11 = ∅,                                                (7.17) 

Furthermore, Theorem 6.8 shows that 

S ∩ S + e9 + e11 ≠ ∅,                                              (7.18) 

since C contains a codeword c = b6 + b7 + b8 + b9+ b10 + b11 with support W = {9, 11, 13, 15} = 

{9, 11, 74, 84} which is of the form (i), with i = 7, j = 8. Similarly, we have 

S ∩ S + e8 + e11 ≠ ∅,                                               (7.19) 

because of the existence of the codeword c = b6 + b7 + b10 + b11 with W = {8, 11, 13, 14} = {8, 

11, 74, 94} which is of type (i), and 

S ∩ S + e8 + e9 ≠ ∅,                                                 (7.20) 

because of the existence of c = b6 + b7 + b9 + b11, with W = {8, 9, 12, 13} = {8, 9, 74, 104} 

(type (i)) and of c = b6 + b9, with W = {6, 7, 8, 9} = {72, 112, 8, 9} (type (ii)). 

In order to investigate translations over vectors consisting of more than two unit vectors, 

we formulate two more theorems. 
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Theorem 7.3 

Let B be the block list that satisfies the conditions of Theorem 6.8. If the sequence kS (B) 

of (4.8) generates a snake S and if p3, q3, r3, s3 are pairwise unequal, then we have 

S ∩ S +
3pe +

3qe  +
3r

e +
3se = ∅,   

if and only if there is no codeword c ∈ C, as expressed by (6.3), with W = sup c equal to 

one of the following sets 

(i) W = {p3, q3, r3, s3, i4, j4}; 

(ii) W = {i2, j2, p3, q3, r3, s3}, 

for m < i < j ≤ k, and for any p and q with m − 1 ≤ p, q ≤ k, and 1 ≤ r, s, ≤ k. 

The proof is similar to the proof of Theorem 6.8. 

We remark that, although i ≠ j, the integers i2 and j2 may be equal to each other, as well 

as i4 and j4. Next we state the following generalization of Corollary 6.4. 

Theorem 7.4 

Let  B = (B1, B2, …, Bk) be a block list corresponding to an ordered minimum-weight basis 

of an [n,k,4]-code C which satisfies the fixed-position property. If the sequence kS (B) of 

(4.8) generates a snake S, then 

S ∩ S + 
1be  +

3pe +
3qe  +

3r
e = ∅ 

and 
S ∩ S + 

2be  +
4pe +

4qe  +
4r

e = ∅, 
for b, p, q, r ∈ {1, 2, …, k}. 

The proof is identical to the proof of Corollary 6.4, and is based on Lemma 4.1. 

Example 7.2 

Consider again the block list B  of Fig. 5.19. The codeword c = b6 + b9 + b10 + b11 has a 

support W = {8, 9, 10, 11} which is of type (ii) in Theorem 7.3 with i = 7 and j = 8, 9 or 10. 

Applying this theorem for i2 = j2 gives that 

S ∩ S + e8 + e9 + e10 + e11 ≠ ∅                                       (7.21) 

An application of Theorem 7.4 yields 
S ∩ S + e0 + ei + ej + ek = ∅                                         (7.22) 

for any choice of i, j, k ∈ {8, 9, 10, 11}. 

The relations (7.15), (7.16), (7.17) and (7.22) illustrate that we can construct, in many 

ways, sets of four pairwise disjoint snakes, but there seems to be no such set of eight disjoint 

snakes of the same type as turned out to exist for Q9, Q10, …, Q15 (cf. Sect. 7.1). We conclude 

that the snake S generated by the block list of Fig. 5.19 does not give rise to a cover of Q16 if 
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we restrict ourselves to translations of S over vectors e0 + 
3pe , e0 + 

3qe , 
3
+pe

3qe  and e0 + 

3
+pe

3qe +
3r

e . 

However, there do exist sets consisting of eight snakes which ‘almost’ cover Q16. If we 

extend e.g. the set (7.14) by the four snakes S + e0 + e8, S + e8 + e9, S + e8 + e10, S + e0 + e8 + e9 

+ e10, we end up with eight snakes with only four pairs of intersecting snakes,  i.e. only the 

intersections S ∩ S + e8 + e9, S + e0 + e8 ∩ S + e0 + e9, S + e0  + e10 ∩ S + e0 + e8 + e9 + e10 and S  

+ e9 + e10 ∩ S + e8 + e10 are not empty. 

We shall present a similar set of eight snakes together with the non-empty intersections 

themselves. Consider the following set 

{S,                S + e0+ e8,      S + e0+ e10,        S + e8+ e10, 

S + e0+ e11, S + e8+ e11,     S + e10+ e11,     S + e0+ e8+ e10+ e11}          (7.23) 

From Corollary 6.4, and eqs. (7.16), (7.17), (7.19) and (7.22) we conclude that any two snakes 

of the set (7.23) are disjoint except the pairs {S, S + e8 + e11}, {S + e0 + e8, S + e0 + e11}, {S + e0 

+ e10, S + e0 + e8 + e10 + e11}, {S + e8 + e10, S + e10 + e11}. By a computer calculation, we found 

S ∩ S + e8 + e11 = {w1023, w1279, w3071, w3327, w5119, w5375, w7167, w7423}.        (7.24) 

In order to deal with the size of intersections of snakes like the one in (7.24), we now 

present the following property. 

Theorem 7.5 

Let kS (B) be a transition sequence in Qn, n ≥ 3, generated by a basis B = (b1, b2, …, bk) of 

a linear [n, k, 4]-code C satisfying the conditions of Lemma 4.1. Let c ∈ C be written as c = 

l A l∈∑ b , where A is some subset of {1, 2, …, k} and let W ≔ sup c, a ≔ min A and i ≔ 

a + 1. Then the number of subsequences T ≔ Bi, T’, Bj, for some fixed j > i, with c(T) = W 

is equal to 2k−j, for j < k, and to 2 for j = k. 

Since i > 1, the proof follows immediately from Theorem 2.9 (ii). We shall apply the 

theorem to the intersection S ∩ S + e8 + e11. The only reason for the non-emptiness of this 

intersection is the existence of the codeword c with support W = {8, 11, 13, 14} which can be 

interpreted as {8, 11, i4, j4} with i = 7 < j = 9, w.r.t. to the list of Fig. 5.19. More precisely, the 

size of the intersection is twice the number of occurrences of subsequences T ≔ B7, T’, B9 in 

T11(B) with c(T) = W. It follows from Theorem 7.3 that this number is equal to 211−9 = 4,  and 

so | S ∩ S + e8 + e11| = 8, which corresponds to the computer result (7.24). 

To obtain the words in the intersection themselves we study the subsequences (7, T’, 9) 

in the transition sequence T11 of the standard Gray code G(11): 
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Fig. 7.2 
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6•7•6•8•6•7•6•9•6•7•6•8•6•7•6•10•6•7•6•8•6•7•6•9•6•7•6•8•6•7•6•11• 

6•7•6•8•6•7•6•9•6•7•6•8•6•7•6•10•6•7•6•8•6•7•6•9•6•7•6•8•6•7•6•11• 

In the above sequence, every dot ‘•’ stands for T’(5), the incomplete transition sequence of 

G(5) of length 31. 

Since W = (8, 11, 13, 14) = B6 ∆ B7 ∆ B10 ∆ B11, this set is the support of the codeword c 

= b6 + b7 + b10 + b11. Hence c’ = bi + c = bi +  b6 + b7 + b10 + b11 (cf. the proof of Theorem 

6.8). Therefore, we have to find those subsequences 7, T’, 9 with c(7, T’, 9) = {6, 10, 11}. 

Such a subsequence is 

7•6•8•6•7•6•10•6•7•6•8•6•7•6•9•6•7•6•8•6•7•6•11•6•7•6•8•6•7•6•9 

of length 961. The first integer 7 has position (9 + 10⋅31) + 1 = 320, and so the first block B7 

starts at position 4⋅319 = 1276 (remember the first word of S has index zero). 

In the same way, we find that the final block B9 of the subsequence B7, T’, B9 ends at 

position 4⋅1280 = 5120. Applying the rules for the index-codeword conversion (cf. Section 5), 

we find that 

w1023 = b8 + b9 + 
49e ,  w5375 = b6 + b7 + b8 + b9 + b10 + b11 + 47e  

Hence, sup w1023 = {8, 9, 15} and sup w5375 = {9, 11, 15} and so we find that w1023+ e8 + 

e11 = w5375, which implies that w1023 and w5375 both belong to S ∩ S + e8 + e11. In this way, we 

can verify that 

w1023 = w5375 + e8 + e11, 
w3071 = w7423 + e8 + e11, 
w5119 = w1279 + e8 + e11,                                                (7.25) 
w7167 = w3327 + e8 + e11. 

The three other non-empty intersections can be obtained by translating the set (7.24) 

over vectors e0+ e8, e0+ e10 and e8+ e10, respectively. The four intersections have no vector in 

common. E.g. suppose that c ∈ S ∩ S + e8 + e11. Since c ∈ S, c + e0 + e8 ∉ S (cf. Corollary 6.4) 

and therefore c ∉ S + e0 + e11 ∩ S + e0 + e8. It follows that there are 4⋅8 = 32 vertices of Q16 

which are not incident with one of the eight snakes of (7.23). Since 32 is a relatively small 

number compared to 216, we could say that (7.23) provides us with a near-cover of Q16. 

 

 

 

 

 

 

The eight dots in the leftmost picture represent the eight words w1023, w5375, w3071, w7423, w5119, 

w1279, w7167 and w3327. The three other octets of dots represent the words obtained from the first 
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eight words by translating over e0 + e8, e0 + e10 and e8 + e11. 

In a similar way, one can verify 

S ∩ S + e9 + e11 = {w511  , w2559, w4607, w6655, w5887, w7935, w1791, w3839, 
w5631, w7679, w1535, w3583,  w767, w2815, w4863, w6911},          (7.26) 

with 

w511  = w5887 + e9 + e11, 
w2559 = w7935 + e9 + e11, 
w4607 = w1791 + e9 + e11, 
w6655 = w3839 + e9 + e11,                                                (7.27) 
w5631 = w767  + e9 + e11, 
w7679 = w2815 + e9 + e11, 
w1535 = w4863 + e9 + e11, 
w3583 = w6911 + e9 + e11. 

So, S ∩ S + e9 + e11 contains 16 words and hence by replacing e8 in (7.23) by e9, we 

obtain another near-cover of Q16 not covering 64 vertices. We can derive this number 16 as 

follows. The reason that this intersection is not empty is because of the existence of the 

codeword c = b6 + b7 + b8 + b9 + b10 + b11 with support W = {9, 11, 13, 15}, which is of type 

{9, 11, i4, j4} with i = 7 < 8 = j. The number of times that a subsequence 7, T’, 8 occurs in T11 

with c(7, T’, 8) = {6, 8, 9, 10, 11} is equal to 211−8 = 8., according to Theorem 7.5. Hence, we 

have |S ∩ S + e9 + e11| = 16. The words in the intersection can be obtained in the same way as 

in the previous case. First we determine all subsequences 7, T’, 8 with c(7, T’, 8) = {6, 8, 9, 

10, 11}. We found the following subsequences by inspection: 

7•6•10•6•7•6•8•6•7•6•9•6•7•6•8•6•7•6•11•6•7•6•8 (twice) 

7•6•11•6•7•6•8•6•7•6•9•6•7•6•8•6•7•6•10•6•7•6•8 (twice) 

7•6•9•6•7•6•8•6•7•6•10•…•11•6•7•6•8•6•7•6•9•6•7•6•8 (twice) 

7•6•9•6•7•6•8•6•7•6•11•…•10•6•7•6•8•6•7•6•9•6•7•6•8 (twice) 

The first four subsequences have length 705, whereas the second four have length 1217. E.g. 

in the first subsequence 7•6•10•…•11•6•7•6•8 the first integer has position 448, and hence the 

first integer in B7, B6, B10, …, B11, B6, B7, B6, B8 has position 4⋅447 = 1788. Similarly, the last 

integer in B8 has position 4608. This provides us with the words w1791 and w4607 which differ 

by e9 + e11. 

We also find that 

S ∩ S + e8 + e9 = {w255, w2303, w4351, w6399, 

w2047, w4095, , w6143, , w8191, w2302, w6398, w4094, w8190},                   (7.28) 

This intersection is not empty for three reasons. First, there exists a codeword c = b6 + b7 + b9 

+ b11 with support W = {8, 9, 12, 13} = {8, 9, i4, j4} with i = 7 < 10 = j (cf. Theorem 6.8 (i)). 

Secondly, this set can also be considered as {8, 9, i4, j4} with i = 7 < 11 = j, which is also 

sufficient for the intersection being not empty (cf. Theorem 6.8(i)). In the third place, there 

exists a codeword c = b6  + b9 with support W = {6, 7, 8, 9} = {i2, j2, 8, 9} with i = 7 < 11 = j. 
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From Theorem 7.3 we know that T11 contains two subsequences 7, T’, 10 with contents {6, 7, 

9, 11} and also two subsequences 7, T’, 11 with the same contents. Finally, T11 contains two 

subsequences 7, T’, 11 with contents {6, 9}. Altogether, the intersection contains 2⋅(2 + 2 + 2) 

= 12 words. In particular, we have 

w2047 = w4351 + e8 + e9, 
w4094 = w2302 + e8 + e9,  
w4095 = w2303 + e8 + e9, 
w6143 = w255 + e8 + e9,                                                 (7.29) 
w8190 = w6398 + e8 + e9,  
w8191 = w6399 + e8 + e9. 

It follows that replacing e11 in (7.23) by e9 will yield a near-cover of size 216 − 48. 

It appears that the words in the intersection (7.24) (and also in the intersections (7.26) 

and (7.28)) show a regular pattern with respect to their positions in the snake S and also with 

respect to their mutual dependency when considered as vectors in GF(2)16. Let us consider e.g. 

the set (7.24) together with the relations (7.25). These relations are due to the existence of the 

codeword c = b6 + b7 + b10 + b11 with sup c = {8, 11, 13, 14}, or equivalently c’ = c + b7 with 

sup c’ = {0, 7, 10, 8, 11, 14} (cf. the first line right after (7.19)). 

Actually, there are four subsequences T = B7, T, B9 of T11( B ) with 
c( T ) = { 0, 7, 10, 8, 11, 14}, 

i.e. 
[w5372, w1024], [w7420, w3072], [w1276, w5120] and [w3324, w7168].                  (7.30) 

Here, the notation 

[wa, wb] 

stands for a subsequence of S starting with wa ∈ S and ending with wb ∈ S. Using 71 = 0, 72 = 

7, 73 = 10 and 94 = 14, from (7.30) we obtain new subsequences 

[w5375, w1029], [w7423, w3071], [w1279, w5119] and [w3327, w7167],                 (7.31) 

which all have contents {8, 11}. 

The existence of the four subsequences (7.31) can be explained as follows. According to 

Theorem 2.7, the transition sequence of the standard Gray code G(15) certainly contains a 

subsequence T1 = 7, T’, 9 such that c(T1) = {6, 10, 11}. By applying the symmetry relation of 

Theorem 2.4(ii), we obtain a second subsequence T2 with c(T2) = c(T1) at list distance 211 from 

T1. Here, we used Theorem 2.4(ii) that c(T1) is invariant for interchanging the integers 10 and 

11. 

By applying the symmetry relation of Theorem 2.4 (i), we find two more subsequences 

T3 and T4 with c(T3) = c(T4) = c(T1) at list distance 212 from T1 and T2, respectively. This 

explains the constant difference of 211 between the indices of the first words (and also of the 

last words) in the four subsequences of (7.30). Moreover, the same properties give rise to a 

linear dependency relation between those words. As one can easily verify, a shift over 212 
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positions in T11 corresponds to adding b10 + b11 to all the codewords of C, whereas 

interchanging 10 and 11 corresponds to an addition of b9 + b10. 

Hence, we have 

w1024 = b8 + b9, 
w3072 = b8        + b10, 
w5120 = b8 + b9 + b10 + b11,                                            (7.32) 
w7168 = b8                  + b11, 

and so 
w1024 + w3072 + w5120 + w7168 = 0.                                         (7.33) 

Similar relations hold for the first and last words of the subsequences related to the 

intersections (7.26) and (7.28). 

7.3 A Symmetric 8-Cover of Q16 

In this section we discuss snakes in Q16 constructed from a block list which corresponds 

to a basis of R(2, 4) different from the basis in the previous sections. 

Consider the list B of Fig. 5.18 consisting of eleven independent blocks satisfying the 

fixed position property, which corresponds to a basis of the Reed-Muller code R(2, 4). For our 

convenience, we represent the same list here again. 

B1 = (3, 5, 11, 13), 
B2 = (2, 5, 11, 12), 
B3 = (1, 5, 11, 15) 
B4 = (0, 5, 11, 14), 
B5 = (0, 6,   8, 14), 
B6 = (0, 6, 10, 12), 
B7 = (0, 7, 10, 13), 
B8 = (0, 4, 11, 15). 
B9 = (0, 7,   8, 15), 
B10 = (0, 6,   9, 15), 
B11 = (0, 6, 11, 13). 

Fig. 7.3 

Just like all block lists in the previous chapter, the list in Fig 7.3 (or Fig. 5.18) also has the 

property that its sublist (B1, B2, …, B10) is well-ordered, and that adding B11 destroys that 

property. The only reason for this is that the integer 74 = 13 now occurs in a block Bl with l = 

11 > 7. Hence, we also get a well-ordered sublist when omitting block B7. 

Nevertheless, the list B of Fig 7.3 defines a transition sequence T11(B) which generates 

a snake of length 213 in Q16. Moreover, it will turn out that this snake can be translated over a 

number of eight translation vectors such that the result is a family of eight disjoint snakes.of 

length 213 which constitutes a complete cover of Q16. 

Theorem 7.6 

The transition sequence T11(B) determined by the block list of Fig. 7.3 generates a snake 

S(16) of length 213 in Q16. 
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Proof. Since the list in Fig 7.3 is lexicographically ordered, we can apply Theorem 4.4, and 

verify that the underlying code R(2, 4) does not contain words 

c = bi−1 + l i l≥∑ b  

(cf. (6.3)) with a support W either of type (i) or of type (ii). Because list B is well-ordered if 

we leave out block B7, we only have to check this condition for i − 1 = 7, or equivalently for i 

= 8. However, the only codewords of R(2, 4) of type (i) or (ii) which are generated by the basis 

vectors b7, b8, b9, b10 and b11, are these basis vectors themselves, as one can verify 

immediately. So the only possible codeword 

c = b7 + 8l l≥∑ b  

is b7. 

Since in the block list of Fig 7.3 we have 72 ≠ 82 and 74 ≠ 84, b7 is not of type (i) or of 

type (ii). So, we are done.                                                                                                            □ 

Theorem 7.7 

Let S(16) be the snake generated by the transition sequence T11(B), where B is the block list 

of Fig. 7.3. Let furthermore G(16) be the translation group of order 8, generated by the 

vectors 

e0 + e8,      e0 + e9,      e0 + e11. 

Then the eight snakes of the set 
C(16) = {S(16) + t | t ∈ G(16)} 

constitute a symmetric 8-cover of Q16 with invariance group G(16). 

Proof. We can prove the Theorem along similar lines as demonstrated in the examples of the 

previous section, by applying Corollary 6.4 and Theorem 6.8. According to Corollary 6.4, we 

have that 

S(16) ∩ S(16) + e0 + e8 = S(16) ∩ S(16) + e0 + e9 = S(16) ∩ S(16) + e0 + e11 = ∅. 

Next we investigate the intersection S(16) ∩ S(16) + e8 + e9. This intersection is empty if 

and only if there is no codeword c expressed by (6.3) with a support W either of type {8, 9, i4, 

j4}, j > i, or of type {i2, j2, 8, 9}, j > i. We have the following possibilities for such words: 

(a). {8, 9, 14, 15} = B5 ∆ B10; 

(b). {8, 9, 12, 13} = B6 ∆ B7 ∆ B9 ∆ B10; 

(c). {6, 7,   8,   9} = B9 ∆ B10; 

(d). {4, 5,   8,   9} = B4 ∆ B5 ∆ B8 ∆ B10. 

In case (a), it follows i = 6, but 14 ≠ 64 and 15 ≠ 64. In case (b), we have i = 7 and 13 = 

74, 12 = 64. However 6 < 7 (= i) and so we have again a contradiction. In case (c) it follows i = 

10, 6 = 102, 7 = 92, but 9 < 10, while in case (d), i = 5, but 4 ≠ 52 and 5 ≠ 52. We conclude that 

S(16) ∩ S(16) + e8 + e9 = ∅. 
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Next we consider the possibility of codewords c expressed by (6.3) with a support W 

either of type {8, 11, i4, j4}, j > i, or of type {i2, j2, 8, 11}, j > i. 

(e). {8, 11, 12, 15} = B6 ∆ B7 ∆ B9 ∆ B11, i = 7, 12 ≠ 74, 15 ≠ 74, a contradiction; 

(f). {8, 11, 13, 14} = B5 ∆ B11, i = 6, 13 ≠ 64, 14 ≠ 64, a contradiction; 

(g). {4,   7,   8, 11} = B8 ∆ B9, i = 9, 7 = 92, 4 = 82, 8 < 9, a contradiction; 

(h). {5,   6,   8, 11} = B4 ∆ B5 ∆ B8 ∆ B9, i = 5, 6 = 52, 5 = 42, 4 < 5, a contradiction. 

So, S(16) ∩ S(16) + e8 + e11 = ∅. 

Finally, we investigate the possibility of codewords c expressed by (6.3) with a support 

W either of type {9, 11, i4, j4}, j > i, or of type {i2, j2, 9, 11}, j > i. 

(i). {9, 11, 12, 14} = B5 ∆ B6 ∆ B7 ∆ B9 ∆ B10 ∆ B11, i = 6, 12 = 64, 14 = 54, 5 < 6, a 

contradiction; 

(j). {9, 11, 13, 15} = B10 ∆ B11, i = 11, 13 = 114, 15 = 104, 10 < 11, a contradiction; 

(k). {4,   6,   9, 11} = B8 ∆ B10, i = 9, 4 ≠ 92, 6 ≠ 92, a contradiction; 

(l). {5,   7,   9, 11} = B4 ∆ B5 ∆ B9 ∆ B10, i = 5, 5 ≠ 52, 7 ≠ 52, a contradiction. 

We conclude that S(16) ∩ S(16) + e9 + e11 = ∅. 

Furthermore, by Theorem 7.4, we also have S(16) ∩ S(16) + e0 + e8 + e9 + e11 = ∅. It is now 

a trivial task to show that the eight snakes 

S(16), S(16) + e0 + e8, S(16) + e0 + e9, S(16) + e0 + e11, 

S(16) + e8 + e9, S(16) + e8 + e11, S(16) + e9 + e11, S(16) + e0 + e8 + e9 + e11 

are pairwise disjoint.                                                                                                                    □ 

The property that the set C(16) indeed covers Q16 was confirmed by a computer program. 

As we remarked already earlier we shall occasionally call a set C as described in the above 

theorem, a complete family of parallel snakes. Furthermore, we emphasize that Theorem 7.7 

improves the result in [35, Section 4.3], where we presented a complete family of sixteen 

parallel symmetric snakes covering Q16 (a so-called symmetric 16-cover). 

Remark 7.1 

Similar investigations as above show that S(16) ∩ S(16) + e10 + e11 = ∅ and S(16) ∩ S(16) + e8 

+ e10 ≠ ∅, S(16) ∩ S(16) + e9 + e10 ≠ ∅. Therefore, there are no more 8-covers of Q16 of the type 

described in Theorem 7.7 which are based on the list of Fig. 5.18. 

In Section 7.1 we discussed a symmetric 8-cover of Q15, and we demonstrated that it is 

possible − by successively leaving out blocks from the original block list in Fig. 5.15 and by 

puncturing to the relevant coordinates − to derive a series of related 8-covers for Q14, Q13, …, 

Q9. It turns out that a similar hierarchy of covers exists when we start such a procedure from 

the 8-cover of Q16 as described in Theorem 7.7. 
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If we omit block B1 in the list of Fig. 5.18, the remaining list generates a snake S(15) of 

length 212 in Q15 after puncturing with respect to the coordinate 3. Furthermore, this snake 

generates an 8-cover 

C(15) = {S(15) + t | t ∈ G(15)}, 

where the group G(15) is also generated by the vectors e0 + e8, e0 + e9, e0 + e11, but which are 

punctured with respect to coordinate 3.  As one can verify rather easily, the proofs of these 

statements can be accomplished in the same way as the proofs of Theorem 7.6 and Theorem 

7.7. Actually, they are identical, since B1 and integer 3 did not play any role in the proofs of 

Theorem 7.6 and 7.7. 

We continue this procedure by removing successively the blocks B2, B3, B4, B5, B6 and 

B9, and by puncturing with respect to 2, 1, 5, 14, 12 and 7, respectively. In this way, we obtain 

a series of eight symmetric snakes 

S(16),      S(15),      S(14),      S(13),      S(12),      S(11),      S(10),      S(9)                   (7.34) 

and a series of isomorphic translation groups 

G(16),     G(15),     …,     G(9),                                            (7.35) 

(cf. Theorem  7.7), and where G(i), 9 ≤ i < 16 are obtained from G(16)
 by puncturing to the 

relevant coordinates as mentioned above. 

Theorem 7.8 

Let S be the snake generated by the block list of Fig. 7.3 and let S(i) , 9 ≤ i ≤ 16, be the 

series of snakes of (7.34). Let furthermore G(i), 9 ≤ i ≤ 16, be the series of isomorphic 

translation groups defined in (7.35). Then the family C(i) of eight snakes 

C(i) ≔ {S(i) + G(i)} = {S(i) + t | t ∈ G(i)} 

constitutes a symmetric 8-cover of Qi with G(i) as invariance translation group, for every i, 

9 ≤ i ≤ 16. 

The proof only slightly differs from the proofs of Theorem 7.6 and 7.7. 

 

 

 

 

 

 



 

 

8. More about Covers of Hypercubes  
 

In Section 8.1 of this chapter, we first introduce a result of Logacev concerning the 

Griesmer bound that gives a lower bound for the word length n of a linear [n, k, d]-code when 

k and d are fixed, and that gives an upper bound for k when n and d are fixed. We use this to 

obtain a lower bound for the number of snakes in covers of Qn produced by our method. 

In Section 8.2 we discuss sufficient conditions for extending a block list B generating a 

snake to a block list Bext generating a complete Gray code which can be transformed quite 

easily into a cover of Qn with snakes. Section 8.3 gives a general form of a block list 

corresponding to a basis of the Reed-Muller code R(m − 2, m) that generates a snake. This list 

can be extended to a block list generating a complete Gray code of word length n = 2m, which 

in its turn provides us with a symmetric 2m−1-cover.     

8.1 Covers of Qn and the Griesmer Bound 

In the previous chapter we proved that for the hypercubes Qn, 9 ≤ n ≤ 16, there exist 

covers consisting of eight symmetric snakes (symmetric 8-covers) with an invariance group of 

order 8.  In Section 7.1 we proved that for 5 ≤ n ≤ 8, the hypercubes Qn have symmetric 4-

covers (cf. [19] and [33 - 36]), with an invariance group of order 4, and we noticed that Q3 and 

Q4 both have a 2-cover with an invariance group of order 2. 

We also remarked in 7.1 that a 2-cover of Q4 can be obtained by translating the snake 

generated by the transition sequence 0, 1, 2, 3, 0, 1, 2, 3 (cf. Section 5.4) over the vector e0 + 

e2. A 2-cover of Q3 is obtained by doubling the 1-cover of Q2, i.e. by taking the union of the 

two snakes covering two disjoint Q2-subcubes of Q3. It is trivial that Q2 has a 1-cover, since 

the covering snake coincides with the graph itself.  

It can easily be proved that for 2 ≤ n ≤ 8, these results can not be improved. E.g. a 2-

cover for Q5 would consist of two snakes of length 24 whereas the longest snakes possible in 

Q5 has length s(5) = 14 (e.g. [19, Section 1.3]). Similarly, a 2-cover for Q8 would consist of 

two snakes of length 27, whereas s(8) ≤ 123 (cf. eq. (A.1), Appendix A). 

As for a possible improvement of Theorem 7.8, we make the following observations. 

All covers in this thesis until now are based on linear [n, k, 4]-codes. The number of snakes in 

such a cover of Qn is equal to 2n−k−2. An obvious question is to ask for the minimal value of 

2n−k−2 or, equivalently, for the minimal value of n − k, for fixed n. 

From the well-known Griesmer bound for linear [n,k,d]-codes (cf. e.g. [23, Ch. 17]) 

n ≥ g(k,d) = 
1

0 2

k

i
i

d−

=
∑ ⎡ ⎤
⎢ ⎥⎢ ⎥

,                                                    (8.1) 
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it follows that for linear codes with minimum distance 4, the word length n satisfies 

n ≥ g(k,4) = 4 +2 + (k − 2) = k + 4, 

and consequently, 

n − k − 2 ≥ 2. 

Hence, the minimal value for n − k is 4, and our method only yields a 4-cover for Qn if n meets 

the Griesmer bound. 

A result of Logacev in [22] says for any  linear [n,k,d]-code, that if 

2 < d < 2k−2 − 1,                                                      (8.2) 

then 

n ≥ g(k,d) + 1.                                                       (8.3) 

It follows that for d = 4 

n ≥ k + 5, 

as soon as k ≥ 5. 

Therefore, for n ≥ 9, there is no linear [n,k,4]-code meeting the Griesmer bound. This 

implies that for n ≥ 9, the best covers that can be constructed by our method, based on a 

minimum-distance-4 code, will be 8-covers. 

Theorem 7.8 shows that for n = 9, 10, …, 16, such covers really can be produced. The 

underlying linear codes, i.e. the Reed-Muller code R(2, 4) ≈ H4
ext with parameters [16, 11, 4], 

and the linear [16 − i, 11 − i, 4]-codes, 0 < i ≤ 7, obtained from R(2, 4) by puncturing and 

omitting basis vectors, all satisfy the relation (8.3). 

Proceeding in this way, we may conclude that for 16 < n ≤ 32, the best symmetric 

covers for Qn (i.e. having a minimal number of snakes) that can be constructed by our method, 

starting with a minimal-distance-4 code, will be 16-covers. This is because R(3, 5) is a [32, 26, 

4]-code, and so n − k − 2 = 4, yielding that the minimal number of snakes in a cover of Q32 is 

2n−k−2 = 16.  The only thing one has to prove to turn this conjecture into a theorem is that R(3, 

5) has an appropriate basis corresponding to a block list consisting of 26 blocks which satisfy 

the fixed-position property and which can be ordered such that the theorems of Chapters 4, 5 

and 6 can be applied. The 16-covers for Q31, Q30, …, Q17 then will be obtained by the process 

of puncturing just like the 8-covers for Q15, Q14, …, Q9. 

An alternative approach would be as follows. The 2-cover of Q4 is the first cover which 

can be constructed with the method of this thesis starting with a minimum-distance-4 linear 

code. More precisely, this code is a [4, 1, 4]-code (cf. Section 7.1). By the process of doubling, 

i.e. by taking two disjoint Q4-subgraphs in Q5, we obtain a 4-cover for Q5. The underlying 

linear code of this cover is a [5, 1, 4]-code. By properly extending the basis {b1} of this code 

by vectors b2, b3 and b4 one by one, we can obtain bases of [6,  2, 4]-, [7, 3, 4]- and [8, 4, 4]-
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codes and corresponding block lists which generate snakes and 4-covers for Q6, Q7 and Q8, 

respectively. 

When doubling the 4-cover of Q8, we obtain a symmetric 8-cover of Q9 with an 

underlying [9, 4, 4]-code. This cover, in its turn, can be extended to 8-covers for Q10, Q11, …, 

Q16 and corresponding codes with parameters [10, 5, 4], [11, 6, 4], …, [16, 11, 4]. The next 

series of 16-covers then could be obtained by doubling in an appropriate way the 8-cover of 

Q16 to a 16-cover for Q17 and to a basis of a [17, 11, 4]-code. However, at this moment, we do 

not (yet) have conditions by which we can decide when a basis is extendable such that the 

extended block list generates a snake and next a cover, and neither do we have an algorithm to 

accomplish such an extension in a systematic way. 

Example 8.1 

Consider the 2-cover of Q4 as shown in Appendix B and extend the words (vectors) in 

the two lists by one extra coordinate. Although we can insert this extra coordinate on any 

position, we put it between the third and fourth coordinate and we label the five coordinate 

positions in the extended words by 0, 2, 4, 5 and 6. Of course, this labeling is also completely 

arbitrary and 0, 1, 2, 3, 4 would have been more natural, but we want to have the formulation 

as close as possible to Example 7.1.  

So, we have the following two disjoint snakes in Q5. 
                                                                                     S(5)                                           S(5)  + e0

 + e4
                

0  0  0  0  0                     1  0  1  0  0 
1  0  0  0  0                     0  0  1  0  0 
1  1  0  0  0                     0  1  1  0  0 
1  1  1  0  0                     0  1  0  0  0 
1  1  1  0  1                     0  1  0  0  1 
0  1  1  0  1                     1  1  0  0  1 
0  0  1  0  1                     1  0  0  0  1 
0  0  0  0  1                     1  0  1  0  1 

                                         Position Labels:     0     2    4     5     6                                    0     2    4     5     6 

Now, the process of doubling provides us with another pair of disjoint snakes which are 

also disjoint with the first two. 
                                                                              S(5) + e5

                                  S(5)  + e0
 + e4

 + e5
                

0  0  0  1  0                     1  0  1  1  0 
1  0  0  1  0                     0  0  1  1  0 
1  1  0  1  0                     0  1  1  1  0 
1  1  1  1  0                     0  1  0  1  0 
1  1  1  1  1                     0  1  0  1  1 
0  1  1  1  1                     1  1  0  1  1 
0  0  1  1  1                     1  0  0  1  1 
0  0  0  1  1                     1  0  1  1  1 

                                         Position Labels:     0     2    4     5     6                                    0     2    4     5     6 
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So, we end up with a 4-cover of Q5. We emphasize that the invariance group of this 

cover is the translation group  

{0,    e0
 + e4,    e0

 + e4
 + e5,    e5}. 

which differs from the group 
{0,    e0

 + e4,    e4
 + e5,    e0

 + e5}, 

the invariance group of the 4-cover in Appendix B. 

8.2 Covers of Qn and Gray Codes 

It turns out that there is a relationship between the covers of Qn, 3 ≤ n ≤ 16, which we 

constructed in the previous sections, and Gray codes. More precisely, the various snakes of a 

particular cover of Qn for some fixed value of n can be connected to each other via a small 

alteration such that the result is a complete cyclic Gray code in the very same hypercube.  

As an example, we consider the cover of Q8 which is explicitly shown in Appendix B. 

This cover consists of the following four snakes  

S(8),              S(8) + e0 + e4,              S(8) + e0 + e5,               S(8) +  e4 + e5,            (8.4) 

where the snake S(8)
 is generated by the block list  

B1 = (1, 3, 5, 7),    B2 = (0, 2, 4, 6),    B3 = (0, 3, 5, 6),    B4 = (0, 3, 4, 7),         (8.5) 

These four blocks correspond to a basis of an [8, 4, 4]-code C. 

We now extend this list with blocks 

B5 = (0, 3, 0, 7),    B6 = (0, 3, 5, 7).                                       (8.6) 

If we let block B5 correspond to a vector b5 with sup b5 = {3, 7}, and B6 – as usual − to a 

vector b6 with sup b6 = {0, 3, 5, 7}, we have an ordered basis (b1, b2, b3, b4, b5, b6) which 

generates an [8, 6, 2]-code Cext. Now, the extended block list 

Bext = (B1, B2, B3, B4, B5, B6),                                           (8.7) 

is dealt with in the same way as all block lists in the previous sections which corresponded to 

[n, k, 4]-codes. The resulting sequence (cf. (4.8)) 

6S (Bext) = B1 B2 B1 B3 … B1 B2 B1 B6 B1 B2 B1 B3 … B1 B2 B1 B6                          (8.8) 

turns out to be the transition sequence of a complete Gray code in Q8. We can prove this by 

similar arguments as were used in part A of Theorem 4.2. It is sufficient to show that any 

proper subsequence of (8.8) contains at least one integer that occurs an odd number of times in 

that subsequence. Right after Example 8.2, we shall prove a general theorem dealing with this 

problem. 

Now consider an arbitrary subsequence T of 6S (Bext). We can always write this 

subsequence as T = T1 T2 T3, where T 2 consists of complete blocks, 0 ≤ |T1| ≤ 3 and 0 ≤ |T3| 

≤ 3. Since the contents of T2 (cf. Definition 2.1) corresponds to a codeword of Cext the number 

of integers occurring in T2 an odd number of times is at least 2, because the minimum distance 
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of Cext is 2. By applying parity considerations w.r.t. the number of integers of the sets P1 = I1 ∪ 

I3 and P2 = I2 ∪ I4, one can easily understand that there is always at least one integer occurring 

an odd number of times in T, unless T is the complete sequence 6S (Bext). Since | 6S (Bext)| is 

equal to 22⋅26 = 28, this proves that (8.8) defines  a complete Gray code in Q8. 

Because of the properties of the standard Gray code, we can write (8.8) in the form 

6S (Bext) = S6(Bext), B5, S6(Bext), B6, S6(Bext), B5, S6(Bext), B6 

where S6(Bext) stands for the transition sequence obtained form 6S (Bext) by removing the last 

block of 6S (Bext). If we define  

S6(Bext), B5 ≔ L, 0, 7 
and 

S6(Bext), B6  ≔ L, 5, 7, 
where  

L ≔ S6(Bext), 0, 3, 

then the transition sequence 6S (Bext) can also be written as 

6S (Bext) = L, 0, 7, L, 5, 7, L, 0, 7, L, 5, 7.                                (8.9) 

So, we can interpret 6S (Bext) as a symmetric transition sequence which is a concatenation of 

four transition sequences of the open snakes S0, S1, S2 and S3, while each of them is generated 

by either L, 0, 7 or L, 5, 7.  

This is an example of a complete Gray code other than the standard Gray code. It is 

generated by a symmetric transition sequence, and moreover it is a concatenation of four 

disjoint open snakes. Although two of the four open snakes, S1 and S3, and also S2 and S4, are 

generated by the same transition sequence, the four snakes S0, S1, S2 and S3, are initialized by 

different words 

s0 = 0,      s1 = b4 + b5,      s2 = b5 + b6,      s4 = b4 + b6 

respectively. In fact these four initial words are the elements of a translation group 

G = <b4 + b5, b4 + b6> = {s0, s1, s2, s4}, 

By interpreting the code C and 

V ≔ {C  ∪  C + s1  ∪  C + s2  ∪  C + s3} 

as algebraic groups, G is equivalent to the factor group V/C. The four cosets 

C,         C + s1,         C + s2,         C + s3, 

are the ‘skeletons’ of the four open snakes S0, S1, S2 and S3, respectively. 

The above interpretation leads to the question of the possibility to invert this process. Is 

it possible to introduce an ordered basis of an [n, k’, 2]-code, with k’ > k, which generates a 

Gray code in Qn consisting of 2a open snakes of length 2n-a? If so, one only would have to 
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partition this Gray code into these 2a open snakes and to construct for each such open snake an 

appropriate head-tail connection in order to end up with 2a disjoint cyclic snakes covering Qn. 

In case of the above example, this connection is realized by a cyclic permutation of the 

last words of the four open snakes as one can verify in Appendix C. Before discussing the 

general theorem about this question, we present one more example. 

Example 8.2  

Consider the block lists  
B = (B1) 

and 
Bext = (B1, B2, B3), 

with B1 = (0, 1, 2, 4), B2 = (0, 1, 0, 4) and B3 = (0, 1, 3, 4). The corresponding vectors b1, b2, b3 

∈ GF(2)5 have supports {0, 1, 2, 4}, {1, 4} and {0, 1, 3, 4} and generate a [5, 3, 2]-code. It 

can easily be proved that 

3S (Bext) = B1 B2 B1 B3 B1 B2 B1 B3 

generates a Gray code of word length 5. By substitution of the blocks, we obtain the following 

sequence 

3S (Bext) = 0, 1, 2, 4, 0, 1, 0, 4, 0, 1, 2, 4, 0, 1, 3, 4, 0, 1, 2, 4, 0, 1, 0, 4, 0, 1, 2, 4, 0, 1, 3, 4. 

The sequence can be written as 

3S (Bext) = L, 0, 4, L, 3, 4, L, 0, 4, L, 3, 4; 

where L = 0, 1, 2, 4, 0, 1. Here,  

L, 0 
and 

L, 3 
stand for  the transition sequences of four consecutive open snakes which are generated by 

3S (Bext) and which are translations of each other apart from their last words. The Gray code 
defined by 3S (Bext) is presented by the following list. 

        0. 00000 (0)                  8. 10100 (0)                16. 10010 (0)                24. 00110 (0) 
1. 10000 (1)                  9. 00100 (1)                17. 00010 (1)                25. 10110 (1) 
2. 11000 (2)                10. 01100 (2)                18. 01010 (2)                26. 11110 (2) 
3. 11100 (4)                11. 01000 (4)                19. 01110 (4)                27. 11010 (4) 
4. 11101 (0)                12. 01001 (0)                20. 01111 (0)                28. 11011 (0) 
5. 01101 (1)                13. 11001 (1)                21. 11111 (1)                29. 01011 (1) 
6. 00101 (0)                14. 10001 (3)                22. 10111 (0)                30. 00011 (3) 
7. 10101 (4)                15. 10011 (4)                23. 00111 (4)                31. 00001 (4)  

By a cyclic permutation of the words with indices 7, 15, 23, and 31, we obtain the four snakes 

S(4),       S(4) + b1 + b2,       S(4) + b2 + b3,       S(4) + b1 + b3. 

Since. b1 + b2 =  e0 + e2, b2 + b2 =  e0 + e3 and b1 + b3 =  e2 + e3, this cover of Q5 is identical to 

the cover which was derived at the end of Appendix B. 
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In general, we shall extend a lexicographically ordered block list B which corresponds 

to the basis of an [n, k, 4]-code, and which satisfies the fixed-position property, with a ≔ n − k 

− 2 additional independent blocks Bk+1, Bk+2, …, Bk+a, where 

Bk+1 = (0, k2, 0, k4)                                                    (8.10) 

and 

Bl = (0, k2, l3, k4),                                                     (8.11) 

for k + 2 ≤ l ≤ k + a, and l3 ∈ I3.  

The blocks of (8.11) correspond to vectors bl ∈ GF(2)n with sup bl = {0, k2, l3, k4}, 

whereas we let Bk+1 correspond to a vector bk+1 of weight 2 with sup bk+1 = {k2, k4}. So, the 

new block list Bext consists of k + a independent blocks, and is still lexicographically ordered 

since (k + 1)1 = (k + 2)1 = … = (k + a)1 = 0 (cf. 4.2(i)). However, it no longer satisfies the 

fixed-position property because of block Bk+1, and neither do the new blocks have a place in 

the underlying Euclidean Geometry of the original list B, since the Nim sum of the  integers in 

a block is unequal to 0. It is obvious that Bext generates an [n, k + a, 2]-code, which we shall 

call Cext since it contains C as a subcode.  

The transition sequence k aS + (Bext) obtained by substituting the blocks of Bext in (4.8) 

will, in general, not define a snake. This is because the minimum distance 2 of Cext prevents us 

from proving the separability condition of a snake like we did in part B of the proof of 

Theorem 4.2. However, we can rather easily prove the validity of the nearness condition by 

assuming one additional (weak) condition for the blocks, and next slightly generalizing part A 

of that proof. 

Theorem 8.1 

Let B =  (B1, B2, …, Bk) be a lexicographically ordered block list corresponding to an [n, 

k, 4 ]-code satisfying the fixed-position property. Let Bext = (B1, B2, …, Bk, Bk +1, …, B k +a)  

be the extended block list such that Bk +1, …, B k +a  are defined by (8.10) and (8.11). Then  

Bext is the transition sequence of a complete Gray code, if each Bi, i ∈ {1, 2, …, k, k + 2, 

…, k + a} contains at least one integer that does not occur in any of the blocks Bl,   l > i. 

Proof. We shall prove that all 22⋅2k+a = 2n words of the list S generated by k aS + (Bext), starting 

from the zeroword, are different. The arguments are similar to those used in the proof of part 

A of Theorem 4.2. Take two different words x and y from this list S. Just like in the proof of 

the above mentioned theorem, we can write w.l.o.g., x = c’ + z’ and y = c” + z”, where c’, c” 

∈ Cext and where z’ is one of the vectors 0, 
1
,ie

1ie + 
2
,ie

1ie + 
2ie + 

3ie , and z” is one of the 

vectors 0, 
4
,je  

3je + 
4
,je

2je + 
3je + 

4
,je  1 ≤ i, j ≤ k + a, where we, sloppily, allow i3 and j3 to 
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take on the value 0 in case i = k + 1 or j = k + 1 (cf. Fig. 4.1). We also partition k aS + (Bext) for 

fixed values i and j according to k aS + (Bext) = T″, Bi, T′, Bj, T‴.  

Assume that d(x, y) = 0. W.l.o.g. we may conclude that T′ and T‴, T″ are not empty. 

It follows that c ≔ c’ + c” = z’ + z” and c ≠ 0. Hence, because c ∈ Cext, ║c║ is equal to 2, 4 or 

6. From the form of the basis vectors, it follows that codewords of Cext of weight 2 have a 

support which is either of type {ib, jb}, b ∈ {1, 2, 3, 4} or of type {i1, j3}, or of type {i2, j4}, 

1 ≤ i, j ≤ k + a. 

It is obvious that for sup c = {i1, j3}, there are no z’ and z” such that c + z’ + z” = 0. 

Neither is this possible for sup c = {ib, jb}. In case sup c = {i2, j4}, the only possibility that c + 

z’ + z” = 0 is that z’ = e0 + 
2ke  + e0 = 

2ke  with i = k, and z” = 
4j

e . It then follows from the 

general form of the basis vectors that c is the sum of an odd number of basis vectors. This 

number is greater than 3, since otherwise i = j and T′ = ∅ which is excluded. Since  

k4 = (k + 1)4 = …= (k + a)4, 

we also have j < i. So, c = bj−1
 + l j l≥∑ b , according to Theorem 2.5 (cf. also (4.13)).  

Because of the condition of our Theorem, at least one of the integers (j − 1)2, (j − 1)3 

and (j − 1)4 does not occur in blocks Bl, l ≥ j, which leads to a contradiction. So, c is of weight 

4 or 6 and the assumption c + z’ + z” = 0 leaves the following possibilities (cf. also the proof 

of Theorem 4.2): 

(a)   c = 
1ie + 

2je  + 
3je + 

4je ; 

(b)   c = 
1ie + 

2ie + 
3je + 

4je ; 

(c)   c = 
1ie + 

2ie  + 
3ie + 

4je ; 

(d)   c = 
1ie + 

2ie + 
3ie  + 

2je + 
3je + 

4je ; 

(e)   c = 
2ke + 

2je + 
3je + 

4je ; 

(f)   c = 
1ie + 

2ke + 0e + 
4ke ; 

(g)   c = 
2ie + 

2ke + 
3ie + 

4ke . 

Because of the general form of the basis vectors, we conclude that codewords of types (e), (f) 

and (g) do not exist. The cases (a), (c) and (d) can be reduced to the weight-2 case, by 

considering c + bj, c + bi and c + bi + bj, respectively, and which can be eliminated as before. 

Finally, if c is of type (b), then c must be the sum of an odd number of basis 

vectors, and so i = j or i > 1, j > 1 or both (cf. Theorem 2.5). Now i =  j yields c = bi, 

contradicting Theorem 2.5(iii). Let w.l.o.g. 1 < i < j. Then we can write c = bi−1
 + 

l X l∈∑ b , where X is some subset of {i, i + 1, , …, k + a} of even size. Again, it follows 
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from the condition of the Theorem that Bi−1 contains at least one integer which is not 

present in any of the blocks Bl, l ≥ i. If (i − 1)1 does not occur anymore, it is contained 

in sup c and hence i1 = (i − 1)1, which is a contradiction since i > i − 1. Similar 

contradictions arise if one of (i − 1)2, (i − 1)3 or (i − 1)4 does not occur anymore in 

blocks Bl, l ≥ i. We conclude that the assumption d(x, y) = 0 is false and hence, Bext 

generates a Gray code with | k aS + (Bext)| = 2k+a+2 = 2n words, i.e. a complete Gray code. 

                                                                                                                               □ 

The following theorem applies Theorem 2.6 to the standard Gray code G(k + a) 

with i replaced by k. The a weight-2 vectors , 1,k k+e , 2 ,k k+e …, ,k k a+e  of G(k + a) 

correspond to a independent vectors s1 = bk + bk+1, s2 = bk + bk+2, …, sa = bk + bk+a, 

respectively, of the code Cext.  These a vectors constitute a basis for a linear [n, a, 2]-

code, which is an invariance group G = < s1, s2, …, sa > of the cover of Qn obtained by 

translating the snake S of length 2k+2 over the 2a vectors of G. The 2a sublists ( ),j
kG k a+  j = 

0, 1, …, 2a − 1, of G(k + a) correspond to the 2a open snakes expressed by (8.12). 

Theorem 8.2 

Let B = (B1, B2, …, Bk) and Bext = (B1, B2, …, Bk, Bk +1, …, B k +a)  be two block lists that 

satisfy the conditions of  Theorem 8.1  and  let B generate a snake of size 2k+2.  Let further- 

more u0, u1, …, 
2 1a −

u  be the 2a words in the word list Sext generated by Bext at the positions 

2k+2 − 1, 2⋅2k+2 − 1, 3⋅2k+2 − 1, …, 2a⋅2k+2  − 1. Then one obtains a 2a-cover by symmetric 

snakes of Qn by carrying out the cyclic permutation (u0 u1 … 
2 1a −

u ) in Sext. This cover has 

an invariance translation group G of size 2a generated by the vectors  

bk + bk+1,   bk + bk+2,   …,   bk + bk+a. 

Proof. By applying Theorem 2.6 with necessary adaptations, e.g. by replacing the integer 

k + tj, j = 1, 2, …, a, in the transition sequence k aS +  by the ordered sequence of four 

integers of the corresponding block 
jk tB + , we partition k aS + (Bext), starting from its first 

element into 2a subsequences of 2k+2 integers.  

From the properties of the standard Gray code G(k + a) and from the specific form of 

the blocks Bk, Bk+1, …, Bk+a, which differ only in their third elements, these 2a subsequences 

are all equal to kS (B), apart from their last but one element. As a result, these subsequences 

are the transition sequences of 2a open snakes such that each open snake, apart from their last 

words u0, u1, …, 
2 1a −

u , can be obtained from any other one by a translation over some fixed 
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vector. These translation vectors are the 2a linear combinations of  the vectors s1 = bk + bk+1, s2 

= bk + bk+2, …, sa = bk + bk+a, 

More precisely, let  
S0, u0,     S1, u1,     …,     2 1a −S ,

2 1a −
u                                      (8.12) 

be the above mentioned open snakes. It follows rather easily from the properties of the Gray 

code G(k + a) that (cf.(2.15)) 

Si = Si−1 + 
it

s ,                 1 ≤ i ≤ 2a,                      (8.13)  
where the indices ti  are the elements of the complete transition sequence of the standard Gray 

code G(a)  

aS  = t1, t2, t3, …, 
2at ,                                                     (8.14) 

the concrete form of which is (cf. (2.17)). 

aS  = 1, 2, 1, …, a, 1, 2, 1, …, a                                         (8.15) 

In (8.13), we identify 2a

S and S0. A similar rule 

ui = ui−1 +  
1it +

s ,                  1 ≤ i ≤ 2a.                      (8.16) 

holds for the last words ui and ui−1 of the respective open snakes Si, ui, and Si-1, ui−1. 

Furthermore, the Hamming distance between ui−1 and the first word of Si+1 is equal to 1 for all 

relevant values of i, since these words are successive words in the Gray code generated by 

k aS + (Bext), according to Theorem 8.1. The Hamming distance between ui and the last word of 

Si+1 is equal to 

║
1it +

s + 
1 3( )ik t ++e ║ = ║bk + 

1ik t ++b + 
1 3( )ik t ++e ║ = ║

3ke ║ = 1. 

So, if we permute u0, u1, …, 
2 1a −

u  in cyclic sense over  one position to the right, we obtain the 

concatenation of 2a closed snakes  

S0, 
2 1a −

u  ,     S1, u0,     S2, u1,    …, 2 1,
a −S

2 2a −
u ,                              (8.17) 

and these snakes are identical to 

S,     S + s1,     S + s1
 + s2, …, S +

i i it X t∈∑ s , …, S + sa, 
where Xi is the multiset of the first i integers of (8.14) and where the (list) snake S is generated 

by kS (B). This proves the Theorem.                                                                                         □ 

Example 8.3 

Let B be the block list presented in Fig. 7.3 and let 

Bext = (B, B12, B13, B14), 

be its extension with the three additional blocks  

B12 = (0, 6, 0, 13),      B13 = (0, 6, 8, 13),      B14 = (0, 6, 9, 13). 

Since B generates a snake (Theorem 7.6) and since Bext satisfies the condition of Theorem 

8.1, we are entitled to apply Theorema 8.2. Hence, after having carried out the permutation 
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(u0 u1 u2 … u7) of the words which are at the positions 213 − 1, 2⋅213 − 1, 3⋅213 − 1, …, 

8⋅213 − 1, respectively, we obtain a concatenation of eight (closed) snakes which together 

constitute a cover of Q16. This cover has an invariance group 

G  = <b11 + b12,  b11 + b13, b11 + b14> 

 = <e0 + e11,  e8 + e11, e9 + e11> 

 = <e0 + e8,  e0 + e9, e0 + e11>. 

This is precisely the 8-cover of Theorem 7.7.  

We emphasize that extending B with the blocks  

B12 = (0, 6, 0, 13),      B13 = (0, 6, 8, 13),      B’14 = (0, 6, 10, 13). 

will not provide us with a cover. This is because the extended block list no longer satisfies the 

conditions of Theorem 8.1. In particular, block B7 does not contain an integer that does not 

occur in blocks Bl, l > 7. In Section 7.2, we already established, by applying different tools, 

that the corresponding family of snakes (7.23) is not a cover (cf. also Remark 7.1). 

We remark that the mutual order of the blocks Bk+1, Bk+2, …, Bk+a is not essential. The 

proofs of Theorem 8.1 and Theorem 8.2 do not depend on their order. If some block list Bext 

satisfies the conditions of Theorem 8.2, we shall say that Bext generates a symmetric 2a-cover 

of Qn.  

Theorem 8.3 

Let B = (B1, B2, …, Bk) be a block list that satisfies the conditions of Theorem 5.8 and let k0 

be the number of blocks Bj which only satisfy requirement (iii) of that Theorem and not (i) 

and (ii). If 

k0 ≤ k + |I3| + 2 − n, 

then B (or an equivalent list) can be extended to a list Bext which generates a 2a-cover of 

Qn with a = n − k − 2. 

Proof. From Theorem 5.8 we know that B (or an equivalent list) generates a snake in Qn. 

From Theorem 8.1 and Theorem 8.2 it follows that there exists an extended list Bext generating 

a 2a-cover, if one can find a – 1 = n − k − 3 integers l3 ∈ I3 that are not in one of the k0 blocks 

as described in the Theorem. Since Bk is not one of these k0 blocks, we must have  

|I3| − 1 − k0 ≥ n − k − 3.                                                       □ 

Example 8.4 

The list B in Fig. 7.3 satisfies the conditions of Theorem 5.8. Block B7 is the only block 

which satisfies requirement (iii) of that Theorem and not (i) or (ii). So, k0 = 1. Since 1 ≤ 11 + 4 

+ 2 − 16, B can be transformed and extended to a list that generates a 23-cover of Q16. Notice 



 

 120 

that Theorem 8.3 cannot be applied to a list like the one of Fig. 5.13 since the conditions of 

Theorem 5.8 do not hold. 

To summarize this section, we emphasize once more that the vectors b1, b2, …, bk that 

correspond to a list B generate a code C with minimum distance 4. This minimum distance 

garantees (cf. Theorem 4.2) the separability condition for a snake. Extending C to Cext by 

adding basis vectors bk+1, …, bk+a decreases the minimum distance from 4 to 2. Consequently, 

the separability condition in the generated transition sequence k aS + (Bext) is no longer valid, 

though the nearness condition still holds. So, k aS + (Bext) still generates a Gray code, and this 

Gray code can be cut into 2a disjoint pieces such that each piece is a snake, due to the fact that 

these pieces correspond to the subcode C of Cext. 

8.3 Special Bases for R(m − 2, m) and Covers of Qn 

In this section, we shall prove that the linear code R(m − 2, m) (the Extended Hamming 

code ext
mH ) always has a minimum-weight basis (of weight 4) such that it satisfies the fixed-

position property w.r.t. some given parallel system in EG(m, 2), for all m > 2. We know 

already, by construction, that such a basis exists for m = 3 and m = 4 (cf. Chapter 5).  

First we repeat, for our convenience, some definitions and conventions introduced in 

[35] and applied in Chapter 5. Let the dimension of R(m − 2, m) be equal to k. So, this code 

contains 2k codewords. The length of these words is equal to n = 2m, which is the number of 

points in EG(m, 2). These points are labeled from 0 until 2m − 1, so the point set of EG(m, 2) is 

written as 

 {p0, p1, …, 
12 −mp }. 

or as 
{P0, P1, …, 

12 −mP }, 
(cf. [35, Section 3.2]). 

In Section 5.2, we adopted the convention that Pi stands for the reversed binary 

representation of i, for 0 ≤ i ≤ 2m − 1.  Since a codeword v ∈ R(m − 2, m) is by definition the 

characteristic vector of a subset of these points, we can identify v with the index set sup v. 

Let furthermore P = {I1, I2, I3, I4} be a parallel system of (m − 2)-flats that covers 

EG(m, 2). Here, we represent the point set Ii, i ∈ {1, 2, 3, 4}, also by the index set of the points 

it contains. We assume that I1 stands for a linear subspace of EG(m, 2) of dimension m − 2, i.e. 

it is a subspace containing 
1kp ≔ 0, whereas for some ki ∈ {0, 1, …, 2m − 1} with i ∈ {2, 3, 4}, 

Ii = I1 + 
ikp is one of its cosets. 
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Just like in the previous sections, we shall represent the index values 0, 1, …, 2m − 1 by 

their reversed binary representation, and so we write Ii = I1 ⊕ ki, where ⊕ denotes Nim 

addition. We shall say that a coset S has a zero-Nim sum if S is a linear subspace of EG(m, 2), 

the sum of its vectors is 0. Hence, the Nim sum of the labels of these vectors is 0. An 

immediate consequence is that the same is true for any coset.  

Theorem 8.4  

Let P = {I1, I2, I3, I4} be some parallel system of (m − 2)-flats covering EG(m, 2) and let B 

be a 2-flat. Then the intersections of B with the flats Ii satisfy one of the following relations: 

(i) |B ∩ Ii| = 1, for all i ∈ {1, 2, 3, 4}; 

(ii) |B ∩ Ii| =  |B ∩ Ij| = 2, for some i, j ∈ {1, 2, 3, 4} and  |B ∩ Ik| = 0, 

for k ∈ {1, 2, 3, 4} \ {i, j}; 

(iii) |B ∩ Ii| = 4, for some i ∈ {1, 2, 3, 4} and  |B ∩ Ij| = 0, for j ∈ {1, 2, 3, 4} \ {i}. 

Proof. Assume that there is an i ∈ {1, 2, 3, 4} such that B = {a, b, c, d} has at least two points 

- say a and b - in common with Ii. Then it follows that a ⊕ b ∈ I1 and hence, c ⊕ d ∈ I1, since 

a ⊕ b ⊕ c ⊕ d = 0. But then a and  d are both in j, for some j ∈ {1, 2, 3, 4}. If i = j, we are in 

case (iii), and if i ≠ j we are in case (ii). If our assumption is false, we are in case (i).              □ 

Theorem 8.5 

For the code R(m − 2, m) one can always find a minimum-weight basis B = (b1, b1, …, 

bk) such that the ordered blocks Bi corresponding to sup bi, 1 ≤ i ≤ k, all satisfy the 

fixed-position property with respect to any parallel system P of (m − 2)-flats covering 

EG(m, 2).  

Proof  Let P be some given parallel system. Let B be a 2-flat which is of type (ii) (cf. Th. 8.4) 

with respect to P, e.g. B = (a1, b1, a2, b2), where a1, b1 ∈ I1 and a2, b2 ∈ I2 (remember that the 

ai and bi are binary numbers). We remark that any 2-flat is uniquely determined by three of its 

four points and that any of its points is the Nim sum of the others when using the binary 

representation.  

Hence, for any c3 ∈ I3, the block (a1, a2, c3, c4) with c4 = a1 ⊕ a2 ⊕ c3 stands for a 2-flat. 

Since a1 ⊕ a2 ⊕ b1 ⊕ b2 = 0, it follows that b1 ⊕ b2 ⊕ c3 ⊕ c4 = 0 and hence (b1, b2, c3, c4) also 

represents a 2-flat, and c4 ∈ I4 by Theorem 8.4. Now, we can write (a1, b1, a2, b2) = (a1, a2, c3, 

c4) ∆ (b1, b2, c3, c4),  which shows that B can be written as the sum of two blocks satisfying the 

fixed-position property. The same holds for any other block which represents a 2-flat of type 

(ii).  
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Similar arguments can be raised for 2-flats of type (iii), say for (a1, b1, c1, d1). For any 

e2, s2 ∈ I2 and any f3 ∈ I3, we can find a t3 ∈ I3 such that  

(a1, b1, c1, d1) = (a1, e2, f3, g4) ∆ (b1, e2, f3, h4) ∆ (c1, s2, t3, g4) ∆ (d1, s2, t3, h4), 
and where the four blocks on the RHS all represent 2-flats. This also illustrates that all blocks 

representing a 2-flat of type (iii) can be written as a sum of blocks satisfying the fixed-position 

property. 

We know that R(m − 2, m) is spanned by its weight-4 vectors, i.e. by some of the 2-flats 

in EG(m, 2) (see e.g. [35, Theorem 3.2.3 and 3.2.4]). From the above considerations it now 

follows that R(m − 2, m) is also spanned by the subset of its weight-4 vectors the 

corresponding blocks of which satisfy the fixed-position property.                                           □ 

Example 8.5  

We shall construct a basis for the code R(3, 5) which has dimension (cf. (5.5)) 

k = 
3

0

5( )
i

i
=
∑  = 26. 

For the parallel system P = {I1, I2, I3, I4}, we take 

I1 = {  0,   1,   2,   3,   4,   5,   6,   7}, 

I2 = {  8,   9, 10, 11, 12, 13, 14, 15}, 

I3 = {16, 17, 18, 19, 20, 21, 22, 23}, 

I4 = {24, 25, 26, 27, 28, 29, 30, 31}. 

It is obvious that the following (ordered) blocks correspond to independent vectors (we shall 

speak of independent blocks in the next). 

B1 = (7,  8, 16, 31)                               B12 = (0, 12, 16, 28) 

B2 = (6,  8, 16, 30)                               B13 = (0, 13, 16, 29) 

B3 = (5,  8, 16, 29)                               B14 = (0, 14, 16, 30) 

B4 = (4,  8, 16, 28)                               B15 = (0, 15, 16, 31) 

B5 = (3,  8, 16, 27)                               B16 = (0, 15, 17, 30) 

B6 = (2,  8, 16, 26)                               B17 = (0, 15, 18, 29) 

B7 = (1,  8, 16, 25)                               B18 = (0, 15, 19, 28) 

B8 = (0,  8, 16, 24)                               B19 = (0, 15, 20, 27) 

B9 = (0,  9, 16, 25)                               B20 = (0, 15, 21, 26) 

  B10 = (0,10, 16, 26)                               B21 = (0, 15, 22, 25) 

  B11 = (0,11, 16, 27)                               B22 = (0, 15, 23, 24) 

In order to find additional independent blocks, we can take e.g. three more blocks 

containing 0 and 14: 

B23 = (0, 14, 22, 24),               B24 = (0, 14, 20, 26),               B25 = (0,14, 18, 28). 

Notice that the remaining blocks containing 0 and 14 depend on the blocks we already have: 
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(0, 14, 17, 31) = B14 ∆ B15 ∆ B16, 

(0, 14, 19, 29) = B14 ∆ B17 ∆ B18, 

(0, 14, 21, 27) = B14 ∆ B19 ∆ B20, 

(0, 14, 23, 25) = B14 ∆ B21 ∆ B22. 

Finally, to complete the basis, we can take 

B26 = (0, 13, 20, 25). 

Notice that other blocks containing 0 and 13 can be obtained as sums of the blocks B1, B2, …, 

B26. We can write e.g. (0, 13, 18, 31) = B13 ∆ B15 ∆ B17 and similarly for other blocks of type  

(0, 13, …, …). 

The following theorem appears to be useful for the construction of minimum-weight 

bases for R(m − 2, m) codes. Actually, this theorem is nothing else than Theorem 5.6 for r = m 

− 2 in terms of Nim sums (cf. also [23], Chapter 13). 

Theorem 8.6 

Let B = (b1, b1, …, bk) with k = 
2

0
( )

m m
i

i

−

=
∑  be a set of independent binary vectors of  

length n = 2m and of weight 4. If the corresponding blocks Bi have zero-Nim-sum  

then B generates the Reed-Muller code R(m − 2, m). 

Proof. Let C be the [n, k, d]-code generated by B. Let v = j j jc∑ b , cj ∈ {0, 1}, be some word 

of C, and let V ≔ sup v. Since V = sup ,j j jc∆∑ b where ∑∆ stands for repeated symmetric 

difference,  V  also has  zero-Nim-sum.  Furthermore,  since all bi have even weight,  the total 

number |V| of integers in V is also even. Because the Nim sum of two different integers cannot 

be equal to 0, it follows that either |V| = 0 or |V| ≥ 4, and hence d = 4. So, C is an [n, k, 4]-code 

with k = 2
0 ( )mm

i i
−

=∑ . Since the code is generated by its minimum-weight-4 basis vectors 

corresponding to 2-flats of EG(m, 2), we may conclude that C is equivalent to R(m − 2, m).    □ 

Theorems 8.5 and 8.6, enable us to compose block lists satisfying the fixed-position 

property, and which correspond to an minimum-weight basis basis for R(m − 2, m). 

Example 8.6  

One can verify that the block list in Example 8.5 satisfies the conditions of Theorem 8.6, 

and so the code it generates is indeed R(3, 5). The following block list B also corresponds to 

R(3,5) (This code, though equivalent, need not be identical to the former one). 
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B1 = (7,   8, 16, 31), 
B2 = (6,   8, 16, 30), 
B3 = (5,   8, 16, 29), 
B4 = (4,   8, 16, 28), 
B5 = (3,   8, 16, 27), 
B6 = (2,   8, 16, 26), 
B7 = (1,   8, 16, 25), 

 
B8 = (0,   8, 16, 24), 

              B9 = (0,   9, 16, 25), 
B10 = (0, 10, 16, 26), 
B11 = (0, 12, 16, 28), 

 
 
  

B12 = (0, 15, 16, 31), 
B13 = (0, 14, 16, 30), 
B14 = (0, 15, 18, 29), 
B15 = (0, 14, 18, 28), 
B16 = (0, 15, 20, 27), 
B17 = (0, 14, 20, 26), 
B18 = (0, 15, 22, 25), 
B19 = (0, 14, 22, 24), 
B20 = (0, 15, 17, 30), 
B21 = (0, 13, 17, 28), 
B22 = (0, 15, 21, 26), 
B23 = (0, 13, 21, 24), 
B24 = (0, 15, 19, 28), 
B25 = (0, 11, 19, 24), 
B26 = (0, 15, 23, 24).

Each block Bi, 1 ≤ i ≤ 26, contains at least one integer which does not occur anymore in 

blocks Bl, l > i. So, these integers can be considered as pivots, and are marked by an 

underscore. This implies that we have 26 independent blocks. Since all blocks have zero-Nim-

sum, the corresponding basis B = (b1, b2, …, b26) generates the Reed-Muller code R(3, 5). 

Moreover, the list satisfies the conditions of Theorem 5.8, and so it either ifself generates a 

snake of length 228 in Q32 or it is equivalent to such a list. 

The blocks which satisfy requirement (iii) of Theorem 5.8, and not (i) or (ii), are B13, 

B15, B17 and B21. So, the number k0 of Theorem 8.3 is equal to 4. Since k + |I3| + 2 − n = 26 + 8 

+ 2 − 32 = 4, we can extend B to Bext with four additional blocks such that Bext generates a 

symmetric 16-cover of Q32, according to Theorem 8.3. The additional blocks are 

B27 = (0, 15,   0, 24), 
B28 = (0, 15, 22, 24), 
B29 = (0, 15, 21, 24), 
B30 = (0, 15, 19, 24). 

Example 8.7  

We present once more a block list B for the code R(2, 4). This one is quite similar to the 

list for R(3, 5) in Example  8.6, and satisfies the conditions of Theorem 5.8. 

                                    B1 = (3, 4,  8, 15), 
                                    B2 = (2, 4,  8, 14),  
                                    B3 = (1, 4,  8, 13), 
     
                                    B4 = (0, 4,  8, 12),   

 
  

  B5 = (0, 7,  8, 15), 
  B6 = (0, 6,  8, 14), 
  B7 = (0, 7,10, 13), 
  B8 = (0, 6,10, 12), 
  B9 = (0, 7,  9, 14), 
 B10 = (0, 5,  9, 12), 
 B11 = (0, 7,11, 12).

According to Theorem 8.3 this list can be extended with blocks 

B12 = (0, 7, 0, 12),               B13 = (0, 7, 9, 12),               B14 = (0, 7, 10, 12) 

and the extended list Bext generates a symmetric Gray code which is a concatenation of eight 

open snakes. From Theorem 8.2 we know that we can interchange the last words of these 
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snakes to obtain an 8-cover consisting of eight closed (or cyclic) snakes. According to our 

remark right after Example 8.3, we say that Bext generates a symmetric 8-cover. 

We are now ready to formulate and to prove a general theorem for the existence of 

symmetric covers of Qn. 

Theorem 8.7  

For the Reed-Muller code R(m – 2, m) of word length n (= 2m) and of dimension k (= 2m − 

m − 1), m ≥ 3, one can always construct a weight-4 basis satisfying the fixed-position 

property such that the corresponding block list B generates a snake of length 2k+2 in Qn, 

and which can be extended to a list Bext generating a symmetric 2m−1-cover of Qn. 

Proof. For the four subsets I1, I2, I3, I4 (cf. Definiton 4.1) of {0, 1, …, m − 1}, we take  

I1 = {               0,                         1,    …,    2m-2 − 1           }, 

I2 = {           2m-2,    2m-2 + 1           ,    …,    2m-1 − 1           }, 

I3 = {           2m-1,    2m−1 + 1          ,    …,    2m-1 + 2m-2 − 1}, 

I4 = {2m-1 + 2m-2,    2m−1 + 2m-2 + 1,    …,    2m − 1              }.  

The list B to be constructed will consist of three sublists B1, B2 and B3. Sublist B1 is 

defined as 
2 1

2 1

1

2 1 1 2

-2

-2

( 2 2 2 1 ),

( 2 2 2 2 ),

( 2 2 2 +2 1 ).

2 1

2 2

1

mm m

m m m

m m m m

m

m

− −

− −

− − − −

−

−
=

+

−⎧
⎪
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⎨
⎪
⎪
⎩
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B
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The sublist B3 is built up as follows 
1 1

1

1 1

1

1 1 2 2

1 2 2

1

1

1

1
3

( 0 2 1 2 2 1 ),

( 0 2 2 2 2 ),

( 0 2 1 2 2 3 ),

( 0 2 2 2 4 ),

( 0 2 1 2 2 2 2 1 ),

( 0 2 2 2 2 ),

2
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1 1

1

1 1

1

1 1 2 2

1 2 2

1

1
2
3

1

( 0 2 1 2 2 2 ),

( 0 2 3 2 4 ),

( 0 2 1 2 2 6 ),

( 0 2 3 2 8 ),

( 0 2 1 2 2 2 2 2 ),

( 0 2 2 2 2 ),

1

2 1

5

2 5

3

2 3 3

m m m

m m

m m m

m m

m m m m m

m m m m

m

m

m
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− −

−

− − − −

− − −
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−
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   1 1 3 3
2

3 1 3 1 3 2

( 0 2 1 2 2 1 2 2 ),

( 0 2 2 1 2 2 1 2 2 ),

m m m m m
m

m m m m m m

− − − −
−

− − − − −
=
⎧ − + − −⎪
⎨

− − + − −⎪⎩
B

, , ,

, , ,

 

   1 1 1 2 2
3 ( 0 2 1 2 2 1 2 2 )m m m m m m− − − − −= − + − −B , , , . 

As one can verify, the sublists B3
i have size 2m−i−1, 1 ≤ i  ≤ m − 1. For each block, we 

mark the integer which plays the role of pivot by an underscore. These pivots occur alternately 

in the third and in the fourth column, except when we are dealing with the last block in B3
i, 

where 1 ≤ i  < m − 1. For those blocks we selected the integer in the second column. The total 

number of blocks in B3 is 
11

1 2m im
i

− −−
=∑ = 2m−1− 1. 

Finally, sublist B2 consists of the blocks 
1 1

2 2( 0 2 2 ).m mi i− − −, , ,  

Here, i2 runs through the set I2 \ I’2, where I’2 is the subset of I2 consisting of those 

integers that are already present in the blocks of  B3. All integers in I2 \ I’2 are chosen to 

be pivots. The total number of blocks in B2 is equal to |I2 \ I’2| = 2m−2 − m + 1. Hence, 

the block list B = B1, B2, B3 contains 

2m−2 − 1 +  2m−2 − m + 1 + 2m−1 − 1 = 2m − m − 1 

blocks. Since all these blocks have a different pivot, they are independent and since the Nim 

sum of the integers in each block is zero, they correspond to a minimum-weight basis of R(m − 

2, m) (cf. Theorem  8.6). As one can easily verify they also satisfy the conditions of Theorem 

5.8, and so B generates a snake of length 2k+2 in Qn. Moreover, if we take the I3-integers i3
1, 

i3
2, …, i3

m−2, which are in the last blocks of  B3
1, B3

2, …, B3
m−2, we can extend B with blocks  
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1 2
1

1 1 2
2 3

1 2 2
3 3

1 2 2
1 3

(0 2 1 0 2 2 ),

(0 2 1 2 2 ),

(0 2 1 2 2 ),

(0 2 1 2 2 ).
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m m m
k

m m m
k

m m m
k

m m m m
k m

i
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+
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+
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+

− − −
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=

=

=

− −

− −

− −

− −

B

B

B

B

, , ,

, , ,

, , ,

, , ,

 

to a block list Bext.  

Now according to Theorem 8.3, this list Bext generates a symmetric 2m−1-cover of Qn or 

is equivalent to such a list. If B does not generate a snake immediately, but first has to be 

altered according to the procedure described in the proof of Theorem 5.8, there is a block Bi−1 

= (0, (i − 1)2, (i − 1)3, (i − 1)4) and a codeword  

c = bi−1 + l i lb≥∑  

with sup c = {0, i2, p3, j4}, i < j ≤ k. Since (i − 1)3 is a pivot in this case, it follows that p3 = (i − 

1)3. But then all integers l3 in l li B⊕
≥∑ corresponding to l i lb≥∑ have to occur an even number 

of times. 

Because of the structure of the list (cf. Examples 8.6 and 8.7, and also Appendix D), the 

blocks Bl in the above sum occur as pairs of consecutive blocks. But each such pair contains 

an integer l4, which is a pivot, so there can be only one such pair. However, a word  c = bi−1 + 

bj + bj+1, j ≥ i, always contains three integers of I2, or three integers of I4 (or both), and hence, 

we have a contradiction. Therefore, the list B itself generates a snake and need not be 

transformed into an equivalent list, which proves the Theorem.                                                □ 

As for an illustration of Theorem 8.7 we once again refer to Example 8.7 with m = 4, to 

Example 8.6 with m = 5 and to Appendix D with m = 6.  

Corollary 8.8  

For any n which satisfies 2m−1 < n ≤ 2m, one can construct a symmetric 2m−1-cover 

of Qn which is invariant under a translation group of order 2m−1, for m ≥ 3. 

Proof. For n = 2m, the result follows immediately by applying Theorem 5.8 and 8.2 to the 

block lists B and Bext defined in the proof of Theorem 8.7. For n = 2m − y, 0 < y < 2m−1, we 

omit the first y blocks from the list B. The remaining list still satisfies the conditions of 

Theorems 5.8 and 8.2. 

An alternative related method is the process of puncturing with respect to the 

underscored integers in blocks B1, B2, …, 12 1mB − −
, respectively (cf. Section 7.1).                      □ 
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We would like to point out that for 4 < n ≤ 8 and for 8 < n ≤ 16, Corrollary 8.8 gives 

better results than [32], i.e. the number of snakes in the cover of Qn is equal to 4 and to 8, 

respectively, whereas in [32], it is only stated that this number is upperbounded by 16.  

Even in the range 16 < n ≤ 32, one could say that Corollary 8.8 provides us with slightly 

better results, since the 16 covering snakes are symmetric, and so we have a symmetric 16-

cover. Moreover, in the range 4 < n ≤ 16, it gives a supplement to a result in [2] which states 

that for any even integer r ≥ 4, n ≥ 2, the graph Kr
n, being the nth power of the complete graph 

Kr,  can be covered with r3 snakes, be it that these snakes are not all mutually disjoint. 
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Appendices 

Appendix A.  

           
Upper and Lower Bounds For the Length of Snakes 

Let s(n) be the maximal length of a snake in Qn. At present, the exact value of s(n) has 

been determined only for six values of s(n), i.e. s(2) = 4, s(3) = 6, s(4) = 8, s(5) = 14, s(6) = 26 

and s(7) = 48.  

In the course of time, several bounds have been derived. We mention the following 

review of several upper bounds found since 1987. In [31], Solov’jeva derived 

s(n) ≤  1
2

2
1 2

2
n

n n
−−

− +
⎛ ⎞
⎜ ⎟
⎝ ⎠

,                    n ≥ 7                 (A.1) 

Her method is based on counting four-cycles intersecting a fixed snake S in i vertices, 0 ≤ i ≤ 

4. In [30] Snevily improved this bound by deriving  

s(n) ≤  12
1 2

20 41
n

n
−−

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

,                  n ≥ 12                  (A.2) 

His method is based on estimating the average number of vertices in S adjacent to a vertex not 

in S. 

By refining some details of the proof in [30], Emelyanov [7] found  

s(n) ≤  11
1 2

6 13
n

n
−−

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

,                  n ≥ 19                  (A.3) 

By using some parts of Snevily’s proof and Solov’jeva method, Emelyanov and Lukito in [8] 

showed that for n ≥ 7,  

s(n) ≤  1
5 4 3 2

6 5 4 3 2

2( 270)
1 2

5 31 540
18 68 7 298

47 57 362 806
nn n n n n

n n n n n n
−+

−
− +

⎛ ⎞− + − −
⎜ ⎟+ − + −⎝ ⎠

,               (A.4) 

≤  12
1 2

5 59 (1)
n

n o
−−

−
⎛ ⎞
⎜ ⎟+⎝ ⎠

. 

For all n, Zemor in [42] proved that 

s(n) ≤  1

6 6

2
61

6 7
n

n

n
n

−+
+ −

                                              (A.5) 

by applying a technique counting vertices of ‘high degree’ ouside S. We remark that Zemor 

has introduced an essentially a new element, since his upper bound is not of the type r(n)2n-1, 

where r(n) is some rational function of n, but rather shows a n -dependence.  

Although asymptotically Zemor’s bound is the best bound so far, bound  (A.4) is better 

on the interval 11 ≤ n ≤ 15607. Moreover, Lukito and van Zanten in [20] proved 
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s(n) ≤  1
2450

10

2
2 16 801

5 47 5 3 20
n

n

n
n n n

−

−

⎛ ⎞ −− +⎜ ⎟+ + − −⎝ ⎠
,                      (A.6) 

which is an improvement of bound (A.4) for n ≥ 7 and which is better than (A.4) for 7 ≤ n ≤ 

19081.  

For n-values with 8 ≤ n ≤ 20, the following table of upper bounds is copied from [19, 

Table 2, p. 8]. Notice that for a particular n-value, any of the expressions A.1 - A.6 for upper 

bounds may not be the best one. In fact, for n-values with n ≥ 11, the upper bounds listed in 

the table are lower than any upper bound given by any of the six expressions A.1 - A.6. 

Word  length 

(n) 

Upper bound 

of s(n) 

Word length 

(n) 

Upper bound 

of s(n) 

7 48* 14 8017 

8 123 15 16063 

9 249 16 32172 

10 500 17 64425 

11 994 18 128990 

12 1995 19 258230 

13 4000 20 516900 

Tabel A.1 

Lower bounds for s(n) are mostly of the type λ2n. A bound of this type was first 

established by Evdovkimov in [10] with λ = s(8)/29. In [32], Wojciechowski obtained λ = 9/64 

= 0.1406… . A better lower bound is the one established by Abbot and Katchalski. In [1] they 

derived s(n) ≥ λ2n with λ = 3.00781. 

With respect to general methods to construct maximal snakes, the most noticable lower 

bounds for s(n) were produced by the research group from Artificial Intelligence Center at the 

Georgia University (http://ai.uga.edu/) where genetic algorithms have been developed for 

constructing maximal snakes. Kochut [17] and Potter [26] have successfully constructed the 

current maximal snakes in Qn for n = 7, 9, 10 and 11 (cf. also [5]).  

For n = 8, Paterson and Tuliani in [24] using the necklace approach, were the first 

authors who attained the current lower bound 96 ≤ s(8). The most recent lower bounds are due 

to Cassella and Potter in [4, 5] who obtained new lower bounds 180 ≤ s(9), 344 ≤ s(10)  and 

630 ≤ s(11), using a genetic algorithm, as mentioned earlier.  

On the following page, we present a list of the best lower bounds for snakes known at 

this moment for 7 ≤ n ≤ 20. 
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Word  length 

(n) 

Lower bound 

of s(n) 

Word length 

(n) 

Lower bound 

of s(n) 

7 48* 14 4934 

8 96 15 9868 

9 180 16 19740 

10 344 17 39480 

11 630 18 78960 

12 1238 19 157900 

13 2468 20 315800 

Tabel A.2 
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Appendix B 

Some Covers For Small Hypercubes 

Based on the block list B = (B1, B3, B3, B4) of Fig. 7.1, where 

B1 = (1, 3, 5, 7),    B2 = (0, 2, 4, 6),    B3 = (0, 3, 5, 6),    B4 = (0, 3, 4, 7), 

we constructed the following symmetric 4-cover of Q8. 

               S(8)                      S(8) + e0 + e4              S(8) + e0 + e5               S(8) +  e4 + e5, 

            0. 00000000;                 10001000;                 10000100;                 00001100;  (1);  
            1. 01000000;                 11001000;                 11000100;                 01001100;  (3);  
            2. 01010000;                 11011000;                 11010100;                 01011100;  (5);  
            3. 01010100;                 11011100;                 11010000;                 01011000;  (7);  
            4. 01010101;                 11011101;                 11010001;                 01011001;  (0);  
            5. 11010101;                 01011101;                 01010001;                 11011001;  (2);  
            6. 11110101;                 01111101;                 01110001;                 11111001;  (4);  
            7. 11111101;                 01110101;                 01111001;                 11110001;  (6);  
            8. 11111111;                 01110111;                 01111011;                 11110011;  (1);  
            9. 10111111;                 00110111;                 00111011;                 10110011;  (3);  
          10. 10101111;                 00100111;                 00101011;                 10100011;  (5);  
          11. 10101011;                 00100011;                 00101111;                 10100111;  (7);  
          12. 10101010;                 00100010;                 00101110;                 10100110;  (0);  
          13. 00101010;                 10100010;                 10101110;                 00100110;  (3);  
          14. 00111010;                 10110010;                 10111110;                 00110110;  (5);  
          15. 00111110;                 10110110;                 10111010;                 00110010;  (6);  
          16. 00111100;                 10110100;                 10111000;                 00110000;  (1);  
          17. 01111100;                 11110100;                 11111000;                 01110000;  (3);  
          18. 01101100;                 11100100;                 11101000;                 01100000;  (5);  
          19. 01101000;                 11100000;                 11101100;                 01100100;  (7);  
          20. 01101001;                 11100001;                 11101101;                 01100101;  (0);  
          21. 11101001;                 01100001;                 01101101;                 11100101;  (2);  
          22. 11001001;                 01000001;                 01001101;                 11000101;  (4);  
          23. 11000001;                 01001001;                 01000101;                 11001101;  (6);  
          24. 11000011;                 01001011;                 01000111;                 11001111;  (1);  
          25. 10000011;                 00001011;                 00000111;                 10001111;  (3);  
          26. 10010011;                 00011011;                 00010111;                 10011111;  (5);  
          27. 10010111;                 00011111;                 00010011;                 10011011;  (7);  
          28. 10010110;                 00011110;                 00010010;                 10011010;  (0);  
          29. 00010110;                 10011110;                 10010010;                 00011010;  (3);  
          30. 00000110;                 10001110;                 10000010;                 00001010;  (4);  
          31. 00001110;                 10000110;                 10001010;                 00000010;  (7);  
          32. 00001111;                 10000111;                 10001011;                 00000011;  (1);  
          33. 01001111;                 11000111;                 11001011;                 01000011;  (3);  
          34. 01011111;                 11010111;                 11011011;                 01010011;  (5);  
          35. 01011011;                 11010011;                 11011111;                 01010111;  (7);  
          36. 01011010;                 11010010;                 11011110;                 01010110;  (0);  
          37. 11011010;                 01010010;                 01011110;                 11010110;  (2);  
          38. 11111010;                 01110010;                 01111110;                 11110110;  (4);  
          39. 11110010;                 01111010;                 01110110;                 11111110;  (6);  
          40. 11110000;                 01111000;                 01110100;                 11111100;  (1);  
          41. 10110000;                 00111000;                 00110100;                 10111100;  (3);  
          42. 10100000;                 00101000;                 00100100;                 10101100;  (5);  
          43. 10100100;                 00101100;                 00100000;                 10101000;  (7);  
          44. 10100101;                 00101101;                 00100001;                 10101001;  (0);  
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          45. 00100101;                 10101101;                 10100001;                 00101001;  (3);  
          46. 00110101;                 10111101;                 10110001;                 00111001;  (5);  
          47. 00110001;                 10111001;                 10110101;                 00111101;  (6);  
          48. 00110011;                 10111011;                 10110111;                 00111111;  (1);  
          49. 01110011;                 11111011;                 11110111;                 01111111;  (3);  
          50. 01100011;                 11101011;                 11100111;                 01101111;  (5);  
          51. 01100111;                 11101111;                 11100011;                 01101011;  (7);  
          52. 01100110;                 11101110;                 11100010;                 01101010;  (0);  
          53. 11100110;                 01101110;                 01100010;                 11101010;  (2);  
          54. 11000110;                 01001110;                 01000010;                 11001010;  (4);  
          55. 11001110;                 01000110;                 01001010;                 11000010;  (6);  
          56. 11001100;                 01000100;                 01001000;                 11000000;  (1);  
          57. 10001100;                 00000100;                 00001000;                 10000000;  (3);  
          58. 10011100;                 00010100;                 00011000;                 10010000;  (5);  
          59. 10011000;                 00010000;                 00011100;                 10010100;  (7);  
          60. 10011001;                 00010001;                 00011101;                 10010101;  (0);  
          61. 00011001;                 10010001;                 10011101;                 00010101;  (3);  
          62. 00001001;                 10000001;                 10001101;                 00000101;  (4);  
          63. 00000001;                 10001001;                 10000101;                 00001101;  (7).  

The list of integers between parentheses in the most right column is the transition sequence of 

of the four snakes. The translation group 

G = <e0 + e4, e0 + e5> = {0, e0 + e4,  e4 + e5, e0 + e5} 

is an invariance group of this cover. 

Removing block B1 from the list provides a basis for a symmetric 4-cover of Q7 

considered as a subgraph of Q8. 

                            S(7)                       S(7) + e0 + e4                S(7) + e0 + e5                  S(7) +  e4 + e5 

            0. 00000000;                 10001000;                 10000100;                 00001100;  (0);  
            1. 10000000;                 00001000;                 00000100;                 10001100;  (2);  
            2. 10100000;                 00101000;                 00100100;                 10101100;  (4);  
            3. 10101000;                 00100000;                 00101100;                 10100100;  (6);  
            4. 10101010;                 00100010;                 00101110;                 10100110;  (0);  
            5. 00101010;                 10100010;                 10101110;                 00100110;  (3);  
            6. 00111010;                 10110010;                 10111110;                 00110110;  (5);  
            7. 00111110;                 10110110;                 10111010;                 00110010;  (6);  
            8. 00111100;                 10110100;                 10111000;                 00110000;  (0);  
            9. 10111100;                 00110100;                 00111000;                 10110000;  (2);  
          10. 10011100;                 00010100;                 00011000;                 10010000;  (4);  
          11. 10010100;                 00011100;                 00010000;                 10011000;  (6);  
          12. 10010110;                 00011110;                 00010010;                 10011010;  (0);  
          13. 00010110;                 10011110;                 10010010;                 00011010;  (3);  
          14. 00000110;                 10001110;                 10000010;                 00001010;  (4);  
          15. 00001110;                 10000110;                 10001010;                 00000010;  (7);  
          16. 00001111;                 10000111;                 10001011;                 00000011;  (0);  
          17. 10001111;                 00000111;                 00001011;                 10000011;  (2);  
          18. 10101111;                 00100111;                 00101011;                 10100011;  (4);  
          19. 10100111;                 00101111;                 00100011;                 10101011;  (6);  
          20. 10100101;                 00101101;                 00100001;                 10101001;  (0);  
          21. 00100101;                 10101101;                 10100001;                 00101001;  (3);  
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          22. 00110101;                 10111101;                 10110001;                 00111001;  (5);  
          23. 00110001;                 10111001;                 10110101;                 00111101;  (6);  
          24. 00110011;                 10111011;                 10110111;                 00111111;  (0);  
          25. 10110011;                 00111011;                 00110111;                 10111111;  (2);  
          26. 10010011;                 00011011;                 00010111;                 10011111;  (4);  
          27. 10011011;                 00010011;                 00011111;                 10010111;  (6);  
          28. 10011001;                 00010001;                 00011101;                 10010101;  (0);  
          29. 00011001;                 10010001;                 10011101;                 00010101;  (3);  
          30. 00001001;                 10000001;                 10001101;                 00000101;  (4);  
          31. 00000001;                 10001001;                 10000101;                 00001101;  (7);  

Puncturing with respect to coordinate 1 gives a symmetric 4-cover of Q7 itself.  

We can continue by omitting block B4 which is the only block containing the integer 7. 

Now, we obtain a snake S(6) in Q6 considered as a subgraph of Q8 and generated by the block 

list (B2
 , B3) with B2

 = (0, 2, 4, 6) and B3 = (0, 3, 5, 6). 

                            S(6)                        S(6) + e0 + e4              S(6) + e0 + e5                 S(6) +  e4 + e5, 

            0. 00000000;                 10001000;                 10000100;                 00001100;  (0);  
            1. 10000000;                 00001000;                 00000100;                 10001100;  (2);  
            2. 10100000;                 00101000;                 00100100;                 10101100;  (4);  
            3. 10101000;                 00100000;                 00101100;                 10100100;  (6);  
            4. 10101010;                 00100010;                 00101110;                 10100110;  (0);  
            5. 00101010;                 10100010;                 10101110;                 00100110;  (3);  
            6. 00111010;                 10110010;                 10111110;                 00110110;  (5);  
            7. 00111110;                 10110110;                 10111010;                 00110010;  (6);  
            8. 00111100;                 10110100;                 10111000;                 00110000;  (0);  
            9. 10111100;                 00110100;                 00111000;                 10110000;  (2);  
          10. 10011100;                 00010100;                 00011000;                 10010000;  (4);  
          11. 10010100;                 00011100;                 00010000;                 10011000;  (6);  
          12. 10010110;                 00011110;                 00010010;                 10011010;  (0);  
          13. 00010110;                 10011110;                 10010010;                 00011010;  (3);  
          14. 00000110;                 10001110;                 10000010;                 00001010;  (5);  
          15. 00000010;                 10001010;                 10000110;                 00001110;  (6);  

The first 15 words of S(6) and their translations are exactly the same as the corresponding 

words of  S(7) and their translations. Again, the translation group G is an invariance group of 

this cover.   

Finally, we can omit one of the two remaining blocks, say B3, and the remaining block 

B2 provides a snake S(5) with transition sequence 

0, 2, 4, 6, 0, 2, 4, 6. 

Actually, this snake is in a subgraph of Q8 equivalent to Q4. Translating over the vectors of the 

group G = {0, e0 + e4,  e4 + e5, e0 + e5} gives the following 4-cover of Q5.  
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                             S(5)                                  S(5) + e0 + e4                       S
(5) + e0  + e5                            S

(5) + e4 + e5 

            0. 00000000;                 10001000;                 10000100;                 00001100;  (0);  
            1. 10000000;                 00001000;                 00000100;                 10001100;  (2);  
            2. 10100000;                 00101000;                 00100100;                 10101100;  (4);  
            3. 10101000;                 00100000;                 00101100;                 10100100;  (6);  
            4. 10101010;                 00100010;                 00101110;                 10100110;  (0);  
            5. 00101010;                 10100010;                 10101110;                 00100110;  (2);  
            6. 00001010;                 10000010;                 10001110;                 00000110;  (4);  
            7. 00000010;                 10001010;                 10000110;                 00001110;  (6). 

Puncturing with respect to coordinates 1, 7 and 3 gives a symmetric 4-cover of Q5 itself. For 

the sake of completeness we present this 4-cover below. 

                        S(5)                                S(5) + e0 + e2                          S
(5) + e0  + e3                      S

(5) + e2 + e3 

            0. 00000;                     10100;                         10010;                      00110;   
            1. 10000;                     00100;                         00010;                      10110;   
            2. 11000;                     01100;                         01010;                      11110;   
            3. 11100;                     01000;                         01110;                      11010;   
            4. 11101;                     01001;                         01111;                      11011;   
            5. 01101;                     11001;                         11111;                      01011;   
            6. 00101;                     10001;                         10111;                      00011;   
            7. 00001;                     10101;                         10011;                      00111;  

Here, we also adjusted the labeling of the coordinate vectors. 
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Appendix C 

A Gray Code of length 8 Related to a 4-Cover of Q8 

If the block list B = (B1, B3, B3, B4) of Fig. 7.1 (cf. also Appendix B) with 

B1 = (1, 3, 5, 7),    B2 = (0, 2, 4, 6),    B3 = (0, 3, 5, 6),    B4 = (0, 3, 4, 7), 

is extended by adding two more blocks 

B5 = (0, 3, 0, 7),    B6 = (0, 3, 5, 7), 

the resulting code is a complete Gray code, which is a concatenation of the following four 

open snakes. 

  0. 00000000; (1);       64. 10001000;  (1);     128. 10000100; (1);     192. 00001100;  (1);   
  1. 01000000; (3);       65. 11001000;  (3);     129. 11000100; (3);     193. 01001100;  (3);   
  2. 01010000; (5);       66. 11011000;  (5);     130. 11010100; (5);     194. 01011100;  (5);   
  3. 01010100; (7);       67. 11011100;  (7);     131. 11010000; (7);     195. 01011000;  (7);   
  4. 01010101; (0);       68. 11011101;  (0);     132. 11010001; (0);     196. 01011001;  (0);   
  5. 11010101; (2);       69. 01011101;  (2);     133. 01010001; (2);     197. 11011001;  (2);   
  6. 11110101; (4);       70. 01111101;  (4);     134. 01110001; (4);     198. 11111001;  (4);   
  7. 11111101; (6);       71. 01110101;  (6);     135. 01111001; (6);     199. 11110001;  (6);   
  8. 11111111; (1);       72. 01110111;  (1);     136. 01111011; (1);     200. 11110011;  (1);   
  9. 10111111; (3);       73. 00110111;  (3);     137. 00111011; (3);     201. 10110011;  (3);   
10. 10101111; (5);       74. 00100111;  (5);     138. 00101011; (5);     202. 10100011;  (5);   
11. 10101011; (7);       75. 00100011;  (7);     139. 00101111; (7);     203. 10100111;  (7);   
12. 10101010; (0);       76. 00100010;  (0);     140. 00101110; (0);     204. 10100110;  (0);   
13. 00101010; (3);       77. 10100010;  (3);     141. 10101110; (3);     205. 00100110;  (3);   
14. 00111010; (5);       78. 10110010;  (5);     142. 10111110; (5);     206. 00110110;  (5);   
15. 00111110; (6);       79. 10110110;  (6);     143. 10111010; (6);     207. 00110010;  (6);   
16. 00111100; (1);       80. 10110100;  (1);     144. 10111000; (1);     208. 00110000;  (1);   
17. 01111100; (3);       81. 11110100;  (3);     145. 11111000; (3);     209. 01110000;  (3);   
18. 01101100; (5);       82. 11100100;  (5);     146. 11101000; (5);     210. 01100000;  (5);   
19. 01101000; (7);       83. 11100000;  (7);     147. 11101100; (7);     211. 01100100;  (7);   
20. 01101001; (0);       84. 11100001;  (0);     148. 11101101; (0);     212. 01100101;  (0);   
21. 11101001; (2);       85. 01100001;  (2);     149. 01101101; (2);     213. 11100101;  (2);   
22. 11001001; (4);       86. 01000001;  (4);     150. 01001101; (4);     214. 11000101;  (4);   
23. 11000001; (6);       87. 01001001;  (6);     151. 01000101; (6);     215. 11001101;  (6);   
24. 11000011; (1);       88. 01001011;  (1);     152. 01000111; (1);     216. 11001111;  (1);   
25. 10000011; (3);       89. 00001011;  (3);     153. 00000111; (3);     217. 10001111;  (3);   
26. 10010011; (5);       90. 00011011;  (5);     154. 00010111; (5);     218. 10011111;  (5);   
27. 10010111; (7);       91. 00011111;  (7);     155. 00010011; (7);     219. 10011011;  (7);   
28. 10010110; (0);       92. 00011110;  (0);     156. 00010010; (0);     220. 10011010;  (0);   
29. 00010110; (3);       93. 10011110;  (3);     157. 10010010; (3);     221. 00011010;  (3);   
30. 00000110; (4);       94. 10001110;  (4);     158. 10000010; (4);     222. 00001010;  (4);   
31. 00001110; (7);       95. 10000110;  (7);     159. 10001010; (7);     223. 00000010;  (7);   
32. 00001111; (1);       96. 10000111;  (1);     160. 10001011; (1);     224. 00000011;  (1);   
33. 01001111; (3);       97. 11000111;  (3);     161. 11001011; (3);     225. 01000011;  (3);   
34. 01011111; (5);       98. 11010111;  (5);     162. 11011011; (5);     226. 01010011;  (5);   
35. 01011011; (7);       99. 11010011;  (7);     163. 11011111; (7);     227. 01010111;  (7);   
36. 01011010; (0);     100. 11010010;  (0);     164. 11011110; (0);     228. 01010110;  (0);   
37. 11011010; (2);     101. 01010010;  (2);     165. 01011110; (2);     229. 11010110;  (2);   
38. 11111010; (4);     102. 01110010;  (4);     166. 01111110; (4);     230. 11110110;  (4);   
39. 11110010; (6);     103. 01111010;  (6);     167. 01110110; (6);     231. 11111110;  (6);   
40. 11110000; (1);     104. 01111000;  (1);     168. 01110100; (1);     232. 11111100;  (1);   
41. 10110000; (3);     105. 00111000;  (3);     169. 00110100; (3);     233. 10111100;  (3);   
42. 10100000; (5);     106. 00101000;  (5);     170. 00100100; (5);     234. 10101100;  (5);   
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43. 10100100; (7);     107. 00101100;  (7);     171. 00100000; (7);     235. 10101000;  (7);   
44. 10100101; (0);     108. 00101101;  (0);     172. 00100001; (0);     236. 10101001;  (0);   
45. 00100101; (3);     109. 10101101;  (3);     173. 10100001; (3);     237. 00101001;  (3);   
46. 00110101; (5);     110. 10111101;  (5);     174. 10110001; (5);     238. 00111001;  (5);   
47. 00110001; (6);     111. 10111001;  (6);     175. 10110101; (6);     239. 00111101;  (6);   
48. 00110011; (1);     112. 10111011;  (1);     176. 10110111; (1);     240. 00111111;  (1);   
49. 01110011; (3);     113. 11111011;  (3);     177. 11110111; (3);     241. 01111111;  (3);   
50. 01100011; (5);     114. 11101011;  (5);     178. 11100111; (5);     242. 01101111;  (5);   
51. 01100111; (7);     115. 11101111;  (7);     179. 11100011; (7);     243. 01101011;  (7);   
52. 01100110; (0);     116. 11101110;  (0);     180. 11100010; (0);     244. 01101010;  (0);   
53. 11100110; (2);     117. 01101110;  (2);     181. 01100010; (2);     245. 11101010;  (2);   
54. 11000110; (4);     118. 01001110;  (4);     182. 01000010; (4);     246. 11001010;  (4);   
55. 11001110; (6);     119. 01000110;  (6);     183. 01001010; (6);     247. 11000010;  (6);   
56. 11001100; (1);     120. 01000100;  (1);     184. 01001000; (1);     248. 11000000;  (1);   
57. 10001100; (3);     121. 00000100;  (3);     185. 00001000; (3);     249. 10000000;  (3);   
58. 10011100; (5);     122. 00010100;  (5);     186. 00011000; (5);     250. 10010000;  (5);   
59. 10011000; (7);     123. 00010000;  (7);     187. 00011100; (7);     251. 10010100;  (7);   
60. 10011001; (0);     124. 00010001;  (0);     188. 00011101; (0);     252. 10010101;  (0);   
61. 00011001; (3);     125. 10010001;  (3);     189. 10011101; (3);     253. 00010101;  (3);   
62. 00001001; (0);     126. 10000001;  (5);     190. 10001101; (0);     254. 00000101;  (5);   
63. 10001001; (7);     127. 10000101;  (7);     191. 00001101; (7);     255. 00000001;  (7);   
 

By carrying out the cyclic permutation (w63, w127, w191, w255) one obtains the four disjoint 

snakes which together constitute the symmetric 4-cover of Q8 presented in the beginning of 

Appendix B. 
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Appendix D 

A Block List For R(4, 6) code 

The following block list B corresponds to the underlying R(4, 6) code of a 

snake. 

  B1 = (15, 16, 32, 63),                                                                                                                    
  B2 = (14, 16, 32, 62), 
  B3 = (13, 16, 32, 61), 
  B4 = (12, 16, 32, 60), 
  B5 = (11, 16, 32, 59),  
  B6 = (10, 16, 32, 58),  
  B7 = (  9, 16, 32, 57), 
  B8 = (  8, 16, 32, 56),  
  B9 = (  7, 16, 32, 55),       
 B10 = (  6, 16, 32, 54),       
 B11 = (  5, 16, 32, 53), 
 B12 = (  4, 16, 32, 52),  
 B13 = (  3, 16, 32, 51), 
 B14 = (  2, 16, 32, 50), 
 B15 = (  1, 16, 32, 49), 
 B16 = (  0, 16, 32, 48), 
 B17 = (  0, 17, 23, 49). 
 B18 = (  0, 18, 32, 50),  
 B19 = (  0, 19, 32, 51), 
 B20 = (  0, 20, 32, 52), 
 B21 = (  0, 21, 32, 53), 
 B22 = (  0, 22, 32, 54), 
 B23 = (  0, 24, 32, 56). 
 B24 = (  0, 25, 32, 57), 
 B25 = (  0, 26, 32, 58), 
 B26 = (  0, 28, 32, 60), 

 
 
 
 
 
 

 B27 = (  0, 31, 32, 63), 
 B28 = (  0, 30, 32, 62). 
 B29 = (  0, 31, 34, 61),  
 B30 = (  0, 30, 34, 60), 
 B31 = (  0, 31, 36, 59), 
 B32 = (  0, 30, 36, 58), 
 B33 = (  0, 31, 38, 57), 
 B34 = (  0, 30, 38, 56). 
 B35 = (  0, 31, 40, 55), 
 B36 = (  0, 30, 40, 54), 
 B37 = (  0, 31, 42, 53), 
 B38 = (  0, 30, 42, 52), 
 B39 = (  0, 31, 44, 51), 
 B40 = (  0, 30, 44, 50), 
 B41 = (  0, 31, 46, 49), 
 B42 = (  0, 30, 46, 48), 
 
 B43 = (  0, 31, 33, 62), 
 B44 = (  0, 29, 33, 60). 
 B45 = (  0, 31, 37, 58),  
 B46 = (  0, 29, 37, 56), 
 B47 = (  0, 31, 41, 54), 
 B48 = (  0, 29, 41, 52), 
 B49 = (  0, 31, 45, 50), 
 B50 = (  0, 29, 45, 48). 
 B51 = (  0, 31, 35, 60), 
 B52 = (  0, 27, 35, 56), 
 B53 = (  0, 31, 43, 52), 
 B54 = (  0, 27, 43, 48), 
 B55 = (  0, 31, 39, 56), 
 B56 = (  0, 23, 39, 48), 
 B57 = (  0, 31, 47, 48). 

 

The additional blocks, to extend B to Bext, consist of the block  

B58 = (0, 31, 0, 48) 

together with the following four blocks 

B59 = (0, 31, 46, 48),      B60 = (0, 31, 45, 48),      B61 = (0, 31, 43, 48),      B62 = (0, 31, 39, 48).
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Summary 
 

A snake-in-the-box code (or snake) is a list of binary words of length n such that each 

word differs from its successor in the list in precisely one bit position. Moreover, any two 

words in the list differ in at least two positions,  unless they are neighbours in the list. The list 

is considered to be a cyclic list which implies that the ‘first word’ is the successor of the ‘last 

word’. So, actually there is no first or last word. The two defining rules mentioned above have 

to be interpreted in cylic sense.  

There are some methods known to construct such codes. These are all of a recursive 

nature, i.e. snakes of a certain length n are constructed from snakes of length m < n. These 

snakes of length m are already known in some way, either by similar recursive methods, or by 

computer search, or just by accident.  

In Chapter 3 of this thesis such a known recursive technique is discussed and slightly 

generalized. In the remaining part of the thesis a new method is developed to construct snakes 

in a straightforward, i.e. non-recursive, way. Since this method uses a linear algebraic code, 

the constructed snakes have an additional kind of structure apart from their ‘snake structure’, 

More precisely, every fourth word of the snake is a word of the applied linear code, and hence, 

part of the snake (its ‘backbone’) has the structure of a linear space. Due to this linearity, we 

are able to give a partial answer to an old problem posed by Erdös: how many disjoint snakes 

of the same length are sufficient to contain all binary words of length n?  

For n = 2, this number is equal to 1, and for 2 < n ≤ 4, it is equal to 2. We found that 4 

snakes suffice for 4 < n ≤ 8, and 8 snakes for 8 < n ≤ 16, which improves the results known 

thus far. For 16 < n ≤ 32 we find a cover of 16 snakes. This number 16 is equal to the most 

recent result in the literature. However, since the snakes themselves have a nice symmetric 

property, and are constructed in a straightforward way, we claim that this result is also better 

than the results known in the literature. For n > 32, the number of snakes in a cover 

constructed with our method grows far beyond the upper bound of 16 proven by 

Wojciechowski. However, contrary to the snakes and covers in his proof which are only 

proven to exist, ours are concrete and possess the additional structure and symmetry already 

mentioned.  
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Samenvatting 
 

Een slangcode (ofwel slang) is een lijst van binaire woorden van lengte n, zodanig dat 

elk woord in precies één bitpositie verschilt van zijn opvolger in de lijst. Bovendien 

verschillen elke twee woorden in de lijst in tenminste twee bitposities, tenzij ze buren van 

elkaar zijn in de lijst. De lijst wordt beschouwd als een cyclische lijst, hetgeen impliceert dat 

het ‘eerste woord’ de opvolger is van het ‘laatste woord’. Eigenlijk is er dus geen eerste of 

laatste woord. De twee hierboven genoemde definitieregels moeten in cyclische zin 

geïnterpreteerd worden. Er is een aantal methoden bekend om zulke codes te construeren. 

Deze zijn alle van recursieve aard, dat wil zeggen dat slangen van een zekere woordlengte n 

geconstrueerd worden uit slangen met woordlengte m < n. De slangen van woordlengte m, op 

hun beurt, zijn dan op een of andere manier al bekend, ofwel door middel van een soortgelijke 

recursieve techniek, of via een zoekprograma of gewoon bij toeval. 

Na de inleidende hoofdstukken 1 en 2, wordt in hoofdstuk 3 van dit proefschrift zo’n 

recursieve methode besproken en enigszins gegeneraliseerd. In het resterende deel van het 

proefschrift wordt een nieuw methode ontwikkeld om slangen te construeren op een 

rechtstreekse, dat wil zeggen niet-recursieve, manier. Omdat in onze methode een lineaire 

algebraische code wordt gebruikt, hebben de geconstrueerde slangen een extra soort struktuur 

bovenop hun eigenlijke ‘slangstruktuur’. Iets  preciezer gezegd, elk vierde woord van de slang 

is een woord van de gebruikte lineaire code en dus heeft een gedeelte van de slang (de ‘rugge-

graat’) de struktuur van een lineaire ruimte. Dank zij deze lineariteit zijn we in staat om een 

gedeeltelijk antwoord te geven op een oud probleem van Erdös: Hoeveel disjuncte slangen van 

dezelfde (lijst-)lengte (overdekking) zijn voldoende om alle binaire woorden van lengte n te 

bevatten? Voor n = 2 is dit aantal gelijk aan 1 en voor 2 < n ≤ 4 is het gelijk aan 2. Wij vonden 

dat 4 slangen voldoende zijn voor 4 < n ≤ 8, en 8 slangen voor 8 ≤ n ≤ 16. Deze aantallen zijn 

beter dan de resultaten die tot dusver bekend waren. Voor 16 < n ≤ 32, vonden we een 

overdekking bestaande uit 16 slangen. Dit getal van 16 is gelijk aan het meest recente resultaat 

in de literatuur. Omdat de slangen zelf echter op een rechtstreekse en concrete manier zijn 

geconstrueerd en ook een zekere symmetrie bezitten, claimen we dat ook dit resultaat een 

verbetering is. Voor n > 32 wordt het aantal slangen in de door ons geconstrueerde 

overdekkingen veel groter dan de door Wojciechowski bewezen bovengrens van 16. In 

tegenstelling echter tot de slangen en overdekkingen in zijn bewijs waarvan slechts het bestaan 

wordt aangetoond, zijn de door ons geconstrueerde concreet en bezitten tevens de reeds 

genoemde extra struktuur en symmetrie. 
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