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A B S T R A C T   

Rib-to-deck (RD) welded joints in orthotropic steel decks (OSDs) of bridges demonstrates two major fatigue 
failure models, including the toe-to-deck (TTD) cracking and root-to-deck (RTD) cracking. Generally, the sole 
failure model is employed in the fatigue assessment of RD joints, causing a hot dispute on the dominant failure 
model. In this paper, the fatigue crack growth (FCG) in RD joints has been evaluated considering uncertainties 
and mixed failure models. A probabilistic fatigue crack growth (PFCG) model is at first established for the RD 
joint, in which two crack-like initial flaws are assumed at the weld toe and root of the RD joint. After that, the 
gaussian process regression is used to assist and boost the PFCG simulation. Then, the PFCG model is imple-
mented on a typical OSD with the random traffic model. Finally, the result of the PFCG model is discussed in 
detail, including the failure model, fatigue reliability and life prediction, and crack size evolution. It is revealed 
that both the TTD and RTD cracking models have a notable contribution to fatigue failure and could not be 
ignored. More crucial, a remarkable reduction can be observed in the fatigue reliability of RD joints when 
considering mixed failure models. This study not only highlights the influence of mixed failure models on the 
fatigue performance of welded joints, but also provide an insight into the application of novel machine learning 
tools in solving the traditional structural issue.   

1. Introduction 

1.1. Research problem 

1.1.1. Mixed failure models in RD joints 
The orthotropic steel deck (OSD) [1] is a highly integral deck system 

fabricated with various types of welded connections. Among all the 
connections, the rib-to-deck (RD) welded joint accounts for the largest 
proportion, e.g., 50 times the bridge length of the RD joint can be 
observed in a typical OSD [2]. Moreover, the RD joint is directly influ-
enced by the cyclic vehicle loads, as shown in Fig. 1. As a result, the RD 
joint becomes very prone to fatigue cracking after the bridge has been 
exploited for several decades [3], which hinders the further application 
of OSDs even if they illustrate superior performance and capacity over 
other deck systems. 

In the RD joint, the weld toe and weld root are two critical sites for 
fatigue cracking due to the notable welding residual stress and 

discontinuity in geometry and material [4]. Accordingly, two different 
patterns of fatigue failure are observed in RD joints, including the toe-to- 
deck (TTD) crack and the root-to-deck (RTD) crack, as depicted in Fig. 1. 
Both the TTD crack and RTD crack are detrimental to the serviceability 
and durability of OSDs, which is of particular concern in the fatigue 
design. 

1.1.2. Uncertainties in fatigue crack growth 
As generally acknowledged, the fatigue crack growth (FCG) of wel-

ded connections is affected by a list of complicated factors with notable 
uncertainties [5]. To this end, the FCG process in RD joints becomes 
highly stochastic, which incurs difficulties in fatigue assessment. Be-
sides, the uncertainty also results in the variation in the fatigue failure 
pattern in the RD joint, i.e., both the TTD cracking and RTD cracking 
were reported in the fatigue test and field inspection of OSDs [6]. To this 
end, a hot issue is still open to discussion over the fatigue cracking 
pattern of RD joints. 
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1.2. State-of-the-art review 

1.2.1. TTD or RTD cracking 
The TTD cracking (as shown in Fig. 1) is commonly observed in the 

model fatigue test using the full-scale RD specimen [7], consisting of a 
deck plate and a closed U-ribs connected by two RD joints. Tian et al. [8] 
conducted the fatigue test of 7 RD specimens fabricated by partial joint 
penetration (PJP) welding. The TTD cracking was observed in 6 of 7 
specimens, while only one shows the root-to-throat cracking. Heng et al. 
[9] carried out a similar fatigue test of 7 full-scale RD specimens, in 
which the TTD cracking was found in all the specimens. The test also 
suggests that the fatigue crack initiates at the deck toe and then grows in 
both the length and thickness direction of the deck until the failure. In 
the further study by Heng et al. [10], 4 more specimens were tested with 
the special effort to monitor the crack growth. Besides the same obser-
vation of the TTD cracking, the monitoring result suggests the semi- 
elliptical crack shape during the propagation. Similar tests were per-
formed on RD specimens by Cheng et al. [11], Nagy et al.[12] and Li 
et al. [13], which also suggests a dominance of the TTD cracking. It is 
worth noting that a systematic fatigue test panel of RD joints was per-
formed by Ocel et al. [14], with a total of 185 RD specimens. Except for 
the 30 runouts, the remain 155 specimens shows a remarkably high 
proportion of the TTD cracking, i.e., 125 specimens with the TTD 
cracking (about 81%). Among the 30 specimens without the TTD 
cracking, 16 specimens were fabricated with a large root gap deliber-
ately, leading to the RTD cracking. 

As aforementioned, the RTD cracking is another primary failure 
model of RD joint, especially when using the partial joint specimen [15]. 
Ya et al. [16] employed the rotational vibrator to test the partial joint 
specimen, consisting of a deck plate and a truncated rib wall. The RTD 
cracking was observed in all the 20 specimens with notable length, while 
only one mild TTD crack (95 mm-long) was found accompanied by a 
larger RTD crack (250 mm-long). Lv and Li [17] performed a similar 
fatigue test using the hydraulic loading machine, which also suggests the 
RTD cracking in all 9 specimens. In addition, Fu et al. [18] tested 40 
similar partial joint specimens, with the RTD cracking observed in all the 
specimens. 

Besides the pure TTD or RTD cracking, the two failure models were 
also simultaneously observed in the full-scale OSD specimens. Sim et al. 
[19] tested 6 full-scale OSD specimens of 10000 mm-long and 3000 mm- 
wide, which consists of 4 U-ribs and 3 floor beams. Three types of 
welding were used, including the 80% PJP, weld melt through (WMT), 
and the one alternating between 80% PJP and WMT every 1000 mm. A 
total of 7 cracks were observed in the 3 cracked specimens, 6 of which 
shown the TTD cracking. The only RTD crack initiated from the transi-
tion between the 80% PJP and WMT. According to the result, the RD 

joint is prone to TTD cracking when the penetration rate is properly 
controlled. Kainuma et al. [20] carried out the fatigue test on 12 full- 
scale OSD specimens of 2000 mm-long and 1400 mm-wide. The 9 
cracked specimens shown a dominance of RTD cracking, i.e., 6 with the 
RTD and 3 with the TTD. 

1.2.2. Preliminary consideration of mixed failure models 
As discussed above, the fatigue performance of the RD joint is 

influenced by mixed failure models, including the TTD cracking and 
RTD cracking. Conner et al. [2] suggested that the RTD cracking leads to 
a fatigue resistance poorer than the TTD cracking. However, the RTD 
cracking could be effectively prevented by the proper penetration rate (i. 
e., between 70% and 95% with a target of 80%) and tight fit-up gap (i.e., 
less than0.5 mm) between the deck and U-rib. To this end, more 
attention and effort should be paid to the TTD cracking when the 
welding is implemented with reasonable configuration and procedures. 

Wang et al. [21] investigated the FCG behaviour of RD joint using the 
extended finite element method (XFEM). Two initial flaws in the same 
size were assumed at the deck toe and root, and the numerical result 
shows the comparable behaviour of the TTD and RTD cracking models. 
Li et al. [22] proposed the concept of governing failure model, i.e., the 
fatigue failure of the RD joint is only governed by the failure model with 
the poorest performance. Based on this notion, the equivalent structural 
stress is solved under various failure models and compared to determine 
the governing failure model and the corresponding fatigue life. Luo et al. 
[23] proposed a similar approach using the governing fatigue model, in 
which the strain energy density is used as the evaluation indicator 
instead of the stress. 

1.2.3. Advance in fatigue assessment 
In most of the code of practices[242526], the fatigue assessment of 

the welded connection is made by checking the solved stress range and 
the number of cycles against the stress-life (S-N) curve, which is derived 
from the sufficient fatigue test data at the detail- or structural-level. The 
above S-N approach is simplified and practical but lacks transferability 
between different welded connections [2728]. Alternatively, the frac-
ture mechanics [29] is employed to simulate the FCG in the welded 
connections, which can assess different details using the material test 
data only [30]. 

The FCG process involves prominent uncertainties, including the 
aleatory uncertainty in its nature and the epistemic uncertainty in 
modelling the issue [31]. As a solution, the deterministic fatigue 
assessment could be conducted based on the statistics of model param-
eters. For instance, the design S-N curve is usually established under the 
survival rate of 97.7%, i.e., the mean minus two times standard devia-
tion [32]. Meanwhile, the vehicle effect is often represented by a stan-
dard fatigue truck, which is derived from the field survey and statistics 
[33]. The above statistics-based approach may be conservative but 
cannot fully reflect the random nature of fatigue [34]. Alternatively, the 
direct probabilistic approach is used, including the stress-based proba-
bilistic stress-life (PSN) approach [3536] and fracture mechanics-based 
probabilistic fatigue crack growth (PFCG) method [3738]. The PSN 
approach modelled the fatigue strength and vehicle configuration as 
random variables [39], and the result is present in the form of the 
probabilistic distribution or reliability index [40]. 

The PFCG method is much more complicated than the PSN but can 
provide an in-depth insight into the hidden mechanism of fatigue 
cracking. Maljaar and Vrouwenvelder [41] established a PFCG model of 
rib-to-floor beam joint using the semi-elliptical crack model with 2 
degree-of-freedoms (DOFs), and the model is executed with the analyt-
ical solution of stress intensity factors (SIFs). Heng et al. [10] proposed a 
similar PFCG model to derive PSN curve of RD joints considering the 
TTD cracking only. Likewise, Maljaar et al. [42] used the PFCG model to 
derive the PSN of RD joints respecting the RTD cracking. Wang [43] 
carried out the PFCG analysis to investigate the macro-crack initiation 
life (MCIL) of RD joints, which is the pre-detectable life of the crack 

Fig. 1. Typical failure model of rib-to-deck joints.  
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when its depth is less than 0.5 mm. A list of 2D XFEM-based determin-
istic analysis was carried out to solve the SIFs for the crack sizing from 
0.1 to 0.5 mm. Then, the MCIL was solved through Monte Carlo simu-
lations (MCS) with the linear interpolation of the solved SIFs. 

1.3. Existing research gaps 

As discussed above, the RD joint is prone to mixed failure models, 
including the TTD and RTD cracking. The issue caused special concerns 
and was addressed in several pioneered works. However, the reviewed 
studies mainly focused on the deterministic comparison of fatigue per-
formance under different failure models. As a result, the fatigue 
behaviour is solely determined after the failure model with the poorest 
performance, i.e., the governing model. Nevertheless, the non-governing 
failure model still has the possibility to replace the governing model and 
cause failure due to the prominent uncertainty in fatigue. To this end, a 
probabilistic investigation is urgently required on the FCG behaviour of 
RD joints by considering the effect of mixed models. 

Meanwhile, the state-of-the-art PFCG study generally employed the 
analytical solution or interpolation of deterministic finite element (FE) 
results. Although the high solution cost in the PFCG simulation can be 
mitigated in this way, the flexibility and accuracy of FE-based fracture 
analysis are not fully utilised. To this end, a novel approach is still lacked 
to fully integrate the FE analysis into the PFCG simulation, by which a 
delicate balance could be achieved between accuracy, efficiency, and 
flexibility. 

1.4. Aim and structure of the paper 

This study aims at the probabilistic evaluation of fatigue crack 
growth in rib-to-deck (RD) joints of orthotropic steel decks (OSDs), 
considering mixed failure models. The paper is organised as the fol-
lowings: in Part 2, a probabilistic fatigue crack growth (PFCG) model is 
established for the RD joint, assuming two crack-like initial flaws at both 
the weld toe and root; in Part 3, a measurement-based random traffic 
model is employed to derive the vehicle-induced stress spectra at the RD 
joint in a selected prototype bridge; in Part 4, a gaussian process 
regression (GPR) model is trained to surrogate the finite element (FE)- 
based fracture analysis, through which the solution efficiency is notably 
improved with satisfying accuracy; in Part 5, the results from the above 
studies are discussed in detail, including the fatigue failure model, fa-
tigue reliability and life prediction, crack size evolution, and remain 
fatigue life; in Part 6, the key conclusions are drawn based on the above 
investigation. The research not only highlights the influence of mixed 
failure models on the fatigue performance of RD joints in OSDs, but also 
provides an insight into the application of novel machine learning tools 
in solving the traditional structural issue. 

2. Probabilistic fatigue crack growth model 

2.1. Fatigue crack growth model 

According to the above review and discussion, the crack model of RD 
joints is assumed with dual crack-like initial flaws at the weld toe and 
root, as shown Fig. 2. During the crack growth, the two cracks are 
assumed to stay in the perfect semi-elliptical shape with the aspect ratio 
varied with cycles. Thus, the crack could be idealised by a two-DOF 
system, including the crack depth denoted as ‘a’ and the half-length 
denoted as ‘c’. As depicted in Fig. 2, the notation of DOFs is followed 
by a subscript ‘tc’ or ‘rc’, which respectively stands for the toe crack and 
root crack. 

In simulating the FCG process, the Paris model [29] is employed to 
predict the increase in crack sizes with cycles, as shown in Eq. (1). 

da
dN

= C∙(ΔKa(N) )m,
dc
dN

= C∙(ΔKc(N) )m (1) 

where a and c represent the crack depth and half-length, respec-
tively; N is the number of loading cycles; C and m are the crack growth 
rate and power index, respectively; ΔKa and ΔKc are the range of SIFs at 
the crack tip and edge, which is varied with N.

Based on Eq. (1), the crack size at an arbitrary time t can be estimated 
with applied loading cycles through integration, as shown in Eq. (2). 

at =

∫ Nt

0
(C∙(ΔKa(N) )m )dN (2a)  

ct =

∫ Nt

0
(C∙(ΔKc(N) )m )dN (2b) 

where at and ct are the crack depth and half-length; Nt is the number 
of loading cycles at time t. 

Since the explicit solution of SIFs is unavailable in most cases, Eq. (2) 
is usually approximated by a series of fracture analysis at discrete time 
points, in which the crack size is gradually increasing step-by-step [44]. 
For enough accuracy, the increment in crack size should be limited to a 
reasonable value, e.g., 1% of the current crack size. 

2.2. Probabilistic modelling of fracture parameters 

Probabilistic modelling is carried out on the parameters in the pro-
posed FCG model to consider the uncertainty in the initial flaw size and 
crack growth rule, as shown in Fig. 3. The initial flaw size is modelled by 
the flaw depth and the aspect ratio, through which the correlation be-
tween the depth and half-length of the flaw is implicitly simulated [45]. 
Several datasets of the initial flaw size could be found from the literature 
[46]-[49], which were derived from the non-destructive test. The above 
datasets were measured from ships or offshore structures, differing from 
the configuration of OSDs. Meanwhile, the tested specimens were 
fabricated in the 1970 s-1990 s, which may not reflect the state-of-the- 
art advance in welding technologies. However, as a practical issue, a 
comprehensive dataset could be hardly found on the initial flaw size of 
RD joints in OSDs. 

Hopefully, this study mainly aims at the influence of mixed failure 
models rather than the accurate estimation of fatigue life. The early age 
measurement may not reflect the recent technical development but 
could result in a more conservative prediction. Besides, the cruciform 
and tee butt welded joints in [46]-[49] are highly similarly to the RD 
joint in terms of the detailed configuration. Moreover, the initial flaw in 
the noted cruciform and tee butt joints also shows the semi-elliptical 
shape, which is the same as assumed in the crack model in Fig. 2. 
Among the literature [46]-[49], the dataset reported from [4849] is the 
most comprehensive one. To this end, the initial flaw depth and aspect 
ratio are derived using the data from [4849], as shown in Fig. 3a and b. 

In terms of the Paris law, the crack growth rate is modelled as a 
random variable, and the power index is set as a deterministic value of 
3.0 as suggested by [32]. The distribution of the crack growth rate is 
reproduced via the mean and design value in [50], as shown in Fig. 3c. 

The critical crack size is introduced to identify the final state of the 
single cracking model, i.e., failure occurs once the critical size is ach-

Fig. 2. Crack model of the RD joint.  
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ieved in either crack depth or length direction. In the case of crack 
depth, the critical size af is set as the thickness of the deck plate. In terms 
of the critical half-length, a notably larger value of cf = 200mm is 
assumed, above which the safety and serviceability of OSDs would be 
seriously impacted [4]. The weld toe is usually completed with a 
welding quality inferior to that of the weld root due to the sudden arc 
blow-out and spatter [51], variation in the flank angle [52] and poten-
tial under-cut [53] at the toe. To this end, two cases are considered in 
this study: (1) Case I - the distribution of initial flaw depth and aspect 
ratio is the same at the root and toe; (2) Case II - the mean and standard 
deviation of initial flaw depth at the toe are two times the values at the 
root while the aspect ratio is the same. 

2.3. Limit state function and reliability block diagram 

As aforementioned, this study marks the failure of the sole cracking 
model by the achievement of the critical crack size in either crack depth 
or length. Thus, the limit state function (LSF) of a sole cracking model (i. 
e., TTD or RTD) can be written as Eq. (3). 

G
(

Ẋi, t
)
=
(
ai(t) − af

)
∪
(
ci(t) − cf

)
,∀i = tc or rc (3) 

where Ẋi is the state vector of the type i cracking model. 
Accordingly, the probability of failure (PF) of a sole cracking model 

can be derived as Eq. (4). 

Pf ,i = P
[
G
(

Ẋi, t
)
≤ 0

]
= 1 −

(
1 − Pf ,ai

)
∙
(
1 − Pf ,ci

)
, ∀i = tc or rc (4) 

where Pf ,i is the PF of the ith cracking model; Pf ,ai and Pf ,ci stand for 
the achievement of the critical crack size at the depth and length, 
respectively. 

Meanwhile, the failure of the RD joint is assumed once any of the two 
cracking models occur. To this end, the failure of the RD joint could be 
idealised as a two-level hierarchical series system, as shown by the 
reliability block diagram (RBD) in Fig. 4. 

Accordingly, the system-level PF of the RD joint can be predicted 
using Eq. (5). 

Pf ,RD = 1 −
( (

1 − Pf ,atc

)
∙
(
1 − Pf,ctc

) )
∙
( (

1 − Pf,arc

)
∙
(
1 − Pf ,ctc

) )
(5) 

where Pf ,RD is the system-level PF of the RD joint; Pf ,atc and Pf ,ctc are 
respectively the probability of the achievement of the critical size in 
depth and length under the TTD cracking; Pf ,arc and Pf ,ctc respectively 
standard for the achievement of the critical size in depth and length 
under the RTD cracking. 

The MCS is then employed to solve Eq. (4) via sampling, as shown in 
Eq. (6). 

Pf ,RD =

∑nMCS
i=1 I

[(
atc ≥ af ∪ ct ≥ cf

)
∪
(
arc ≥ af ∪ cr ≥ cf

) ]
i

nMCS
(6) 

Where nMCS is the sample size of MCS; I[ ]i is the true-or-false indi-
cator by the ith sample. 

3. Random traffic-based derivation of stress spectra 

3.1. Selected prototype bridge 

A typical OSD bridge in Chengdu, China, is selected as the prototype 
to derive the vehicle-induced stress spectra in RD joints, as shown in 
Fig. 5. The bridge has a span of 50,000 mm, which is simply supported 
by the fixed hinge on one end and the slide hinge on another end. Along 
the span, the OSD of the bridge is divided into 14 segments by the floor 
beams spaced at 3,500 mm. 

The 12,500 mm-wide OSD carries three lanes with different func-
tions, including one fast lane, one middle land and one slow lane. Within 
the three lanes, a total of 15 U-ribs are distributed with 30 RD joints. 

Since the fatigue-critical lorries are likely to run in the slow lane, the 
RD joint close to the left footprint of the centrally loaded vehicle is 
chosen as the joint of interest. 

3.2. Random traffic model 

The random traffic model proposed in [54] is applied to incorporate 
the uncertainty in vehicle loads, as shown in Fig. 6. 

Overall, the vehicles have been grouped into six types with different 
occupancy rate in the slow lane, according to the configuration and axle 
weight. It is worth stating that the model excludes lightweight passenger 
cars because of their little contribution to fatigue damage [55]. Two 
kinds of axles are assumed for each vehicle type, including the steering 
axle marked in blue and the rear axle marked in red. Accordingly, two 
types of footprints are assumed, i.e., 300 × 200 mm (width and length) 
for the steering axle with single-tire and 600 × 200 mm for the rear axle 
with dual-tire. 

Apart from the vehicle configuration, the axle weight of each vehicle 
type is also modelled as random variables. As per the feature of the axle 
weight, the Gaussian mixed model (GMM) is employed to fit the dis-
tribution, which could have multiple peaks. Fig. 7 shows the probability 

Fig. 3. Distribution of variables in the PFCG model: (a) Initial flaw depth [4849]; (b) Aspect ratio of the initial flaw [4849]; (c) Crack growth rate [50].  

Fig. 4. System-level RBD of the RD joint.  
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density of the weight of the 3rd axle in the type V5 vehicle, and the 
details about other axles can be found in [40]. 

Meanwhile, the lateral distribution of the vehicle centre is consid-
ered according to EC1 [33], as shown in Fig. 8. For the convenience of 
numerical implementation, the original discrete distribution is fitted 

into the continuous Gaussian distribution. Based on the above model, 
the vehicles are generated through conditional sampling due to the 
interdependence among the variables in the random traffic model, as 
shown in Fig. 9. 

The vehicle type and lateral position are at first sampled. Then, the 
sample size of each vehicle type is determined after its proportion and 
the total sample size of MCS. Conditioned on the vehicle type, sampling 
is made for the number of axles, axle space, and axle weight. The number 
of axles and axle space are two deterministic values directly associated 
with the vehicle type, as shown in Fig. 6. Meanwhile, the axle weight is 
sampled using the edge distribution conditioned on the vehicle type, as 

Fig. 5. Selected prototype bridge and the RD joint of interest (Unit: mm).  

Fig. 6. The vehicle types and occupancy rate of the used random traffic 
model [54]. 

Fig. 7. Weight distribution of the 3rd axle in the type V5 vehicle.  

Fig. 8. Lateral distribution of vehicle centre.  

Fig. 9. Conditional sampling of vehicles.  
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shown in Eq. (7). 

P(Wi) =
∑6

j=1
P
(
Vj
)
P
(
Wi
⃒
⃒Vj
)

(7)  

where Wi is the weight of the ith axle; Vj stands the jth vehicle type. 
The traffic volume is described by the average daily traffic (ADT) 

with the Gaussian distribution, as shown in Fig. 10. The measurement in 
[54] is used to calculate the mean value of the ADT, while its standard 
deviation is determined after the COV of 0.2 reproduced from the data in 
[55]. 

3.3. Influence surface-based derivation of stress spectra 

A multi-scale FE model of the selected bridge is established [56] to 
derive the vehicle-induced stress spectra, as shown in Fig. 11. For the 
balance between accuracy and efficiency, the FE model is modelled by 
three parts with different meshing strategies, including the global model 
of the bridge, the sub-model of the segment under investigation, and the 
highly refined model of the interested RD joint. 

The global model is meshed with a relatively coarse element size (i. 
e., 20 mm-wide and 50 mm-long) since it is mainly used to transfer the 
boundary condition from the global model to the sub-model. Then, the 
sub-model is discretised using a finer element size of 10 × 10 mm. The 
global model and sub-model are meshed separately and then coordi-
nated via the multi-point constraint (MPC) algorithm [57]. Meanwhile, 
the refined model of the interested RD joint is directly embedded into 
the sub-model by the sharing nodes on the interface. To this end, the 
adaptive meshing is employed to generate a smooth transition of 
element size from 10 × 10 mm to 2 × 2 mm at the core region where the 
stress to be extracted. As suggested by IIW [32], this study leverages the 
nominal stress on the deck bottom, which is calculated at the point 1.5 
times deck thickness (i.e., 24 mm) from the toe or root. Meanwhile, in 
the length direction, the vehicle-induced stress range is extracted at the 
centre of the joint, to account for the most critical situation. Meanwhile, 
the influence surface method [40] is exploited to boost the FE model- 
based derivation of the stress spectra using the random traffic model. 
Fig. 12 shows the influence surface solved for the dual-tire of 60 kN. 

Based on the influence surface, the stress history of a sampled vehicle 
could be easily derived by the linear operation. For the illustration 
purpose, a standard V6 truck is applied to derive the stress history at the 
weld toe and root, as shown in Fig. 13. 

The axle weight of the standard truck is set as the upper quantile of 
97.7%, and the truck is assumed to pass through the centre of the slow 
lane. Obviously, one stress range is generated by each axle. Besides, it is 
interesting that the stress at the middle surface is almost ignorable 
compared with the stress at the bottom surface. Thus, only the bending 

stress is considered in the SIF calculation in the following section. 
Based on the above method, a comprehensive database of the stress 

history is derived through a total of 107 MCS. After that, the rain-flow 
approach [58] is used to transform the stress history into a series of 
stress ranges and the corresponding number of cycles. Recalling the 
Paris law in Eq. (1), since the same crack size is assumed in a single 
solution step, the above stress ranges could be converted into one 
equivalent stress range, as illustrated in Eq. (8). 

Δσe =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑nsr

i=1
Ni∙m

√

σi
m (8)  

where Δσe is the equivalent stress range; nsr is the number of stress 
ranges; σi and Ni are the ith stress range and the corresponding number 
of cycles. 

Then, the database of equivalent stress range is established and fitted 
via the GMM model, as shown in Fig. 14. The distribution of the 
equivalent stress range shows two crests with similar proportions (i.e., 
45% vs 55%), including a narrow peak in the lower region and a flat one 
centred on the upper region. The lightweight steering axle is deduced as 
the major cause for the crest in the lower region, for which the density 
enriches to form a narrow peak. On the contrary, the crest in the upper 
region is induced by the rear axle, of which the diversity in weight leads 
to the flatness of the crest. 

4. Gaussian process regression-assisted solution of SIFs 

4.1. Introduction to Gaussian process regression 

As aforementioned, the extremely high computational cost hinders 
the application of FE-based PFCG simulation. This study tries to find an 
alternative solution by hiring the machine learning tool, Gaussian pro-
cess regression (GPR) [59], to boost the FE-based PFCG analysis. The 
GPR is one of the regression-based methods like the commonly used 
polynomial regression. The major difference between the GPR and the 
traditional regression method lies in the consideration of the correlation 
in errors between the prediction and data. In the traditional regression 
methods, it is assumed the error follow the independent and identical 
distribution (IID) [60], as shown in Eq. (9). 

g(ẋ) = ξ(ẋ)T θ̇+ ε̇ (9)  

where g(ẋ) is the total response on the nd × 1 input vector ẋ; θ̇ is a np × 1 
vector defining the parameters in the basis function; ξ(ẋ) stands for the 
explicit basis function to transform ẋ from Rnd to Rnp space; ε̇ is the nd ×

1 vector of errors, which follows the zero mean IID with the unbiased 
variance. 

Alternatively, the error is assumed to be inter-correlated in the GPR. 
Accordingly, the error is simulated by latent variables following the 

Fig. 10. Distribution of the ADT.  

Fig. 11. Multi-scale FE model of steel bridge.  
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zero-mean Gaussian process, as shown in Eq. (10). 

g(ẋ) = ξ(ẋ)T θ̇+ f (ẋ) (10a)  

f (ẋ) ∼ GP(0, r(ẋ, ẋ’) ) (10b)  

where f(ẋ) is the nd × 1 vector of latent variables; r(ẋ, ẋ’
) is the covari-

ance function. 

Unlike the traditional regression, the GPR is nonparametric due to 
the introduction of latent variables. The prediction depends on the 
training data rather than the basis function. The distribution of the 
predicted response at the new input could be expressed in a Bayesian 
way, as shown in Eq. (11). 

P
(

yp|ẏt,Xt, ẋp

)

= N

(

ξ
(

ẋp

)
T θ̇+ μ, σ2 +Σ

)

(11a) 

Fig. 12. Influence surface of nominal stress under the dual tire of 60 kN: (a) Weld toe; (b) Weld root.  

Fig. 13. Stress history solved with the standard V6 truck: (a) Weld toe; (b) Weld root.  

Fig. 14. Stress spectra derived by random traffic model: (a) Weld toe; (b) Weld root.  
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μ = r
(

ẋp,Xt

)
(
r(Xt,Xt) + σ2I

)
− 1

(

ẏt − ξ
(

ẋt

)
T θ̇

)

(11b)  

Σ = r
(

ẋp, ẋp

)

− r
(

ẋp,Xt

)
T ( r(Xt,Xt) + σ2I

)
− 1r
(

ẋp,Xt

)

(11c)  

where yp is the predicted response; ẋp is the nd × 1 vector of the new 
input; Xt is the nt × nd matrix of training inputs, in which nt is the 
number of train samples; yt is the nt × 1 vector of training responses; σ is 
the nature noise; I is the nt × nt identity matrix. 

On this basis, the expectation of the prediction could be expressed as 
shown in Eq. (12). 

yp = ξ
(

ẋp

)
T θ̇+ r

(

ẋp,Xt

)
(
r(Xt,Xt) + σ2

nI
)− 1

(

ẏt − ξ
(

ẋt

)
T θ̇

)

(12) 

The covariance function could be defined by various types of kernel 

functions conditional on the kernel parameter vector β̇, i.e., r
(

ẋ, ẋ’
|β̇
)
.

Meanwhile, the parameters θ̇, β̇ and σ could be estimated from the 

training data via maximizing the likelihood P
(

ẏt |Xt

)

, as shown in Eq. 

(13). 

̂̇θ, ̂̇β, σ̂ = argmax
θ̇,β̇,σ

logP
(

ẏt

⃒
⃒
⃒
⃒Xt, θ̇, β̇, σ

)

(13)  

where ̂̇θ, ̂̇β, σ̂ are respectively the estimator of θ̇, β̇,σ.
The GPR has been extensively applied in solving Engineering issues. 

Especially, the GPR is highly similar or even equivalent to the classical 
Kriging interpolation [61] in Geostatistics, except for a very subtle dif-
ference in their mathematical form. Meanwhile, several preliminary 
applications of the GPR could also be found in the fatigue evaluation. 
Zhu et al. [62] employed the FE-trained GPR model as an alternative to 
the influence surface method in deriving the vehicle-induced stress in 
OSDs. Hu et al. [63] used the GPR to surrogate the FE model in simu-
lating the fatigue crack growth of turbine disks, through the computa-
tional efficiency is notably improved. 

Apart from the GPR, the deep neural network (DNN) is also a 
promising machine learning tool for the above regression task. Espe-
cially, the DNN becomes now very popular due to its power in handling 
massive data. However, the performance of the DNN is usually 
controlled by the selection of hyperparameters, including the learning 
rate, number of epochs, network structure, batch size, etc. As afore-
mentioned, the GPR is a nonparametric method, in which the practical 
issue associated with the selection of hyperparameters could be effec-
tively ameliorated. Meanwhile, it is very interesting that, the DNN with 
infinite width has been proved to be equivalent to the GPR in their 
mathematic nature [64]. Besides the above benefits, the GPR performs 
inadequately in handling massive data. Due to the matrix inversion 
involved, as shown in Eqs. (11) and (12), the GPR has a computational 
complexity of O(N3) [65]. As a result, the GPR is prone to be numerically 
intractable with the amount of training data. Another issue is the ten-
dency of overfitting by the GPR when nature noise is remarkable in the 
training data. Hopefully, the training data in this study are generated by 
FE simulations, of which the uncertainty is very limited. Meanwhile, the 
amount of train data is relatively moderate. Due to the above two fea-
tures of train data, the GPR could be feasible and efficient enough to 
handle the data in this study. 

4.2. Feature selection 

A crucial step before the application of the above GPR is the prepa-
ration of training data. As illustrated in Eq. (1), a key issue in simulating 
the crack growth is to calculate the range of SIFs under vehicle loads. In 
the previous Section 3, the stress spectra of the interested RD joint have 

been already derived using the random traffic model, as shown in 
Fig. 14a and b. Thus, the calculation of vehicle induced-SIF ranges could 
be converted into the assignment to solve SIF ranges under various stress 
ranges. The stress range-induced alternation in SIFs could be expressed 
by the general form shown in Eq. (14). 

ΔKi = YiΔσ
̅̅̅̅̅
πa

√
, ∀i = a or c (14) 

Where ΔKi is the range of SIFs at the crack tip or edge; Yi stands for 
the correction factor at the crack tip or edge, which depends on the 
detail geometry and crack shape; Δσ is the applied stress range; a is the 
crack depth. 

As suggested by Eq. (14), for the same crack shape in the same detail, 
the SIF range is in proportion to the stress range. Meanwhile, the 
configuration of the RD joint in this study is assumed as the same. Be-
sides, this study employs the semi-elliptical crack model with two DOFs 
at the crack tip and edge, as shown in Fig. 2. Based on the above three 
conditions, the calculation of SIF ranges could be further simplified into 
the solution of the unit stress-induced SIF under different combinations 
of crack depth and half-length, as shown in Eq. (15). 

Ki = Yi(a, c)
̅̅̅̅̅
πa

√
, ∀i = a or c (15)  

where Ki is the SIF solved under unit stress, called as the unitised SIF for 
abbreviation; a and c are the crack depth and half-length, respectively. 

In order to consider the interaction between the toe crack and root 
crack, the predicting SIF is assumed to depend on the size of both two 
cracks. In another word, all the four crack size parameters are selected as 
the training feature while the SIF is selected as the training label, as 
shown in Eqs. (16a) and (16b). 

Ki,t = Ki,t(at, ct, ar , cr), ∀i = a or c (16a)  

Ki,r = Ki,r(at, ct, ar , cr), ∀i = a or c (16b)  

where Ki,t and Ki,r stand for the SIF solved for the toe crack and root 
crack, respectively. 

In the case when only one crack is considered, the above interaction 
is ignored, and Eq. (16) could be simplified into the prediction using two 
variables, as shown in Eqs. (17a) and (17b). 

Ki,t = Ki,t(at, ct), ∀i = a or c (17a)  

Ki,r = Ki,r(ar, cr), ∀i = a or c (17b)  

4.3. Data preparation and training 

In preparing the train data for the GPR, a local FE model of the RD 
joint is established using ANSYS [56], as shown in Fig. 15a. The model is 
59 mm wide to ensure that the remote stress range is loaded at the exact 
point of the nominal stress defined in Section 3.3 (i.e., 24 mm from the 
point to the crack toe or root). At the same time, the remote stress range 
is assumed constant along the cracked region [44], by which the 
complexity of the local model is reduced in a conservative way. To this 
end, the local FE model only covers the possible length of the cracked 
region to save the computational cost. As result, the length of the local 
model is determined as 500 mm to contain the maximum crack length of 
2cf = 2 × 200mm (see Section 2.2). Meanwhile, as aforementioned in 
Section 3.3, only the bending stress is focused on, due to the little 
contribution of membrane stress in the total stress. Based on the above, 
the local model is applied with the same boundary condition along the 
length, i.e., loaded by unit bending stress at the left and right while fixed 
at the bottom edge. Meanwhile, no constraint is placed on the front and 
rear edges of the model to approximate the quasi-plane stress state for 
the cracked region. 

The multi-scale modelling strategy is also applied, for which the local 
model and the highly refined crack body are meshed separately. Then, 
the crack body is connected with the local model via the surface-to- 
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surface contact [57]. The toe crack and root crack have been modelled at 
the same time, in order to consider the interaction between the two 
cracks. In solving SIFs, the interaction integral method [66] has been 
applied, with a total of 6 contours requested. For the numerical stability, 
the result is determined by averaging from the 2nd to 6th contours [57]. 

For better comparison, the same method and boundary condition 
have been employed to establish the local FE model containing the solo- 
crack, i.e., toe crack or root crack, as shown in Fig. 15b and c. The 
configuration of the solo-crack model has also been kept the same as that 
in the dual-cracks model. By employing the above FE models, training 
data have been generated by sampling, including 2,000 samples for the 
dual-cracks model, and 500 samples for each of the solo-crack models. 
The samples are selected through Latino hypercube sampling (LHS) [67] 
with the repeated point eliminated, which ensure the even distribution 
of training data. 

To avoid lengthy illustration, the following only shows the validation 
of the trained GPR for the dual-crack model in detail. The trained GPR of 
the dual-crack model is visualised by the blue grid in Figs. 16 and 17, 
accompanied by the independent test data plotted in red markers. The 
test data are also sampled by the above LHS method, but the SIF is solved 
by the local FE model instead of the GPR. For better illustration, the GPR 
is plotted for the toe crack and root crack one by one, in which the 
parallel crack beside the concerned one is fixed at a small size of 0.15 

mm-deep and 0.48 mm-long. Intuitively, the result suggests a very good 
agreement between the FE solution and the GPR prediction, indicating 
the accuracy and feasibility of the trained GPR model. 

For the comparison in a quantitative way, the mean squared error 
(MSE) has been also calculated between the test data and GPR predic-
tion, as shown in Eq. (17). 

MSE =
1
N

∑N

i=1
(yi − ŷi)

2 (17)  

where yi and ̂yi are the ith testing and predicted outputs; N is the amount 
of testing data. 

The MSE calculated from the additional FE result is included in 
Figs. 16 and 17. Obviously, the small value of MSEs shows a good per-
formance of the trained GPR model in surrogating the FE simulation. 
Moreover, the influence of parallel crack size has also been investigated, 
as shown in Fig. 18a and b. Four different levels of the parallel crack 
sizes have been considered, including 25%, 50%, 75% and 100% of the 
concerned crack size. As a result, the influence of the parallel crack is not 
apparent when its size is relatively small compared with the concerned 
crack. As the parallel crack becomes comparable to the concerned one, 
the influence becomes obvious but still moderate. 

Further validation of the GPR is also carried out within the training 
data. Firstly, the 5-folds cross-validation [68] has been employed, which 

Fig. 15. Local FE model of cracked RD joints: (a) Dual-cracks; (b) Toe crack; (c) Root crack.  

Fig. 16. GPR-predicted SIF at the crack tip with the fixed parallel crack: (a) Weld toe; (b) Weld root.  
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is commonly applied to test the accuracy and robustness of data-driven 
models. During the cross-validation, the training data are divided into 5 
approximately equal blocks. The validation will run 5 times, accord-
ingly. In the ith of 5 runs, the ith block will be used as the testing data, 
and the other 4 blocks will sever as the training data. Then, the GPR 
model will be trained by the 4 blocks and tested against the ith block. 
Due to the copious amount of training data, the MSE is also employed to 
show the result of the cross-validation in a concise way, as listed in 
Table 1. It is worth noting that, the MSE from the cross-validation is even 
lower than from the test data by the FE solution. Meanwhile, the 
goodness-of-fit is also verified for the trained GPR using the adjusted 
coefficient of multiple determination (also called adjusted R2) [60], as 
shown in Eq. (18). 

adjusted R2 = 1 −
N − 1

N − (K + 1)
∙
∑N

i=1(yi − ŷi)
2

∑N
i=1(yi − y)2

(18)  

where y is the mean of testing outputs; K is the number of variables, 
which set as 4 in this study. 

The results are also summarized in Table 1. The adjusted-R2 is 
approaching the upper limit of 1, indicating a strong goodness-of-fit that 
most of the training data could be explained by the GPR model. Based on 
the above investigation, the GPR model is validated to surrogate the FE 
model in solving SIFs. 

4.4. Process of GPR-assisted solution 

Fig. 19 shows the whole process of GPR-assisted solution using the 
PFCG model. At first, random samples are generated based on the 
established probabilistic models, including the crack growth rate, initial 
flaw size, average daily truck traffic and equivalent stress range. After 
that, fatigue crack growth simulation is carried out for each sample in an 
incremental way until the failure or run-out. In the simulation, the 
trained and validated GPR model is used to surrogate the FE-based 
fracture analysis in the SIFs calculation. Compared with the direct FE 
solution, the computational cost could be greatly reduced through the 
GPR-assisted simulation. For instance, a total of 20.8 h may be spent to 
generate a single sample by implementing the FE-based fracture analysis 

Fig. 17. GPR-predicted SIF at the crack edge with the fixed parallel crack: (a) Weld toe; (b) Weld root.  

Fig. 18. GPR-predicted SIF at the crack tip with different parallel cracks: (a) Weld toe; (b) Weld root.  

Table 1 
Validation of the trained GPR model.  

Crack location Symbol MSE by 5-folds cross-validation Adjusted-R2 

Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Average 

Toe Tip Kat   0.0004  0.0003  0.0006  0.0004  0.0017  0.0007  0.9998 
Edge Kct   0.0009  0.0004  0.0005  0.0008  0.0002  0.0006  0.9996 

Root Tip Kar   0.0001  0.0004  0.0003  0.0001  0.0002  0.0002  0.9995 
Edge Kcr   0.0010  0.0005  0.0003  0.0001  0.0002  0.0004  0.9989  
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with a 10-core (Intel i9-10900 K) workstation [68]. Exactly, the effi-
ciency is much higher than the model fatigue test, which usually costs 
one or two weeks to complete only one specimen. However, the effi-
ciency is still far behind the need for extensive solution efforts imposed 
by the PFCG analysis. 

Alternatively, with the same hardware, the solution time for a single 
data point using the GPR-assisted approach can be less than 40 s, i.e., 
more than 1800 times improvement in the computational efficiency. As 
a result, the flexibility and accuracy of FE-based fracture analysis could 
be fully incorporated into the PFCG simulation. 

5. Result and discussion 

5.1. Fatigue failure model 

The FCG history of the RD joint could be solved by implementing the 

PFCG model with the GPR-assisted approach. Fig. 20a and b show the 
FCG process of two typical failure models solved under the case I and 
case II (see Section 2.2), respectively. For better illustration, the calcu-
lation is carried out in the deterministic way using the mean value. In the 
case I, the initial flaw size is assumed the same at the weld root and toe. 
Compared with the toe crack, the root crack shows a slightly higher 
growth rate and causes the failure of the joint. In the case II, the toe crack 
replaces the root crack as the failure case. In addition, the final critical 
crack size of the toe crack is notably larger than that of the root crack in 
the case II. To sum, the RD joint is prone to the root cracking when the 
same initial flaw is assumed. However, as a larger initial flaw is assumed 
at the weld toe in the case II, the toe crack becomes the critical case of 
the failure. 

Apart from the above two failure models, the RD joint also illustrates 
a third failure model, in which both the toe and root cracks reach the 
critical size at the same time. However, this both-cracking failure is a 

Fig. 19. Flow chart of GPR-assisted solution using the PFCG model.  

Fig. 20. FCG process of two typical fatigue failure models: (a) Case I; (b) Case II.  
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coincident event rarely that happens in a sense of statistics. A total of 106 

MCS are performed to investigate the proportion of the three failure 
models, as shown in Fig. 21. 

In both the cases I and II, the both-cracking failure shows a propor-
tion well below 3.1%, which could be regarded as an event of small 
probability [60]. In the case I, the probability of the RTD cracking is 
about 51.0% higher than that of the TTD cracking, i.e., 74.3% vs 23.3%. 
In the case II, the RD shows an increased tendency of the TTD cracking 
about 13.3% higher than that in the RTD cracking. Generally, both the 
TTD cracking and RTD cracking contributes to the fatigue failure 
notably. However, this effect would be overlooked if only the governing 
failure model is employed to assess the fatigue performance. Meanwhile, 
from a statistical point of view, the dominance of failure models depends 
on the initial flaw size, which represents the welding quality. 

5.2. Fatigue reliability and life prediction 

Further investigation is made on the fatigue reliability and life pre-
diction of the interested RD joint (see Fig. 5). For better comparison, the 
reliability is also estimated using the PSN approach proposed in [40], 
with the same fatigue strength assumed for the TTD cracking and RTD 
cracking. A total of 107 MCS are conducted for the service life from 20 to 
120 years, as shown by the time-variant reliability curve in Fig. 22. Since 
the OSD is a highly redundant system, its fatigue cracking is more likely 
an issue of serviceability [69]. According to JCSS [70], three reliability 
levels (i.e., 1.3, 1.7 and 2.3) are introduced for the comparison and life 
prediction, which are denoted as the lower, middle, and upper safety 
lines. 

In the case I, the reliability solved by the PFCG is slightly higher than 
the result by the PSN at the very beginning. With the increase in service 
life, the PFCG result crosses through the PSN result after about 25 years 
and decreases at a much higher rate. In terms of the PFCG, the sys-
tematic reliability crosses the above three safety lines after about 67, 87, 
and 104 years, respectively, which stands for the life prediction under 
the three criteria. On the contrary, the corresponding reliability curve of 
the PSN decreases below the upper line after roughly 110 years and is 
well above the other two lines after 120 years. This can be traced back to 
the nonlinear fatigue damage accumulation in the PFCG model since the 
SIF increases proportionally with the crack size. As a result, the PSN 
approach may lead to an overestimated life since the nonlinear damage 
accumulation is ignored. 

The result also shows slightly lower reliability of the RTD in the case 
I, compared with the TTD cracking. Moreover, the system-level reli-
ability is even lower than that of the RTD, indicating the importance of 
mixed failure models. For instance, by taking β = 1.3 as the bottom line, 
the fatigue life could be estimated as about 120 years when considering 
the RTD only. Once the influence of mixed failure models is considered 
in the system-level reliability, a much shorter life would be resulted as 
about 100 years. Similar trends can be observed in the result solved 
under the case II, while the reliability of the TTD cracking becomes a 
slightly lower than that of the RTD cracking. However, the PSN result 

stays the same as in the case I since the change in the initial flaw size is 
not explicitly modelled in the PSN approach. 

Apart from the reliability index, the investigation has been also 
carried out on the evolution in the distribution of the remain fatigue life 
after a certain period of exploitation, as shown in Fig. 23. It is worth 
stating that the remain life has no upper limit in theory since the 
continuous distribution is employed in the PFCG modelling. However, 
the remain life in Fig. 22 is truncated at 1,000 years, above which the 
probability is lower than 0.1% and has no practical mean. 

With the time increasing, the entire distribution moves leftward, and 
the probability density gradually accumulates around zero. As a result, 
the distribution changes from the original lognormal shape to the 
normal form at t = 40 years, and then to the gamma distribution at t =
80 years, and finally to almost the exponential one at the end of t = 120 
years. It is worth noting that, the probability density skyrockets after 
120 years, even if the expectation of remain life is 163.19 years in case 1 
and 158.91 years in case 2. Thus, it is revealed by the evolution in the 
distribution shape that the RD joint deteriorates at an increasing rate. 

5.3. Crack size evolution 

In addition to the fatigue reliability and life prediction, another 
crucial feature of the PFCG model is the ability to model the variation in 
crack size explicitly. Thus, the investigation is performed on the time- 
dependent evolution of the crack size, as shown in Fig. 24. 

A total of 4 time points is selected, including the 30, 60, 90, and 120 
years. For better illustration, the distribution of crack half-length is 
truncated at a cut-off of 40 mm, above which the probability density 
drops to an ignorable value. According to the result, both the mean value 
and standard deviation of the crack size increase over the service time. 
As a result, the distribution of crack sizes moves right and transforms 
from a narrow curve into a flat one. Meanwhile, the distribution density 
accumulates at the critical crack depth of 16 mm over time, indicating 
progressive growth in the failure probability. However, the distribution 
still stays in the almost lognormal form once eliminating the con-
certation at the critical size. The comparison is made on the size dis-
tribution between the toe and root cracks. In general, the mean value of 
both the crack depth and length are slightly larger in the root crack than 
in the toe crack. However, an opposite trend could be found in the 
standard deviation, of which the toe crack has a higher value than the 
root crack. 

In addition, the study also examines the time-dependent variation in 
the aspect ratio of crack length to depth, as shown by the boxplot in 
Fig. 25. In both root and toe cracks, the data dispersion decreases from 
the initial peak value to its trough at 60 years and slowly escalates until 
120 years. 

However, the dispersion at the end of 120 years is still much lower 
than the initial one. Meanwhile, the aspect ratio distribution also dem-
onstrates a progressive evolution of skewness, i.e., from the initial pos-
itive skewness to the normal curve at 40 years and then to the negative 
skewness at 120 years. 

6. Conclusions 

In this study, a probabilistic fatigue crack growth (PFCG) model is 
established for the rib-to-deck (RD) joint considering mixed failure 
models. Based on the observation reported in the literature, two typical 
failure models are incorporated in the PFCG model, including the toe-to- 
deck (TTD) cracking and root-to-deck (RTD) cracking. In implementing 
the PFCG model, the Gaussian process regression (GPR) is used to assist 
and boost the fracture analysis after well trained and validated. Using 
the above approach, a series of investigations are carried out on the RD 
joint respecting the fatigue failure model, fatigue reliability and life 
prediction, crack size evolution, and remain fatigue life. Above all, the 
following conclusions are drawn. Fig. 21. Proportion of different failure patterns.  
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(1) Through the application of the GPR in assisting the PFCG simu-
lation, the computational efficiency improves more than 1800 
times compared with the pure FE solution. As a result, the PFCG 
simulation could be implemented with a delicate balance be-
tween accuracy, efficiency, and flexibility.  

(2) Besides the TTD and RTD cracking models, the RD joint shows a 
third cracking model with a very small possibility no more than 
3.1%, i.e., the TTD cracking and RTD cracking occur simulta-
neously. In the case I that the same initial flaw is assumed, the RD 
joint is more prone to the RTD cracking (74.3%) than the TTD 
cracking (23.3%). In the case II that the assumed flaw size is 
doubled at the weld toe due to the inferior welding quality, the 
TTD cracking (55.1%) replace the RTD cracking (41.8%) as the 
dominant one. In both cases, the secondary cracking model shows 
a notable contribution to fatigue failure in a statistical sense, 
indicating the importance in considering mixed failure models.  

(3) The reliability of the RTD cracking is slightly lower than that of 
the TTD cracking in the case I, which also indicates the inclina-
tion to the RTD cracking. Moreover, the system-level reliability 
considering mixed failure models is even lower than the RTD 
cracking. As result, the fatigue life would be overestimated using 
the dominant cracking model only. For instance, taking β = 1.3 as 
the bottom line, the fatigue life is close to 120 years under the 
RTD cracking, compared with a shorten life of roughly 100 years 
in the system-level reliability.  

(4) The remain fatigue life after a certain period of exploitation 
shows a notable transformation in the distribution shape, i.e., 
from the original lognormal shape to the normal form at 40 years, 
and to the gamma shape at 80 years, and then to the exponential 
one at 120 years. As a result, the probability density rapidly en-
riches in the lower region, which in turn escalates the failure 
probability quickly even with a notable mean value.  

(5) The distribution of crack size shows a steady development in both 
the mean value and standard deviation, while it stays in almost 
the lognormal form. As a result, the probability density function 
gradually moves right and transforms from a narrow curve on the 
left to a flat one. In terms of the aspect ratio, the dispersity de-
creases rapidly at the first and then escalates slowly over time. 
Besides, the distribution of the aspect ratio also shows a pro-
gressive evolvement from original positive skewness to the 
normal form after 40 years, and then to the negative skewness at 
the end of 120 years. 

In general, this study highlights the influence of mixed failure models 
on rib-to-deck (RD) welded joints in steel bridge decks by establishing 
and implementing a probabilistic fatigue crack growth (PFCG) model, 
with the help of the machine learning tool, Gaussian process regression 
(GPR). However, the physical part of the PFCG model is simplified since 
the study mainly aims at the influence of mixed failure models. Future 
efforts are expected to treat the fatigue crack growth and associated 

Fig. 22. Time-variant fatigue reliability: (a) Case I; (b) Case II.  

Fig. 23. Distribution of remain fatigue life at t = 0, 40, 80 and 120 years: (a) Case I; (b) Case II.  
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uncertainties in a more detailed way. Firstly, the actual length of the RD 
joint could be modelled to simulate the crack growth with the stress 
intensity factors (SIFs) directly, instead of using the equivalent stress 
range to solve SIFs. Secondly, the uncertainty could be considered in the 

local geometries of RD joints since it is a major source of deviation in 
fatigue performance, e.g. the plate thickness, weld flank angle, weld leg 
length, lack of penetration rate, etc. Finally, it could be considered in the 
PFCG model that the random cracks initiate and coalesce from multiple 

Fig. 24. Crack size distribution at t = 30, 60 and 120 years: (a) crack depth at toe; (b) crack half-length at toe; (c) crack depth at root; (d) crack half-length at root.  

Fig. 25. Evolution of aspect ratio: (a) Weld toe; (b) Weld root.  
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initial flaws along the RD joint, by which the influence of joint length 
could be revealed. 
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