
Topology optimization as
structural form finding
Rick van Dijk - 4373618

p5Committee:
Dr. ir. Pirouz Nourian – AE+T / Design informatics
Dr. ir. Matthijs Langelaar – 3ME / Structural optimization and mechanics

Index

01

1. Research framework

2. What is Topology Optimization?

3. Toy problems

4. Results

5. Conclusions

01Topology Optimization

02

01Topology Optimization

02

Make a tower that:

• Does not fall

• Is 16 blocks high

• Has a rectangular shape

01Topology Optimization

02

Make a tower that:

• Does not fall

• Is 16 blocks high

• Has a rectangular shape

48 blocks!

01Topology Optimization

03

Make a tower that:

• Does not fall

• Is 16 blocks high

• Has a rectangular shape

32 blocks!

01Topology Optimization

04

Make a tower that:

• Does not fall

• Is 16 blocks high

• Has a rectangular shape

24 blocks!

01Background

05>Earthy result

01Background

06

01Background

06

01Background

06

01Background

07

01The main problem

08

“Topology optimization is an often-used method to generate complex
shapes with a maximized stiffness and little volume. Implementations in
(masonry) architecture look promising but requires the implementation

of density dependent forces”.

01Objective

09

Inputs of topology optimization:

- Structural
- Heat distribution
- Water flow

Topology optimization in buildings:

- Structural
- Preset forces / Area loads
- Self weight
- Snow loads
- Wind loads

01Objective

09

Inputs of topology optimization:

- Structural
- Heat distribution
- Water flow

Topology optimization in buildings:

- Structural
- Preset forces / Area loads
- Self weight
- Snow loads
- Wind loads

01Objective

10

Implement density dependent forces in topology optimization and
apply this algorithm to buildings.

01Sub objectives

11

create a working topology optimization methodology and translate
this in the form of an algorithm.

implement density dependent forces in the methodology and in
the algorithm.

translate the methodology and the algorithm to 3D geometry.

01Research framework

12

01Methodology

13

01Methodology

14

create a working topology optimization methodology and
translate this in the form of an algorithm.

implement density dependent forces in the methodology and in
the algorithm.

translate the methodology and the algorithm to 3D geometry.

01Methodology

15

“create a working topology optimization methodology and
translate this in the form of an algorithm.”

TOY1
• Get TopOp to work in Rhino
• User-Inputs

Forces
Supports
Number of elements

• Implement the existence of voids
• User-based input of voids

01Methodology

16

“create a working topology optimization methodology and
translate this in the form of an algorithm.”

TOY2
• Implement area loads
• A void indexing system

Multiple voids
Complex design spaces

• Forces inside the design space
• User-input for these “rooms”

01Methodology

17

“implement density dependent forces in the methodology and in
the algorithm.”

TOY3
• Implement self weight in the algorithm
• Define sizes of self weight

01Methodology

18

“implement density dependent forces in the methodology and in
the algorithm.”

TOY4
• Apply area loads dependent on the roof shape
• Implement a roofing constraint

01Methodology

19

“translate the methodology and the algorithm to 3D geometry.

TOY5
• Implement an indexing system
• Handle inputs, including voids
• Algorithm optimization

01Methodology

20

“translate the methodology and the algorithm to 3D geometry.

TOY6
• Implement density dependent forces
• Implement roof constraint
• Explore possibilities in architecture

02What is topology optimization?

21

03Literature

22

(Bensoe & Sigmund, 2003)

03Literature

23

(Sigmund, 1999)

𝑐 𝑥 ൌ 𝑈்𝐾𝑈

Minimize compliance

min 𝑥:
Subject to:

:
:

𝑉ሺ𝑥ሻ
𝑉଴

ൌ 𝑣𝑜𝑙𝑓𝑟𝑎𝑐

𝐾𝑈 ൌ 𝐹
0 ൏ 𝑥௠௜௡ ൑ 𝑥 ൑ 1

03Literature

24

Define the problem

(Bensoe & Sigmund, 2003)

03Literature

25

Finite element analysis

(Bensoe & Sigmund, 2003)

03Literature

26

(Bathe, 2006)

𝑘
𝐹௜ 𝐹௝

𝑈௜ 𝑈௝

𝐾𝑈 ൌ 𝐹

𝑖 𝑗

𝐾 ൌ 𝑘 െ𝑘
െ𝑘 𝑘

𝑘 െ𝑘
െ𝑘 𝑘

𝑈௜
𝑈௝

ൌ
𝐹௜
𝐹௝

03Literature

27

Sensitivity analysis

(Bensoe & Sigmund, 2003)

03Literature

28

(Sigmund, 1999)

𝜕𝐶
𝜕𝑥௘

ൌ െ𝑝 ሺ𝑥௘ሻ௣ିଵ𝑈௘
்𝑘଴𝑈௘

03Literature

29

Moving asymptotesSensitivity

(Bensoe & Sigmund, 2003)

𝑉ሺ𝑥ሻ
𝑉଴

ൌ 𝑣𝑜𝑙𝑓𝑟𝑎𝑐

03Literature

30

(Bendsoe, 1995)

𝑥௘
௡௘௪=

𝑖𝑓 𝑥௘𝐵௘
ఎ ൑ 𝑚𝑎𝑥 𝑥௠௜௡, 𝑥௘ െ 𝑚 : 𝐦𝐚𝐱 𝒙𝒎𝒊𝒏, 𝒙𝒆 െ 𝒎

𝑖𝑓 max 𝑥௠௜௡, 𝑥௘ െ 𝑚 ൏ 𝑥௘𝐵௘
ఎ ൏ min 1, 𝑥௘ ൅ 𝑚 : 𝒙𝒆 𝑩𝒆

𝜼

𝑖𝑓 min 1, 𝑥௘ ൅ 𝑚 ൑ 𝑥௘𝐵௘
ఎ ∶ 𝒎𝒊𝒏 𝟏, 𝒙𝒆 ൅ 𝒎

0 ൏ 𝑥௠௜௡ ൑ 𝑥 ൑ 1

Where:
m(move) is a positive move-limit (= 0.2)
η is the numerical damping coefficient (= 1/2)
And 𝐵௘

ఎ is found from the optimality condition

03Literature

31

Update design variables

(Bensoe & Sigmund, 2003)

03Toy problems

32

TOY1
“create a working topology optimization methodology and
translate this in the form of an algorithm.”

03Toy problems

33

TOY1
• Get TopOp to work in Rhino
• User-Inputs

Forces
Supports
Number of elements

• Implement the existence of voids

03Toy problems

34

TOY1
• Get TopOp to work in Rhino
• User-Inputs

Forces
Supports
Number of elements

• Implement the existence of voids

03Toy problems

35

TOY1
• Get TopOp to work in Rhino
• User-Inputs

Forces
Supports
Number of elements

• Implement the existence of voids

Voidlist

Where voids =
0.001

03Toy problems

36

TOY1
• Verification

Result Ansys:

03Toy problems

37

TOY1
• Verification

03Toy problems

38

TOY2
Configure more complex buildings with multiple voids
and forces

03Toy problems

39

TOY2
• Implement area loads
• A void indexing system

Multiple voids
Complex design spaces

• Forces inside the design space
• User-input for these “rooms”

03Toy problems

40

TOY2
• Implement area loads
• A void indexing system

Multiple voids
Complex design spaces

• Forces inside the design space
• User-input for these “rooms”

03Toy problems

41

TOY2
• Implement area loads
• A void indexing system

Multiple voids
Complex design spaces

• Forces inside the design space
• User-input for these “rooms”

03Toy problems

42

TOY2
• Implement area loads
• A void indexing system

Multiple voids
Complex design spaces

• Forces inside the design space
• User-input for these “rooms”

03Toy problems

43

TOY2
• Force size

03Toy problems

44

TOY2
• Force size

03Toy problems

45

TOY3
implement self-weight in the methodology and in the algorithm

03Toy problems

46

TOY3
• Implement self-weight in the algorithm
• Define sizes of self-weight

03Toy problems

46

TOY3
• Implement self-weight in the algorithm
• Define sizes of self-weight

03Toy problems

46

TOY3
• Implement self-weight in the algorithm
• Define sizes of self-weight

03Toy problems

47

TOY3
• Implement self-weight in the algorithm
• Define sizes of self-weight

03Toy problems

48

TOY3
• Implement self-weight in the algorithm
• Define sizes of self-weight

03Toy problems

49

TOY3
• Implement self-weight in the algorithm
• Define sizes of self-weight

03Toy problems

50

TOY3
• Implement self-weight in the algorithm
• Define sizes of self-weight

03Toy problems

51

TOY3
• Implement self-weight in the algorithm
• Define sizes of self-weight

03Toy problems

52

TOY3
Verification

03Toy problems

53

TOY3
Verification

03Toy problems

54

TOY3
Verification

03Toy problems

55

TOY4
• Implement a roofing constraint
• Add area loads dependent on roof shape

03Toy problems

56

TOY4
• Implement a roofing constraint
• Add area loads dependent on roof shape

03Toy problems

57

TOY4
• Implement a roofing constraint
• Add area loads dependent on roof shape

03Toy problems

58

TOY4
• Implement a roofing constraint
• Add area loads dependent on roof shape

(Blackman & Miller, 2016)

03Toy problems

58

TOY4
• Implement a roofing constraint
• Add area loads dependent on roof shape

(Blackman & Miller, 2016)

03Toy problems

59

TOY4
• Implement a roofing constraint
• Add area loads dependent on roof shape

03Toy problems

60

TOY4
• Implement a roofing constraint
• Add area loads dependent on roof shape

03Toy problems

60

TOY4
• Implement a roofing constraint
• Add area loads dependent on roof shape

03Toy problems

60

TOY4
• Implement a roofing constraint
• Add area loads dependent on roof shape

03Toy problems

61

TOY4
• Implement a roofing constraint
• Add area loads dependent on roof shape

03Toy problems

62

TOY4
• Implement a roofing constraint
• Add area loads dependent on roof shape

03Toy problems

63

TOY4
• Implement a roofing constraint
• Add area loads dependent on roof shape

03Toy problems

64

TOY4
• Implement a roofing constraint
• Add area loads dependent on roof shape

03Toy problems

65

TOY4
• Implement a roofing constraint
• Add area loads dependent on roof shape

03Toy problems

66

TOY4
• Implement a roofing constraint
• Add area loads dependent on roof shape

03Toy problems

67

TOY4
• Implement a roofing constraint
• Add area loads dependent on roof shape

03Toy problems

67

TOY4
• Implement a roofing constraint
• Add area loads dependent on roof shape

03Toy problems

68

TOY4
• Implement a roofing constraint
• Add area loads dependent on roof shape

03Toy problems

68

TOY4
• Implement a roofing constraint
• Add area loads dependent on roof shape

03Toy problems

69

TOY4
• Implement a roofing constraint
• Add area loads dependent on roof shape

03Toy problems

70

TOY5
• Implement an indexing system
• Handle inputs, including voids
• Algorithm optimization

03Toy problems

71

TOY5
• Implement an indexing system
• Handle inputs, including voids
• Algorithm optimization

(Liu & Tovar, 2014)

03Toy problems

72

TOY5
• Implement an indexing system
• Handle inputs, including voids
• Algorithm optimization

(QNCC, 2019)

03Toy problems

73

TOY5
• Implement an indexing system
• Handle inputs, including voids
• Algorithm optimization

03Toy problems

74

TOY5
• Implement an indexing system
• Handle inputs, including voids
• Algorithm optimization

03Toy problems

75

TOY5
• Implement an indexing system
• Handle inputs, including voids
• Algorithm optimization

03Toy problems

76

TOY5
• Implement an indexing system
• Handle inputs, including voids
• Algorithm optimization

03Toy problems

77

TOY5
• Implement an indexing system
• Handle inputs, including voids
• Algorithm optimization

(Shewchuck, 1997)

03Toy problems

78

TOY5
• Implement an indexing system
• Handle inputs, including voids
• Algorithm optimization

03Toy problems

79

TOY5
• Result

03Toy problems

80

TOY5
• Result

03Toy problems

81

TOY6
• More complex geometry
• Implement density dependent forces
• Implement roof constraint

03Toy problems

82

TOY6
• Implement density dependent forces
• Implement roof constraint
• More complex geometry

03Toy problems

83

TOY6
• Implement density dependent forces
• Implement roof constraint
• More complex geometry

03Toy problems

84

TOY6
• Implement density dependent forces
• Implement roof constraint
• More complex geometry

03Toy problems

85

TOY6
• Implement density dependent forces
• Implement roof constraint
• More complex geometry

03Toy problems

86

TOY6
• Implement density dependent forces
• Implement roof constraint
• More complex geometry

03Toy problems

87

TOY6
• Implement density dependent forces
• Implement roof constraint
• More complex geometry

04Results

88

TOY6
• Implement density dependent forces
• Implement roof constraint
• More complex geometry

03Toy problems

89

TOY6
• Implement density dependent forces
• Implement roof constraint
• More complex geometry

03Toy problems

90

TOY6
• Implement density dependent forces
• Implement roof constraint
• More complex geometry

03Toy problems

91

TOY6
• Implement density dependent forces
• Implement roof constraint
• More complex geometry

03Toy problems

92

TOY6
• Implement density dependent forces
• Implement roof constraint
• More complex geometry

03Toy problems

93

TOY6
• Implement density dependent forces
• Implement roof constraint
• More complex geometry

03Toy problems

94

TOY6
• Implement density dependent forces
• Implement roof constraint
• More complex geometry

03Toy problems

95

TOY6
• Implement density dependent forces
• Implement roof constraint
• More complex geometry

03Toy problems

96

TOY6
• Implement density dependent forces
• Implement roof constraint
• More complex geometry

03Toy problems

97

TOY6
• Implement density dependent forces
• Implement roof constraint
• More complex geometry

03Toy problems

98

TOY6
• Implement density dependent forces
• Implement roof constraint
• More complex geometry

03Toy problems

99

TOY6
• Implement density dependent forces
• Implement roof constraint
• More complex geometry

03Toy problems

100

TOY6
• Implement density dependent forces
• Implement roof constraint
• More complex geometry

04Conclusions

101

create a working topology optimization methodology and
translate this in the form of an algorithm.

implement density dependent forces in the methodology and in the algorithm.

translate the methodology and the algorithm to 3D geometry.

04Conclusions

102

create a working topology optimization methodology and
translate this in the form of an algorithm.

04Conclusions

103

implement self-weight in the methodology and in the algorithm.

04Conclusions

104

translate the methodology and the algorithm to 3D geometry.

04Conclusions

105

04Conclusions

106

04Conclusions

107

(Kakadiaris, 2007)

108

Thank you

