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Make a tower that:

• Does not fall

• Is 16 blocks high

• Has a rectangular shape
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Make a tower that:

• Does not fall

• Is 16 blocks high

• Has a rectangular shape

24 blocks!
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“Topology optimization is an often-used method to generate complex 
shapes with a maximized stiffness and little volume. Implementations in 
(masonry) architecture look promising but requires the implementation 

of density dependent forces”.
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- Heat distribution
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- Structural
- Preset forces / Area loads
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Implement density dependent forces in topology optimization and 
apply this algorithm to buildings.
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create a working topology optimization methodology and translate 
this in the form of an algorithm.

implement density dependent forces in the methodology and in 
the algorithm.

translate the methodology and the algorithm to 3D geometry.
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create a working topology optimization methodology and 
translate this in the form of an algorithm.

implement density dependent forces  in the methodology and in
the algorithm.

translate the methodology and the algorithm to 3D geometry.
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“create a working topology optimization methodology and 
translate this in the form of an algorithm.”

TOY1
• Get TopOp to work in Rhino
• User-Inputs

Forces
Supports
Number of elements

• Implement the existence of voids
• User-based input of voids
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“create a working topology optimization methodology and 
translate this in the form of an algorithm.”

TOY2
• Implement area loads
• A void indexing system

Multiple voids
Complex design spaces

• Forces inside the design space
• User-input for these “rooms”
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“implement density dependent forces in the methodology and in 
the algorithm.”

TOY3
• Implement self weight in the algorithm
• Define sizes of self weight
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“implement density dependent forces in the methodology and in 
the algorithm.”

TOY4
• Apply area loads dependent on the roof shape
• Implement a roofing constraint
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“translate the methodology and the algorithm to 3D geometry.

TOY5
• Implement an indexing system
• Handle inputs, including voids
• Algorithm optimization
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“translate the methodology and the algorithm to 3D geometry.

TOY6
• Implement density dependent forces
• Implement roof constraint
• Explore possibilities in architecture
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(Bensoe & Sigmund, 2003)  
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(Sigmund, 1999)  

𝑐 𝑥 ൌ 𝑈்𝐾𝑈

Minimize compliance

min 𝑥:
Subject to:

:
:

𝑉ሺ𝑥ሻ
𝑉଴

ൌ 𝑣𝑜𝑙𝑓𝑟𝑎𝑐

𝐾𝑈 ൌ 𝐹
0 ൏ 𝑥௠௜௡ ൑ 𝑥 ൑ 1
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Define the problem

(Bensoe & Sigmund, 2003)  
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Finite element analysis

(Bensoe & Sigmund, 2003)  
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(Bathe, 2006)  
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Sensitivity analysis

(Bensoe & Sigmund, 2003)  
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(Sigmund, 1999)  

𝜕𝐶
𝜕𝑥௘

ൌ െ𝑝 ሺ𝑥௘ሻ௣ିଵ𝑈௘
்𝑘଴𝑈௘
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Moving asymptotesSensitivity

(Bensoe & Sigmund, 2003)  

𝑉ሺ𝑥ሻ
𝑉଴

ൌ 𝑣𝑜𝑙𝑓𝑟𝑎𝑐
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(Bendsoe, 1995)  

𝑥௘
௡௘௪=

𝑖𝑓 𝑥௘𝐵௘
ఎ ൑ 𝑚𝑎𝑥 𝑥௠௜௡, 𝑥௘ െ 𝑚 :         𝐦𝐚𝐱 𝒙𝒎𝒊𝒏, 𝒙𝒆 െ 𝒎  

𝑖𝑓 max 𝑥௠௜௡, 𝑥௘ െ 𝑚 ൏ 𝑥௘𝐵௘
ఎ ൏ min 1, 𝑥௘ ൅ 𝑚 :  𝒙𝒆 𝑩𝒆

𝜼

𝑖𝑓 min 1, 𝑥௘ ൅ 𝑚  ൑ 𝑥௘𝐵௘
ఎ ∶                    𝒎𝒊𝒏 𝟏, 𝒙𝒆 ൅ 𝒎

0 ൏ 𝑥௠௜௡ ൑ 𝑥 ൑ 1

Where:
m(move) is a positive move-limit (= 0.2)
η is the numerical damping coefficient (= 1/2)
And 𝐵௘

ఎ is found from the optimality condition
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Update design variables

(Bensoe & Sigmund, 2003)  
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TOY1
“create a working topology optimization methodology and 
translate this in the form of an algorithm.”
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TOY1
• Get TopOp to work in Rhino
• User-Inputs

Forces
Supports
Number of elements

• Implement the existence of voids

Voidlist

Where voids = 
0.001
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TOY1
• Verification

Result Ansys:
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TOY1
• Verification
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TOY2
Configure more complex buildings with multiple voids 
and forces
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TOY2
• Implement area loads
• A void indexing system

Multiple voids
Complex design spaces
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TOY2
• Force size
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TOY2
• Force size
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TOY3
implement self-weight in the methodology and in the algorithm
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TOY3
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TOY3
Verification
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TOY5
• Implement an indexing system
• Handle inputs, including voids
• Algorithm optimization

(Liu & Tovar, 2014)  
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TOY5
• Implement an indexing system
• Handle inputs, including voids
• Algorithm optimization

(QNCC, 2019)  
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TOY5
• Implement an indexing system
• Handle inputs, including voids
• Algorithm optimization

(Shewchuck, 1997)  



03Toy problems

78

TOY5
• Implement an indexing system
• Handle inputs, including voids
• Algorithm optimization
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TOY5
• Result
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TOY5
• Result
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• Implement density dependent forces
• Implement roof constraint
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create a working topology optimization methodology and 
translate this in the form of an algorithm.

implement density dependent forces in the methodology and in the algorithm.

translate the methodology and the algorithm to 3D geometry.
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implement self-weight in the methodology and in the algorithm.
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translate the methodology and the algorithm to 3D geometry.
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(Kakadiaris, 2007)  
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Thank you


